US20030197139A1 - Valve for use in microfluidic structures - Google Patents
Valve for use in microfluidic structures Download PDFInfo
- Publication number
- US20030197139A1 US20030197139A1 US10/438,257 US43825703A US2003197139A1 US 20030197139 A1 US20030197139 A1 US 20030197139A1 US 43825703 A US43825703 A US 43825703A US 2003197139 A1 US2003197139 A1 US 2003197139A1
- Authority
- US
- United States
- Prior art keywords
- valve
- layer
- channel
- flexible layer
- rigid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 claims description 25
- 239000013536 elastomeric material Substances 0.000 claims description 4
- 229920002799 BoPET Polymers 0.000 claims description 2
- 239000005041 Mylar™ Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000005033 polyvinylidene chloride Substances 0.000 claims description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 claims 1
- 239000012528 membrane Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000012863 analytical testing Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002650 laminated plastic Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229920006298 saran Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/433—Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/433—Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
- B01F25/4331—Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/3039—Micromixers with mixing achieved by diffusion between layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/45—Magnetic mixers; Mixers with magnetically driven stirrers
- B01F33/451—Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5023—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5025—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C3/00—Circuit elements having moving parts
- F15C3/04—Circuit elements having moving parts using diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C3/00—Circuit elements having moving parts
- F15C3/06—Circuit elements having moving parts using balls or pill-shaped disks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0011—Gate valves or sliding valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0013—Rotary valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0015—Diaphragm or membrane valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0017—Capillary or surface tension valves, e.g. using electro-wetting or electro-capillarity effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0003—Constructional types of microvalves; Details of the cutting-off member
- F16K99/0023—Constructional types of microvalves; Details of the cutting-off member with ball-shaped valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0042—Electric operating means therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0042—Electric operating means therefor
- F16K99/0046—Electric operating means therefor using magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K99/0001—Microvalves
- F16K99/0034—Operating means specially adapted for microvalves
- F16K99/0055—Operating means specially adapted for microvalves actuated by fluids
- F16K99/0059—Operating means specially adapted for microvalves actuated by fluids actuated by a pilot fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/44—Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
- B01F31/441—Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement performing a rectilinear reciprocating movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0636—Focussing flows, e.g. to laminate flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0636—Integrated biosensor, microarrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0822—Slides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0867—Multiple inlets and one sample wells, e.g. mixing, dilution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0409—Moving fluids with specific forces or mechanical means specific forces centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0457—Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0633—Valves, specific forms thereof with moving parts
- B01L2400/0655—Valves, specific forms thereof with moving parts pinch valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/008—Multi-layer fabrications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0082—Microvalves adapted for a particular use
- F16K2099/0084—Chemistry or biology, e.g. "lab-on-a-chip" technology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00237—Handling microquantities of analyte, e.g. microvalves, capillary networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00534—Mixing by a special element, e.g. stirrer
- G01N2035/00544—Mixing by a special element, e.g. stirrer using fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/0098—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
Definitions
- This invention relates generally to microscale devices for performing analytical testing and, in particular, to a valve for use in laminated plastic microfluidic structures.
- Microfluidic devices have recently become popular for performing analytical testing. Using tools developed by the semiconductor industry to miniaturize electronics, it has become possible to fabricate intricate fluid systems which can be inexpensively mass produced. Systems have been developed to perform a variety of analytical techniques for the acquisition of information for the medical field.
- Microfluidic devices may be constructed in a multi-layer laminated structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluids flow.
- a microscale channel is generally defined as a fluid passage which has at least one internal cross-sectional dimension that is less than 100 ⁇ m and typically between about 0.1 ⁇ m and about 500 ⁇ m. The control and pumping of fluids through these channels is affected by either external pressurized fluid forced into the laminate, or by structures located within the laminate.
- U.S. Pat. No. 4,895,500 which issued on Jan. 23, 1990, describes a silicon micromechanical non-reverse valve which consists of a cantilever beam extending over a cavity and integrally formed with the silicon wafer such that the beam can be shifted to control flow within channels of the microfluidic structure.
- U.S. Pat. No. 5,443,890 which issued Aug. 22, 1995 to Pharmacia Biosensor AB, describes a sealing device in a microfluidic channel assembly having first and second flat surface members which when pressed against each other define at least part of a microfluidic channel system between them.
- U.S. Pat. No. 5,593,130 which issued on Jan. 14, 1997 to Pharmacia Biosensor AB, describes a valve for use in microfluidic structures in which the material fatigue of the flexible valve membrane and the valve seat is minimized by a two-step seat construction and the fact that both the membrane and the seat are constructed from elastic material.
- U.S. Pat. No. 5,932,799 which issued Aug. 3, 1999 to YSI Incorporated, teaches a microfluidic analyzer module having a plurality of channel forming laminate layers which are directly bonded together without adhesives, with a valve containing layer directly adhesivelessly bonded over the channel containing layers and a flexible valve member integral with the valve layer to open and close communication between feed and sensor channels of the network.
- U.S. Pat. No. 5,977,355 which issued on Oct. 26, 1999 to Xerox Corporation, describes a valve array system for microdevices based on microelectro mechanical systems (MEMS) technology consisting of a dielectric material forming a laminate which is embedded within multiple laminate layers.
- MEMS microelectro mechanical systems
- U.S. Pat. No. 6,068,751 which issued on May 30, 2000, describes a microfluidic delivery system using elongated capillaries that are enclosed along one surface by a layer of malleable material which is shifted by a valve having a electrically-powered actuator.
- U.S. patent application Ser. No. 09/677,250, filed Oct. 2, 2000, and assigned to the assignee of the present invention describes a one way check valve for use in laminated plastic microfluidic structures. This valve allows one way flow through microfluidic channels for use in mixing, dilution, particulate suspension and other techniques necessary for flow control in analytical devices.
- valves are commonly used for fluid management in flow systems. Flap valves, ball-in-socket valves, and tapered wedge valves are a few of the valve types existing in the macroscale domain of fluid control.
- flow channels are often the size of a human hair (approximately 100 microns in diameter)
- valves which are unique to microscale systems, especially microfluidic devices incorporating fluids with various concentrations of particulate in suspension.
- Special challenges involve mixing, dilution, fluidic circuit isolation, and anti-sediment techniques when employing microscale channels within a device.
- the incorporation of a simple compact valve within microscale devices addresses these potential problems while maintaining high density of fluidic structure within the device.
- It is a further object of the present invention is to provide a microfluidic valve which can be integrated into a cartridge constructed of multi-layer laminates.
- It is a further object of the present invention is to provide an array of microfluidic valves that can be integrated into a cartridge constructed of multi-layer laminates.
- FIG. 1 is a fragmentary cross-sectional view of a microfluidic device containing a basic ball bearing valve according to the present invention
- FIG. 2 is a fragmentary cross-sectional view of the valve of FIG. 1 shown in its activated position
- FIG. 3 is a fragmentary cross-sectional view of another embodiment of a ball bearing valve according to the present invention.
- FIG. 4 is a perspective view of a microfluidic array which uses a plurality of ball bearing valves according to the present invention.
- FIG. 1 there is shown a microfluidic valve assembly, generally indicated at 10 , which contains a valve constructed according to the present invention.
- Assembly 10 includes a spherical member or ball bearing 12 which is located within a channel 14 formed between a rigid top layer 16 and a rigid interior layer 18 within assembly 10 .
- Layer 16 and layer 18 each contain a cutout area 20 and 22 respectively within which ball bearing 12 is contained in channel 14 .
- Rigid layers 16 , 18 may be constructed from a material such as MYLAR.
- Spherical member 12 may be constructed from metal, hard plastic, or any other similar material.
- a membrane 24 constructed of a flexible material is located adjacent layer 18 opposite channel 14 .
- Membrane 24 which is preferably made from a thin elastomeric material, completely isolates channel 14 from a channel 26 by spanning across cutout area 22 .
- One suitable material that may be used for membrane 24 is polyvinylidene chloride (PVDC) which is the material commonly used as SARAN WRAP® film.
- PVDC polyvinylidene chloride
- Channel 26 is capable of carrying fluids within 10 assembly 10 , and in the present embodiment is formed by a narrow section 26 a and a wider section 26 b .
- Channel section 26 b is formed by layer 18 along with adjacent membrane 24 , and a rigid bottom layer 28 , while section 26 a is located within membrane 24 and an additional rigid layer 30 adjacent bottom layer 28 .
- the flow of a fluid traveling within channel 26 can be controlled within assembly 10 by spherical member 10 .
- member 12 is shifted by a sufficient force in the direction shown by arrow A.
- This force may be applied manually using the finger of a human operator, or by any suitable mechanical means as known in the art.
- This movement causes flexible membrane 24 to contact bottom layer 28 , closing channel 26 to any fluid movement between channel section 26 a and section 26 b .
- layer 18 acts to aid in centering member 12 in the process of activating valve assembly 10 , as member 12 is essentially captured within cutout area 22 of layer 18 .
- the operating force is removed from member 12 , said member is shifted back to its unactuated position as shown in FIG. 1 by virtue of the elastomeric property of membrane 24 .
- FIG. 3 illustrates a second embodiment of a valve assembly constructed according to the present invention. It will be understood that similar parts will be given the same index numerals.
- a valve assembly 10 a having a spherical member 12 located within a channel 14 which is formed between a layer 18 and an elastomeric layer 16 a.
- Elastomeric membrane 24 is located adjacent layer 18 opposite channel 14 , while spherical member 12 is situated in cutout section 22 within layer 18 and contacts member 24 at this location, as was previously shown in FIG. 1.
- Channel 26 which consists of a narrow section 26 a and a wider section 26 b , is formed between membrane 24 and bottom layer 28 , and is capable of carrying fluids within a microfluidic circuit.
- An upper channel 36 is formed within assembly 10 a between layer 16 a and a rigid upper layer 38 .
- Channel 36 contains a fluid which is capable of providing a force capable of activating valve assembly 10 a .
- fluid flowing in the direction of arrow B will flow over spherical member 12 , which is located beneath layer 16 a.
- valve assembly 10 a To operate valve assembly 10 a , if the force generated by a fluid flowing in direction B within channel 36 , the fluid will force membrane 24 downwardly in the direction of arrow A, causing member 12 to shift and causing membrane 24 to contact layer 28 , closing channel 26 to any fluid movement between channel 26 a and 26 b .
- member 12 When the flow of the fluid within channel 36 is reduced such that the force acting upon member 12 is less than that force exerted by membrane 24 on the lower part of member 12 , member 12 will return to the position shown in FIG. 3, and thus allowing fluid flow within channel 26 .
- the valve assembly of the present invention can also be used to control a microfluidic array.
- Array 50 consists of a lower array section 52 and an upper array section 54 .
- Section 52 contains a plurality of spaced apart indentations 56 which are sized to contain a plurality of spherical members 12 as taught in FIGS. 1 - 3 .
- a microfluidic circuit (not shown) which is constructed having channels similar to that shown in FIG. 3. This circuit may be designed to perform many functions which are familiar to those skilled in the art of microfluidic circuitry design.
- Section 54 may be constructed similar to the valve circuitry shown in FIG. 3 in that the lower surface is constructed for a elastomeric material which is deformed by spherical members 12 when the valves are in the inactive position.
- the control of the operation of the valves may be done using fluidic channels, similar to channel 36 in FIG. 3, or operation of the valves may also be accomplished using common electrical, magnetic, or pneumatic means, as is well known in the art.
- Control means 60 may be a computer or programmable control or the like, or any device familiar to those skilled in the art. Or, alternatively, array 50 could be inserted as a cartridge into a separate machine which would control operation of the valves within the array.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Fluid Mechanics (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Micromachines (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
- Taps Or Cocks (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Measuring Volume Flow (AREA)
- Sampling And Sample Adjustment (AREA)
- Flow Control (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
A valve for use in microfluidic structures. The valve uses a spherical member, such as a ball bearing, to depress an elastomeric member to selectively open and close a microfluidic channel. The valve may be operated manually or by use of an internal force generated to shift the spherical member to its activated position.
Description
- This patent application claims benefit from U.S. Provisional Patent Application Serial No. 60/213,865, filed Jun. 23, 2000, which application is incorporated herein by reference.
- 1. Field of the Invention
- This invention relates generally to microscale devices for performing analytical testing and, in particular, to a valve for use in laminated plastic microfluidic structures.
- 2. Description of the Prior Art
- Microfluidic devices have recently become popular for performing analytical testing. Using tools developed by the semiconductor industry to miniaturize electronics, it has become possible to fabricate intricate fluid systems which can be inexpensively mass produced. Systems have been developed to perform a variety of analytical techniques for the acquisition of information for the medical field.
- Microfluidic devices may be constructed in a multi-layer laminated structure where each layer has channels and structures fabricated from a laminate material to form microscale voids or channels where fluids flow. A microscale channel is generally defined as a fluid passage which has at least one internal cross-sectional dimension that is less than 100 μm and typically between about 0.1 μm and about 500 μm. The control and pumping of fluids through these channels is affected by either external pressurized fluid forced into the laminate, or by structures located within the laminate.
- Many different types of valves for use in controlling fluids in microscale devices have been developed. U.S. Pat. No. 4,895,500, which issued on Jan. 23, 1990, describes a silicon micromechanical non-reverse valve which consists of a cantilever beam extending over a cavity and integrally formed with the silicon wafer such that the beam can be shifted to control flow within channels of the microfluidic structure.
- U.S. Pat. No. 5,443,890, which issued Aug. 22, 1995 to Pharmacia Biosensor AB, describes a sealing device in a microfluidic channel assembly having first and second flat surface members which when pressed against each other define at least part of a microfluidic channel system between them.
- U.S. Pat. No. 5,593,130, which issued on Jan. 14, 1997 to Pharmacia Biosensor AB, describes a valve for use in microfluidic structures in which the material fatigue of the flexible valve membrane and the valve seat is minimized by a two-step seat construction and the fact that both the membrane and the seat are constructed from elastic material.
- U.S. Pat. No. 5,932,799, which issued Aug. 3, 1999 to YSI Incorporated, teaches a microfluidic analyzer module having a plurality of channel forming laminate layers which are directly bonded together without adhesives, with a valve containing layer directly adhesivelessly bonded over the channel containing layers and a flexible valve member integral with the valve layer to open and close communication between feed and sensor channels of the network.
- U.S. Pat. No. 5,962,081, which issued Oct. 5, 1999 to Pharmacia Biotech AB, describes a method for the manufacturer of polymer membrane-containing microstructures such as valves by combining polymer spin deposition methods with semiconductor manufacturing techniques.
- U.S. Pat. No. 5,977,355, which issued on Oct. 26, 1999 to Xerox Corporation, describes a valve array system for microdevices based on microelectro mechanical systems (MEMS) technology consisting of a dielectric material forming a laminate which is embedded within multiple laminate layers.
- U.S. Pat. No. 6,068,751, which issued on May 30, 2000, describes a microfluidic delivery system using elongated capillaries that are enclosed along one surface by a layer of malleable material which is shifted by a valve having a electrically-powered actuator.
- U.S. patent application Ser. No. 09/677,250, filed Oct. 2, 2000, and assigned to the assignee of the present invention describes a one way check valve for use in laminated plastic microfluidic structures. This valve allows one way flow through microfluidic channels for use in mixing, dilution, particulate suspension and other techniques necessary for flow control in analytical devices.
- Several types of valves are commonly used for fluid management in flow systems. Flap valves, ball-in-socket valves, and tapered wedge valves are a few of the valve types existing in the macroscale domain of fluid control. However, in the microscale field, where flow channels are often the size of a human hair (approximately 100 microns in diameter), there are special needs and uses for valves which are unique to microscale systems, especially microfluidic devices incorporating fluids with various concentrations of particulate in suspension. Special challenges involve mixing, dilution, fluidic circuit isolation, and anti-sediment techniques when employing microscale channels within a device. The incorporation of a simple compact valve within microscale devices addresses these potential problems while maintaining high density of fluidic structure within the device.
- It is therefore an object of the present invention to provide an efficient and reliable valve suitable for use in a microfluidic system.
- It is a further object of the present invention is to provide a microfluidic valve which can be integrated into a cartridge constructed of multi-layer laminates.
- It is a further object of the present invention is to provide an array of microfluidic valves that can be integrated into a cartridge constructed of multi-layer laminates.
- These and other objects of the present invention will be more readily apparent in the description and drawings that follow.
- FIG. 1 is a fragmentary cross-sectional view of a microfluidic device containing a basic ball bearing valve according to the present invention;
- FIG. 2 is a fragmentary cross-sectional view of the valve of FIG. 1 shown in its activated position;
- FIG. 3 is a fragmentary cross-sectional view of another embodiment of a ball bearing valve according to the present invention; and
- FIG. 4 is a perspective view of a microfluidic array which uses a plurality of ball bearing valves according to the present invention.
- Referring now to FIG. 1, there is shown a microfluidic valve assembly, generally indicated at10, which contains a valve constructed according to the present invention.
Assembly 10 includes a spherical member or ball bearing 12 which is located within achannel 14 formed between arigid top layer 16 and a rigidinterior layer 18 withinassembly 10.Layer 16 andlayer 18 each contain acutout area channel 14.Rigid layers Spherical member 12 may be constructed from metal, hard plastic, or any other similar material. - A
membrane 24 constructed of a flexible material is locatedadjacent layer 18opposite channel 14.Membrane 24, which is preferably made from a thin elastomeric material, completely isolateschannel 14 from achannel 26 by spanning acrosscutout area 22. One suitable material that may be used formembrane 24 is polyvinylidene chloride (PVDC) which is the material commonly used as SARAN WRAP® film. Channel 26 is capable of carrying fluids within 10assembly 10, and in the present embodiment is formed by anarrow section 26 a and awider section 26 b.Channel section 26 b is formed bylayer 18 along withadjacent membrane 24, and arigid bottom layer 28, whilesection 26 a is located withinmembrane 24 and an additionalrigid layer 30adjacent bottom layer 28. - In operation, the flow of a fluid traveling within
channel 26 can be controlled withinassembly 10 byspherical member 10. Referring now to FIG. 2,member 12 is shifted by a sufficient force in the direction shown by arrow A. This force may be applied manually using the finger of a human operator, or by any suitable mechanical means as known in the art. This movement causesflexible membrane 24 to contactbottom layer 28, closingchannel 26 to any fluid movement betweenchannel section 26 a andsection 26 b. Note thatlayer 18 acts to aid in centeringmember 12 in the process of activatingvalve assembly 10, asmember 12 is essentially captured withincutout area 22 oflayer 18. When the operating force is removed frommember 12, said member is shifted back to its unactuated position as shown in FIG. 1 by virtue of the elastomeric property ofmembrane 24. - FIG. 3 illustrates a second embodiment of a valve assembly constructed according to the present invention. It will be understood that similar parts will be given the same index numerals. Referring now to FIG. 3, there is shown a
valve assembly 10 a having aspherical member 12 located within achannel 14 which is formed between alayer 18 and anelastomeric layer 16 a. -
Elastomeric membrane 24 is locatedadjacent layer 18opposite channel 14, whilespherical member 12 is situated incutout section 22 withinlayer 18 andcontacts member 24 at this location, as was previously shown in FIG. 1.Channel 26, which consists of anarrow section 26 a and awider section 26 b, is formed betweenmembrane 24 andbottom layer 28, and is capable of carrying fluids within a microfluidic circuit. - An
upper channel 36 is formed withinassembly 10 a betweenlayer 16 a and a rigidupper layer 38.Channel 36 contains a fluid which is capable of providing a force capable of activatingvalve assembly 10 a. As can be clearly seen in FIG. 3, fluid flowing in the direction of arrow B will flow overspherical member 12, which is located beneathlayer 16 a. - To operate
valve assembly 10 a, if the force generated by a fluid flowing in direction B withinchannel 36, the fluid will forcemembrane 24 downwardly in the direction of arrow A, causingmember 12 to shift and causingmembrane 24 to contactlayer 28, closingchannel 26 to any fluid movement betweenchannel channel 36 is reduced such that the force acting uponmember 12 is less than that force exerted bymembrane 24 on the lower part ofmember 12,member 12 will return to the position shown in FIG. 3, and thus allowing fluid flow withinchannel 26. - The valve assembly of the present invention can also be used to control a microfluidic array. Referring now to FIG. 4, there is shown a microfluidic array, generally indicated at50.
Array 50 consists of alower array section 52 and anupper array section 54.Section 52 contains a plurality of spaced apartindentations 56 which are sized to contain a plurality ofspherical members 12 as taught in FIGS. 1-3. Also withinsection 52, there is contained a microfluidic circuit (not shown) which is constructed having channels similar to that shown in FIG. 3. This circuit may be designed to perform many functions which are familiar to those skilled in the art of microfluidic circuitry design. -
Section 54 may be constructed similar to the valve circuitry shown in FIG. 3 in that the lower surface is constructed for a elastomeric material which is deformed byspherical members 12 when the valves are in the inactive position. The control of the operation of the valves may be done using fluidic channels, similar tochannel 36 in FIG. 3, or operation of the valves may also be accomplished using common electrical, magnetic, or pneumatic means, as is well known in the art. - The control of the operation of
array 50 is accomplished by use of external control means 60 which is coupled tosection 54 via acable 62. Control means 60 may be a computer or programmable control or the like, or any device familiar to those skilled in the art. Or, alternatively,array 50 could be inserted as a cartridge into a separate machine which would control operation of the valves within the array. - While the present invention has been shown and described in terms of several preferred embodiments thereof, it will be understood that this invention is not limited to these particular embodiments and that many changes and modifications may be made without departing from the true spirit and scope of the invention as defined in the appended claims.
Claims (13)
1. A valve for use in a microfluidic structure, comprising:
a first rigid layer;
a first flexible layer;
a first channel, formed between said first rigid layer and said first flexible layer, said channel having an inlet and an outlet and capable of fluid flow from said inlet to said outlet;
a spherical actuator located adjacent said flexible layer on the side opposite said rigid layer;
and means for shifting said actuator to an actuating position such that a portion of said flexible layer is shifted toward said rigid layer, restricting fluid flow within said first channel.
2. The valve of claim 1 , wherein said first flexible layer is constructed from an elastomeric material.
3. The valve of claim 1 , wherein said first flexible layer is constructed from polyvinylidene chloride.
4. The valve of claim 1 , wherein said spherical actuator comprises a metal ball bearing.
5. The valve of claim 1 , wherein said shifting means comprises a finger of a human operator.
6. The valve of claim 1 , wherein said shifting means comprises mechanical operating means.
7. The valve of claim 1 , further comprising:
a second rigid layer, located adjacent said first flexible layer on the side opposite said first channel;
a second flexible layer;
a second channel, formed between said second rigid layer and said second flexible layer, for containing said spherical actuator;
a third rigid layer;
a first aperture, located in said second rigid layer, for positioning said spherical actuator within said second channel during actuation;
a third channel, formed between said second flexible layer and said third rigid layer, for containing said shifting means.
8. The valve of claim 7 , wherein said shifting means comprises a fluid flowing within said third channel.
9. The valve of claim 7 , wherein said second flexible layer comprises an elastomeric material.
10. The valve of claim 7 , wherein all of said rigid layers are constructed from MYLAR.
11. A microfluidic control system, comprising:
a plurality of valves, with each valve comprising
a first rigid layer;
a first flexible layer;
a first channel, formed between said first rigid layer and said first flexible layer, said channel having an inlet and an outlet and capable of fluid flow from said inlet to said outlet;
a spherical actuator located adjacent said flexible layer on the side opposite said rigid layer;
and means for shifting said actuator to an actuating position such that a portion of said flexible layer is shifted toward said rigid layer, restricting fluid flow within said first channel;
and means for controlling the operation of said plurality of valves.
12. The system of claim 11 , wherein said controlling means comprises a computer.
13. The system of claim 11 , wherein said controlling means comprises a programmable controller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/438,257 US20030197139A1 (en) | 2000-06-23 | 2003-05-13 | Valve for use in microfluidic structures |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21386500P | 2000-06-23 | 2000-06-23 | |
US09/887,820 US6581899B2 (en) | 2000-06-23 | 2001-06-22 | Valve for use in microfluidic structures |
US10/438,257 US20030197139A1 (en) | 2000-06-23 | 2003-05-13 | Valve for use in microfluidic structures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/887,820 Continuation US6581899B2 (en) | 2000-06-23 | 2001-06-22 | Valve for use in microfluidic structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030197139A1 true US20030197139A1 (en) | 2003-10-23 |
Family
ID=22796813
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/887,886 Abandoned US20020015959A1 (en) | 2000-06-23 | 2001-06-22 | Fluid mixing in microfluidic structures |
US09/887,820 Expired - Lifetime US6581899B2 (en) | 2000-06-23 | 2001-06-22 | Valve for use in microfluidic structures |
US09/888,754 Abandoned US20020008032A1 (en) | 2000-06-23 | 2001-06-25 | Feedback control for microfluidic cartridges |
US10/438,257 Abandoned US20030197139A1 (en) | 2000-06-23 | 2003-05-13 | Valve for use in microfluidic structures |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/887,886 Abandoned US20020015959A1 (en) | 2000-06-23 | 2001-06-22 | Fluid mixing in microfluidic structures |
US09/887,820 Expired - Lifetime US6581899B2 (en) | 2000-06-23 | 2001-06-22 | Valve for use in microfluidic structures |
US09/888,754 Abandoned US20020008032A1 (en) | 2000-06-23 | 2001-06-25 | Feedback control for microfluidic cartridges |
Country Status (2)
Country | Link |
---|---|
US (4) | US20020015959A1 (en) |
WO (3) | WO2002001081A2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070193653A1 (en) * | 2005-12-15 | 2007-08-23 | Thomas Gagliano | Beverage dispenser |
US20080142115A1 (en) * | 2006-12-15 | 2008-06-19 | Niagara Dispensing Technologies, Inc. | Beverage dispensing |
US20080276729A1 (en) * | 2007-05-09 | 2008-11-13 | Samsung Electro-Mechanics Co., Ltd. | Apparatus for analyzing sample using centrifugal force and inertia |
US20080277615A1 (en) * | 2002-05-08 | 2008-11-13 | Cytonome, Inc. | On chip dilution system |
US7823411B2 (en) | 2006-12-15 | 2010-11-02 | Niagara Dispensing Technologies, Inc. | Beverage cooling system |
US7861740B2 (en) | 2005-12-15 | 2011-01-04 | Niagara Dispensing Technologies, Inc. | Digital flow control |
US20110020182A1 (en) * | 2007-12-14 | 2011-01-27 | Yunhua Gao | Microfluidic cartridge with solution reservoir-pump chamber |
US20130149216A1 (en) * | 2011-12-07 | 2013-06-13 | Electronics And Telecommunications Research Institute | Device for storing reagent and method of discharging reagent thereof |
US8833405B2 (en) | 2005-12-15 | 2014-09-16 | DD Operations Ltd. | Beverage dispensing |
US9222623B2 (en) | 2013-03-15 | 2015-12-29 | Genmark Diagnostics, Inc. | Devices and methods for manipulating deformable fluid vessels |
WO2016065073A1 (en) | 2014-10-22 | 2016-04-28 | Integenx Inc. | Systems and methods for sample preparation, processing and analysis |
US9498778B2 (en) | 2014-11-11 | 2016-11-22 | Genmark Diagnostics, Inc. | Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system |
WO2016205428A1 (en) | 2015-06-19 | 2016-12-22 | Integenx Inc. | Valved cartridge and system |
US9598722B2 (en) | 2014-11-11 | 2017-03-21 | Genmark Diagnostics, Inc. | Cartridge for performing assays in a closed sample preparation and reaction system |
US9731266B2 (en) | 2010-08-20 | 2017-08-15 | Integenx Inc. | Linear valve arrays |
US9752185B2 (en) | 2004-09-15 | 2017-09-05 | Integenx Inc. | Microfluidic devices |
US9957553B2 (en) | 2012-10-24 | 2018-05-01 | Genmark Diagnostics, Inc. | Integrated multiplex target analysis |
US10005080B2 (en) | 2014-11-11 | 2018-06-26 | Genmark Diagnostics, Inc. | Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation |
US10191071B2 (en) | 2013-11-18 | 2019-01-29 | IntegenX, Inc. | Cartridges and instruments for sample analysis |
US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
US10495656B2 (en) | 2012-10-24 | 2019-12-03 | Genmark Diagnostics, Inc. | Integrated multiplex target analysis |
US10525467B2 (en) | 2011-10-21 | 2020-01-07 | Integenx Inc. | Sample preparation, processing and analysis systems |
USD881409S1 (en) | 2013-10-24 | 2020-04-14 | Genmark Diagnostics, Inc. | Biochip cartridge |
US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020112961A1 (en) * | 1999-12-02 | 2002-08-22 | Nanostream, Inc. | Multi-layer microfluidic device fabrication |
JP4606543B2 (en) * | 2000-04-13 | 2011-01-05 | パナソニック株式会社 | Method for confirming amount of solution to be measured and measuring system control method in optical property measuring apparatus |
US8518328B2 (en) * | 2005-12-27 | 2013-08-27 | Honeywell International Inc. | Fluid sensing and control in a fluidic analyzer |
US8329118B2 (en) * | 2004-09-02 | 2012-12-11 | Honeywell International Inc. | Method and apparatus for determining one or more operating parameters for a microfluidic circuit |
AU2001286511A1 (en) * | 2000-08-15 | 2002-02-25 | Nanostream, Inc. | Optical devices with fluidic systems |
US7314718B1 (en) | 2001-04-03 | 2008-01-01 | Bioarray Solutions Ltd. | Method and apparatus for maintaining multiple planar fluid flows |
US7318912B2 (en) | 2001-06-07 | 2008-01-15 | Nanostream, Inc. | Microfluidic systems and methods for combining discrete fluid volumes |
US20020187557A1 (en) * | 2001-06-07 | 2002-12-12 | Hobbs Steven E. | Systems and methods for introducing samples into microfluidic devices |
JP2003248008A (en) * | 2001-12-18 | 2003-09-05 | Inst Of Physical & Chemical Res | Method of stirring reaction liquid |
US6739576B2 (en) | 2001-12-20 | 2004-05-25 | Nanostream, Inc. | Microfluidic flow control device with floating element |
US20040109793A1 (en) * | 2002-02-07 | 2004-06-10 | Mcneely Michael R | Three-dimensional microfluidics incorporating passive fluid control structures |
GB0203661D0 (en) * | 2002-02-15 | 2002-04-03 | Syrris Ltd | A microreactor |
GB0203653D0 (en) * | 2002-02-15 | 2002-04-03 | Syrris Ltd | A microreactor |
EP1346770A1 (en) * | 2002-03-13 | 2003-09-24 | Corning Incorporated | Microvolume biochemical reaction chamber |
US9943847B2 (en) | 2002-04-17 | 2018-04-17 | Cytonome/St, Llc | Microfluidic system including a bubble valve for regulating fluid flow through a microchannel |
US6976590B2 (en) * | 2002-06-24 | 2005-12-20 | Cytonome, Inc. | Method and apparatus for sorting particles |
US6939450B2 (en) * | 2002-10-08 | 2005-09-06 | Abbott Laboratories | Device having a flow channel |
JP3746756B2 (en) * | 2002-10-22 | 2006-02-15 | 株式会社日立製作所 | Solution stirring device, solution stirring method |
US6936167B2 (en) * | 2002-10-31 | 2005-08-30 | Nanostream, Inc. | System and method for performing multiple parallel chromatographic separations |
US20040101870A1 (en) * | 2002-11-26 | 2004-05-27 | Caubet Bruno S. | Microvolume biochemical reaction chamber |
CA2508475C (en) | 2002-12-04 | 2011-08-30 | Spinx, Inc. | Devices and methods for programmable microscale manipulation of fluids |
US7125711B2 (en) * | 2002-12-19 | 2006-10-24 | Bayer Healthcare Llc | Method and apparatus for splitting of specimens into multiple channels of a microfluidic device |
US7094354B2 (en) * | 2002-12-19 | 2006-08-22 | Bayer Healthcare Llc | Method and apparatus for separation of particles in a microfluidic device |
US7419638B2 (en) * | 2003-01-14 | 2008-09-02 | Micronics, Inc. | Microfluidic devices for fluid manipulation and analysis |
WO2004065010A2 (en) * | 2003-01-21 | 2004-08-05 | Micronics Inc. | Method and system for microfluidic manipulation, amplification and analysis of fluids, for example, bacteria assays and antiglobulin testing |
US7147955B2 (en) | 2003-01-31 | 2006-12-12 | Societe Bic | Fuel cartridge for fuel cells |
GB0307999D0 (en) * | 2003-04-07 | 2003-05-14 | Glaxo Group Ltd | A system |
US7435381B2 (en) * | 2003-05-29 | 2008-10-14 | Siemens Healthcare Diagnostics Inc. | Packaging of microfluidic devices |
US20040265171A1 (en) * | 2003-06-27 | 2004-12-30 | Pugia Michael J. | Method for uniform application of fluid into a reactive reagent area |
US20040265172A1 (en) * | 2003-06-27 | 2004-12-30 | Pugia Michael J. | Method and apparatus for entry and storage of specimens into a microfluidic device |
US20080257754A1 (en) * | 2003-06-27 | 2008-10-23 | Pugia Michael J | Method and apparatus for entry of specimens into a microfluidic device |
US7347617B2 (en) * | 2003-08-19 | 2008-03-25 | Siemens Healthcare Diagnostics Inc. | Mixing in microfluidic devices |
US7396677B2 (en) * | 2003-11-07 | 2008-07-08 | Nanosphere, Inc. | Method of preparing nucleic acids for detection |
US20050170401A1 (en) * | 2004-01-29 | 2005-08-04 | Canon Kabushiki Kaisha | Hybridization apparatus and method |
US20050176135A1 (en) * | 2004-02-06 | 2005-08-11 | Brian Jones | Cassette for isolation, amplification and identification of DNA or protein and method of use |
CN102759466A (en) | 2004-09-15 | 2012-10-31 | 英特基因有限公司 | Microfluidic devices |
US9260693B2 (en) | 2004-12-03 | 2016-02-16 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
US7168675B2 (en) * | 2004-12-21 | 2007-01-30 | Honeywell International Inc. | Media isolated electrostatically actuated valve |
EP1846163A2 (en) * | 2005-01-13 | 2007-10-24 | Micronics, Inc. | Microfluidic rare cell detection device |
EP1846676A2 (en) * | 2005-01-31 | 2007-10-24 | The President and Fellows of Harvard College | Valves and reservoirs for microfluidic systems |
US7618391B2 (en) * | 2005-04-20 | 2009-11-17 | Children's Medical Center Corporation | Waveform sensing and regulating fluid flow valve |
US20060245933A1 (en) * | 2005-05-02 | 2006-11-02 | General Electric Company | Valve and pump for microfluidic systems and methods for fabrication |
US7618590B2 (en) | 2005-06-29 | 2009-11-17 | Cascade Microtech, Inc. | Fluid dispensing system |
US20090078030A1 (en) * | 2005-08-30 | 2009-03-26 | Sung-Kwon Jung | Test Sensor With a Fluid Chamber Opening |
WO2008002462A2 (en) | 2006-06-23 | 2008-01-03 | Micronics, Inc. | Methods and devices for microfluidic point-of-care immunoassays |
US9056291B2 (en) | 2005-11-30 | 2015-06-16 | Micronics, Inc. | Microfluidic reactor system |
US7763453B2 (en) * | 2005-11-30 | 2010-07-27 | Micronics, Inc. | Microfluidic mixing and analytic apparatus |
US7485153B2 (en) * | 2005-12-27 | 2009-02-03 | Honeywell International Inc. | Fluid free interface for a fluidic analyzer |
US8182767B2 (en) * | 2005-12-27 | 2012-05-22 | Honeywell International Inc. | Needle-septum interface for a fluidic analyzer |
WO2007084392A2 (en) * | 2006-01-13 | 2007-07-26 | Micronics, Inc. | Electromagnetically actuated valves for use in microfluidic structures |
JP5000666B2 (en) * | 2006-01-25 | 2012-08-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Device for analyzing fluids |
US9146564B2 (en) * | 2006-03-06 | 2015-09-29 | Deka Products Limited Partnership | Product dispensing system |
US11906988B2 (en) | 2006-03-06 | 2024-02-20 | Deka Products Limited Partnership | Product dispensing system |
WO2007106580A2 (en) * | 2006-03-15 | 2007-09-20 | Micronics, Inc. | Rapid magnetic flow assays |
US7569789B2 (en) * | 2006-03-16 | 2009-08-04 | Visiongate, Inc. | Cantilevered coaxial flow injector apparatus and method for sorting particles |
KR100813266B1 (en) * | 2006-09-19 | 2008-03-13 | 삼성전자주식회사 | Method for removing air bubbles from hybridization solution of a microarray-cover slip assembly and a microarray kit for the same |
WO2008147382A1 (en) * | 2006-09-27 | 2008-12-04 | Micronics, Inc. | Integrated microfluidic assay devices and methods |
JP2008128706A (en) * | 2006-11-17 | 2008-06-05 | Konica Minolta Medical & Graphic Inc | Microchip inspection system and program used for the microchip inspection system |
JP2008128869A (en) * | 2006-11-22 | 2008-06-05 | Konica Minolta Medical & Graphic Inc | Microchip inspection system and program used for the microchip inspection system |
WO2008115626A2 (en) | 2007-02-05 | 2008-09-25 | Microchip Biotechnologies, Inc. | Microfluidic and nanofluidic devices, systems, and applications |
US20080202148A1 (en) * | 2007-02-27 | 2008-08-28 | Thomas Gagliano | Beverage cooler |
US20080312104A1 (en) * | 2007-06-15 | 2008-12-18 | Yasuhiko Sasaki | Biological material preparation chip and preparation chip system |
EP2171420A1 (en) * | 2007-07-31 | 2010-04-07 | Micronics, Inc. | Sanitary swab collection system, microfluidic assay device, and methods for diagnostic assays |
US11634311B2 (en) | 2007-09-06 | 2023-04-25 | Deka Products Limited Partnership | Product dispensing system |
US10562757B2 (en) | 2007-09-06 | 2020-02-18 | Deka Products Limited Partnership | Product dispensing system |
US10859072B2 (en) | 2007-09-06 | 2020-12-08 | Deka Products Limited Partnership | Product dispensing system |
US20090253181A1 (en) | 2008-01-22 | 2009-10-08 | Microchip Biotechnologies, Inc. | Universal sample preparation system and use in an integrated analysis system |
US8961902B2 (en) * | 2008-04-23 | 2015-02-24 | Bioscale, Inc. | Method and apparatus for analyte processing |
BRPI0917384A2 (en) | 2008-08-28 | 2015-11-17 | Deka Products Lp | product dispensing system |
US20110168269A1 (en) * | 2008-09-17 | 2011-07-14 | Koninklijke Philips Electronics N.V. | Microfluidic device |
WO2010040103A1 (en) | 2008-10-03 | 2010-04-08 | Micronics, Inc. | Microfluidic apparatus and methods for performing blood typing and crossmatching |
WO2010077322A1 (en) * | 2008-12-31 | 2010-07-08 | Microchip Biotechnologies, Inc. | Instrument with microfluidic chip |
US8388908B2 (en) * | 2009-06-02 | 2013-03-05 | Integenx Inc. | Fluidic devices with diaphragm valves |
WO2010141921A1 (en) | 2009-06-05 | 2010-12-09 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
KR101274113B1 (en) * | 2009-09-01 | 2013-06-13 | 한국전자통신연구원 | Magnetic microvalve using metal ball and manufacturing method thereof |
US8584703B2 (en) | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
WO2011094577A2 (en) | 2010-01-29 | 2011-08-04 | Micronics, Inc. | Sample-to-answer microfluidic cartridge |
US8512538B2 (en) | 2010-05-28 | 2013-08-20 | Integenx Inc. | Capillary electrophoresis device |
US8763642B2 (en) | 2010-08-20 | 2014-07-01 | Integenx Inc. | Microfluidic devices with mechanically-sealed diaphragm valves |
GB2487353B (en) * | 2011-01-11 | 2016-11-30 | Ffei Ltd | Micro-capillary method and apparatus |
GB201119002D0 (en) * | 2011-11-03 | 2011-12-14 | Givaudan Sa | Valve |
KR102090934B1 (en) | 2012-01-09 | 2020-03-19 | 퍼킨엘머 헬스 사이언시즈, 아이엔씨. | Microfluidic reactor system |
EP2834345B1 (en) * | 2012-04-06 | 2024-03-27 | Corsolutions, LLC | Apparatus, system,&method providing fluid flow for cell growth |
WO2014133624A2 (en) * | 2012-12-10 | 2014-09-04 | President And Fellows Of Harvard College | Membrane-based fluid-flow control devices |
JP2016509206A (en) | 2012-12-21 | 2016-03-24 | マイクロニクス, インコーポレイテッド | Portable fluorescence detection system and microassay cartridge |
EP3549674B1 (en) | 2012-12-21 | 2020-08-12 | PerkinElmer Health Sciences, Inc. | Low elasticity films for microfluidic use |
US10065186B2 (en) | 2012-12-21 | 2018-09-04 | Micronics, Inc. | Fluidic circuits and related manufacturing methods |
US10386377B2 (en) | 2013-05-07 | 2019-08-20 | Micronics, Inc. | Microfluidic devices and methods for performing serum separation and blood cross-matching |
AU2014262710B2 (en) | 2013-05-07 | 2019-09-12 | Perkinelmer Health Sciences, Inc. | Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions |
JP6484222B2 (en) | 2013-05-07 | 2019-03-13 | マイクロニクス, インコーポレイテッド | Devices for nucleic acid preparation and analysis |
FR3006207A1 (en) * | 2013-05-30 | 2014-12-05 | Commissariat Energie Atomique | FLUID CARD COMPRISING A FLUIDIC CHANNEL HAVING A REFERMABLE OPENING BY A FLEXIBLE FILM |
CN104280278A (en) * | 2014-09-18 | 2015-01-14 | 大连理工大学 | Displacement representation method for preparing nanochannel fracture appearance sample |
IL239691A0 (en) | 2015-06-28 | 2015-08-31 | Technion Res & Dev Foundation | System and emthod for measuring flow |
GB2541202B (en) * | 2015-08-11 | 2021-06-23 | Agilent Technologies Inc | Stacked layer-type member with integrated functional component |
EP3408389B1 (en) | 2016-01-29 | 2021-03-10 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
US10400915B2 (en) * | 2016-04-14 | 2019-09-03 | Triad National Security, Llc | Magnetically controlled valve and pump devices and methods of using the same |
US11135345B2 (en) | 2017-05-10 | 2021-10-05 | Fresenius Medical Care Holdings, Inc. | On demand dialysate mixing using concentrates |
US11041150B2 (en) | 2017-08-02 | 2021-06-22 | Purigen Biosystems, Inc. | Systems, devices, and methods for isotachophoresis |
EP3520894A1 (en) | 2018-02-05 | 2019-08-07 | miDiagnostics NV | Microfluidic device, system, and method for reversing a flow through a microfluidic channel |
WO2019240764A1 (en) * | 2018-06-11 | 2019-12-19 | Hewlett-Packard Development Company, L.P. | Microfluidic valves |
CN108679301B (en) * | 2018-09-06 | 2019-01-08 | 湖南乐准智芯生物科技有限公司 | Shielding system, control method and biochip between a kind of micro-valve and liquid |
US11504458B2 (en) | 2018-10-17 | 2022-11-22 | Fresenius Medical Care Holdings, Inc. | Ultrasonic authentication for dialysis |
GB2583059B (en) * | 2019-01-30 | 2024-01-31 | Cn Bio Innovations Ltd | A microvalve, and a multi-directional valve apparatus |
US11259106B1 (en) * | 2020-11-06 | 2022-02-22 | Fortemedia, Inc. | Mems device with dynamic valve layer |
JP2023063027A (en) * | 2021-10-22 | 2023-05-09 | 株式会社エンプラス | Fluid handling device and fluid handling system including the same |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2660395A (en) * | 1949-11-21 | 1953-11-24 | Cement Gun Company Inc | Compressible tube valve |
US3572735A (en) * | 1969-11-17 | 1971-03-30 | North American Rockwell | Captive plastic seal |
US4099700A (en) * | 1977-02-16 | 1978-07-11 | Wen Young | Flow control device for fluids flowing in a closed conduit |
US4341098A (en) * | 1979-10-18 | 1982-07-27 | Otting Machine Company, Inc. | Jet pattern dyeing of material, particularly carpet |
EP0213825A3 (en) * | 1985-08-22 | 1989-04-26 | Molecular Devices Corporation | Multiple chemically modulated capacitance |
SE8801299L (en) | 1988-04-08 | 1989-10-09 | Bertil Hoeoek | MICROMECHANICAL ONE-WAY VALVE |
US4899783A (en) * | 1988-09-30 | 1990-02-13 | Whitey Co. | Pinch valve |
US5595707A (en) * | 1990-03-02 | 1997-01-21 | Ventana Medical Systems, Inc. | Automated biological reaction apparatus |
DE4019889C2 (en) * | 1990-06-22 | 1996-09-26 | Joachim Mogler | Pinch cock |
SE9100392D0 (en) | 1991-02-08 | 1991-02-08 | Pharmacia Biosensor Ab | A METHOD OF PRODUCING A SEALING MEANS IN A MICROFLUIDIC STRUCTURE AND A MICROFLUIDIC STRUCTURE COMPRISING SUCH SEALING MEANS |
US5486335A (en) * | 1992-05-01 | 1996-01-23 | Trustees Of The University Of Pennsylvania | Analysis based on flow restriction |
US5330625A (en) * | 1992-10-23 | 1994-07-19 | Eastman Kodak Company | Round potentiometric slide elements and method of using the same |
US5670329A (en) * | 1993-05-28 | 1997-09-23 | Cardiovascular Diagnostics, Inc. | Method and analytical system for performing fibrinogen assays accurately, rapidly and simply using a rotating magnetic field |
SE501713C2 (en) | 1993-09-06 | 1995-05-02 | Pharmacia Biosensor Ab | Diaphragm-type valve, especially for liquid handling blocks with micro-flow channels |
AUPN038995A0 (en) * | 1995-01-05 | 1995-01-27 | Australian Biomedical Corporation Limited | Method and apparatus for human or animal cell sample treatment |
SE9502258D0 (en) | 1995-06-21 | 1995-06-21 | Pharmacia Biotech Ab | Method for the manufacture of a membrane-containing microstructure |
US6068751A (en) | 1995-12-18 | 2000-05-30 | Neukermans; Armand P. | Microfluidic valve and integrated microfluidic system |
US5863502A (en) * | 1996-01-24 | 1999-01-26 | Sarnoff Corporation | Parallel reaction cassette and associated devices |
US5660370A (en) * | 1996-03-07 | 1997-08-26 | Integrated Fludics, Inc. | Valve with flexible sheet member and two port non-flexing backer member |
US5851004A (en) | 1996-10-16 | 1998-12-22 | Parker-Hannifin Corporation | High pressure actuated metal seated diaphragm valve |
US5971355A (en) | 1996-11-27 | 1999-10-26 | Xerox Corporation | Microdevice valve structures to fluid control |
US5932799A (en) | 1997-07-21 | 1999-08-03 | Ysi Incorporated | Microfluidic analyzer module |
US5989402A (en) * | 1997-08-29 | 1999-11-23 | Caliper Technologies Corp. | Controller/detector interfaces for microfluidic systems |
EP1009995A4 (en) * | 1997-09-02 | 2007-05-02 | Caliper Life Sciences Inc | Microfluidic system with electrofluidic and electrothermal controls |
US6431212B1 (en) | 2000-05-24 | 2002-08-13 | Jon W. Hayenga | Valve for use in microfluidic structures |
-
2001
- 2001-06-22 WO PCT/US2001/020004 patent/WO2002001081A2/en active Application Filing
- 2001-06-22 US US09/887,886 patent/US20020015959A1/en not_active Abandoned
- 2001-06-22 US US09/887,820 patent/US6581899B2/en not_active Expired - Lifetime
- 2001-06-22 WO PCT/US2001/019954 patent/WO2002001184A1/en active Application Filing
- 2001-06-25 US US09/888,754 patent/US20020008032A1/en not_active Abandoned
- 2001-06-25 WO PCT/US2001/020185 patent/WO2002001163A2/en active Application Filing
-
2003
- 2003-05-13 US US10/438,257 patent/US20030197139A1/en not_active Abandoned
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080277615A1 (en) * | 2002-05-08 | 2008-11-13 | Cytonome, Inc. | On chip dilution system |
US9752185B2 (en) | 2004-09-15 | 2017-09-05 | Integenx Inc. | Microfluidic devices |
US8833405B2 (en) | 2005-12-15 | 2014-09-16 | DD Operations Ltd. | Beverage dispensing |
US7861740B2 (en) | 2005-12-15 | 2011-01-04 | Niagara Dispensing Technologies, Inc. | Digital flow control |
US20070193653A1 (en) * | 2005-12-15 | 2007-08-23 | Thomas Gagliano | Beverage dispenser |
US7823411B2 (en) | 2006-12-15 | 2010-11-02 | Niagara Dispensing Technologies, Inc. | Beverage cooling system |
US20080142115A1 (en) * | 2006-12-15 | 2008-06-19 | Niagara Dispensing Technologies, Inc. | Beverage dispensing |
US20080276729A1 (en) * | 2007-05-09 | 2008-11-13 | Samsung Electro-Mechanics Co., Ltd. | Apparatus for analyzing sample using centrifugal force and inertia |
US7861576B2 (en) * | 2007-05-09 | 2011-01-04 | Samsung Electro-Mechanics Co., Ltd. | Apparatus for analyzing sample using centrifugal force and inertia |
US20110020182A1 (en) * | 2007-12-14 | 2011-01-27 | Yunhua Gao | Microfluidic cartridge with solution reservoir-pump chamber |
US8323573B2 (en) * | 2007-12-14 | 2012-12-04 | Xizeng Shi | Microfluidic cartridge with solution reservoir-pump chamber |
US9731266B2 (en) | 2010-08-20 | 2017-08-15 | Integenx Inc. | Linear valve arrays |
US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
US10525467B2 (en) | 2011-10-21 | 2020-01-07 | Integenx Inc. | Sample preparation, processing and analysis systems |
US11684918B2 (en) | 2011-10-21 | 2023-06-27 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
US8834811B2 (en) * | 2011-12-07 | 2014-09-16 | Electronics And Telecommunications Research Institute | Device for storing reagent and method of discharging reagent thereof |
US20130149216A1 (en) * | 2011-12-07 | 2013-06-13 | Electronics And Telecommunications Research Institute | Device for storing reagent and method of discharging reagent thereof |
US10495656B2 (en) | 2012-10-24 | 2019-12-03 | Genmark Diagnostics, Inc. | Integrated multiplex target analysis |
USD900330S1 (en) | 2012-10-24 | 2020-10-27 | Genmark Diagnostics, Inc. | Instrument |
US11952618B2 (en) | 2012-10-24 | 2024-04-09 | Roche Molecular Systems, Inc. | Integrated multiplex target analysis |
US9957553B2 (en) | 2012-10-24 | 2018-05-01 | Genmark Diagnostics, Inc. | Integrated multiplex target analysis |
US10391489B2 (en) | 2013-03-15 | 2019-08-27 | Genmark Diagnostics, Inc. | Apparatus and methods for manipulating deformable fluid vessels |
US9453613B2 (en) | 2013-03-15 | 2016-09-27 | Genmark Diagnostics, Inc. | Apparatus, devices, and methods for manipulating deformable fluid vessels |
US9222623B2 (en) | 2013-03-15 | 2015-12-29 | Genmark Diagnostics, Inc. | Devices and methods for manipulating deformable fluid vessels |
US9410663B2 (en) | 2013-03-15 | 2016-08-09 | Genmark Diagnostics, Inc. | Apparatus and methods for manipulating deformable fluid vessels |
US10807090B2 (en) | 2013-03-15 | 2020-10-20 | Genmark Diagnostics, Inc. | Apparatus, devices, and methods for manipulating deformable fluid vessels |
USD881409S1 (en) | 2013-10-24 | 2020-04-14 | Genmark Diagnostics, Inc. | Biochip cartridge |
US10191071B2 (en) | 2013-11-18 | 2019-01-29 | IntegenX, Inc. | Cartridges and instruments for sample analysis |
US10989723B2 (en) | 2013-11-18 | 2021-04-27 | IntegenX, Inc. | Cartridges and instruments for sample analysis |
US10961561B2 (en) | 2014-05-21 | 2021-03-30 | IntegenX, Inc. | Fluidic cartridge with valve mechanism |
US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
US11891650B2 (en) | 2014-05-21 | 2024-02-06 | IntegenX, Inc. | Fluid cartridge with valve mechanism |
US12099032B2 (en) | 2014-10-22 | 2024-09-24 | IntegenX, Inc. | Systems and methods for sample preparation, processing and analysis |
US10690627B2 (en) | 2014-10-22 | 2020-06-23 | IntegenX, Inc. | Systems and methods for sample preparation, processing and analysis |
WO2016065073A1 (en) | 2014-10-22 | 2016-04-28 | Integenx Inc. | Systems and methods for sample preparation, processing and analysis |
EP3552690A1 (en) | 2014-10-22 | 2019-10-16 | IntegenX Inc. | Systems and methods for sample preparation, processing and analysis |
US10005080B2 (en) | 2014-11-11 | 2018-06-26 | Genmark Diagnostics, Inc. | Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation |
US10864522B2 (en) | 2014-11-11 | 2020-12-15 | Genmark Diagnostics, Inc. | Processing cartridge and method for detecting a pathogen in a sample |
US9598722B2 (en) | 2014-11-11 | 2017-03-21 | Genmark Diagnostics, Inc. | Cartridge for performing assays in a closed sample preparation and reaction system |
US9498778B2 (en) | 2014-11-11 | 2016-11-22 | Genmark Diagnostics, Inc. | Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system |
US10767225B2 (en) | 2015-06-19 | 2020-09-08 | IntegenX, Inc. | Valved cartridge and system |
EP3524973A1 (en) | 2015-06-19 | 2019-08-14 | IntegenX Inc. | Valved cartridge and system |
US11649496B2 (en) | 2015-06-19 | 2023-05-16 | IntegenX, Inc. | Valved cartridge and system |
US10233491B2 (en) | 2015-06-19 | 2019-03-19 | IntegenX, Inc. | Valved cartridge and system |
WO2016205428A1 (en) | 2015-06-19 | 2016-12-22 | Integenx Inc. | Valved cartridge and system |
Also Published As
Publication number | Publication date |
---|---|
US20010054702A1 (en) | 2001-12-27 |
WO2002001184A8 (en) | 2002-02-07 |
WO2002001184A1 (en) | 2002-01-03 |
WO2002001081A3 (en) | 2002-05-16 |
WO2002001163A2 (en) | 2002-01-03 |
US20020008032A1 (en) | 2002-01-24 |
US20020015959A1 (en) | 2002-02-07 |
US6581899B2 (en) | 2003-06-24 |
WO2002001081A2 (en) | 2002-01-03 |
WO2002001163A3 (en) | 2002-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6581899B2 (en) | Valve for use in microfluidic structures | |
US6431212B1 (en) | Valve for use in microfluidic structures | |
US20020148992A1 (en) | Pneumatic valve interface for use in microfluidic structures | |
US7357898B2 (en) | Microfluidics packages and methods of using same | |
US6644944B2 (en) | Uni-directional flow microfluidic components | |
US6619311B2 (en) | Microfluidic regulating device | |
US8388908B2 (en) | Fluidic devices with diaphragm valves | |
Hosokawa et al. | A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique | |
US6527003B1 (en) | Micro valve actuator | |
US20060245933A1 (en) | Valve and pump for microfluidic systems and methods for fabrication | |
US20120181460A1 (en) | Valves with Hydraulic Actuation System | |
US20020155010A1 (en) | Microfluidic valve with partially restrained element | |
WO2011123801A1 (en) | Fluidic article fabricated in one piece | |
JP6111161B2 (en) | Fluid handling apparatus and fluid handling method | |
US20110049401A1 (en) | Magnetic microvalve using metal ball and method of manufacturing the same | |
KR20170118282A (en) | Multiplexor for control of flow in microfluidics chip and microfluidics chip assembly | |
KR20060024500A (en) | An apparatus for making a fluid flow, and a disposable chip having the same | |
KR20050104348A (en) | Microfluidic devices for fluid manipulation and analysis | |
US20010048088A1 (en) | Microchip-based precision fluid handling system | |
US7335984B2 (en) | Microfluidics chips and methods of using same | |
US20140311336A1 (en) | Microhydraulic System, in particular for use in Planar Microfluidic Laboratories | |
Hua et al. | A compact chemical-resistant microvalve array using Parylene membrane and pneumatic actuation | |
Pérez-Castillejos et al. | Smart Passive Microfluidic Systems Based on Ferrofluids for μTAS Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: PERKINELMER HEALTH SCIENCES, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRONICS, INC.;REEL/FRAME:050702/0305 Effective date: 20180928 |