US20030159453A1 - Bistable electromagnetic valve - Google Patents

Bistable electromagnetic valve Download PDF

Info

Publication number
US20030159453A1
US20030159453A1 US10/367,807 US36780703A US2003159453A1 US 20030159453 A1 US20030159453 A1 US 20030159453A1 US 36780703 A US36780703 A US 36780703A US 2003159453 A1 US2003159453 A1 US 2003159453A1
Authority
US
United States
Prior art keywords
valve
filter
valve according
magnet
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/367,807
Inventor
Hubert Ott
Thomas Grau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002106778 external-priority patent/DE10206778A1/en
Priority claimed from DE10216687A external-priority patent/DE10216687A1/en
Application filed by Individual filed Critical Individual
Publication of US20030159453A1 publication Critical patent/US20030159453A1/en
Assigned to SCHROTT, HARALD reassignment SCHROTT, HARALD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRAU, THOMAS, OTT, HUBERT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • F16K31/0627Lift valves with movable valve member positioned between seats
    • F16K31/0631Lift valves with movable valve member positioned between seats with ball shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0606Multiple-way valves fluid passing through the solenoid coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0651One-way valve the fluid passing through the solenoid coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0665Lift valves with valve member being at least partially ball-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • F16K31/082Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet using a electromagnet and a permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters

Definitions

  • the invention relates to a bistable electromagnetic valve ( 1 ) having a valve chamber arranged between two pole pieces and a valve body displaceable between two end pistons which is designed as a magnet armature for at least one permanent magnet and at least one control coil which novel valve includes a dirt filter ( 18 , 19 ).
  • a bistable situation is achieved by arranging permanent magnets outside the valve housing, next to the valve chamber or next to the pole pieces, so that the valve body has two end positions at the pole pieces, in which it is held by these permanent magnets.
  • the object of the invention is therefore to provide a valve, in particular for a refrigerant circuit, which is less susceptible to faults.
  • valve ( 1 ) having a valve chamber arranged between two pole pieces and a valve body displaceable between two end pistons which is designed as a magnet armature for at least one permanent magnet and at least one control filter which novel valve includes a dirt filter ( 18 , 19 ).
  • the invention is distinguished by the fact that the novel valve encompasses a dirt filter.
  • the invention is hence based on the knowledge that malfunctions are often caused by dirt that enters the valve after installation in the refrigerant circuit.
  • the dirt filter prevents this dirt from reaching the critical locations of the valve, i.e., the area of the valve body and its seal seat.
  • the dirt filter is advantageously arranged on the inflow side of the valve chamber in the valve housing. In this way, dirt is reliably prevented from entering the critical components, i.e. the valve body and valve seats or the entire valve chamber containing the valve body, after the fluid circulation has been completed, since only cleansed fluid can get into the valve chamber.
  • the dirt filter is advantageously situated immediately adjacent to a pole piece for this purpose. This position represents the arrangement lying closest to the valve chamber for a dirt filter separate from the valve chamber, so that all fluid that gets into the valve chamber during startup of the fluid circuit is actually largely filtered.
  • a dirt filter according to the invention can be permanently installed into the valve casing, i.e., so that it only be replaced with the entire valve or not at all, provided the filter capacity is sufficient for a one-time cleansing of the fluid circuit.
  • Filters in fluid circuits are usually designed in such a way as to be replaceable or washable, since the filters become clogged over time.
  • the invention is based on the additional knowledge that, when this type of valve is always used in circuits that generally remain closed for the life of the valve, the dirt filter can be permanently installed in the valve.
  • this filter must here exhibit a filter capacity sufficient for a one-time cleansing of the entire fluid in the circuit.
  • a magnetic dirt filter is provided.
  • a magnetic dirt filter is able to retain magnetic or magnetizable dirt particles, such as those that are rinsed away from the inner wall of the tubes of the refrigerant circuit, or can get inside the circuit during assembly of the fluid circuit, e.g., via soldering. Precisely these magnetic or magnetizable dirt particles are especially critical with respect to malfunctions, however, since they stay behind in the valve chamber if no measures are taken to trap them in advance owing to the permanent magnets required for the bistable design, permanently impairing the tightness of the valve there, while at the same time increasing the wear.
  • a magnetic dirt filter is especially effective if in direct contact with fluid. For this reason, a permanent magnet is arranged inside the valve housing or inside its connecting line in a particularly advantageous embodiment of the invention.
  • annular magnet is provided as the dirt filter.
  • Annular magnets are inexpensive to buy, and exhibit a large surface loadable with dirt particles while being readily mountable inside a circular tube, wherein a sufficiently high flow cross-section is simultaneously available for the fluid, e.g., refrigerant.
  • a mechanical filter is provided, either alone or in combination with a magnetic filter.
  • a mechanical filter is also able to retain nonmagnetic or non-magnetizable dirt particles, and hence provide for a more complete cleansing of the refrigerant.
  • the magnet filter is simultaneously used as a mount for the mechanical filter, so that a separate mount need not be provided at the location of the magnet filter.
  • the mechanical filter is preferably designed as a tubular sieve.
  • a tubular sieve can have attached to it an annular magnet, for example, which tightly abuts the inner wall of the inflow to the valve chamber. This fixes the tubular sieve in place on the one hand, and seals the inflow cross-section outside the tubular sieve via the annular magnets on the other, so that fluid can only flow into the tubular sieve.
  • the interior space of the tubular sieve is connected with the inflow of fluid, e.g., the refrigerant, and the exterior space of the tubular sieve is connected with the valve chamber.
  • the retained dirt particles here accumulate inside the tubular sieve, wherein magnetic or magnetizable particles are already retained at the permanent magnet, as indicated above.
  • the sieve holes of such a mechanical filter are designed with a diameter measuring between 50 ⁇ and 80 ⁇ , for example. Tests performed on valves in refrigerant circuits showed this type of magnetic filter configuration to be a particularly favorable design in terms of good filtering properties and sufficient flow.
  • the filter capacity of a tubular sieve can be improved by appropriately configuring the cross-section, specifically by making the cross-section larger.
  • a tubular sieve can be designed with a corrugated or folded cross-section.
  • One particularly advantageous embodiment is a tubular sieve with a star-shaped cross-section, since a uniform all-around flow can be established here with a good surface enlargement.
  • FIG. 1 is a cross-section through a 2/2-way valve according to the invention.
  • FIG. 2 is a cross-section through a 3/2-way valve according to the invention.
  • Valve 1 according to FIG. 1 encompasses a tubular valve housing 2 interspersed with a control coil 3 .
  • adapter pieces 4 ensure the good fit in the valve housing 2 , and are simultaneously designed as flow conducting elements for an increased magnetic flux through pole pieces 5 , 6 and through a valve chamber 7 .
  • Situated inside the valve chamber 7 is a spherical valve body 8 , which sits on the spherical seat 9 of the pole piece 6 in the position shown, sealing a through hole 10 in the process.
  • the through hole 10 empties out in the outflow line 11 of valve 1 .
  • Annular magnets 12 , 13 lying outside the valve housing 2 ensure the bistable behavior of the valve, and are fixed between the adapter pieces 4 by a spacer ring 14 .
  • the outer periphery of the pole piece 5 exhibits recesses or smoothened surfaces that produce the fluid channels 15 between the pole piece 5 and valve housing 2 into the valve chamber 7 .
  • the fluid channels could also be realized via holes in the pole piece 5 , whose openings on the inflow side lie in a circular area between a tubular sieve 18 and the outer wall of the valve housing 2 .
  • the pole piece 5 also exhibits a spherical seat 16 to bring about a defined end location of the valve body 8 in the second end position (not shown).
  • the pole piece 5 encompasses a graduation 17 onto which the tubular sieve 18 is slipped. At the opposing end, the tubular sieve 18 is fixed in a magnetic filter 19 designed as an annular magnet.
  • the tubular area of the valve housing 2 in which the tubular sieve 18 and magnet filter 19 are located serves as an inflow line 20 for the corresponding fluid, i.e., in particular for refrigerants.
  • Inflowing fluid (see arrow P) initially gets into the area of the magnet filter 19 , which is designed as an annular magnet and comes into direct contact with the fluid.
  • magnetic or magnetizable dirt particles already become permanently fixed at the magnet filter 19 , spaced far away from the valve chamber 7 .
  • the fluid subsequently gets inside the tubular sieve 18 , which is frontally sealed at the opposing end by the pole piece 5 or its graduation 17 .
  • the fluid must hence flow in the tubular sieve 18 radially outward, during which dirt particles larger than the sieve openings 21 in the tubular sieve 18 are retained inside the tubular sieve 18 .
  • only cleansed fluid gets into the exterior space 22 between the tubular sieve 18 and valve housing 2 . From there, the fluid passes through the fluid channels 15 and inside the valve chamber 7 .
  • valve 1 can be readily installed in a fluid circuit, e.g., a refrigerant circuit, which contains dirt particles arising from production that are incompatible with conventional refrigerant valves and trigger malfunctions.
  • a fluid circuit e.g., a refrigerant circuit, which contains dirt particles arising from production that are incompatible with conventional refrigerant valves and trigger malfunctions.
  • valve 1 The application of the valve 1 is geared toward closed fluid circuits that remain closed over the life of the valve 1 after production.
  • the filter capacity of the filter system comprised of a tubular filter 18 and magnet filter 19 must here be designed in such a way that a one-time, complete cleansing of the fluid in the circuit can take place without clogging.
  • FIG. 2 essentially corresponds to the above exemplary embodiment, the difference now being that a second tubular outflow line 23 is guided into the valve casing 2 up to the pole piece 5 , and there tightly fixed in a corresponding hole 24 .
  • the valve housing 2 and the outflow line 23 are tightly sealed relative to each other at a sealing location 25 , e.g. press molded or soldered.
  • the pole piece 5 also encompasses a through hole 28 , which connects the valve chamber 7 with the intermediate space 26 via the fluid channels 15 .
  • the fluid or refrigerant can flow in the direction of arrow P into the intermediate space 26 , and from there through the magnet filter 19 into the now annular interior space between the tubular sieve 18 and outflow line 23 .
  • the fluid then flows radially outward in the exterior space 22 between the tubular sieve 18 and valve housing 2 , from where it gets into the valve chamber 7 via the fluid channels 15 .
  • the fluid is then discharged via the outflow line 23 or outflow line 11 .
  • the through hole 28 of the pole piece 5 is open, i.e. discharge takes place via the outflow line 23 .
  • a control pulse for the control coil 3 makes it possible to move the valve body 8 to the opposing spherical seat 16 , as a result of which the through hole 28 is sealed, and the through hole 10 is opened.
  • the fluid is discharged via outflow line 11 in this switch setting, which is described but not shown.
  • sleeve-shaped flow conducting plates 29 are here provided to guide the magnetic flux inside the control coil 3 , completely filling out the intermediate space between the valve housing 2 and control coil 3 .
  • the flow conducting plates 29 are each connected with a cover plate 30 , which in turn is joined with or goes over into so-called yoke laminations (not shown in greater detail).
  • the flow conducting plates 29 can be stamped and bent or wound from a single flat material along with the cover plate 30 and the entire yoke lamination arrangement (not shown in greater detail).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Details Of Valves (AREA)

Abstract

Proposed herein is a bistable electromagnetic valve with a valve chamber arranged between two pole pieces and a valve body displaceable therein between two end positions, which is designed as a magnet armature for at least one permanent magnet and for at least one control coil, which is less susceptible to faults in comparison to known valves for refrigerant circuits. This object is achieved by having the valve (1) encompass a dirt filter (18, 19).

Description

    BACKGROUND OF THE INVENTION
  • 1. Field Of The Invention [0001]
  • The invention relates to a bistable electromagnetic valve ([0002] 1) having a valve chamber arranged between two pole pieces and a valve body displaceable between two end pistons which is designed as a magnet armature for at least one permanent magnet and at least one control coil which novel valve includes a dirt filter (18,19).
  • 2. Description of the Related Art Including Information Disclosed under 37 C.F.R. 1.97 and 1.98 [0003]
  • Prior art valves of this type are used, for example, in refrigerant circuits of the kind described in publications DE 37 18 490 or [0004] EP 10 54 200.
  • In such valves, a bistable situation is achieved by arranging permanent magnets outside the valve housing, next to the valve chamber or next to the pole pieces, so that the valve body has two end positions at the pole pieces, in which it is held by these permanent magnets. [0005]
  • Stringent requirements are placed on such valves in terms of tightness and long-term stability. After manufactured at the production facility, the valves are generally incorporated into the refrigerant circuit at another facility, making it difficult to determine the cause of any malfunction. [0006]
  • BRIEF SUMMARY OF THE INVENTION
  • The object of the invention is therefore to provide a valve, in particular for a refrigerant circuit, which is less susceptible to faults. [0007]
  • This object is achieved proceeding from a valve ([0008] 1) having a valve chamber arranged between two pole pieces and a valve body displaceable between two end pistons which is designed as a magnet armature for at least one permanent magnet and at least one control filter which novel valve includes a dirt filter (18, 19).
  • The measures specified in the following description of the invention including drawings and dependent claims enable advantageous embodiments and further developments of the invention. [0009]
  • Accordingly, the invention is distinguished by the fact that the novel valve encompasses a dirt filter. [0010]
  • The invention is hence based on the knowledge that malfunctions are often caused by dirt that enters the valve after installation in the refrigerant circuit. According to the invention, the dirt filter prevents this dirt from reaching the critical locations of the valve, i.e., the area of the valve body and its seal seat. [0011]
  • The dirt filter is advantageously arranged on the inflow side of the valve chamber in the valve housing. In this way, dirt is reliably prevented from entering the critical components, i.e. the valve body and valve seats or the entire valve chamber containing the valve body, after the fluid circulation has been completed, since only cleansed fluid can get into the valve chamber. [0012]
  • The dirt filter is advantageously situated immediately adjacent to a pole piece for this purpose. This position represents the arrangement lying closest to the valve chamber for a dirt filter separate from the valve chamber, so that all fluid that gets into the valve chamber during startup of the fluid circuit is actually largely filtered. [0013]
  • A dirt filter according to the invention can be permanently installed into the valve casing, i.e., so that it only be replaced with the entire valve or not at all, provided the filter capacity is sufficient for a one-time cleansing of the fluid circuit. [0014]
  • Filters in fluid circuits are usually designed in such a way as to be replaceable or washable, since the filters become clogged over time. However, the invention is based on the additional knowledge that, when this type of valve is always used in circuits that generally remain closed for the life of the valve, the dirt filter can be permanently installed in the valve. However, this filter must here exhibit a filter capacity sufficient for a one-time cleansing of the entire fluid in the circuit. [0015]
  • Since no more dirt accumulates on the filter after this one-time cleansing, clogging can be prevented, so that the filter need not be replaced or cleaned. [0016]
  • In a further development of the invention, a magnetic dirt filter is provided. A magnetic dirt filter is able to retain magnetic or magnetizable dirt particles, such as those that are rinsed away from the inner wall of the tubes of the refrigerant circuit, or can get inside the circuit during assembly of the fluid circuit, e.g., via soldering. Precisely these magnetic or magnetizable dirt particles are especially critical with respect to malfunctions, however, since they stay behind in the valve chamber if no measures are taken to trap them in advance owing to the permanent magnets required for the bistable design, permanently impairing the tightness of the valve there, while at the same time increasing the wear. [0017]
  • A magnetic dirt filter is especially effective if in direct contact with fluid. For this reason, a permanent magnet is arranged inside the valve housing or inside its connecting line in a particularly advantageous embodiment of the invention. [0018]
  • In a further development of this embodiment, an annular magnet is provided as the dirt filter. Annular magnets are inexpensive to buy, and exhibit a large surface loadable with dirt particles while being readily mountable inside a circular tube, wherein a sufficiently high flow cross-section is simultaneously available for the fluid, e.g., refrigerant. [0019]
  • In another embodiment of the invention, a mechanical filter is provided, either alone or in combination with a magnetic filter. A mechanical filter is also able to retain nonmagnetic or non-magnetizable dirt particles, and hence provide for a more complete cleansing of the refrigerant. [0020]
  • It is particularly advantageous to combine a mechanical filter with magnet filter situated upstream relative to the direction of flow, since preliminarily filtering the magnetic or magnetizable dirt particles reduces the load on the mechanical filter, so that it can be given smaller dimensions. [0021]
  • In an advantageous embodiment, the magnet filter is simultaneously used as a mount for the mechanical filter, so that a separate mount need not be provided at the location of the magnet filter. [0022]
  • In particular when combined with an annular magnet, the mechanical filter is preferably designed as a tubular sieve. Such a tubular sieve can have attached to it an annular magnet, for example, which tightly abuts the inner wall of the inflow to the valve chamber. This fixes the tubular sieve in place on the one hand, and seals the inflow cross-section outside the tubular sieve via the annular magnets on the other, so that fluid can only flow into the tubular sieve. [0023]
  • In particular when combined with the aforementioned features, the interior space of the tubular sieve is connected with the inflow of fluid, e.g., the refrigerant, and the exterior space of the tubular sieve is connected with the valve chamber. The retained dirt particles here accumulate inside the tubular sieve, wherein magnetic or magnetizable particles are already retained at the permanent magnet, as indicated above. [0024]
  • The sieve holes of such a mechanical filter are designed with a diameter measuring between 50 μ and 80 μ, for example. Tests performed on valves in refrigerant circuits showed this type of magnetic filter configuration to be a particularly favorable design in terms of good filtering properties and sufficient flow. [0025]
  • In addition to enabling an arrangement (viewed in the direction of flow) in front of the valve chamber as described above, the use of a tubular sieve as the mechanical filter makes it possible to chose a high enough filter capacity by providing the tubular sieve with a corresponding axial length. [0026]
  • Further, the filter capacity of a tubular sieve can be improved by appropriately configuring the cross-section, specifically by making the cross-section larger. For example, such a tubular sieve can be designed with a corrugated or folded cross-section. [0027]
  • One particularly advantageous embodiment is a tubular sieve with a star-shaped cross-section, since a uniform all-around flow can be established here with a good surface enlargement.[0028]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • One exemplary embodiment of the invention is shown in the drawing, and will be explained in greater detail below based on the figures, in which: [0029]
  • FIG. 1 is a cross-section through a 2/2-way valve according to the invention, and [0030]
  • FIG. 2 is a cross-section through a 3/2-way valve according to the invention. [0031]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Valve [0032] 1 according to FIG. 1 encompasses a tubular valve housing 2 interspersed with a control coil 3. Here, adapter pieces 4 ensure the good fit in the valve housing 2, and are simultaneously designed as flow conducting elements for an increased magnetic flux through pole pieces 5, 6 and through a valve chamber 7. Situated inside the valve chamber 7 is a spherical valve body 8, which sits on the spherical seat 9 of the pole piece 6 in the position shown, sealing a through hole 10 in the process. The through hole 10 empties out in the outflow line 11 of valve 1.
  • [0033] Annular magnets 12, 13 lying outside the valve housing 2 ensure the bistable behavior of the valve, and are fixed between the adapter pieces 4 by a spacer ring 14.
  • The outer periphery of the [0034] pole piece 5 exhibits recesses or smoothened surfaces that produce the fluid channels 15 between the pole piece 5 and valve housing 2 into the valve chamber 7. The fluid channels could also be realized via holes in the pole piece 5, whose openings on the inflow side lie in a circular area between a tubular sieve 18 and the outer wall of the valve housing 2. The pole piece 5 also exhibits a spherical seat 16 to bring about a defined end location of the valve body 8 in the second end position (not shown).
  • The [0035] pole piece 5 encompasses a graduation 17 onto which the tubular sieve 18 is slipped. At the opposing end, the tubular sieve 18 is fixed in a magnetic filter 19 designed as an annular magnet. The tubular area of the valve housing 2 in which the tubular sieve 18 and magnet filter 19 are located serves as an inflow line 20 for the corresponding fluid, i.e., in particular for refrigerants.
  • Inflowing fluid (see arrow P) initially gets into the area of the [0036] magnet filter 19, which is designed as an annular magnet and comes into direct contact with the fluid. As a result, magnetic or magnetizable dirt particles already become permanently fixed at the magnet filter 19, spaced far away from the valve chamber 7.
  • The fluid subsequently gets inside the [0037] tubular sieve 18, which is frontally sealed at the opposing end by the pole piece 5 or its graduation 17. The fluid must hence flow in the tubular sieve 18 radially outward, during which dirt particles larger than the sieve openings 21 in the tubular sieve 18 are retained inside the tubular sieve 18. As a result, only cleansed fluid gets into the exterior space 22 between the tubular sieve 18 and valve housing 2. From there, the fluid passes through the fluid channels 15 and inside the valve chamber 7.
  • The flow naturally only takes place with the valve opened, i.e., in the switch setting where the [0038] valve body 8 sits on the spherical seat 16, and the through hole 10 is open.
  • The valve [0039] 1 according to the invention can be readily installed in a fluid circuit, e.g., a refrigerant circuit, which contains dirt particles arising from production that are incompatible with conventional refrigerant valves and trigger malfunctions.
  • The application of the valve [0040] 1 is geared toward closed fluid circuits that remain closed over the life of the valve 1 after production. The filter capacity of the filter system comprised of a tubular filter 18 and magnet filter 19 must here be designed in such a way that a one-time, complete cleansing of the fluid in the circuit can take place without clogging.
  • In this way, i.e., by using a [0041] filter 18, 19 in the inflow line 20 of the valve housing 2, and in particular via positioning right next to the valve chamber 7, dirt is reliably prevented from getting into the valve chamber 7 to an extent that can ensure the permanently tight and low-wearing function of the valve 1.
  • FIG. 2 essentially corresponds to the above exemplary embodiment, the difference now being that a second [0042] tubular outflow line 23 is guided into the valve casing 2 up to the pole piece 5, and there tightly fixed in a corresponding hole 24. The valve housing 2 and the outflow line 23 are tightly sealed relative to each other at a sealing location 25, e.g. press molded or soldered.
  • This yields an [0043] intermediate space 26 between the outflow line 23 and the valve housing 2, to which an inflow line 27 is connected. The inflow line 27 can be soldered in a corresponding hole of the valve housing, for example.
  • In this embodiment, the [0044] pole piece 5 also encompasses a through hole 28, which connects the valve chamber 7 with the intermediate space 26 via the fluid channels 15.
  • The fluid or refrigerant can flow in the direction of arrow P into the [0045] intermediate space 26, and from there through the magnet filter 19 into the now annular interior space between the tubular sieve 18 and outflow line 23. The fluid then flows radially outward in the exterior space 22 between the tubular sieve 18 and valve housing 2, from where it gets into the valve chamber 7 via the fluid channels 15.
  • Depending on the switch setting of the [0046] valve body 8, the fluid is then discharged via the outflow line 23 or outflow line 11. In the switch setting shown, the through hole 28 of the pole piece 5 is open, i.e. discharge takes place via the outflow line 23.
  • A control pulse for the [0047] control coil 3 makes it possible to move the valve body 8 to the opposing spherical seat 16, as a result of which the through hole 28 is sealed, and the through hole 10 is opened. The fluid is discharged via outflow line 11 in this switch setting, which is described but not shown.
  • Instead of the [0048] adapter pieces 4, which exhibit a conical outflow surface inside the control coil 3, sleeve-shaped flow conducting plates 29 are here provided to guide the magnetic flux inside the control coil 3, completely filling out the intermediate space between the valve housing 2 and control coil 3. The flow conducting plates 29 are each connected with a cover plate 30, which in turn is joined with or goes over into so-called yoke laminations (not shown in greater detail). The flow conducting plates 29 can be stamped and bent or wound from a single flat material along with the cover plate 30 and the entire yoke lamination arrangement (not shown in greater detail).
  • Reference List: [0049]
  • [0050] 1 Valve
  • [0051] 2 Valve housing
  • [0052] 3 Star-shaped coils
  • [0053] 4 Adapter pieces
  • [0054] 5 Pole piece
  • [0055] 6 Pole piece
  • [0056] 7 Valve chamber
  • [0057] 8 Valve body
  • [0058] 9 Spherical seat
  • [0059] 10 Through hole
  • [0060] 11 Outflow line
  • [0061] 12 Annular magnet
  • [0062] 13 Annular magnet
  • [0063] 14 Spacer ring
  • [0064] 15 Fluid channel
  • [0065] 16 Spherical seat
  • [0066] 17 Smoothened surface
  • [0067] 18 Tubular sieve
  • [0068] 19 Magnet filter
  • [0069] 20 Inflow line
  • [0070] 21 Sieve opening
  • [0071] 22 Exterior space
  • [0072] 23 Outflow line
  • [0073] 24 Hole
  • [0074] 25 Sealing location
  • [0075] 26 Intermediate space
  • [0076] 27 Inflow line
  • [0077] 28 Through hole
  • [0078] 29 Flow conducting plate
  • [0079] 30 Cover plate

Claims (18)

What is claimed is:
1. Bistable, electromagnetic valve with a valve chamber arranged between two pole pieces and a valve body displaceable therein between two end positions, which is designed as a magnet armature for at least one permanent magnet and for at least one control coil, characterized in that the valve (1) encompasses a dirt filter (18, 19).
2. Valve according to claim 1, characterized in that the dirt filter (18, 19) is arranged on the inflow side (20) of the valve chamber (7) in the valve housing (2).
3. Valve according to one of the preceding claims, characterized in that the dirt filter (18, 19) is positioned right next to a pole piece (5).
4. Valve according to one of the preceding claims, characterized in that the dirt filter (18, 19) is permanently installed in the valve housing (2).
5. Valve according to one of the preceding claims, characterized in that a magnetic dirt filter (19) is provided.
6. Valve according to one of the preceding claims, characterized in that the magnetic dirt filter (19) is designed as a permanent magnet in direct contact with the fluid.
7. Valve according to one of the preceding claims, characterized in that the magnetic dirt filter (19) is designed as an annular magnet.
8. Valve according to one of the preceding claims, characterized in that a mechanical filter (18) is provided.
9. Valve according to one of the preceding claims, characterized in that a mechanical filter (18) and a magnet filter (19) are provided.
10. Valve according to one of the preceding claims, characterized in that the magnet filter (19) is designed as a mount for the mechanical filter (18).
11. Valve according to one of the preceding claims, characterized in that the mechanical filter (18) is designed as a tubular sieve.
12. Valve according to one of the preceding claims, characterized in that the interior space of the tubular sieve (18) is connected with the inflow (20), and the exterior space (22) is connected with the valve chamber (7).
13. Valve according to one of the preceding claims, characterized in that the sieve openings (21) have a diameter ranging between 50μ and 80μ.
14. Valve according to one of the preceding claims, characterized in that the tubular sieve (18) has a corrugated or folded cross-section.
15. Valve according to one of the preceding claims, characterized in that the tubular sieve (18) has a star-shaped cross section.
16. Valve according to one of the preceding claims, characterized in that the magnet filter (19) is arranged on the inflow side (20) of the mechanical sieve (18).
17. Refrigerating circuit for a refrigeration system, in particular with several refrigerating compartments, a compressor, a condenser, several evaporators, which each are allocated to one of the refrigerating compartments, as well as at least one electric control valve for connecting the condenser with one or more of the evaporators based on predetermined operating modes, characterized in that the control valve (1) is designed according to one of the preceding claims.
18. Household appliance with a refrigerating circuit, in particular a refrigerator or freezer chest, characterized in that a refrigeration circuit is provided with a valve according to one of claims 1 to 16.
US10/367,807 2002-02-19 2003-02-19 Bistable electromagnetic valve Abandoned US20030159453A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2002106778 DE10206778A1 (en) 2002-02-19 2002-02-19 Bistable electromagnetic valve
DE10206778.3 2002-02-19
DE10216687A DE10216687A1 (en) 2002-02-19 2002-04-16 Bistable electromagnetic valve e.g. for refrigerator, comprises valve chamber located inside control coil and permanent magnets located in valve housing
DE10216687.0 2002-04-16

Publications (1)

Publication Number Publication Date
US20030159453A1 true US20030159453A1 (en) 2003-08-28

Family

ID=27623846

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/367,807 Abandoned US20030159453A1 (en) 2002-02-19 2003-02-19 Bistable electromagnetic valve

Country Status (5)

Country Link
US (1) US20030159453A1 (en)
EP (1) EP1336785B1 (en)
JP (1) JP2004036879A (en)
CN (1) CN1439828A (en)
DE (1) DE50303266D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025600A1 (en) * 2005-07-27 2007-03-08 Schaeffler Kg Electromagnetic hydraulic valve
US20070289329A1 (en) * 2006-06-20 2007-12-20 International Business Machines Corporation Multiple self cleaning orifice thermal expansion device
US10132421B2 (en) 2014-09-04 2018-11-20 Kyb Corporation Solenoid and solenoid valve
EP3617571A1 (en) 2018-08-29 2020-03-04 BSH Hausgeräte GmbH A valve and a home appliance using the valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087854A (en) * 2010-10-19 2012-05-10 Nsk Ltd Valve and toroidal continuously variable transmission
CN104321576B (en) * 2012-06-21 2016-08-24 博格华纳公司 For there being the solenoid motor method of ventilation polluting protection via hydraulic sleeve pipe racks
CN109307391A (en) * 2017-07-28 2019-02-05 浙江三花智能控制股份有限公司 Refrigerator refrigeration system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312374A (en) * 1979-01-31 1982-01-26 Mordeki Drori Differential-pressure valve
US5005600A (en) * 1990-01-31 1991-04-09 Sarcos Group Servovalve apparatus for use in fluid systems
US5180138A (en) * 1991-02-08 1993-01-19 Firma A.U.K. Muller Gmbh & Co. Kg Solenoid controlled servo valve
US5389252A (en) * 1993-07-28 1995-02-14 Morrick; Robert A. Magnetic filter aid
US5984259A (en) * 1997-11-26 1999-11-16 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with armature damping
US6164322A (en) * 1999-01-15 2000-12-26 Saturn Electronic & Engineering, Inc. Pressure relief latching solenoid valve
US6179268B1 (en) * 1998-04-21 2001-01-30 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with segmented permanent magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1203572B (en) 1986-06-11 1989-02-15 Elbi Int Spa REFRIGERANT CIRCUIT FOR REFRIGERATING PLANTS INCLUDING A FLURALITY OF REFRIGERANT ENVIRONMENTS AND SOLENOID VALVE
EP0485800A1 (en) * 1990-11-13 1992-05-20 Siemens Aktiengesellschaft Solenoid valve having an armature-mounted filter
DE4325842A1 (en) * 1993-07-31 1995-02-02 Bosch Gmbh Robert Fuel injection valve
DE19922089A1 (en) 1999-05-17 2000-11-23 Schrott Harald Bistable electromagnetic valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312374A (en) * 1979-01-31 1982-01-26 Mordeki Drori Differential-pressure valve
US5005600A (en) * 1990-01-31 1991-04-09 Sarcos Group Servovalve apparatus for use in fluid systems
US5180138A (en) * 1991-02-08 1993-01-19 Firma A.U.K. Muller Gmbh & Co. Kg Solenoid controlled servo valve
US5389252A (en) * 1993-07-28 1995-02-14 Morrick; Robert A. Magnetic filter aid
US5984259A (en) * 1997-11-26 1999-11-16 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with armature damping
US6223761B1 (en) * 1997-11-26 2001-05-01 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with armature damping
US6179268B1 (en) * 1998-04-21 2001-01-30 Saturn Electronics & Engineering, Inc. Proportional variable force solenoid control valve with segmented permanent magnet
US6164322A (en) * 1999-01-15 2000-12-26 Saturn Electronic & Engineering, Inc. Pressure relief latching solenoid valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025600A1 (en) * 2005-07-27 2007-03-08 Schaeffler Kg Electromagnetic hydraulic valve
US20080196777A1 (en) * 2005-07-27 2008-08-21 Schaeffler Kg Electromagnetic Hydraulic Valve
US7971607B2 (en) 2005-07-27 2011-07-05 Schaeffler Technologies Gmbh & Co. Kg Electromagnetic hydraulic valve
US20070289329A1 (en) * 2006-06-20 2007-12-20 International Business Machines Corporation Multiple self cleaning orifice thermal expansion device
US7793512B2 (en) 2006-06-20 2010-09-14 International Business Machines Corporation Multiple self cleaning orifice thermal expansion device
US10132421B2 (en) 2014-09-04 2018-11-20 Kyb Corporation Solenoid and solenoid valve
EP3617571A1 (en) 2018-08-29 2020-03-04 BSH Hausgeräte GmbH A valve and a home appliance using the valve

Also Published As

Publication number Publication date
CN1439828A (en) 2003-09-03
DE50303266D1 (en) 2006-06-14
EP1336785A3 (en) 2003-09-03
JP2004036879A (en) 2004-02-05
EP1336785B1 (en) 2006-05-10
EP1336785A2 (en) 2003-08-20

Similar Documents

Publication Publication Date Title
US7097149B2 (en) Bistable electromagnetic valve
JP3830518B2 (en) Valve for metering and introducing vaporized fuel
US6591619B2 (en) Motor-operated selector valve and refrigerating cycle device for refrigerator-freezer
CN100536990C (en) Multi-functional filter
CN102667283B (en) Electromagnetic valve device
US20030159453A1 (en) Bistable electromagnetic valve
CA1270238A (en) Solenoid valve
JP2011513673A (en) Screen filter and valve with screen filter
US20030159454A1 (en) Bistable electromagnetic valve
US6863255B2 (en) Solenoid having fluid accumulating and plunger chambers
JP4205901B2 (en) Electric switching valve
US20060207668A1 (en) Solenoid valve for a coolant circuit
US20030160672A1 (en) Bistable electromagnetic valve
JP4054932B2 (en) Solenoid valve for fluid pressure control
CN214400012U (en) Filter element assembly and water purifier
JP2004293797A (en) Throttle valve device and air conditioner
CN115750800A (en) Valve device and refrigeration system
WO2023195512A1 (en) Slide-type switching valve and refrigeration cycle system
CN219975401U (en) Electromagnetic valve
JPH102442A (en) Solenoid valve
CN115751748A (en) Valve device and refrigeration system
JP2022190199A (en) Check valve and combination valve
JPH08121633A (en) Solenoid valve
JP2023170378A (en) Electric drive valve
MXPA96001461A (en) Filtration of flow in a valv

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHROTT, HARALD, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OTT, HUBERT;GRAU, THOMAS;REEL/FRAME:015726/0923

Effective date: 20040708

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE