US20030190278A1 - Controlled deposition of nanotubes - Google Patents

Controlled deposition of nanotubes Download PDF

Info

Publication number
US20030190278A1
US20030190278A1 US10/410,629 US41062903A US2003190278A1 US 20030190278 A1 US20030190278 A1 US 20030190278A1 US 41062903 A US41062903 A US 41062903A US 2003190278 A1 US2003190278 A1 US 2003190278A1
Authority
US
United States
Prior art keywords
nanotubes
pair
contact points
trench
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/410,629
Inventor
Yan Mei Wang
Alex Zettl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US10/410,629 priority Critical patent/US20030190278A1/en
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZETTL, ALEX K., WANG, YAN MEI
Publication of US20030190278A1 publication Critical patent/US20030190278A1/en
Assigned to ENERGY, UNITED STATES DEPARTMENT reassignment ENERGY, UNITED STATES DEPARTMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE
Assigned to ENERGY, UNITED STATES DEPARTMENT OF reassignment ENERGY, UNITED STATES DEPARTMENT OF CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention relates generally to nanotubes, and more particularly to device fabrication techniques involving the controlled placement of nanotubes in desired positions.
  • CNT carbon nanotubes
  • CNT-based devices include room temperature transistors, random access memory devices, p-n junctions and sensitive gas sensors.
  • the device-fabrication technique is impeded by the use of the conventional “deposit and find” method, in which nanotubes are successively deposited and then located one at a time. This laborious method cannot meet the commercialization requirement of CNT-based electronics.
  • An innovative method to assemble single nanotubes at predetermined locations is needed.
  • the invention is a simple method to deposit single suspended carbon nanotubes (CNTs) at predetermined locations on a pre-patterned device.
  • a narrow trench is first formed on the device at the desired location for depositing a CNT.
  • a fluid drying deposition process is then used to mount the CNT at the chosen location.
  • a droplet of a solvent containing the CNTs in suspension is deposited at the desired location, and the solvent is allowed to evaporate. This leaves the CNT bridging the trench at the selected location. The effect is enhanced by applying an electric field.
  • a silicon Microelectromechanical Systems (MEMS) device pre-patterned with pairs of tooth-shaped contacts is used. With a single deposition, 50% of the contacts are connected by single nanotubes. By applying electric fields, the deposition rate is increased to 100%.
  • Semiconducting nanotubes (the building-block of nanotube-based transistors) can be selectively deposited by a current-induced removal of the metallic nanotubes.
  • This simple method to deposit aligned single CNTs at predetermined locations can be implemented with only a Si MEMS device, a pair of tweezers, a pipette, and a power supply.
  • the time scale of the process is minutes.
  • a drop of suspended CNTs is deposited onto the pre-patterned device.
  • the solvent acetone
  • 50% of the contact pairs are connected by individual CNTs.
  • an electric field 100% connection rates are achieved.
  • Semiconducting nanotubes can be selectively deposited by burning off the metallic nanotubes (by applying an electric current).
  • This technique provides a step towards the large-scale integration of CNT-based devices by providing the ability to controllably mount individual CNTs at desired locations.
  • the technique can also be applied to non-carbon nanotubes and other nano-elongated objects.
  • the invention also includes devices formed by connecting nanotubes between contact points on a substrate (e.g. a wafer or chip) using this technique.
  • FIG. 1A shows a Scanning Electron Microscope (SEM) image of a silicon MEMS device for CNT depositions, with an inset showing the teeth pairs in the center of the device.
  • FIG. 1B shows a straight CNT stretching across a pair of contacts.
  • FIG. 2A shows circular trenches in the center of the device.
  • FIGS. 2B, C respectively show a single nanotube and three parallel nanotubes stretching across the trenches.
  • FIGS. 3A, B show depositions using electric fields.
  • FIG. 4 illustrates trapping CNTs using gold electrodes.
  • Multi-walled CNTs are synthesized using the pyrolysis method [C. N. R. Rao, R. Sen, B. C. Satishkumar, and J. Govindaraj, J. Chem. Soc., Chem. Commun. 15, 1525 (1998)]. They are suspended in acetone by sonication for 15 min.
  • a 50 ⁇ m thick Si MEMS device shown in FIG. 1A is made from a silicon-on-insulator (SOI) wafer.
  • SOI silicon-on-insulator
  • the Si layer is etched all the way through using the Reactive Ion Etching (RIE) method and the device is subsequently released from the substrate.
  • the teeth pairs in the center of the device shown in the inset to FIG. 1A are the predetermined locations for CNT deposition.
  • FIG. 1B shows a single carbon nanotube connecting a contact pair.
  • the nanotube is suspended straight across without sagging. The area in the vicinity is clean.
  • the ratio of the number of teeth pairs connected by one or a few nanotubes to the total number of pairs on the device is defined as the successful deposition rate.
  • the successful deposition rate is 20% to 50%, where the rate variation originates from the shape difference of the contact pairs.
  • FIG. 2A shows a concentric-rings-geometry.
  • nanotubes align perpendicularly across the trenches.
  • FIGS. 2B, C respectively show a single and three parallel CNTs stretching across the trenches. Some short nanotubes land nearby the trenches in FIG. 2C since they are too short for the gap.
  • the mechanism attracting the suspended CNTs towards the teeth pairs is believed to be the strong capillary force generated by the narrow center trench.
  • the width of the trench ranges from 2 ⁇ m at regions in between a teeth pair to more than 10 ⁇ m between pairs. Micron-sized gaps are narrow enough for capillary forces to become important.
  • capillary pressure is inversely proportional to the size of an opening, the strongest force is located between a pair of teeth. The magnitude of the force is just strong enough to grab one CNT at a time with the inflowing acetone.
  • the nanotube makes good contacts with Si when it lands and stays intact for the rest of the drying process.
  • the wider regions of the trench create less capillary pressure and therefore do not attract nanotubes. As seen in FIGS. 1B and 2B, C, no nanotubes land on the inner walls of the trenches.
  • the nanotubes shown above are from a first deposition. When additional deposition is performed, more teeth pairs will be connected; however, the deposition rate never reaches 100%. The connected nanotubes from the first deposition disturb the local fluid pattern and therefore affect the consecutive depositions.
  • the design of the device is important for successful depositions.
  • the rings in the center of the device in FIG. 1A match the circular symmetry of the whole device.
  • the rings are separated to speed the acetone drying process.
  • the trench cuts all the way across the device's center region, acting as an open channel for acetone to flow in and out. For trenches that are not etched all the way across, the deposition rate goes down to 10%.
  • the chip is designed so that the electric field and the electric field gradient work together to trap and align all nanotubes in a droplet to form single-nanotube-based devices.
  • the method of using a non-uniform electric field to move a polarized dielectric particle in a dielectric medium is called dielectrophoresis.
  • Nanotubes semiconductor and metallic
  • a Si device for depositions using dielectrophoresis is shown in the inset to FIG. 3A.
  • the structure consists of two Si islands separated by an array of teeth pairs. DC voltages are applied across the center trench. In a cylindrical coordinate system with the z-axis alone the trench direction, the electric field is inversely proportional to the azimuthal distance r as E ⁇ 1/r.
  • the nanotubes can be treated as point dipoles that are always aligned with the electric field.
  • the force F ⁇ ?(E ⁇ E) on a nanotube anywhere on the chip points towards the center trench. When the nanotube arrives at the trench, it strongly binds to the teeth pair contacts.
  • FIG. 3A shows the aligned nanotubes at a voltage of 6V. All teeth pairs are connected by one or a few CNTs. Excess nanotubes land on the anode side of the trench. A few nanotubes (less then 5%) are observed outside the center region. Using a higher voltage and a more dilute nanotube solution enables the deposit of single nanotubes only.
  • FIG. 3B single nanotubes are aligned at 8V with no nanotubes observed anywhere else on the chip.
  • the total resistance of the nanotube-gold device which contains 200 teeth pair contacts, is 57 K ⁇ (measured). Assuming that each contact pair is connected by 20 nanotubes, and half of them are metallic, then the metallic nanotubes should determine the resistance of the device.
  • the invention is a method for controllably depositing CNTs.
  • CNTs are produced by any available method and are suspended in a solvent.
  • a trench is formed between two contact points on a device to which a CNT is to be attached.
  • a droplet with suspended CNTs is applied between the contact points.
  • the solvent is preferably acetone or another solvent that evaporates easily.
  • the solvent in the droplet evaporates, leaving a CNT attached between the contact points.
  • the trenches have micron-sized widths so that capillary forces act on the droplets. Greater attachment efficiency is obtained by creating an aligning electric field across the trench by applying a low voltage, typically about 5-10V, between the contact points.
  • the invention uses unique substrate geometries to trap and align single CNTs with nearly complete control. Aligned semiconducting nanotubes can be selectively deposited by burning off the metallic nanotubes. This technique provides an important step towards realistic applications of CNT-based-devices.
  • the invention includes devices fabricated by this method, i.e. devices formed of a device substrate having one or more pairs of contact points (and any other circuitry or other device features) and a nanotube connected between each contact pair by this technique.
  • the invention also applies to nanotubes of other compositions.
  • the invention can also apply to any other nano-elongated objects suspendable in a solvent, including nanowires and biomolecules (DNA, protein, etc.)
  • the various nanomaterials may use different solvents that wet the substrate and react with the electric field differently.

Abstract

By a simple method single suspended carbon nanotubes (CNTs) are deposited at predetermined locations on a pre-patterned device. A narrow trench is first formed on the device at the desired location for depositing a CNT. A fluid drying deposition process is then used to mount the CNT at the chosen location. A droplet of a solvent containing the CNTs in suspension is deposited at the desired location, and the solvent is allowed to evaporate. This leaves the CNT bridging the trench at the selected location. The effect is enhanced by applying an electric field. The method is also applicable to other nano-elongated objects such as nanowires and biomolecules.

Description

    RELATED APPLICATIONS
  • This application claims priority of Provisional Application Ser. No. 60/370,947 filed Apr. 8, 2002, which is herein incorporated by reference.[0001]
  • GOVERNMENT RIGHTS
  • [0002] The United States Government has rights in this invention pursuant to Contract No. DE-AC03-76SF00098 between the United States Department of Energy and the University of California.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • The invention relates generally to nanotubes, and more particularly to device fabrication techniques involving the controlled placement of nanotubes in desired positions. [0004]
  • 2. Description of the Prior Art [0005]
  • Since the discovery of carbon nanotubes (CNT) in 1991, CNT has been a prominent building-block material for the next generation of nano-scale electronics. CNT-based devices include room temperature transistors, random access memory devices, p-n junctions and sensitive gas sensors. However, the device-fabrication technique is impeded by the use of the conventional “deposit and find” method, in which nanotubes are successively deposited and then located one at a time. This laborious method cannot meet the commercialization requirement of CNT-based electronics. An innovative method to assemble single nanotubes at predetermined locations is needed. [0006]
  • Prior efforts on controlling the CNT depositions mainly take either of two approaches—(1) synthesizing CNTs from patterned catalysts directly [e.g. Jing Kong, Hyongsok T. Soh, Alan M. Cassell, Calvin F. Quate and Hongjie Dai, Nature, 395, 878 (1998); Yuegang Zhang et al., Appl. Phys. Lett. 79, 3115 (2001)], or (2) depositing suspended CNTs using pretreated substrates [e.g. K. Yamamoto, S. Akita, and Y. Nakayama, Jpn. J. Appl. Phys. Part 2, 35, L917 (1996); K. Yamamoto, S. Akita, and Y. Nakayama, J. Phys. D, 31, L34 (1998); X. Q. Chen, T. Saito, H. Yamada and K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001); Larry A. Nagahara, Islamshah Amlani, Justin Lewenstein, and Raymond K. Tsui, Appl. Phys. Lett. 80, 3826 (2002); Jie Liu, Michael J. Casavant, Michael Cox, D. A. Walters, P. Boul, Wei Lu, A. J. Rimberg, K. A. Smith, Daniel T. Colbert, and Richard E. Smalley, Chem. Phys. Lett. 303, 125 (1999); J. C. Lewenstein, T. P. Burgin, Aline Ribayrol, L. A. Nagahara, and R. K. Tsui, Nano. Lett. 2, 443 (2002)]. Neither approach has complete control of the locations, the orientations, and the quantity of the deposited nanotubes. [0007]
  • SUMMARY OF THE INVENTION
  • Accordingly it is an object of the invention to provide a method for controllably depositing nanotubes. [0008]
  • It is also an object of the invention to provide a method for nanotube device fabrication in which nanotubes are placed in desired locations. [0009]
  • The invention is a simple method to deposit single suspended carbon nanotubes (CNTs) at predetermined locations on a pre-patterned device. A narrow trench is first formed on the device at the desired location for depositing a CNT. A fluid drying deposition process is then used to mount the CNT at the chosen location. A droplet of a solvent containing the CNTs in suspension is deposited at the desired location, and the solvent is allowed to evaporate. This leaves the CNT bridging the trench at the selected location. The effect is enhanced by applying an electric field. [0010]
  • In an illustrative embodiment, a silicon Microelectromechanical Systems (MEMS) device pre-patterned with pairs of tooth-shaped contacts is used. With a single deposition, 50% of the contacts are connected by single nanotubes. By applying electric fields, the deposition rate is increased to 100%. Semiconducting nanotubes (the building-block of nanotube-based transistors) can be selectively deposited by a current-induced removal of the metallic nanotubes. [0011]
  • This simple method to deposit aligned single CNTs at predetermined locations can be implemented with only a Si MEMS device, a pair of tweezers, a pipette, and a power supply. The time scale of the process is minutes. A drop of suspended CNTs is deposited onto the pre-patterned device. When the solvent (acetone) dries, 50% of the contact pairs are connected by individual CNTs. With the application of an electric field, 100% connection rates are achieved. Semiconducting nanotubes can be selectively deposited by burning off the metallic nanotubes (by applying an electric current). [0012]
  • This technique provides a step towards the large-scale integration of CNT-based devices by providing the ability to controllably mount individual CNTs at desired locations. The technique can also be applied to non-carbon nanotubes and other nano-elongated objects. The invention also includes devices formed by connecting nanotubes between contact points on a substrate (e.g. a wafer or chip) using this technique.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows a Scanning Electron Microscope (SEM) image of a silicon MEMS device for CNT depositions, with an inset showing the teeth pairs in the center of the device. FIG. 1B shows a straight CNT stretching across a pair of contacts. [0014]
  • FIG. 2A shows circular trenches in the center of the device. FIGS. 2B, C respectively show a single nanotube and three parallel nanotubes stretching across the trenches. [0015]
  • FIGS. 3A, B show depositions using electric fields. [0016]
  • FIG. 4 illustrates trapping CNTs using gold electrodes.[0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Multi-walled CNTs are synthesized using the pyrolysis method [C. N. R. Rao, R. Sen, B. C. Satishkumar, and J. Govindaraj, J. Chem. Soc., Chem. Commun. 15, 1525 (1998)]. They are suspended in acetone by sonication for 15 min. A 50 μm thick Si MEMS device shown in FIG. 1A is made from a silicon-on-insulator (SOI) wafer. The Si layer is etched all the way through using the Reactive Ion Etching (RIE) method and the device is subsequently released from the substrate. The teeth pairs in the center of the device shown in the inset to FIG. 1A are the predetermined locations for CNT deposition. [0018]
  • The device is held in the air by a pair of tweezers and a nanotube droplet is deposited using a glass pipette. The droplet bulges out on both sides of the device. Within one or two minutes, the droplet dries and both surfaces of the teeth pairs are connected by individual CNTs. FIG. 1B shows a single carbon nanotube connecting a contact pair. The nanotube is suspended straight across without sagging. The area in the vicinity is clean. The ratio of the number of teeth pairs connected by one or a few nanotubes to the total number of pairs on the device is defined as the successful deposition rate. For this simple “fluid drying” deposition method, the successful deposition rate is 20% to 50%, where the rate variation originates from the shape difference of the contact pairs. Experiments with other patterns such as triangular pairs and pointed pairs found that the mismatched teeth pair of FIG. 1A inset was the optimal geometry with a successful deposition rate of 50%. [0019]
  • Alternative geometries can also be effective at trapping and aligning nanotubes. FIG. 2A shows a concentric-rings-geometry. For the same deposition method as above, nanotubes align perpendicularly across the trenches. FIGS. 2B, C respectively show a single and three parallel CNTs stretching across the trenches. Some short nanotubes land nearby the trenches in FIG. 2C since they are too short for the gap. [0020]
  • The mechanism attracting the suspended CNTs towards the teeth pairs is believed to be the strong capillary force generated by the narrow center trench. The width of the trench ranges from 2 μm at regions in between a teeth pair to more than 10 μm between pairs. Micron-sized gaps are narrow enough for capillary forces to become important. When a droplet is deposited, the trench sucks in the acetone from all directions. Since capillary pressure is inversely proportional to the size of an opening, the strongest force is located between a pair of teeth. The magnitude of the force is just strong enough to grab one CNT at a time with the inflowing acetone. The nanotube makes good contacts with Si when it lands and stays intact for the rest of the drying process. The wider regions of the trench create less capillary pressure and therefore do not attract nanotubes. As seen in FIGS. 1B and 2B, C, no nanotubes land on the inner walls of the trenches. [0021]
  • To confirm this capillary force model, the acetone drying process was observed for the device in FIG. 1A using a microscope. The two side open areas of the device dry first and acetone retreats to the center and the outer ring of the device. In the center, acetone dries away from the center trench, taking the unconnected nanotubes with it, and forms droplets in the upper and lower parts of the device. Nanotubes were later observed only at the upper and lower centers of the device and few elsewhere. During this time, the center trench has always been filled with acetone, and now it starts to dry. The capillary force must have been drawing any nearby acetone into the trench until the acetone runs out. [0022]
  • The nanotubes shown above are from a first deposition. When additional deposition is performed, more teeth pairs will be connected; however, the deposition rate never reaches 100%. The connected nanotubes from the first deposition disturb the local fluid pattern and therefore affect the consecutive depositions. [0023]
  • The design of the device is important for successful depositions. For example, to help better align the nanotubes, the rings in the center of the device in FIG. 1A match the circular symmetry of the whole device. The rings are separated to speed the acetone drying process. The trench cuts all the way across the device's center region, acting as an open channel for acetone to flow in and out. For trenches that are not etched all the way across, the deposition rate goes down to 10%. [0024]
  • Capillary forces trap only a fraction of the nanotubes in a droplet to the teeth pairs. To trap all nanotubes, electric fields are used. Although electric fields have been used to align suspended CNTs [Yuegang Zhang et al., Appl. Phys. Lett. 79, 3115 (2001); K. Yamamoto, S. Akita, and Y. Nakayama, Jpn. J. Appl. Phys. Part 2, 35, L917 (1996); K. Yamamoto, S. Akita, and Y. Nakayama, J. Phys. D, 31, L34 (1998); X. Q. Chen, T. Saito, H. Yamada and K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001); Larry A. Nagahara, Islamshah Amlani, Justin Lewenstein, and Raymond K. Tsui, Appl. Phys. Lett. 80, 3826 (2002)], individual nanotubes were not isolated out from the aligned nanotube bundles to form functional devices. [0025]
  • In the present invention the chip is designed so that the electric field and the electric field gradient work together to trap and align all nanotubes in a droplet to form single-nanotube-based devices. The method of using a non-uniform electric field to move a polarized dielectric particle in a dielectric medium is called dielectrophoresis. Nanotubes (semiconducting and metallic) can be considered as point dipoles when polarize in electric fields [B. H. Fishbine, Full. Science & Tech. 4, 87 (1996)]. The electric field's force on a dipole moment P is F=∇(P·E). Since P∝E for dielectric particles with a linear response, F∝∇(E·E). [0026]
  • A Si device for depositions using dielectrophoresis is shown in the inset to FIG. 3A. The structure consists of two Si islands separated by an array of teeth pairs. DC voltages are applied across the center trench. In a cylindrical coordinate system with the z-axis alone the trench direction, the electric field is inversely proportional to the azimuthal distance r as E∝1/r. The nanotubes can be treated as point dipoles that are always aligned with the electric field. The force F∝?(E·E) on a nanotube anywhere on the chip points towards the center trench. When the nanotube arrives at the trench, it strongly binds to the teeth pair contacts. [0027]
  • The nanotubes flying towards the center can be observed under a microscope. FIG. 3A shows the aligned nanotubes at a voltage of 6V. All teeth pairs are connected by one or a few CNTs. Excess nanotubes land on the anode side of the trench. A few nanotubes (less then 5%) are observed outside the center region. Using a higher voltage and a more dilute nanotube solution enables the deposit of single nanotubes only. In FIG. 3B, single nanotubes are aligned at 8V with no nanotubes observed anywhere else on the chip. [0028]
  • Without capillary force, would electric fields alone be effective in trapping nanotubes? To answer this question, “gold” teeth patterns on oxides (inset to FIG. 4) were studied. At 10V, all nanotubes in the droplet are trapped within the gap along the electric field line directions. No nanotubes are observed outside. This technique is called nanotube trapping. Since CNTs can be metallic or semiconducting, this technique traps both types of nanotube. However, only semiconducting CNTs are expected to be connected for the following reason. [0029]
  • The total resistance of the nanotube-gold device, which contains 200 teeth pair contacts, is 57 KΩ (measured). Assuming that each contact pair is connected by 20 nanotubes, and half of them are metallic, then the metallic nanotubes should determine the resistance of the device. The resistance of the device should be R=R[0030] m/(10×200)=50 Ω, where Rm≈100 KΩ is the two-probe resistance of a metallic CNT [M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, Appl. Phys. Lett. 77, 4037 (2000)]. Thus R is 1000 times lower then the measured resistance of 57 KΩ. Could the device be connected only by semiconducting nanotubes? At 10V, the current through each metallic nanotube should be I=(10V/50 Ω)/2000=100 μA. This current is high enough to burn up metallic nanotubes within one second [P. G. Collins, M. S. Arnold and P. Avouris, Science, 292, 706 (2001)]. Therefore, the logical explanation is that only semiconducting nanotubes are left connected.
  • In summary the invention is a method for controllably depositing CNTs. CNTs are produced by any available method and are suspended in a solvent. A trench is formed between two contact points on a device to which a CNT is to be attached. A droplet with suspended CNTs is applied between the contact points. The solvent is preferably acetone or another solvent that evaporates easily. The solvent in the droplet evaporates, leaving a CNT attached between the contact points. The trenches have micron-sized widths so that capillary forces act on the droplets. Greater attachment efficiency is obtained by creating an aligning electric field across the trench by applying a low voltage, typically about 5-10V, between the contact points. [0031]
  • In conclusion, the invention uses unique substrate geometries to trap and align single CNTs with nearly complete control. Aligned semiconducting nanotubes can be selectively deposited by burning off the metallic nanotubes. This technique provides an important step towards realistic applications of CNT-based-devices. The invention includes devices fabricated by this method, i.e. devices formed of a device substrate having one or more pairs of contact points (and any other circuitry or other device features) and a nanotube connected between each contact pair by this technique. [0032]
  • Although described with respect to carbon nanotubes, the invention also applies to nanotubes of other compositions. The invention can also apply to any other nano-elongated objects suspendable in a solvent, including nanowires and biomolecules (DNA, protein, etc.) The various nanomaterials may use different solvents that wet the substrate and react with the electric field differently. [0033]
  • Changes and modifications in the specifically described embodiments can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims. [0034]

Claims (18)

1. A method for controllably depositing a nanotube between a pair of contact points, comprising:
forming a trench between the pair of contact points;
forming a suspension of nanotubes in an evaporatable solvent;
applying a droplet of the solvent with suspended nanotubes between the pair of contact points;
allowing the solvent to evaporate, leaving a nanotube connecting the pair of contact points.
2. The method of claim 1 wherein the trench has a micron-sized width.
3. The method of claim 2 further comprising applying an aligning electric field between the pair of contact points.
4. The method of claim 3 wherein the aligning electric field is applied by applying a voltage of about 5-10V between the pair of contact points.
5. The method of claim 1 further comprising applying an aligning electric field between the pair of contact points.
6. The method of claim 1 wherein the nanotubes are carbon nanotubes.
7. The method of claim 1 wherein the solvent is acetone.
8. The method of claim 1 wherein the trench has a width such that a substantial capillary force acts on the droplet.
9. The method of claim 1 further comprising removing metallic nanotubes and leaving semiconducting nanotubes.
10. The method of claim 9 wherein the metallic nanotubes are removed by passing an electric current therethrough to burn off the metallic nanotubes.
11. A device comprising:
a device substrate having one or more pairs of contact points thereon; and
a nanotube connected between each contact pair by the method of claim 1.
12. A device comprising:
a device substrate having one or more pairs of contact points thereon; and
a nanotube connected between each contact pair by the method of claim 3.
13. A device comprising:
a device substrate having one or more pairs of contact points thereon; and
a nanotube connected between each contact pair by the method of claim 9.
14. A method for controllably depositing a nano-elongated object between a pair of contact points, comprising:
forming a trench between the pair of contact points;
forming a suspension of nano-elongated objects in an evaporatable solvent;
applying a droplet of the solvent with suspended nano-elongated objects between the pair of contact points;
allowing the solvent to evaporate, leaving a nano-elongated object connecting the pair of contact points.
15. The method of claim 14 wherein the trench has a micron-sized width.
16. The method of claim 15 further comprising applying an aligning electric field between the pair of contact points.
17. The method of claim 14 further comprising applying an aligning electric field between the pair of contact points.
18. The method of claim 14 wherein the nano-elongated objects are selected from nanotubes, nanowires, and biomolecules.
US10/410,629 2002-04-08 2003-04-08 Controlled deposition of nanotubes Abandoned US20030190278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/410,629 US20030190278A1 (en) 2002-04-08 2003-04-08 Controlled deposition of nanotubes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37094702P 2002-04-08 2002-04-08
US10/410,629 US20030190278A1 (en) 2002-04-08 2003-04-08 Controlled deposition of nanotubes

Publications (1)

Publication Number Publication Date
US20030190278A1 true US20030190278A1 (en) 2003-10-09

Family

ID=28678374

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/410,629 Abandoned US20030190278A1 (en) 2002-04-08 2003-04-08 Controlled deposition of nanotubes

Country Status (1)

Country Link
US (1) US20030190278A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157028A1 (en) * 2000-02-22 2003-08-21 David Lewis Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
WO2004103568A1 (en) * 2003-05-22 2004-12-02 Queen Mary & Westfield College Particle separation apparatus and method
WO2004055887A3 (en) * 2002-12-18 2005-05-06 Koninkl Philips Electronics Nv Manipulation of micrometer-sized electronic objects with liquid droplets
US20060057767A1 (en) * 2004-03-22 2006-03-16 Regan Brian C Nanoscale mass conveyors
CN1305106C (en) * 2003-10-31 2007-03-14 清华大学 Filament made from Nano carbon tupe and fabricating method
US20070178658A1 (en) * 2004-06-21 2007-08-02 Kelley Tommie W Patterning and aligning semiconducting nanoparticles
US20070237987A1 (en) * 2006-04-06 2007-10-11 Winarski Tyson Y Magnetic storage medium formed of carbon nanotube arrays
US20080136861A1 (en) * 2006-12-11 2008-06-12 3M Innovative Properties Company Method and apparatus for printing conductive inks
US20080197339A1 (en) * 2004-10-04 2008-08-21 Brian Christopher Regan Nanocrystal powered nanomotor
US20080284463A1 (en) * 2007-05-17 2008-11-20 Texas Instruments Incorporated programmable circuit having a carbon nanotube
US20090280242A1 (en) * 2006-04-06 2009-11-12 Tyson York Winarski Orientation of Carbon Nanotubes Containing Magnetic Nanoparticles in a Magnetic Storage Medium
US20100014187A1 (en) * 2006-04-06 2010-01-21 Tyson York Winarski Read/write apparatus and method for a magentic storage medium comprised of magnetic nanoparticles contained within carbon nanotubes
US20100239488A1 (en) * 2005-08-25 2010-09-23 Zettl Alex K Controlled Placement and Orientation of Nanostructures
US8075863B2 (en) 2004-05-26 2011-12-13 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US11912900B2 (en) * 2020-04-06 2024-02-27 The Regents Of The University Of California Step-wise fabrication of conductive carbon nanotube bridges via dielectrophoresis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712864B2 (en) * 2001-03-02 2004-03-30 Fuji Xerox Co., Ltd. Carbon nanotube structures and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712864B2 (en) * 2001-03-02 2004-03-30 Fuji Xerox Co., Ltd. Carbon nanotube structures and method for manufacturing the same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157028A1 (en) * 2000-02-22 2003-08-21 David Lewis Formulations containing an anticholinergic drug for the treatment of chronic obstructive pulmonary disease
WO2004055887A3 (en) * 2002-12-18 2005-05-06 Koninkl Philips Electronics Nv Manipulation of micrometer-sized electronic objects with liquid droplets
WO2004103568A1 (en) * 2003-05-22 2004-12-02 Queen Mary & Westfield College Particle separation apparatus and method
CN1305106C (en) * 2003-10-31 2007-03-14 清华大学 Filament made from Nano carbon tupe and fabricating method
US20060057767A1 (en) * 2004-03-22 2006-03-16 Regan Brian C Nanoscale mass conveyors
US7341651B2 (en) 2004-03-22 2008-03-11 The Regents Of The University Of California Nanoscale mass conveyors
US8075863B2 (en) 2004-05-26 2011-12-13 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US20070178658A1 (en) * 2004-06-21 2007-08-02 Kelley Tommie W Patterning and aligning semiconducting nanoparticles
US20080197339A1 (en) * 2004-10-04 2008-08-21 Brian Christopher Regan Nanocrystal powered nanomotor
US7863798B2 (en) * 2004-10-04 2011-01-04 The Regents Of The University Of California Nanocrystal powered nanomotor
US20100239488A1 (en) * 2005-08-25 2010-09-23 Zettl Alex K Controlled Placement and Orientation of Nanostructures
US8691180B2 (en) 2005-08-25 2014-04-08 The Regents Of The University Of California Controlled placement and orientation of nanostructures
US8647757B2 (en) 2006-04-06 2014-02-11 Sigma Pro Ltd. Llc Assembly formed of nanotube arrays containing magnetic nanoparticles
US8437104B2 (en) 2006-04-06 2013-05-07 Sigma Pro Ltd. Llc Read/write apparatus and method for a magnetic storage medium comprised of magnetic nanoparticles contained within nanotubes
US7687160B2 (en) * 2006-04-06 2010-03-30 Winarski Tyson Y Magnetic storage medium formed of carbon nanotube arrays
US10224068B2 (en) 2006-04-06 2019-03-05 Gula Consulting Limited Liability Company Magnetic storage media including nanotubes containing magnetic nanoparticles
US20100285337A1 (en) * 2006-04-06 2010-11-11 Tyson York Winarski Magnetic storage medium formed of carbon nanotube arrays
US20100291412A1 (en) * 2006-04-06 2010-11-18 Tyson York Winarski Magnetic storage medium formed of carbon nanotube arrays
US20090280242A1 (en) * 2006-04-06 2009-11-12 Tyson York Winarski Orientation of Carbon Nanotubes Containing Magnetic Nanoparticles in a Magnetic Storage Medium
US9633676B2 (en) 2006-04-06 2017-04-25 Gula Consulting Limited Liability Company Magnetic storage medium comprised of magnetic nanoparticles contained within nanotubes
US8241767B2 (en) 2006-04-06 2012-08-14 Sigma Pro Ltd. Llc Magnetic disk formed of nanotube arrays containing magnetic nanoparticles
US20100014187A1 (en) * 2006-04-06 2010-01-21 Tyson York Winarski Read/write apparatus and method for a magentic storage medium comprised of magnetic nanoparticles contained within carbon nanotubes
US9251822B2 (en) 2006-04-06 2016-02-02 Gula Consulting Limited Liability Company Assembly formed of nanotube arrays containing magnetic nanoparticles
US8507032B2 (en) 2006-04-06 2013-08-13 Sigma Pro Ltd. Llc Orientation of nanotubes containing magnetic nanoparticles in a magnetic storage medium
US9036289B2 (en) 2006-04-06 2015-05-19 Sigma Pro Ltd. Llc Magnetic storage medium comprised of magnetic nanoparticles contained within nanotubes
US20070237987A1 (en) * 2006-04-06 2007-10-11 Winarski Tyson Y Magnetic storage medium formed of carbon nanotube arrays
US8817422B2 (en) 2006-04-06 2014-08-26 Sigma Pro Ltd. Llc Magnetic storage medium comprised of magnetic nanoparticles contained within nanotubes
US20080136861A1 (en) * 2006-12-11 2008-06-12 3M Innovative Properties Company Method and apparatus for printing conductive inks
US8455305B2 (en) 2007-05-17 2013-06-04 Texas Instruments Incorporated Programmable circuit with carbon nanotube
US20080284463A1 (en) * 2007-05-17 2008-11-20 Texas Instruments Incorporated programmable circuit having a carbon nanotube
US20090315081A1 (en) * 2007-05-17 2009-12-24 Texas Instruments Incorporated Programmable circuit with carbon nanotube
US11912900B2 (en) * 2020-04-06 2024-02-27 The Regents Of The University Of California Step-wise fabrication of conductive carbon nanotube bridges via dielectrophoresis

Similar Documents

Publication Publication Date Title
US20030190278A1 (en) Controlled deposition of nanotubes
Nagahara et al. Directed placement of suspended carbon nanotubes for nanometer-scale assembly
US8257566B2 (en) Nanotube device and method of fabrication
US7416993B2 (en) Patterned nanowire articles on a substrate and methods of making the same
US7736979B2 (en) Method of forming nanotube vertical field effect transistor
Karmakar et al. Nano-electronics and spintronics with nanoparticles
WO2001039292A2 (en) Fabrication of nanometer size gaps on an electrode
Li et al. Precise alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures
JP2005523386A (en) Method for selectively aligning nanometer scale components using an AC electric field
KR101039630B1 (en) Method to assemble nano-structure on a substrate and nano-molecule device comprising nano-structure formed thereby
JP2002361600A (en) Method of assembling array of particulates
Naitoh et al. A reliable method for fabricating sub-10 nm gap junctions without using electron beam lithography
Yuzvinsky et al. Controlled placement of highly aligned carbon nanotubes for the manufacture of arrays of nanoscale torsional actuators
US7381316B1 (en) Methods and related systems for carbon nanotube deposition
US8262898B2 (en) Nanotube position controlling method, nanotube position controlling flow path pattern and electronic element using nanotube
US7294560B1 (en) Method of assembling one-dimensional nanostructures
Rheem et al. Site-specific magnetic assembly of nanowires for sensor arrays fabrication
Talin et al. Assembly and electrical characterization of DNA-wrapped carbon nanotube devices
KR101029995B1 (en) High Integrating Method of 1 Dimensional or 2 Dimensional Conductive Nanowires Using Charged Materials, and High Integrated Conductive Nanowires by the Same
Valentin et al. Self-assembly fabrication of high performance carbon nanotubes based FETs
Goyal et al. Directed self-assembly of individual vertically aligned carbon nanotubes
US20130228364A1 (en) Method And System To Position Carbon Nanotubes Using AC Dielectrophoresis
Yang et al. Alignment of nanoscale single-walled carbon nanotubes strands
Ranjan et al. Dielectrophoretically assembled carbon nanotube‐metal hybrid structures with reduced contact resistance
Kjelstrup-Hansen et al. Versatile method for manipulating and contacting nanowires

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, YAN MEI;ZETTL, ALEX K.;REEL/FRAME:013963/0901;SIGNING DATES FROM 20030401 TO 20030407

AS Assignment

Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE;REEL/FRAME:019109/0575

Effective date: 20050920

Owner name: ENERGY, UNITED STATES DEPARTMENT, DISTRICT OF COLU

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE;REEL/FRAME:019109/0607

Effective date: 20050920

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION