US20030170216A1 - SYN3 compositions and methods - Google Patents
SYN3 compositions and methods Download PDFInfo
- Publication number
- US20030170216A1 US20030170216A1 US10/329,043 US32904302A US2003170216A1 US 20030170216 A1 US20030170216 A1 US 20030170216A1 US 32904302 A US32904302 A US 32904302A US 2003170216 A1 US2003170216 A1 US 2003170216A1
- Authority
- US
- United States
- Prior art keywords
- syn3
- pharmaceutically acceptable
- gene
- pharmaceutical composition
- delivery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 58
- 101000821263 Homo sapiens Synapsin-3 Proteins 0.000 title claims description 86
- 101000859568 Methanobrevibacter smithii (strain ATCC 35061 / DSM 861 / OCM 144 / PS) Carbamoyl-phosphate synthase Proteins 0.000 title claims description 86
- 102100021920 Synapsin-3 Human genes 0.000 title claims description 86
- 238000000034 method Methods 0.000 title claims description 24
- 239000008194 pharmaceutical composition Substances 0.000 claims description 42
- 239000013598 vector Substances 0.000 claims description 39
- 239000002904 solvent Substances 0.000 claims description 24
- 239000013604 expression vector Substances 0.000 claims description 21
- 239000003937 drug carrier Substances 0.000 claims description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 13
- 239000004067 bulking agent Substances 0.000 claims description 11
- 239000008365 aqueous carrier Substances 0.000 claims description 9
- 201000010099 disease Diseases 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 239000006172 buffering agent Substances 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 2
- 238000009472 formulation Methods 0.000 abstract description 27
- 206010028980 Neoplasm Diseases 0.000 abstract description 13
- 201000011510 cancer Diseases 0.000 abstract description 6
- 108090000623 proteins and genes Proteins 0.000 description 72
- 239000003795 chemical substances by application Substances 0.000 description 39
- 210000004027 cell Anatomy 0.000 description 32
- 239000000243 solution Substances 0.000 description 32
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 29
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 230000001225 therapeutic effect Effects 0.000 description 28
- 239000008215 water for injection Substances 0.000 description 25
- 239000004615 ingredient Substances 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 18
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 17
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 17
- 241000701161 unidentified adenovirus Species 0.000 description 17
- 239000000872 buffer Substances 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 15
- 229920000053 polysorbate 80 Polymers 0.000 description 15
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 14
- 229940068968 polysorbate 80 Drugs 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- 239000002773 nucleotide Substances 0.000 description 13
- 125000003729 nucleotide group Chemical group 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 12
- 210000000056 organ Anatomy 0.000 description 12
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 11
- 108700019146 Transgenes Proteins 0.000 description 11
- 229960002303 citric acid monohydrate Drugs 0.000 description 11
- 239000003599 detergent Substances 0.000 description 11
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 11
- 229960000999 sodium citrate dihydrate Drugs 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- 210000003932 urinary bladder Anatomy 0.000 description 10
- -1 1-309 Proteins 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000013603 viral vector Substances 0.000 description 9
- 229920001213 Polysorbate 20 Polymers 0.000 description 8
- 238000013019 agitation Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 8
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 8
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 235000010323 ascorbic acid Nutrition 0.000 description 7
- 229940068977 polysorbate 20 Drugs 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- ZWEVPYNPHSPIFU-AUGHYPCGSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxy-n-[3-[3-[[(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoyl]amino]propyl-[(4r)-4-[(3r,5s,7r,8r,9s,10s,12s,13r,14s,17r)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenan Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)N(CCCNC(=O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CCCNC(=O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C)[C@@]2(C)[C@@H](O)C1 ZWEVPYNPHSPIFU-AUGHYPCGSA-N 0.000 description 6
- 206010005003 Bladder cancer Diseases 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 201000000582 Retinoblastoma Diseases 0.000 description 6
- 239000011668 ascorbic acid Substances 0.000 description 6
- 229960005070 ascorbic acid Drugs 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000003139 buffering effect Effects 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 6
- 201000005112 urinary bladder cancer Diseases 0.000 description 6
- 238000005303 weighing Methods 0.000 description 6
- 229920000858 Cyclodextrin Polymers 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 5
- 229920002048 Pluronic® L 92 Polymers 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 210000004955 epithelial membrane Anatomy 0.000 description 5
- 210000000981 epithelium Anatomy 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000010361 transduction Methods 0.000 description 5
- 230000026683 transduction Effects 0.000 description 5
- ZWEVPYNPHSPIFU-UHFFFAOYSA-N 2,3,4,5,6-pentahydroxy-n-[3-[3-(2,3,4,5,6-pentahydroxyhexanoylamino)propyl-[4-(3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl)pentanoyl]amino]propyl]hexanamide Chemical compound OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)N(CCCNC(=O)C(O)C(O)C(O)C(O)CO)CCCNC(=O)C(O)C(O)C(O)C(O)CO)C)C1(C)C(O)C2 ZWEVPYNPHSPIFU-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-UHFFFAOYSA-N 2-(1,2-dihydroxyethyl)-3,4-dihydroxy-2h-furan-5-one Chemical compound OCC(O)C1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 108010012236 Chemokines Proteins 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- 108700025701 Retinoblastoma Genes Proteins 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 229940088679 drug related substance Drugs 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 206010061289 metastatic neoplasm Diseases 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 108700025694 p53 Genes Proteins 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 210000002345 respiratory system Anatomy 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102100036842 C-C motif chemokine 19 Human genes 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 3
- 108010080611 Cytosine Deaminase Proteins 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 101000978381 Homo sapiens C-C motif chemokine 14 Proteins 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 102000004890 Interleukin-8 Human genes 0.000 description 3
- 108090001007 Interleukin-8 Proteins 0.000 description 3
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 230000001772 anti-angiogenic effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 239000000824 cytostatic agent Substances 0.000 description 3
- 230000001085 cytostatic effect Effects 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 230000001613 neoplastic effect Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 238000012430 stability testing Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- UOQHWNPVNXSDDO-UHFFFAOYSA-N 3-bromoimidazo[1,2-a]pyridine-6-carbonitrile Chemical compound C1=CC(C#N)=CN2C(Br)=CN=C21 UOQHWNPVNXSDDO-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 208000003170 Bronchiolo-Alveolar Adenocarcinoma Diseases 0.000 description 2
- 102100023702 C-C motif chemokine 13 Human genes 0.000 description 2
- 101710112613 C-C motif chemokine 13 Proteins 0.000 description 2
- 102100023703 C-C motif chemokine 15 Human genes 0.000 description 2
- 102100023698 C-C motif chemokine 17 Human genes 0.000 description 2
- 102100023701 C-C motif chemokine 18 Human genes 0.000 description 2
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 2
- 102100031092 C-C motif chemokine 3 Human genes 0.000 description 2
- 101710155856 C-C motif chemokine 3 Proteins 0.000 description 2
- 102100021984 C-C motif chemokine 4-like Human genes 0.000 description 2
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 2
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 2
- 102000012406 Carcinoembryonic Antigen Human genes 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 108010082169 Chemokine CCL17 Proteins 0.000 description 2
- 108010082155 Chemokine CCL18 Proteins 0.000 description 2
- 108010082161 Chemokine CCL19 Proteins 0.000 description 2
- 108010083700 Chemokine CCL20 Proteins 0.000 description 2
- 108010055165 Chemokine CCL4 Proteins 0.000 description 2
- 108010055124 Chemokine CCL7 Proteins 0.000 description 2
- 108010055204 Chemokine CCL8 Proteins 0.000 description 2
- 108010008951 Chemokine CXCL12 Proteins 0.000 description 2
- 102000016951 Chemokine CXCL2 Human genes 0.000 description 2
- 108010014414 Chemokine CXCL2 Proteins 0.000 description 2
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 2
- 102000000311 Cytosine Deaminase Human genes 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 2
- 101710155188 Hexon-interlacing protein Proteins 0.000 description 2
- 102100037102 Homeobox protein MOX-2 Human genes 0.000 description 2
- 101710142888 Homeobox protein MOX-2 Proteins 0.000 description 2
- 101000978376 Homo sapiens C-C motif chemokine 15 Proteins 0.000 description 2
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 108700026223 Neurofibromatosis 1 Genes Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102100036154 Platelet basic protein Human genes 0.000 description 2
- 101710195957 Platelet basic protein Proteins 0.000 description 2
- 102000004211 Platelet factor 4 Human genes 0.000 description 2
- 108090000778 Platelet factor 4 Proteins 0.000 description 2
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 101710192266 Tegument protein VP22 Proteins 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002870 angiogenesis inducing agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000013011 aqueous formulation Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003833 bile salt Substances 0.000 description 2
- 229940093761 bile salts Drugs 0.000 description 2
- 210000000621 bronchi Anatomy 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 150000001945 cysteines Chemical group 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 229940009976 deoxycholate Drugs 0.000 description 2
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012156 elution solvent Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 239000005308 flint glass Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 239000002607 heparin antagonist Substances 0.000 description 2
- 230000008073 immune recognition Effects 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 2
- 229940096397 interleukin-8 Drugs 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 230000002601 intratumoral effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 229940099563 lactobionic acid Drugs 0.000 description 2
- 210000000867 larynx Anatomy 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 208000011645 metastatic carcinoma Diseases 0.000 description 2
- 230000003232 mucoadhesive effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 210000001331 nose Anatomy 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000001139 pH measurement Methods 0.000 description 2
- 210000002741 palatine tonsil Anatomy 0.000 description 2
- 210000004303 peritoneum Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000000861 pro-apoptotic effect Effects 0.000 description 2
- 239000002599 prostaglandin synthase inhibitor Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- WBWWGRHZICKQGZ-HZAMXZRMSA-N taurocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 WBWWGRHZICKQGZ-HZAMXZRMSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 210000003905 vulva Anatomy 0.000 description 2
- QPJVYLQOALFBLJ-DEOSSOPVSA-N (2s)-3-[4-[3-(5-methyl-2-phenyl-1,3-oxazol-4-yl)propyl]phenyl]-2-pyrrol-1-ylpropanoic acid Chemical compound N1([C@H](C(O)=O)CC2=CC=C(C=C2)CCCC=2N=C(OC=2C)C=2C=CC=CC=2)C=CC=C1 QPJVYLQOALFBLJ-DEOSSOPVSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- SUHQNCLNRUAGOO-KQCZLNONSA-N (4s,5r,6r,7s,8r)-4,6,7,8,9-pentahydroxy-5-[(2-hydroxyacetyl)amino]-2-oxononanoic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](NC(=O)CO)[C@@H](O)CC(=O)C(O)=O SUHQNCLNRUAGOO-KQCZLNONSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- 108700001666 APC Genes Proteins 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 1
- 108010038310 Adenomatous polyposis coli protein Proteins 0.000 description 1
- 108010056962 Adenovirus E4 Proteins Proteins 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 102100023705 C-C motif chemokine 14 Human genes 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 101150108519 CDK4 gene Proteins 0.000 description 1
- 102000007590 Calpain Human genes 0.000 description 1
- 108010032088 Calpain Proteins 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 229940123150 Chelating agent Drugs 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102100023688 Eotaxin Human genes 0.000 description 1
- 101710139422 Eotaxin Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 108010015031 Glycochenodeoxycholic Acid Proteins 0.000 description 1
- 108010007979 Glycocholic Acid Proteins 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 102100036242 HLA class II histocompatibility antigen, DQ alpha 2 chain Human genes 0.000 description 1
- 101000930801 Homo sapiens HLA class II histocompatibility antigen, DQ alpha 2 chain Proteins 0.000 description 1
- 101000621309 Homo sapiens Wilms tumor protein Proteins 0.000 description 1
- 108010070875 Human Immunodeficiency Virus tat Gene Products Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108050009288 Interleukin-19 Proteins 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101150115920 MTS1 gene Proteins 0.000 description 1
- 102000009571 Macrophage Inflammatory Proteins Human genes 0.000 description 1
- 108010009474 Macrophage Inflammatory Proteins Proteins 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 101000713102 Mus musculus C-C motif chemokine 1 Proteins 0.000 description 1
- 101100441533 Mus musculus Cxcl9 gene Proteins 0.000 description 1
- 101000740828 Mus musculus Protein C10 Proteins 0.000 description 1
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 1
- RFDAIACWWDREDC-UHFFFAOYSA-N Na salt-Glycocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)C(O)C2 RFDAIACWWDREDC-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 101150025719 Nf2 gene Proteins 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 101000797631 Sus scrofa Alveolar macrophage chemotactic factor 2 Proteins 0.000 description 1
- 101150003725 TK gene Proteins 0.000 description 1
- 102000002938 Thrombospondin Human genes 0.000 description 1
- 108060008245 Thrombospondin Proteins 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 101150046474 Vhl gene Proteins 0.000 description 1
- BHATUINFZWUDIX-UHFFFAOYSA-N Zwittergent 3-14 Chemical compound CCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O BHATUINFZWUDIX-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000011226 adjuvant chemotherapy Methods 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 210000005068 bladder tissue Anatomy 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 description 1
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- OJSUWTDDXLCUFR-YVKIRAPASA-N deoxy-bigchap Chemical compound C([C@@H]1CC2)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@H]([C@@H](CCC(=O)N(CCCNC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)CCCNC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO)C)[C@@]2(C)[C@H](O)C1 OJSUWTDDXLCUFR-YVKIRAPASA-N 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- GHCZAUBVMUEKKP-GYPHWSFCSA-N glycochenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)CC1 GHCZAUBVMUEKKP-GYPHWSFCSA-N 0.000 description 1
- RFDAIACWWDREDC-FRVQLJSFSA-N glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 description 1
- 229940099347 glycocholic acid Drugs 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229950005422 hydroxymethylnicotinamide Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000002434 immunopotentiative effect Effects 0.000 description 1
- 230000007365 immunoregulation Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 108090000681 interleukin 20 Proteins 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000012931 lyophilized formulation Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 201000011216 nasopharynx carcinoma Diseases 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000010309 neoplastic transformation Effects 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 108700042657 p16 Genes Proteins 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000009801 radical cystectomy Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- 229940045946 sodium taurodeoxycholate Drugs 0.000 description 1
- YXHRQQJFKOHLAP-FVCKGWAHSA-M sodium;2-[[(4r)-4-[(3r,5r,8r,9s,10s,12s,13r,14s,17r)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 YXHRQQJFKOHLAP-FVCKGWAHSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000011521 systemic chemotherapy Methods 0.000 description 1
- AWDRATDZQPNJFN-VAYUFCLWSA-N taurodeoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 AWDRATDZQPNJFN-VAYUFCLWSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229940042129 topical gel Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000011125 type II (treated soda lime glass) Substances 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- GHCZAUBVMUEKKP-UHFFFAOYSA-N ursodeoxycholic acid glycine-conjugate Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)CC2 GHCZAUBVMUEKKP-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000007501 viral attachment Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/19—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/10—Drugs for disorders of the urinary system of the bladder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J41/00—Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
- C07J41/0033—Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
- C07J41/0055—Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
- C07J41/0061—Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives one of the carbon atoms being part of an amide group
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10351—Methods of production or purification of viral material
Definitions
- the present invention is directed to compositions for treating cancer by gene therapy using a therapeutic gene, such as a tumor suppressor gene delivered by a gene delivery system, such as a recombinant viral vector delivery system, in combination with a transduction enhancing agent.
- a therapeutic gene such as a tumor suppressor gene delivered by a gene delivery system, such as a recombinant viral vector delivery system
- this invention relates to the delivery of a tumor suppressor gene (e.g., p53 or retinoblastoma (RB)) to cancerous epithelial tissues and organs, such as the bladder, using a recombinant adenoviral vector delivery system formulated in a stabilized buffer in combination with a transduction enhancing agent, such as SYN3.
- a tumor suppressor gene e.g., p53 or retinoblastoma (RB)
- a recombinant adenoviral vector delivery system formulated in a stabilized buffer in combination with a transduction
- Epithelial Cancer is an insidious disease.
- one type of epithelial cancer, carcinoma of the bladder represents a significant source of morbidity and mortality.
- Bladder cancer reportedly ranks 10th in males and 12th in females in cancer related mortality.
- Therapies available for the treatment of bladder cancer include adjuvant chemotherapy or immunotherapy, transurethral resection of superficial disease, radical cystectomy or radiotherapy which is often combined with systemic chemotherapy. Despite these therapeutic options, overall survival has not changed appreciably. Thus, new therapeutic modalities must be developed for the treatment of bladder cancer.
- Gene therapy strategies have been reportedly developed as an alternative therapeutic approach. Distinct approaches have been developed to treat neoplasms based on gene transfer methods. Methods have been reportedly developed to correct specific lesions at defined genetic loci which give rise to neoplastic transformation and progression. Overexpression of dominant oncogenes can be addressed using techniques to inhibit the transforming gene or gene product. It has been reported that loss of tumor suppressor gene function may be approached using methods to reconstitute wild-type tumor suppressor gene. Besides these methods to achieve mutation compensation, genetic techniques have been reportedly developed to specifically and selectively eradicate tumor cells. These approaches of molecular chemotherapy reportedly rely on specific expression of toxin genes in neoplastic cells.
- tumor suppressor genes such as p53 and RB
- reversion of the neoplastic phenotype can be demonstrated with replacement of the corresponding wild-type tumor suppressor gene.
- U.S. Pat. No. 5,789,244 claims a composition comprising a viral vector in which a nucleotide sequence encoding a transgene has been inserted, wherein the viral vector is formulated in a buffer comprising ethanol in a concentration range of about 1% to 50% (v/v).
- 5,837,520 claims a method for purification of an intact viral particle from a cell lysate comprising treating the cell lysate which contains the intact viral particle with an enzymatic agent that selectively degrades both unencapsulated DNA and RNA; chromatographing the treated lysate from the first step on a first resin; and chromatographing the eluant from the second step on a second resin; wherein one resin is an anion exchange resin and the other is an immobilized metal ion affinity resin.
- 5,932,210 describes a composition comprising a recombinant adenovirus expression vector and a pharmaceutically acceptable carrier, the vector comprising: (a) an insert of exogenous DNA comprising a gene encoding a foreign protein; and (b) adenovirus DNA in which all of the coding sequences of E1a, E1b, and protein IX, and at least part of E3 have been deleted.
- U.S. Pat. No. 6,165,779 discloses a composition comprising a recombinant virus vector formulated in a buffer comprising a detergent.
- 6,210,939 claims a recombinant adenovirus expression vector comprising (a) an insert of exogenous DNA comprising a gene encoding a foreign protein and (b) adenovirus DNA which has sustained a deletion beginning at nucleotide 357 and ending at nucleotide 4020 to 4050.
- 6,312,681 discloses a method for delivering an adenoviral vector which comprises a transgene to a cancer cell in the epithehial membrane of a bladder, the method comprising administering to the epithelial membrane the adenoviral vector and between 1% and 50% (v/v) ethanol, wherein the adenoviral vector infects the cell and the transgene is expressed in infected cells. All of these references are hereby incorporated by reference thereto in their entirety.
- the present invention provides a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier and at least one pharmaceutically acceptable solubilizer.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier and at least one pharmaceutically acceptable solubilizer.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier and at least one pharmaceutically acceptable solubilizer.
- a further aspect of the invention is a lyophilized pharmaceutical composition
- a lyophilized pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier, at least one pharmaceutically acceptable solubilizer and a at least one pharmaceutically acceptable bulking agent.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, at least one pharmaceutically acceptable solubilizer, and at least one pharmaceutically acceptable bulking agent.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, at least one pharmaceutically acceptable solubilizer, at least one pharmaceutically acceptable bulking agent and at least one pharmaceutically acceptable buffering agent.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier and an expression vector comprising a foreign DNA sequence inserted into the vector.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier and an expression vector comprising a foreign DNA sequence inserted into the vector.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier and an expression vector comprising a foreign DNA sequence inserted into the vector.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier, an expression vector comprising a foreign DNA sequence inserted into the vector and at least one pharmaceutically acceptable solubilizer.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector and at least one pharmaceutically acceptable solubilizer.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector and at least one pharmaceutically acceptable solubilizer.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector, at least one pharmaceutically acceptable solubilizer, and at least one pharmaceutically acceptable bulking agent.
- a further aspect of the invention is a pharmaceutical composition
- a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector, at least one pharmaceutically acceptable solubilizer, at least one pharmaceutically acceptable bulking agent and at least one pharmaceutically acceptable buffering agent.
- a further aspect of the invention is a use of SYN3 in the preparation of a medicament for the treatment of bladder cancer.
- a further aspect of the invention is a method of treating a disease in a mammal comprising administering a therapeutically effective amount of a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier.
- FIG. 1 illustrates a chemical structural formula of SYN3.
- FIG. 2 illustrates one method for the synthesis of SYN3.
- one aspect of the invention is that a unique surfactant-like molecule SYN3 is formulated with excipients to maintain solubility and stability as well as compatibility with the adenovirus.
- a further aspect of the invention is that the SYN3 formulations are nontoxic to tissues, e.g., the bladder with which it comes in contact at therapeutic levels. Indeed, surfactants which act as permeation enhancers often produce some toxicity due to membrane irritation. The use of SYN3 thus provides this further benefit of avoiding this toxicity. Connor, et al., Gene Therapy, Vol. 8, pp. 41-48 (2001).
- a further aspect of the invention is that the stability of the vector is unaffected by combination with the SYN3. Often, surfactant levels required to improved transduction may impart instability to the vector. Combination of the adenovirus and SYN3 preparations produces a more potent admixture compared with adenovirus.
- SYN3 is (N-(3-cholamidopropyl)-N-(3 (actobionamidopropyl))—cholamide (FIG. 1).
- SYN3 exists in various optical, tautomeric, stereoisomeric and isomeric forms.
- FIG. 1 illustrates a preferred isomer.
- the compositions of the present invention encompass all such forms in any percentage or racemic mixture thereof.
- SYN3 is a surfactant-like molecule that enhances transduction of recombinant adenovirus/therapeutic gene vectors for treatment of epithelial tissue and tumors, or, more specifically, in bladder tumors.
- SYN3 can be present in a concentration of from about 0.001 mg/ml to about 150 mg/ml.
- therapeutic transgene refers to a nucleotide sequence the expression of which in the target cell produces a therapeutic effect.
- therapeutic transgene includes but is not limited to tumor suppressor genes, antigenic genes, cytotoxic genes, cytostatic genes, pro-drug activating genes, apoptotic genes, pharmaceutical genes or anti-angiogenic genes.
- the vectors of the present invention may be used to produce one or more therapeutic transgenes, either in tandem through the use of IRES elements or through independently regulated promoters.
- tumor suppressor gene refers to a nucleotide sequence, the expression of which in the target cell is capable of suppressing the neoplastic phenotype and/or inducing apoptosis.
- tumor suppressor genes useful in the practice of the present invention include the p53 gene, the APC gene, the DPC-4 gene, the BRCA-1 gene, the BRCA-2 gene, the WT-1 gene, the retinoblastoma gene (Lee, et al., Nature, 329:642 (1987)), the MMAC-1 gene, the adenomatous polyposis coli protein (Albertsen, et al., U.S. Pat. No. 5,783,666 issued Jul.
- the deleted in colon carcinoma (DCC) gene the MMSC-2 gene, the NF-1 gene, nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3.
- DCC colon carcinoma
- MMSC-2 the NF-1 gene
- NF-1 nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3.
- antigenic genes refers to a nucleotide sequence, the expression of which in the target cells results in the production of a cell surface antigenic protein capable of recognition by the immune system.
- antigenic genes include carcinoembryonic antigen (CEA), p53 (as described in Levine, A. PCT International Publication No. WO94/02167 published Feb. 3, 1994).
- CEA carcinoembryonic antigen
- p53 as described in Levine, A. PCT International Publication No. WO94/02167 published Feb. 3, 1994.
- the antigenic gene may be fused to the MHC class I antigen.
- cytotoxic gene refers to nucleotide sequence, the expression of which in a cell produces a toxic effect.
- examples of such cytotoxic genes include nucleotide sequences encoding pseudomonas exotoxin, ricin toxin, diptheria toxin, and the like.
- cytostatic gene refers to nucleotide sequence, the expression of which in a cell produces an arrest in the cell cycle.
- examples of such cytostatic genes include p21, the retinoblastoma gene, the E2F-Rb gene, genes encoding cyclin dependent kinase inhibitors such as P16, p15, p18 and p19, the growth arrest specific homeobox (GAX) gene as described in Branellec, et al. (PCT Publication WO97/16459 published May 9, 1997 and PCT Publication WO96/30385 published Oct. 3, 1996).
- GX growth arrest specific homeobox
- cytokine gene refers to a nucleotide sequence, the expression of which in a cell produces a cytokine.
- cytokines include GM-CSF, the interleukins, especially IL-1, IL-2, IL-4, IL-12, IL-10, IL-19, IL-20, interferons of the alpha, beta and gamma subtypes especially interferon ⁇ -2b and fusions such as interferon ⁇ -2 ⁇ -1.
- chemokine gene refers to a nucleotide sequence, the expression of which in a cell produces a cytokine.
- chemokine refers to a group of structurally related low-molecular cytokines weight factors secreted by cells are structurally related having mitogenic, chemotactic or inflammatory activities. They are primarily cationic proteins of 70 to 100 amino acid residues that share four conserved cysteine. These proteins can be sorted into two groups based on the spacing of the two amino-terminal cysteines. In the first group, the two cysteines are separated by a single residue (C-x-C), while in the second group, they are adjacent (C—C).
- C-x-C chemokines
- chemokines include but are not limited to platelet factor 4 (PF4), platelet basic protein (PBP), interleukin-8 (IL-8), melanoma growth stimulatory activity protein (MGSA), macrophage inflammatory protein 2 (MIP-2), mouse Mig (ml 19), chicken 9E3 (or pCEF-4), pig alveolar macrophage chemotactic factors I and I (AMCF-I and -II), pre-B cell growth stimulating factor (PBSF),and IP10.
- PF4 platelet factor 4
- PBP platelet basic protein
- IL-8 interleukin-8
- MGSA melanoma growth stimulatory activity protein
- MIP-2 macrophage inflammatory protein 2
- mouse Mig mouse Mig (ml 19)
- pig alveolar macrophage chemotactic factors I and I AMCF-I and -II
- PBSF pre-B cell growth stimulating factor
- members of the ‘C—C’ group include, but are not limited to, monocyte chemotactic protein 1 (MCP-1), monocyte chemotactic protein 2 (MCP-2), monocyte chemotactic protein 3 (MCP-3), monocyte chemotactic protein 4 (MCP-4), macrophage inflammatory protein 1 alpha (MIP-1-alpha), macrophage inflammatory protein 1 beta (MIP-1-beta), macrophage inflammatory protein I gamma (MIP-1-gamma), macrophage inflammatory protein 3 alpha (MIP-3-alpha, macrophage inflammatory protein 3 beta (MIP-3-beta), chemokine (ELC), macrophage inflammatory protein 4 (MIP-4), macrophage inflammatory protein 5 (MIP-5), LD78 beta, RANTES, SIS-epsilon (p500), thymus and activation-regulated chemokine (TARC), eotaxin, 1-309, human protein HCC-1/NCC-2, human protein
- pharmaceutical protein gene refers to nucleotide sequence, the expression of which results in the production of protein have pharmaceutically effect in the target cell.
- pharmaceutical genes include the proinsulin gene and analogs (as described in PCT International Patent Application No. WO98/31397, growth hormone gene, dopamine, serotonin, epidermal growth factor, GABA, ACTH, NGF, VEGF (to increase blood perfusion to target tissue, induce angiogenesis, PCT publication WO98/32859 published Jul. 30, 1998), thrombospondin etc.
- pro-apoptotic gene refers to a nucleotide sequence, the expression thereof results in the programmed cell death of the cell.
- pro-apoptotic genes include p53, adenovirus E3-11.6K, the adenovirus E4 or f4 gene, p53 pathway genes, and genes encoding the caspases.
- pro-drug activating genes refers to nucleotide sequences, the expression of which, results in the production of protein capable of converting a nontherapeutic compound into a therapeutic compound, which renders the cell susceptible to killing by external factors or causes a toxic condition in the cell.
- An example of a prodrug activating gene is the cytosine deaminase gene. Cytosine deaminase converts 5-fluorocytosine to 5 fluorouracil, a potent antitumor agent). The lysis of the tumor cell provides a localized burst of cytosine deaminase capable of converting 5FC to 5FU at the localized point of the tumor resulting in the killing of many surrounding tumor cells.
- TK thymidine kinase
- anti-angiogenic genes refers to a nucleotide sequence, the expression of which results in the extracellular secretion of anti-angiogenic factors.
- Anti-angiogenesis factors include angiostatin, inhibitors of vascular endothelial growth factor (VEGF) such as Tie 2 (as described in PNAS(USA)(1998) 95:8795-8800), endostatin.
- VEGF vascular endothelial growth factor
- the reference to the p53 gene includes not only the wild type protein but also modified p53 proteins.
- modified p53 proteins include modifications to p53 to increase nuclear retention as described in Wahl, et al., Nat. Cell Biol., 3(12):E277-86 (2001), deletions such as the delta13-19 amino acids to eliminate the calpain consensus cleavage site, modifications to the oligomerization domains (as described in Bracco, et al. PCT published application WO97/0492 or U.S. Pat. No. 5,573,925).
- therapeutic genes may be secreted into the media or localized to particular intracellular locations by inclusion of a targeting moiety such as a signal peptide or nuclear localization signal(NLS).
- a targeting moiety such as a signal peptide or nuclear localization signal(NLS).
- fusion proteins of the therapeutic transgene with the herpes simplex virus type 1 (HSV-1) structural protein, VP22 are included in the definition of therapeutic transgene. Fusion proteins containing the VP22 signal, when synthesized in an infected cell, are exported out of the infected cell and efficiently enter surrounding noninfected cells to a diameter of approximately 16 cells wide. This system is particularly useful in conjunction with transciptionally active proteins (e.g.
- a gene delivery system refers to any means of delivery of a therapeutic gene to a particular epithelial tissue or organ including, for example, recombinant viral vectors and nonviral vector systems.
- nonvector systems include, but are not limited to, any lipid-based, lipid encapsulated DNA or cationic lipid/DNA complexes.
- recombinant viral vectors include, but are not limited to, herpes virus, retrovirus, vaccinia virus, adenovirus, and adenoassociated viruses.
- Recombinant refers to nucleic acids and protein encoded by them wherein the nucleic acids are constructed by methods of recombinant DNA technology, also termed “genetic engineering”.
- a preferred recombinant viral vector is the adenoviral vector delivery system which has a deletion of the protein IX gene. See International patent Application WO 95/11984, which is herein incorporated by reference in its entirety.
- the recombinant vector delivery system comprising a therapeutic gene, such as a tumor suppressor gene, is formulated in a buffer that stabilizes the vector and is combined with a delivery enhancing agent that is compatible with the vector.
- a “delivery-enhancing agent” refers to any agent which enhances delivery of a therapeutic gene, such as a tumor suppressor gene to a cancerous tissue or organ. Such enhanced delivery may be achieved by various mechanisms. One such mechanism may involve the disruption of the protective glycosaminoglycan layer on the epithelial surface of the bladder.
- Examples of such delivery-enhancing agents are detergents, alcohols, glycols, surfactants, bile salts, heparin antagonists, cyclooxygenase inhibitors, hypertonic salt solutions, and acetates.
- Alcohols include, for example, the aliphatic alcohols such as ethanol, N-propanol, isopropanol, butyl alcohol, acetyl alcohol.
- Glycols include, for example, glycerol, propyleneglycol, polyethyleneglycol, and thioglycerol.
- Acetates such as acetic acid, gluconol acetate, and sodium acetate are further examples of delivery-enhancing agents.
- Hypertonic salt solutions like 1M NaCl are also examples of delivery-enhancing agents.
- surfactants are sodium dodecyl sulfate (SDS) and lysolecithin, polysorbate 80, nonylphenoxypolyoxyethylene, lysophosphatidylcholine, polyethylenglycol 400, polysorbate 20, polyoxyethylene ethers, and polyglycol ether surfactants.
- Bile salts such as taurocholate, sodium tauro-deoxycholate, deoxycholate, chenodesoxycholate, glycocholic acid, glycochenodeoxycholic acid and other astringents like silver nitrate may be used.
- Heparin-antagonists like quaternary amines such as protamine sulfate may also be used.
- Cyclooxygenase inhibitors such as sodium salicylate, salicylic acid, and nonsteroidal antiinflammatory drug (NSAIDS) like indomethacin, naproxen, diclofenac may be used.
- NSAIDS nonsteroidal antiinflammatory drug
- the term “enhanced” describes the increased delivery of the therapeutic gene, such as a tumor suppressor gene, to the cancerous tissue or organ.
- Increased delivery of a therapeutic gene, such as a tumor suppressor gene can be measured by various means, for example by measuring expression of the tumor suppressor gene compared to expression levels when the tumor suppressor gene is delivery in an adenoviral vector delivery system in a buffer lacking the delivery-enhancing agent.
- therapeutic genes are tumor suppressor genes and the suicide gene thymidine kinase.
- tumor suppressor genes include, but are not limited to, p53, the retinoblastoma gene, either full length, such as p110B, or fragments thereof such as p94RB or p56RB, Rb56, a functional variant of Rb gene, a functional variant of the p53 gene, and p16.
- Other therapeutic genes include but are not limited to CFTR, genes encoding cytokines (such as the interferons alpha, beta, gamma, delta, interleukins (e.g., IL-4, IL-10, IL-2), GM-CSF, and any other genes encoding proteins which have therapeutic potential in the treatment of noncancerous diseases of the bladder such as cystitis.
- the therapeutic gene encodes antisense RNA.
- compositions of the invention comprise a therapeutically effective amount of a therapeutic gene, such as a tumor suppressor gene, contained in a recombinant viral vector delivery system in a buffer comprising a delivery-enhancing agent.
- a therapeutically effective refers to the prevention of, reduction of, or curing of symptoms associated with a disease state.
- Therapeutically effective amounts of the pharmaceutical composition comprising a therapeutic gene, such as p53, or the retinoblastoma tumor suppressor gene, in a recombinant viral vector delivery system formulated in a buffer comprising a delivery-enhancing agent will be administered in accord with the teaching of this invention.
- therapeutically effective amounts of the p53 tumor suppressor gene in the recombinant adenoviral vector delivery system formulated in a buffer containing a delivery-enhancing agent are in the range of about 1 ⁇ 10 particles/ml to 2 ⁇ 10 12 particles/ml, more typically about 1 ⁇ 10 8 particles/ml to 9 ⁇ 10 11 particles/ml, most typically 1 ⁇ 10 10 particles/ml to 9 ⁇ 10 11 particles/ml.
- P53 also known as ACN53, is a recombinant adenovirus type 5 encoding wild-type p53 tumor suppressor protein, and is described in, for example, PCT patent application WO95/11984.
- the formulated SYN3 is combined with p53 injection and the admixture is instilled into the bladder. This preparation is intended to treat epithelial carcinomas.
- p53 will be present in an amount of about 5 to about 8 ⁇ 10 13 particles.
- Detergents for use within the scope of the present invention include, for example, anionic, cationic, zwitterionic, and nonionic detergents.
- Exemplary detergents include, for example, but are not limited to taurocholate, deoxycholate, taurodeoxycholate, cetylpyridium, benalkonium chloride, ZWITTERGENT 3-14 detergent, CHAPS (3-[(3-Cholamidopropyl)dimethylammoniol]-1-propanesulfonate hydrate, available from Aldrich, Big CHAP, Deoxy Big CHAP, TRITON-X-100 detergent available from Union Carbide, C12E8, Octyl-B-D-Glucopyranoside, PLURONIC-F64, PLURONIC-F68, PLURONIC-F69 detergents available form BASF, TWEEN20 detergent, and TWEEN80 detergent available from ICI.
- the delivery-enhancing agent is included in the buffer in which the recombinant adenoviral vector delivery system is formulated.
- the delivery-enhancing agent may be administered prior to the recombinant virus or concomitant with the virus.
- the delivery-enhancing agent is provided with the virus by mixing a virus preparation with a delivery-enhancing agent formulation just prior to administration to the patient.
- the delivery-enhancing agent and virus are provided in a single vial to the caregiver for administration.
- the pharmaceutical composition may be administered over time in the range of about 5 minutes to 3 hours, preferably about 10 minutes to 120 minutes, and preferably about 15 minutes to 90 minutes.
- the delivery-enhancing agent may be administered prior to administration of the recombinant adenoviral vector delivery system containing the tumor suppressor gene.
- the prior administration of the delivery-enhancing agent may be in the range of about 30 seconds to 1 hour, preferably about 1 minute to 10 minutes, and preferably about 1 minute to 5 minutes prior to administration of the adenoviral vector delivery system containing the tumor suppressor gene.
- Solvents that may be used for the formulations of the present invention include, for example, aqueous solvents such as water for injection, and/or nonaqueous solvents, such as DMSO and N,N-Dimethyylacetamide, also known as DMA, and co-solvent mixtures, e.g., glycerol and water, as prepared preferably in accordance with USP standards.
- aqueous solvents such as water for injection
- nonaqueous solvents such as DMSO and N,N-Dimethyylacetamide, also known as DMA
- co-solvent mixtures e.g., glycerol and water
- the formulations preferably contain polysorbates, or polyoxyethylene sorbitan esters, a class of nonionic surfactants that included, e.g., polysorbate 80 and polysorbate 20, amongst others, Pluronics, or polyethylenepolypropylene glycol block copolymers, a class of nonionic surfactants, that include e.g. Pluronic L68 and L92, amongst others, and hydroxypropyl-beta-cyclodextrin, a polysubstituted hydroxyalkyl-beta-cyclodextrin, which is a class of nonionic complexing agents, that include, e.g., HP ⁇ CD and BigCHAP.
- nonionic complexing agents that include, e.g., HP ⁇ CD and BigCHAP.
- HP ⁇ CD HP ⁇ CD
- BigCHAP Polysorbate 80
- Polysorbate 20 Polysorbate 20
- Pluronic L64 Pluronic L92
- HP ⁇ CD HP ⁇ CD
- BigCHAP can be present in a concentration of about 20 to about 360 mg/ml
- Polysorbate 80 can be present in a concentration of about 1 to 36 mg/ml
- the Pluronics can be present in concentrations of about 1 to about 150 mg/ml
- the other ingredients may be present in concentrations as set forth below.
- the concentration of the delivery-enhancing agent will depend on a number of factors known to one of ordinary skill in the art such as the particular delivery-enhancing agent being used, the buffer, pH, target tissue or organ and mode of administration.
- the concentration of the delivery-enhancing agent will be in the range of 0.01% to 50% (w/v), preferably 10% to 40% (w/v), preferably 14% to 19% (w/v), and preferably 0.01% to 30% (w/v).
- the detergent concentration will be about 1% to 12% (w/v) in the formulation prior to admixture, and preferably 0.1% (w/v) of the formulation when in admixture.
- the detergent concentration in the final formulation administered to the patient is about 0.5-2 times the critical micellization concentration (CMC).
- the CMC is equal to 0.001 mg/ml in the recombinant adenovirus formulation.
- the lyophilized formulations of SYN3 preferably contain a citrate buffering system. More preferably, the citrate buffering system can comprise at least one citric buffer, such as citric acid monohydrate USP or sodium citrate dihydrate USP. More preferably, the citrate buffering system comprises a combination of citric acid monohydrate USP and sodium citrate dihydrate USP.
- the amount of citric acid monohydrate USP can be present in a concentration of about 0.005 to about 2 mg/ml, more preferably 0.016 to about 1.35 mg/ml, preferably 0.016 to about 0.72 mg/ml, preferably about 0.005 to about 1.35, and the sodium citrate dihydrate USP can be present in a concentration of about 0.02 to about 5.37 mg/ml, preferably 0.05 to 3.00 mg/ml, preferably 0.05 to 2.31 mg/ml.
- suitable buffering systems that are suitable include, for example, phosphate, glycine, either in place of the citrate buffering system or in combination therewith, and varying combinations of all of the above.
- the buffering system will provide a pH of the lyophilized formulation such that there is improved stability.
- the pH will be in a range of about 5 to about 6.
- the admixture aqueous formulations of SYN3 are preferably buffered at about a pH of about 7 to about 8.5, preferably about 7.4, and SYN3 remains stable in the dehydrated powder for at least 3 months at 40° C.
- the lyophilized formulations preferably contain glycine or mannitol as freeze-drying bulking agents.
- suitable freeze-drying bulking agents include, for example, lactose, recombinant gelatin, and methylcellulose.
- the freeze drying-bulking agent may be present in a concentration of from about 5 to 100 mg/ml when the agent is mannitol, and about 10 to 200 mg/ml when the agent is glycine.
- the lyophilized formulations preferably contain ascorbic acid as an antioxidant.
- suitable antioxidants include, for example, citric acid.
- ascorbic acids When ascorbic acids is the antioxidant, it may be present in a concentration of about 0.001 to about 0.6 mg/ml.
- compositions of this invention may additionally include, for example, a stabilizer, enhancer or other pharmaceutically acceptable carriers or vehicles.
- a pharmaceutically acceptable carrier can contain a physiologically acceptable compound that acts, for example, to stabilize the recombinant adenoviral vector delivery system comprising the tumor suppressor gene
- a physiologically acceptable compound can include, for example, carbohydrates, such as glucose, sucrose or dextrans, Hydroxypropyl- ⁇ -Cyclodextrin, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients.
- physiologically acceptable compounds include, for example, wetting agents, emulsifying agents, dispersing agents or preservatives, which are particularly useful for preventing the growth or action of microorganisms.
- Various preservatives are well known and include, for example, phenol and ascorbic acid.
- pharmaceutically acceptable carrier depends on the route of administration and the particular physiochemical characteristics of the recombinant adenoviral vector delivery system and the particular tumor suppressor gene contained therein. Examples of carriers, stabilizers or adjuvants can be found in Gennaro, Remington's: The Science and Practice of Pharmacy, 19th Ed. (Mack Publishing. Co., Easton, Pa. 1995), incorporated herein by reference.
- the recombinant viral vector delivery system comprising a therapeutic gene formulated in a buffer comprising a delivery-enhancing agent may be delivered to any cancerous tissue or organ using any delivery method known to the ordinarily skilled artisan for example, intratumoral or intravesical administration.
- Cancerous tissues and organs include, for example, any tissue or organ having an epithelial membrane such as the gastrointestinal tract, the bladder, respiratory tract, and the lung.
- Examples include but are not limited to carcinoma of the bladder and upper respiratory tract, vulva, cervix, vagina or bronchi; local metastatic tumors of the peritoneum; broncho-alveolar carcinoma; pleural metastatic carcinoma; carcinoma of the mouth and tonsils; carcinoma of the nasopharynx, nose, larynx, oesophagus, stomach, colon and rectum, gallbladder, or skin; or melanoma.
- the delivery-enhancing agents of the invention can also be used to formulate other pharmaceutical agents, such as proteins, nucleic acids, antisense RNA, small molecules, etc., for administration to any tissue or organ having an epithelial membrane.
- the delivery-enhancing agent is included in the buffer in which an expression vector is formulated.
- the delivery-enhancing agent can be administered prior to the expression vector or concomitant with the expression vector.
- the delivery-enhancing agent is provided with the expression vector by mixing an expression vector with a delivery-enhancing agent formulation just prior to administration to the patient.
- the delivery-enhancing agent and the expression vector are provided in a single vial to the caregiver for administration.
- the pharmaceutical composition can be administered over time in the range of about 5 minutes to 3 hours, preferably about 10 minutes to 120 minutes, and most preferably about 15 minutes to 90 minutes.
- the delivery-enhancing agent may be administered prior to administration of the recombinant adenoviral vector delivery system containing the tumor suppressor gene.
- the prior administration of the delivery-enhancing agent may be in the range of about 30 seconds to 1 hour, preferably about 1 minute to 10 minutes, and most preferably about 1 minute to 5 minutes prior to administration of the adenoviral vector delivery system containing the tumor suppressor gene.
- the expression vector formulated in a buffer comprising a delivery-enhancing agent can be delivered to any tissue or organ, including neoplastic tissues such as cancer tissue, using any delivery method known to the ordinarily skilled artisan for example, intratumoral or intravesical administration.
- Tissues and organs include any tissue or organ having an epithelial membrane such as the gastrointestinal tract, the bladder, respiratory tract, and the lung.
- Examples include but are not limited to carcinoma of the bladder and upper respiratory tract, vulva, cervix, vagina or bronchi; local metastatic tumors of the peritoneum; broncho-alveolar carcinoma; pleural metastatic carcinoma; carcinoma of the mouth and tonsils; carcinoma of the nasopharynx, nose, larynx, oesophagus, stomach, colon and rectum, gallbladder, or skin; or melanoma.
- an expression vector is formulated in mucosal, topical, and/or buccal formulations, particularly mucoadhesive gel and topical gel formulations.
- exemplary permeation enhancing compositions, polymer matrices, and mucoadhesive gel preparations for transdermal delivery are disclosed in U.S. Pat. No. 5,346,701.
- Such formulations are especially useful for the treatment of cancers of the mouth, head and neck cancers (e.g., cancers of the tracheobronchial epithelium) skin cancers (e.g., melanoma, basal and squamous cell carcinomas), cancers of the intestinal mucosa, vaginal mucosa, and cervical cancer.
- a therapeutic agent is formulated in ophthalmic formulations for administration to the eye.
- Such formulations are useful in the delivery of the retinoblastoma (RB) gene to the eye, optionally in conjunction with the delivery of p53.
- RB retinoblastoma
- composition of the invention are typically administered to enhance transfer of gene to a cell.
- the cell can be provided as part of a tissue, such as an epithelial membrane, or as an isolated cell, such as in tissue culture.
- the cell can be provided in vivo, ex vivo, or in vitro.
- compositions can be introduced into the tissue of interest in vivo or ex vivo by a variety of methods.
- the modulating agent is introduced to cells by such methods as microinjection, calcium phosphate precipitation, liposome fusion, or biolistics.
- the therapeutic agent is taken up directly by the tissue of interest.
- compositions of the invention are administered ex vivo to cells or tissues explanted from a patient, then returned to the patient.
- ex vivo administration of therapeutic gene constructs include Arteaga et al., Cancer Research 56(5):1098-1103 (1996); Nolta et al., Proc Natl. Acad. Sci. USA 93(6):2414-9 (1996); Koc et al., Seminars in Oncology 23 (1):46-65 (1996); Raper et al., Annals of Surgery 223(2):116-26 (1996); Dalesandro et al., J. Thorac. Cardi. Surg., 11(2):416-22 (1996); and Makarov et al., Proc. Natl. Acad. Sci. USA 93(1):402-6 (1996).
- the following table represents ranges of the ingredients for nonaqueous liquid formulations of the present invention.
- the SYN3 solution Prior to administration (for bladder cancer), the SYN3 solution is combined with the recombinant adenovirus preparation in a 1:50 v/v ratio to form an admixture that is administered to the patient.
- Stability testing was accomplished by HPLC. Solution formulations were placed in the indicated temperature conditions, incubated for specified times and concentrations were determined by HPLC and compared to initial concentrations ( ⁇ 80° C.). The nonaqueous, solution formulations of SYN3 remain stable for at least 1 month at 55° C. when SYN3 is dissolved in N,N-Dimethylacetamide (DMA).
- DMA N,N-Dimethylacetamide
- the following table represents ranges of the ingredients for lyophilized formulations of the present invention.
- the compounded solution is filled as indicated into a 20-ml capacity Type II glass vial and lyophilized. Preparation for administration requires addition of 20 ml of WFI to the vial containing the freeze-dried cake to redissolve the SYN3.
- the SYN3 solution is combined with p53, or any recombinant adenovirus preparation, in a v/v ratio of 1:5.
- the admixture is then administered to the patient for, for instance, bladder cancer.
- the volume of Water for Injection to be charged to the batch is to be determined according to the following formula:
- the compounded batch may be stored at 2° C. to 8° C. for up to 24 hours in a sealed, sterilized, stainless steel pressure vessel prior to filling into the vials. The batch may be filtered more than once to assure sterility.
- the product is a white to off-white cake.
- the vials should be stored between 2° C. to 8° C. after inspection. For labeling and inspection purposes, the vials may be exposed to 19° C.-25° C. for up to 6 hours.
- Stability testing was accomplished by HPLC. Lyophilized formulations were reconstituted (redissolved) with 19.5 ml WFI. Samples were placed in the indicated temperature conditions, incubated for specified times and concentrations were determined by HPLC and compared to initial concentrations.
- Product temperature must remain at or above ⁇ 20° C. for at least 6 hours before proceeding. Heat the shelf to 25° C. in 1 hour and reduce pressure to approximately 50 mm Hg pressure. Maintain the shelf temperature at 25° C. at approximately 50 mm Hg pressure for 14 hours. Vent the chamber with sterile filtered nitrogen to approximately 950 mm Hg. Stopper the vials inside the lyophilizer. Remove the vials from the lyophilizer and crimp the vials with 20-mm aluminum. The vials should be stored at 2° C. to 8° C. until inspection is completed.
- the product is a white to off-white cake.
- the vials should be stored between 2° C. to 8° C. after inspection. For labeling and inspection purposes, the vials may be exposed to 19° C.-25° C. for up to 6 hours.
- p53 (rAD/p53) remains stable when combined with the lyophilized formulations of SYN3 for at least 2 hours at 37° C. and 24 hours at 25° C. p53 remains stable when combined with the aqueous solution formulations of SYN3 for at least 4 hours at 37° C. and 24 hours at 25° C.
- FIG. 2 The synthetic scheme for SYN3 is shown in FIG. 2, which is adapted from U.S. Pat. No. 6,392,069.
- the lactone of lactobionic acid (II) was synthesized by dissolving one g (2.8 mmol) of lactobionic acid (I) in 50 ml of methanol, evaporating to dryness on a rotary evaporator, and repeating this process six times.
- the resulting residue (II) was dissolved in 50 ml of isopropanol by heating to 50° C.
- To this solution was added 1.2 ml (8.4 mmol) of N-3-aminopropyl)-1,2-propanediamene.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Dermatology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Urology & Nephrology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This application claims priority to U.S. patent application Ser. No. 60/342,329, filed Dec. 20, 2001, the disclosure of which is hereby incorporated by reference in its entirety for all purposes.
- The present invention is directed to compositions for treating cancer by gene therapy using a therapeutic gene, such as a tumor suppressor gene delivered by a gene delivery system, such as a recombinant viral vector delivery system, in combination with a transduction enhancing agent. In particular, this invention relates to the delivery of a tumor suppressor gene (e.g., p53 or retinoblastoma (RB)) to cancerous epithelial tissues and organs, such as the bladder, using a recombinant adenoviral vector delivery system formulated in a stabilized buffer in combination with a transduction enhancing agent, such as SYN3.
- Epithelial Cancer is an insidious disease. For instance, one type of epithelial cancer, carcinoma of the bladder, represents a significant source of morbidity and mortality. Bladder cancer reportedly ranks 10th in males and 12th in females in cancer related mortality. Therapies available for the treatment of bladder cancer include adjuvant chemotherapy or immunotherapy, transurethral resection of superficial disease, radical cystectomy or radiotherapy which is often combined with systemic chemotherapy. Despite these therapeutic options, overall survival has not changed appreciably. Thus, new therapeutic modalities must be developed for the treatment of bladder cancer.
- Gene therapy strategies have been reportedly developed as an alternative therapeutic approach. Distinct approaches have been developed to treat neoplasms based on gene transfer methods. Methods have been reportedly developed to correct specific lesions at defined genetic loci which give rise to neoplastic transformation and progression. Overexpression of dominant oncogenes can be addressed using techniques to inhibit the transforming gene or gene product. It has been reported that loss of tumor suppressor gene function may be approached using methods to reconstitute wild-type tumor suppressor gene. Besides these methods to achieve mutation compensation, genetic techniques have been reportedly developed to specifically and selectively eradicate tumor cells. These approaches of molecular chemotherapy reportedly rely on specific expression of toxin genes in neoplastic cells. Finally, gene transfer methods have been reportedly used to achieve antitumor immunization. These methods of genetic immunopotentiation reportedly use techniques of genetic immunoregulation to enhance immune recognition of tumors. Consequently, a variety of distinct approaches reportedly have been developed to accomplish gene therapy of cancer.
- A high incidence of mutations has reportedly been observed in tumor suppressor genes, such as p53 and RB, in the case of carcinoma of the bladder. For such genetic lesions of tumor suppressor genes, reversion of the neoplastic phenotype can be demonstrated with replacement of the corresponding wild-type tumor suppressor gene.
- In vitro studies using cell lines derived from human bladder tissues have reportedly demonstrated efficient transgene expression following infection with recombinant adenovirus. Experiments in vivo reportedly have also shown adenovirus transgene expression in the urinary bladder of rodents after intravesical delivery. In vitro experiments with wild-type adenovirus demonstrate that virus attachment and internalization is not influenced by benzyl alcohol, but do reportedly demonstrate an enhanced uncoating of the virion. In vivo efforts with agents (e.g. acetone, DMSO, prolamine sulfate) can reportedly break down the protective “mucin” layer that protects the bladder epithelium from bacteria, viruses and other pathogens.
- U.S. Pat. No. 5,789,244 claims a composition comprising a viral vector in which a nucleotide sequence encoding a transgene has been inserted, wherein the viral vector is formulated in a buffer comprising ethanol in a concentration range of about 1% to 50% (v/v). U.S. Pat. No. 5,837,520 claims a method for purification of an intact viral particle from a cell lysate comprising treating the cell lysate which contains the intact viral particle with an enzymatic agent that selectively degrades both unencapsulated DNA and RNA; chromatographing the treated lysate from the first step on a first resin; and chromatographing the eluant from the second step on a second resin; wherein one resin is an anion exchange resin and the other is an immobilized metal ion affinity resin. U.S. Pat. No. 5,932,210 describes a composition comprising a recombinant adenovirus expression vector and a pharmaceutically acceptable carrier, the vector comprising: (a) an insert of exogenous DNA comprising a gene encoding a foreign protein; and (b) adenovirus DNA in which all of the coding sequences of E1a, E1b, and protein IX, and at least part of E3 have been deleted. U.S. Pat. No. 6,165,779 discloses a composition comprising a recombinant virus vector formulated in a buffer comprising a detergent. U.S. Pat. No. 6,210,939 claims a recombinant adenovirus expression vector comprising (a) an insert of exogenous DNA comprising a gene encoding a foreign protein and (b) adenovirus DNA which has sustained a deletion beginning at nucleotide 357 and ending at nucleotide 4020 to 4050. Finally, U.S. Pat. No. 6,312,681 discloses a method for delivering an adenoviral vector which comprises a transgene to a cancer cell in the epithehial membrane of a bladder, the method comprising administering to the epithelial membrane the adenoviral vector and between 1% and 50% (v/v) ethanol, wherein the adenoviral vector infects the cell and the transgene is expressed in infected cells. All of these references are hereby incorporated by reference thereto in their entirety.
- Notwithstanding the foregoing, there exists a need for formulations for therapeutic use that improve the efficiency of the transgene delivery. Vectors that are unstable present difficulty in administering the desired therapeutic agent to the patient. Because of in vivo instability, there is a need for vector stabilization such that there is an increase in the transduction of the therapeutic agent that is to be administered.
- Accordingly, in one aspect, the present invention provides a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier and at least one pharmaceutically acceptable solubilizer.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier and at least one pharmaceutically acceptable solubilizer.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier and at least one pharmaceutically acceptable solubilizer.
- A further aspect of the invention is a lyophilized pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier, at least one pharmaceutically acceptable solubilizer and a at least one pharmaceutically acceptable bulking agent.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, at least one pharmaceutically acceptable solubilizer, and at least one pharmaceutically acceptable bulking agent.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, at least one pharmaceutically acceptable solubilizer, at least one pharmaceutically acceptable bulking agent and at least one pharmaceutically acceptable buffering agent.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier and an expression vector comprising a foreign DNA sequence inserted into the vector.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier and an expression vector comprising a foreign DNA sequence inserted into the vector.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier and an expression vector comprising a foreign DNA sequence inserted into the vector.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier, an expression vector comprising a foreign DNA sequence inserted into the vector and at least one pharmaceutically acceptable solubilizer.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable nonaqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector and at least one pharmaceutically acceptable solubilizer.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector and at least one pharmaceutically acceptable solubilizer.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector, at least one pharmaceutically acceptable solubilizer, and at least one pharmaceutically acceptable bulking agent.
- A further aspect of the invention is a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable aqueous carrier, an expression vector comprising a foreign DNA sequence inserted into the vector, at least one pharmaceutically acceptable solubilizer, at least one pharmaceutically acceptable bulking agent and at least one pharmaceutically acceptable buffering agent.
- A further aspect of the invention is a use of SYN3 in the preparation of a medicament for the treatment of bladder cancer.
- A further aspect of the invention is a method of treating a disease in a mammal comprising administering a therapeutically effective amount of a pharmaceutical composition comprising SYN3 in combination with a pharmaceutically acceptable carrier.
- These and other aspects, objects and advantages will become more apparent when read with the accompanied detailed description which follows.
- FIG. 1 illustrates a chemical structural formula of SYN3.
- FIG. 2 illustrates one method for the synthesis of SYN3.
- Accordingly, one aspect of the invention is that a unique surfactant-like molecule SYN3 is formulated with excipients to maintain solubility and stability as well as compatibility with the adenovirus.
- A further aspect of the invention is that the SYN3 formulations are nontoxic to tissues, e.g., the bladder with which it comes in contact at therapeutic levels. Indeed, surfactants which act as permeation enhancers often produce some toxicity due to membrane irritation. The use of SYN3 thus provides this further benefit of avoiding this toxicity. Connor, et al.,Gene Therapy, Vol. 8, pp. 41-48 (2001).
- A further aspect of the invention is that the stability of the vector is unaffected by combination with the SYN3. Often, surfactant levels required to improved transduction may impart instability to the vector. Combination of the adenovirus and SYN3 preparations produces a more potent admixture compared with adenovirus.
- Buffered and lyophilized aqueous formulations as well as nonaqueous solution formulations of SYN3 were produced. SYN3, is (N-(3-cholamidopropyl)-N-(3 (actobionamidopropyl))—cholamide (FIG. 1). As will be apparent to those of skill in the art, SYN3 exists in various optical, tautomeric, stereoisomeric and isomeric forms. FIG. 1 illustrates a preferred isomer. However, the compositions of the present invention encompass all such forms in any percentage or racemic mixture thereof.
- SYN3 is a surfactant-like molecule that enhances transduction of recombinant adenovirus/therapeutic gene vectors for treatment of epithelial tissue and tumors, or, more specifically, in bladder tumors. SYN3 can be present in a concentration of from about 0.001 mg/ml to about 150 mg/ml.
- The term “therapeutic transgene” refers to a nucleotide sequence the expression of which in the target cell produces a therapeutic effect. The term therapeutic transgene includes but is not limited to tumor suppressor genes, antigenic genes, cytotoxic genes, cytostatic genes, pro-drug activating genes, apoptotic genes, pharmaceutical genes or anti-angiogenic genes. The vectors of the present invention may be used to produce one or more therapeutic transgenes, either in tandem through the use of IRES elements or through independently regulated promoters.
- The term “tumor suppressor gene” refers to a nucleotide sequence, the expression of which in the target cell is capable of suppressing the neoplastic phenotype and/or inducing apoptosis. Examples of tumor suppressor genes useful in the practice of the present invention include the p53 gene, the APC gene, the DPC-4 gene, the BRCA-1 gene, the BRCA-2 gene, the WT-1 gene, the retinoblastoma gene (Lee, et al.,Nature, 329:642 (1987)), the MMAC-1 gene, the adenomatous polyposis coli protein (Albertsen, et al., U.S. Pat. No. 5,783,666 issued Jul. 21, 1998), the deleted in colon carcinoma (DCC) gene, the MMSC-2 gene, the NF-1 gene, nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3. (Cheng, et al., Proc. Nat. Acad. Sci., 95:3042-3047 (1998)), the MTS1 gene, the CDK4 gene, the NF-1 gene, the NF2 gene, and the VHL gene.
- The term “antigenic genes” refers to a nucleotide sequence, the expression of which in the target cells results in the production of a cell surface antigenic protein capable of recognition by the immune system. Examples of antigenic genes include carcinoembryonic antigen (CEA), p53 (as described in Levine, A. PCT International Publication No. WO94/02167 published Feb. 3, 1994). In order to facilitate immune recognition, the antigenic gene may be fused to the MHC class I antigen.
- The term “cytotoxic gene” refers to nucleotide sequence, the expression of which in a cell produces a toxic effect. Examples of such cytotoxic genes include nucleotide sequences encoding pseudomonas exotoxin, ricin toxin, diptheria toxin, and the like.
- The term “cytostatic gene” refers to nucleotide sequence, the expression of which in a cell produces an arrest in the cell cycle. Examples of such cytostatic genes include p21, the retinoblastoma gene, the E2F-Rb gene, genes encoding cyclin dependent kinase inhibitors such as P16, p15, p18 and p19, the growth arrest specific homeobox (GAX) gene as described in Branellec, et al. (PCT Publication WO97/16459 published May 9, 1997 and PCT Publication WO96/30385 published Oct. 3, 1996).
- The term “cytokine gene” refers to a nucleotide sequence, the expression of which in a cell produces a cytokine. Examples of such cytokines include GM-CSF, the interleukins, especially IL-1, IL-2, IL-4, IL-12, IL-10, IL-19, IL-20, interferons of the alpha, beta and gamma subtypes especially interferon α-2b and fusions such as interferon α-2α-1.
- The term “chemokine gene” refers to a nucleotide sequence, the expression of which in a cell produces a cytokine. The term chemokine refers to a group of structurally related low-molecular cytokines weight factors secreted by cells are structurally related having mitogenic, chemotactic or inflammatory activities. They are primarily cationic proteins of 70 to 100 amino acid residues that share four conserved cysteine. These proteins can be sorted into two groups based on the spacing of the two amino-terminal cysteines. In the first group, the two cysteines are separated by a single residue (C-x-C), while in the second group, they are adjacent (C—C). Examples of member of the ‘C-x-C’ chemokines include but are not limited to platelet factor 4 (PF4), platelet basic protein (PBP), interleukin-8 (IL-8), melanoma growth stimulatory activity protein (MGSA), macrophage inflammatory protein 2 (MIP-2), mouse Mig (ml 19), chicken 9E3 (or pCEF-4), pig alveolar macrophage chemotactic factors I and I (AMCF-I and -II), pre-B cell growth stimulating factor (PBSF),and IP10. Examples of members of the ‘C—C’ group include, but are not limited to, monocyte chemotactic protein 1 (MCP-1), monocyte chemotactic protein 2 (MCP-2), monocyte chemotactic protein 3 (MCP-3), monocyte chemotactic protein 4 (MCP-4), macrophage inflammatory protein 1 alpha (MIP-1-alpha), macrophage inflammatory protein 1 beta (MIP-1-beta), macrophage inflammatory protein I gamma (MIP-1-gamma), macrophage inflammatory protein 3 alpha (MIP-3-alpha, macrophage inflammatory protein 3 beta (MIP-3-beta), chemokine (ELC), macrophage inflammatory protein 4 (MIP-4), macrophage inflammatory protein 5 (MIP-5), LD78 beta, RANTES, SIS-epsilon (p500), thymus and activation-regulated chemokine (TARC), eotaxin, 1-309, human protein HCC-1/NCC-2, human protein HCC-3, mouse protein C10.
- The term “pharmaceutical protein gene” refers to nucleotide sequence, the expression of which results in the production of protein have pharmaceutically effect in the target cell. Examples of such pharmaceutical genes include the proinsulin gene and analogs (as described in PCT International Patent Application No. WO98/31397, growth hormone gene, dopamine, serotonin, epidermal growth factor, GABA, ACTH, NGF, VEGF (to increase blood perfusion to target tissue, induce angiogenesis, PCT publication WO98/32859 published Jul. 30, 1998), thrombospondin etc.
- The term “pro-apoptotic gene” refers to a nucleotide sequence, the expression thereof results in the programmed cell death of the cell. Examples of pro-apoptotic genes include p53, adenovirus E3-11.6K, the adenovirus E4 or f4 gene, p53 pathway genes, and genes encoding the caspases.
- The term “pro-drug activating genes” refers to nucleotide sequences, the expression of which, results in the production of protein capable of converting a nontherapeutic compound into a therapeutic compound, which renders the cell susceptible to killing by external factors or causes a toxic condition in the cell. An example of a prodrug activating gene is the cytosine deaminase gene. Cytosine deaminase converts 5-fluorocytosine to 5 fluorouracil, a potent antitumor agent). The lysis of the tumor cell provides a localized burst of cytosine deaminase capable of converting 5FC to 5FU at the localized point of the tumor resulting in the killing of many surrounding tumor cells. This results in the killing of a large number of tumor cells without the necessity of infecting these cells with an adenovirus (the so-called bystander effect”). Additionally, the thymidine kinase (TK) gene (see e.g. Woo, et al. U.S. Pat. No. 5,631,236 issued May 20, 1997 and Freeman, et al. U.S. Pat. No. 5,601,818 issued Feb. 11, 1997) in which the cells expressing the TK gene product are susceptible to selective killing by the administration of gancyclovir may be employed.
- The term “anti-angiogenic” genes refers to a nucleotide sequence, the expression of which results in the extracellular secretion of anti-angiogenic factors. Anti-angiogenesis factors include angiostatin, inhibitors of vascular endothelial growth factor (VEGF) such as Tie 2 (as described in PNAS(USA)(1998) 95:8795-8800), endostatin.
- It will be readily apparent to those of skill in the art that modifications and or deletions to the above referenced genes so as to encode functional subfragments of the wild type protein may be readily adapted for use in the practice of the present invention. For example, the reference to the p53 gene includes not only the wild type protein but also modified p53 proteins. Examples of such modified p53 proteins include modifications to p53 to increase nuclear retention as described in Wahl, et al.,Nat. Cell Biol., 3(12):E277-86 (2001), deletions such as the delta13-19 amino acids to eliminate the calpain consensus cleavage site, modifications to the oligomerization domains (as described in Bracco, et al. PCT published application WO97/0492 or U.S. Pat. No. 5,573,925).
- It will be readily apparent to those of skill in the art that the above therapeutic genes may be secreted into the media or localized to particular intracellular locations by inclusion of a targeting moiety such as a signal peptide or nuclear localization signal(NLS). Also included in the definition of therapeutic transgene are fusion proteins of the therapeutic transgene with the herpes simplex virus type 1 (HSV-1) structural protein, VP22. Fusion proteins containing the VP22 signal, when synthesized in an infected cell, are exported out of the infected cell and efficiently enter surrounding noninfected cells to a diameter of approximately 16 cells wide. This system is particularly useful in conjunction with transciptionally active proteins (e.g. p53) as the fusion proteins are efficiently transported to the nuclei of the surrounding cells. See, e.g. Elliott, G. & O'Hare,P. Cell., 88:223-233 (1997); Marshall, A. & Castellino, A. Research News Briefs., Nature Biotechnology, 15:205 (1997); O'Hare, et al. PCT publication WO97/05265 published Feb. 13, 1997. A similar targeting moiety derived from the HIV Tat protein is also described in Vives, et al., J. Biol. Chem., 272:16010-16017 (1997).
- As used herein, “a gene delivery system” refers to any means of delivery of a therapeutic gene to a particular epithelial tissue or organ including, for example, recombinant viral vectors and nonviral vector systems. Examples of nonvector systems include, but are not limited to, any lipid-based, lipid encapsulated DNA or cationic lipid/DNA complexes. Examples of recombinant viral vectors include, but are not limited to, herpes virus, retrovirus, vaccinia virus, adenovirus, and adenoassociated viruses.
- “Recombinant” refers to nucleic acids and protein encoded by them wherein the nucleic acids are constructed by methods of recombinant DNA technology, also termed “genetic engineering”. A preferred recombinant viral vector is the adenoviral vector delivery system which has a deletion of the protein IX gene. See International patent Application WO 95/11984, which is herein incorporated by reference in its entirety. The recombinant vector delivery system comprising a therapeutic gene, such as a tumor suppressor gene, is formulated in a buffer that stabilizes the vector and is combined with a delivery enhancing agent that is compatible with the vector.
- A “delivery-enhancing agent” refers to any agent which enhances delivery of a therapeutic gene, such as a tumor suppressor gene to a cancerous tissue or organ. Such enhanced delivery may be achieved by various mechanisms. One such mechanism may involve the disruption of the protective glycosaminoglycan layer on the epithelial surface of the bladder.
- Examples of such delivery-enhancing agents are detergents, alcohols, glycols, surfactants, bile salts, heparin antagonists, cyclooxygenase inhibitors, hypertonic salt solutions, and acetates. Alcohols include, for example, the aliphatic alcohols such as ethanol, N-propanol, isopropanol, butyl alcohol, acetyl alcohol. Glycols include, for example, glycerol, propyleneglycol, polyethyleneglycol, and thioglycerol. Acetates such as acetic acid, gluconol acetate, and sodium acetate are further examples of delivery-enhancing agents. Hypertonic salt solutions like 1M NaCl are also examples of delivery-enhancing agents. Examples of surfactants are sodium dodecyl sulfate (SDS) and lysolecithin, polysorbate 80, nonylphenoxypolyoxyethylene, lysophosphatidylcholine, polyethylenglycol 400, polysorbate 20, polyoxyethylene ethers, and polyglycol ether surfactants. Bile salts such as taurocholate, sodium tauro-deoxycholate, deoxycholate, chenodesoxycholate, glycocholic acid, glycochenodeoxycholic acid and other astringents like silver nitrate may be used. Heparin-antagonists like quaternary amines such as protamine sulfate may also be used. Cyclooxygenase inhibitors such as sodium salicylate, salicylic acid, and nonsteroidal antiinflammatory drug (NSAIDS) like indomethacin, naproxen, diclofenac may be used.
- The term “enhanced” describes the increased delivery of the therapeutic gene, such as a tumor suppressor gene, to the cancerous tissue or organ. Increased delivery of a therapeutic gene, such as a tumor suppressor gene, can be measured by various means, for example by measuring expression of the tumor suppressor gene compared to expression levels when the tumor suppressor gene is delivery in an adenoviral vector delivery system in a buffer lacking the delivery-enhancing agent. Examples of therapeutic genes are tumor suppressor genes and the suicide gene thymidine kinase. Examples of tumor suppressor genes include, but are not limited to, p53, the retinoblastoma gene, either full length, such as p110B, or fragments thereof such as p94RB or p56RB, Rb56, a functional variant of Rb gene, a functional variant of the p53 gene, and p16. Other therapeutic genes include but are not limited to CFTR, genes encoding cytokines (such as the interferons alpha, beta, gamma, delta, interleukins (e.g., IL-4, IL-10, IL-2), GM-CSF, and any other genes encoding proteins which have therapeutic potential in the treatment of noncancerous diseases of the bladder such as cystitis. In some embodiments of the invention, the therapeutic gene encodes antisense RNA.
- In some embodiments, the compositions of the invention comprise a therapeutically effective amount of a therapeutic gene, such as a tumor suppressor gene, contained in a recombinant viral vector delivery system in a buffer comprising a delivery-enhancing agent. “Therapeutically effective” as used herein refers to the prevention of, reduction of, or curing of symptoms associated with a disease state.
- Therapeutically effective amounts of the pharmaceutical composition comprising a therapeutic gene, such as p53, or the retinoblastoma tumor suppressor gene, in a recombinant viral vector delivery system formulated in a buffer comprising a delivery-enhancing agent will be administered in accord with the teaching of this invention. For example, therapeutically effective amounts of the p53 tumor suppressor gene in the recombinant adenoviral vector delivery system formulated in a buffer containing a delivery-enhancing agent are in the range of about 1×10 particles/ml to 2×1012 particles/ml, more typically about 1×108 particles/ml to 9×1011 particles/ml, most typically 1×1010 particles/ml to 9×1011 particles/ml.
- P53, also known as ACN53, is a recombinant adenovirus type 5 encoding wild-type p53 tumor suppressor protein, and is described in, for example, PCT patent application WO95/11984. In one aspect of the invention, the formulated SYN3 is combined with p53 injection and the admixture is instilled into the bladder. This preparation is intended to treat epithelial carcinomas. Preferably, p53 will be present in an amount of about 5 to about 8×1013 particles.
- Detergents for use within the scope of the present invention include, for example, anionic, cationic, zwitterionic, and nonionic detergents. Exemplary detergents include, for example, but are not limited to taurocholate, deoxycholate, taurodeoxycholate, cetylpyridium, benalkonium chloride, ZWITTERGENT 3-14 detergent, CHAPS (3-[(3-Cholamidopropyl)dimethylammoniol]-1-propanesulfonate hydrate, available from Aldrich, Big CHAP, Deoxy Big CHAP, TRITON-X-100 detergent available from Union Carbide, C12E8, Octyl-B-D-Glucopyranoside, PLURONIC-F64, PLURONIC-F68, PLURONIC-F69 detergents available form BASF, TWEEN20 detergent, and TWEEN80 detergent available from ICI.
- In an embodiment, the delivery-enhancing agent is included in the buffer in which the recombinant adenoviral vector delivery system is formulated. The delivery-enhancing agent may be administered prior to the recombinant virus or concomitant with the virus. In some embodiments, the delivery-enhancing agent is provided with the virus by mixing a virus preparation with a delivery-enhancing agent formulation just prior to administration to the patient. In other embodiments, the delivery-enhancing agent and virus are provided in a single vial to the caregiver for administration.
- In the case of a pharmaceutical composition comprising a tumor suppressor gene contained in a recombinant adenoviral vector delivery system formulated in a buffer which further comprises a delivery-enhancing agent, the pharmaceutical composition may be administered over time in the range of about 5 minutes to 3 hours, preferably about 10 minutes to 120 minutes, and preferably about 15 minutes to 90 minutes. In another embodiment the delivery-enhancing agent may be administered prior to administration of the recombinant adenoviral vector delivery system containing the tumor suppressor gene. The prior administration of the delivery-enhancing agent may be in the range of about 30 seconds to 1 hour, preferably about 1 minute to 10 minutes, and preferably about 1 minute to 5 minutes prior to administration of the adenoviral vector delivery system containing the tumor suppressor gene.
- Solvents that may be used for the formulations of the present invention include, for example, aqueous solvents such as water for injection, and/or nonaqueous solvents, such as DMSO and N,N-Dimethyylacetamide, also known as DMA, and co-solvent mixtures, e.g., glycerol and water, as prepared preferably in accordance with USP standards.
- The formulations preferably contain polysorbates, or polyoxyethylene sorbitan esters, a class of nonionic surfactants that included, e.g., polysorbate 80 and polysorbate 20, amongst others, Pluronics, or polyethylenepolypropylene glycol block copolymers, a class of nonionic surfactants, that include e.g. Pluronic L68 and L92, amongst others, and hydroxypropyl-beta-cyclodextrin, a polysubstituted hydroxyalkyl-beta-cyclodextrin, which is a class of nonionic complexing agents, that include, e.g., HPβCD and BigCHAP. Preferred are HPβCD, BigCHAP, Polysorbate 80, Polysorbate 20, Pluronic L64, and Pluronic L92 as solubilizing agents. The solubilizers can be used, for example, either individually or in combinations. The concentrations of the solubilizing agents are set forth below. HPβCD can be present in a concentration of about 50 to 500 mg/ml, BigCHAP can be present in a concentration of about 20 to about 360 mg/ml, Polysorbate 80 can be present in a concentration of about 1 to 36 mg/ml, the Pluronics can be present in concentrations of about 1 to about 150 mg/ml, and the other ingredients may be present in concentrations as set forth below.
- The concentration of the delivery-enhancing agent will depend on a number of factors known to one of ordinary skill in the art such as the particular delivery-enhancing agent being used, the buffer, pH, target tissue or organ and mode of administration. The concentration of the delivery-enhancing agent will be in the range of 0.01% to 50% (w/v), preferably 10% to 40% (w/v), preferably 14% to 19% (w/v), and preferably 0.01% to 30% (w/v). Preferably, the detergent concentration will be about 1% to 12% (w/v) in the formulation prior to admixture, and preferably 0.1% (w/v) of the formulation when in admixture. Preferably, the detergent concentration in the final formulation administered to the patient is about 0.5-2 times the critical micellization concentration (CMC). The CMC is equal to 0.001 mg/ml in the recombinant adenovirus formulation.
- The lyophilized formulations of SYN3 preferably contain a citrate buffering system. More preferably, the citrate buffering system can comprise at least one citric buffer, such as citric acid monohydrate USP or sodium citrate dihydrate USP. More preferably, the citrate buffering system comprises a combination of citric acid monohydrate USP and sodium citrate dihydrate USP. When used in combination, the amount of citric acid monohydrate USP can be present in a concentration of about 0.005 to about 2 mg/ml, more preferably 0.016 to about 1.35 mg/ml, preferably 0.016 to about 0.72 mg/ml, preferably about 0.005 to about 1.35, and the sodium citrate dihydrate USP can be present in a concentration of about 0.02 to about 5.37 mg/ml, preferably 0.05 to 3.00 mg/ml, preferably 0.05 to 2.31 mg/ml. Other suitable buffering systems that are suitable include, for example, phosphate, glycine, either in place of the citrate buffering system or in combination therewith, and varying combinations of all of the above.
- The buffering system will provide a pH of the lyophilized formulation such that there is improved stability. Preferably, the pH will be in a range of about 5 to about 6. The admixture aqueous formulations of SYN3 are preferably buffered at about a pH of about 7 to about 8.5, preferably about 7.4, and SYN3 remains stable in the dehydrated powder for at least 3 months at 40° C.
- The lyophilized formulations preferably contain glycine or mannitol as freeze-drying bulking agents. Other suitable freeze-drying bulking agents that may be used include, for example, lactose, recombinant gelatin, and methylcellulose. The freeze drying-bulking agent may be present in a concentration of from about 5 to 100 mg/ml when the agent is mannitol, and about 10 to 200 mg/ml when the agent is glycine.
- The lyophilized formulations preferably contain ascorbic acid as an antioxidant. Other suitable antioxidants that may be used include, for example, citric acid. When ascorbic acids is the antioxidant, it may be present in a concentration of about 0.001 to about 0.6 mg/ml.
- The compositions of this invention may additionally include, for example, a stabilizer, enhancer or other pharmaceutically acceptable carriers or vehicles. A pharmaceutically acceptable carrier can contain a physiologically acceptable compound that acts, for example, to stabilize the recombinant adenoviral vector delivery system comprising the tumor suppressor gene A physiologically acceptable compound can include, for example, carbohydrates, such as glucose, sucrose or dextrans, Hydroxypropyl-β-Cyclodextrin, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients.
- Other physiologically acceptable compounds include, for example, wetting agents, emulsifying agents, dispersing agents or preservatives, which are particularly useful for preventing the growth or action of microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. One skilled in the art would know that the choice of pharmaceutically acceptable carrier, depends on the route of administration and the particular physiochemical characteristics of the recombinant adenoviral vector delivery system and the particular tumor suppressor gene contained therein. Examples of carriers, stabilizers or adjuvants can be found in Gennaro, Remington's:The Science and Practice of Pharmacy, 19th Ed. (Mack Publishing. Co., Easton, Pa. 1995), incorporated herein by reference.
- The recombinant viral vector delivery system comprising a therapeutic gene formulated in a buffer comprising a delivery-enhancing agent may be delivered to any cancerous tissue or organ using any delivery method known to the ordinarily skilled artisan for example, intratumoral or intravesical administration. Cancerous tissues and organs include, for example, any tissue or organ having an epithelial membrane such as the gastrointestinal tract, the bladder, respiratory tract, and the lung. Examples include but are not limited to carcinoma of the bladder and upper respiratory tract, vulva, cervix, vagina or bronchi; local metastatic tumors of the peritoneum; broncho-alveolar carcinoma; pleural metastatic carcinoma; carcinoma of the mouth and tonsils; carcinoma of the nasopharynx, nose, larynx, oesophagus, stomach, colon and rectum, gallbladder, or skin; or melanoma.
- The delivery-enhancing agents of the invention can also be used to formulate other pharmaceutical agents, such as proteins, nucleic acids, antisense RNA, small molecules, etc., for administration to any tissue or organ having an epithelial membrane.
- Administration of Formulations
- In some embodiments, the delivery-enhancing agent is included in the buffer in which an expression vector is formulated. The delivery-enhancing agent can be administered prior to the expression vector or concomitant with the expression vector. In some embodiments, the delivery-enhancing agent is provided with the expression vector by mixing an expression vector with a delivery-enhancing agent formulation just prior to administration to the patient. In other embodiments, the delivery-enhancing agent and the expression vector are provided in a single vial to the caregiver for administration.
- In the case of a pharmaceutical composition comprising a tumor suppressor gene contained in a recombinant adenoviral vector delivery system formulated in a buffer which further comprises a delivery-enhancing agent, the pharmaceutical composition can be administered over time in the range of about 5 minutes to 3 hours, preferably about 10 minutes to 120 minutes, and most preferably about 15 minutes to 90 minutes. In another embodiment the delivery-enhancing agent may be administered prior to administration of the recombinant adenoviral vector delivery system containing the tumor suppressor gene. The prior administration of the delivery-enhancing agent may be in the range of about 30 seconds to 1 hour, preferably about 1 minute to 10 minutes, and most preferably about 1 minute to 5 minutes prior to administration of the adenoviral vector delivery system containing the tumor suppressor gene.
- The expression vector formulated in a buffer comprising a delivery-enhancing agent can be delivered to any tissue or organ, including neoplastic tissues such as cancer tissue, using any delivery method known to the ordinarily skilled artisan for example, intratumoral or intravesical administration. Tissues and organs include any tissue or organ having an epithelial membrane such as the gastrointestinal tract, the bladder, respiratory tract, and the lung. Examples include but are not limited to carcinoma of the bladder and upper respiratory tract, vulva, cervix, vagina or bronchi; local metastatic tumors of the peritoneum; broncho-alveolar carcinoma; pleural metastatic carcinoma; carcinoma of the mouth and tonsils; carcinoma of the nasopharynx, nose, larynx, oesophagus, stomach, colon and rectum, gallbladder, or skin; or melanoma.
- In some embodiments of the invention, an expression vector is formulated in mucosal, topical, and/or buccal formulations, particularly mucoadhesive gel and topical gel formulations. Exemplary permeation enhancing compositions, polymer matrices, and mucoadhesive gel preparations for transdermal delivery are disclosed in U.S. Pat. No. 5,346,701. Such formulations are especially useful for the treatment of cancers of the mouth, head and neck cancers (e.g., cancers of the tracheobronchial epithelium) skin cancers (e.g., melanoma, basal and squamous cell carcinomas), cancers of the intestinal mucosa, vaginal mucosa, and cervical cancer.
- In some embodiments of the invention, a therapeutic agent is formulated in ophthalmic formulations for administration to the eye. Such formulations are useful in the delivery of the retinoblastoma (RB) gene to the eye, optionally in conjunction with the delivery of p53.
- Methods of Treatment
- The composition of the invention are typically administered to enhance transfer of gene to a cell. The cell can be provided as part of a tissue, such as an epithelial membrane, or as an isolated cell, such as in tissue culture. The cell can be provided in vivo, ex vivo, or in vitro.
- The compositions can be introduced into the tissue of interest in vivo or ex vivo by a variety of methods. In some embodiments of the invention, the modulating agent is introduced to cells by such methods as microinjection, calcium phosphate precipitation, liposome fusion, or biolistics. In further embodiments, the therapeutic agent is taken up directly by the tissue of interest.
- In some embodiments of the invention, the compositions of the invention are administered ex vivo to cells or tissues explanted from a patient, then returned to the patient. Examples of ex vivo administration of therapeutic gene constructs include Arteaga et al., Cancer Research 56(5):1098-1103 (1996); Nolta et al., Proc Natl. Acad. Sci. USA 93(6):2414-9 (1996); Koc et al., Seminars in Oncology 23 (1):46-65 (1996); Raper et al., Annals of Surgery 223(2):116-26 (1996); Dalesandro et al., J. Thorac. Cardi. Surg., 11(2):416-22 (1996); and Makarov et al., Proc. Natl. Acad. Sci. USA 93(1):402-6 (1996).
- The following examples will further illustrate the present invention.
- The following table represents ranges of the ingredients for nonaqueous liquid formulations of the present invention. Prior to administration (for bladder cancer), the SYN3 solution is combined with the recombinant adenovirus preparation in a 1:50 v/v ratio to form an admixture that is administered to the patient.
Range of Ingredient Concentrations Ingredient mg/ml mg/ml mg/ml mg/ml SYN3 0.001-150 0.001-150 0.001-150 0.001-150 Polysorbate 20 0.001-150 Polysorbate 80 0.001-150 Pluronic L64 0.001-100 Pluronic L92 0.001-100 N,N-Dimethylacetamide 1 ml 1 ml 1 ml 1 ml qs ad - To prepare, weigh approximately 75% of DMA into a glass beaker. To a separate beaker, charge the surfactant (Polysorbate 80, Polysorbate 20, Pluronic L64 or Pluronic L92) and dissolve in a small volume (approximately 10% of final volume) of DMA. Charge the DMA/surfactant solution into the DMA with constant stirring. Preweigh SYN3 in a separate container. Slowly charge the SYN3 into the solution while stirring. Once the SYN3 is dissolved, add sufficient DMA to final volume by weight (density=0.962 g/ml at 25° C.). Filter the solution through a 0.22 filter attached to a syringe equipped with a nonlatex plunger and store the solution in a tightly sealed glass container at 4° C.
- The following Examples may be prepared in accordance with Example 1.
-
Ingredient mg/ml SYN3 51 Polysorbate 20 50 N,N-Dimethylacetamide qs ad 1 ml -
Ingredient mg/ml SYN3 51 Polysorbate 80 50 N,N-Dimethylacetamide qs ad 1 ml -
Ingredient mg/ml SYN3 51 Pluronic L64 25 N,N-Dimethylacetamide qs ad 1 ml -
Ingredient mg/ml SYN3 51 Pluronic L92 25 N,N-Dimethylacetamide qs ad 1 ml - The following 25 ml batches were prepared according to the same procedure.
-
Ingredient mg/ml SYN3 1.275 Polysorbate 20 1.250 N,N-Dimethylacetamide qs ad 25 ml -
Ingredient mg/ml SYN3 1.275 Polysorbate 80 1.250 N,N-Dimethylacetamide qs ad 25 ml -
Ingredient mg/ml SYN3 1.275 Pluronic L64 0.625 N,N-Dimethylacetamide qs ad 25 ml -
Ingredient mg/ml SYN3 1.275 Pluronic L92 0.625 N,N-Dimethylacetamide qs ad 25 ml - The following is a stability analysis of Examples 2, 3, 4, and 5.
-
T° −20° C. 4° C. 25° C. 55° C. −80° C. Ex. No. 2 1 week 52.22 52.15 52.38 51.36 52.31 2 week 52.16 52.14 52.38 52.68 3 week 51.92 52.38 51.98 51.46 4 week 52.1 52.63 52.28 51.15 Ex. No. 3 1 week 51.9 53.75 53.09 52.98 53.33 2 week 53.46 52.9 51.98 51.75 3 week 52.64 53.35 53.41 50.6 4 week 53.41 52.96 53.85 55.81 Ex. No. 4 1 week 51.34 53.94 53.68 53.76 53.98 2 week 53.3 53.43 53.76 52.23 3 week 53.14 52.56 52.35 4 week 53.72 53.67 54.2 53.42 Ex. No. 5 1 week 52.34 52.16 52.43 51.48 52.33 2 week 51.64 51.5 51.39 52.18 3 week 52.28 52.56 53.73 53.01 4 week 53.49 53.49 53.67 53.73 - Stability testing was accomplished by HPLC. Solution formulations were placed in the indicated temperature conditions, incubated for specified times and concentrations were determined by HPLC and compared to initial concentrations (−80° C.). The nonaqueous, solution formulations of SYN3 remain stable for at least 1 month at 55° C. when SYN3 is dissolved in N,N-Dimethylacetamide (DMA).
- The following table represents ranges of the ingredients for lyophilized formulations of the present invention. The compounded solution is filled as indicated into a 20-ml capacity Type II glass vial and lyophilized. Preparation for administration requires addition of 20 ml of WFI to the vial containing the freeze-dried cake to redissolve the SYN3. The SYN3 solution is combined with p53, or any recombinant adenovirus preparation, in a v/v ratio of 1:5. The admixture is then administered to the patient for, for instance, bladder cancer.
Range of Concentrations INGREDIENT mg/ml mg/ml mg/ml SYN3 0.001-150 0.001-150 0.001-150 Citric Acid Monohydrate 0.016-0.72 0.016-0.96 0.005-1.35 Sodium Citrate Dihydrate 0.05-2.31 0.05-3 0.02-5.37 Hydroxypropyl-β-cyclodextrin — 50-500 — BigCHAP 20-360 — — Glycine 10-200 — — Mannitol — — 5-100 Polysorbate 80 — 1.0-36.0 10-200 Ascorbic Acida 0.001-0.6 0.001-0.6 — Water for Injection (WFI) qs 1 ml 1 ml 1 ml ad PH Range 5-6 5-6 5-6 ml Fill into 20-ml vialb 5.3 5.3 5.3 Reconstitution Volume 20 ml 20 ml 20 ml of WFIc - The following examples are methods of preparing the lyophilized formulations.
-
Ingredient Grams/Liter SYN3 24 Citric Acid Monohydrate USP 0.24 Sodium Citrate Dihydrate USP 0.77 Big CHAP 120 Glycine USP 50 Ascorbic Acid USP 0.25 Water for Injection USP qs ad 1000 ml - The actual amount of SYN3 to be charged will be adjusted according to the purity of the drug substance batch using the following formula:
- grams SYN3=24.0×100/(% Purity).
- For example:
- SYN3 drug substance=97.0% pure.
- 24.0×100/97.0=24.7 grams SYN3 to be charged for a 1-Liter batch.
- Accordingly, to determine the amount of SYN3 that will be charged to the batch according to the following formula:
- g SYN3/Liter=24.0 g/Liter×[100/(% SYN3 Batch Purity)]
- The volume of Water for Injection to be charged to the batch is to be determined according to the following formula:
- Volume of Water for Injection (Liters)=Batch Volume (Liters)×0.5
- Charge the volume of water for injection calculated using the formula above into a tared compounding vessel equipped with an agitator. Charge and dissolve, with agitation, the BigCHAP. Sterile Water for Injection may be used to rinse the weighing vessel to retrieve all of the material. Complete dissolution of BigCHAP may require approximately 30 to 60 minutes of continuous agitation at a moderate stirring rate. Charge and dissolve with agitation (moderate stirring rate) the SYN3 into the BigCHAP solution. Water for Injection may be used to rinse the weighing vessel to retrieve all of the material. Complete dissolution of SYN3 may require up to 1 hour of mixing. Charge and dissolve with agitation and in order: Glycine, Ascorbic Acid, Citric Acid Monohydrate and Sodium Citrate Dihydrate into the solution that contains both Big CHAP and SYN3. Water for Injection may be used to rinse the weighing vessels to retrieve all of the material. Add Water for Injection to bring the batch to the final volume (density of the solution is approximately 1.05 1 g/ml at 25° C.). Mix the solution for a minimum of 15 minutes.
- Remove a small (<5 ml) sample of the solution for pH measurement. The pH should be between 5.0 and 6.0. No pH adjustment is necessary. One of ordinary skill in the art can readily ascertain the pH of the resulting product.
- To complete compounding, aseptically filter the solution. If necessary, the compounded batch may be stored at 2° C. to 8° C. for up to 24 hours in a sealed, sterilized, stainless steel pressure vessel prior to filling into the vials. The batch may be filtered more than once to assure sterility.
- Aseptically fill 5.3±0.1 ml of solution into 20-ml Type 1 flint glass vials that have been washed and sterilized. Aseptically insert 20-mm West 4416/50 lyo-shape rubber stoppers that have been washed, siliconized and sterilized into the vials in the lyophilization position.
- Precool the lyophilizer shelves to 4±2° C. Aseptically load the trays of filled vials onto the lyophilizer shelves. After all the trays are loaded, cool the shelves to −40° C. in 1 hour and maintain the product at −35° C. or below for at least 4 hours before proceeding. Start cooling the condenser. When the condenser temperature is at −45° C. or below, begin evacuating the chamber. When 50-70 mm Hg of vacuum pressure is attained, heat the shelf temperature to −20° C. over 0.5 hour. Maintain the shelf temperature at −20° C. for 36 hours at approximately 150 mm Hg pressure (100 to 200 mm Hg pressure). Product temperature must remain at or above −20° C. for at least 6 hours before proceeding. Heat the shelf to 25° C. in 1 hour and reduce pressure to approximately 50 mm Hg pressure. Maintain the shelf temperature at 25° C. at approximately 50 mm Hg pressure for 14 hours. Vent the chamber with sterile filtered nitrogen to approximately 950 mm Hg. Stopper the vials inside the lyophilizer. Remove the vials from the lyophilizer and crimp the vials with 20-mm aluminum seals. The vials should be stored at 2° C. to 8° C. until inspection is completed.
- The product is a white to off-white cake. The vials should be stored between 2° C. to 8° C. after inspection. For labeling and inspection purposes, the vials may be exposed to 19° C.-25° C. for up to 6 hours.
- The following examples were prepared in accordance with the batch preparation as set forth in Example 12 above.
-
Ingredient mg/ml SYN3 24 Citric Acid Monohydrate USP 0.24 Sodium Citrate Dihydrate USP 0.77 Big CHAP 120 Glycine USP 50 Ascorbic Acid USP 0.25 Water for Injection USP qs ad 1 Ml - The pH of the resulting product was 5.34.
Ingredient mg/ml SYN3 24 Citric Acid Monohydrate USP 0.32 Sodium Citrate Dihydrate USP 1.02 HPβCD 200 Polysorbate 80 12 Ascorbic Acid USP 0.25 Water for Injection USP qs ad 1 ml - The pH of the resulting product was 5.45.
-
Ingredient mg/ml SYN3 24 Citric Acid Monohydrate USP 0.45 Sodium Citrate Dihydrate USP 1.79 Mannitol 30 Polysorbate 80 72 Water for Injection USP qs ad 1000 ml - The pH of the resulting product was 5.76.
- Stability testing of the resultant lyophilized products of Examples 13, 14 and 15 yielded the following results:
-
EXAMPLES 13 14 15 CONDITION mg/ml mg/ml mg/ml Initial 6.05 5.89 6.06 2 weeks −20° C. 6.02 6.04 6.28 2 weeks 4° C. 6.17 5.98 6.17 2 weeks 25° C. 6.14 5.91 6.62 2 weeks 40° C. 5.87 5.78 6.32 4 weeks −20° C. 6.81 5.71 6.11 4 weeks 4° C. 6.75 6.63 6.75 4 weeks 25° C. 6.81 6.40 6.92 4 weeks 40° C. 6.73 6.66 6.58 12 weeks 4° C. 6.74 6.66 6.74 12 weeks 25° C. 6.74 6.45 6.72 12 weeks 40° C. 6.61 6.52 6.71 - Stability testing was accomplished by HPLC. Lyophilized formulations were reconstituted (redissolved) with 19.5 ml WFI. Samples were placed in the indicated temperature conditions, incubated for specified times and concentrations were determined by HPLC and compared to initial concentrations.
-
Ingredient mg/ml SYN3 24.0 Citric Acid Monohydrate USP 0.32 Sodium Citrate Dihydrate USP 1.02 Hydroxypropyl-β-cyclodextrin 200 Polysorbate 80 12.0 Ascorbic Acid USP 0.25 Water for Injection USP qs ad 1000 ml - The actual amount of SYN3 to be charged will be adjusted according to the purity of the drug substance batch using the following formula:
- grams SYN3=24.0×100/(% Purity).
- Sample Calculation:
- SYN3 drug substance=97.0% pure.
- 24.0×100/97.0=24.7 grams SYN3 to be charged for a 1-Liter batch.
- The following Example was prepared as such: Initially, determine the amount of SYN3 that will be charged to the batch according to the following formula:
- g SYN3/Liter=24.0 g/Liter×[100/(% SYN3 Batch Purity)]
- Next, determine the volume of Water for Injection to be charged to the batch according to the following formula:
- Volume of Water for Injection (Liters)=Batch Volume (Liters)×0.5
- Charge the volume of Water for Injection into a tared compounding vessel equipped with an agitator. Charge and dissolve, with agitation, the Hydroxypropyl-β-cyclodextrin. Note, complete dissolution of Hydroxypropyl-β-cyclodextrin may require approximately 30 to 45 minutes of continuous agitation at a moderate stirring speed. Water for Injection may be used to rinse weighing vessel to retrieve all of the material. Charge and dissolve the Polysorbate 80 to the solution. The Polysorbate 80 may be predissolved in 0.1× total batch volume of Water for Injection (Liters) and charged to the solution.
- Charge and dissolve with agitation the SYN3 into the solution. Complete dissolution of SYN3 may require up to 1 hour of mixing. Water for Injection may be used to rinse weighing vessel to retrieve all of the material.
- Charge and dissolve with agitation and in order: Ascorbic Acid, Citric Acid monohydrate and Sodium Citrate dihydrate into the solution. Water for Injection may be used to rinse weighing vessels to retrieve all of the material. Add the Water for Injection to bring the batch to the final volume (density of solution is 1.058 g/ml at 25° C.). Mix the solution for a minimum of 15 minutes.
- Remove a small (<5 ml) sample of the solution for pH measurement. The pH should be between 5.0 and 6.0. No pH adjustment is necessary. Aspetically filter the solution that has been washed and tested for integrity into a sterilized, stainless steel pressure vessel or equivalent should be used. If necessary, the compounded batch may be stored at 2° C. to 8° C. for up to 24 hours in a sealed, sterilized, stainless steel pressure vessel prior to filling. The batch may be filtered more than once to assure sterility.
- Aseptically fill 5.3±0.1 ml of solution into 20-ml Type 1 flint glass vials that have been washed and sterilized. Aseptically insert lyo-shape rubber that have been washed, siliconized and sterilized into the vials in the lyophilization position.
- To lyophilize, precool the lyophilizer shelves to 4±2° C. Aseptically load the trays of filled vials onto the lyophilizer shelves. After all the trays are loaded, cool the shelves to −40° C. in 1 hour and maintain the product at −35° C. or below for at least 4 hours before proceeding. Start cooling the condenser. When the condenser temperature is at −45° C. or below, begin evacuating the chamber. When 50-70 mm Hg of vacuum pressure is attained, heat the shelf temperature to −20° C. over 0.5 hour. Maintain the shelf temperature at −20° C. for 36 hours at approximately 150 mm Hg pressure (100 to 200 mm Hg pressure). Product temperature must remain at or above −20° C. for at least 6 hours before proceeding. Heat the shelf to 25° C. in 1 hour and reduce pressure to approximately 50 mm Hg pressure. Maintain the shelf temperature at 25° C. at approximately 50 mm Hg pressure for 14 hours. Vent the chamber with sterile filtered nitrogen to approximately 950 mm Hg. Stopper the vials inside the lyophilizer. Remove the vials from the lyophilizer and crimp the vials with 20-mm aluminum. The vials should be stored at 2° C. to 8° C. until inspection is completed.
- The product is a white to off-white cake. The vials should be stored between 2° C. to 8° C. after inspection. For labeling and inspection purposes, the vials may be exposed to 19° C.-25° C. for up to 6 hours.
- p53 (rAD/p53) remains stable when combined with the lyophilized formulations of SYN3 for at least 2 hours at 37° C. and 24 hours at 25° C. p53 remains stable when combined with the aqueous solution formulations of SYN3 for at least 4 hours at 37° C. and 24 hours at 25° C.
- This example illustrates the synthesis of SYN3.
- Part 1: Synthesis of Compound III
- The synthetic scheme for SYN3 is shown in FIG. 2, which is adapted from U.S. Pat. No. 6,392,069. The lactone of lactobionic acid (II) was synthesized by dissolving one g (2.8 mmol) of lactobionic acid (I) in 50 ml of methanol, evaporating to dryness on a rotary evaporator, and repeating this process six times. To obtain Compound III, the resulting residue (II) was dissolved in 50 ml of isopropanol by heating to 50° C. To this solution was added 1.2 ml (8.4 mmol) of N-3-aminopropyl)-1,2-propanediamene. The temperature was increased to 100° C., and the solution was stirred for three hours. The solvent was removed by rotary evaporation and the resulting residue was washed several times with chloroform to remove excess unreacted N-(3-aminopropyl)-1,3-propanediamene. The remaining residue (III) was used as is in Part 3 below.
- Part 2: Synthesis of Compound IV
- Compound IV was synthesized by dissolving 2.28 g of cholic acid (5.6 mmol) in N,N-dimethylformamide by heating to 60° C. Triethylamine (0.78 ml (5.6 mmol)) was added and the solution was cooled in an ice bath. Isobutyl chloroformate (0.73 ml (5.6 mmol)) was then added and a white precipitate formed as the stirring was continued for ten minutes.
- Part 3: Synthesis of SYN3 (Compound V)
- Compound III was dissolved in N, N-dimethylformamide, cooled in an ice bath, and stirred. The suspension resulting from the synthesis of Compound IV was filtered into the solution containing Compound III. The resulting solution was stirred at room temperature for 6 hrs. The solvent was removed using high vacuum rotary evaporation and the residue was dissolved in 100 ml of chloroform/methanol (50/50). Twenty-five ml of this solution was purified by silica gel flash chromatography using chloroform/methanol (60/40) as the elution solvent. Analysis of the fractions eluting from the column was conducted by silica gel thin layer chromatography using a mobile phase consisting of chloroform/methanol/water/concentrated ammonium hydroxide (100/80/10/5). The compounds were visualized by charring after spraying with ethanolic sulfuric acid. Fractions containing product were consolidated and repurified using flash chromatography and chloroform/methanol/water/concentrated ammonium hydroxide (100/80/10/5) as the elution solvent. Fractions containing product were consolidated and evaporated to a white powder (300 mg of Compound V).1H-NMR and MALDI mass spectrometric analysis of the product were consistent with the structure shown.
- As will be apparent to those skilled in the art to which the invention pertains, the present invention may be embodied in forms other than those specifically disclosed above, without departing from the spirit or essential characteristics of the invention. The particular embodiments of the invention described above, are, therefore to be considered as illustrative and not restrictive. The scope of the present invention is as set forth in the appended claims rather than being limited to the Examples contained in the foregoing description.
- It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications and patent applications cited in this specification are herein incorporated by reference in their entirety for all purposes as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
Claims (19)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/329,043 US20030170216A1 (en) | 2001-12-20 | 2002-12-20 | SYN3 compositions and methods |
US12/838,795 US9115374B2 (en) | 2001-12-20 | 2010-07-19 | SYN3 compositions and methods |
US14/798,277 US20150313926A1 (en) | 2001-12-20 | 2015-07-13 | Syn3 compositions and methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34232901P | 2001-12-20 | 2001-12-20 | |
US10/329,043 US20030170216A1 (en) | 2001-12-20 | 2002-12-20 | SYN3 compositions and methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/838,795 Continuation US9115374B2 (en) | 2001-12-20 | 2010-07-19 | SYN3 compositions and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030170216A1 true US20030170216A1 (en) | 2003-09-11 |
Family
ID=23341353
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/329,043 Abandoned US20030170216A1 (en) | 2001-12-20 | 2002-12-20 | SYN3 compositions and methods |
US12/838,795 Expired - Fee Related US9115374B2 (en) | 2001-12-20 | 2010-07-19 | SYN3 compositions and methods |
US14/798,277 Abandoned US20150313926A1 (en) | 2001-12-20 | 2015-07-13 | Syn3 compositions and methods |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/838,795 Expired - Fee Related US9115374B2 (en) | 2001-12-20 | 2010-07-19 | SYN3 compositions and methods |
US14/798,277 Abandoned US20150313926A1 (en) | 2001-12-20 | 2015-07-13 | Syn3 compositions and methods |
Country Status (13)
Country | Link |
---|---|
US (3) | US20030170216A1 (en) |
EP (1) | EP1456377B1 (en) |
JP (2) | JP4727923B2 (en) |
AU (1) | AU2002366809A1 (en) |
CA (1) | CA2470999C (en) |
CY (1) | CY1121982T1 (en) |
DK (1) | DK1456377T3 (en) |
ES (1) | ES2745068T3 (en) |
MX (1) | MXPA04005942A (en) |
PT (1) | PT1456377T (en) |
SI (1) | SI1456377T1 (en) |
TR (1) | TR201910060T4 (en) |
WO (1) | WO2003053365A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020111502A1 (en) * | 1996-01-08 | 2002-08-15 | Canji, Inc. | Compositions and methods for enhancing delivery of therapeutic agents to cells |
US20030211598A1 (en) * | 1996-01-08 | 2003-11-13 | Canji, Inc. | Compositions and methods for therapeutic use |
US20040014709A1 (en) * | 1996-01-08 | 2004-01-22 | Canji, Inc. | Methods and compositions for interferon therapy |
US20050085427A1 (en) * | 2003-06-04 | 2005-04-21 | Canji, Inc. | Transfection agents |
US20050287119A1 (en) * | 2003-12-10 | 2005-12-29 | Canji, Inc. | Methods and compositions for treatment of interferon-resistant tumors |
US20060199782A1 (en) * | 1996-01-08 | 2006-09-07 | Canji, Inc. | Compositions and methods for therapeutic use |
US11311487B2 (en) | 2016-04-14 | 2022-04-26 | Trizell Ltd. | Viral vector stabilization |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2923352C (en) * | 2013-09-19 | 2022-05-03 | Crucell Holland B.V. | Stable adenovirus formulations |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5250524A (en) * | 1990-12-06 | 1993-10-05 | Hoechst Aktiengesellschaft | Bile acid derivatives, process for their preparation and use of these compounds as pharmaceuticals |
US5264618A (en) * | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
US5789244A (en) * | 1996-01-08 | 1998-08-04 | Canji, Inc. | Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems |
US6166779A (en) * | 1999-04-27 | 2000-12-26 | Nucore Technology Inc. | Method for analog decimation of image signals |
US20010006946A1 (en) * | 1996-01-08 | 2001-07-05 | Heidrun Engler | Compositions and methods for enhancing delivery of therapeutic agents to cells |
US20040014709A1 (en) * | 1996-01-08 | 2004-01-22 | Canji, Inc. | Methods and compositions for interferon therapy |
US20050025742A1 (en) * | 1996-01-08 | 2005-02-03 | Canji, Inc. | Methods and compositions for interferon therapy |
US20050085427A1 (en) * | 2003-06-04 | 2005-04-21 | Canji, Inc. | Transfection agents |
US20050287119A1 (en) * | 2003-12-10 | 2005-12-29 | Canji, Inc. | Methods and compositions for treatment of interferon-resistant tumors |
US7002027B1 (en) * | 1996-01-08 | 2006-02-21 | Canji, Inc. | Compositions and methods for therapeutic use |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7105156B1 (en) * | 1987-09-17 | 2006-09-12 | The Regents Of The University Of California | Method of using an adenoviral vector encoding a retinoblastoma protein to treat hyperproliferating cells |
US6013638A (en) * | 1991-10-02 | 2000-01-11 | The United States Of America As Represented By The Department Of Health And Human Services | Adenovirus comprising deletions on the E1A, E1B and E3 regions for transfer of genes to the lung |
US5795870A (en) | 1991-12-13 | 1998-08-18 | Trustees Of Princeton University | Compositions and methods for cell transformation |
AU8076494A (en) | 1993-10-15 | 1995-05-04 | Cytrx Corporation | Therapeutic delivery compositions and methods of use thereof |
US6210939B1 (en) | 1993-10-25 | 2001-04-03 | Canji, Inc. | Recombinant adenoviral vector and methods of use |
US5837533A (en) | 1994-09-28 | 1998-11-17 | American Home Products Corporation | Complexes comprising a nucleic acid bound to a cationic polyamine having an endosome disruption agent |
US5552309A (en) * | 1994-09-30 | 1996-09-03 | Indiana University Foundation | Use of polyols for improving the introduction of genetic material into cells |
DE69732029T2 (en) * | 1996-04-26 | 2006-02-23 | Merck & Co., Inc. | DNA-Containing VACCINES |
DE69819721T2 (en) * | 1997-06-13 | 2004-09-23 | Cydex Inc., Overland Park | COMPOSITION WITH INCREASED STORAGE STABILITY CONTAINING CYCLODEXTRIN AND ACTIVE SUBSTANCES OR SUBSTANCES PREPARED IN WATER-INSOLUBLE COMPONENTS |
DE19734860C2 (en) * | 1997-08-12 | 1999-12-16 | Bosch Gmbh Robert | Method for the determination of oxidisable components in a gas mixture |
CA2322232A1 (en) * | 1998-03-13 | 1999-09-16 | American Home Products Corporation | Lyophilized polynucleotide composition, method of preparation, and uses thereof |
EP1074248A1 (en) * | 1999-07-08 | 2001-02-07 | Arnold Hilgers | Delivery system for biological material |
WO2004108898A2 (en) | 2003-06-04 | 2004-12-16 | Canji, Inc. | Transfection agents |
JP2008203500A (en) * | 2007-02-20 | 2008-09-04 | Fuji Xerox Co Ltd | Hologram recording material, hologram recording medium and hologram recording method |
-
2002
- 2002-12-20 JP JP2003554125A patent/JP4727923B2/en not_active Expired - Lifetime
- 2002-12-20 AU AU2002366809A patent/AU2002366809A1/en not_active Abandoned
- 2002-12-20 US US10/329,043 patent/US20030170216A1/en not_active Abandoned
- 2002-12-20 ES ES02805671T patent/ES2745068T3/en not_active Expired - Lifetime
- 2002-12-20 EP EP02805671.1A patent/EP1456377B1/en not_active Expired - Lifetime
- 2002-12-20 WO PCT/US2002/041198 patent/WO2003053365A2/en active Application Filing
- 2002-12-20 MX MXPA04005942A patent/MXPA04005942A/en not_active Application Discontinuation
- 2002-12-20 TR TR2019/10060T patent/TR201910060T4/en unknown
- 2002-12-20 CA CA2470999A patent/CA2470999C/en not_active Expired - Lifetime
- 2002-12-20 PT PT02805671T patent/PT1456377T/en unknown
- 2002-12-20 DK DK02805671.1T patent/DK1456377T3/en active
- 2002-12-20 SI SI200231095T patent/SI1456377T1/en unknown
-
2010
- 2010-02-03 JP JP2010022598A patent/JP2010095549A/en not_active Withdrawn
- 2010-07-19 US US12/838,795 patent/US9115374B2/en not_active Expired - Fee Related
-
2015
- 2015-07-13 US US14/798,277 patent/US20150313926A1/en not_active Abandoned
-
2019
- 2019-09-03 CY CY20191100923T patent/CY1121982T1/en unknown
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264618A (en) * | 1990-04-19 | 1993-11-23 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
US5250524A (en) * | 1990-12-06 | 1993-10-05 | Hoechst Aktiengesellschaft | Bile acid derivatives, process for their preparation and use of these compounds as pharmaceuticals |
US20040014709A1 (en) * | 1996-01-08 | 2004-01-22 | Canji, Inc. | Methods and compositions for interferon therapy |
US20010006946A1 (en) * | 1996-01-08 | 2001-07-05 | Heidrun Engler | Compositions and methods for enhancing delivery of therapeutic agents to cells |
US6312681B1 (en) * | 1996-01-08 | 2001-11-06 | Canji Incorporated | Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems |
US6392069B2 (en) * | 1996-01-08 | 2002-05-21 | Canji, Inc. | Compositions for enhancing delivery of nucleic acids to cells |
US20020111502A1 (en) * | 1996-01-08 | 2002-08-15 | Canji, Inc. | Compositions and methods for enhancing delivery of therapeutic agents to cells |
US20030211598A1 (en) * | 1996-01-08 | 2003-11-13 | Canji, Inc. | Compositions and methods for therapeutic use |
US5789244A (en) * | 1996-01-08 | 1998-08-04 | Canji, Inc. | Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems |
US20050025742A1 (en) * | 1996-01-08 | 2005-02-03 | Canji, Inc. | Methods and compositions for interferon therapy |
US7002027B1 (en) * | 1996-01-08 | 2006-02-21 | Canji, Inc. | Compositions and methods for therapeutic use |
US20060199782A1 (en) * | 1996-01-08 | 2006-09-07 | Canji, Inc. | Compositions and methods for therapeutic use |
US6166779A (en) * | 1999-04-27 | 2000-12-26 | Nucore Technology Inc. | Method for analog decimation of image signals |
US20050085427A1 (en) * | 2003-06-04 | 2005-04-21 | Canji, Inc. | Transfection agents |
US20050287119A1 (en) * | 2003-12-10 | 2005-12-29 | Canji, Inc. | Methods and compositions for treatment of interferon-resistant tumors |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110104118A1 (en) * | 1996-01-08 | 2011-05-05 | Canji, Inc. | Compositions and methods for therapeutic use |
US20040014709A1 (en) * | 1996-01-08 | 2004-01-22 | Canji, Inc. | Methods and compositions for interferon therapy |
US7538093B2 (en) | 1996-01-08 | 2009-05-26 | Schering Corporation | Compositions and methods for therapeutic use |
US7534769B2 (en) | 1996-01-08 | 2009-05-19 | Canji, Inc. | Compositions and methods for enhancing delivery of therapeutic agents to cells |
US8022044B2 (en) | 1996-01-08 | 2011-09-20 | Canji, Inc. | Compositions and methods for therapeutic use |
US20060199782A1 (en) * | 1996-01-08 | 2006-09-07 | Canji, Inc. | Compositions and methods for therapeutic use |
US20020111502A1 (en) * | 1996-01-08 | 2002-08-15 | Canji, Inc. | Compositions and methods for enhancing delivery of therapeutic agents to cells |
US20030211598A1 (en) * | 1996-01-08 | 2003-11-13 | Canji, Inc. | Compositions and methods for therapeutic use |
US20080234221A1 (en) * | 2003-06-04 | 2008-09-25 | Canji, Inc. | Transfection agents |
US20050085427A1 (en) * | 2003-06-04 | 2005-04-21 | Canji, Inc. | Transfection agents |
US7355056B2 (en) | 2003-06-04 | 2008-04-08 | Canji, Inc. | Transfection agents |
US20100266547A1 (en) * | 2003-12-10 | 2010-10-21 | Canji, Inc. | Methods and compositions for treatment of interferon-resistant tumors |
US20050287119A1 (en) * | 2003-12-10 | 2005-12-29 | Canji, Inc. | Methods and compositions for treatment of interferon-resistant tumors |
US9439977B2 (en) | 2003-12-10 | 2016-09-13 | Fkd Therapies Oy | Methods and compositions for treatment of interferon-resistant tumors |
US7691822B2 (en) | 2003-12-10 | 2010-04-06 | Canji, Inc. | Methods and compositions for treatment of interferon-resistant tumors |
US11547668B2 (en) | 2016-04-14 | 2023-01-10 | Trizell Ltd. | Viral vector stabilization |
US11311487B2 (en) | 2016-04-14 | 2022-04-26 | Trizell Ltd. | Viral vector stabilization |
US11446249B2 (en) * | 2016-04-14 | 2022-09-20 | Trizell Ltd. | Viral vector stabilization |
Also Published As
Publication number | Publication date |
---|---|
SI1456377T1 (en) | 2019-09-30 |
JP2010095549A (en) | 2010-04-30 |
WO2003053365A3 (en) | 2003-10-30 |
US9115374B2 (en) | 2015-08-25 |
JP4727923B2 (en) | 2011-07-20 |
CY1121982T1 (en) | 2020-10-14 |
TR201910060T4 (en) | 2019-07-22 |
PT1456377T (en) | 2019-09-10 |
EP1456377A4 (en) | 2010-07-07 |
CA2470999A1 (en) | 2003-07-03 |
MXPA04005942A (en) | 2005-05-16 |
CA2470999C (en) | 2017-02-21 |
US20150313926A1 (en) | 2015-11-05 |
DK1456377T3 (en) | 2019-09-23 |
AU2002366809A1 (en) | 2003-07-09 |
US20100324126A1 (en) | 2010-12-23 |
ES2745068T3 (en) | 2020-02-27 |
EP1456377A2 (en) | 2004-09-15 |
WO2003053365A2 (en) | 2003-07-03 |
EP1456377B1 (en) | 2019-06-12 |
JP2005513086A (en) | 2005-05-12 |
AU2002366809A8 (en) | 2003-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150313926A1 (en) | Syn3 compositions and methods | |
US6312681B1 (en) | Compositions and methods for the treatment of cancer using recombinant viral vector delivery systems | |
US7538093B2 (en) | Compositions and methods for therapeutic use | |
US6451256B1 (en) | Method for preserving infectious recombinant viruses, aqueous viral suspension and use as medicine | |
US7001770B1 (en) | Calpain inhibitors and their applications | |
JP2007269808A (en) | Method and composition for interferon therapy | |
EP1294918B1 (en) | Replication deficient adenoviral tnf vector | |
US20010006946A1 (en) | Compositions and methods for enhancing delivery of therapeutic agents to cells | |
JP4404490B2 (en) | Selective replicating viral vectors | |
US6867022B1 (en) | Replication deficient adenovirus vectors and methods of making and using them | |
US20040014709A1 (en) | Methods and compositions for interferon therapy | |
JP2002527455A (en) | Recombination deficient adenovirus vector | |
KR100389526B1 (en) | Recombinant Adenovirus Vectors and Methods of Use | |
Factor | Gene Therapy for the Acute Respiratory Distress Syndrome | |
MXPA00000306A (en) | Compositions and methods for enhancing delivery of therapeutic agents to cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHERING CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IHNAT, PETER M.;WITSHEY-OAKSHMANAN, LEONORE C.;SANDWEISS, VARDA;AND OTHERS;REEL/FRAME:014058/0939;SIGNING DATES FROM 20030429 TO 20030506 |
|
AS | Assignment |
Owner name: SCHERING CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IHNAT, PETER M.;WITCHEY-LAKSHMANAN, LEONORE C.;SANDWEISS, VARDA;AND OTHERS;REEL/FRAME:014847/0934;SIGNING DATES FROM 20030429 TO 20030506 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |