US20030150597A1 - Continuous heat sink for an electronic device - Google Patents

Continuous heat sink for an electronic device Download PDF

Info

Publication number
US20030150597A1
US20030150597A1 US10/132,190 US13219002A US2003150597A1 US 20030150597 A1 US20030150597 A1 US 20030150597A1 US 13219002 A US13219002 A US 13219002A US 2003150597 A1 US2003150597 A1 US 2003150597A1
Authority
US
United States
Prior art keywords
heat sink
electronic device
base plate
heat
slat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/132,190
Inventor
Fu-Hsiung Lin
Ta-Shan Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20030150597A1 publication Critical patent/US20030150597A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4093Snap-on arrangements, e.g. clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a continuous heat sink for an electronic device, and more particularly, to one that has a prefabricated slat folded to create a plurality of segregated spaces wherein the air is free to flow for improving production benefits.
  • a heat sink block incorporated with a fan as illustrated in FIG. 10.
  • a mini fan (C) is disposed over those fins (B 1 ).
  • the block (B) is fixed to the top surface of a chip by means of fasteners.
  • a heat dissipating glue is used to stick the block (B) to the chip (A) for improving the cooling efficiency.
  • the bottom of the block (B) attached to the chip (A) conducts the heat from the chip (A) to the fins (B 1 ) above that contact the air for the heat to escape into the atmosphere. Furthermore, the fan is used as the source of forced heat dissipation for fast cooling.
  • the heat dissipation block of the prior art usually comprises extruded aluminum with segregated spaces defined by walls and the walls are cut by pressurized water jet. Whereas it is necessary for the heat sink to provide more area to contact the air for a better heat dissipation effect, more air passages are required. As a result, the subsequent cutting process after the extrusion not only produces excessive waste materials but also much longer time is consumed. Furthermore, as the electronic device, such as a chip used in a CPU, is usually provided with a limited area. In turn, the walls of the heat sink has to get thinner by compromising the increasing wall and air passage, making the walls vulnerable to be damaged in the course of the cutting process, thus higher percentage of defective. That means higher production cost.
  • the primary purpose of the present invention is to provide a continuous structure for a heat sink adapted to an electronic device composed of a body and a base plate for improved cost efficiency and heat dissipation result.
  • a prefabricated slat in a proper length is used to make the body of the heat sink.
  • the body is punched into a plurality of foldable sections with each section perforated at the same time.
  • a skirt, also foldable may be provided to the bottom of each section.
  • the body is then fixed to a base plate by gluing the skirt, or by means of a fastener.
  • the base plate is placed flush on the top of the electronic device so that the heat generated from the electronic device is conducted to the body to dissipate in the air.
  • the holes provided on each section of the body of the heat sink promote the lateral airflow to further improve the heat dissipation result.
  • the cutting process as required by the prior art is omitted.
  • FIG. 1 is a schematic view of a prefabricated slat of the present invention
  • FIG. 2 is a schematic view showing that the prefabricated slat is folded
  • FIG. 3 is a schematic view showing that the prefabricated slat has been finished with the folding process
  • FIG. 4 is a schematic view showing that the body of the heat sink of the present invention is incorporated with a base plate
  • FIG. 5 is another schematic view showing that the body of the heat sink of the present invention is incorporated with the base plate;
  • FIG. 6 is a schematic view showing another configuration wherein the body of the heat sink of the present invention is incorporated to the base plate;
  • FIG. 7 a schematic view showing that the heat sink of the present invention incorporated to the base plate is folded in a different way
  • FIG. 8 is a schematic view showing a plurality of bodies of the heat sink of the present invention is incorporated to the base plate;
  • FIG. 9 is a schematic view showing the changed pattern of a plurality of holes provided laterally of the heat sink of the present invention.
  • FIG. 10 is a schematic view showing a prior art.
  • a structure of a continuous heat sink of the present invention essentially comprises a prefabricated slat ( 1 ) in a proper length by punching.
  • the slat ( 1 ) is then folded to form a body of the continuous heat sink.
  • a plurality of holes ( 2 ) is punched at the same time with the prefabricated slat ( 1 ).
  • At the bottom of each section defined by two abutted folding lines is provided with a skirt ( 3 ) to be folded in later assembly of the heat sink of the present invention as illustrated in FIG. 2.
  • the slat ( 1 ) may be folded in a continuous vortex lattice pattern in square with the skirts ( 3 ) folded at a right angle to the each section of the slat ( 1 ) as illustrated in FIG. 3 showing the body of the continuous heat sink of the present invention in vortex lattice.
  • the skirts ( 3 ) then are incorporated to a base plate ( 4 ) as illustrated in FIG. 4.
  • the bottom of each of the skirts ( 3 ) may be adhered to the base plate ( 4 ) by applying heat dissipation glue ( 5 ) so to render better heat conductivity between the continuous heat sink body formed by the slat ( 1 ) and the base plate ( 4 ).
  • the integrated body of the continuous heat sink formed by the slat ( 1 ) and the base plate ( 4 ) is then fixed to an electronic device.
  • the heat generated by the electronic device is transferred upward to the body of the continuous heat sink body and dissipated.
  • the holes ( 2 ) bored on the vertical section of the body of the continuous heat sink promote the air laterally to improve heat dissipation results.
  • a fan may be further provided over the body of the continuous heat sink to force accelerating the heat dissipation.
  • the body of the continuous heat sink formed by the slat ( 1 ) is fixed to the base plate ( 4 ) as illustrated in FIG. 5.
  • a reverse U-shaped fastener ( 6 ) is each pivoted to both sides of the base plate ( 4 ) with its lateral lever to hold against the top edge of both sides of the body.
  • a dent ( 11 ) ( 11 ) may be provided on the top edge of the body at where contact the lateral lever of the fastener ( 6 ) for the latter to be caulked into position.
  • the skirt ( 3 ) at the bottom of the continuous heat sink may be omitted for the bottom edge of the body to directly contact the base plate ( 4 ) and to be glued to the base plate ( 4 ) with heat dissipation glue ( 5 ) with or without the fastener ( 6 ).
  • the pattern of vortex lattice is not the only option for the configuration of the slat ( 1 ) and another pattern of reciprocal bending may be provided for the slat ( 1 ) as illustrated in FIG. 7.
  • the first preferred embodiment of the present invention is provided to the base plate ( 4 ) in a single unit of the continuous body of the heat sink.
  • the body may be made in less number of winding or in shorter spacing to reduce its size so that a plurality of smaller units of the body are fixed to the base plate ( 4 ) as illustrated in FIG. 8.
  • a flange ( 21 ) may be punched at the same time for each hole to increase the contact area with the air, as shown in FIG. 9, thus to further improve the heat dissipation effect.
  • a structure of a continuous heat sink adapted to heat generation electronic device is innovative and provides better heat dissipation effect by having a prefabricated slat to be punched and folded into a continuous heat sink with segregated space to allow ventilation.

Abstract

A continuous heat sink adapted to an electronic device comprises a prefabricated slat folded into a plurality of perforated sections to define segregated spaces for ventilation and adhered by glue or fasteners to a base plate with a skirt folded at a right angle to each section; the base plate then is placed on the top of the electronic device for the heat to be conducted to the heat sink for dissipation, further improved by the holes that promote the lateral airflow.

Description

    BACKGROUND OF THE INVENTION
  • (a) Field of the Invention [0001]
  • The present invention relates to a continuous heat sink for an electronic device, and more particularly, to one that has a prefabricated slat folded to create a plurality of segregated spaces wherein the air is free to flow for improving production benefits. [0002]
  • (b) Description of the Prior Art [0003]
  • Most of electronic devices and assemblies create thermal energy during operation. Taking the chip used in CPU for example, it becomes more compact and operates at higher speed to significantly reduce the operation time and improve user efficiency thanks to the advanced development of high technology. However, as the operation speed increases, its clock creates more thermal energy, in turn, higher temperature rise to render the computer instable, and failure to affect its normal function of operation. Therefore, a heat sink that is capable of faster dissipating the heat is required to maintain better operation efficiency of the CPU chip. [0004]
  • In the prior art, forced heat dissipation is used, i.e., a heat sink block incorporated with a fan as illustrated in FIG. 10. Wherein, a heat sink block (B) made of aluminum, known for its light-weight and excellent heat conductivity, is formed with a plurality of fins (B[0005] 1) separating from one another with a slot defined any two abutted fins (B1) to allow ventilation. A mini fan (C) is disposed over those fins (B1). In use, the block (B) is fixed to the top surface of a chip by means of fasteners. Alternatively, a heat dissipating glue is used to stick the block (B) to the chip (A) for improving the cooling efficiency. The bottom of the block (B) attached to the chip (A) conducts the heat from the chip (A) to the fins (B1) above that contact the air for the heat to escape into the atmosphere. Furthermore, the fan is used as the source of forced heat dissipation for fast cooling.
  • To facilitate the manufacturing process, the heat dissipation block of the prior art usually comprises extruded aluminum with segregated spaces defined by walls and the walls are cut by pressurized water jet. Whereas it is necessary for the heat sink to provide more area to contact the air for a better heat dissipation effect, more air passages are required. As a result, the subsequent cutting process after the extrusion not only produces excessive waste materials but also much longer time is consumed. Furthermore, as the electronic device, such as a chip used in a CPU, is usually provided with a limited area. In turn, the walls of the heat sink has to get thinner by compromising the increasing wall and air passage, making the walls vulnerable to be damaged in the course of the cutting process, thus higher percentage of defective. That means higher production cost. [0006]
  • SUMMARY OF THE INVENTION
  • The primary purpose of the present invention is to provide a continuous structure for a heat sink adapted to an electronic device composed of a body and a base plate for improved cost efficiency and heat dissipation result. To achieve the purpose, a prefabricated slat in a proper length is used to make the body of the heat sink. The body is punched into a plurality of foldable sections with each section perforated at the same time. A skirt, also foldable may be provided to the bottom of each section. The body is then fixed to a base plate by gluing the skirt, or by means of a fastener. The base plate is placed flush on the top of the electronic device so that the heat generated from the electronic device is conducted to the body to dissipate in the air. The holes provided on each section of the body of the heat sink promote the lateral airflow to further improve the heat dissipation result. The cutting process as required by the prior art is omitted.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of a prefabricated slat of the present invention; [0008]
  • FIG. 2 is a schematic view showing that the prefabricated slat is folded; [0009]
  • FIG. 3 is a schematic view showing that the prefabricated slat has been finished with the folding process; [0010]
  • FIG. 4 is a schematic view showing that the body of the heat sink of the present invention is incorporated with a base plate; [0011]
  • FIG. 5 is another schematic view showing that the body of the heat sink of the present invention is incorporated with the base plate; [0012]
  • FIG. 6 is a schematic view showing another configuration wherein the body of the heat sink of the present invention is incorporated to the base plate; [0013]
  • FIG. 7 a schematic view showing that the heat sink of the present invention incorporated to the base plate is folded in a different way; [0014]
  • FIG. 8 is a schematic view showing a plurality of bodies of the heat sink of the present invention is incorporated to the base plate; [0015]
  • FIG. 9 is a schematic view showing the changed pattern of a plurality of holes provided laterally of the heat sink of the present invention; and [0016]
  • FIG. 10 is a schematic view showing a prior art. [0017]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIG. 1, a structure of a continuous heat sink of the present invention essentially comprises a prefabricated slat ([0018] 1) in a proper length by punching. The slat (1) is then folded to form a body of the continuous heat sink. Wherein, a plurality of holes (2) is punched at the same time with the prefabricated slat (1). At the bottom of each section defined by two abutted folding lines is provided with a skirt (3) to be folded in later assembly of the heat sink of the present invention as illustrated in FIG. 2. The slat (1) may be folded in a continuous vortex lattice pattern in square with the skirts (3) folded at a right angle to the each section of the slat (1) as illustrated in FIG. 3 showing the body of the continuous heat sink of the present invention in vortex lattice. The skirts (3) then are incorporated to a base plate (4) as illustrated in FIG. 4. The bottom of each of the skirts (3) may be adhered to the base plate (4) by applying heat dissipation glue (5) so to render better heat conductivity between the continuous heat sink body formed by the slat (1) and the base plate (4). As a result, the integrated body of the continuous heat sink formed by the slat (1) and the base plate (4) is then fixed to an electronic device. The heat generated by the electronic device is transferred upward to the body of the continuous heat sink body and dissipated. The holes (2) bored on the vertical section of the body of the continuous heat sink promote the air laterally to improve heat dissipation results. Of course, a fan may be further provided over the body of the continuous heat sink to force accelerating the heat dissipation.
  • Alternatively, the body of the continuous heat sink formed by the slat ([0019] 1) is fixed to the base plate (4) as illustrated in FIG. 5. Wherein, a reverse U-shaped fastener (6) is each pivoted to both sides of the base plate (4) with its lateral lever to hold against the top edge of both sides of the body. A dent (11) (11) may be provided on the top edge of the body at where contact the lateral lever of the fastener (6) for the latter to be caulked into position.
  • Now referring to FIG. 6, the skirt ([0020] 3) at the bottom of the continuous heat sink may be omitted for the bottom edge of the body to directly contact the base plate (4) and to be glued to the base plate (4) with heat dissipation glue (5) with or without the fastener (6).
  • The pattern of vortex lattice is not the only option for the configuration of the slat ([0021] 1) and another pattern of reciprocal bending may be provided for the slat (1) as illustrated in FIG. 7.
  • The first preferred embodiment of the present invention is provided to the base plate ([0022] 4) in a single unit of the continuous body of the heat sink. The body may be made in less number of winding or in shorter spacing to reduce its size so that a plurality of smaller units of the body are fixed to the base plate (4) as illustrated in FIG. 8. Upon punching the holes (2), a flange (21) may be punched at the same time for each hole to increase the contact area with the air, as shown in FIG. 9, thus to further improve the heat dissipation effect.
  • As disclosed above, a structure of a continuous heat sink adapted to heat generation electronic device is innovative and provides better heat dissipation effect by having a prefabricated slat to be punched and folded into a continuous heat sink with segregated space to allow ventilation. [0023]

Claims (4)

I claim:
1. A continuous structure of a heat sink adapted to an electronic device that generates heat comprising a body formed by a slat continuously folded into a plurality of sections with each section laterally punched with a plurality of holes to define segregated space for the body; and one or more than one body is adhered to a top surface of said electronic device.
2. A continuous structure of a heat sink adapted to an electronic device that generates heat as claimed in claim 1, wherein, a skirt is folded to a bottom of each section of said slat and flush adhered to a base plate.
3. A continuous structure of a heat sink adapted to an electronic device that generates heat as claimed in claim 1, wherein, the body of the heat sink is adhered to said base plate by applying a coating of heat dissipation glue or fixed to said base plate by means of fasteners.
4. A continuous structure of a heat sink adapted to an electronic device that generates heat as claimed in claim 1, wherein, a flange is punched to each of said holes of said slat.
US10/132,190 2002-02-08 2002-04-26 Continuous heat sink for an electronic device Abandoned US20030150597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW91201531 2002-02-08
TW091201531 2002-02-08

Publications (1)

Publication Number Publication Date
US20030150597A1 true US20030150597A1 (en) 2003-08-14

Family

ID=27657829

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/132,190 Abandoned US20030150597A1 (en) 2002-02-08 2002-04-26 Continuous heat sink for an electronic device

Country Status (1)

Country Link
US (1) US20030150597A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898464A1 (en) * 2005-06-27 2008-03-12 Kabushiki Kaisha Toyota Jidoshokki Heat sink for power module
EP1923914A1 (en) * 2005-08-11 2008-05-21 Mitsubishi Denki Kabushiki Kaisha Heat sink and method of producing the same
US20100193162A1 (en) * 2009-02-05 2010-08-05 Wistron Corporation Heat dissipation device
US20160143127A1 (en) * 2014-11-19 2016-05-19 Giga-Byte Technology Co., Ltd. Slat fastening assembly
CN108334176A (en) * 2018-03-07 2018-07-27 商洛学院 A kind of computer radiator
US11024558B2 (en) * 2010-03-26 2021-06-01 Hamilton Sundstrand Corporation Heat transfer device with fins defining air flow channels
US11421945B1 (en) * 2020-06-25 2022-08-23 Softronics, Ltd. Heat dissipation system with cross-connected heatsink

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898464A1 (en) * 2005-06-27 2008-03-12 Kabushiki Kaisha Toyota Jidoshokki Heat sink for power module
EP1898464A4 (en) * 2005-06-27 2009-09-02 Toyota Jidoshokki Kk Heat sink for power module
US20090302458A1 (en) * 2005-06-27 2009-12-10 Hidehito Kubo Heat Sink For Power Module
US8411438B2 (en) 2005-06-27 2013-04-02 Kabushiki Kaisha Toyota Jidoshokki Heat sink for power module
EP1923914A1 (en) * 2005-08-11 2008-05-21 Mitsubishi Denki Kabushiki Kaisha Heat sink and method of producing the same
EP1923914A4 (en) * 2005-08-11 2010-01-27 Mitsubishi Electric Corp Heat sink and method of producing the same
US20100193162A1 (en) * 2009-02-05 2010-08-05 Wistron Corporation Heat dissipation device
US11024558B2 (en) * 2010-03-26 2021-06-01 Hamilton Sundstrand Corporation Heat transfer device with fins defining air flow channels
US20160143127A1 (en) * 2014-11-19 2016-05-19 Giga-Byte Technology Co., Ltd. Slat fastening assembly
EP3024023A3 (en) * 2014-11-19 2017-06-28 Giga-Byte Technology Co., Ltd. Slat fastening assembly
CN108334176A (en) * 2018-03-07 2018-07-27 商洛学院 A kind of computer radiator
US11421945B1 (en) * 2020-06-25 2022-08-23 Softronics, Ltd. Heat dissipation system with cross-connected heatsink

Similar Documents

Publication Publication Date Title
US5740014A (en) CPU heat sink
JP5470392B2 (en) Electronic equipment cooling structure
US20070006997A1 (en) Heat sink structure
US20050030714A1 (en) Heat dissipating structure for computer host
CN1204797C (en) Heatsink for electronic component, and apparatus and method for manufacturing the same
KR960036006A (en) Heatsink
US6654247B1 (en) Computer heat dissipating structure
US7182124B2 (en) Heat sink structure
US20030150597A1 (en) Continuous heat sink for an electronic device
JP2004200642A (en) Heat radiator of electronic component
US7575045B2 (en) Heat dissipating device
US6822862B2 (en) Apparatus and method for heat sink
US7616445B2 (en) Structure and method for efficient thermal dissipation in an electronic assembly
JP4425016B2 (en) Heat dissipation fan module for electronic devices
JPH08204074A (en) Heat sink and manufacture of the same
US20070240868A1 (en) Air-guiding structure for heat-dissipating fin
US20100020494A1 (en) Heat dissipation device
US6766851B1 (en) Heat sink fin assembly
US6636423B2 (en) Composite fins for heat sinks
JP2001007263A (en) Heat-sink assembly comprising improved heat-exchanger
JP2003188322A (en) Heat sink
CN2935730Y (en) Radiator structure
JP3122918U (en) Anti-airflow interference assembly heat sink
JP3163972U (en) Radiator air guide structure and heat dissipation module
JP2003168884A (en) Electronic component

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION