US20030198572A1 - Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins - Google Patents

Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins Download PDF

Info

Publication number
US20030198572A1
US20030198572A1 US10/305,327 US30532702A US2003198572A1 US 20030198572 A1 US20030198572 A1 US 20030198572A1 US 30532702 A US30532702 A US 30532702A US 2003198572 A1 US2003198572 A1 US 2003198572A1
Authority
US
United States
Prior art keywords
aromatic polycarbonate
analytical sample
concentration
sample
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US10/305,327
Inventor
James Carnahan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/305,327 priority Critical patent/US20030198572A1/en
Publication of US20030198572A1 publication Critical patent/US20030198572A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/200833Carbonyl, ether, aldehyde or ketone containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/204998Inorganic carbon compounds

Definitions

  • the present invention relates to analysis of polymer resins.
  • the invention relates to analysis of fluorescent products in aromatic polycarbonate resins.
  • Aromatic polycarbonates are typically synthesized by reaction of an aromatic diphenol, such as 2,2′-bis(4-hydroxyphenyl)propane (also known as bisphenol A or BPA), with derivatives of carbonic acid, such as phosgene or diphenyl carbonate, in the presence of a catalyst.
  • aromatic diphenol such as 2,2′-bis(4-hydroxyphenyl)propane (also known as bisphenol A or BPA)
  • BPA bisphenol A
  • carbonic acid such as phosgene or diphenyl carbonate
  • the Fries rearrangement products can also be formed photochemically, and they are observed as side products in interfacial as well as melt polymerizations.
  • the presence of branched polycarbonate III in aromatic polycarbonate resins is generally undesirable because it leads to variations in melt behavior, color and mechanical properties.
  • the primary Fries product II can lead to darkening of the resin over time due to the long wavelength absorption of the salicylate ester moiety and oxidation of the free phenol group. It is therefore important to be able to determine the amount of Fries rearrangement products in aromatic polycarbonate resins and to discover polymerization reaction conditions that minimize the formation of Fries rearrangement products.
  • Fries rearrangement products refers to all salicylate-containing polymers, i.e., to the sum of the primary Fries products II and branched polycarbonates III
  • HPLC high performance liquid chromatographic
  • Rapid analysis of Fries product content in aromatic polycarbonate resins is provided by an analysis method comprising:
  • FIG. 1 is a block diagram for a system for determining the concentration of Fries rearrangement products in analytical samples comprising aromatic polycarbonate.
  • FIG. 2 is a calibration curve for fluorescence emission at 465 nm (325 nm excitation) as a function of the concentration of a model compound for Fries rearrangement products.
  • FIG. 3 overlays normalized chromatograms for fluorescence and differential refractive index detection of a melt synthesized BPA-polycarbonate resin. This material had a Fries content of 748 ppm by the HPLC method and a weight average molecular weight of 21000 Daltons by an independent GPC determination.
  • FIG. 4 shows excitation (465 nm emission) and emission (325 nm excitation) spectra for a model compound for Fries rearrangement products.
  • the model compound was the cumylphenol carbonate of phenyl salicylate.
  • FIG. 5 overlays normalized chromatograms for fluorescence and differential refractive index detection of a melt synthesized BPA-polycarbonate resin. This material had a Fries content of 540 ppm by the HPLC method and a weight average molecular weight of 18500 Daltons by an independent GPC determination.
  • FIG. 6 is a plot of the concentration of Fries rearrangement products as determined by hydrolysis/HPLC versus the same as determined by fluorescence and differential refractive index.
  • FIG. 7 shows excitation (at 465 nm emission) and emission (at 325 nm excitation) spectra for a polycarbonate sample containing Fries rearrangement products.
  • a method for analysis of Fries rearrangement products in aromatic polycarbonate resins comprises:
  • the method may generally be considered a flow injection analysis method, or, when the method comprises separating the analytical sample to yield a high molecular weight fraction, it may be considered a liquid chromatographic method.
  • a portion of an analytical sample is injected into a continuously flowing stream of carrier solvent, and one or more downstream detectors are used to characterize the sample.
  • Flow injection analysis methods are described in, for example, U.S. Pat. No. 4,022,575 to Hansen and Ruzicka, as well as many subsequent patents which reference it.
  • the method comprises providing an analytical sample comprising an aromatic polycarbonate.
  • Aromatic polycarbonates are a well-known class of polymers and their preparation is described in, among many others, the patents and patent publications to Schnell and others cited in the background section, above.
  • Aromatic polycarbonates comprise repeating units of formula IV:
  • A is a divalent aromatic radical derived from a dihydric phenol.
  • the dihydric phenol employed to provide such aromatic polycarbonate polymers is a mononuclear or polynuclear aromatic compound containing as functional groups two hydroxyl radicals, each of which is attached directly to a carbon atom of an aromatic nucleus.
  • Typical dihydric phenols include 2,2-bis-(4-hydroxyphenyl)propane (also known as bisphenol A or BPA); hydroquinone; resorcinol; 2,2-bis-(4-hydroxyphenyl)pentane: 2,4′-dihydroxydiphenylmethane; bis-(2-hydroxyphenyl)methane; bis-(4-hydroxyphenyl)methane; bis-(4-hydroxy-5-nitrophenyl)methane; 1,1-bis-(4-hydroxyphenyl)ethane; 3,3-bis-(4-hydroxyphenyl)pentane; 2,2′-dihydroxydiphenyl; 2,6-dihydroxynapthylene; bis-(4-hydroxyphenyl)sulfone; 2,2′-dihydroxydiphenylsulfone; 4,4′-dihydroxydiphenylether; and 4,4′-dihydroxy-2,5-diethoxydiphenylether.
  • dihydric phenols A variety of additional dihydric phenols are disclosed in U.S. Pat. No. 2,999,835 to Goldberg. It is possible to employ two or more different dihydric phenols, or a dihydric phenol in combination with a glycol, a hydroxy or acid-terminated polyester, or a dibasic acid in order to prepare a carbonate copolymer. Such carbonate copolymers are expressly encompassed by the term “aromatic polycarbonates” as used hereinafter.
  • Preferred phenols include bis-(2-hydroxyphenyl)-methane, 1,1-bis-(4-hydroxyphenyl)ethane, 2,2-bis-(4-hydroxyphenyl)propane, and 2,2-bis-(4-hydroxyphenyl)pentane.
  • a highly preferred phenol is 2,2-bis-(4-hydroxyphenyl)propane.
  • the aromatic polycarbonate may be prepared by reacting one or more hydric diphenols with a carbonate precursor.
  • the carbonate precursor may be, for example, phosgene or a carbonic acid diester.
  • a preferred carbonic acid diester is diphenyl carbonate.
  • the reaction mixture may comprise a catalyst, such as those described in, for example, Japanese Patent Publication Nos. JP 2000-063507-A, JP 11-005837-A and JP 11-158261-A.
  • the reaction may be conducted on the absence of solvent, under so-called melt polymerization conditions.
  • the reaction mixture may comprise at least one solvent.
  • Suitable solvents include benzene, toluene, xylene, anisole, dichlorobenzene, chlorobenzene, trichlorobenzene, tetrahydrofuran chloroform, methylene chloride, carbon tetrachloride, trichloroethylene, dichloroethane, methyl acetate, ethyl acetate, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide and mixtures comprising at least one of the foregoing solvents.
  • Benzene, toluene, xylene, chloroform, dichloromethane, tetrahydrofuran and mixtures comprising at least one of the foregoing solvents are particularly suitable.
  • the analytical sample comprising an aromatic polycarbonate may be a purified polycarbonate, a polymerization reaction mixture or a polymerization reaction mixture that has been further treated.
  • the aromatic polycarbonate may be in liquid solution or in solid form.
  • the analytical sample comprises a polymerization reaction mixture.
  • the analytical sample may be derived from a solvent-containing reaction mixture by at least partially removing solvent and other volatile components.
  • the analytical sample may be a solution prepared by dissolving a purified or unpurified aromatic polycarbonate resin in a suitable solvent, such as one or more of the solvents listed above for use in aromatic polycarbonate synthesis.
  • the identity and amount of catalyst are such that the catalyst does not interfere with the fluorescence measurement.
  • the fluorescence excitation-emission wavelengths and intensities of the catalyst do not interfere with excitation or emission of the Fries rearrangement products.
  • Preparation of the analytical sample comprising aromatic polycarbonate may include filtering the sample to remove particulate matter.
  • each sample may correspond to a reaction mixture in one well of a 96-, 384-, or 1536-well plate.
  • Such multi-well plates are well known and commercially available.
  • the exact number of analytical samples constituting a plurality may vary widely, from two to about one million or more.
  • U.S. Pat. No. 5,854,684 to Stabile et al. describes analytical matrices comprising at least one million samples arranged in a density of at least about 10 sites per square centimeter, and U.S. Pat. No. 5,840,256 to Demers et al.
  • a fixed volume of the analytical sample comprising aromatic polycarbonate is withdrawn for analysis and injected into the system, typically using a sample injector such as, for example, the Hewlett Packard model 1050 autoinjector.
  • the analyzed portion of the analytical sample comprising aromatic polycarbonate (hereafter referred to as the injected sample) may be directly subjected to in-line determinations of aromatic polycarbonate concentration and the concentration of Fries rearrangement products.
  • the injected sample is first separated to yield a high molecular weight fraction. This offers the advantage of removing from the analysis any small molecules whose fluorescence could interfere with fluorescence detection of Fries rearrangement products.
  • any chromatographic method that separates low and high molecular weight fractions may be used. Suitable methods for effecting this separation include size exclusion chromatography, normal phase liquid chromatography, reverse phase chromatography, membrane filtration, and field flow fractionation. While many commercially available size exclusion columns are suitable, a presently preferred column is the 50 ⁇ 7 mm 100 Angstrom column from Polymer Laboratories. When size exclusion chromatography is used to separate the high molecular weight fraction, that fraction elutes before lower molecular weight components such as diphenylcarbonate and phenol.
  • the injected sample undergoes an in-line determination of the aromatic polycarbonate concentration in the analytical sample.
  • This feature of the invention contributes to the speed and convenience of the method by eliminating the need for preparation of analytical samples with known aromatic polycarbonate concentrations.
  • Suitable methods for determination of the aromatic polycarbonate concentration in the analytical sample include infrared absorption, ultraviolet absorption, differential refractive index detection, ultrasonic detection, and viscometry and evaporative light scattering detection. Detectors for each of these methods are commercially available.
  • a presently preferred concentration detection method is differential refractive index (DRI) detection.
  • Suitable DRI detectors include, for example, the HP 1037A differential refractive index detector available from Hewlett Packard, now Agilent Technologies.
  • Raw data from the in-line determination of aromatic polycarbonate concentration correspond to a series of (x,y) points where x is the elapsed time since injection and y is the detector response. A plot of these points forms a chromatogram, and a baseline-to-baseline integration of the peak of interest yields an area that is directly proportional to the polymer concentration.
  • analytical samples containing known aromatic polycarbonate concentrations may be analyzed in a calibration experiment to derive the linear function that relates peak area to aromatic polycarbonate concentration.
  • Suitable fluorescence detectors comprise a light source with a filter or monochromator to select the illumination wavelength for fluorescence excitation and a detector preceded by an appropriate filter or monochromator to select the wavelength for fluorescence emission.
  • a detector may be constructed including a suitable light source, an excitation wavelength selector (e.g., a monochromator or one or more filters), a flow cell, and a fluorescence emission detector that substantially excludes excitation light.
  • a laser light source may be employed in place of the combination of a broad band light source and an excitation wavelength selector.
  • a presently preferred detector is the HP 1046A fluorescence detector available from Hewlett Packard, now Agilent Technologies.
  • fluorescence excitation and emission wavelengths will depend on the wavelengths of maximum excitation and emission associated with the salicylate moiety of the Fries rearrangement products, which in turn depend on the dihydric phenol from which the aromatic polycarbonate was synthesized and the identity of the solvent used to dissolve the polycarbonate resin. In practice, it is often useful to determine the fluorescence excitation maximum and the emission maximum wavelengths using an authentic sample of the Fries rearrangement products or a model compound that is structurally similar to the Fries rearrangement products of the aromatic polycarbonate analyzed.
  • fluorescence emission maximum in the discussion below generally refers to the most bathochromic emission maximum, which usually falls in the range 400-650 nanometers (nm).
  • fluorescence excitation maximum refers to the excitation maximum corresponding to the most bathochromic emission maximum.
  • an excitation wavelength displaced from the maximum excitation wavelength by as much as 30 nm to avoid excitation of an interfering emission from the aromatic polycarbonate. It is generally desirable for the in-line fluorescence determination of the concentration of Fries rearrangement products to use an emission wavelength within about 50 nm of the fluorescence emission maximum, preferably within about 30 nm of the fluorescence emission maximum, more preferably within about 10 nm of the fluorescence excitation maximum. In some cases it may be desirable to use an excitation wavelength displaced from the maximum excitation wavelength by as much as 50 nm to avoid an interfering emission from the aromatic polycarbonate.
  • the detector may suitably employ excitation wavelengths of about 280 to about 340 nm, with wavelengths of about 290 to about 330 nm being preferred, and wavelengths of about 300 to about 330 nm being more preferred.
  • the fluorescence detector may suitably detect fluorescence emission wavelengths of about 420 nm to about 600 nm, with wavelengths of about 440 nm to about 500 nm being preferred, and wavelengths of about 450 nm to about 470 nm being more preferred.
  • Raw data from the in-line determination of the concentration of Fries rearrangement products correspond to a series of (x,y) points where x is the elapsed time since injection and y is the fluorescence emission detector response. A plot of these points forms a chromatogram, and a baseline-to-baseline integration of the peak of interest yields an area that is directly proportional to the concentration of Fries rearrangement products.
  • a calibration experiment may be used to determine the linear function relating detector response (peak area) to sample concentration.
  • the calibration experiment may employ analytical samples containing known concentrations of a polycarbonate Fries rearrangement products or a suitable model compound.
  • both detectors may be calibrated in a single procedure.
  • Analytical samples containing known concentrations of Fries rearrangement products may be analyzed in a calibration experiment to derive the linear function that relates fluorescence and concentration peak area ratios to Fries concentration.
  • the linear function relates the ratio (fluorescence signal:concentration signal) to the independently determined Fries concentration in the sample.
  • the Fries concentration may be independently determined by the known HPLC method.
  • a key advantage of the method is its speed.
  • the total analysis time per sample, measured from the injection of one sample to the injection of the following sample, is not greater than 5 minutes, preferably not greater than 3 minutes, more preferably not greater than 90 seconds, yet more preferably not greater than 60 seconds, even more preferably not greater than about 40 seconds.
  • the method is automated so that preparation and analysis of a plurality of analytical samples comprising aromatic polycarbonate are prepared and analyzed without human intervention.
  • Such automated methods may use a solvent preparation module for robotic preparation of solvent-containing analytical samples from a plurality of solid aromatic polycarbonate samples, such as samples in a combinatorial library.
  • Methods and equipment, including commercially available equipment, for automating sample preparation and analysis are known to those of ordinary skill in the art.
  • Equipment suppliers for applicable sample handling, dissolution and dilution automation equipment include Quadrex, Gilson, Hamilton, Zinnser, and Packard Instruments.
  • Such automated methods for sample preparation and analysis may include the use of variable temperatures, pressures and atmospheres.
  • FIG. 1 shows a block diagram for an analytical system 1 for determining the concentration of Fries rearrangement products in samples comprising aromatic polycarbonate.
  • the system comprises a solvent reservoir 3 , a solvent delivery system 5 for providing a flow of solvent that carries the sample through the system 1 ; an (optional) sample preparation module 7 for preparing analytical sample solutions from solid aromatic polycarbonate samples; an autoinjector 9 for injecting a portion of each analytical sample 11 into the system; an (optional) chromatographic column 13 for separating the high molecular weight fraction of the analytical sample 11 ; a fluorescence detector 15 for detecting Fries rearrangement products; a concentration detector 17 for determining the aromatic polycarbonate concentration in the analytical sample 11 ; an (optional) computer 19 for calculating the concentration of Fries rearrangement products in the polycarbonate resin based on the aromatic polycarbonate concentration in the analytical sample and the concentration of Fries rearrangement products in the analytical sample, and, optionally, for responsively controlling one or more of the solvent delivery system 3 ,
  • This example demonstrates a linear correlation between Fries product concentration and fluorescence emission intensity.
  • a Hewlett Packard (HP) model 1050 pump, an HP model 1050 autoinjector, a 50 ⁇ 7 mm 100 Angstrom size exclusion column from Polymer Laboratories (part number 1110-1520), an HP 1046A fluorescence detector, and an HP 1037A differential refractive index detector were connected in series.
  • the flow rate of the chloroform solvent was 1.5 ml/min giving an analysis time of about 1.2 minutes per sample.
  • Typical normalized chromatograms for the fluorescence emission and differential refractive index (DRI) detectors are shown in FIG. 3.
  • the sample was a melt polycarbonate with approximately 748 ppm of Fries as determined by the traditional hydrolysis-HPLC method. The offset in time is due to the volume of the transfer line between the detectors.
  • the values for the concentration detector and for the fluorescence signal were determined by integration of the peak from baseline-to-baseline. Fluorescence detection was conducted with excitation at 325 and emission at 465 nm.
  • the excitation and emission spectra of the model compound determined using a stop-flow technique in the HP 1046A detector are shown in FIG. 4. When considered in light of published spectra for aromatic polycarbonate reaction products (see, for example, S.
  • Example 1 The procedure of Example 1 was used, except that a higher flow rate of 3.0 ml/min was utilized.
  • the melt-synthesized polycarbonate used for this example had a Fries content of 540 ppm by the HPLC method and a weight average molecular weight of 18500 Daltons by an independent GPC determination. Fluorescence and DRI chromatograms are overlaid in FIG. 5 and demonstrate an analysis time of about 35 seconds per sample.
  • This example describes automated sample preparation and analysis.
  • a 96-well microtiter plate constructed of a vitreous material is used for the reaction of bisphenol-A with diphenylcarbonate catalyzed by a series of inorganic and organic bases.
  • the products of the polymerization reaction consist of a polymer film of between 1 and 100 milligrams in the wells of the microtiter plate.
  • the resulting polymer weight is in the range of 10 to 40 milligrams and more preferably in the range of 20 to 30 milligrams.
  • the plate after cooling from reaction temperature, is placed in a Quadra 96 Model 230 robotic liquid handling system and an aliquot of chloroform is added to all of the wells simultaneously.
  • the well plate is covered, agitated gently to facilitate polymer dissolution and mixing, and inserted into a Gilson 1-probe autosampler that is the sampling device for an Agilent 1100 HPLC equipped with a short size exclusion column, Agilent Model 1100 UV detector, Waters Associates Model 410 differential refractive index detector and a Shimadzu 10Ax1 fluorescence detector
  • the solvent for the analysis is chloroform.
  • the Gilson single probe autosampler removes an aliquot of the polymer solution from the 96 well plate and injects the sample into the HPLC system for analysis.
  • the per sample analysis time for multiple analyses depends on the combination of sampling cycle time and chromatographic dwell time. Using overlapping injections, a flow rate of 3.0 mL/min, and preparation of a given sample during chromatographic analysis of the previous sample, a sample analysis time of about 20 seconds is feasible.
  • the above examples demonstrate rapid determination of the concentration of Fries rearrangement products in aromatic polycarbonate resins using a direct chromatographic technique that determines both the aromatic polycarbonate concentration and the fluorescence response due to the Fries rearrangement products.
  • the method has the capability of removing interferences from small molecules that are not part of the polymer composition.
  • the method is also amenable to automated analysis of samples derived from microtiter plates or arrays of reaction vials. Uses for the method include analysis of solid isolated aromatic polycarbonate resins, as well as analysis of a plurality of reaction mixtures constituting a combinatorial screening of aromatic polycarbonate polymerization reaction conditions.

Abstract

A rapid analysis method for the determination of Fries rearrangement products in aromatic polycarbonate resins utilizes in-line determination of polymer concentration and in-line fluorescence detection of Fries rearrangement products. The method avoids time consuming sample preparation required by previous methods, allows for separation of interfering low molecular weight components, and is suitable for automation.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to analysis of polymer resins. In particular, the invention relates to analysis of fluorescent products in aromatic polycarbonate resins. [0001]
  • Aromatic polycarbonates are typically synthesized by reaction of an aromatic diphenol, such as 2,2′-bis(4-hydroxyphenyl)propane (also known as bisphenol A or BPA), with derivatives of carbonic acid, such as phosgene or diphenyl carbonate, in the presence of a catalyst. See, for example, U.S. Pat. Nos. 3,028,365 to Schnell et al., 3,334,154 to Kim, 3,989,672 to Vestergaard, 4,131,575 to Adelmann et al., and 5,606,008 to Sakashita et al.; and Japanese Unexamined Patent Publications JP 2000-063507-A, JP 11-005837-A and JP 11-158261-A. When these polymerizations are conducted under melt polymerization conditions, the high temperatures of the reactions and the presence of intentionally added and adventitious catalysts can lead to thermal reactions that convert a portion of the aryl carbonate groups to salicylate esters. As shown below, Fries rearrangement of the linear aromatic polycarbonate I yields, initially, a substituted phenyl salicylate product II, which can then undergo polymerization by reaction of the pendant salicylate hydroxyl group with diphenyl carbonate (DPC) and BPA to yield a branched aromatic polycarbonate III. [0002]
    Figure US20030198572A1-20031023-C00001
  • The Fries rearrangement products can also be formed photochemically, and they are observed as side products in interfacial as well as melt polymerizations. The presence of branched polycarbonate III in aromatic polycarbonate resins is generally undesirable because it leads to variations in melt behavior, color and mechanical properties. Also, the primary Fries product II can lead to darkening of the resin over time due to the long wavelength absorption of the salicylate ester moiety and oxidation of the free phenol group. It is therefore important to be able to determine the amount of Fries rearrangement products in aromatic polycarbonate resins and to discover polymerization reaction conditions that minimize the formation of Fries rearrangement products. [0003]
  • Traditionally, measurement of the concentration of Fries rearrangement products (where “Fries rearrangement products” refers to all salicylate-containing polymers, i.e., to the sum of the primary Fries products II and branched polycarbonates III) in aromatic polycarbonate resins has been carried out by a laborious hydrolysis of the polymer followed by high performance liquid chromatographic (HPLC) analysis of the resulting small molecules. See, for example, A. Factor, “Mechanisms of Thermal and Photodegradation of Bisphenol A Polycarbonate”, [0004] Chapter 5 in R. L. Clough et al. eds., “Polymer Durability: Degradation, Stabilization, and Lifetime Prediction”, 1995, American Chemical Society. Spectroscopic characterizations of Fries rearrangement products of aromatic polycarbonates have been reported in, for example, J. S. Humphrey, Jr., A. R. Shultz and D. B. G. Jaquiss, Macromolecules. vol. 6, pp. 305-314 (1973); C. E. Hoyle, H. Shah and G. L. Nelson, J. Polym. Sci. A., vol. 30, pp. 1525-1533 (1992); I. B. Rufus, H. Shah and C. E. Hoyle, J App. Polym. Sci., vol. 51, pp. 1549-1558 (1994): and S. Pankasem, J. Kuczynski and J. K. Thomas. Macromolecules, vol. 27, pp. 3773-3781 (1994). Even when analyses were conducted spectroscopically, they involved time consuming sample preparations requiring careful weighing of polycarbonate resin and dissolution and dilution with solvent to form precise volumes of solutions having known polycarbonate concentrations. In addition, the cited spectroscopic methods have no capability to protect from interference by small contaminant molecules that may be present in the polycarbonate resin or in polymerization reaction mixtures.
  • When modern combinatorial methods are used to screen reaction conditions or catalyst materials, the large number of samples generated can easily overwhelm the traditional analyses described above. [0005]
  • There is therefore a need for an analytical method that enables rapid determination of the concentration of Fries rearrangement products in aromatic polycarbonate resins, that is free from interferences by small molecules, and that is easily automated. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • Rapid analysis of Fries product content in aromatic polycarbonate resins is provided by an analysis method comprising: [0007]
  • providing an analytical sample comprising an aromatic polycarbonate; [0008]
  • optionally, separating the analytical sample to yield a high molecular weight fraction; [0009]
  • performing an in-line determination of aromatic polycarbonate concentration in the analytical sample; and [0010]
  • performing an in-line determination of the fluorescence signal due to Fries rearrangement products in the analytical sample; [0011]
  • wherein the total analysis time is not greater than about 5 minutes per sample.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram for a system for determining the concentration of Fries rearrangement products in analytical samples comprising aromatic polycarbonate. [0013]
  • FIG. 2 is a calibration curve for fluorescence emission at 465 nm (325 nm excitation) as a function of the concentration of a model compound for Fries rearrangement products. [0014]
  • FIG. 3 overlays normalized chromatograms for fluorescence and differential refractive index detection of a melt synthesized BPA-polycarbonate resin. This material had a Fries content of 748 ppm by the HPLC method and a weight average molecular weight of 21000 Daltons by an independent GPC determination. [0015]
  • FIG. 4 shows excitation (465 nm emission) and emission (325 nm excitation) spectra for a model compound for Fries rearrangement products. The model compound was the cumylphenol carbonate of phenyl salicylate. [0016]
  • FIG. 5 overlays normalized chromatograms for fluorescence and differential refractive index detection of a melt synthesized BPA-polycarbonate resin. This material had a Fries content of 540 ppm by the HPLC method and a weight average molecular weight of 18500 Daltons by an independent GPC determination. [0017]
  • FIG. 6 is a plot of the concentration of Fries rearrangement products as determined by hydrolysis/HPLC versus the same as determined by fluorescence and differential refractive index. [0018]
  • FIG. 7 shows excitation (at 465 nm emission) and emission (at 325 nm excitation) spectra for a polycarbonate sample containing Fries rearrangement products.[0019]
  • DETAILED DESCRIPTION OF THE INVENTION
  • A method for analysis of Fries rearrangement products in aromatic polycarbonate resins comprises: [0020]
  • providing an analytical sample comprising an aromatic polycarbonate; [0021]
  • optionally, separating the analytical sample to yield a high molecular weight fraction; [0022]
  • performing an in-line determination of aromatic polycarbonate concentration in the analytical sample; and [0023]
  • performing an in-line determination of the fluorescence signal due to Fries rearrangement products in the analytical sample; [0024]
  • wherein the total analysis time is not greater than about 5 minutes per sample. [0025]
  • The method may generally be considered a flow injection analysis method, or, when the method comprises separating the analytical sample to yield a high molecular weight fraction, it may be considered a liquid chromatographic method. In both flow injection analysis and liquid chromatography, a portion of an analytical sample is injected into a continuously flowing stream of carrier solvent, and one or more downstream detectors are used to characterize the sample. Flow injection analysis methods are described in, for example, U.S. Pat. No. 4,022,575 to Hansen and Ruzicka, as well as many subsequent patents which reference it. Although the term “flow injection analysis” often implies that the carrier solvent contains a reagent that reacts with at least one component of the analytical sample, we use the term in a broader sense that does not require such a reagent (for precedent for this broader sense, see, for example, in U.S. Pat. No. 5,223,224 to Dremel et al. at [0026] column 1, lines 14-27). A basic method and apparatus for liquid chromatography is described in U.S. Pat. No. 3,522,725 to J. L. Waters.
  • The method comprises providing an analytical sample comprising an aromatic polycarbonate. Aromatic polycarbonates are a well-known class of polymers and their preparation is described in, among many others, the patents and patent publications to Schnell and others cited in the background section, above. Aromatic polycarbonates comprise repeating units of formula IV: [0027]
    Figure US20030198572A1-20031023-C00002
  • wherein A is a divalent aromatic radical derived from a dihydric phenol. The dihydric phenol employed to provide such aromatic polycarbonate polymers is a mononuclear or polynuclear aromatic compound containing as functional groups two hydroxyl radicals, each of which is attached directly to a carbon atom of an aromatic nucleus. Typical dihydric phenols include 2,2-bis-(4-hydroxyphenyl)propane (also known as bisphenol A or BPA); hydroquinone; resorcinol; 2,2-bis-(4-hydroxyphenyl)pentane: 2,4′-dihydroxydiphenylmethane; bis-(2-hydroxyphenyl)methane; bis-(4-hydroxyphenyl)methane; bis-(4-hydroxy-5-nitrophenyl)methane; 1,1-bis-(4-hydroxyphenyl)ethane; 3,3-bis-(4-hydroxyphenyl)pentane; 2,2′-dihydroxydiphenyl; 2,6-dihydroxynapthylene; bis-(4-hydroxyphenyl)sulfone; 2,2′-dihydroxydiphenylsulfone; 4,4′-dihydroxydiphenylether; and 4,4′-dihydroxy-2,5-diethoxydiphenylether. A variety of additional dihydric phenols are disclosed in U.S. Pat. No. 2,999,835 to Goldberg. It is possible to employ two or more different dihydric phenols, or a dihydric phenol in combination with a glycol, a hydroxy or acid-terminated polyester, or a dibasic acid in order to prepare a carbonate copolymer. Such carbonate copolymers are expressly encompassed by the term “aromatic polycarbonates” as used hereinafter. Preferred phenols include bis-(2-hydroxyphenyl)-methane, 1,1-bis-(4-hydroxyphenyl)ethane, 2,2-bis-(4-hydroxyphenyl)propane, and 2,2-bis-(4-hydroxyphenyl)pentane. A highly preferred phenol is 2,2-bis-(4-hydroxyphenyl)propane. [0028]
  • The aromatic polycarbonate may be prepared by reacting one or more hydric diphenols with a carbonate precursor. The carbonate precursor may be, for example, phosgene or a carbonic acid diester. A preferred carbonic acid diester is diphenyl carbonate. The reaction mixture may comprise a catalyst, such as those described in, for example, Japanese Patent Publication Nos. JP 2000-063507-A, JP 11-005837-A and JP 11-158261-A. [0029]
  • The reaction may be conducted on the absence of solvent, under so-called melt polymerization conditions. Alternatively, the reaction mixture may comprise at least one solvent. Suitable solvents include benzene, toluene, xylene, anisole, dichlorobenzene, chlorobenzene, trichlorobenzene, tetrahydrofuran chloroform, methylene chloride, carbon tetrachloride, trichloroethylene, dichloroethane, methyl acetate, ethyl acetate, N-methylpyrrolidone, dimethylformamide, dimethylsulfoxide and mixtures comprising at least one of the foregoing solvents. Benzene, toluene, xylene, chloroform, dichloromethane, tetrahydrofuran and mixtures comprising at least one of the foregoing solvents are particularly suitable. [0030]
  • The analytical sample comprising an aromatic polycarbonate may be a purified polycarbonate, a polymerization reaction mixture or a polymerization reaction mixture that has been further treated. The aromatic polycarbonate may be in liquid solution or in solid form. In one embodiment, the analytical sample comprises a polymerization reaction mixture. In another embodiment, the analytical sample may be derived from a solvent-containing reaction mixture by at least partially removing solvent and other volatile components. In yet another embodiment, the analytical sample may be a solution prepared by dissolving a purified or unpurified aromatic polycarbonate resin in a suitable solvent, such as one or more of the solvents listed above for use in aromatic polycarbonate synthesis. If the analytical sample comprises a catalyst-containing polymerization reaction mixture, it is preferred that the identity and amount of catalyst are such that the catalyst does not interfere with the fluorescence measurement. In other words, it is preferred that the fluorescence excitation-emission wavelengths and intensities of the catalyst do not interfere with excitation or emission of the Fries rearrangement products. Preparation of the analytical sample comprising aromatic polycarbonate may include filtering the sample to remove particulate matter. [0031]
  • It is expressly contemplated to provide a plurality of analytical samples comprising aromatic polycarbonate. For example, each sample may correspond to a reaction mixture in one well of a 96-, 384-, or 1536-well plate. Such multi-well plates are well known and commercially available. The exact number of analytical samples constituting a plurality may vary widely, from two to about one million or more. For example, U.S. Pat. No. 5,854,684 to Stabile et al. describes analytical matrices comprising at least one million samples arranged in a density of at least about 10 sites per square centimeter, and U.S. Pat. No. 5,840,256 to Demers et al. provides details for a 7.25 square inch analytical matrix comprising 99,856 samples. Microscale reaction vessels and methods of delivering reagents to them are described in U.S. Pat. No. 5,846,396 to Zanzucchi et al., U.S. Pat. No. 5,985,356 to Schultz et al., and U.S. Pat. No. 6,045,671 to Wu et al. [0032]
  • A fixed volume of the analytical sample comprising aromatic polycarbonate is withdrawn for analysis and injected into the system, typically using a sample injector such as, for example, the Hewlett Packard model 1050 autoinjector. The analyzed portion of the analytical sample comprising aromatic polycarbonate (hereafter referred to as the injected sample) may be directly subjected to in-line determinations of aromatic polycarbonate concentration and the concentration of Fries rearrangement products. In a preferred embodiment, however, the injected sample is first separated to yield a high molecular weight fraction. This offers the advantage of removing from the analysis any small molecules whose fluorescence could interfere with fluorescence detection of Fries rearrangement products. Any chromatographic method that separates low and high molecular weight fractions may be used. Suitable methods for effecting this separation include size exclusion chromatography, normal phase liquid chromatography, reverse phase chromatography, membrane filtration, and field flow fractionation. While many commercially available size exclusion columns are suitable, a presently preferred column is the 50×7 [0033] mm 100 Angstrom column from Polymer Laboratories. When size exclusion chromatography is used to separate the high molecular weight fraction, that fraction elutes before lower molecular weight components such as diphenylcarbonate and phenol. It is expressly contemplated to employ so-called overlapping injections, so that the low molecular components of a given sample elute after the injection of the following sample but before the following sample's high molecular weight fraction elutes. This technique enables further reduction of sample analysis times.
  • The injected sample undergoes an in-line determination of the aromatic polycarbonate concentration in the analytical sample. This feature of the invention contributes to the speed and convenience of the method by eliminating the need for preparation of analytical samples with known aromatic polycarbonate concentrations. Suitable methods for determination of the aromatic polycarbonate concentration in the analytical sample include infrared absorption, ultraviolet absorption, differential refractive index detection, ultrasonic detection, and viscometry and evaporative light scattering detection. Detectors for each of these methods are commercially available. A presently preferred concentration detection method is differential refractive index (DRI) detection. Suitable DRI detectors include, for example, the HP 1037A differential refractive index detector available from Hewlett Packard, now Agilent Technologies. Raw data from the in-line determination of aromatic polycarbonate concentration correspond to a series of (x,y) points where x is the elapsed time since injection and y is the detector response. A plot of these points forms a chromatogram, and a baseline-to-baseline integration of the peak of interest yields an area that is directly proportional to the polymer concentration. In practice, analytical samples containing known aromatic polycarbonate concentrations may be analyzed in a calibration experiment to derive the linear function that relates peak area to aromatic polycarbonate concentration. [0034]
  • The injected sample also undergoes an in-line determination of the fluorescence signal due to Fries rearrangement products in the analytical sample. Suitable fluorescence detectors comprise a light source with a filter or monochromator to select the illumination wavelength for fluorescence excitation and a detector preceded by an appropriate filter or monochromator to select the wavelength for fluorescence emission. A variety of commercially available fluorescence detectors are suitable for this determination. Alternatively, a detector may be constructed including a suitable light source, an excitation wavelength selector (e.g., a monochromator or one or more filters), a flow cell, and a fluorescence emission detector that substantially excludes excitation light. A laser light source may be employed in place of the combination of a broad band light source and an excitation wavelength selector. A presently preferred detector is the HP 1046A fluorescence detector available from Hewlett Packard, now Agilent Technologies. [0035]
  • The selection of fluorescence excitation and emission wavelengths will depend on the wavelengths of maximum excitation and emission associated with the salicylate moiety of the Fries rearrangement products, which in turn depend on the dihydric phenol from which the aromatic polycarbonate was synthesized and the identity of the solvent used to dissolve the polycarbonate resin. In practice, it is often useful to determine the fluorescence excitation maximum and the emission maximum wavelengths using an authentic sample of the Fries rearrangement products or a model compound that is structurally similar to the Fries rearrangement products of the aromatic polycarbonate analyzed. Note that while the fluorescence emission spectrum of the Fries rearrangement products may exhibit multiple fluorescence emission maxima, for the purposes of this method, “fluorescence emission maximum” in the discussion below generally refers to the most bathochromic emission maximum, which usually falls in the range 400-650 nanometers (nm). Likewise, the term “fluorescence excitation maximum” as used below refers to the excitation maximum corresponding to the most bathochromic emission maximum. Methods to determine the fluorescence excitation maximum and the emission maximum wavelengths are well known and include excitation-emission mapping, which is described in, for example, J. R. Lakowicz, “[0036] Principles of Fluorescence Spectroscopy, Second Edition.”, Kluwer Academic/Plenum Publishers: New York, N.Y., 1999; and Ingle, J. D., Jr.; Crouch, S. R. Spectrochemical Analysis; Prentice Hall: Englewood Cliffs, N.J., 1988. It is generally desirable for the in-line fluorescence determination of the concentration of Fries rearrangement products to use an excitation wavelength within about 30 nm of the fluorescence excitation maximum, preferably within about 20 nm of the fluorescence excitation maximum, more preferably within about 10 nm of the fluorescence excitation maximum. In some cases it may be desirable to use an excitation wavelength displaced from the maximum excitation wavelength by as much as 30 nm to avoid excitation of an interfering emission from the aromatic polycarbonate. It is generally desirable for the in-line fluorescence determination of the concentration of Fries rearrangement products to use an emission wavelength within about 50 nm of the fluorescence emission maximum, preferably within about 30 nm of the fluorescence emission maximum, more preferably within about 10 nm of the fluorescence excitation maximum. In some cases it may be desirable to use an excitation wavelength displaced from the maximum excitation wavelength by as much as 50 nm to avoid an interfering emission from the aromatic polycarbonate.
  • For example, selective detection of Fries rearrangement products in aromatic polycarbonate derived from bisphenol A (i.e., BPA-PC), where the analytical sample containing BPA-PC is analyzed in chloroform, the detector may suitably employ excitation wavelengths of about 280 to about 340 nm, with wavelengths of about 290 to about 330 nm being preferred, and wavelengths of about 300 to about 330 nm being more preferred. The fluorescence detector may suitably detect fluorescence emission wavelengths of about 420 nm to about 600 nm, with wavelengths of about 440 nm to about 500 nm being preferred, and wavelengths of about 450 nm to about 470 nm being more preferred. [0037]
  • Raw data from the in-line determination of the concentration of Fries rearrangement products correspond to a series of (x,y) points where x is the elapsed time since injection and y is the fluorescence emission detector response. A plot of these points forms a chromatogram, and a baseline-to-baseline integration of the peak of interest yields an area that is directly proportional to the concentration of Fries rearrangement products. As for the aromatic polycarbonate concentration determination, a calibration experiment may be used to determine the linear function relating detector response (peak area) to sample concentration. For the determination of the concentration of Fries rearrangement products, the calibration experiment may employ analytical samples containing known concentrations of a polycarbonate Fries rearrangement products or a suitable model compound. [0038]
  • As an alternative to separately calibrating the concentration detector and fluorescence detector, as described above, both detectors may be calibrated in a single procedure. Analytical samples containing known concentrations of Fries rearrangement products may be analyzed in a calibration experiment to derive the linear function that relates fluorescence and concentration peak area ratios to Fries concentration. The linear function relates the ratio (fluorescence signal:concentration signal) to the independently determined Fries concentration in the sample. The Fries concentration may be independently determined by the known HPLC method. [0039]
  • The in-line determination of aromatic polycarbonate concentration and the in-line determination of the concentration of Fries rearrangement products can be conducted sequentially in either order. [0040]
  • A key advantage of the method is its speed. The total analysis time per sample, measured from the injection of one sample to the injection of the following sample, is not greater than 5 minutes, preferably not greater than 3 minutes, more preferably not greater than 90 seconds, yet more preferably not greater than 60 seconds, even more preferably not greater than about 40 seconds. [0041]
  • In a preferred embodiment, the method is automated so that preparation and analysis of a plurality of analytical samples comprising aromatic polycarbonate are prepared and analyzed without human intervention. Such automated methods may use a solvent preparation module for robotic preparation of solvent-containing analytical samples from a plurality of solid aromatic polycarbonate samples, such as samples in a combinatorial library. Methods and equipment, including commercially available equipment, for automating sample preparation and analysis are known to those of ordinary skill in the art. Equipment suppliers for applicable sample handling, dissolution and dilution automation equipment include Quadrex, Gilson, Hamilton, Zinnser, and Packard Instruments. Such automated methods for sample preparation and analysis may include the use of variable temperatures, pressures and atmospheres. [0042]
  • FIG. 1 shows a block diagram for an [0043] analytical system 1 for determining the concentration of Fries rearrangement products in samples comprising aromatic polycarbonate. The system comprises a solvent reservoir 3, a solvent delivery system 5 for providing a flow of solvent that carries the sample through the system 1; an (optional) sample preparation module 7 for preparing analytical sample solutions from solid aromatic polycarbonate samples; an autoinjector 9 for injecting a portion of each analytical sample 11 into the system; an (optional) chromatographic column 13 for separating the high molecular weight fraction of the analytical sample 11; a fluorescence detector 15 for detecting Fries rearrangement products; a concentration detector 17 for determining the aromatic polycarbonate concentration in the analytical sample 11; an (optional) computer 19 for calculating the concentration of Fries rearrangement products in the polycarbonate resin based on the aromatic polycarbonate concentration in the analytical sample and the concentration of Fries rearrangement products in the analytical sample, and, optionally, for responsively controlling one or more of the solvent delivery system 3, the sample preparation module 5, the autoinjector 7, the fluorescence detector 13, and the concentration detector 15; and a waste reservoir 21. Although this embodiment is not shown, the concentration detector 15 may precede the fluorescence detector 13. In a preferred embodiment, the system performs automated analyses of a plurality of analytical samples.
  • The invention is further illustrated by the following non-limiting examples. [0044]
  • EXAMPLE 1
  • This example demonstrates a linear correlation between Fries product concentration and fluorescence emission intensity. A Hewlett Packard (HP) model 1050 pump, an HP model 1050 autoinjector, a 50×7 [0045] mm 100 Angstrom size exclusion column from Polymer Laboratories (part number 1110-1520), an HP 1046A fluorescence detector, and an HP 1037A differential refractive index detector were connected in series. The flow rate of the chloroform solvent was 1.5 ml/min giving an analysis time of about 1.2 minutes per sample. Samples of 25 microliters containing varying known concentrations of compound V, a model for branched aromatic polycarbonate
    Figure US20030198572A1-20031023-C00003
  • synthesized from bisphenol A, were analyzed to yield fluorescence intensities at 465 nm (325 nm excitation). The results of this calibration procedure are shown in FIG. 2, which shows an excellent linear correlation between the fluorescence response and the concentration of model compound IV. [0046]
  • Typical normalized chromatograms for the fluorescence emission and differential refractive index (DRI) detectors are shown in FIG. 3. The sample was a melt polycarbonate with approximately 748 ppm of Fries as determined by the traditional hydrolysis-HPLC method. The offset in time is due to the volume of the transfer line between the detectors. The values for the concentration detector and for the fluorescence signal were determined by integration of the peak from baseline-to-baseline. Fluorescence detection was conducted with excitation at 325 and emission at 465 nm. The excitation and emission spectra of the model compound determined using a stop-flow technique in the HP 1046A detector are shown in FIG. 4. When considered in light of published spectra for aromatic polycarbonate reaction products (see, for example, S. Pankasem, J. Kuczynski and J. K. Thomas, [0047] Macromolecules, vol. 27, pp. 3773-3781 (1994); I. B. Rufus, H. Shah and C. E. Hoyle, J. App. Polym. Sci., vol. 51, pp. 1549-1558 (1994); and C. E. Hoyle, H. Shah and G. L. Nelson, J. Polym. Sci. A., vol. 30, pp. 1525-1533 (1992)), these spectra suggest that the salicylate chromophore of the model compound has a fluorescence emission centered at about 460 nm with a corresponding excitation centered at about 310 nm. As a practical matter, utilizing an excitation wavelength longer than 310 nm (e.g., as long as 340 nm) has the advantage of reducing aromatic polycarbonate background fluorescence, which must be traded off against reduced sensitivity for the Fries product fluorescence.
  • EXAMPLE 2
  • The procedure of Example 1 was used, except that a higher flow rate of 3.0 ml/min was utilized. The melt-synthesized polycarbonate used for this example had a Fries content of 540 ppm by the HPLC method and a weight average molecular weight of 18500 Daltons by an independent GPC determination. Fluorescence and DRI chromatograms are overlaid in FIG. 5 and demonstrate an analysis time of about 35 seconds per sample. [0048]
  • EXAMPLE 3
  • A series of aromatic polycarbonates prepared by melt polymerization of bisphenol A and diphenylcarbonate that had been independently analyzed using the technique of hydrolysis followed by HPLC (for a similar procedure, see A. Factor and M. L. Chu, [0049] Polym. Degrad. Stab., volume 2, pages 203 ff. (1980) were analyzed with fluorescence and differential refractive index detection using the apparatus described in Example 1. Test results are plotted in FIG. 6. An excellent linear correlation was observed between the rapid fluorescence/DRI method and the laborious hydrolysis/HPLC method. Multiple runs of the same sample showed the method reproducibility to be very high with a relative standard deviation of the Fries concentration being 1.3% with a limit of detection of less than 25 parts per million (ppm). The excitation and emission spectra of one of the melt polymerization samples are shown in FIG. 7 and can be compared with the spectra in FIG. 4 for the model compound IV.
  • EXAMPLE 4
  • This example describes automated sample preparation and analysis. A 96-well microtiter plate constructed of a vitreous material is used for the reaction of bisphenol-A with diphenylcarbonate catalyzed by a series of inorganic and organic bases. The products of the polymerization reaction consist of a polymer film of between 1 and 100 milligrams in the wells of the microtiter plate. Preferably, the resulting polymer weight is in the range of 10 to 40 milligrams and more preferably in the range of 20 to 30 milligrams. The plate, after cooling from reaction temperature, is placed in a Quadra 96 Model 230 robotic liquid handling system and an aliquot of chloroform is added to all of the wells simultaneously. The well plate is covered, agitated gently to facilitate polymer dissolution and mixing, and inserted into a Gilson 1-probe autosampler that is the sampling device for an Agilent 1100 HPLC equipped with a short size exclusion column, Agilent Model 1100 UV detector, Waters Associates Model 410 differential refractive index detector and a Shimadzu 10Ax1 fluorescence detector The solvent for the analysis is chloroform. The Gilson single probe autosampler removes an aliquot of the polymer solution from the 96 well plate and injects the sample into the HPLC system for analysis. The per sample analysis time for multiple analyses depends on the combination of sampling cycle time and chromatographic dwell time. Using overlapping injections, a flow rate of 3.0 mL/min, and preparation of a given sample during chromatographic analysis of the previous sample, a sample analysis time of about 20 seconds is feasible. [0050]
  • The above examples demonstrate rapid determination of the concentration of Fries rearrangement products in aromatic polycarbonate resins using a direct chromatographic technique that determines both the aromatic polycarbonate concentration and the fluorescence response due to the Fries rearrangement products. The method has the capability of removing interferences from small molecules that are not part of the polymer composition. The method is also amenable to automated analysis of samples derived from microtiter plates or arrays of reaction vials. Uses for the method include analysis of solid isolated aromatic polycarbonate resins, as well as analysis of a plurality of reaction mixtures constituting a combinatorial screening of aromatic polycarbonate polymerization reaction conditions. [0051]
  • While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. In particular, the method has been demonstrated for analysis of aromatic polycarbonate samples prepared by melt synthesis, but it is suitable for analysis of polycarbonates and aromatic polyesters prepared by various means. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation. [0052]
  • All cited patents and other references are incorporated herein by reference. [0053]

Claims (27)

What is claimed is:
1. A method for analysis of Fries rearrangement products in aromatic polycarbonate resins, comprising:
providing an analytical sample comprising an aromatic polycarbonate;
optionally, separating the analytical sample to yield a high molecular weight fraction;
performing an in-line determination of aromatic polycarbonate concentration in the analytical sample; and
performing an in-line determination of the fluorescence signal due to Fries rearrangement products in the analytical sample;
wherein the total analysis time is not greater than about 5 minutes per sample.
2. The method of claim 1, wherein the aromatic polycarbonate is synthesized from at least one dihydric phenol selected from the group consisting of 2,2-bis-(4-hydroxyphenyl)propane; hydroquinone; resorcinol; 2,2-bis-(4-hydroxyphenyl)pentane; 2,4′-dihydroxydiphenylmethane; bis-(2-hydroxyphenyl)methane; bis-(4-hydroxyphenyl)methane; bis-(4-hydroxy-5-nitrophenyl)methane; 1,1-bis-(4-hydroxyphenyl)ethane; 3,3-bis-(4-hydroxyphenyl)pentane; 2,2′-dihydroxydiphenyl; 2,6-dihydroxynapthylene; bis-(4-hydroxyphenyl)sulfone; 2,2′-dihydroxydiphenylsulfone; 4,4′-dihydroxydiphenylether; and 4,4′-dihydroxy-2,5-diethoxydiphenylether.
3. The method of claim 1, wherein the analytical sample comprising aromatic polycarbonate comprises a polymerization reaction mixture.
4. The method of claim 1, wherein separating the analytical sample to yield a high molecular weight fraction comprises the use of size exclusion chromatography or normal phase liquid chromatography.
5. The method of claim 1, wherein the in-line determination of the polymer concentration in the analytical sample utilizes one or more detection methods selected from the group consisting of infrared absorption spectroscopy, ultraviolet absorption spectroscopy, differential refractive index detection, ultrasonic detection, viscometry, and evaporative light scattering detection.
6. The method of claim 1, wherein the fluorescence determination of the concentration of Fries rearrangement products in the analytical sample utilizes an excitation wavelength within about 30 nm of the fluorescence excitation maximum.
7. The method of claim 1, wherein the fluorescence determination of the concentration of Fries rearrangement products in the analytical sample utilizes an excitation wavelength within about 20 nm of the fluorescence excitation maximum.
8. The method of claim 1, wherein the fluorescence determination of the concentration of Fries rearrangement products in the analytical sample utilizes an excitation wavelength within about 10 nm of the fluorescence excitation maximum.
9. The method of claim 1, wherein the fluorescence determination of the concentration of Fries rearrangement products in the analytical sample utilizes an emission wavelength within about 50 nm of the fluorescence emission maximum.
10. The method of claim 1, wherein the fluorescence determination of the concentration of Fries rearrangement products in the analytical sample utilizes an emission wavelength within about 30 nm of the fluorescence emission maximum.
11. The method of claim 1, wherein the fluorescence determination of the concentration of Fries rearrangement products in the analytical sample utilizes an emission wavelength within about 10 nm of the fluorescence emission maximum.
12. The method of claim 1, wherein the total analysis time is not greater than about 3 minutes per sample.
13. The method of claim 1, wherein the total analysis time is not greater than about 90 seconds per sample.
14. The method of claim 1, wherein the total analysis time is not greater than 60 seconds per sample.
15. The method of claim 1, wherein the total analysis time is not greater than 40 seconds per sample.
16. The method of claim 1, wherein the in-line determination of aromatic polycarbonate concentration and the in-line fluorescence determination of the concentration of Fries rearrangement products in the analytical sample are conducted sequentially.
17. The method of claim 1, further comprising preparing at least one analytical sample by dissolving an aromatic polycarbonate resin in a suitable solvent.
18. The method of claim 17, wherein the suitable solvent is selected from the group consisting of benzene, toluene, xylene, chloroform, tetrahydrofuran, methylene chloride, trichloroethylene, dichloroethane, methyl acetate, ethyl acetate, and mixtures comprising at least one of the foregoing solvents.
19. A method for analysis of Fries rearrangement products in aromatic polycarbonate resins, comprising:
providing a plurality of analytical samples each comprising aromatic polycarbonate;
optionally, separating each analytical sample to yield a high molecular weight fraction;
performing an in-line determination of aromatic polycarbonate concentration in each analytical sample; and
performing an in-line determination of the fluorescence signal due to Fries rearrangement products in each analytical sample;
wherein the total analysis time is not greater than about 5 minutes per sample.
20. The method of claim 19, wherein separating each analytical sample to yield a high molecular weight fraction, performing an in-line determination of aromatic polycarbonate concentration in each analytical sample, and performing an in-line determination of the concentration of Fries rearrangement products in each analytical sample using fluorescence spectroscopy are conducted without human intervention.
21. A method for analysis of Fries rearrangement products in aromatic polycarbonate resins, comprising:
providing an analytical sample comprising aromatic polycarbonate synthesized from at least one dihydric phenol comprising bisphenol A;
optionally, separating the analytical sample to yield a high molecular weight fraction;
performing an in-line determination of aromatic polycarbonate concentration in the analytical sample using differential refractive index detection; and
performing an in-line determination of the fluorescence signal due to Fries rearrangement products in the analytical sample using an excitation wavelength of about 280 to about 360 nm and an emission wavelength of about 420 to about 650 nm;
wherein the total analysis time is not greater than about 5 minutes per sample.
22. A system for analysis of Fries rearrangement products in analytical samples comprising aromatic polycarbonate, comprising:
a solvent delivery system;
an autoinjector for injecting a portion of the analytical sample;
optionally, a chromatographic column for separating said analytical sample to yield a aromatic polycarbonate high molecular weight fraction;
an in-line concentration detector for determining the aromatic polycarbonate concentration in the analytical sample;
an in-line fluorescence detector for determining the fluorescence signal due to Fries rearrangement products in each analytical sample;
wherein the system's total analysis time is not greater than 5 minutes per sample.
23. The system of claim 22, further comprising an analytical sample comprising aromatic polycarbonate.
24. The system of claim 22, further comprising a plurality of analytical samples comprising aromatic polycarbonate.
25. The system of claim 22, further comprising a sample preparation module for automatically preparing an analytical sample by dissolving an aromatic polycarbonate resin in a suitable solvent.
26. The system of claim 22, further comprising a computer for calculating the concentration of Fries rearrangement products in the aromatic polycarbonate based on the aromatic polycarbonate concentration in the analytical sample and the concentration of Fries rearrangement products in the analytical sample, and, optionally, for reversibly controlling one or more of the solvent delivery system, the autoinjector, the fluorescence detector, and the concentration detector.
27. An analysis system, comprising:
a sample preparation module for preparing a plurality of analytical samples, each sample being prepared by dissolving an aromatic polycarbonate resin in a suitable solvent.
an autoinjector for injecting a portion of each analytical sample;
a chromatographic column for separating each analytical sample to yield an aromatic polycarbonate high molecular weight fraction;
an in-line concentration detector for determining the aromatic polycarbonate concentration in each analytical sample;
an in-line fluorescence detector for determining the fluorescence signal due to Fries rearrangement products in each analytical sample; and
a computer for calculating the concentration of Fries rearrangement products in the aromatic polycarbonate based on the aromatic polycarbonate concentration in the analytical sample and the concentration of Fries rearrangement products in the analytical sample, and for reversibly controlling the sample preparation module, the solvent delivery system, the autoinjector, the fluorescence detector, and the concentration detector;
wherein the system's total analysis time is not greater than 5 minutes per sample; and wherein computer control of the sample preparation module, the solvent delivery system, the autoinjector, the fluorescence detector, and the concentration detector enables analysis of the plurality of samples without human intervention.
US10/305,327 2000-09-20 2002-11-27 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins Pending US20030198572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/305,327 US20030198572A1 (en) 2000-09-20 2002-11-27 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/665,766 US6544795B1 (en) 2000-09-20 2000-09-20 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins
US10/305,327 US20030198572A1 (en) 2000-09-20 2002-11-27 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/665,766 Division US6544795B1 (en) 2000-09-20 2000-09-20 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins

Publications (1)

Publication Number Publication Date
US20030198572A1 true US20030198572A1 (en) 2003-10-23

Family

ID=24671497

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/665,766 Expired - Fee Related US6544795B1 (en) 2000-09-20 2000-09-20 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins
US10/305,327 Pending US20030198572A1 (en) 2000-09-20 2002-11-27 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/665,766 Expired - Fee Related US6544795B1 (en) 2000-09-20 2000-09-20 Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins

Country Status (3)

Country Link
US (2) US6544795B1 (en)
AU (1) AU2001271730A1 (en)
WO (1) WO2002025255A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683689B2 (en) * 2001-10-02 2004-01-27 General Electric Company Method for rapid determination of composition of polycarbonate resin

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104015C (en) 1953-10-16
GB1045533A (en) 1963-02-21 1966-10-12 Gen Electric Flame-resistant polycarbonate compositions
US3522725A (en) 1969-01-08 1970-08-04 Waters Associates Inc Liquid chromatograph
US3989672A (en) 1972-10-30 1976-11-02 General Electric Company Process for preparing aromatic carbonate polymers
DK150802C (en) 1974-09-16 1988-02-01 Bifok Ab METHOD AND APPARATUS FOR CONTINUOUS HIGH-SPEED ANALYSIS OF A LIQUID TEST IN A BEARING FLOW
US4131575A (en) 1975-02-22 1978-12-26 Bayer Aktiengesellschaft Thermoplastic polycarbonate molding materials with improved mold release
US4945001A (en) * 1982-08-23 1990-07-31 California Institute Of Technology Internal stabilization of polycarbonate resins
US5100802A (en) 1989-12-05 1992-03-31 The Dow Chemical Company Fluorescent monitoring method for polymerization reactions
DE3941162A1 (en) 1989-12-13 1991-06-20 Biotechnolog Forschung Gmbh SENSOR ARRANGEMENT FOR FLOW INJECTION ANALYSIS
US5151748A (en) 1990-08-07 1992-09-29 The United States Of America As Represented By The Secretary Of Commerce Optical sensor for the measurement of molecular orientation and viscosity of polymeric materials based on fluorescence radiation
JP3358877B2 (en) 1994-07-22 2002-12-24 日本ジーイープラスチックス株式会社 Method for producing polycarbonate
US6045671A (en) 1994-10-18 2000-04-04 Symyx Technologies, Inc. Systems and methods for the combinatorial synthesis of novel materials
US5985356A (en) 1994-10-18 1999-11-16 The Regents Of The University Of California Combinatorial synthesis of novel materials
KR100314996B1 (en) 1994-11-10 2002-01-15 윌리암 제이. 버크 Liquid distribution system
US5840256A (en) 1996-04-09 1998-11-24 David Sarnoff Research Center Inc. Plate for reaction system
US5854684A (en) 1996-09-26 1998-12-29 Sarnoff Corporation Massively parallel detection
US6265226B1 (en) * 1998-04-03 2001-07-24 Symyx Technologies, Inc. Automated sampling methods for rapid characterization of polymers
US6166133A (en) * 1999-02-12 2000-12-26 General Electric Company PC/ABS blends possessing high melt flow having controlled levels of fries branching species
US6296771B1 (en) * 1999-04-02 2001-10-02 Symyx Technologies, Inc. Parallel high-performance liquid chromatography with serial injection
US6166804A (en) 1999-09-20 2000-12-26 General Electric Company Method and apparatus for obtaining fluorescence data
US6193850B1 (en) * 1999-09-20 2001-02-27 General Electric Company Method for direct measurement of polycarbonate compositions by fluorescence

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Also Published As

Publication number Publication date
AU2001271730A1 (en) 2002-04-02
WO2002025255A1 (en) 2002-03-28
US6544795B1 (en) 2003-04-08

Similar Documents

Publication Publication Date Title
KR100560336B1 (en) Method and apparatus for marking and identifying liquids
Etzkorn et al. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges
US6544795B1 (en) Method and apparatus for rapid determination of fries rearrangement products in aromatic polycarbonate resins
Gould et al. Time-resolved flash spectroscopic investigations of the reactions of singlet arylhalocarbenes
US10876968B2 (en) Optochemical sensor
US6166804A (en) Method and apparatus for obtaining fluorescence data
Tropp et al. A sensor array for the discrimination of polycyclic aromatic hydrocarbons using conjugated polymers and the inner filter effect
EP0891540A1 (en) Oxygen sensing membranes and methods of making same
Nagl et al. Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature
SG174169A1 (en) Method for monitoring monomer concentration in interfacial polycarbonate manufacturing process
US6362006B1 (en) Rapid parallel determination of non-volatile analytes in complex combinatorial samples
Dierkes et al. Analytical methods for plastic (microplastic) determination in environmental samples
Dini et al. Combining porphyrins and pH indicators for analyte detection
US6868715B1 (en) Method and apparatus for rapid determination of polymer molecular weight
Kalauzi et al. Application of asymmetric model in analysis of fluorescence spectra of biologically important molecules
US6193850B1 (en) Method for direct measurement of polycarbonate compositions by fluorescence
US6541264B1 (en) Aromatic polycarbonate characterization
Schwetlick et al. Properties of excited singlet states of N-arylurethanes: Photo-fries reactions, fluorescence, quenching and sensitization
US6552787B1 (en) Rapid non-destructive screening methods for polymeric coatings and materials
WO2002033383A1 (en) Method and apparatus for obtaining fluorescence data
US20040102340A1 (en) Method for marking hydrocarbons with anthraquinone imines
JP2003509577A (en) Parallel polymerization method
US6683689B2 (en) Method for rapid determination of composition of polycarbonate resin
Arbuthnot et al. Detection of a polynitroaromatic compound using a novel polymer-based multiplate sensor
Marchenko Porous covalent organic polymers used in luminescence analysis method

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED