US20030201533A1 - Laminated chip component and manufacturing method - Google Patents

Laminated chip component and manufacturing method Download PDF

Info

Publication number
US20030201533A1
US20030201533A1 US10/434,076 US43407603A US2003201533A1 US 20030201533 A1 US20030201533 A1 US 20030201533A1 US 43407603 A US43407603 A US 43407603A US 2003201533 A1 US2003201533 A1 US 2003201533A1
Authority
US
United States
Prior art keywords
conductive pattern
insulating sheets
conductive
holes
conductive patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/434,076
Inventor
Nobuaki Muramatsu
Takahiro Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to US10/434,076 priority Critical patent/US20030201533A1/en
Assigned to TOKO KABUSHIKI KAISHA reassignment TOKO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURAMATSU, NOBUAKI, OGAWA, TAKAHIRO
Publication of US20030201533A1 publication Critical patent/US20030201533A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/0026Multilayer LC-filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards

Definitions

  • the present invention relates to a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, the conductive patterns between the insulating sheets being connected by conductors in through-holes, and a method for manufacturing the laminated chip component.
  • An inductance element such as that shown in FIG. 7 is a conventional laminated chip component of this type.
  • the inductance element of FIG. 7 comprises conductive patterns 73 a , 73 b , 73 c and 73 d which are printed on the top faces of insulating sheets 71 a , 71 b , 71 c and 71 d .
  • the insulating sheets 71 a , 71 b , 71 c and 71 d are laminated sequentially and covered with protective insulating sheet 71 e . As shown in FIG.
  • the upper layer and lower layer conductive patterns 73 a , 73 b , 73 c and 73 d are connected together by conductors 74 which are provided in through-holes 72 . These conductive patterns form a spiral coil pattern.
  • the conductive patterns 73 a and 73 d are extracted at the end faces of the laminated body, and connect to terminals which are provided at the end faces of the laminated body.
  • FIGS. 9 and 10 show a filter which is formed by laminating two coils and capacitors.
  • An insulating sheet 91 a having a conductive pattern for capacitor 95 a printed thereon is laminated with an insulating sheet 91 b having conductive patterns for capacitor 95 b and 95 c printed thereon, thereby forming two capacitors.
  • Insulating sheets 91 c , 91 d and 91 e having two conductive patterns for half-turn coil printed thereon and a protective insulating sheet 91 f are laminated sequentially on the laminated body which contains the capacitors.
  • the conductive patterns for coil 93 a , 93 b and 93 c are connected by a conductor 94 provided in a through-hole 92 .
  • the conductive patterns for coil 93 d , 93 e and 93 f are connected by a conductor 94 provided in a through-hole 92 .
  • the conductive patterns for coil form two coils inside the laminated body.
  • the conductive pattern for coil 93 a and the conductive pattern for capacitor 95 b are connected by a conductor 94 provided in a through-hole 92 .
  • the conductive pattern for coil 93 d and the conductive pattern for capacitor 95 c are connected by a conductor provided in a through-hole 92 .
  • the conductive pattern for coil 93 c and the conductive pattern for coil 93 f are extracted at two sides of the laminated body, and connect to terminals.
  • the conductive pattern for capacitor 95 a is extracted at the sides where the conductive patterns for coil are not extracted, and connects to terminals.
  • this invention is featured by a laminated chip component including: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; auxiliary conductive patterns which are provided on the top faces of positions which facing the through-holes provided in adjacent insulating sheets of the conductive patterns; and conductors which are provided in the through-holes, and connect upper layer conductive patterns to the auxiliary conductive pattern on lower layer conductive patterns.
  • This invention is also featured by a laminated chip component including: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; conductor sections which are provided in the insulating sheets at positions facing the through-holes provided in adjacent insulating sheets; and conductors which are provided in the conductor sections and the through-holes and connect upper layer conductive patterns to lower layer conduction patterns.
  • This invention is further featured by a laminated chip component including: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; said conductive pattern comprising a first conductive pattern and a second conductive pattern of different materials; auxiliary conductive pattern of the same material as said second conductive pattern, provided on the top faces at the connection section which connect to said second conductive pattern of said first conductive pattern; and a conductor of the same material as said second conductive pattern, provided in a through-hole which runs between said first conductive pattern and said second conductive pattern.
  • a laminated chip component including; alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; said conductive pattern comprising a first conductive pattern and a second conductive pattern of different materials; the insulating sheet on which said first conductive pattern is provided comprising a conductor section for providing a conductor of the same material as said second a conductive pattern, the conductor section being provided at position which corresponding to the connection between said first and second conductive patterns in said insulating sheet; and conductors comprising the same material as said second conductive pattern, the conductors being provided in a through-hole which runs between said first conductive pattern and said second conductive pattern.
  • This invention is still further featured by a method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: printing conductive patterns on said insulating sheets; printing auxiliary conductive patterns on the top faces of said conductive patterns at positions facing said through-holes of adjacent insulating sheets; and connecting an upper layer conductive pattern to said auxiliary conductive pattern on a lower layer conductive pattern by means of conductors which are provided in the through-holes in said insulating sheets.
  • This invention is still further featured by a method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: printing a first conductive pattern on an insulating sheet; printing an auxiliary conductive pattern comprising the same material as the second conductive pattern on the top face at the connection section which connects to said second conductive pattern of said first conductive pattern; and connecting the auxiliary conductive pattern on the first conductive pattern to the second conductive pattern by means of a conductor comprising the same material as the second conductive pattern, the conductor being provided in a through-hole in the laminated insulating sheets.
  • This invention is still further featured by a method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: providing conductor sections in the insulating sheets at positions facing the through-hole in adjacent insulating sheets; printing conductive patterns on said insulating sheets and providing conductors in said conductor sections; and connecting said upper layer conductive pattern to said auxiliary conductive pattern on said bottom layer conductive pattern by means of conductors which are provided in the through-holes of said insulating sheets.
  • FIG. 1 is an exploded perspective view of a first embodiment of the laminated chip component of this invention
  • FIG. 2 is a cross-sectional view of FIG. 1;
  • FIGS. 3A and 3B are diagrams showing a manufacturing sequence in the first embodiment of the laminated chip component of this invention.
  • FIG. 4 is a cross-sectional view of a second embodiment of the laminated chip component of this invention.
  • FIGS. 5A, 5B and 5 C are diagrams showing a manufacturing sequence in the second embodiment of the laminated chip component of this invention.
  • FIG. 6 is a cross-sectional view of a third embodiment of the laminated chip component of this invention.
  • FIG. 7 is an exploded perspective view of a conventional laminated chip component
  • FIG. 8 is a cross-sectional view of FIG. 7;
  • FIG. 9 is an exploded perspective view of another conventional laminated chip component.
  • FIG. 10 is a cross-sectional view of FIG. 9.
  • the laminated chip component of the present invention comprises first and second conductive patterns of different materials.
  • the first conductive pattern is formed on multiple first insulating sheets.
  • the multiple first insulating sheets are laminated to obtain a laminated body containing a first element.
  • the second conductive pattern is formed on multiple second insulating sheets.
  • the multiple second insulating sheets are laminated to obtain a laminated body containing a second element.
  • the laminated body containing the second element is provided on top of the laminated body containing the first element.
  • An auxiliary conductive pattern comprises the same material as the second conductive pattern, and is formed on the top face of the connection between the first conductive pattern and the second conductive pattern in the laminated body containing the first element.
  • Conductors comprising the same material as the second conductive patterns are provided in through-holes in the insulating sheets and connect the first and second conductive patterns.
  • the conductors comprising the same material as the second conductive pattern are clasped on either side by the second conductive pattern and the auxiliary conductive pattern comprising the same material as second conductive pattern.
  • FIG. 1 is an exploded perspective view of a first embodiment of the laminated chip component of this invention
  • FIG. 2 is a cross-sectional view of the same.
  • reference numerals 11 a , 11 b , 11 c , 11 d , 11 e and 11 f represent insulating sheets
  • reference numeral 12 represents a through-hole
  • reference numerals 13 a , 13 b , 13 c , 13 d , 13 e and 13 f represent conductive patterns for coil
  • reference numerals 15 a , 15 b and 15 c represent conductive patterns for capacitor.
  • the insulating sheets 11 a , 11 b , 11 c , 11 d , 11 e and 11 f comprise a ceramic material such as a dielectric or a magnetic substance.
  • a conductive pattern for capacitor 15 a is formed on the top face of the insulating sheet 11 a .
  • Conductive patterns for capacitor 15 b and 15 c are formed on the top face of the insulating sheet 11 b .
  • a conductive pattern for capacitors 15 a , 15 b and 15 c each comprises an electrically conductive material, such as an alloy of silver and palladium, copper, nickel and the like.
  • Auxiliary conductive patterns 16 are formed on the top face of the connection section which connects to the coil of the conductive patterns/for capacitors 15 b and 15 c .
  • the auxiliary conductive patterns 16 are approximately the some side or larger than the through-holes 12 in the insulating sheet 11 c .
  • the electrically conductive material used to form the auxiliary conductive patterns 16 is the same as that used for the conductive patterns for coil explained later.
  • a capacitor is formed between the conductive patterns for capacitor 15 a and 15 b which are provided on opposite sides of the insulating sheet 11 b .
  • a capacitor is also formed between the conductive patterns for capacitor 15 a and 15 c which are provided on opposite sides of the insulating sheet 11 b.
  • Two conductive patterns for half-turn coil are formed on the top faces of each of the insulating sheets 11 c , 11 d and 11 e .
  • the conductive patterns for half-turn coil 13 a , 13 b , 13 c , 13 d , 13 e and 13 f each comprise an electrically conductive material such as silver or copper.
  • the electrically conductive material comprising the conductive patterns for coil 13 a , 13 b , 13 c , 13 d , 13 e and 13 f is different from the electrically conductive material comprising the conductive patterns for capacitor.
  • the conductive patterns for coil 13 a , 13 b and 13 c are connected by conductors 14 which are provided in the through-holes 12 , thereby forming a coil.
  • the conductive patterns for coil 13 d , 13 e and 13 f are connected by conductors 14 which are provided in the through-holes 12 , thereby forming a coil.
  • the conductive pattern for coil 13 a which comprises this coil is connected to the auxiliary conductive pattern 16 on the conductive pattern for capacitor 15 b by the conductor 14 provided in the through-hole 12 in the insulating sheet 11 c .
  • the conductive pattern for coil 13 d which comprises this coil is connected to the auxiliary conductive pattern 16 on the conductive pattern for capacitor 15 c by the conductor 14 provided in the through-hole 12 in the insulating sheet 10 c .
  • the material of the conductors 14 which connect the conductive patterns is the same as that used for the conductive patterns for coil.
  • the conductive pattern for coil 13 c and the conductive pattern for coil 13 f are extracted at both ends of the laminated body and connected to terminals.
  • the conductive pattern for capacitor 15 a is extracted at the sides of the laminated body where the conductive patterns for coil are not extracted, and is connected to terminals.
  • the insulating sheet 11 f protects the conductive patterns for coil 13 c and 13 f which are formed on the insulating sheet 11 e.
  • the above laminated chip component is manufactured in the following way. Firstly, the conductive patterns for capacitor 15 b and 15 c are printed on the top face of the insulating sheet 11 b .
  • the auxiliary conductive patterns 16 are printed on the top face of the connection section which connect to the coil of the conductive patterns for capacitor 15 b and 15 c .
  • the insulating sheet 11 b is laminated on the top of the insulating sheet 11 a which the conductive pattern for capacitor is printed on. Alternatively, this process may be performed in the following sequence.
  • the conductive patterns for capacitor 15 b and 15 c are printed on the top face of the insulating sheet 11 b .
  • the auxiliary conductive patterns 16 are printed on the top face of the connection section which connects to the coil of the conductive patterns for capacitor 15 b and 15 c.
  • the insulating sheet 11 c is laminated on the top of the insulating sheet 11 b .
  • the conductive patterns for coil 13 a and 13 d are connected to the auxiliary conductive patterns 16 on the conductive patterns for capacitor 15 b and 15 c by conductors which comprise the same material as the conductive patterns for coil provided in the through-holes 12 of the insulating sheet 11 c .
  • the conductive patterns for coil 13 a and 13 d may be printed beforehand on the top face of the insulating sheet 11 c prior to laminating the insulating sheet 11 c onto the insulating sheet 11 b . Alternatively, they may be printed on the top face of the insulating sheet 11 c after the insulating sheet 11 c has been laminated onto the insulating sheet 11 b.
  • the insulating sheets lid and 11 e are sequentially laminated on the insulating sheet 11 c , thereby forming the coil.
  • FIG. 4 is a cross-sectional view of a second embodiment of the laminated chip component of this invention.
  • a conductive pattern for capacitor 45 a is formed on the top face of an insulating sheet 41 a .
  • Conductive patterns for capacitor 45 b and 45 c are formed on the top face of an insulating sheet 41 b .
  • a conductive pattern for capacitor 45 a , 45 b and 45 c comprises an electrically conductive material, such as an alloy of silver and palladium, copper, nickel and the like.
  • Conductor sections are formed by providing cavities at a position which corresponding to the connection between the conductive pattern for capacitor 45 b , 45 c and the conductive patterns for coil (explained later) in insulating sheet 41 b .
  • the conductor sections are formed approximately the same size or larger than through-holes 42 in the insulating sheet 41 c , and are provided conductors which comprise the same material as the conductive pattern for coil (explained later), at the positions which will connect with the conductive pattern for coil.
  • a capacitor is formed between the conductive patterns for capacitor 45 a and 45 b which are provided on the opposite sides of the insulating sheet 41 b .
  • a capacitor is also formed between the conductive patterns for capacitor 45 a and 45 c which are provided on the opposite sides of the insulating sheet 41 b.
  • Two conductive patterns for half-turn coil 43 are formed on the top faces of each of the insulating sheets 41 c , 41 d and 41 e .
  • Each of the conductive patterns for half-turn coil 43 comprises an electrically conductive material such as silver or copper.
  • the upper layer conductive pattern for coil and the lower layer conductive pattern for coil are connected by conductors 44 provided in through-holes, thereby forming two coils within the laminated body.
  • the electrically conductive material comprising the conductive patterns for coil 43 is different from the electrically conductive material comprising the conductive patterns for capacitor.
  • the conductive patterns for coil which comprise this coil are connected to the conductive pattern for capacitor which comprises this capacitor by the conductor 44 provided in the through-hole of the insulating sheet 41 c and the conductor 46 provided in the conductor section of the insulating sheet 41 b .
  • the material of the conductors 44 and 46 is the same as that used for the conductive patterns for coil.
  • An insulating sheet 41 f protects the conductive pattern coil formed on the insulating sheet 41 e.
  • conductor sections comprise cavities provided in the conductive patterns for capacitor on the insulating sheet 41 b at the connections with the conductive patterns for coil, and conductors comprising the same material as the conductive patterns for coil are provided in the conductor sections. Therefore, more stocks of electrically conductive material can be used to connect the conductive patterns for coil and the conductive patterns for capacitor than in the first embodiment.
  • conductor sections 47 for providing conductors comprising the same material as the conductive pattern for coil are formed by providing cavities at positions corresponding to the connection between the conductive pattern for capacitor and the conductive pattern for coil in the insulating sheet 41 b.
  • the conductive patterns for capacitor 45 b and 45 c are printed on the top face of the insulating sheet 41 b .
  • Conductors 46 comprise the same material as the conductive pattern for coil, and are provided in the conductor sections 47 .
  • the insulating sheet 41 b is laminated on top of the insulating sheet 41 a which the conductive pattern for capacitor is printed on. Alternatively, these processes may be performed in the following sequence.
  • the conductive patterns for capacitor 45 b and 45 c are printed on the top face of the insulating sheet 41 b , and the conductor 46 comprising the same material as the conductive pattern for coil is provided in the conductor section.
  • FIG. 5C is a cross-sectional view of a third embodiment of the laminated chip component of this invention.
  • Conductive patterns for capacitor 65 comprise an electrically conductive material, such as an alloy of silver and palladium, copper, nickel and the like, and are provided on the top faces of insulating sheet 61 a and 61 b .
  • a conductor section is formed by providing a through-hole at the position which corresponding to the connection between the conductive pattern for capacitor and the conductive pattern for coil in the insulating sheet 61 b .
  • the conductor section is formed approximately the same size or larger than a through-hole 62 in the insulating sheet 61 c , and is provided with a conductor comprising the same material as the conductive pattern for coil (explained later).
  • Conductive patterns 63 for half-turn coil comprise a conductive material such as silver or copper.
  • Two conductive patterns 63 for half-turn coil are provided on the top face of each of insulating sheets 61 c , 61 d and 61 e .
  • Conductors 64 are provided in through-holes, and connect the upper layer conductive pattern for coil to the lower layer conductive pattern for coil. These conductive patterns for coil form two coils in the laminated body.
  • the conductive material of the conductive patterns for coil is a different material to that of the conductive pattern for capacitor.
  • the conductive patterns for coil which form this coil are connected to the conductive pattern for capacitor which forms this capacitor by the conductor 64 provided in the through-hole of the insulating sheet 61 c and the conductor 66 provided in the conductor section of the insulating sheet 61 b .
  • the conductors 64 and 66 comprise the same material as the conductive patterns for coil.
  • a conductor section comprising a through-hole is provided at the connection of the conductive pattern for capacitor of the insulating sheet 61 b to the conductive pattern for coil, and a conductor comprising the same material as the conductive pattern for coil is provided in the through-hole. Therefore, the conductive material for connecting the conductive pattern for coil to the conductive pattern for capacitor can be stocked more fully than in any of the preceding embodiments.
  • the present invention is not limited to the embodiments described above.
  • the auxiliary conductive pattern may be provided on the top face facing the through-holes of the conductive pattern for coil.
  • the auxiliary conductive pattern which faces the through-hole of the conductive pattern can be one of many types of shape such as circular, square, many-sided, etc.
  • a laminated body containing a capacitor may be laminated on a laminated body containing a coil.
  • laminated bodies containing capacitors may be laminated on both sides of a laminated body containing a coil.
  • an additional auxiliary conductor pattern comprising the same material as the conductive pattern for coil may be formed on the top faces of the conductors which are provided in the conductor sections and the conductive patterns for capacitor.
  • auxiliary conductive patterns which are provided on the top faces of the conductive patterns at positions facing the through-holes of adjacent insulating sheets. Therefore, an electrically conductive material can be supplied from the auxiliary conductive patterns provided on the top faces of the conductive patterns to the conductors in the through-holes, even when the conductive pattern and the conductors provided in the through-holes shrink more than the insulating sheets. As a consequence, breaks in the connections in the through-holes of the insulating sheets can be prevented in the laminated chip component of this invention even when the firing shrinkage rate of the conductive patterns is greater than that of the insulating sheets.
  • an auxiliary conductive pattern comprises the same material as the second conductive pattern, and is provided on the top face of the connection section which connect to the second conductive pattern of the first conductive pattern. Therefore, an electrically conductive material can be supplied from the auxiliary conductive pattern, which comprises the same material as the second conductive pattern and is provided on the top face of the first conductive pattern, to the conductors comprising the same material as the second conductive pattern which are provided in the through-holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

A laminated chip component including: alternately laminated conductive patterns (13,43,63) and insulating sheets (11,41,61); through-holes (12,42,62) which are provided in the insulating sheets and connect top layer conductive patterns to bottom layer conductive patterns; auxiliary conductive patterns (15,45,65) which are provided on the top faces of the conductive patterns at positions facing the through-holes provided in adjacent insulating sheets; and conductors (14,64) which are provided in the through-holes. The auxiliary conductive patterns can be substituted by conductor sections (16,66) which are provided in the insulating sheets at the positions facing the through-holes provided in adjacent insulating sheets. And, a method for manufacturing a laminated chip component is also disclosed.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, the conductive patterns between the insulating sheets being connected by conductors in through-holes, and a method for manufacturing the laminated chip component. [0002]
  • 2. Description of the Related Art [0003]
  • An inductance element such as that shown in FIG. 7 is a conventional laminated chip component of this type. The inductance element of FIG. 7 comprises [0004] conductive patterns 73 a, 73 b, 73 c and 73 d which are printed on the top faces of insulating sheets 71 a, 71 b, 71 c and 71 d. The insulating sheets 71 a, 71 b, 71 c and 71 d are laminated sequentially and covered with protective insulating sheet 71 e. As shown in FIG. 8, the upper layer and lower layer conductive patterns 73 a, 73 b, 73 c and 73 d are connected together by conductors 74 which are provided in through-holes 72. These conductive patterns form a spiral coil pattern. The conductive patterns 73 a and 73 d are extracted at the end faces of the laminated body, and connect to terminals which are provided at the end faces of the laminated body.
  • Another conventional laminated chip component comprises a circuit formed by laminating together passive elements such as coils, capacitors, and the like. FIGS. 9 and 10 show a filter which is formed by laminating two coils and capacitors. An insulating sheet [0005] 91 a having a conductive pattern for capacitor 95 a printed thereon is laminated with an insulating sheet 91 b having conductive patterns for capacitor 95 b and 95 c printed thereon, thereby forming two capacitors. Insulating sheets 91 c, 91 d and 91 e having two conductive patterns for half-turn coil printed thereon and a protective insulating sheet 91 f are laminated sequentially on the laminated body which contains the capacitors. The conductive patterns for coil 93 a, 93 b and 93 c are connected by a conductor 94 provided in a through-hole 92. The conductive patterns for coil 93 d, 93 e and 93 f are connected by a conductor 94 provided in a through-hole 92. The conductive patterns for coil form two coils inside the laminated body.
  • The conductive pattern for [0006] coil 93 a and the conductive pattern for capacitor 95 b are connected by a conductor 94 provided in a through-hole 92. The conductive pattern for coil 93 d and the conductive pattern for capacitor 95 c are connected by a conductor provided in a through-hole 92.
  • The conductive pattern for [0007] coil 93 c and the conductive pattern for coil 93 f are extracted at two sides of the laminated body, and connect to terminals. The conductive pattern for capacitor 95 a is extracted at the sides where the conductive patterns for coil are not extracted, and connects to terminals.
  • In conventional laminated chip components such as that shown in FIGS. 7 and 8, the firing shrinkage rate of the conductive patterns is greater than the firing shrinkage rate of the insulating sheets. Consequently, the connection in the through-holes is sometimes broken, as shown by [0008] numeral 80 in FIG. 8.
  • In conventional laminated chip components such as that shown in FIGS. 9 and 10, different materials are generally used for the conductive patterns for coil and the conductive patterns for capacitor. As a result, the two types of conductive patterns have different firing shrinkage rates and different reactivity. Consequently, in conventional laminated chip components such as that shown in FIGS. 9 and 10, not only is the firing shrinkage rate of the conductive patterns greater than the firing shrinkage rate of the insulating sheets, but in addition, the two types of conductive patterns have different firing shrinkage rates and different reactivity. As a consequence, the connection in the through-holes is liable to break, especially between a coil and a capacitor as shown by [0009] numeral 100 in FIG. 10.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a laminated chip component in which broken connections in through-holes of insulating sheets can be prevented. [0010]
  • In order to achieve the abovementioned object, this invention is featured by a laminated chip component including: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; auxiliary conductive patterns which are provided on the top faces of positions which facing the through-holes provided in adjacent insulating sheets of the conductive patterns; and conductors which are provided in the through-holes, and connect upper layer conductive patterns to the auxiliary conductive pattern on lower layer conductive patterns. [0011]
  • This invention is also featured by a laminated chip component including: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; conductor sections which are provided in the insulating sheets at positions facing the through-holes provided in adjacent insulating sheets; and conductors which are provided in the conductor sections and the through-holes and connect upper layer conductive patterns to lower layer conduction patterns. [0012]
  • This invention is further featured by a laminated chip component including: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; said conductive pattern comprising a first conductive pattern and a second conductive pattern of different materials; auxiliary conductive pattern of the same material as said second conductive pattern, provided on the top faces at the connection section which connect to said second conductive pattern of said first conductive pattern; and a conductor of the same material as said second conductive pattern, provided in a through-hole which runs between said first conductive pattern and said second conductive pattern. [0013]
  • This invention is still further featured by a laminated chip component including; alternately laminated conductive patterns and insulating sheets; through-holes which are provided in the insulating sheets; said conductive pattern comprising a first conductive pattern and a second conductive pattern of different materials; the insulating sheet on which said first conductive pattern is provided comprising a conductor section for providing a conductor of the same material as said second a conductive pattern, the conductor section being provided at position which corresponding to the connection between said first and second conductive patterns in said insulating sheet; and conductors comprising the same material as said second conductive pattern, the conductors being provided in a through-hole which runs between said first conductive pattern and said second conductive pattern. [0014]
  • This invention is still further featured by a method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: printing conductive patterns on said insulating sheets; printing auxiliary conductive patterns on the top faces of said conductive patterns at positions facing said through-holes of adjacent insulating sheets; and connecting an upper layer conductive pattern to said auxiliary conductive pattern on a lower layer conductive pattern by means of conductors which are provided in the through-holes in said insulating sheets. [0015]
  • This invention is still further featured by a method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: printing a first conductive pattern on an insulating sheet; printing an auxiliary conductive pattern comprising the same material as the second conductive pattern on the top face at the connection section which connects to said second conductive pattern of said first conductive pattern; and connecting the auxiliary conductive pattern on the first conductive pattern to the second conductive pattern by means of a conductor comprising the same material as the second conductive pattern, the conductor being provided in a through-hole in the laminated insulating sheets. [0016]
  • This invention is still further featured by a method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: providing conductor sections in the insulating sheets at positions facing the through-hole in adjacent insulating sheets; printing conductive patterns on said insulating sheets and providing conductors in said conductor sections; and connecting said upper layer conductive pattern to said auxiliary conductive pattern on said bottom layer conductive pattern by means of conductors which are provided in the through-holes of said insulating sheets.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded perspective view of a first embodiment of the laminated chip component of this invention; [0018]
  • FIG. 2 is a cross-sectional view of FIG. 1; [0019]
  • FIGS. 3A and 3B are diagrams showing a manufacturing sequence in the first embodiment of the laminated chip component of this invention; [0020]
  • FIG. 4 is a cross-sectional view of a second embodiment of the laminated chip component of this invention; [0021]
  • FIGS. 5A, 5B and [0022] 5C are diagrams showing a manufacturing sequence in the second embodiment of the laminated chip component of this invention;
  • FIG. 6 is a cross-sectional view of a third embodiment of the laminated chip component of this invention; [0023]
  • FIG. 7 is an exploded perspective view of a conventional laminated chip component; [0024]
  • FIG. 8 is a cross-sectional view of FIG. 7; [0025]
  • FIG. 9 is an exploded perspective view of another conventional laminated chip component; and [0026]
  • FIG. 10 is a cross-sectional view of FIG. 9.[0027]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The laminated chip component of the present invention comprises first and second conductive patterns of different materials. The first conductive pattern is formed on multiple first insulating sheets. The multiple first insulating sheets are laminated to obtain a laminated body containing a first element. The second conductive pattern is formed on multiple second insulating sheets. The multiple second insulating sheets are laminated to obtain a laminated body containing a second element. The laminated body containing the second element is provided on top of the laminated body containing the first element. [0028]
  • An auxiliary conductive pattern comprises the same material as the second conductive pattern, and is formed on the top face of the connection between the first conductive pattern and the second conductive pattern in the laminated body containing the first element. Conductors comprising the same material as the second conductive patterns are provided in through-holes in the insulating sheets and connect the first and second conductive patterns. The conductors comprising the same material as the second conductive pattern are clasped on either side by the second conductive pattern and the auxiliary conductive pattern comprising the same material as second conductive pattern. [0029]
  • Preferred embodiments of the laminated chip component of this invention will be explained with reference to FIGS. [0030] 1 to 6.
  • FIG. 1 is an exploded perspective view of a first embodiment of the laminated chip component of this invention, and FIG. 2 is a cross-sectional view of the same. [0031]
  • In FIGS. 1 and 2, reference numerals [0032] 11 a, 11 b, 11 c, 11 d, 11 e and 11 f represent insulating sheets, reference numeral 12 represents a through-hole, reference numerals 13 a, 13 b, 13 c, 13 d, 13 e and 13 f represent conductive patterns for coil, and reference numerals 15 a, 15 b and 15 c represent conductive patterns for capacitor.
  • The insulating sheets [0033] 11 a, 11 b, 11 c, 11 d, 11 e and 11 f comprise a ceramic material such as a dielectric or a magnetic substance.
  • A conductive pattern for [0034] capacitor 15 a is formed on the top face of the insulating sheet 11 a. Conductive patterns for capacitor 15 b and 15 c are formed on the top face of the insulating sheet 11 b. A conductive pattern for capacitors 15 a, 15 b and 15 c each comprises an electrically conductive material, such as an alloy of silver and palladium, copper, nickel and the like. Auxiliary conductive patterns 16 are formed on the top face of the connection section which connects to the coil of the conductive patterns/for capacitors 15 b and 15 c. The auxiliary conductive patterns 16 are approximately the some side or larger than the through-holes 12 in the insulating sheet 11 c. The electrically conductive material used to form the auxiliary conductive patterns 16 is the same as that used for the conductive patterns for coil explained later. A capacitor is formed between the conductive patterns for capacitor 15 a and 15 b which are provided on opposite sides of the insulating sheet 11 b. A capacitor is also formed between the conductive patterns for capacitor 15 a and 15 c which are provided on opposite sides of the insulating sheet 11 b.
  • Two conductive patterns for half-turn coil are formed on the top faces of each of the insulating sheets [0035] 11 c, 11 d and 11 e. The conductive patterns for half- turn coil 13 a, 13 b, 13 c, 13 d, 13 e and 13 f each comprise an electrically conductive material such as silver or copper. The electrically conductive material comprising the conductive patterns for coil 13 a, 13 b, 13 c, 13 d, 13 e and 13 f is different from the electrically conductive material comprising the conductive patterns for capacitor. The conductive patterns for coil 13 a, 13 b and 13 c are connected by conductors 14 which are provided in the through-holes 12, thereby forming a coil. Similarly, the conductive patterns for coil 13 d, 13 e and 13 f are connected by conductors 14 which are provided in the through-holes 12, thereby forming a coil.
  • The conductive pattern for [0036] coil 13 a which comprises this coil is connected to the auxiliary conductive pattern 16 on the conductive pattern for capacitor 15 b by the conductor 14 provided in the through-hole 12 in the insulating sheet 11 c. The conductive pattern for coil 13 d which comprises this coil is connected to the auxiliary conductive pattern 16 on the conductive pattern for capacitor 15 c by the conductor 14 provided in the through-hole 12 in the insulating sheet 10 c. The material of the conductors 14 which connect the conductive patterns is the same as that used for the conductive patterns for coil.
  • The conductive pattern for [0037] coil 13 c and the conductive pattern for coil 13 f are extracted at both ends of the laminated body and connected to terminals. The conductive pattern for capacitor 15 a is extracted at the sides of the laminated body where the conductive patterns for coil are not extracted, and is connected to terminals. The insulating sheet 11 f protects the conductive patterns for coil 13 c and 13 f which are formed on the insulating sheet 11 e.
  • The above laminated chip component is manufactured in the following way. Firstly, the conductive patterns for [0038] capacitor 15 b and 15 c are printed on the top face of the insulating sheet 11 b. The auxiliary conductive patterns 16 are printed on the top face of the connection section which connect to the coil of the conductive patterns for capacitor 15 b and 15 c. As shown in FIG. 3A, the insulating sheet 11 b is laminated on the top of the insulating sheet 11 a which the conductive pattern for capacitor is printed on. Alternatively, this process may be performed in the following sequence. After the insulating sheet 11 b has been laminated on the top of the insulating sheet 11 a which the conductive pattern for capacitor is printed on, the conductive patterns for capacitor 15 b and 15 c are printed on the top face of the insulating sheet 11 b. Subsequently, the auxiliary conductive patterns 16 are printed on the top face of the connection section which connects to the coil of the conductive patterns for capacitor 15 b and 15 c.
  • As shown in FIG. 3B, the insulating sheet [0039] 11 c is laminated on the top of the insulating sheet 11 b. The conductive patterns for coil 13 a and 13 d are connected to the auxiliary conductive patterns 16 on the conductive patterns for capacitor 15 b and 15 c by conductors which comprise the same material as the conductive patterns for coil provided in the through-holes 12 of the insulating sheet 11 c. The conductive patterns for coil 13 a and 13 d may be printed beforehand on the top face of the insulating sheet 11 c prior to laminating the insulating sheet 11 c onto the insulating sheet 11 b. Alternatively, they may be printed on the top face of the insulating sheet 11 c after the insulating sheet 11 c has been laminated onto the insulating sheet 11 b.
  • The insulating sheets lid and [0040] 11 e are sequentially laminated on the insulating sheet 11 c, thereby forming the coil.
  • FIG. 4 is a cross-sectional view of a second embodiment of the laminated chip component of this invention. [0041]
  • A conductive pattern for [0042] capacitor 45 a is formed on the top face of an insulating sheet 41 a. Conductive patterns for capacitor 45 b and 45 c are formed on the top face of an insulating sheet 41 b. A conductive pattern for capacitor 45 a, 45 b and 45 c comprises an electrically conductive material, such as an alloy of silver and palladium, copper, nickel and the like. Conductor sections are formed by providing cavities at a position which corresponding to the connection between the conductive pattern for capacitor 45 b, 45 c and the conductive patterns for coil (explained later) in insulating sheet 41 b. The conductor sections are formed approximately the same size or larger than through-holes 42 in the insulating sheet 41 c, and are provided conductors which comprise the same material as the conductive pattern for coil (explained later), at the positions which will connect with the conductive pattern for coil.
  • A capacitor is formed between the conductive patterns for [0043] capacitor 45 a and 45 b which are provided on the opposite sides of the insulating sheet 41 b. A capacitor is also formed between the conductive patterns for capacitor 45 a and 45 c which are provided on the opposite sides of the insulating sheet 41 b.
  • Two conductive patterns for half-[0044] turn coil 43 are formed on the top faces of each of the insulating sheets 41 c, 41 d and 41 e. Each of the conductive patterns for half-turn coil 43 comprises an electrically conductive material such as silver or copper. The upper layer conductive pattern for coil and the lower layer conductive pattern for coil are connected by conductors 44 provided in through-holes, thereby forming two coils within the laminated body. The electrically conductive material comprising the conductive patterns for coil 43 is different from the electrically conductive material comprising the conductive patterns for capacitor.
  • The conductive patterns for coil which comprise this coil are connected to the conductive pattern for capacitor which comprises this capacitor by the [0045] conductor 44 provided in the through-hole of the insulating sheet 41 c and the conductor 46 provided in the conductor section of the insulating sheet 41 b. The material of the conductors 44 and 46 is the same as that used for the conductive patterns for coil. An insulating sheet 41 f protects the conductive pattern coil formed on the insulating sheet 41 e.
  • In the laminated chip component configured in the manner described above, conductor sections comprise cavities provided in the conductive patterns for capacitor on the insulating sheet [0046] 41 b at the connections with the conductive patterns for coil, and conductors comprising the same material as the conductive patterns for coil are provided in the conductor sections. Therefore, more stocks of electrically conductive material can be used to connect the conductive patterns for coil and the conductive patterns for capacitor than in the first embodiment.
  • The above laminated chip component is manufactured in the following way. As shown in FIG. 5A, [0047] conductor sections 47 for providing conductors comprising the same material as the conductive pattern for coil are formed by providing cavities at positions corresponding to the connection between the conductive pattern for capacitor and the conductive pattern for coil in the insulating sheet 41 b.
  • As shown in FIG. 5B, the conductive patterns for [0048] capacitor 45 b and 45 c are printed on the top face of the insulating sheet 41 b. Conductors 46 comprise the same material as the conductive pattern for coil, and are provided in the conductor sections 47. The insulating sheet 41 b is laminated on top of the insulating sheet 41 a which the conductive pattern for capacitor is printed on. Alternatively, these processes may be performed in the following sequence. After the insulating sheet 41 b has been laminated on top of the insulating sheet 41 a, the conductive patterns for capacitor 45 b and 45 c are printed on the top face of the insulating sheet 41 b, and the conductor 46 comprising the same material as the conductive pattern for coil is provided in the conductor section.
  • Moreover, as shown in FIG. 5C, the insulating [0049] sheet 41 c is laminated on the insulating sheet 41 b, and the conductive pattern for coil 43 is connected to the conductive patterns for capacitor 45 b and 45 c by the conductor which comprises the same material as the conductive pattern for coil and is provided in the through-hole in the insulating sheet 41 c. The coil is formed by sequentially laminating the insulating sheets 41 d and 41 e on the insulating sheet 41 c FIG. 6 is a cross-sectional view of a third embodiment of the laminated chip component of this invention.
  • Conductive patterns for [0050] capacitor 65 comprise an electrically conductive material, such as an alloy of silver and palladium, copper, nickel and the like, and are provided on the top faces of insulating sheet 61 a and 61 b. A conductor section is formed by providing a through-hole at the position which corresponding to the connection between the conductive pattern for capacitor and the conductive pattern for coil in the insulating sheet 61 b. The conductor section is formed approximately the same size or larger than a through-hole 62 in the insulating sheet 61 c, and is provided with a conductor comprising the same material as the conductive pattern for coil (explained later).
  • [0051] Conductive patterns 63 for half-turn coil comprise a conductive material such as silver or copper. Two conductive patterns 63 for half-turn coil are provided on the top face of each of insulating sheets 61 c, 61 d and 61 e. Conductors 64 are provided in through-holes, and connect the upper layer conductive pattern for coil to the lower layer conductive pattern for coil. These conductive patterns for coil form two coils in the laminated body. The conductive material of the conductive patterns for coil is a different material to that of the conductive pattern for capacitor.
  • The conductive patterns for coil which form this coil are connected to the conductive pattern for capacitor which forms this capacitor by the [0052] conductor 64 provided in the through-hole of the insulating sheet 61 c and the conductor 66 provided in the conductor section of the insulating sheet 61 b. The conductors 64 and 66 comprise the same material as the conductive patterns for coil.
  • The laminated chip component of this invention configured as above, a conductor section comprising a through-hole is provided at the connection of the conductive pattern for capacitor of the insulating sheet [0053] 61 b to the conductive pattern for coil, and a conductor comprising the same material as the conductive pattern for coil is provided in the through-hole. Therefore, the conductive material for connecting the conductive pattern for coil to the conductive pattern for capacitor can be stocked more fully than in any of the preceding embodiments.
  • The present invention is not limited to the embodiments described above. For example, the auxiliary conductive pattern may be provided on the top face facing the through-holes of the conductive pattern for coil. The auxiliary conductive pattern which faces the through-hole of the conductive pattern can be one of many types of shape such as circular, square, many-sided, etc. Moreover, a laminated body containing a capacitor may be laminated on a laminated body containing a coil. Alternatively, laminated bodies containing capacitors may be laminated on both sides of a laminated body containing a coil. [0054]
  • In the second and third embodiments, an additional auxiliary conductor pattern comprising the same material as the conductive pattern for coil may be formed on the top faces of the conductors which are provided in the conductor sections and the conductive patterns for capacitor. [0055]
  • The above description of the embodiments referred to a circuit comprising coils and capacitors laminated together, but the laminated chip component of this invention may be applied in an inductance element. [0056]
  • As described above, according to the laminated chip component of this invention, auxiliary conductive patterns which are provided on the top faces of the conductive patterns at positions facing the through-holes of adjacent insulating sheets. Therefore, an electrically conductive material can be supplied from the auxiliary conductive patterns provided on the top faces of the conductive patterns to the conductors in the through-holes, even when the conductive pattern and the conductors provided in the through-holes shrink more than the insulating sheets. As a consequence, breaks in the connections in the through-holes of the insulating sheets can be prevented in the laminated chip component of this invention even when the firing shrinkage rate of the conductive patterns is greater than that of the insulating sheets. [0057]
  • Further, according to the laminated chip component of this invention, an auxiliary conductive pattern comprises the same material as the second conductive pattern, and is provided on the top face of the connection section which connect to the second conductive pattern of the first conductive pattern. Therefore, an electrically conductive material can be supplied from the auxiliary conductive pattern, which comprises the same material as the second conductive pattern and is provided on the top face of the first conductive pattern, to the conductors comprising the same material as the second conductive pattern which are provided in the through-holes. As a consequence, breaks in the connections in the through-holes of the insulating sheets can be prevented in the laminated chip component of this invention even in the case where the firing shrinkage rate of the conductive patterns is greater than that of the insulating sheets, and the case where the firing shrinkage rates and reactivity of the two types of conductive pattern are different. [0058]

Claims (16)

What is claimed is:
1. A laminated chip component comprising: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in said insulating sheets; auxiliary conductive patterns which are provided on the top faces of positions which facing said through-holes provided in adjacent insulating sheets of said conductive patterns; and conductors which are provided in said through-holes, and connect upper layer conductive patterns to said auxiliary conductive pattern on lower layer conductive patterns.
2. A laminated chip component comprising: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in said insulating sheets; conductor sections which are provided in said insulating sheets at positions facing said through-holes provided in adjacent insulating sheets; and conductors which are provided in said conductor sections and said through-holes, and connect upper layer conductive patterns to lower layer conductive patterns.
3. The laminated chip component as described in claim 2, wherein said conductor section is a cavity.
4. The laminated chip component as described in claim 2, wherein said conductor section is a through-hole.
5. The laminated chip component as described in claim 2, further comprising an auxiliary conductive pattern which is provided on a top face of said bottom layer conductive pattern at the connection with said top layer conductive pattern.
6. A laminated chip component comprising: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in said insulating sheets; said conductive pattern comprising a first conductive pattern and a second conductive pattern of different materials; an auxiliary conductive pattern of the same material as said second conductive pattern, provided on the top face of a connection section which connects to said second conductive pattern of said first conductive pattern; and a conductor of the same material as said second conductive pattern provided in a through-hole which runs between said first conductive pattern and said second conductive pattern.
7. A laminated chip component comprising: alternately laminated conductive patterns and insulating sheets; through-holes which are provided in said insulating sheets; said conductive patterns comprising a first conductive pattern and a second conductive pattern of different materials; the insulating sheet on which said first conductive pattern is provided comprising a conductor section for providing a conductor of the same material as said second conductive pattern, the conductor section being provided at the position which corresponding to the connection between said first and second conductive patterns in said insulating sheet; and conductors comprising the same material as said second conductive pattern, the conductors being provided in a through-hole which runs between said first conductive pattern and said second conductive pattern and in said conductor section.
8. The laminated chip component as described in claim 7, wherein said conductor section is a cavity.
9. The laminated chip component as described in claim 7, wherein said conductor section is a through-hole.
10. The laminated chip component as described in claim 7, further comprising an auxiliary conductive pattern which is provided on the top face of said bottom layer conductive pattern at the connection with said top layer conductive pattern.
11. A method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: printing conductive patterns on said insulating sheets; printing auxiliary conductive patterns on the top faces of said conductive patterns at the positions facing said through-holes of adjacent insulating sheets; and connecting upper layer conductive pattern to said auxiliary conductive pattern on lower layer conductive pattern by means of conductors which are provided in the through-holes in said insulating sheets.
12. A method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: providing conductor sections in the insulating sheets at positions facing the through-hole in adjacent insulating sheets; printing conductive patterns on said insulating sheets and providing conductors in said conductor sections; and connecting said upper layer conductive pattern to said auxiliary conductive pattern on said lower layer conductive pattern by means of conductors which are provided in the through-holes of said insulating sheets.
13. A method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: providing conductor sections in the insulating sheets at the positions facing the through-hole in adjacent insulating sheets; printing conductive patterns on said insulating sheets and providing conductors in said conductor sections; printing auxiliary conductive patterns on top faces of said conductive patterns at the positions facing said through-holes of adjacent insulating sheets; and connecting upper layer conductive pattern to said auxiliary conductive pattern on lower layer conductive pattern by means of conductors which are provided in the through-holes of said insulating sheets.
14. A method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: printing a first conductive pattern on an insulating sheet; printing an auxiliary conductive pattern comprising the same material as the second conductive pattern on the top face of the connection section which connects to said second conductive pattern of said first conductive pattern; and connecting the auxiliary conductive pattern on the first conductive pattern to the second conductive pattern by means of a conductor comprising the same material as the second conductive pattern, the conductor being provided in a through-hole in the laminated insulating sheets.
15. A method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: providing conductor sections for providing conductors comprising the same material as the second conductive pattern at the position corresponding to the connection between the first conductive pattern and the second conductive pattern in said insulating sheets; printing a first conductive pattern on said insulating sheets, and providing conductors comprising the same material as said second conductive pattern in said conductor sections; and connecting first conductive pattern to the second conductive pattern by means of conductors comprising the same material as the second conductive pattern, the conductors being provided in through-holes in the laminated insulating sheets.
16. A method for manufacturing a laminated chip component comprising alternately laminated conductive patterns and insulating sheets, through-holes which are provided in said insulating sheets, the method comprising the steps of: providing conductor sections for providing conductors comprising the same material as the second conductive pattern at the position corresponding to the connections between a first conductive pattern and a second conductive pattern in said insulating sheets; printing a first conductive pattern on said insulating sheets; providing conductors comprising the same material as said second conductive pattern in said conductor sections, and printing an auxiliary conductive pattern comprising the same material as said second conductive pattern on the top face of said first conductive pattern at the connection with said second conductive pattern; and connecting first conductive pattern to the second conductive pattern by means of conductors comprising the same material as the second conductive pattern, the conductors being provided in through-holes in the laminated insulating sheets.
US10/434,076 1999-09-24 2003-05-09 Laminated chip component and manufacturing method Abandoned US20030201533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/434,076 US20030201533A1 (en) 1999-09-24 2003-05-09 Laminated chip component and manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1999-269856 1999-09-24
JP26985699A JP4034483B2 (en) 1999-09-24 1999-09-24 Manufacturing method of multilayer chip component
US09/668,740 US6597056B1 (en) 1999-09-24 2000-09-25 Laminated chip component and manufacturing method
US10/434,076 US20030201533A1 (en) 1999-09-24 2003-05-09 Laminated chip component and manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/668,740 Division US6597056B1 (en) 1999-09-24 2000-09-25 Laminated chip component and manufacturing method

Publications (1)

Publication Number Publication Date
US20030201533A1 true US20030201533A1 (en) 2003-10-30

Family

ID=17478162

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/668,740 Expired - Fee Related US6597056B1 (en) 1999-09-24 2000-09-25 Laminated chip component and manufacturing method
US10/434,076 Abandoned US20030201533A1 (en) 1999-09-24 2003-05-09 Laminated chip component and manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/668,740 Expired - Fee Related US6597056B1 (en) 1999-09-24 2000-09-25 Laminated chip component and manufacturing method

Country Status (4)

Country Link
US (2) US6597056B1 (en)
EP (1) EP1087524B1 (en)
JP (1) JP4034483B2 (en)
DE (1) DE60037929T2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108134A1 (en) * 2002-10-11 2004-06-10 Borland William J. Printed wiring boards having low inductance embedded capacitors and methods of making same
JP5116004B2 (en) * 2006-08-03 2013-01-09 日東電工株式会社 Transparent conductive laminate and touch panel provided with the same
US10770225B2 (en) * 2016-08-08 2020-09-08 Hamilton Sundstrand Corporation Multilayered coils
JP6743767B2 (en) * 2017-06-06 2020-08-19 株式会社村田製作所 LC composite parts
WO2020158808A1 (en) * 2019-01-30 2020-08-06 京セラ株式会社 Substrate for mounting electronic component, and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247228B1 (en) * 1996-08-12 2001-06-19 Tessera, Inc. Electrical connection with inwardly deformable contacts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812442A (en) * 1972-02-29 1974-05-21 W Muckelroy Ceramic inductor
JPH0846471A (en) * 1994-07-29 1996-02-16 Murata Mfg Co Ltd Laminated lc composite component
US6356181B1 (en) * 1996-03-29 2002-03-12 Murata Manufacturing Co., Ltd. Laminated common-mode choke coil
US5949304A (en) * 1997-10-16 1999-09-07 Motorola, Inc. Multilayer ceramic package with floating element to couple transmission lines
US6566731B2 (en) * 1999-02-26 2003-05-20 Micron Technology, Inc. Open pattern inductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247228B1 (en) * 1996-08-12 2001-06-19 Tessera, Inc. Electrical connection with inwardly deformable contacts

Also Published As

Publication number Publication date
JP4034483B2 (en) 2008-01-16
DE60037929D1 (en) 2008-03-20
EP1087524B1 (en) 2008-01-30
US6597056B1 (en) 2003-07-22
EP1087524A3 (en) 2003-07-09
JP2001093732A (en) 2001-04-06
DE60037929T2 (en) 2009-01-22
EP1087524A2 (en) 2001-03-28

Similar Documents

Publication Publication Date Title
EP0433176B1 (en) A multilayer hybrid circuit
EP0013460A2 (en) Miniaturized multi-layer flat electrical coil
US6222427B1 (en) Inductor built-in electronic parts using via holes
US4543553A (en) Chip-type inductor
US4904967A (en) LC composite component
US6189200B1 (en) Method for producing multi-layered chip inductor
US6223422B1 (en) Method of manufacturing multilayer-type chip inductors
US20040183645A1 (en) Inductance element, laminated electronic component, laminated electronic component module and method for producing these element, component and module
EP0982742B1 (en) Module and method of manufacture
CA1202696A (en) Decoupling capacitor and method of manufacture thereof
JPH10172831A (en) Laminated inductor
KR100304792B1 (en) Multilayer coil and manufacturing method for the same
US6727795B2 (en) Laminated electronic component and manufacturing method
JP2001257471A (en) Multilayer wiring board and manufacturing method thereof
US6597056B1 (en) Laminated chip component and manufacturing method
JPH03219605A (en) Laminated-type inductance element
JPS5924535B2 (en) Laminated composite parts
CN109659112B (en) Core for winding, method for manufacturing core for winding, and electronic component with winding
US6551426B2 (en) Manufacturing method for a laminated ceramic electronic component
US6236558B1 (en) Multilayer electronic part
JPH0757935A (en) Multilayer chip inductor
JP2571389B2 (en) Stacked hybrid integrated circuit components
JP2001135548A (en) Electronic part and manufacturing method
JP3365287B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3166158B2 (en) Structure of multilayer circuit components

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURAMATSU, NOBUAKI;OGAWA, TAKAHIRO;REEL/FRAME:014061/0737

Effective date: 20000920

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION