US20030143241A1 - Hepatitis E virus vaccine and method - Google Patents

Hepatitis E virus vaccine and method Download PDF

Info

Publication number
US20030143241A1
US20030143241A1 US10/165,868 US16586802A US2003143241A1 US 20030143241 A1 US20030143241 A1 US 20030143241A1 US 16586802 A US16586802 A US 16586802A US 2003143241 A1 US2003143241 A1 US 2003143241A1
Authority
US
United States
Prior art keywords
sequence
leu
ala
thr
hev
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/165,868
Inventor
Gregory Reyes
Daniel Bradley
Jr-Shin Twu
Michael Purdy
Albert Tam
Krzysztof Krawczynski
Patrice Yarbough
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genelabs Technologies Inc
Original Assignee
Genelabs Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genelabs Technologies Inc filed Critical Genelabs Technologies Inc
Priority to US10/165,868 priority Critical patent/US20030143241A1/en
Publication of US20030143241A1 publication Critical patent/US20030143241A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • G01N33/5767Immunoassay; Biospecific binding assay; Materials therefor for hepatitis non-A, non-B hepatitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/61Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/28011Hepeviridae
    • C12N2770/28022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/28011Hepeviridae
    • C12N2770/28111Hepevirus, e.g. hepatitis E virus
    • C12N2770/28122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • This invention relates to antigen and antibody vaccine compositions related to enterically transmitted nonA/nonB hepatitis viral agent, also referred to herein as hepatitis E virus (HEV), and to vaccine methods.
  • HEV hepatitis E virus
  • Enterically transmitted non-A/non-B hepatitis viral agent (ET-NANB, also referred to herein as hepatitis E virus or HEV) is the reported cause of hepatitis in several epidemics and sporadic cases in Asia, Africa, Europe, Mexico, and the Indian subcontinent. Infection is caused usually by water contaminated with feces, although the virus may also spread by close physical contact. The virus does not seem to cause chronic infection.
  • the viral etiology in HEV has been demonstrated by infection of volunteers with pooled fecal isolates; immune electron microscopy (IEM) studies have shown virus particles with 27-34 nm diameters in stools from infected individuals. The virus particles reacted with antibodies in serum from infected individuals from geographically distinct regions, suggesting that a single viral agent or class is responsible for the majority of HEV hepatitis seen worldwide. No antibody reaction was seen in serum from individuals infected with parenterally transmitted NANB virus (also known as hepatitis C virus or HCV), indicating a different specificity between the two NANB types.
  • NANB virus also known as hepatitis C virus or HCV
  • HEV is characteristically an acute infection, often associated with fever and arthralgia, and with portal inflammation and associated bile stasis in liver biopsy specimens (Arankalle). Symptoms are usually resolved within six weeks. HCV, by contrast, produces a chronic infection in about 50% of the cases. Fever and arthralgia are rarely seen, and inflammation has a predominantly parenchymal distribution (Khuroo, 1980).
  • the two viral agents can also be distinguished on the basis of primate host susceptibility.
  • HEV but not HCV, can be transmitted to cynomolgus monkeys. HCV is more readily transmitted to chimpanzees than is HEV (Bradley, 1987).
  • HEV clones and the sequence of the entire HEV genome sequence were disclosed. From HEV clones, recombinant peptides derived from HEV genomic coding region were produced.
  • the invention includes a peptide vaccine composition for immunizing an individual against hepatitis E virus (HEV).
  • the composition includes a pharmacologically acceptable carrier, and a peptide containing the C-terminal 42 amino acids of the putative capsid protein encoded by the second open reading frame of the HEV genome.
  • the peptide preferably includes the amino acid sequence identified by one of the following sequences:
  • the invention includes a method of inhibiting infection of an individual by HEV, by administering to the subject, by parenteral injection, such as intramuscular or intravenous injection, the above peptide vaccine composition.
  • the invention includes an antibody vaccine composition effective in neutralizing hepatitis E virus (HEV) infection, as evidenced by the ability of the composition to block HEV infection of primary human hepatocyte cells in culture.
  • HEV hepatitis E virus
  • the antibody composition preferably contains an antibody which is immunoreactive with a peptide containing one of the above (i)-(xv) sequences, and preferably with a peptide corresponding to sequences (i)-(iii), (iv-vi) and (vii-xv).
  • the invention includes a method for preventing or treating HEV infection in an individual, by administering to the subject, by parenteral injection, the above antibody composition.
  • FIG. 1 shows the HEV genome, the arrangement of open reading frames in the genome, and the approximate coding regions for peptides 406.3-2, GS3, and trpE-C2;
  • FIGS. 2A and 2B show the blood ALT levels observed after infection of cynomolgus monkeys with a Burma-strain HEV stool sample in animals which were previously immunized with a trpE-C2 HEV antigen ( 2 A) or an alum control ( 2 B);
  • FIGS. 3A and 3B show the blood ALT levels observed after infection of cynomolgus monkeys with a Mexico-strain HEV stool sample in animals which were previously immunized with the trpE-C2 HEV antigen ( 3 A) or an alum control ( 3 B);
  • FIG. 4 shows Southern blots of PCR-amplified RNA from non-infected human primary hepatocytes (lane 4) and primary hepatocytes infected with HEV for increasing times from 3 hours to 11 days (lanes 5-11);
  • FIG. 5 shows Southern blots of PCR-amplified RNA from HEV-infected human primary hepatocytes in which the infective virus is preincubated with normal pre-immune rabbit serum (lanes 1 and 3) or rabbit antiserum against the HEV antigen HEV 406.3-2 (B) (lane 2) and HEV 406.4-2 (M) (lane 4);
  • FIG. 6 shows Southern blots of PCR-amplified RNA from HEV-infected human primary hepatocytes preincubated with normal human serum (lane 1) and one of a number of different HEV-positive immune human sera (lanes 2-12);
  • FIG. 7 shows the nucleotide sequences of the HEV ORF2 and ORF3 for Burma (upper line) and Mexico (lower line) strains of HEV;
  • FIG. 8 shows the amino acid sequences of the ORF3 peptide for Burma (upper line) and Mexico (lower line) strains of HEV;
  • FIG. 9 shows the amino acid sequences of the ORF2 protein for the Burma (upper line) and Mexico (lower line) strains of HEV.
  • FIG. 10 shows in panel A, the ethidium bromide stained gel of DNA produced from PCR-amplified RNA.
  • the RNA was from HEV infected primary cynomolgus macaque hepatocytes in which the infective virus HEV Burma was preincubated with normal preimmune rabbit serum as shown in lanes 1 and 3; or with rabbit anti-serum against HEV antigen 406.3-2(B) (lane 2), or with HEV 406.4-2(B)(lane 4); panel B shows Southern Blots of the materials as described above in panel A for lanes 1-4.
  • hepatitis E virus means a virus, virus type, or virus class which (1) causes water-borne, infectious hepatitis, (ii) is transmissible in cynomolgus monkeys, (iii) is serologically distinct from hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis D virus, and (iv) includes a genomic region which is homologous to the 1.33 kb cDNA insert in plasmid pTZKF1(ET1.1) carried in E. coli strain BB4 identified by ATCC deposit number 67717.
  • Two nucleic acid fragments are “homologous” if they are capable of hybridizing to one another under hybridization conditions described in Maniatis et al., op. cit ., pp. 320-323. However, using the following wash conditions: 2 ⁇ SCC, 0.1% SDS, room temperature twice, 30 minutes each; then 2 ⁇ SCC, 0.1% SDS, 50° C. once, 30 minutes; then 2 ⁇ SCC, room temperature twice, 10 minutes each, homologous sequences can be identified that contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches. These degrees of homology can be selected by using more stringent wash conditions for identification of clones from gene libraries (or other sources of genetic material), as is well known in the art.
  • Two amino acid sequences or two nucleotide sequences are considered homologous (as this term is preferably used in this specification) if they have an alignment score of >5 (in standard deviation units) using the program ALIGN with the mutation gap matrix and a gap penalty of 6 or greater. See Dayhoff, M. O., in Atlas of Protein Sequence and Structure (1972) Vol. 5, National Biomedical Research Foundation, pp. 101-110, and Supplement 2 to this volume, pp. 1-10.
  • the two sequences (or parts thereof, preferably at least 30 amino acids in length) are more preferably homologous if their amino acids are greater than or equal to 50% identical when optimally aligned using the ALIGN program mentioned above.
  • a DNA fragment is “derived from” an HEV viral agent if it has the same or substantially the same basepair sequence as a region of the viral agent genome.
  • a protein is “derived from” an HEV viral agent if it is encoded by an open reading frame of a DNA or RNA fragment derived from an ET-NANB viral agent.
  • a third amino acid sequence will be “internally consistent with the known sequences” if each amino acid in the third sequence is identical to at least one of amino acids in the known sequences.
  • This section describes methods for preparing and using an HEV antigen vaccine effective, when injected intramuscularly (i.m.), to prevent HEV infection.
  • HEV genomic clones and sequences corresponding to the entire HEV genome for different HEV strains were obtained according to published methods (Tam, Yarbrough) and as described in the parent applications referenced above. Briefly, RNA isolated from the bile of a cynomolgus monkey having a known HEV infection was cloned, as cDNA fragments, to form a fragment library, and the library was screened by differential hybridization to radiolabeled cDNAs from infected and non-infected bile sources.
  • HEV is a virus with an approximately 7.5 kilobase (kb) single-stranded and polyadenylated RNA genome of positive-sense polarity.
  • ORFs Three open reading frames (ORFs) have been assigned to HEV as ORF1, encoding polypeptides with domains of the RNA-directed RNA polymerase and a helicase, ORF2, encoding the putative capsid protein of the virus, and ORF3.
  • the genomic organization of HEV assigns its non-structural gene(s) at the 5′ terminus with the structural gene(s) at the 3′ end.
  • Two subgenomic polyadenlated transcripts of approximately 2.0 kb and 3.7 kb in sizes are detected in infected liver and co-terminated at their 3′ ends with the 7.5 kb full-length genomic transcript.
  • the genomic organization and expression strategy of HEV suggest that it might be the prototype human pathogen for a new class of RNA virus or perhaps a separate genus within the Caliciviridae family.
  • the genomic and peptide sequences shown in FIG. 7 correspond to the ORF-2 and ORF-3 regions of Burma (B) (upper lines) and Mexico (M) strains (lower lines) of HEV.
  • the bases indicated in the middle lines represent conserved nucleotides.
  • the numbering system used in the comparison is based on the Burma sequence.
  • the Burma sequence has SEQ ID No. 1; and the Mexico sequence, SEQ ID No. 2.
  • the region corresponding to ORF2 has SEQ ID nos. 3 and 4 for the Burma and Mexico strains, respectively.
  • the region corresponding to 406.3-2 has SEQ ID Nos. 5 and 6 for the Burma and Mexico strains, respectively.
  • the region corresponding to SG3 has SEQ ID Nos.
  • the region corresponding to C2 has SEQ ID Nos. 9 and 10 for the Burma and Mexico strains, respectively.
  • the region corresponding to 406.4-2 has SEQ ID Nos. 11 and 12 for the Burma and Mexico strains, respectively.
  • SEQ ID Nos. 13 and 14 correspond to the amino acid sequences for the peptides 406.3-2 (B) and 406.3-2 (M), respectively.
  • Each peptide is a 42 amino acid peptide in the C-terminal end region of capsid protein encoded by the ORF2, as indicated in the ORF2 sequence (FIG. 9).
  • SEQ ID Nos. 15 and 16 correspond to the amino acid sequences for the peptides SG3 (B) and SG3 (M), respectively.
  • Each peptide includes the carboxyl 324 amino acids of the HEV capsid.
  • SEQ ID Nos. 17 and 18 correspond to the amino acid sequences for the peptides C2 (B) and C2 (M), respectively. Each includes the carboxyl 461 amino acids of the HEV protein.
  • SEQ ID Nos. 19 and 20 correspond to the amino acid sequences for the entire putative capsid protein encoded by the Burma and Mexico strain ORF2, respectively.
  • SEQ ID Nos. 21 and 22 correspond to the amino acid sequences for the 406.4-2 (B) and 406.4-2 (M), respectively (FIG. 8). These are 33 amino acid sequences encoded by the ORF3.
  • sequences which are internally consistent with the above specified sequences from different strains of HEV antigens include Sequence ID No. 13; Sequence ID No. 14, and internally consistent variations between Sequence ID Nos. 13 and 14; Sequence ID No. 15; Sequence ID No. 16; and internally consistent variations between Sequence ID Nos. 15 and 16; Sequence ID No. 17; Sequence ID No. 18; and internally consistent variations between Sequence ID Nos. 17 and 18; Sequence ID No. 19; Sequence ID No. 20; internally consistent variations between Sequence ID Nos. 19 and 20; Sequence ID No. 21; Sequence ID No. 22; internally consistent variations between Sequence ID Nos. 21 and 22.
  • the HEV 406.3-2 antigens have the sequence homology shown below for the Burma (B) and Mexico (M) strains.
  • the single dots in the sequence comparison indicate recognized high-probability or “neutral” amino acid substitutions.
  • the blank spaces indicate a non-neutral substitution.
  • 10 20 30 MEXICAN (SEQ ID NO.17) ANQPGHLAPLGEIRPSAPPLPPVADLPQPGLRR ::.:.::::::::::::.:.:.::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
  • the ORF3 amino acid sequences, 124 amino acids in length, for the Burma and Mexico strains have an 87.1% identity in the 124 amino acids.
  • the ORF2 amino acid sequences, having 659 amino acids of overlap, have a 93.0 identity in the 659 amino acids.
  • the 406.3-2(B) antigen can be prepared by PCR amplification of the Burma SEQ ID No. 5 from above by PCR amplification of the pBET1 plasmid (Tam).
  • This plasmid contains a 2.3 kb insert covering the ORF2 and ORF3 for Burma strain HEV sequence.
  • the plasmid is amplified by PCR amplification, using a 51 primer containing an NcoI site and a 3′ primer containing a BamHI site (Sakai).
  • the amplified fragment is inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an E. coli expression system as described in Example 3.
  • the SG3(B) peptide was prepared by first amplifying the SEQ ID No. 7 sequence with 5′ EcoRI-NcoI and 3′ BamHI linkers, using a gt 10 phage BET1 clone plasmid containing the entire ORF2 and ORF3 regions of HEV (B). The amplified fragment was inserted into the EcoRI/BamHI site of a BluescriptTM vector (Stratagene, San Diego, Calif.), according to the manufacturer's instructions. After vector propagation and harvesting, the cloned insert was released by digestion with NcoI and BamHI, and gel purified.
  • the purified fragment was inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an E. coli expression system as described in Example 3.
  • the SG3(M) peptide can be prepared similarly, using the SEQ ID No. 8 in place of the SEQ ID No. 7.
  • the C2 (B) peptide is prepared as described in Example 5. Briefly, a gt10 phage BET1 plasmid was digested with EcoRI to release the SEQ ID No. 10 C2 sequence, and this fragment was inserted into a pATH10 trpE fusion vector, and the recombinant fusion protein expressed in an E. coli host.
  • the C2 (M) peptide can be prepared, substantially as described above, by PCR amplification of the SEQ ID No. 10, using a 5′ primer containing an EcoRI site and a 3′ primer containing a BamHI site. The amplified fragment is inserted into the EcoRI/BamHI site of a pGEX vector, and expressed in an E. coli expression system as described in Example 3.
  • the capsid protein (B) was prepared substantially as described above by PCR amplification of the SEQ ID No. 3, , from a gt10 BET1 plasmid using a 5′ primer containing an NcoI site and a 3′ primer containing a BamHI site. The amplified fragment was inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an E. coli expression system as described in Example 3. The capsid protein (M) is similarly prepared.
  • the 406.4-2(B) antigen can be prepared by PCR amplification of the Burma SEQ ID No. 11 from above by PCR amplification, using a 5′ primer containing an NcoI site and a 3′ primer containing a BamHI site.
  • the amplified fragments is inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an E. coli expression system as described in Example 3.
  • HEV peptides containing selected portions, and preferably C-terminal portions of the HEV capsid protein containing the 406.3-2 sequence can similarly be prepared, using the HEV genomic-insert plasmids above, with amplification of the desired sequences and cloning into a suitable expression vector, as outlined above, and detailed in Examples 3 and 5.
  • the coding sequences used in producing the recombinant peptides can be derived from the cloning vectors described above and detailed elsewhere (Tam), or from synthetic nucleotide synthesis using PCR slicing methods to join oligonucleotide fragments, according to known methods, in building up nucleotide sequences.
  • HEV peptide antigens may also be obtained from purified HEV virus propagated in primary hepatocytes obtained from primate liver, preferably from human or cynomolgus monkey liver. Methods for preparing primary primate hepatocytes for culture, and culture medium conditions effective to preserve liver-specific functions for extended periods in culture are detailed for human hepatocytes in Example 1 below.
  • the cells are infected with a pooled inoculum of HEV-infected cynomolgus monkey stool pool (fourth passage), as detailed in Example 2.
  • the presence and level of propagating HEV virus in the cells can be measured by indirect immunofluorescence.
  • the primary cells are cynomolgus cells
  • the cells can be immunoreacted with human HEV anti-sera, followed by immunoreaction with rabbit anti-human IgG antibodies.
  • the HEV virus can be detected and measured by selective amplification methods involving initial cDNA formation, and PCR amplification of HEV cDNA sequences by PCR amplification, as detailed in Example 2.
  • Virus particles can be isolated from HEV infected human hepatocytes in culture medium by pelleting the virus through a 30% sucrose cushion by ultracentrifugation. The pelleted virus may be further purified, if desired, by zonal centrifugation through a 10-40% sucrose gradient, combining peak virus fractions.
  • clarified culture medium can be passed through a size-exclusion matrix, to separate soluble components by size exclusion.
  • the clarified culture medium can be passed through an ultrafiltration membrane having a 10-20 nm pore size capable of retaining virus particles, but passing solute (non-particulate) culture medium components.
  • the present invention allows glycosylation and other post-translation modifications in intact HEV capsid protein.
  • Capsid isolation from the viral particles can be carried out by standard methods, such as ion exchange and size-exclusion chromatography, and HPLC purification, after solubilization of the virus particles in a solubilizing medium, such as a solution of a non-ionic surfactant.
  • the protein may be purified by affinity chromatography, employing, for example, antibodies purified from anti-HEV antisera.
  • HEV capsid antigens HEV capsid antigens
  • the HEV antigen is covalently coupled to a carrier protein, such as keyhole limpet hemocyanin, and injected either in solution form or in combination with an adjuvant.
  • a carrier protein such as keyhole limpet hemocyanin
  • the non-HEV moiety of the protein may serve as the carrier protein.
  • the derivatized or fusion protein is carried in a pharmaceutically acceptable carrier, such as in solution or in an adjuvant, such as converted alum.
  • the free peptide itself e.g., the HEV C2 peptide
  • a suitable adjuvanted vaccine has a preferred antigen concentration of about 1 mg peptide antigen/mg alum, and not to exceed 80 mg of alum per injection.
  • the invention is directed to a method of inhibiting infection of an individual by hepatitis E virus, by administering to the subject, by parenteral injection, e.g., intramuscular or intravenous injection, the vaccine composition of the invention.
  • Preferred vaccine compositions for use in the method are those in which the HEV antigen includes the sequence in the peptides identified by:
  • the antigen vaccine composition is preferably administered intramuscularly in a series of inoculations, for example, two-three injections given at four week intervals.
  • FIG. 2A shows the change in liver ALT levels in the period following infection with Burma-strain HEV virus, in one of the animals which received a third dose of trpE-C2. As seen, there was no evidence of elevated ALT levels in the 7 and ⁇ fraction (1/2) ⁇ week period following infection. The liver biopsy samples also showed no evidence of HEV antigen.
  • FIG. 2B shows ALT levels measured after HEV (B) infection of a control animal (alum alone injections) which was infected intravenously with the Burma strain HEV.
  • the elevated ALT levels indicate the level of infection which is expected in the absence of vaccine protection.
  • HEV antigen was also detected in the liver biopsy samples. A similar result was observed in the animal which received two injections of trpE-C2 alum composition, but not the third alum-free vaccination, as described above.
  • FIG. 3A shows the change in liver ALT levels following infection with Mexico-strain HEV virus, in one of the animals which received a third dose of trpE-C2. Again, there was no evidence of elevated ALT levels out to day 32 (The animal died of unrelated causes at day 32). The liver biopsy samples also showed minimal evidence of HEV antigen. This result demonstrates that an antigen vaccine directed against one HEV strain can provide protective immunity against other HEV strains.
  • FIG. 3B shows ALT levels measured after HEV infection of a control animal (alum alone injections) which was infected intravenously with the Mexico strain of HEV. High levels of infection (ALT activity) were observed. A similar result was observed in the animal which received two injections of trpE-C2 alum composition, but not the third alum-free vaccination, as described above.
  • the invention includes an antibody vaccine composition effective in neutralizing HEV infection, as evidenced by the ability of the composition to block HEV infection in HEV-infectable primary hepatocytes in culture.
  • Two exemplary primary cells are human and cynomolgus monkey cells.
  • the antibodies in the composition are preferably immunoreactive with a peptide containing one of the sequences: Sequence ID No. 13; Sequence ID No. 14, and internally consistent variations between Sequence ID Nos. 13 and 14.
  • antibodies prepared against the 406.3-2 antigen (M) are effective to block HEV infection in human primary hepatocytes.
  • Antibodies which are immunoreactive with larger capsid peptides or proteins containing the carboxy terminal of SEQ ID No. 13 or 14 are also preferred. These may include, specifically Sequence ID No. 15; Sequence ID No. 16; and internally consistent variations between Sequence ID Nos. 15 and 16. As will be seen below, human sera which are effective to prevent HEV infection of human primary hepatocyes are immunoreactive with the SG3 peptides defined by these sequences.
  • Antibodies which are immunoreactive with the trpE-C2 peptides defined by Sequence ID No. 17; Sequence ID No. 18; and internally consistent variations between Sequence ID Nos. 17 and 18 are also preferred, as are antibodies immunoreactive with the entire capsid protein, as defined by Sequence ID No. 19; Sequence ID No. 20; internally consistent variations between Sequence ID Nos. 19 and 20; and antibodies that are immunoreactive with the product of ORF3, as defined in part by Sequence ID No. 21; Sequence ID No. 22; and internally consistent variations between Sequence ID Nos 21 and 22.
  • the antibodies may be obtained as polyclonal antibodies from antisera, prepared for example, by immunization of a suitable animal, such as a rabbit or goat, with one of the HEV antigens specified above.
  • polyclonal antibodies may be obtained from human or other primate HEV antisera.
  • Anti-HEV polyclonal antibodies from the antisera may be purified or partially purified according to standard methods, such as used to obtain partially purified serum IgG fractions (see, e.g., Antibodies: A laboratory Manual, 1988, Cold Springs Harbor Lab).
  • anti-HEV antibodies can be obtained in purified form by affinity chromatography, employing a solid support derivatized with one of the capsid antigens described above.
  • the antibodies are monoclonal antibodies secreted by hybridoma cell lines.
  • lymphocytes from an immunized animal preferably mouse or human
  • a suitable immortalizing fusion partner e.g., Engleman, Zola
  • human monoclonal antibodies may be produced by recombinant methods, in which light and heavy human anti-HEV IgG genes obtained from cultured lymphocytes are inserted into suitable expression vectors, and used to co-infect a suitable host. Methods for obtaining and cloning light and heavy genes from human lymphocytes, and for expressing the cloned genes in a co-infected host cell are known (larrick).
  • the anti-HEV antibodies are formulated in a suitable solution for injection, typically by intramuscular, subcutaneous or intravenous route, to form the vaccine composition.
  • the primary hepatocytes were prepared and cultured according to published procedures and as detailed in Example 1.
  • the unique culture conditions allow for long-term cell growth in culture without loss of specialized hepatocyte function, as evidenced by the cells' continued ability to make and secrete liver-specific proteins, such as serum albumin, up to several months after initial culturing, as described in Example 1.
  • the cultured cells were inoculated with either normal human sera or a cynomolgus stool preparation. To demonstrate HEV infection in the cells, the cells were examined on days 1-11 after infection for the presence of HEV RNA, using a combination of reverse transcriptase, to form cDNA's, and polymerase chain reaction (PCR) to amplify HEV-specific cDNA. The amplified fragment is expected to have a 551 basepair length.
  • FIG. 4 shows Southern blots of the amplified material, using an HEV ORF2 radiolabeled probe for detecting amplified HEV sequence.
  • Lanes 1-3 are controls. Lane 4 is total amplified material from cells inoculated with normal (non-infected) sera. Lanes 5-11 show amplified material 3 hours, 1 day, 3 days, 5 days, 7 days, 9 days, and 11 days after infection with the cyno stool sample, respectively.
  • the results show that HEV propagated in human primary hepatocytes within one day after initial infection (lane 6). There was a time-dependent increase at the level of HEV replication up to 5 days post infection (lanes 7 and 8), which appeared to decrease thereafter (lanes 9-11). There was no evidence of HEV in total cellular RNA isolated from uninfected primary cells.
  • Rabbit antisera against antigen peptides 406.3-2 (B) and 406.4-2 (M) and 406.4-2 (B) were prepared.
  • the 406.3-2 peptide is from the carboxy terminal end region of the HEV capsid protein
  • the 406.4-2 peptide from the peptide encoded by the HEV ORF3.
  • Preimmune rabbit serum or rabbit antiserum against one of HEV antigens was added to the cyno stool inoculum, at a 1:20 dilution, and the antibody was incubated with the viral preparation.
  • the antibody-treated stool sample was then used to infect human primary hepatocytes. 14 days later, the cells were examined for HEV infection by the RT/PCR/Southern blot method just described, except employing primers which are expected to yield a 448 basepair amplified fragment.
  • Lanes 1 and 3 in this figure show amplified RNA from cells infected with cyno stool sample previously incubated with human preimmune serum.
  • the 448 basepair band in the figure indicates HEV infection.
  • the second lane corresponds to cells which were exposed to anti-406.3-2 (B) rabbit antisera, and indicates virtually complete absence of HEV infection.
  • Lane 4 shows amplified material from cells exposed to anti-406.4-2 (M) rabbit antisera. The antibody showed little or no protective effect against HEV infection.
  • both anti-406.3-2(B) and anti-406.4-2(B) were shown to offer protective effect against HEV infection.
  • HEV antisera Another source of neutralizing antibodies, in accordance with the invention, is human HEV antisera which is characterized by immunospecific reaction to the 406.3-2 antigen and the SG3 antigen, both described above.
  • HEV antisera To examine the neutralizing antibody characteristics of human HEV antisera, a panel of human antisera were tested for the ability to block HEV infection of cultured hepatocytes, substantially as described above. The ten HEV positive human antisera are shown in Table 1 below, and are from patients who developed HEV infection in India, Pakistan, and Mexico. The antisera were not tested for strain type.
  • human HEV antisera which provide a suitable source of neutralizing antibodies are those characterized by (a) immunoreactivity with a 406.3-2 antigen, and (b) the SG3 antigen, both as evidenced by immunoreactivity in a Western blot, i.e., where the antigen is in an exposed, accessible configuration.
  • a preferred vaccine composition of the invention contains antibodies immunospecific against the 406.3-2 antigenic and against the SG3 antigenic peptide.
  • the vaccine composition includes the immunospecific antibodies in a suitable carrier for parenteral injection.
  • the antibody vaccine composition is used, according to another aspect of the invention, for preventing or treating HEV infection in humans.
  • Enzymes DNAse I and alkaline phosphatase were obtained from Boehringer Mannheim Biochemicals (BMB, Indianapolis, Ind.); EcoRI, EcoRI methylase, DNA ligase, and DNA Polymerase I, from New England Biolabs (NEB, Beverly Mass.); and RNase A was obtained from Sigma (St. Louis, Mo.).
  • EcoRI linkers were obtained from NEB; and nitro blue tetrazolium (NBT), S-bromo-4-chloro-3-indolyl phosphate (BCIP) S-bromo-4-chloro-3-indolyl-B-D-galactopyranoside (Xgal) and isopropyl B-D-thiogalactopyranoside (IPTG) were obtained from Sigma.
  • NBT nitro blue tetrazolium
  • BCIP S-bromo-4-chloro-3-indolyl phosphate
  • Xgal S-bromo-4-chloro-3-indolyl-B-D-galactopyranoside
  • IPTG isopropyl B-D-thiogalactopyranoside
  • Hepatocytes were isolated from human liver obtained from Stanford University Medical Center. The liver was either perfused in situ or excised as a wedge for perfusion in laboratory. The initial perfusion was performed for 10 minutes at 60 ml/min using Ca ++ -, Mg ⁇ + -free Hanks' balanced salt solution supplemented with 10 mM HEPES (pH 7.4) and 0.5 mM [ethylene bis(oxyethylenenitrillo]-tetraacetic acid. Perfusion was continued for additional 20 minutes using Williams' medium E (WME) supplemented with 10 Mm HEPES (pH 7.4) and 100 U/ml collagenase (type I, Sigma Chemical Co., St. Louis, Mo.).
  • WME Williams' medium E
  • liver capsule was removed using fine forceps, and hepatocytes were dislodged by gentle shaking in collagenase solution.
  • the hepatocyte suspension was filtered through several layers of gauze and mixed with an equal volume of WMW containing 10% fetal bovine serum (FBS). Hepatocytes were sedimented by centrifugation at 50 Xg for 5 minutes and resuspended in WME containing 5% FBS. Hepatocytes were sedimented and resuspended in the manner for 2 additional times.
  • the final cell preparation was further filtered through several layers of gauze before examining for viability using trypan blue. The cells were plated at a density of 2 ⁇ 10 6 cells per 60-mm Primaria plates (Falcon) pre-coated with collagen (Collaborative Research).
  • Human hepatocyte cultures were maintained in serum-free medium for various period of time and labeled with [ 35 S]-methionine for 24 hrs.
  • the medium was adjusted to contain 1 mM PMSF, 1 mM EDTA, and 1% NP40.
  • Antibodies specific for the different plasma proteins were bound to protein A-agarose beads, the beads were washed with PBS, and aliquots of the labeled medium were incubated for 16 hrs at 4° C. with the antibody-bead complexes.
  • the beads were washed 3 times with a buffer containing 1% NP40, and immunoprecipitated proteins were eluted with gel electrophoresis sample buffer containing 2% SDS and 2% 2-mercaptoethanol. Samples were analyzed by gradient SDS-PAGE (4 to 15%) and autoradiography.
  • the HEV-infected cynomolgus monkey #73 stool pool (fourth passage) was used as an inoculum for infections of primary human hepatocytes.
  • Various amounts of inoculum was diluted in 1 ml of serum-free medium (SFM) and applied to the culture during a 3 hr incubation period. This solution was then supplemented with 2 ml of fresh SFM and the entire mixture was incubated overnight. The next day, cell monolayers were washed with WME (10 mM HEPES, pH 7.4) for three times and changed to fresh SFM, which was changed at two day intervals thereafter.
  • SFM serum-free medium
  • HEV infection of primary cynomolgus macaque hepatocytes was evaluated by RT/PCR assays.
  • the primers for cDNA synthesis and PCR were based on the nucleotide sequences of the full-length HEV cDNA (A. Tam et al.).
  • Primers HEV3.2SF1 (nt 6578-6597) and HEV3.2SF2 (nt 6650-6668) are of sense polarity from the ORF2 region of the viral genome and HEV3.2SR1 (nt 7108-7127) and HEV3.2SR2 (nt 7078-7097) are antisense primers within the region.
  • RNA samples were heat-denatured at 95° C. for 5 minutes and subjected to reverse transcription at room temperature for 5 minutes and 42° C.
  • MMLV-reverse transcriptase BRL
  • RNasin Promega
  • 1 ⁇ PCR buffer Perkin-Elmer Cetus
  • HEV3.2SR1 primer 2.5 uM
  • a TZKF1 plasmid (ET1.1), ATCC deposit number 67717, was digested with EcoRI to release the 1.33 kb HEV insert which was purified from the linearized plasmid by gel electrophoresis.
  • the purified fragment was suspended in a standard digest buffer (0.5M Tris HCl, pH 7.5; 1 mg/ml BSA; 10 mM MnC12) to a concentration of about 1 mg/ml and digested with DNAse I at room temperature for about 5 minutes.
  • a standard digest buffer 0.5M Tris HCl, pH 7.5; 1 mg/ml BSA; 10 mM MnC12
  • the fragments in the digest mixture were blunt-ended and ligated with EcoRI linkers.
  • the resultant fragments were analyzed by electrophoresis (5-10V/cm) on 1.2% agarose gel, using PhiX174/HaeIII and lambda/HindIII size markers.
  • the 100-300 bp fraction was eluted onto NA45 strips (Schleicher and Schuell), which were then placed into 1.5 ml microtubes with eluting solution (1 M NaCl, 50 mM arginine, pH 9.0), and incubated at 67° C. for 30-60 minutes.
  • the eluted DNA was phenol/chloroform extracted and then precipitated with two volumes of ethanol.
  • the pellet was resuspended in 20 ml TE (0.01 M Tris HCl, pH 7.5, 0.001 M EDTA).
  • Lambda gt11 phage vector (Huynh) was obtained from Promega Biotec (Madison, Wis.). This cloning vector has a unique EcoRI cloning site 53 base pairs upstream from the beta-galactosidase translation termination codon.
  • E. coli strain KM392 obtained from Dr. Kevin Moore, DNAX (Palo Alto, Calif.).
  • E. coli strain Y1090 available from the American Type Culture Collection (ATCC #37197), could be used.
  • the infected bacteria were plated and the resultant colonies were checked for loss of beta-galactosidase activity-(clear plaques) in the presence of X-gal using a standard X-gal substrate plaque assay method (Maniatis). About 50% of the phage plaques showed loss of beta-galactosidase enzyme activity (recombinants).
  • HEV convalescent antiserum was obtained from patients infected during documented HEV outbreaks in Mexico, Borneo, Pakistan, Somalia, and Burma. The sera were immunoreactive with VLPs in stool specimens from each of several other patients with ETNANB hepatitis.
  • a lawn of E. coli KM392 cells infected with about 104 pfu of the phage stock from above was prepared on a 150 mm plate and incubated, inverted, for 5-8 hours at 37° C.
  • the lawn was overlaid with a nitrocellulose sheet, causing transfer of expressed HEV recombinant protein from the plagues to the paper.
  • the plate and filter were indexed for matching corresponding plate and filter positions.
  • the filter was washed twice in TBST buffer (10 mM Tris, pH 8.0, 150 mM NaCl, 0.05% Tween 20), blocked with AIB (TBST buffer with 1% gelatin), washed again in TBST, and incubated overnight after addition of antiserum (diluted to 1:50 in AIB, 12-15 ml/plate).
  • the sheet was washed twice in TEST and then contacted with enzyme-labeled anti-human antibody to attach the labeled antibody at filter sites containing antigen recognized by the antiserum.
  • the filter was developed in a substrate medium containing 33 ml NET (50 mg/ml stock solution maintained at 4° C.) mixed with 16 ml BCIP (50 mg/ml stock solution maintained at 4° C.) in 5 ml of alkaline phosphatase buffer (100 mM Tris, 9.5, 100 mM NaCl, 5 mM MgC12). Purple color appeared at points of antigen production, as recognized by the antiserum.
  • NET 50 mg/ml stock solution maintained at 4° C.
  • BCIP 50 mg/ml stock solution maintained at 4° C.
  • alkaline phosphatase buffer 100 mM Tris, 9.5, 100 mM NaCl, 5 mM MgC12
  • the areas of antigen production determined in the previous step were replated at about 100-200 pfu on an 82 mm plate.
  • the above steps, beginning with a 5-8 hour incubation, through NBT-BCIP development, were repeated in order to plaque purify phage secreting an antigen capable of reacting with the HEV antibody.
  • the identified plaques were picked and eluted in phage buffer (Maniatis, p. 443).
  • Two subclones which were selected are the 406.3-2 and 406.4-2 clones whose sequences are set forth above. These sequences were isolated from an amplified cDNA library derived from a Mexican stool. Using the techniques described in this section, polypeptides expressed by these clones have been tested for immunoreactivity against a number of different human HEV-positive sera obtained from sources around the world. As shown in Table 4 below, 8 sera immunoreactive with the polypeptide expressed by the 406.4-2, and 6 sera immunoreacted with polypeptide expressed by the 406.3-2 clone.
  • the Table also shows reactivity of the various human sera with the non structural peptide Y2. Only one of the sera reacted with the polypeptide expressed by this clone. No immunoreactivity was seen for normal expression products of the gt11 vector.
  • Y2 represents a sequence encoded by the HEV sequence 157 basepair sequence from the first open reading frame of the HEV genome.
  • the 406.3-2 gt11 plasmid from above was digested with EcoRI and the released HEV fragment was amplified by PCR in the presence of linkers which added an NcoI site at the 5′ fragment end, and a BamHI site at the 31 fragment end.
  • the amplified material was digested with NcoI and BamHI and inserted into the NcoI/BamHI site of the glutathione S-transferase vector PGEX expression vector, according to the manufacturer's instructions.
  • the PGEX plasmid was used to transform E. coli host cells, and cells which were successfully transformed with the pGEX vector were identified by immunofluorescence, using anti-HEV human antisera.
  • the 406.4-2 gt11 plasmid from above was digested with EcoRI and the released HEV fragment was amplified by PCR, and the amplified fragment was inserted into the NcoI/BamHI site of the pGEX expression vector, as above. Peptide expression of the 406.4-2 peptide was similar to that described for the 406.3.2 fusion peptide.
  • each rabbit antiserum was used at a final dilution of 1:20 with the viral inoculum for HEV infection of primary human hepatocytes. The diluted antibody and viral inoculum were incubated together prior to infection of the cultured cells. Rabbit anti-3-2(M) exhibited a high level of neutralizing activity against HEV infection (FIG. 5, lane 2 versus lane 1). Very little neutralizing activity was observed in rabbit anti-4-2 (M) (lane 4 versus lane 3).
  • HEV 3-2(M) but not HEV 4-2(M) 4-2 (B) recombinant protein encoded a neutralizing epitope capable of eliciting protective antibody or antibodies against HEV infection.
  • HEV type-common epitopes 3-2 and 4-2 of Burma (B) or Mexico (M) strains were previously identified by screening high titer lambda library for HEV-specific antigen-producing clones using convalescent human serum F387-C.
  • the lambda gt11 clones, 406.3-2 and 406.4-2, were characterized and subcloned to express as betagalactosidase fusion proteins. These fusion proteins were subsequently used to immunize rabbits to generate HEV-specific antisera.
  • HEV 3-2(B)(Sequence ID No. 21) and REV 4-2(B)(Sequence ID No. 22) recombinant proteins encode a neutralizing epitope capable of eliciting protective antibody or antibodies against HEV infection.
  • the neutralizing activity of anti-4-2(B) was previously not shown. Therefore, in a cynomologus macaque hepatocyte system it has now been shown that rabbit anti-4-2(B) antibody will neutralize HEV.
  • the HEV protein designated by sequence ID No 22 is suitable as an immunogen against HEV.
  • the PBET1 plasmid containing a 2.3 kb insert, corresponding to the 1.8 kb 3′ end portion of HEV has been described (Tam).
  • the plasmid was digested with EcoRI, releasing two HEV fragments having sizes of about 600 bp and 1400 bp of which 1210 bp contain coding sequence.
  • the larger fragment was purified by electrophoresis and inserted into the EcoRI site of the pATH10 trpE fusion vector, obtained from T. J. Koerner et al. (Department of Microbiology, UCLA).
  • the recombinant vector was used to transform E. coli DH5 ⁇ F′host.
  • the recombinant typE-C2 fusion protein from pATH C2 was isolated by a modification of the procedure of Dieckmann et al.
  • the bacterium containing the pATH C2 plasmid was grown overnight in growth media containing tryptophane.
  • Two ml of the overnight culture was inoculated into 100 ml of fresh growth media and grown at 37° C. for an additional four hours.
  • the bacterial broth was added to one liter of fresh growth media without tryptophane and allowed to grow at 30° C. for 1.5 hours.
  • Ten ml indoleacrylic acid (1 mg/ml) was added and growth was continued for an additional 5 to 10 hours at 30° C.
  • the bacterial cells were collected by centrifugation.
  • the cell pellet was resuspended in a hypotonic solution containing lysozyme to degrade the bacterial cell wall.
  • Sodium chloride and the detergent NP-40 were added to the suspension to cause hypertonic lysis of the cells.
  • the lysed cell solution was sonicated.
  • the solution was centrifuged.
  • the resulting protein pellet was resuspended in about 5 ml of 10 mM Tris pH 7.5 using a dounce homogenizer. Approximately 75% of the protein in solution was composed of the trpE-C2 protein.
  • Converted alum adjuvant was prepared according to standard methods. Briefly, a 10 alum suspension was titrated to pH 6.6 with 1N NaOH, then stirred overnight at 4° C. The suspension is clarified by low-speed centrifugation, and the supernatant decanted. A small amount of 0.9% NaCl+1:20,000 formalin was added to each pellet, and suspended by vortexing. To prepare an antigen vaccine composition, trpE-C2 fusion protein from above is added in a 0.9% NaCl solution to a desired final antigen concentration.
  • a non-adjuvanted insoluble trpE-C2 peptide was prepared as above in section A.
  • Animals 8901, 8903, and 9002 were each challenged IV with 1 ml each of a 10% third passage cyno stool (Burma strain) previously shown to be highly infectious.
  • Animals 8902, 8910, and 9004 were each challenged IV with 1 ml of a proven infectious human stool isolate, Mexican #14, known to cause severe disease in cynos and moderate disease in chimpanzees. The results are shown in FIGS. 2A, 2B, and 3 A, and 3 B, discussed above.
  • FIGURE 7 1 TGGAATGAAT AACATGTCTT TTGCTGCGCC CATGGGTTCG CGACCATGCG CCCTCGGCCT 60 ATTTTGTTGC TGCTCCTCAT GTTTTTGCCT ATGCTGCCCG CGCCACCGCC CGGTCAGCCG 120 TCTGGCCGCC GTCGTGGGCG GCGCAGCGGC GGTTCCGGCG GTGGTTTCTG GGGTGACCGG 180 GTTGATTCTC AGCCCTTCGC AATCCCCTAT ATTCATCCAA CCAACCCCTT CGCCCCCGAT 240 GTCACCGCTG CGGCCGGGGC TGGACCTCGT GTTCGCCAAC CCGCCCGACC ACTCGGCTCC 300 GCTTGGCGTG ACCAGGCCCA GCGCCCCGCC GTTGCCTCAC GTCGTAGACC TACCACAGCT 360 GGGGCCGCGC CGCTAACCGC GGTCGCTCCG GCC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Antigen and antibody vaccine composition effective in preventing hepatitis E virus (HEV) infection are disclosed. The antigen composition includes a peptide corresponding to a carboxyl terminal end region of the capsid protein encoded by the second open reading frame 2 of the HEV genome. The composition is effective in preventing HEV infection after vaccination. The antibody composition contains an antibody effective to block HEV infection of human primary hepatocytes in culture.

Description

  • This application is a continuation-in-part of U.S. application Ser. No. 07/882,335, filed Jan. 17, 1992, which is a continuation-in-part of application Ser. No. 07/505,888, filed Apr. 5, 1990, which is a continuation-in-part of U.S. application Ser. No. 420,921, filed Oct. 13, 1989, which is a continuation-in-part of U.S. application Ser. No. 367,486, filed Jun. 16, 1989, which is a continuation-in-part of U.S. Application Serial No. 336,672, filed Apr. 11, 1989, which is a continuation-in-part of U.S. application Ser. No. 208,997, filed Jun. 17, 1988, all of which are herein incorporated by reference.[0001]
  • 1. FIELD OF INVENTION
  • This invention relates to antigen and antibody vaccine compositions related to enterically transmitted nonA/nonB hepatitis viral agent, also referred to herein as hepatitis E virus (HEV), and to vaccine methods. [0002]
  • 2. REFERENCES
  • Arankalle, V. A., et al., The Lancet, 550 (Mar. 12, 1988). [0003]
  • Bradley, D. W., et al., J Gen. Virol., 69:1 (1988). [0004]
  • Bradley, D. W. et al., Proc. Nat. Acad. Sci., USA, 84:6277 (1987). [0005]
  • Dieckmann, C. L., et al., J. Biol. Chem. 260:1513 (1985). [0006]
  • Engleman, E. G., et al., eds., [0007] Human Hybridomas and Monoclonal Antibodies, Plenum Press, 1985.
  • Gravelle, C. R. et al., J. Infect. Diseases, 131:167 (1975). [0008]
  • Kane, M. A., et al., JAMA, 252:3140 (1984). [0009]
  • Khuroo, M. S., [0010] Am. J. Med., 48:818 (1980).
  • Khuroo, M. S., et al., Am. J. Med., 68:818 (1983). [0011]
  • Lanford, R. E., et al., In Vitro Cellular and Devel Biol, 25 (2):174 (1989). [0012]
  • Larrick, J. W. and Fry, K., Huam Antibod Hybrid, 2:172 (1991). [0013]
  • Maniatis, T., et al. [0014] Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory (1982).
  • Saiki, R. K., et al., Science, 239:487 (1988). [0015]
  • Seto, B., et al., Lancet, 11:941 (1984). [0016]
  • Sreenivasan, M. A., et al., J. Gen. Virol., 65:1005 (1984). [0017]
  • Tabor, E., et al., J. Infect. Dis., 140:789 (1979). [0018]
  • Tam, A., et al., Virology, 185:120 (1991). [0019]
  • Yarbough, P. O., J. Virology, 65(11):5790 (1991). [0020]
  • Zola, H., [0021] Monoclonal Antibodies: A Manual of Techniques, CRC Press, Boca Raton, La., 1987.
  • 3. BACKGROUND OF THE INVENTION
  • Enterically transmitted non-A/non-B hepatitis viral agent (ET-NANB, also referred to herein as hepatitis E virus or HEV) is the reported cause of hepatitis in several epidemics and sporadic cases in Asia, Africa, Europe, Mexico, and the Indian subcontinent. Infection is caused usually by water contaminated with feces, although the virus may also spread by close physical contact. The virus does not seem to cause chronic infection. [0022]
  • The viral etiology in HEV has been demonstrated by infection of volunteers with pooled fecal isolates; immune electron microscopy (IEM) studies have shown virus particles with 27-34 nm diameters in stools from infected individuals. The virus particles reacted with antibodies in serum from infected individuals from geographically distinct regions, suggesting that a single viral agent or class is responsible for the majority of HEV hepatitis seen worldwide. No antibody reaction was seen in serum from individuals infected with parenterally transmitted NANB virus (also known as hepatitis C virus or HCV), indicating a different specificity between the two NANB types. [0023]
  • In addition to serological differences, the two types of NANB infection show distinct clinical differences. HEV is characteristically an acute infection, often associated with fever and arthralgia, and with portal inflammation and associated bile stasis in liver biopsy specimens (Arankalle). Symptoms are usually resolved within six weeks. HCV, by contrast, produces a chronic infection in about 50% of the cases. Fever and arthralgia are rarely seen, and inflammation has a predominantly parenchymal distribution (Khuroo, 1980). [0024]
  • The course of HEV is generally uneventful in healthy individuals, and the vast majority of those infected recover without the chronic sequelae seen with HCV. One peculiar epidemiologic feature of this disease, however, is the markedly high mortality observed in pregnant women; this is reported in numerous studies to be on the order of 10-20%. This finding has been seen in a number of epidemiologic studies but at present remains unexplained. Whether this reflects viral pathogenicity, the lethal consequence of the interaction of virus and immune suppressed (pregnant) host, or a reflection of the debilitated prenatal health of a susceptible malnourished population remains to be clarified. [0025]
  • The two viral agents can also be distinguished on the basis of primate host susceptibility. HEV, but not HCV, can be transmitted to cynomolgus monkeys. HCV is more readily transmitted to chimpanzees than is HEV (Bradley, 1987). [0026]
  • In the earlier-filed parent applications, HEV clones, and the sequence of the entire HEV genome sequence were disclosed. From HEV clones, recombinant peptides derived from HEV genomic coding region were produced. [0027]
  • 4. SUMMARY OF THE INVENTION
  • In one aspect, the invention includes a peptide vaccine composition for immunizing an individual against hepatitis E virus (HEV). The composition includes a pharmacologically acceptable carrier, and a peptide containing the C-terminal 42 amino acids of the putative capsid protein encoded by the second open reading frame of the HEV genome. The peptide preferably includes the amino acid sequence identified by one of the following sequences: [0028]
  • (i) Sequence ID No. 13 [0029]
  • (ii) Sequence ID No. 14, [0030]
  • (iii) internally consistent variations between Sequence ID Nos. 13 and 14, [0031]
  • (iv) Sequence ID No. 15 [0032]
  • (v) Sequence ID No. 16, [0033]
  • (vi) internally consistent variations between Sequence ID Nos. 15 and 16, [0034]
  • (vii) Sequence ID No. 17 [0035]
  • (viii) Sequence ID No. 18, [0036]
  • (ix) internally consistent variations between Sequence ID Nos. 17 and 18, [0037]
  • (x) Sequence ID No. 19 [0038]
  • (xi) Sequence ID No. 20, and [0039]
  • (xii) Internally consistent variations between Sequence ID Nos. 19 and 20, and [0040]
  • (xiii) Sequence ID No. 21 [0041]
  • (xiv) Sequence ID No. 22, and [0042]
  • (xv) Internally consistent variations between Sequence ID Nos.21 and 22. [0043]
  • In a related aspect, the invention includes a method of inhibiting infection of an individual by HEV, by administering to the subject, by parenteral injection, such as intramuscular or intravenous injection, the above peptide vaccine composition. [0044]
  • In another aspect, the invention includes an antibody vaccine composition effective in neutralizing hepatitis E virus (HEV) infection, as evidenced by the ability of the composition to block HEV infection of primary human hepatocyte cells in culture. [0045]
  • The antibody composition preferably contains an antibody which is immunoreactive with a peptide containing one of the above (i)-(xv) sequences, and preferably with a peptide corresponding to sequences (i)-(iii), (iv-vi) and (vii-xv). In a related aspect, the invention includes a method for preventing or treating HEV infection in an individual, by administering to the subject, by parenteral injection, the above antibody composition. [0046]
  • These and other objects and features of the invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings.[0047]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows the HEV genome, the arrangement of open reading frames in the genome, and the approximate coding regions for peptides 406.3-2, GS3, and trpE-C2; [0048]
  • FIGS. 2A and 2B show the blood ALT levels observed after infection of cynomolgus monkeys with a Burma-strain HEV stool sample in animals which were previously immunized with a trpE-C2 HEV antigen ([0049] 2A) or an alum control (2B);
  • FIGS. 3A and 3B show the blood ALT levels observed after infection of cynomolgus monkeys with a Mexico-strain HEV stool sample in animals which were previously immunized with the trpE-C2 HEV antigen ([0050] 3A) or an alum control (3B);
  • FIG. 4 shows Southern blots of PCR-amplified RNA from non-infected human primary hepatocytes (lane 4) and primary hepatocytes infected with HEV for increasing times from 3 hours to 11 days (lanes 5-11); [0051]
  • FIG. 5 shows Southern blots of PCR-amplified RNA from HEV-infected human primary hepatocytes in which the infective virus is preincubated with normal pre-immune rabbit serum ([0052] lanes 1 and 3) or rabbit antiserum against the HEV antigen HEV 406.3-2 (B) (lane 2) and HEV 406.4-2 (M) (lane 4);
  • FIG. 6 shows Southern blots of PCR-amplified RNA from HEV-infected human primary hepatocytes preincubated with normal human serum (lane 1) and one of a number of different HEV-positive immune human sera (lanes 2-12); [0053]
  • FIG. 7 shows the nucleotide sequences of the HEV ORF2 and ORF3 for Burma (upper line) and Mexico (lower line) strains of HEV; [0054]
  • FIG. 8 shows the amino acid sequences of the ORF3 peptide for Burma (upper line) and Mexico (lower line) strains of HEV; and [0055]
  • FIG. 9 shows the amino acid sequences of the ORF2 protein for the Burma (upper line) and Mexico (lower line) strains of HEV. [0056]
  • FIG. 10 shows in panel A, the ethidium bromide stained gel of DNA produced from PCR-amplified RNA. The RNA was from HEV infected primary cynomolgus macaque hepatocytes in which the infective virus HEV Burma was preincubated with normal preimmune rabbit serum as shown in [0057] lanes 1 and 3; or with rabbit anti-serum against HEV antigen 406.3-2(B) (lane 2), or with HEV 406.4-2(B)(lane 4); panel B shows Southern Blots of the materials as described above in panel A for lanes 1-4.
  • DETAILED DESCRIPTION OF THE INVENTION
  • I. Definitions [0058]
  • The terms defined below have the following meaning herein: [0059]
  • 1. “Enterically transmitted non-A/non-B hepatitis viral agent”, “hepatitis E virus”, or “HEV” means a virus, virus type, or virus class which (1) causes water-borne, infectious hepatitis, (ii) is transmissible in cynomolgus monkeys, (iii) is serologically distinct from hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis D virus, and (iv) includes a genomic region which is homologous to the 1.33 kb cDNA insert in plasmid pTZKF1(ET1.1) carried in [0060] E. coli strain BB4 identified by ATCC deposit number 67717.
  • 2. Two nucleic acid fragments are “homologous” if they are capable of hybridizing to one another under hybridization conditions described in Maniatis et al., [0061] op. cit., pp. 320-323. However, using the following wash conditions: 2× SCC, 0.1% SDS, room temperature twice, 30 minutes each; then 2× SCC, 0.1% SDS, 50° C. once, 30 minutes; then 2× SCC, room temperature twice, 10 minutes each, homologous sequences can be identified that contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches. These degrees of homology can be selected by using more stringent wash conditions for identification of clones from gene libraries (or other sources of genetic material), as is well known in the art.
  • 3. Two amino acid sequences or two nucleotide sequences (in an alternative definition for homology between two nucleotide sequences) are considered homologous (as this term is preferably used in this specification) if they have an alignment score of >5 (in standard deviation units) using the program ALIGN with the mutation gap matrix and a gap penalty of 6 or greater. See Dayhoff, M. O., in [0062] Atlas of Protein Sequence and Structure (1972) Vol. 5, National Biomedical Research Foundation, pp. 101-110, and Supplement 2 to this volume, pp. 1-10. The two sequences (or parts thereof, preferably at least 30 amino acids in length) are more preferably homologous if their amino acids are greater than or equal to 50% identical when optimally aligned using the ALIGN program mentioned above.
  • 4. A DNA fragment is “derived from” an HEV viral agent if it has the same or substantially the same basepair sequence as a region of the viral agent genome. [0063]
  • 5. A protein is “derived from” an HEV viral agent if it is encoded by an open reading frame of a DNA or RNA fragment derived from an ET-NANB viral agent. [0064]
  • 6. In two or more known peptide sequences which are more than about 70% homologous in amino acid sequence, a third amino acid sequence will be “internally consistent with the known sequences” if each amino acid in the third sequence is identical to at least one of amino acids in the known sequences. [0065]
  • II. HEV Antigen Vaccine [0066]
  • This section describes methods for preparing and using an HEV antigen vaccine effective, when injected intramuscularly (i.m.), to prevent HEV infection. [0067]
  • A. HEV Genomic Sequences [0068]
  • HEV genomic clones, and sequences corresponding to the entire HEV genome for different HEV strains were obtained according to published methods (Tam, Yarbrough) and as described in the parent applications referenced above. Briefly, RNA isolated from the bile of a cynomolgus monkey having a known HEV infection was cloned, as cDNA fragments, to form a fragment library, and the library was screened by differential hybridization to radiolabeled cDNAs from infected and non-infected bile sources. [0069]
  • The basepair sequence of cloned regions of the HEV fragments in identified clones was determined by standard sequencing methods. With reference to FIG. 1, HEV is a virus with an approximately 7.5 kilobase (kb) single-stranded and polyadenylated RNA genome of positive-sense polarity. Three open reading frames (ORFs) have been assigned to HEV as ORF1, encoding polypeptides with domains of the RNA-directed RNA polymerase and a helicase, ORF2, encoding the putative capsid protein of the virus, and ORF3. [0070]
  • The genomic organization of HEV assigns its non-structural gene(s) at the 5′ terminus with the structural gene(s) at the 3′ end. Two subgenomic polyadenlated transcripts of approximately 2.0 kb and 3.7 kb in sizes are detected in infected liver and co-terminated at their 3′ ends with the 7.5 kb full-length genomic transcript. The genomic organization and expression strategy of HEV suggest that it might be the prototype human pathogen for a new class of RNA virus or perhaps a separate genus within the Caliciviridae family. [0071]
  • The genomic and peptide sequences shown in FIG. 7 correspond to the ORF-2 and ORF-3 regions of Burma (B) (upper lines) and Mexico (M) strains (lower lines) of HEV. The bases indicated in the middle lines represent conserved nucleotides. The numbering system used in the comparison is based on the Burma sequence. The Burma sequence has SEQ ID No. 1; and the Mexico sequence, SEQ ID No. 2. The region corresponding to ORF2 has SEQ ID nos. 3 and 4 for the Burma and Mexico strains, respectively. The region corresponding to 406.3-2 has SEQ ID Nos. 5 and 6 for the Burma and Mexico strains, respectively. The region corresponding to SG3 has SEQ ID Nos. 7 and 8 for the Burma and Mexican strains, respectively. The region corresponding to C2 has SEQ ID Nos. 9 and 10 for the Burma and Mexico strains, respectively. The region corresponding to 406.4-2 has SEQ ID Nos. 11 and 12 for the Burma and Mexico strains, respectively. [0072]
  • B. Recombinant Peptide Antigens [0073]
  • The amino acid sequences corresponding to the third and second open reading frames of the Burma and Mexico strains of HEV are given in FIGS. 8 and 9, respectively. The sequence listings shown are as follows: [0074]
  • SEQ ID Nos. 13 and 14 correspond to the amino acid sequences for the peptides 406.3-2 (B) and 406.3-2 (M), respectively. Each peptide is a 42 amino acid peptide in the C-terminal end region of capsid protein encoded by the ORF2, as indicated in the ORF2 sequence (FIG. 9). [0075]
  • SEQ ID Nos. 15 and 16 correspond to the amino acid sequences for the peptides SG3 (B) and SG3 (M), respectively. Each peptide includes the carboxyl 324 amino acids of the HEV capsid. [0076]
  • SEQ ID Nos. 17 and 18 correspond to the amino acid sequences for the peptides C2 (B) and C2 (M), respectively. Each includes the carboxyl 461 amino acids of the HEV protein. [0077]
  • SEQ ID Nos. 19 and 20 correspond to the amino acid sequences for the entire putative capsid protein encoded by the Burma and Mexico strain ORF2, respectively. [0078]
  • SEQ ID Nos. 21 and 22 correspond to the amino acid sequences for the 406.4-2 (B) and 406.4-2 (M), respectively (FIG. 8). These are 33 amino acid sequences encoded by the ORF3. [0079]
  • Also contemplated are sequences which are internally consistent with the above specified sequences from different strains of HEV antigens. These include Sequence ID No. 13; Sequence ID No. 14, and internally consistent variations between Sequence ID Nos. 13 and 14; Sequence ID No. 15; Sequence ID No. 16; and internally consistent variations between Sequence ID Nos. 15 and 16; Sequence ID No. 17; Sequence ID No. 18; and internally consistent variations between Sequence ID Nos. 17 and 18; Sequence ID No. 19; Sequence ID No. 20; internally consistent variations between Sequence ID Nos. 19 and 20; Sequence ID No. 21; Sequence ID No. 22; internally consistent variations between Sequence ID Nos. 21 and 22. [0080]
  • For example, the HEV 406.3-2 antigens have the sequence homology shown below for the Burma (B) and Mexico (M) strains. The single dots in the sequence comparison indicate recognized high-probability or “neutral” amino acid substitutions. The blank spaces indicate a non-neutral substitution. [0081]
                                    10         20        30
    MEXICAN (SEQ ID NO.17)
    ANQPGHLAPLGEIRPSAPPLPPVADLPQPGLRR
      ::.:.: :::: .::::::::.:.:::: : :: BURMA (SEQ ID NO.18) BtJP.NA(SEQ ID NO.18)
       ANPPDHSAPLGVTRPSAPPLPHVVDLPQLGPRR
              10        20        30
  • A sequence which is internally consistent with these two sequences would have one of the sequences: [0082]
  • AN(Q/P)P(G/D)H(L/S)APLG(E/V)(I/T)RPSAPPLP(P/H)V(A/V)DLPQ (P/L)G(L/P)RR, where X/Y means either amino acid X or amino acid Y. [0083]
  • The ORF3 amino acid sequences, 124 amino acids in length, for the Burma and Mexico strains have an 87.1% identity in the 124 amino acids. The ORF2 amino acid sequences, having 659 amino acids of overlap, have a 93.0 identity in the 659 amino acids. [0084]
  • To prepare the 406.3-2 (M) peptide, the lambda gt11 406.3-2 described in Example 3 was subcloned into the glutathione S-transferase vector PGEX to express the 3-2(M) antigen, as detailed in Example 3, and in the Tam reference. [0085]
  • The 406.3-2(B) antigen can be prepared by PCR amplification of the Burma SEQ ID No. 5 from above by PCR amplification of the pBET1 plasmid (Tam). This plasmid contains a 2.3 kb insert covering the ORF2 and ORF3 for Burma strain HEV sequence. The plasmid is amplified by PCR amplification, using a 51 primer containing an NcoI site and a 3′ primer containing a BamHI site (Sakai). The amplified fragment is inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an [0086] E. coli expression system as described in Example 3.
  • The SG3(B) peptide was prepared by first amplifying the SEQ ID No. 7 sequence with 5′ EcoRI-NcoI and 3′ BamHI linkers, using a [0087] gt 10 phage BET1 clone plasmid containing the entire ORF2 and ORF3 regions of HEV (B). The amplified fragment was inserted into the EcoRI/BamHI site of a Bluescript™ vector (Stratagene, San Diego, Calif.), according to the manufacturer's instructions. After vector propagation and harvesting, the cloned insert was released by digestion with NcoI and BamHI, and gel purified. The purified fragment was inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an E. coli expression system as described in Example 3. The SG3(M) peptide can be prepared similarly, using the SEQ ID No. 8 in place of the SEQ ID No. 7.
  • The C2 (B) peptide is prepared as described in Example 5. Briefly, a gt10 phage BET1 plasmid was digested with EcoRI to release the SEQ ID No. 10 C2 sequence, and this fragment was inserted into a pATH10 trpE fusion vector, and the recombinant fusion protein expressed in an [0088] E. coli host.
  • The C2 (M) peptide can be prepared, substantially as described above, by PCR amplification of the SEQ ID No. 10, using a 5′ primer containing an EcoRI site and a 3′ primer containing a BamHI site. The amplified fragment is inserted into the EcoRI/BamHI site of a pGEX vector, and expressed in an [0089] E. coli expression system as described in Example 3.
  • The capsid protein (B) was prepared substantially as described above by PCR amplification of the SEQ ID No. 3, , from a gt10 BET1 plasmid using a 5′ primer containing an NcoI site and a 3′ primer containing a BamHI site. The amplified fragment was inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an [0090] E. coli expression system as described in Example 3. The capsid protein (M) is similarly prepared.
  • To prepare the 406.4-2 (M) peptide, the lambda gt11 406.4-2 described in Example 3 was subcloned into the glutathione S-transferase vector PGEX to express the 3-2(M) antigen, as detailed in Example 3. [0091]
  • The 406.4-2(B) antigen can be prepared by PCR amplification of the Burma SEQ ID No. 11 from above by PCR amplification, using a 5′ primer containing an NcoI site and a 3′ primer containing a BamHI site. The amplified fragments is inserted into the NcoI/BamHI site of a pGEX vector, and expressed in an [0092] E. coli expression system as described in Example 3.
  • It will be appreciated that other HEV peptides containing selected portions, and preferably C-terminal portions of the HEV capsid protein containing the 406.3-2 sequence, can similarly be prepared, using the HEV genomic-insert plasmids above, with amplification of the desired sequences and cloning into a suitable expression vector, as outlined above, and detailed in Examples 3 and 5. [0093]
  • The coding sequences used in producing the recombinant peptides can be derived from the cloning vectors described above and detailed elsewhere (Tam), or from synthetic nucleotide synthesis using PCR slicing methods to join oligonucleotide fragments, according to known methods, in building up nucleotide sequences. [0094]
  • C. Mature Capsid Protein [0095]
  • HEV peptide antigens may also be obtained from purified HEV virus propagated in primary hepatocytes obtained from primate liver, preferably from human or cynomolgus monkey liver. Methods for preparing primary primate hepatocytes for culture, and culture medium conditions effective to preserve liver-specific functions for extended periods in culture are detailed for human hepatocytes in Example 1 below. [0096]
  • After 3 days of growth in culture, the cells are infected with a pooled inoculum of HEV-infected cynomolgus monkey stool pool (fourth passage), as detailed in Example 2. The presence and level of propagating HEV virus in the cells can be measured by indirect immunofluorescence. Where, for example, the primary cells are cynomolgus cells, the cells can be immunoreacted with human HEV anti-sera, followed by immunoreaction with rabbit anti-human IgG antibodies. [0097]
  • Alternatively, the HEV virus can be detected and measured by selective amplification methods involving initial cDNA formation, and PCR amplification of HEV cDNA sequences by PCR amplification, as detailed in Example 2. [0098]
  • Virus particles can be isolated from HEV infected human hepatocytes in culture medium by pelleting the virus through a 30% sucrose cushion by ultracentrifugation. The pelleted virus may be further purified, if desired, by zonal centrifugation through a 10-40% sucrose gradient, combining peak virus fractions. [0099]
  • Other methods for separating virus particles from soluble culture-medium components may be used. For example, clarified culture medium can be passed through a size-exclusion matrix, to separate soluble components by size exclusion. [0100]
  • Alternatively, the clarified culture medium can be passed through an ultrafiltration membrane having a 10-20 nm pore size capable of retaining virus particles, but passing solute (non-particulate) culture medium components. [0101]
  • The present invention allows glycosylation and other post-translation modifications in intact HEV capsid protein. Capsid isolation from the viral particles can be carried out by standard methods, such as ion exchange and size-exclusion chromatography, and HPLC purification, after solubilization of the virus particles in a solubilizing medium, such as a solution of a non-ionic surfactant. The protein may be purified by affinity chromatography, employing, for example, antibodies purified from anti-HEV antisera. [0102]
  • D. Preparation of Vaccine Compositions [0103]
  • The recombinant or intact HEV capsid or capsid fragment peptides (HEV capsid antigens) described above are incorporated into a vaccine composition, according to known procedures, to enhance the antigenicity of the injected antigens. [0104]
  • In one composition, the HEV antigen is covalently coupled to a carrier protein, such as keyhole limpet hemocyanin, and injected either in solution form or in combination with an adjuvant. Alternatively, where the HEV antigen is prepared as part of a fusion protein, the non-HEV moiety of the protein may serve as the carrier protein. [0105]
  • The derivatized or fusion protein is carried in a pharmaceutically acceptable carrier, such as in solution or in an adjuvant, such as converted alum. [0106]
  • Alternatively, the free peptide itself, e.g., the HEV C2 peptide, may be formulated in alum or used without adjuvant. A suitable adjuvanted vaccine has a preferred antigen concentration of about 1 mg peptide antigen/mg alum, and not to exceed 80 mg of alum per injection. [0107]
  • III. Antigen Vaccine Method [0108]
  • In a related aspect, the invention is directed to a method of inhibiting infection of an individual by hepatitis E virus, by administering to the subject, by parenteral injection, e.g., intramuscular or intravenous injection, the vaccine composition of the invention. [0109]
  • Preferred vaccine compositions, for use in the method are those in which the HEV antigen includes the sequence in the peptides identified by: [0110]
  • Sequence ID No. 13; Sequence ID No. 14, and internally consistent variations between Sequence ID Nos. 13 and 14; Sequence ID No. 15; Sequence ID No. 16; and internally consistent variations between Sequence ID Nos. 15 and 16; Sequence ID No. 17; Sequence ID No. 18; and internally consistent variations between Sequence ID Nos. 17 and 18; Sequence ID No. 19; Sequence ID No. 20; internally consistent variations between Sequence ID Nos. 19 and 20; Sequence ID No. 21; Sequence ID No. 22; internally consistent variations between Sequence ID Nos. 21 and 22. [0111]
  • The antigen vaccine composition is preferably administered intramuscularly in a series of inoculations, for example, two-three injections given at four week intervals. [0112]
  • In the method detailed in Example 7, cynomolgus monkeys were injected i.m. with the C2 fusion protein trpE-C2 (B), formulated in a converted alum adjuvant or with no adjuvant. Four animals received the alum plus trpE-C2 (B) antigen in two injections, spaced one month apart. Two other animals received alum only on the same vaccination schedule. None of the animals showed the presence of any [0113] anti-HEV serum antibody 4 weeks after the second injection, as judged by Western blotting using a fusionless C2 HEV antigen or by a separate fluorescence antibody blocking assay.
  • At this stage, two of the four experimental animals received a third inoculation of non-adjuvanted, insoluble trpE-C2 peptide antigen. Four weeks later, these animals showed anti-HEV antibodies, as evidenced by Western blots. These results suggest that the trpE-C2 antigen may be more effective when administered in the absence of alum, possibly because of alum-denaturation of the antigen during the alum co-precipitation procedure. [0114]
  • One month after the final inoculation, the animals were challenged with an intravenous injection of a third-passage human stool previously shown to be highly infectious for HEV (Burma strain) or with a Mexico-strain human HEV stool sample. At selected intervals after inoculation, serum samples from the animals were used to measure ALT (alanine transferase) levels, as an indication of necrosis and hepatocellular degradation. Liver biopsy samples were also assayed for the presence of HEV antigens by a direct fluorescent antibody assay (FA). [0115]
  • FIG. 2A shows the change in liver ALT levels in the period following infection with Burma-strain HEV virus, in one of the animals which received a third dose of trpE-C2. As seen, there was no evidence of elevated ALT levels in the 7 and {fraction (1/2)} week period following infection. The liver biopsy samples also showed no evidence of HEV antigen. [0116]
  • FIG. 2B shows ALT levels measured after HEV (B) infection of a control animal (alum alone injections) which was infected intravenously with the Burma strain HEV. The elevated ALT levels indicate the level of infection which is expected in the absence of vaccine protection. HEV antigen was also detected in the liver biopsy samples. A similar result was observed in the animal which received two injections of trpE-C2 alum composition, but not the third alum-free vaccination, as described above. [0117]
  • FIG. 3A shows the change in liver ALT levels following infection with Mexico-strain HEV virus, in one of the animals which received a third dose of trpE-C2. Again, there was no evidence of elevated ALT levels out to day 32 (The animal died of unrelated causes at day 32). The liver biopsy samples also showed minimal evidence of HEV antigen. This result demonstrates that an antigen vaccine directed against one HEV strain can provide protective immunity against other HEV strains. [0118]
  • FIG. 3B shows ALT levels measured after HEV infection of a control animal (alum alone injections) which was infected intravenously with the Mexico strain of HEV. High levels of infection (ALT activity) were observed. A similar result was observed in the animal which received two injections of trpE-C2 alum composition, but not the third alum-free vaccination, as described above. [0119]
  • Details of the vaccination method just reported are given in Example 5. [0120]
  • IV. Vaccine Composition [0121]
  • In another aspect, the invention includes an antibody vaccine composition effective in neutralizing HEV infection, as evidenced by the ability of the composition to block HEV infection in HEV-infectable primary hepatocytes in culture. Two exemplary primary cells are human and cynomolgus monkey cells. [0122]
  • The antibodies in the composition are preferably immunoreactive with a peptide containing one of the sequences: Sequence ID No. 13; Sequence ID No. 14, and internally consistent variations between Sequence ID Nos. 13 and 14. As will be seen below, antibodies prepared against the 406.3-2 antigen (M) are effective to block HEV infection in human primary hepatocytes. [0123]
  • Antibodies which are immunoreactive with larger capsid peptides or proteins containing the carboxy terminal of SEQ ID No. 13 or 14 are also preferred. These may include, specifically Sequence ID No. 15; Sequence ID No. 16; and internally consistent variations between Sequence ID Nos. 15 and 16. As will be seen below, human sera which are effective to prevent HEV infection of human primary hepatocyes are immunoreactive with the SG3 peptides defined by these sequences. [0124]
  • Antibodies which are immunoreactive with the trpE-C2 peptides defined by Sequence ID No. 17; Sequence ID No. 18; and internally consistent variations between Sequence ID Nos. 17 and 18 are also preferred, as are antibodies immunoreactive with the entire capsid protein, as defined by Sequence ID No. 19; Sequence ID No. 20; internally consistent variations between Sequence ID Nos. 19 and 20; and antibodies that are immunoreactive with the product of ORF3, as defined in part by Sequence ID No. 21; Sequence ID No. 22; and internally consistent variations between Sequence ID Nos 21 and 22. [0125]
  • The antibodies may be obtained as polyclonal antibodies from antisera, prepared for example, by immunization of a suitable animal, such as a rabbit or goat, with one of the HEV antigens specified above. Alternatively, polyclonal antibodies may be obtained from human or other primate HEV antisera. Anti-HEV polyclonal antibodies from the antisera may be purified or partially purified according to standard methods, such as used to obtain partially purified serum IgG fractions (see, e.g., [0126] Antibodies: A laboratory Manual, 1988, Cold Springs Harbor Lab). Alternatively anti-HEV antibodies can be obtained in purified form by affinity chromatography, employing a solid support derivatized with one of the capsid antigens described above.
  • In another embodiment, the antibodies are monoclonal antibodies secreted by hybridoma cell lines. To prepare the hybridoma cell lines, lymphocytes from an immunized animal, preferably mouse or human, are immortalized with a suitable immortalizing fusion partner, according to established methods (e.g., Engleman, Zola). [0127]
  • Alternatively, human monoclonal antibodies may be produced by recombinant methods, in which light and heavy human anti-HEV IgG genes obtained from cultured lymphocytes are inserted into suitable expression vectors, and used to co-infect a suitable host. Methods for obtaining and cloning light and heavy genes from human lymphocytes, and for expressing the cloned genes in a co-infected host cell are known (larrick). [0128]
  • The anti-HEV antibodies are formulated in a suitable solution for injection, typically by intramuscular, subcutaneous or intravenous route, to form the vaccine composition. [0129]
  • B. Neutralizing Activity of Anti-406.3-2 Antibodies [0130]
  • To demonstrate the neutralizing capability of antibodies prepared as above, antibodies against the 406.3-2 (B) antigen were tested for their abilities to block HEV infection in human primary hepatocytes in culture. [0131]
  • The primary hepatocytes were prepared and cultured according to published procedures and as detailed in Example 1. The unique culture conditions allow for long-term cell growth in culture without loss of specialized hepatocyte function, as evidenced by the cells' continued ability to make and secrete liver-specific proteins, such as serum albumin, up to several months after initial culturing, as described in Example 1. [0132]
  • The cultured cells were inoculated with either normal human sera or a cynomolgus stool preparation. To demonstrate HEV infection in the cells, the cells were examined on days 1-11 after infection for the presence of HEV RNA, using a combination of reverse transcriptase, to form cDNA's, and polymerase chain reaction (PCR) to amplify HEV-specific cDNA. The amplified fragment is expected to have a 551 basepair length. FIG. 4 shows Southern blots of the amplified material, using an HEV ORF2 radiolabeled probe for detecting amplified HEV sequence. [0133]
  • The results are shown in FIG. 4. Lanes 1-3 are controls. [0134] Lane 4 is total amplified material from cells inoculated with normal (non-infected) sera. Lanes 5-11 show amplified material 3 hours, 1 day, 3 days, 5 days, 7 days, 9 days, and 11 days after infection with the cyno stool sample, respectively. The results show that HEV propagated in human primary hepatocytes within one day after initial infection (lane 6). There was a time-dependent increase at the level of HEV replication up to 5 days post infection (lanes 7 and 8), which appeared to decrease thereafter (lanes 9-11). There was no evidence of HEV in total cellular RNA isolated from uninfected primary cells.
  • Rabbit antisera against antigen peptides 406.3-2 (B) and 406.4-2 (M) and 406.4-2 (B) were prepared. As noted above, the 406.3-2 peptide is from the carboxy terminal end region of the HEV capsid protein, and the 406.4-2 peptide, from the peptide encoded by the HEV ORF3. Preimmune rabbit serum or rabbit antiserum against one of HEV antigens was added to the cyno stool inoculum, at a 1:20 dilution, and the antibody was incubated with the viral preparation. The antibody-treated stool sample was then used to infect human primary hepatocytes. 14 days later, the cells were examined for HEV infection by the RT/PCR/Southern blot method just described, except employing primers which are expected to yield a 448 basepair amplified fragment. [0135]
  • The results are shown in FIG. 5. [0136] Lanes 1 and 3 in this figure show amplified RNA from cells infected with cyno stool sample previously incubated with human preimmune serum. The 448 basepair band in the figure indicates HEV infection. The second lane corresponds to cells which were exposed to anti-406.3-2 (B) rabbit antisera, and indicates virtually complete absence of HEV infection. Lane 4 shows amplified material from cells exposed to anti-406.4-2 (M) rabbit antisera. The antibody showed little or no protective effect against HEV infection. However, as shown in Example 5, both anti-406.3-2(B) and anti-406.4-2(B) were shown to offer protective effect against HEV infection.
  • C. Neutralizing Activity of Anti-406.4-2(B) Antibody [0137]
  • D. Neutralizing HEV Antisera [0138]
  • Another source of neutralizing antibodies, in accordance with the invention, is human HEV antisera which is characterized by immunospecific reaction to the 406.3-2 antigen and the SG3 antigen, both described above. [0139]
  • To examine the neutralizing antibody characteristics of human HEV antisera, a panel of human antisera were tested for the ability to block HEV infection of cultured hepatocytes, substantially as described above. The ten HEV positive human antisera are shown in Table 1 below, and are from patients who developed HEV infection in India, Pakistan, and Mexico. The antisera were not tested for strain type. [0140]
  • Briefly, cultured cells were exposed to HEV-positive cyno stool treated with samel (Burma strain) treated with normal pooled serum or HEV antiserum, and tested for the presence of HEV-specific nucleic acid sequences, by PCR amplification and Southern blotting with an HEV radiolabled probe. The Southern blots are shown in FIG. 6. The lane numbers of the 12 serum samples are given in parentheses in Table 1 below. As seen from FIG. 6, and indicated in Table 1, the antisera which were effective in neutralizing HEV were India 10 (lane 2), India 18 (lane 3), India 210 (lane 5), India 265 (lane 8), Pak 143 (lane 9), and Pak 336 (lane 10). Other human sera, however, showed very little ([0141] lane 11, Mex 387C) or no effect (lane 4, India 29; lane 6, India 242; lane 7, India 259; lane 12, Mex 387C[IgG]) in their ability to neutralize HEV infection. As a negative control, the normal human serum pool revealed absolutely no neutralizing activity against HEV (lane 1).
    TABLE 1
    Neutralizing
    Serum Clinical Activity
    normal (1) pooled
    India 10 (2) +
    India 18 (3) acute, import +
    India 29 (4) acute, import
    India 210 (5) acute +
    India 242 (6) acute, fulminant
    India 259 (7) acute, fulminant
    India 265 (8) acute +
    Pak 143 (9) acute +
    Pak 336 (10) acute +
    Mexico F387c (11) convalescent
    Mexico F387c (IgG) convalescent
    (12)
  • Several of the human antisera were tested for their IgG and IgM immunoreactivity to 406.3-2 (M), 406.4-2 (M) and 406.4-2 (B) antigens noted above. Reaction with IgM antibodies tends to indicate early-phase infection, whereas immunoreactivity with IgG is indicative of both early and later stages of infection. Reaction was measured in an ELISA test. The results are shown in Table 2A and 2B, where a “+” sign indicates a positive reaction; numbers in the table indicate dilution titre of IgG against the specific recombinant protein indicated. [0142]
    TABLE 1A
    IgG
    Serum 406.3-2 406.4-2 406.4-2 Neutralizing
    Samples (M) (B) (M) Activity Clinical
    Normal Pooled
    Human Human
    Serum
    India 18 + + + + acute,
    import
    India 29 + acute,
    import
    India 210 + + + + acute
    India 242 + + + acute,
    fulminant
    India 259 + + + acute,
    (500) (>5000) (2000) fulminant
    India 265 + + + + acute
    (>5000) (>5000) (1000)
  • [0143]
    TABLE 1B
    Serum IgM
    Samples 406.3-2 (M) 406.4-2 (B) 406.4-2 (M)
    Normal ND ND ND
    Human
    India 18
    India 29
    India 210
    India 242 + +
    India 259 + +
    India 265 + +
  • The data from the table indicates that those human antisera capable of neutralizing were positive by an IgG ELISA for antibodies to the HEV 3-2(M) epitope. India 29 was not positive for IgG(s) to HEV 3-2(M) and did not neutralize HEV infection (lane 4). Although India 242 and India 259 were positive for IgG(s) to HEV 406.3-2(M), they were also positive for IgM to HEV 406.3-2(M), which is indicative of an early stage HEV infection. Therefore in these particular samples, the levels of IgG(s) to HEV 3-2(M) elicited might be sufficient to neutralize HEV infection of primary human hepatocytes. [0144]
  • To further study the correlation of neutralizing activities of sera of HEV-infected humans with immunoreactivities to HEV3-2 epitope, Western blotting analyses were performed on these human serum samples, with the results shown in Table 3. As seen in this table, India 18, India 265, and especially [0145] India 210, previously shown to be neutralizing for HEV infection, were immunoreactive to HEV406.3-2(M) in these Western blotting analyses and their immunoreactivities correlated with their neutralizing activities.
  • As a confirmation for the specific immunoreactivities of these sera to HEV406.3-2(M), Western analyses were performed against the fusion protein SG3 (B), which contains the 329 carboxy-terminal amino acids (nucleotides 6146-7129) of ORF-2 of HEV Burma strain. The immunoreactivities of these sera against HEV406.3-2(M) and SG3 [or HEV406.3-2(B)] were perfectly matched (Table 3). [0146]
    TABLE 3
    Serum 406.3-2 (M) 406.3-2 (M) SG3 Neutralizing
    Samples ELISA Titre Western Blot Western Blot Activity
    Normal Human
    India 18 2000 ++ + +
    India 29
    India 210 100 ++ + +
    India 242 500
    India 259 500 ±
    India 265 5000 +++ +++ +
  • Thus, human HEV antisera which provide a suitable source of neutralizing antibodies are those characterized by (a) immunoreactivity with a 406.3-2 antigen, and (b) the SG3 antigen, both as evidenced by immunoreactivity in a Western blot, i.e., where the antigen is in an exposed, accessible configuration. [0147]
  • More generally, a preferred vaccine composition of the invention contains antibodies immunospecific against the 406.3-2 antigenic and against the SG3 antigenic peptide. The vaccine composition includes the immunospecific antibodies in a suitable carrier for parenteral injection. [0148]
  • The antibody vaccine composition is used, according to another aspect of the invention, for preventing or treating HEV infection in humans. [0149]
  • The following examples, which illustrate various methods and compositions in the invention, are intended to illustrate, but not limit the scope of the invention. [0150]
  • Materials
  • Enzymes: DNAse I and alkaline phosphatase were obtained from Boehringer Mannheim Biochemicals (BMB, Indianapolis, Ind.); EcoRI, EcoRI methylase, DNA ligase, and DNA Polymerase I, from New England Biolabs (NEB, Beverly Mass.); and RNase A was obtained from Sigma (St. Louis, Mo.). [0151]
  • Other reagents: EcoRI linkers were obtained from NEB; and nitro blue tetrazolium (NBT), S-bromo-4-chloro-3-indolyl phosphate (BCIP) S-bromo-4-chloro-3-indolyl-B-D-galactopyranoside (Xgal) and isopropyl B-D-thiogalactopyranoside (IPTG) were obtained from Sigma. cDNA synthesis kit and random priming labeling kits are available from Boehringer-Mannheim Biochemical (BMB, Indianapolis, Ind.). [0152]
  • EXAMPLE 1 Human Primary Hepatocytes in Culture
  • A. Isolation of hepatocytes. [0153]
  • Hepatocytes were isolated from human liver obtained from Stanford University Medical Center. The liver was either perfused in situ or excised as a wedge for perfusion in laboratory. The initial perfusion was performed for 10 minutes at 60 ml/min using Ca[0154] ++-, Mg−+-free Hanks' balanced salt solution supplemented with 10 mM HEPES (pH 7.4) and 0.5 mM [ethylene bis(oxyethylenenitrillo]-tetraacetic acid. Perfusion was continued for additional 20 minutes using Williams' medium E (WME) supplemented with 10 Mm HEPES (pH 7.4) and 100 U/ml collagenase (type I, Sigma Chemical Co., St. Louis, Mo.).
  • After perfusion the liver capsule was removed using fine forceps, and hepatocytes were dislodged by gentle shaking in collagenase solution. The hepatocyte suspension was filtered through several layers of gauze and mixed with an equal volume of WMW containing 10% fetal bovine serum (FBS). Hepatocytes were sedimented by centrifugation at 50 Xg for 5 minutes and resuspended in WME containing 5% FBS. Hepatocytes were sedimented and resuspended in the manner for 2 additional times. The final cell preparation was further filtered through several layers of gauze before examining for viability using trypan blue. The cells were plated at a density of 2×10[0155] 6 cells per 60-mm Primaria plates (Falcon) pre-coated with collagen (Collaborative Research).
  • Cultures were incubated at 37° C. in 5% CO[0156] 2 for 3 hours to allow attachment and the medium was changed to a serum-free formulation and every 48 hrs thereafter. The serum-free formulation was a WME-based medium supplemented with growth factors, hormones, 10 mM HEPES (pH 7.4), 100 ug/ml gentamycin, as has been described (Lanford).
  • B. Detection of Liver-Specific Proteins. [0157]
  • Human hepatocyte cultures were maintained in serum-free medium for various period of time and labeled with [[0158] 35S]-methionine for 24 hrs. The medium was adjusted to contain 1 mM PMSF, 1 mM EDTA, and 1% NP40. Antibodies specific for the different plasma proteins were bound to protein A-agarose beads, the beads were washed with PBS, and aliquots of the labeled medium were incubated for 16 hrs at 4° C. with the antibody-bead complexes. The beads were washed 3 times with a buffer containing 1% NP40, and immunoprecipitated proteins were eluted with gel electrophoresis sample buffer containing 2% SDS and 2% 2-mercaptoethanol. Samples were analyzed by gradient SDS-PAGE (4 to 15%) and autoradiography.
  • EXAMPLE 2 In vitro HEV Infection of Primary Human Hepatocytes
  • A. HEV Infection of Human Hepatocytes. [0159]
  • The HEV-infected cynomolgus monkey #73 stool pool (fourth passage) was used as an inoculum for infections of primary human hepatocytes. Various amounts of inoculum was diluted in 1 ml of serum-free medium (SFM) and applied to the culture during a 3 hr incubation period. This solution was then supplemented with 2 ml of fresh SFM and the entire mixture was incubated overnight. The next day, cell monolayers were washed with WME (10 mM HEPES, pH 7.4) for three times and changed to fresh SFM, which was changed at two day intervals thereafter. [0160]
  • B. Immunofluorescence Staining Assay. [0161]
  • Primary cynomolgus monkey hepatocytes were isolated and plated in tissue culture plates with collagen-coated coverslips as described. Cells on coverslips were infected with either the HEV-infected cynomolgus monkey #73 stool pool or the NIH normal human serum three days after initial plating. The infections were allowed to proceed for 2 weeks. [0162]
  • Cells on coverslips were fixed in 90% acetone at room temperature for 1 minute. The coverslips were then air-dried. The coverslips were blocked in 1% goat serum in PBS for 1 hour, washed with PBS for three times, and incubated with a mixture of rabbit antisera against HEV recombinant proteins 1L6, 4-2, and 6-1-4 at room temperature for 3 hours. The coverslips were again washed with PBS for 3 times and reacted with fluorescein isothiocyanate-conjugated (FITC) goat anti-rabbit IgG(H+L) (Zymed) diluted in PBS-1% goat serum for 30 minutes. After the coverslips were washed with PBS for 3 times and air-dried, they were mounted with FITC glycerol solution and examined under a fluorescent microscope. [0163]
  • C. Reverse Transcription/Polymerase Chain Reaction (RT/PCR). [0164]
  • HEV infection of primary cynomolgus macaque hepatocytes was evaluated by RT/PCR assays. The primers for cDNA synthesis and PCR were based on the nucleotide sequences of the full-length HEV cDNA (A. Tam et al.). Primers HEV3.2SF1 (nt 6578-6597) and HEV3.2SF2 (nt 6650-6668) are of sense polarity from the ORF2 region of the viral genome and HEV3.2SR1 (nt 7108-7127) and HEV3.2SR2 (nt 7078-7097) are antisense primers within the region. [0165]
  • Following extraction of total cellular RNA from HEV-infected cells using one-step guanidinium procedure or HEV-infected supernatants according to the method of Sherker et al., aliquots of RNA samples were heat-denatured at 95° C. for 5 minutes and subjected to reverse transcription at room temperature for 5 minutes and 42° C. for 60 minutes using 200 units per reaction of MMLV-reverse transcriptase (BRL) in a 20 ul reaction volume containing 20 units of RNasin (Promega), 1× PCR buffer (Perkin-Elmer Cetus), with a concentration of 1 mM each deoxyribonucleotide (Perkin-Elmer Cetus), and 2.5 uM of HEV3.2SR1 primer. The reaction mixture was then heat-treated at 95° C. for 5 minutes to denature the MMLV-reverse transcriptase. [0166]
  • Ten microliters of the cDNA synthesis product was used for PCR in a final volume of 50 ul with 0.5 uM HEV3.2SF1 primer, 1.25 units Taq DNA polymerase (AmpliTaq, Perkin-Elmer Cetus), and 1× PCR buffer, overlayed with 50 ul of mineral oil, and subjected to 40 cycles of PCR in a Perkin-Elmer thermocycler (95° C.×1 minute; 52° C.×2 minutes; 72° C.×30 seconds). Ten microliters of the first-round PCR product then underwent another 40 cycles of nested PCR (95° C.×1 minute; 55° C.×2 minutes; 72° C.×30 seconds) in a total volume of 50 ul containing the internal PCR primers HEV3.2SF2 and HEV3.2SR2. [0167]
  • First- and second-round PCR products were subjected to agarose electrophoresis, ethidium bromide stained and photographed under UV light. The results are shown in FIG. 4, discussed above. Southern transfer was performed and filters were hybridized with [[0168] 32P-dCTP]-labeled internal probe HEVORF2-7 exclusive of the primers (nt 6782-6997), and autoradiography performed.
  • EXAMPLE 3 Preparation of 406.3-2 and 406.4-2 Antigens
  • A TZKF1 plasmid (ET1.1), ATCC deposit number 67717, was digested with EcoRI to release the 1.33 kb HEV insert which was purified from the linearized plasmid by gel electrophoresis. The purified fragment was suspended in a standard digest buffer (0.5M Tris HCl, pH 7.5; 1 mg/ml BSA; 10 mM MnC12) to a concentration of about 1 mg/ml and digested with DNAse I at room temperature for about 5 minutes. These reaction conditions were determined from a prior calibration study, in which the incubation time required to produce predominantly 100-300 basepair fragments was determined. The material was extracted with phenol/chloroform before ethanol precipitation. [0169]
  • The fragments in the digest mixture were blunt-ended and ligated with EcoRI linkers. The resultant fragments were analyzed by electrophoresis (5-10V/cm) on 1.2% agarose gel, using PhiX174/HaeIII and lambda/HindIII size markers. The 100-300 bp fraction was eluted onto NA45 strips (Schleicher and Schuell), which were then placed into 1.5 ml microtubes with eluting solution (1 M NaCl, 50 mM arginine, pH 9.0), and incubated at 67° C. for 30-60 minutes. The eluted DNA was phenol/chloroform extracted and then precipitated with two volumes of ethanol. The pellet was resuspended in 20 ml TE (0.01 M Tris HCl, pH 7.5, 0.001 M EDTA). [0170]
  • B. Cloning in an Expression Vector [0171]
  • Lambda gt11 phage vector (Huynh) was obtained from Promega Biotec (Madison, Wis.). This cloning vector has a unique EcoRI cloning site 53 base pairs upstream from the beta-galactosidase translation termination codon. The genomic fragments from above, provided either directly from coding sequences 5) or after amplification of cDNA, were introduced into the EcoRI site by mixing 0.5-1.0 mg EcoRI-cleaved gt11, 0.3-3 ml of the above sized fragments, 0.5 [0172] ml 10× ligation buffer (above), 0.5 ml ligase (200 units), and distilled water to 5 ml. The mixture was incubated overnight at 14° C., followed by in vitro packaging, according to standard methods (Maniatis, pp. 256-268).
  • The packaged phage were used to infect [0173] E. coli strain KM392, obtained from Dr. Kevin Moore, DNAX (Palo Alto, Calif.). Alternatively, E. coli strain Y1090, available from the American Type Culture Collection (ATCC #37197), could be used. The infected bacteria were plated and the resultant colonies were checked for loss of beta-galactosidase activity-(clear plaques) in the presence of X-gal using a standard X-gal substrate plaque assay method (Maniatis). About 50% of the phage plaques showed loss of beta-galactosidase enzyme activity (recombinants).
  • C. Screening for HEV Recombinant Proteins [0174]
  • HEV convalescent antiserum was obtained from patients infected during documented HEV outbreaks in Mexico, Borneo, Pakistan, Somalia, and Burma. The sera were immunoreactive with VLPs in stool specimens from each of several other patients with ETNANB hepatitis. [0175]
  • A lawn of [0176] E. coli KM392 cells infected with about 104 pfu of the phage stock from above was prepared on a 150 mm plate and incubated, inverted, for 5-8 hours at 37° C. The lawn was overlaid with a nitrocellulose sheet, causing transfer of expressed HEV recombinant protein from the plagues to the paper. The plate and filter were indexed for matching corresponding plate and filter positions.
  • The filter was washed twice in TBST buffer (10 mM Tris, pH 8.0, 150 mM NaCl, 0.05% Tween 20), blocked with AIB (TBST buffer with 1% gelatin), washed again in TBST, and incubated overnight after addition of antiserum (diluted to 1:50 in AIB, 12-15 ml/plate). The sheet was washed twice in TEST and then contacted with enzyme-labeled anti-human antibody to attach the labeled antibody at filter sites containing antigen recognized by the antiserum. After a final washing, the filter was developed in a substrate medium containing 33 ml NET (50 mg/ml stock solution maintained at 4° C.) mixed with 16 ml BCIP (50 mg/ml stock solution maintained at 4° C.) in 5 ml of alkaline phosphatase buffer (100 mM Tris, 9.5, 100 mM NaCl, 5 mM MgC12). Purple color appeared at points of antigen production, as recognized by the antiserum. [0177]
  • D. Screening Plating [0178]
  • The areas of antigen production determined in the previous step were replated at about 100-200 pfu on an 82 mm plate. The above steps, beginning with a 5-8 hour incubation, through NBT-BCIP development, were repeated in order to plaque purify phage secreting an antigen capable of reacting with the HEV antibody. The identified plaques were picked and eluted in phage buffer (Maniatis, p. 443). [0179]
  • Two subclones which were selected are the 406.3-2 and 406.4-2 clones whose sequences are set forth above. These sequences were isolated from an amplified cDNA library derived from a Mexican stool. Using the techniques described in this section, polypeptides expressed by these clones have been tested for immunoreactivity against a number of different human HEV-positive sera obtained from sources around the world. As shown in Table 4 below, 8 sera immunoreactive with the polypeptide expressed by the 406.4-2, and 6 sera immunoreacted with polypeptide expressed by the 406.3-2 clone. [0180]
  • For comparison, the Table also shows reactivity of the various human sera with the non structural peptide Y2. Only one of the sera reacted with the polypeptide expressed by this clone. No immunoreactivity was seen for normal expression products of the gt11 vector. [0181]
    TABLE 4
    Immunoreactivity of HEV Recombinant
    Proteins: Human Sera
    Sera Source Stage1 406.3-2 406.4-2 Y2 lgt11
    FVH-21 Burma A
    FVH-8 Burma A + +
    SOM-19 Somalia A + +
    SOM-20 Somalia A + +
    IM-35 Borneo A + +
    IM-36 Borneo A
    PAK-1 Pakistan A + +
    FFI-4 Mexico A + +
    FFI-125 Mexico A +
    F 387 IC Mexico C + + ND
    Normal U.S.A.
  • Here Y2 represents a sequence encoded by the HEV sequence 157 basepair sequence from the first open reading frame of the HEV genome. [0182]
  • E. Producing the 406.3-2 Antigen [0183]
  • The 406.3-2 gt11 plasmid from above was digested with EcoRI and the released HEV fragment was amplified by PCR in the presence of linkers which added an NcoI site at the 5′ fragment end, and a BamHI site at the 31 fragment end. The amplified material was digested with NcoI and BamHI and inserted into the NcoI/BamHI site of the glutathione S-transferase vector PGEX expression vector, according to the manufacturer's instructions. [0184]
  • The PGEX plasmid was used to transform [0185] E. coli host cells, and cells which were successfully transformed with the pGEX vector were identified by immunofluorescence, using anti-HEV human antisera.
  • F. Producing the 406.4-2 Antigen [0186]
  • The 406.4-2 gt11 plasmid from above was digested with EcoRI and the released HEV fragment was amplified by PCR, and the amplified fragment was inserted into the NcoI/BamHI site of the pGEX expression vector, as above. Peptide expression of the 406.4-2 peptide was similar to that described for the 406.3.2 fusion peptide. [0187]
  • G. Preparing Antibodies [0188]
  • The 406.3-2(M) and 406.4-2(M) fusion proteins, prepared as above, were used to immunize rabbits to generate HEV-specific antisera, according to standard procedures. [0189]
  • EXAMPLE 4 Neutralizing Activity of Anti-3.2(M) Antibody
  • A. In vitro Infection [0190]
  • To prove that primary human hepatocytes were permissive for HEV infection and replication, cells were exposed to either normal human serum (NIH normal human serum pool) or HEV-infected cynomolgus macaque stool preparation (cyno#73). Fourteen days postinfection, total cellular RNAs were prepared for reverse-transcription (RT)/polymerase chain reaction (PCR) assays to evaluate the infectability of primary human hepatocytes with HEV. The results indicated that primary human hepatocytes were capable of supporting HEV propagation (FIG. 4). [0191]
  • Although quantitative PCR was not applied, total cellular RNA isolated from HEV-infected primary human hepatocytes would indicate a high level of virus replication as suggested by the extent of hybridization with the α-[0192] 32P-dCTP labeled HEV-specific probe (lane 5). There was no evidence of HEV in total cellular RNA isolated from primary human hepatocytes treated with normal human serum pool (lane 4). As negative controls for RT/PCR assays, no carry-over or cross-contamination was detected ( lanes 1, 2, and 3). The original HEV-infected cynomolgus macaque stool (cyno#73) was served as a positive control in the RT/PCR assays (lane 6).
  • B. Neutralizing Activity of Antibody [0193]
  • To examine the neutralizing activities of anti-3-2 (M), -4-2-(M), each rabbit antiserum was used at a final dilution of 1:20 with the viral inoculum for HEV infection of primary human hepatocytes. The diluted antibody and viral inoculum were incubated together prior to infection of the cultured cells. Rabbit anti-3-2(M) exhibited a high level of neutralizing activity against HEV infection (FIG. 5, [0194] lane 2 versus lane 1). Very little neutralizing activity was observed in rabbit anti-4-2 (M) (lane 4 versus lane 3).
  • This result suggests that the HEV 3-2(M) but not HEV 4-2(M) 4-2 (B) recombinant protein encoded a neutralizing epitope capable of eliciting protective antibody or antibodies against HEV infection. The fact that the Mexico clone 3-2(M) and the Burma clone 3-2(B) share 90.5% homology at the amino acid level (79.8% at the nucleotide level) suggested that antibody(ies) raised against 3-2(M) should cross-neutralize or cross-protect HEV of Mexico or Burma strain from infecting permissive cells. [0195]
  • EXAMPLE 5 Neutralizing Activity of Anti-3-2(B) and Anti-4-2(B)
  • HEV type-common epitopes 3-2 and 4-2 of Burma (B) or Mexico (M) strains were previously identified by screening high titer lambda library for HEV-specific antigen-producing clones using convalescent human serum F387-C. The lambda gt11 clones, 406.3-2 and 406.4-2, were characterized and subcloned to express as betagalactosidase fusion proteins. These fusion proteins were subsequently used to immunize rabbits to generate HEV-specific antisera. [0196]
  • To examine the neutralizing activities of anti-3-2(B) and anti-4-2(B), preimmune rabbit serum or rabbit anti-3-2(B) or anti-4-2(B) antiserum was used at a final dilution of 1:20 with the viral inoculum of Burma strain for HEV invection of primary cynomolgus macaque hepatocytes. Both rabbit anti-3-2(B) (FIG. 10, lane 2) and anti-4-2(B) (FIG. 10, lane 4) but not rabbit preimmune serum (FIG. 10, [0197] lane 1 or lane 3) exhibited extraordinary levels of neutralizing activity against HEV infection as indicated by RT/PCR analysis (FIG. 10 panels A and B). This result indicated that both HEV 3-2(B)(Sequence ID No. 21) and REV 4-2(B)(Sequence ID No. 22) recombinant proteins encode a neutralizing epitope capable of eliciting protective antibody or antibodies against HEV infection. The neutralizing activity of anti-4-2(B) was previously not shown. Therefore, in a cynomologus macaque hepatocyte system it has now been shown that rabbit anti-4-2(B) antibody will neutralize HEV. Thus, the HEV protein designated by sequence ID No 22 is suitable as an immunogen against HEV.
  • EXAMPLE 6 Vaccine Protection Against HEV
  • A. Preparation of trpE-C2 Peptide [0198]
  • The PBET1 plasmid containing a 2.3 kb insert, corresponding to the 1.8 [0199] kb 3′ end portion of HEV has been described (Tam). The plasmid was digested with EcoRI, releasing two HEV fragments having sizes of about 600 bp and 1400 bp of which 1210 bp contain coding sequence. The larger fragment was purified by electrophoresis and inserted into the EcoRI site of the pATH10 trpE fusion vector, obtained from T. J. Koerner et al. (Department of Microbiology, UCLA). The recombinant vector was used to transform E. coli DH5αF′host.
  • The recombinant typE-C2 fusion protein from pATH C2 was isolated by a modification of the procedure of Dieckmann et al. The bacterium containing the pATH C2 plasmid was grown overnight in growth media containing tryptophane. Two ml of the overnight culture was inoculated into 100 ml of fresh growth media and grown at 37° C. for an additional four hours. The bacterial broth was added to one liter of fresh growth media without tryptophane and allowed to grow at 30° C. for 1.5 hours. Ten ml indoleacrylic acid (1 mg/ml) was added and growth was continued for an additional 5 to 10 hours at 30° C. The bacterial cells were collected by centrifugation. The cell pellet was resuspended in a hypotonic solution containing lysozyme to degrade the bacterial cell wall. Sodium chloride and the detergent NP-40 were added to the suspension to cause hypertonic lysis of the cells. The lysed cell solution was sonicated. The solution was centrifuged. The resulting protein pellet was resuspended in about 5 ml of 10 mM Tris pH 7.5 using a dounce homogenizer. Approximately 75% of the protein in solution was composed of the trpE-C2 protein. [0200]
  • B. Preparation of Vaccine [0201]
  • Converted alum adjuvant was prepared according to standard methods. Briefly, a 10 alum suspension was titrated to pH 6.6 with 1N NaOH, then stirred overnight at 4° C. The suspension is clarified by low-speed centrifugation, and the supernatant decanted. A small amount of 0.9% NaCl+1:20,000 formalin was added to each pellet, and suspended by vortexing. To prepare an antigen vaccine composition, trpE-C2 fusion protein from above is added in a 0.9% NaCl solution to a desired final antigen concentration. [0202]
  • A non-adjuvanted insoluble trpE-C2 peptide was prepared as above in section A. [0203]
  • C. Vaccination [0204]
  • Six cynomolgus monkeys, designated 8901, 8902, 8903, 8910, 9902, and 9904, were used in the vaccination study. Four of the monkeys, 8901, and 8902 8903, and 8910 were immunized by intravenous injection with 1.0 ml of the alum adjuvanted-trpE-C2 composition (containing about 50 μg of C2 peptide). The other two animals received adjuvant only. One month later the six animals were given a second vaccination, identical to the first. [0205]
  • 4 weeks after the second vaccination, saer from the animals was tested for anti-HEV antibodies by Western blotting, using a fusionless C2 protein. At this stage, animals 8901 and 8902 each received a third vaccination with the non-adjuvanted, insoluble trpE-C2 composition (a total IV dose of about 80 μg trpE-C2 peptide each), and both animals showed anti-HEV by [0206] Western blotting 4 weeks later.
  • Animals 8901, 8903, and 9002 were each challenged IV with 1 ml each of a 10% third passage cyno stool (Burma strain) previously shown to be highly infectious. Animals 8902, 8910, and 9004 were each challenged IV with 1 ml of a proven infectious human stool isolate, Mexican #14, known to cause severe disease in cynos and moderate disease in chimpanzees. The results are shown in FIGS. 2A, 2B, and [0207] 3A, and 3B, discussed above.
  • While the invention has been described with reference to particular embodiments, methods, construction and use, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the invention. [0208]
  • 1 22 2094 base pairs nucleic acid double linear cDNA to mRNA NO BURMA SEQUENCE, FIGURE 7 1 TGGAATGAAT AACATGTCTT TTGCTGCGCC CATGGGTTCG CGACCATGCG CCCTCGGCCT 60 ATTTTGTTGC TGCTCCTCAT GTTTTTGCCT ATGCTGCCCG CGCCACCGCC CGGTCAGCCG 120 TCTGGCCGCC GTCGTGGGCG GCGCAGCGGC GGTTCCGGCG GTGGTTTCTG GGGTGACCGG 180 GTTGATTCTC AGCCCTTCGC AATCCCCTAT ATTCATCCAA CCAACCCCTT CGCCCCCGAT 240 GTCACCGCTG CGGCCGGGGC TGGACCTCGT GTTCGCCAAC CCGCCCGACC ACTCGGCTCC 300 GCTTGGCGTG ACCAGGCCCA GCGCCCCGCC GTTGCCTCAC GTCGTAGACC TACCACAGCT 360 GGGGCCGCGC CGCTAACCGC GGTCGCTCCG GCCCATGACA CCCCGCCAGT GCCTGATGTC 420 GACTCCCGCG GCGCCATCTT GCGCCGGCAG TATAACCTAT CAACATCTCC CCTTACCTCT 480 TCCGTGGCCA CCGGCACTAA CCTGGTTCTT TATGCCGCCC CTCTTAGTCC GCTTTTACCC 540 CTTCAGGACG GCACCAATAC CCATATAATG GCCACGGAAG CTTCTAATTA TGCCCAGTAC 600 CGGGTTGCCC GTGCCACAAT CCGTTACCGC CCGCTGGTCC CCAATGCTGT CGGCGGTTAC 660 GCCATCTCCA TCTCATTCTG GCCACAGACC ACCACCACCC CGACGTCCGT TGATATGAAT 720 TCAATAACCT CGACGGATGT TCGTATTTTA GTCCAGCCCG GCATAGCCTC TGAGCTTGTG 780 ATCCCAAGTG AGCGCCTACA CTATCGTAAC CAAGGCTGGC GCTCCGTCGA GACCTCTGGG 840 GTGGCTGAGG AGGAGGCTAC CTCTGGTCTT GTTATGCTTT GCATACATGG CTCACTCGTA 900 AATTCCTATA CTAATACACC CTATACCGGT GCCCTCGGGC TGTTGGACTT TGCCCTTGAG 960 CTTGAGTTTC GCAACCTTAC CCCCGGTAAC ACCAATACGC GGGTCTCCCG TTATTCCAGC 1020 ACTGCTCGCC ACCGCCTTCG TCGCGGTGCG GACGGGACTG CCGAGCTCAC CACCACGGCT 1080 GCTACCCGCT TTATGAAGGA CCTCTATTTT ACTAGTACTA ATGGTGTCGG TGAGATCGGC 1140 CGCGGGATAG CCCTCACCCT GTTCAACCTT GCTGACACTC TGCTTGGCGG CCTGCCGACA 1200 GAATTGATTT CGTCGGCTGG TGGCCAGCTG TTCTACTCCC GTCCCGTTGT CTCAGCCAAT 1260 GGCGAGCCGA CTGTTAAGTT GTATACATCT GTAGAGAATG CTCAGCAGGA TAAGGGTATT 1320 GCAATCCCGC ATGACATTGA CCTCGGAGAA TCTCGTGTGG TTATTCAGGA TTATGATAAC 1380 CAACATGAAC AAGATCGGCC GACGCCTTCT CCAGCCCCAT CGCGCCCTTT CTCTGTCCTT 1440 CGAGCTAATG ATGTGCTTTG GCTCTCTCTC ACCGCTGCCG AGTATGACCA GTCCACTTAT 1500 GGCTCTTCGA CTGGCCCAGT TTATGTTTCT GACTCTGTGA CCTTGGTTAA TGTTGCGACC 1560 GGCGCGCAGG CCGTTGCCCG GTCGCTCGAT TGGACCAAGG TCACACTTGA CGGTCGCCCC 1620 CTCTCCACCA TCCAGCAGTA CTCGAAGACC TTCTTTGTCC TGCCGCTCCG CGGTAAGCTC 1680 TCTTTCTGGG AGGCAGGCAC AACTAAAGCC GGGTACCCTT ATAATTATAA CACCACTGCT 1740 AGCGACCAAC TGCTTGTCGA GAATGCCGCC GGGCACCGGG TCGCTATTTC CACTTACACC 1800 ACTAGCCTGG GTGCTGGTCC CGTCTCCATT TCTGCGGTTG CCGTTTTAGC CCCCCACTCT 1860 GCGCTAGCAT TGCTTGAGGA TACCTTGGAC TACCCTGCCC GCGCCCATAC TTTTGATGAT 1920 TTCTGCCCAG AGTGCCGCCC CCTTGGCCTT CAGGGCTGCG CTTTCCAGTC TACTGTCGCT 1980 GAGCTTCAGC GCCTTAAGAT GAAGGTGGGT AAAACTCGGG AGTTGTAGTT TATTTGCTTG 2040 TGCCCCCCTT CTTTCTGTTG CTTATTTCTC ATTTCTGCGT TCCGCGCTCC CTGA 2094 2100 base pairs nucleic acid double linear cDNA to mRNA NO MEXICO, FIGURE 7 2 CTGAATGAAT AACATGTGGT TTGCTGCGCC CATGGGTTCG CCACCATGCG CCCTAGGCCT 60 CTTTTGCTGT TGTTCCTCTT GTTTCTGCCT ATGTTGCCCG CGCCACCGAC CGGTCAGCCG 120 TCTGGCCGCC GTCGTGGGCG GCGCAGCGGC GGTACCGGCG GTGGTTTCTG GGGTGACCGG 180 GTTGATTCTC AGCCCTTCGC AATCCCCTAT ATTCATCCAA CCAACCCCTT TGCCCCAGAC 240 GTTGCCGCTG CGTCCGGGTC TGGACCTCGC CTTCGCCAAC CAGCCCGGCC ACTTGGCTCC 300 ACTTGGCGAG ATCAGGCCCA GCGCCCCTCC GCTGCCTCCC GTCGCCGACC TGCCACAGCC 360 GGGGCTGCGG CGCTGACGGC TGTGGCGCCT GCCCATGACA CCTCACCCGT CCCGGACGTT 420 GATTCTCGCG GTGCAATTCT ACGCCGCCAG TATAATTTGT CTACTTCACC CCTGACATCC 480 TCTGTGGCCT CTGGCACTAA TTTAGTCCTG TATGCAGCCC CCCTTAATCC GCCTCTGCCG 540 CTGCAGGACG GTACTAATAC TCACATTATG GCCACAGAGG CCTCCAATTA TGCACAGTAC 600 CGGGTTGCCC GCGCTACTAT CCGTTACCGG CCCCTAGTGC CTAATGCAGT TGGAGGCTAT 660 GCTATATCCA TTTCTTTCTG GCCTCAAACA ACCACAACCC CTACATCTGT TGACATGAAT 720 TCCATTACTT CCACTGATGT CAGGATTCTT GTTCAACCTG GCATAGCATC TGAATTGGTC 780 ATCCCAAGCG AGCGCCTTCA CTACCGCAAT CAAGGTTGGC GCTCGGTTGA GACATCTGGT 840 GTTGCTGAGG AGGAAGCCAC CTCCGGTCTT GTCATGTTAT GCATACATGG CTCTCCAGTT 900 AACTCCTATA CCAATACCCC TTATACCGGT GCCCTTGGCT TACTGGACTT TGCCTTAGAG 960 CTTGAGTTTC GCAATCTCAC CACCTGTAAC ACCAATACAC GTGTGTCCCG TTACTCCAGC 1020 ACTGCTCGTC ACTCCGCCCG AGGGGCCGAC GGGACTGCGG AGCTGACCAC AACTGCAGCC 1080 ACCAGGTTCA TGAAAGATCT CCACTTTACC GGCCTTAATG GGGTAGGTGA AGTCGGCCGC 1140 GGGATAGCTC TAACATTACT TAACCTTGCT GACACGCTCC TCGGCGGGCT CCCGACAGAA 1200 TTAATTTCGT CGGCTGGCGG GCAACTGTTT TATTCCCGCC CGGTTGTCTC AGCCAATGGC 1260 GAGCCAACCG TGAAGCTCTA TACATCAGTG GAGAATGCTC AGCAGGATAA GGGTGTTGCT 1320 ATCCCCCACG ATATCGATCT TGGTGATTCG CGTGTGGTCA TTCAGGATTA TGACAACCAG 1380 CATGAGCAGG ATCGGCCCAC CCCGTCGCCT GCGCCATCTC GGCCTTTTTC TGTTCTCCGA 1440 GCAAATGATG TACTTTGGCT GTCCCTCACT GCAGCCGAGT ATGACCAGTC CACTTACGGG 1500 TCGTCAACTG GCCCGGTTTA TATCTCGGAC AGCGTGACTT TGGTGAATGT TGCGACTGGC 1560 GCGCAGGCCG TAGCCCGATC GCTTGACTGG TCCAAAGTCA CCCTCGACGG GCGGCCCCTC 1620 CCGACTGTTG AGCAATATTC CAAGACATTC TTTGTGCTCC CCCTTCGTGG CAAGCTCTCC 1680 TTTTGGGAGG CCGGCACAAC AAAAGCAGGT TATCCTTATA ATTATAATAC TACTGCTAGT 1740 GACCAGATTC TGATTGAAAA TGCTGCCGGC CATCGGGTCG CCATTTCAAC CTATACCACC 1800 AGGCTTGGGG CCGGTCCGGT CGCCATTTCT GCGGCCGCGG TTTTGGCTCC ACGCTCCGCC 1860 CTGGCTCTGC TGGAGGATAC TTTTGATTAT CCGGGGCGGG CGCACACATT TGATGACTTC 1920 TGCCCTGAAT GCCGCGCTTT AGGCCTCCAG GGTTGTGCTT TCCAGTCAAC TGTCGCTGAG 1980 CTCCAGCGCC TTAAAGTTAA GGTGGGTAAA ACTCGGGAGT TGTAGTTTAT TTGGCTGTGC 2040 CCACCTACTT ATATCTGCTG ATTTCCTTTA TTTCCTTTTT CTCGGTCCCG CGCTCCCTGA 2100 2049 base pairs nucleic acid double linear cDNA to mRNA NO ORF 2, BURMA, FIGURE 7 3 ATGCGCCCTC GGCCTATTTT GTTGCTGCTC CTCATGTTTT TGCCTATGCT GCCCGCGCCA 60 CCGCCCGGTC AGCCGTCTGG CCGCCGTCGT GGGCGGCGCA GCGGCGGTTC CGGCGGTGGT 120 TTCTGGGGTG ACCGGGTTGA TTCTCAGCCC TTCGCAATCC CCTATATTCA TCCAACCAAC 180 CCCTTCGCCC CCGATGTCAC CGCTGCGGCC GGGGCTGGAC CTCGTGTTCG CCAACCCGCC 240 CGACCACTCG GCTCCGCTTG GCGTGACCAG GCCCAGCGCC CCGCCGTTGC CTCACGTCGT 300 AGACCTACCA CAGCTGGGGC CGCGCCGCTA ACCGCGGTCG CTCCGGCCCA TGACACCCCG 360 CCAGTGCCTG ATGTCGACTC CCGCGGCGCC ATCTTGCGCC GGCAGTATAA CCTATCAACA 420 TCTCCCCTTA CCTCTTCCGT GGCCACCGGC ACTAACCTGG TTCTTTATGC CGCCCCTCTT 480 AGTCCGCTTT TACCCCTTCA GGACGGCACC AATACCCATA TAATGGCCAC GGAAGCTTCT 540 AATTATGCCC AGTACCGGGT TGCCCGTGCC ACAATCCGTT ACCGCCCGCT GGTCCCCAAT 600 GCTGTCGGCG GTTACGCCAT CTCCATCTCA TTCTGGCCAC AGACCACCAC CACCCCGACG 660 TCCGTTGATA TGAATTCAAT AACCTCGACG GATGTTCGTA TTTTAGTCCA GCCCGGCATA 720 GCCTCTGAGC TTGTGATCCC AAGTGAGCGC CTACACTATC GTAACCAAGG CTGGCGCTCC 780 GTCGAGACCT CTGGGGTGGC TGAGGAGGAG GCTACCTCTG GTCTTGTTAT GCTTTGCATA 840 CATGGCTCAC TCGTAAATTC CTATACTAAT ACACCCTATA CCGGTGCCCT CGGGCTGTTG 900 GACTTTGCCC TTGAGCTTGA GTTTCGCAAC CTTACCCCCG GTAACACCAA TACGCGGGTC 960 TCCCGTTATT CCAGCACTGC TCGCCACCGC CTTCGTCGCG GTGCGGACGG GACTGCCGAG 1020 CTCACCACCA CGGCTGCTAC CCGCTTTATG AAGGACCTCT ATTTTACTAG TACTAATGGT 1080 GTCGGTGAGA TCGGCCGCGG GATAGCCCTC ACCCTGTTCA ACCTTGCTGA CACTCTGCTT 1140 GGCGGCCTGC CGACAGAATT GATTTCGTCG GCTGGTGGCC AGCTGTTCTA CTCCCGTCCC 1200 GTTGTCTCAG CCAATGGCGA GCCGACTGTT AAGTTGTATA CATCTGTAGA GAATGCTCAG 1260 CAGGATAAGG GTATTGCAAT CCCGCATGAC ATTGACCTCG GAGAATCTCG TGTGGTTATT 1320 CAGGATTATG ATAACCAACA TGAACAAGAT CGGCCGACGC CTTCTCCAGC CCCATCGCGC 1380 CCTTTCTCTG TCCTTCGAGC TAATGATGTG CTTTGGCTCT CTCTCACCGC TGCCGAGTAT 1440 GACCAGTCCA CTTATGGCTC TTCGACTGGC CCAGTTTATG TTTCTGACTC TGTGACCTTG 1500 GTTAATGTTG CGACCGGCGC GCAGGCCGTT GCCCGGTCGC TCGATTGGAC CAAGGTCACA 1560 CTTGACGGTC GCCCCCTCTC CACCATCCAG CAGTACTCGA AGACCTTCTT TGTCCTGCCG 1620 CTCCGCGGTA AGCTCTCTTT CTGGGAGGCA GGCACAACTA AAGCCGGGTA CCCTTATAAT 1680 TATAACACCA CTGCTAGCGA CCAACTGCTT GTCGAGAATG CCGCCGGGCA CCGGGTCGCT 1740 ATTTCCACTT ACACCACTAG CCTGGGTGCT GGTCCCGTCT CCATTTCTGC GGTTGCCGTT 1800 TTAGCCCCCC ACTCTGCGCT AGCATTGCTT GAGGATACCT TGGACTACCC TGCCCGCGCC 1860 CATACTTTTG ATGATTTCTG CCCAGAGTGC CGCCCCCTTG GCCTTCAGGG CTGCGCTTTC 1920 CAGTCTACTG TCGCTGAGCT TCAGCGCCTT AAGATGAAGG TGGGTAAAAC TCGGGAGTTG 1980 TAGTTTATTT GCTTGTGCCC CCCTTCTTTC TGTTGCTTAT TTCTCATTTC TGCGTTCCGC 2040 GCTCCCTGA 2049 2055 base pairs nucleic acid double linear cDNA to mRNA NO ORF 2, MEXICO, FIGURE 7 4 ATGCGCCCTA GGCCTCTTTT GCTGTTGTTC CTCTTGTTTC TGCCTATGTT GCCCGCGCCA 60 CCGACCGGTC AGCCGTCTGG CCGCCGTCGT GGGCGGCGCA GCGGCGGTAC CGGCGGTGGT 120 TTCTGGGGTG ACCGGGTTGA TTCTCAGCCC TTCGCAATCC CCTATATTCA TCCAACCAAC 180 CCCTTTGCCC CAGACGTTGC CGCTGCGTCC GGGTCTGGAC CTCGCCTTCG CCAACCAGCC 240 CGGCCACTTG GCTCCACTTG GCGAGATCAG GCCCAGCGCC CCTCCGCTGC CTCCCGTCGC 300 CGACCTGCCA CAGCCGGGGC TGCGGCGCTG ACGGCTGTGG CGCCTGCCCA TGACACCTCA 360 CCCGTCCCGG ACGTTGATTC TCGCGGTGCA ATTCTACGCC GCCAGTATAA TTTGTCTACT 420 TCACCCCTGA CATCCTCTGT GGCCTCTGGC ACTAATTTAG TCCTGTATGC AGCCCCCCTT 480 AATCCGCCTC TGCCGCTGCA GGACGGTACT AATACTCACA TTATGGCCAC AGAGGCCTCC 540 AATTATGCAC AGTACCGGGT TGCCCGCGCT ACTATCCGTT ACCGGCCCCT AGTGCCTAAT 600 GCAGTTGGAG GCTATGCTAT ATCCATTTCT TTCTGGCCTC AAACAACCAC AACCCCTACA 660 TCTGTTGACA TGAATTCCAT TACTTCCACT GATGTCAGGA TTCTTGTTCA ACCTGGCATA 720 GCATCTGAAT TGGTCATCCC AAGCGAGCGC CTTCACTACC GCAATCAAGG TTGGCGCTCG 780 GTTGAGACAT CTGGTGTTGC TGAGGAGGAA GCCACCTCCG GTCTTGTCAT GTTATGCATA 840 CATGGCTCTC CAGTTAACTC CTATACCAAT ACCCCTTATA CCGGTGCCCT TGGCTTACTG 900 GACTTTGCCT TAGAGCTTGA GTTTCGCAAT CTCACCACCT GTAACACCAA TACACGTGTG 960 TCCCGTTACT CCAGCACTGC TCGTCACTCC GCCCGAGGGG CCGACGGGAC TGCGGAGCTG 1020 ACCACAACTG CAGCCACCAG GTTCATGAAA GATCTCCACT TTACCGGCCT TAATGGGGTA 1080 GGTGAAGTCG GCCGCGGGAT AGCTCTAACA TTACTTAACC TTGCTGACAC GCTCCTCGGC 1140 GGGCTCCCGA CAGAATTAAT TTCGTCGGCT GGCGGGCAAC TGTTTTATTC CCGCCCGGTT 1200 GTCTCAGCCA ATGGCGAGCC AACCGTGAAG CTCTATACAT CAGTGGAGAA TGCTCAGCAG 1260 GATAAGGGTG TTGCTATCCC CCACGATATC GATCTTGGTG ATTCGCGTGT GGTCATTCAG 1320 GATTATGACA ACCAGCATGA GCAGGATCGG CCCACCCCGT CGCCTGCGCC ATCTCGGCCT 1380 TTTTCTGTTC TCCGAGCAAA TGATGTACTT TGGCTGTCCC TCACTGCAGC CGAGTATGAC 1440 CAGTCCACTT ACGGGTCGTC AACTGGCCCG GTTTATATCT CGGACAGCGT GACTTTGGTG 1500 AATGTTGCGA CTGGCGCGCA GGCCGTAGCC CGATCGCTTG ACTGGTCCAA AGTCACCCTC 1560 GACGGGCGGC CCCTCCCGAC TGTTGAGCAA TATTCCAAGA CATTCTTTGT GCTCCCCCTT 1620 CGTGGCAAGC TCTCCTTTTG GGAGGCCGGC ACAACAAAAG CAGGTTATCC TTATAATTAT 1680 AATACTACTG CTAGTGACCA GATTCTGATT GAAAATGCTG CCGGCCATCG GGTCGCCATT 1740 TCAACCTATA CCACCAGGCT TGGGGCCGGT CCGGTCGCCA TTTCTGCGGC CGCGGTTTTG 1800 GCTCCACGCT CCGCCCTGGC TCTGCTGGAG GATACTTTTG ATTATCCGGG GCGGGCGCAC 1860 ACATTTGATG ACTTCTGCCC TGAATGCCGC GCTTTAGGCC TCCAGGGTTG TGCTTTCCAG 1920 TCAACTGTCG CTGAGCTCCA GCGCCTTAAA GTTAAGGTGG GTAAAACTCG GGAGTTGTAG 1980 TTTATTTGGC TGTGCCCACC TACTTATATC TGCTGATTTC CTTTATTTCC TTTTTCTCGG 2040 TCCCGCGCTC CCTGA 2055 147 base pairs nucleic acid double linear cDNA to mRNA NO 406.3-2, BURMA, FIGURE 7 5 ACCTTGGACT ACCCTGCCCG CGCCCATACT TTTGATGATT TCTGCCCAGA GTGCCGCCCC 60 CTTGGCCTTC AGGGCTGCGC TTTCCAGTCT ACTGTCGCTG AGCTTCAGCG CCTTAAGATG 120 AAGGTGGGTA AAACTCGGGA GTTGTAG 147 147 base pairs nucleic acid double linear cDNA to mRNA NO 406.3-2, MEXICO, FIGURE 7 6 ACTTTTGATT ATCCGGGGCG GGCGCACACA TTTGATGACT TCTGCCCTGA ATGCCGCGCT 60 TTAGGCCTCC AGGGTTGTGC TTTCCAGTCA ACTGTCGCTG AGCTCCAGCG CCTTAAAGTT 120 AAGGTGGGTA AAACTCGGGA GTTGTAG 147 984 base pairs nucleic acid double linear cDNA to mRNA NO SG3, BURMA, FIGURE 7 7 GGTGCGGACG GGACTGCCGA GCTCACCACC ACGGCTGCTA CCCGCTTTAT GAAGGACCTC 60 TATTTTACTA GTACTAATGG TGTCGGTGAG ATCGGCCGCG GGATAGCCCT CACCCTGTTC 120 AACCTTGCTG ACACTCTGCT TGGCGGCCTG CCGACAGAAT TGATTTCGTC GGCTGGTGGC 180 CAGCTGTTCT ACTCCCGTCC CGTTGTCTCA GCCAATGGCG AGCCGACTGT TAAGTTGTAT 240 ACATCTGTAG AGAATGCTCA GCAGGATAAG GGTATTGCAA TCCCGCATGA CATTGACCTC 300 GGAGAATCTC GTGTGGTTAT TCAGGATTAT GATAACCAAC ATGAACAAGA TCGGCCGACG 360 CCTTCTCCAG CCCCATCGCG CCCTTTCTCT GTCCTTCGAG CTAATGATGT GCTTTGGCTC 420 TCTCTCACCG CTGCCGAGTA TGACCAGTCC ACTTATGGCT CTTCGACTGG CCCAGTTTAT 480 GTTTCTGACT CTGTGACCTT GGTTAATGTT GCGACCGGCG CGCAGGCCGT TGCCCGGTCG 540 CTCGATTGGA CCAAGGTCAC ACTTGACGGT CGCCCCCTCT CCACCATCCA GCAGTACTCG 600 AAGACCTTCT TTGTCCTGCC GCTCCGCGGT AAGCTCTCTT TCTGGGAGGC AGGCACAACT 660 AAAGCCGGGT ACCCTTATAA TTATAACACC ACTGCTAGCG ACCAACTGCT TGTCGAGAAT 720 GCCGCCGGGC ACCGGGTCGC TATTTCCACT TACACCACTA GCCTGGGTGC TGGTCCCGTC 780 TCCATTTCTG CGGTTGCCGT TTTAGCCCCC CACTCTGCGC TAGCATTGCT TGAGGATACC 840 TTGGACTACC CTGCCCGCGC CCATACTTTT GATGATTTCT GCCCAGAGTG CCGCCCCCTT 900 GGCCTTCAGG GCTGCGCTTT CCAGTCTACT GTCGCTGAGC TTCAGCGCCT TAAGATGAAG 960 GTGGGTAAAA CTCGGGAGTT GTAG 984 981 base pairs nucleic acid double linear cDNA to mRNA NO SG3, MEXICO, FIGURE 7 8 GCCGACGGGA CTGCGGAGCT GACCACAACT GCAGCCACCA GGTTCATGAA AGATCTCCAC 60 TTTACCGGCC TTAATGGGGT AGGTGAAGTC GGCCGCGGGA TAGCTCTAAC ATTACTTAAC 120 CTTGCTGACA CGCTCCTCGG CGGGCTCCCG ACAGAATTAA TTTCGTCGGC TGGCGGGCAA 180 CTGTTTTATT CCCGCCCGGT TGTCTCAGCC AATGGCGAGC CAACCGTGAA GCTCTATACA 240 TCAGTGGAGA ATGCTCAGCA GGATAAGGGT GTTGCTATCC CCCACGATAT CGATCTTGGT 300 GATTCGCGTG TGGTCATTCA GGATTATGAC AACCAGCATG AGCAGGATCG GCCCACCCCG 360 TCGCCTGCGC CATCTCGGCC TTTTTCTGTT CTCCGAGCAA ATGATGTACT TTGGCTGTCC 420 CTCACTGCAG CCGAGTATGA CCAGTCCACT TACGGGTCGT CAACTGGCCC GGTTTATATC 480 TCGGACAGCG TGACTTTGGT GAATGTTGCG ACTGGCGCGC AGGCCGTAGC CCGATCGCTT 540 GACTGGTCCA AAGTCACCCT CGACGGGCGG CCCCTCCCGA CTGTTGAGCA ATATTCCAAG 600 ACATTCTTTG TGCTCCCCCT TCGTGGCAAG CTCTCCTTTT GGGAGGCCGG CACAACAAAA 660 GCAGGTTATC CTTATAATTA TAATACTACT GCTAGTGACC AGATTCTGAT TGAAAATGCT 720 GCCGGCCATC GGGTCGCCAT TTCAACCTAT ACCACCAGGC TTGGGGCCGG TCCGGTCGCC 780 ATTTCTGCGG CCGCGGTTTT GGCTCCACGC TCCGCCCTGG CTCTGCTGGA GGATACTTTT 840 GATTATCCGG GGCGGGCGCA CACATTTGAT GACTTCTGCC CTGAATGCCG CGCTTTAGGC 900 CTCCAGGGTT GTGCTTTCCA GTCAACTGTC GCTGAGCTCC AGCGCCTTAA AGTTAAGGTG 960 GGTAAAACTC GGGAGTTGTA G 981 1311 base pairs nucleic acid double linear cDNA to mRNA NO C2, BURMA, FIGURE 7 9 AATTCAATAA CCTCGACGGA TGTTCGTATT TTAGTCCAGC CCGGCATAGC CTCTGAGCTT 60 GTGATCCCAA GTGAGCGCCT ACACTATCGT AACCAAGGCT GGCGCTCCGT CGAGACCTCT 120 GGGGTGGCTG AGGAGGAGGC TACCTCTGGT CTTGTTATGC TTTGCATACA TGGCTCACTC 180 GTAAATTCCT ATACTAATAC ACCCTATACC GGTGCCCTCG GGCTGTTGGA CTTTGCCCTT 240 GAGCTTGAGT TTCGCAACCT TACCCCCGGT AACACCAATA CGCGGGTCTC CCGTTATTCC 300 AGCACTGCTC GCCACCGCCT TCGTCGCGGT GCGGACGGGA CTGCCGAGCT CACCACCACG 360 GCTGCTACCC GCTTTATGAA GGACCTCTAT TTTACTAGTA CTAATGGTGT CGGTGAGATC 420 GGCCGCGGGA TAGCCCTCAC CCTGTTCAAC CTTGCTGACA CTCTGCTTGG CGGCCTGCCG 480 ACAGAATTGA TTTCGTCGGC TGGTGGCCAG CTGTTCTACT CCCGTCCCGT TGTCTCAGCC 540 AATGGCGAGC CGACTGTTAA GTTGTATACA TCTGTAGAGA ATGCTCAGCA GGATAAGGGT 600 ATTGCAATCC CGCATGACAT TGACCTCGGA GAATCTCGTG TGGTTATTCA GGATTATGAT 660 AACCAACATG AACAAGATCG GCCGACGCCT TCTCCAGCCC CATCGCGCCC TTTCTCTGTC 720 CTTCGAGCTA ATGATGTGCT TTGGCTCTCT CTCACCGCTG CCGAGTATGA CCAGTCCACT 780 TATGGCTCTT CGACTGGCCC AGTTTATGTT TCTGACTCTG TGACCTTGGT TAATGTTGCG 840 ACCGGCGCGC AGGCCGTTGC CCGGTCGCTC GATTGGACCA AGGTCACACT TGACGGTCGC 900 CCCCTCTCCA CCATCCAGCA GTACTCGAAG ACCTTCTTTG TCCTGCCGCT CCGCGGTAAG 960 CTCTCTTTCT GGGAGGCAGG CACAACTAAA GCCGGGTACC CTTATAATTA TAACACCACT 1020 GCTAGCGACC AACTGCTTGT CGAGAATGCC GCCGGGCACC GGGTCGCTAT TTCCACTTAC 1080 ACCACTAGCC TGGGTGCTGG TCCCGTCTCC ATTTCTGCGG TTGCCGTTTT AGCCCCCCAC 1140 TCTGCGCTAG CATTGCTTGA GGATACCTTG GACTACCCTG CCCGCGCCCA TACTTTTGAT 1200 GATTTCTGCC CAGAGTGCCG CCCCCTTGGC CTTCAGGGCT GCGCTTTCCA GTCTACTGTC 1260 GCTGAGCTTC AGCGCCTTAA GATGAAGGTG GGTAAAACTC GGGAGTTGTA G 1311 1308 base pairs nucleic acid double linear cDNA to mRNA NO C2, MEXICO, FIGURE 7 10 AATTCCATTA CTTCCACTGA TGTCAGGATT CTTGTTCAAC CTGGCATAGC ATCTGAATTG 60 GTCATCCCAA GCGAGCGCCT TCACTACCGC AATCAAGGTT GGCGCTCGGT TGAGACATCT 120 GGTGTTGCTG AGGAGGAAGC CACCTCCGGT CTTGTCATGT TATGCATACA TGGCTCTCCA 180 GTTAACTCCT ATACCAATAC CCCTTATACC GGTGCCCTTG GCTTACTGGA CTTTGCCTTA 240 GAGCTTGAGT TTCGCAATCT CACCACCTGT AACACCAATA CACGTGTGTC CCGTTACTCC 300 AGCACTGCTC GTCACTCCGC CCGAGGGGCC GACGGGACTG CGGAGCTGAC CACAACTGCA 360 GCCACCAGGT TCATGAAAGA TCTCCACTTT ACCGGCCTTA ATGGGGTAGG TGAAGTCGGC 420 CGCGGGATAG CTCTAACATT ACTTAACCTT GCTGACACGC TCCTCGGCGG GCTCCCGACA 480 GAATTAATTT CGTCGGCTGG CGGGCAACTG TTTTATTCCC GCCCGGTTGT CTCAGCCAAT 540 GGCGAGCCAA CCGTGAAGCT CTATACATCA GTGGAGAATG CTCAGCAGGA TAAGGGTGTT 600 GCTATCCCCC ACGATATCGA TCTTGGTGAT TCGCGTGTGG TCATTCAGGA TTATGACAAC 660 CAGCATGAGC AGGATCGGCC CACCCCGTCG CCTGCGCCAT CTCGGCCTTT TTCTGTTCTC 720 CGAGCAAATG ATGTACTTTG GCTGTCCCTC ACTGCAGCCG AGTATGACCA GTCCACTTAC 780 GGGTCGTCAA CTGGCCCGGT TTATATCTCG GACAGCGTGA CTTTGGTGAA TGTTGCGACT 840 GGCGCGCAGG CCGTAGCCCG ATCGCTTGAC TGGTCCAAAG TCACCCTCGA CGGGCGGCCC 900 CTCCCGACTG TTGAGCAATA TTCCAAGACA TTCTTTGTGC TCCCCCTTCG TGGCAAGCTC 960 TCCTTTTGGG AGGCCGGCAC AACAAAAGCA GGTTATCCTT ATAATTATAA TACTACTGCT 1020 AGTGACCAGA TTCTGATTGA AAATGCTGCC GGCCATCGGG TCGCCATTTC AACCTATACC 1080 ACCAGGCTTG GGGCCGGTCC GGTCGCCATT TCTGCGGCCG CGGTTTTGGC TCCACGCTCC 1140 GCCCTGGCTC TGCTGGAGGA TACTTTTGAT TATCCGGGGC GGGCGCACAC ATTTGATGAC 1200 TTCTGCCCTG AATGCCGCGC TTTAGGCCTC CAGGGTTGTG CTTTCCAGTC AACTGTCGCT 1260 GAGCTCCAGC GCCTTAAAGT TAAGGTGGGT AAAACTCGGG AGTTGTAG 1308 102 base pairs nucleic acid double linear cDNA to mRNA NO 406.4-2, BURMA, FIGURE 7 11 GCCAACCCGC CCGACCACTC GGCTCCGCTT GGCGTGACCA GGCCCAGCGC CCCGCCGTTG 60 CCTCACGTCG TAGACCTACC ACAGCTGGGG CCGCGCCGCT AA 102 102 base pairs nucleic acid double linear cDNA to mRNA NO 406.4-2, MEXICO, FIGURE 7 12 GCCAACCAGC CCGGCCACTT GGCTCCACTT GGCGAGATCA GGCCCAGCGC CCCTCCGCTG 60 CCTCCCGTCG CCGACCTGCC ACAGCCGGGG CTGCGGCGCT GA 102 48 amino acids amino acid linear protein NO 406.3-2, BURMA, FIGURE 9 13 Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 5 10 15 Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val 20 25 30 Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys Thr Arg Glu Leu 35 40 45 48 amino acids amino acid linear protein NO 406.3-2, MEXICO, FIGURE 9 14 Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 5 10 15 Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val 20 25 30 Ala Glu Leu Gln Arg Leu Lys Val Lys Val Gly Lys Thr Arg Glu Leu 35 40 45 327 amino acids amino acid linear protein NO SG3, BURMA, FIGURE 9 15 Gly Ala Asp Gly Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe 1 5 10 15 Met Lys Asp Leu Tyr Phe Thr Ser Thr Asn Gly Val Gly Glu Ile Gly 20 25 30 Arg Gly Ile Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly 35 40 45 Gly Leu Pro Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr 50 55 60 Ser Arg Pro Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr 65 70 75 80 Thr Ser Val Glu Asn Ala Gln Gln Asp Lys Gly Ile Ala Ile Pro His 85 90 95 Asp Ile Asp Leu Gly Glu Ser Arg Val Val Ile Gln Asp Tyr Asp Asn 100 105 110 Gln His Glu Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro 115 120 125 Phe Ser Val Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala 130 135 140 Ala Glu Tyr Asp Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr 145 150 155 160 Val Ser Asp Ser Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala 165 170 175 Val Ala Arg Ser Leu Asp Trp Thr Lys Val Thr Leu Asp Gly Arg Pro 180 185 190 Leu Ser Thr Ile Gln Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu 195 200 205 Arg Gly Lys Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr 210 215 220 Pro Tyr Asn Tyr Asn Thr Thr Ala Ser Asp Gln Leu Leu Val Glu Asn 225 230 235 240 Ala Ala Gly His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly 245 250 255 Ala Gly Pro Val Ser Ile Ser Ala Val Ala Val Leu Ala Pro His Ser 260 265 270 Ala Leu Ala Leu Leu Glu Asp Thr Leu Asp Tyr Pro Ala Arg Ala His 275 280 285 Thr Phe Asp Asp Phe Cys Pro Glu Cys Arg Pro Leu Gly Leu Gln Gly 290 295 300 Cys Ala Phe Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys 305 310 315 320 Val Gly Lys Thr Arg Glu Leu 325 327 amino acids amino acid linear protein NO SG3, MEXICO, FIGURE 9 16 Gly Ala Asp Gly Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe 1 5 10 15 Met Lys Asp Leu His Phe Thr Gly Leu Asn Gly Val Gly Glu Val Gly 20 25 30 Arg Gly Ile Ala Leu Thr Leu Leu Asn Leu Ala Asp Thr Leu Leu Gly 35 40 45 Gly Leu Pro Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr 50 55 60 Ser Arg Pro Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr 65 70 75 80 Thr Ser Val Glu Asn Ala Gln Gln Asp Lys Gly Val Ala Ile Pro His 85 90 95 Asp Ile Asp Leu Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn 100 105 110 Gln His Glu Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro 115 120 125 Phe Ser Val Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala 130 135 140 Ala Glu Tyr Asp Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr 145 150 155 160 Ile Ser Asp Ser Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala 165 170 175 Val Ala Arg Ser Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro 180 185 190 Leu Pro Thr Val Glu Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu 195 200 205 Arg Gly Lys Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr 210 215 220 Pro Tyr Asn Tyr Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Glu Asn 225 230 235 240 Ala Ala Gly His Arg Val Ala Ile Ser Thr Tyr Thr Thr Arg Leu Gly 245 250 255 Ala Gly Pro Val Ala Ile Ser Ala Ala Ala Val Leu Ala Pro Arg Ser 260 265 270 Ala Leu Ala Leu Leu Glu Asp Thr Phe Asp Tyr Pro Gly Arg Ala His 275 280 285 Thr Phe Asp Asp Phe Cys Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly 290 295 300 Cys Ala Phe Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Val Lys 305 310 315 320 Val Gly Lys Thr Arg Glu Leu 325 436 amino acids amino acid linear protein NO C2, BURMA, FIGURE 9 17 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 1 5 10 15 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 20 25 30 Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Glu Ala Thr 35 40 45 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Leu Val Asn Ser Tyr 50 55 60 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 65 70 75 80 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val 85 90 95 Ser Arg Tyr Ser Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp 100 105 110 Gly Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe Met Lys Asp 115 120 125 Leu Tyr Phe Thr Ser Thr Asn Gly Val Gly Glu Ile Gly Arg Gly Ile 130 135 140 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro 145 150 155 160 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro 165 170 175 Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val 180 185 190 Glu Asn Ala Gln Gln Asp Lys Gly Ile Ala Ile Pro His Asp Ile Asp 195 200 205 Leu Gly Glu Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu 210 215 220 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val 225 230 235 240 Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr 245 250 255 Asp Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Val Ser Asp 260 265 270 Ser Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 275 280 285 Ser Leu Asp Trp Thr Lys Val Thr Leu Asp Gly Arg Pro Leu Ser Thr 290 295 300 Ile Gln Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu Arg Gly Lys 305 310 315 320 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 325 330 335 Tyr Asn Thr Thr Ala Ser Asp Gln Leu Leu Val Glu Asn Ala Ala Gly 340 345 350 His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly Ala Gly Pro 355 360 365 Val Ser Ile Ser Ala Val Ala Val Leu Ala Pro His Ser Ala Leu Ala 370 375 380 Leu Leu Glu Asp Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp 385 390 395 400 Asp Phe Cys Pro Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe 405 410 415 Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys 420 425 430 Thr Arg Glu Leu 435 435 amino acids amino acid linear protein NO C2, MEXICO, FIGURE 9 18 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 1 5 10 15 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 20 25 30 Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Glu Ala Thr 35 40 45 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Pro Val Asn Ser Tyr 50 55 60 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 65 70 75 80 Glu Leu Glu Phe Arg Asn Leu Thr Thr Cys Asn Thr Asn Thr Arg Val 85 90 95 Ser Arg Tyr Ser Ser Thr Ala Arg His Ser Ala Arg Gly Ala Asp Gly 100 105 110 Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe Met Lys Asp Leu 115 120 125 His Phe Thr Gly Leu Asn Gly Val Gly Glu Val Gly Arg Gly Ile Ala 130 135 140 Leu Thr Leu Leu Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro Thr 145 150 155 160 Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro Val 165 170 175 Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val Glu 180 185 190 Asn Ala Gln Gln Asp Lys Gly Val Ala Ile Pro His Asp Ile Asp Leu 195 200 205 Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu Gln 210 215 220 Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val Leu 225 230 235 240 Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr Asp 245 250 255 Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Ile Ser Asp Ser 260 265 270 Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg Ser 275 280 285 Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro Leu Pro Thr Val 290 295 300 Glu Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu Arg Gly Lys Leu 305 310 315 320 Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn Tyr 325 330 335 Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Glu Asn Ala Ala Gly His 340 345 350 Arg Val Ala Ile Ser Thr Tyr Thr Thr Arg Leu Gly Ala Gly Pro Val 355 360 365 Ala Ile Ser Ala Ala Ala Val Leu Ala Pro Arg Ser Ala Leu Ala Leu 370 375 380 Leu Glu Asp Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp 385 390 395 400 Phe Cys Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln 405 410 415 Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Val Lys Val Gly Lys Thr 420 425 430 Arg Glu Leu 435 660 amino acids amino acid linear protein NO ORF 2, BURMA, FIGURE 9 19 Met Arg Pro Arg Pro Ile Leu Leu Leu Leu Leu Met Phe Leu Pro Met 1 5 10 15 Leu Pro Ala Pro Pro Pro Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg 20 25 30 Arg Ser Gly Gly Ser Gly Gly Gly Phe Trp Gly Asp Arg Val Asp Ser 35 40 45 Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Pro 50 55 60 Asp Val Thr Ala Ala Ala Gly Ala Gly Pro Arg Val Arg Gln Pro Ala 65 70 75 80 Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ala Gln Arg Pro Ala Val 85 90 95 Ala Ser Arg Arg Arg Pro Thr Thr Ala Gly Ala Ala Pro Leu Thr Ala 100 105 110 Val Ala Pro Ala His Asp Thr Pro Pro Val Pro Asp Val Asp Ser Arg 115 120 125 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr 130 135 140 Ser Ser Val Ala Thr Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu 145 150 155 160 Ser Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala 165 170 175 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Ala Arg Ala Thr Ile 180 185 190 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser 195 200 205 Ile Ser Phe Trp Pro Gln Thr Thr Thr Thr Pro Thr Ser Val Asp Met 210 215 220 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 225 230 235 240 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 245 250 255 Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Glu Ala Thr 260 265 270 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Leu Val Asn Ser Tyr 275 280 285 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 290 295 300 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val 305 310 315 320 Ser Arg Tyr Ser Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp 325 330 335 Gly Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe Met Lys Asp 340 345 350 Leu Tyr Phe Thr Ser Thr Asn Gly Val Gly Glu Ile Gly Arg Gly Ile 355 360 365 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro 370 375 380 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro 385 390 395 400 Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val 405 410 415 Glu Asn Ala Gln Gln Asp Lys Gly Ile Ala Ile Pro His Asp Ile Asp 420 425 430 Leu Gly Glu Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu 435 440 445 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val 450 455 460 Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr 465 470 475 480 Asp Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Val Ser Asp 485 490 495 Ser Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 500 505 510 Ser Leu Asp Trp Thr Lys Val Thr Leu Asp Gly Arg Pro Leu Ser Thr 515 520 525 Ile Gln Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu Arg Gly Lys 530 535 540 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 545 550 555 560 Tyr Asn Thr Thr Ala Ser Asp Gln Leu Leu Val Glu Asn Ala Ala Gly 565 570 575 His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly Ala Gly Pro 580 585 590 Val Ser Ile Ser Ala Val Ala Val Leu Ala Pro His Ser Ala Leu Ala 595 600 605 Leu Leu Glu Asp Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp 610 615 620 Asp Phe Cys Pro Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe 625 630 635 640 Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys 645 650 655 Thr Arg Glu Leu 660 659 amino acids amino acid linear protein NO ORF 2, MEXICO, FIGURE 9 20 Met Arg Pro Arg Pro Leu Leu Leu Leu Phe Leu Leu Phe Leu Pro Met 1 5 10 15 Leu Pro Ala Pro Pro Thr Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg 20 25 30 Arg Ser Gly Gly Thr Gly Gly Gly Phe Trp Gly Asp Arg Val Asp Ser 35 40 45 Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Pro 50 55 60 Asp Val Ala Ala Ala Ser Gly Ser Gly Pro Arg Leu Arg Gln Pro Ala 65 70 75 80 Arg Pro Leu Gly Ser Thr Trp Arg Asp Gln Ala Gln Arg Pro Ser Ala 85 90 95 Ala Ser Arg Arg Arg Pro Ala Thr Ala Gly Ala Ala Ala Leu Thr Ala 100 105 110 Val Ala Pro Ala His Asp Thr Ser Pro Val Pro Asp Val Asp Ser Arg 115 120 125 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr 130 135 140 Ser Ser Val Ala Ser Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu 145 150 155 160 Asn Pro Pro Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala 165 170 175 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Ala Arg Ala Thr Ile 180 185 190 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser 195 200 205 Ile Ser Phe Trp Pro Gln Thr Thr Thr Thr Pro Thr Ser Val Asp Met 210 215 220 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 225 230 235 240 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 245 250 255 Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Glu Ala Thr 260 265 270 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Pro Val Asn Ser Tyr 275 280 285 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 290 295 300 Glu Leu Glu Phe Arg Asn Leu Thr Thr Cys Asn Thr Asn Thr Arg Val 305 310 315 320 Ser Arg Tyr Ser Ser Thr Ala Arg His Ser Ala Arg Gly Ala Asp Gly 325 330 335 Thr Ala Glu Leu Thr Thr Thr Ala Ala Thr Arg Phe Met Lys Asp Leu 340 345 350 His Phe Thr Gly Leu Asn Gly Val Gly Glu Val Gly Arg Gly Ile Ala 355 360 365 Leu Thr Leu Leu Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro Thr 370 375 380 Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro Val 385 390 395 400 Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val Glu 405 410 415 Asn Ala Gln Gln Asp Lys Gly Val Ala Ile Pro His Asp Ile Asp Leu 420 425 430 Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu Gln 435 440 445 Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val Leu 450 455 460 Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr Asp 465 470 475 480 Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Ile Ser Asp Ser 485 490 495 Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg Ser 500 505 510 Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro Leu Pro Thr Val 515 520 525 Glu Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu Arg Gly Lys Leu 530 535 540 Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn Tyr 545 550 555 560 Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Glu Asn Ala Ala Gly His 565 570 575 Arg Val Ala Ile Ser Thr Tyr Thr Thr Arg Leu Gly Ala Gly Pro Val 580 585 590 Ala Ile Ser Ala Ala Ala Val Leu Ala Pro Arg Ser Ala Leu Ala Leu 595 600 605 Leu Glu Asp Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp 610 615 620 Phe Cys Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln 625 630 635 640 Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Val Lys Val Gly Lys Thr 645 650 655 Arg Glu Leu 33 amino acids amino acid linear protein NO 406.4-2, BURMA, FIGURE 8 21 Ala Asn Pro Pro Asp His Ser Ala Pro Leu Gly Val Thr Arg Pro Ser 1 5 10 15 Ala Pro Pro Leu Pro His Val Val Asp Leu Pro Gln Leu Gly Pro Arg 20 25 30 Arg 33 amino acids amino acid linear protein NO 406.4-2, MEXICO, FIGURE 8 22 Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser 1 5 10 15 Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg 20 25 30 Arg

Claims (19)

It is claimed:
1. A vaccine composition used in immunizing an individual against hepatitis E virus (HEV) comprising, in a pharmacologically acceptable carrier,
a peptide containing the C-terminal 42 amino acids of the capsid protein encoded by the second open reading frame of the HEV genome.
2. The composition of claim 1, wherein the peptide includes the amino acid sequence identified by one of the following sequences:
(i) Sequence ID No. 13
(ii) Sequence ID No. 14, and
(iii) internally consistent variations between Sequence ID Nos. 13 and 14.
3. The composition of claim 1, wherein the peptide includes the amino acid sequence identified by one of the following sequences:
(i) Sequence ID No. 15
(ii) Sequence ID No. 16, and
(iii) internally consistent variations between Sequence ID Nos. 15 and 16.
4. The composition of claim 1, wherein the peptide includes the amino acid sequence identified by one of the following sequences:
(i) Sequence ID No. 17
(ii) Sequence ID No. 18, and
(iii) internally consistent variations between Sequence ID Nos. 17 and 18.
5. The composition of claim 1, wherein the peptide includes the amino acid sequence identified by one of the following sequences:
(i) Sequence ID No. 19
(ii) Sequence ID No. 20, and
(iii) internally consistent variations between Sequence ID Nos. 19 and 20.
6. The composition of claim 1, wherein the peptide includes the amino acid sequence identified by one of the following sequences:
(i) Sequence ID No. 21
(ii) Sequence ID No. 22, and
(iii) internally consistent variations between Sequence ID Nos. 21 and 22.
7. The composition of claim 1, wherein the peptide antigen is covalently coupled to a carrier protein.
8. A method of inhibiting infection of an individual by hepatitis E virus, comprising
administering to the subject, by intramuscular injection, the vaccine composition of claim 1.
9. The method of claim 7, wherein the peptide in the vaccine composition includes the amino acid sequence identified by one of the following sequences:
(i) Sequence ID No. 13
(ii) Sequence ID No. 14,
(iii) internally consistent variations between Sequence ID Nos. 13 and 14,
(iv) Sequence ID No. 15
(v) Sequence ID No. 16,
(vi) internally consistent variations between Sequence ID Nos. 15 and 16,
(vii) Sequence ID No. 17
(viii) Sequence ID No. 18,
(ix) internally consistent variations between Sequence ID Nos. 17 and 18,
(x) Sequence ID No. 19
(xi) Sequence ID No. 20, and
(xii) Internally consistent variations between Sequence ID Nos. 19 and 20,
(xiii) Sequence ID No. 21
(xiv) Sequence ID No. 22, and
(xv) Internally consistent variations between Sequence ID Nos. 21 and 22.
10. The method of claim 9, wherein the peptide in the vaccine composition includes the amino acid sequence identified by one of the following sequences:
(vii) Sequence ID No. 17
(viii) Sequence ID No. 18, and
(ix) internally consistent variations between Sequence ID Nos. 17 and 18.
11. The method of claim 10, wherein the peptide in the vaccine includes the amino acid sequence identified by Sequence ID No. 17.
12. A vaccine composition containing antibodies capable of neutralizing hepatitis E virus (HEV) infection, as evidenced by the ability of the composition to block HEV infection of primary human hepatocyte cells in culture.
13. The vaccine composition of claim 12, which contains an antibody which is immunoreactive with a peptide containing one of the sequences:
(i) Sequence ID No. 13
(ii) Sequence ID No. 14,
(iii) internally consistent variations between Sequence ID Nos. 13 and 14,
(iv) Sequence ID No. 15
(v) Sequence ID No. 16,
(vi) internally consistent variations between Sequence ID Nos. 15 and 16,
(vii) Sequence ID No. 17
(viii) Sequence ID No. 18,
(ix) internally consistent variations between Sequence ID Nos. 17 and 18,
(x) Sequence ID No. 19
(xi) Sequence ID No. 20, and
(xii) Internally consistent variations between Sequence ID Nos. 19 and 20,
(xiii) Sequence ID No. 21
(xiv) Sequence ID No. 22, and
(xv) Internally consistent variations between Sequence ID Nos. 21 and 22.
14. The composition of claim 13, wherein the antibody in the composition is immunoreactive with a peptide containing the sequence identified by
(i) Sequence ID No. 13
(ii) Sequence ID No. 14, or
(iii) internally consistent variations between Sequence ID Nos. 13 and 14, and
(iv) Sequence ID No. 15
(v) Sequence ID No. 16, or
(vi) internally consistent variations between Sequence ID Nos. 15 and 16,
Sequence ID No. 13.
15. A method of preventing or treating HEV infection in an individual, comprising
administering to the subject, by parenteral injection, the vaccine composition of claim 13.
16. The method of claim 15, wherein the antibody composition includes an antibody which is immunoreactive against a peptide having the amino acid sequence identified by one of the following sequences:
(vii) Sequence ID No. 17
(viii) Sequence ID No. 18, and
(ix) internally consistent variations between Sequence ID Nos. 17 and 18.
17. The method of claim 16, wherein the antibody composition contains an antibody which is immunoreactive with a peptide containing one of the sequences:
(i) Sequence ID No. 13
(ii) Sequence ID No. 14, or
(iii) internally consistent variations between Sequence ID Nos. 13 and 14, and
(vii) Sequence ID No. 15
(viii) Sequence ID No. 16,
(ix) internally consistent variations between Sequence ID Nos. 15 and 16.
18. The method of 17, wherein the antibody in the composition is immunoreactive with a peptide containing the sequence identified by Sequence ID No. 15.
19. The method of claim 15, wherein the antibody composition includes an antibody which is immunoreactive against a peptide having the amino acid sequence identified by one of the following sequences:
(xiii) Sequence ID No. 21
(xiv) Sequence ID No. 22, and
(xv) Internally consistent variations between Sequence ID Nos. 21 and 22.
US10/165,868 1988-06-17 2002-06-06 Hepatitis E virus vaccine and method Abandoned US20030143241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/165,868 US20030143241A1 (en) 1988-06-17 2002-06-06 Hepatitis E virus vaccine and method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US20899788A 1988-06-17 1988-06-17
US33667289A 1989-04-11 1989-04-11
US36748689A 1989-06-16 1989-06-16
US42092189A 1989-10-13 1989-10-13
US50588890A 1990-04-05 1990-04-05
US82233592A 1992-01-17 1992-01-17
US07/870,985 US6455492B1 (en) 1988-06-17 1992-04-20 Hepatitis E virus vaccine and method
US10/165,868 US20030143241A1 (en) 1988-06-17 2002-06-06 Hepatitis E virus vaccine and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07/870,985 Continuation US6455492B1 (en) 1988-06-17 1992-04-20 Hepatitis E virus vaccine and method

Publications (1)

Publication Number Publication Date
US20030143241A1 true US20030143241A1 (en) 2003-07-31

Family

ID=27124631

Family Applications (3)

Application Number Title Priority Date Filing Date
US07/870,985 Expired - Fee Related US6455492B1 (en) 1988-06-17 1992-04-20 Hepatitis E virus vaccine and method
US08/484,054 Expired - Lifetime US5770689A (en) 1988-06-17 1995-06-07 Hepatitis E virus ORF Z peptides
US10/165,868 Abandoned US20030143241A1 (en) 1988-06-17 2002-06-06 Hepatitis E virus vaccine and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US07/870,985 Expired - Fee Related US6455492B1 (en) 1988-06-17 1992-04-20 Hepatitis E virus vaccine and method
US08/484,054 Expired - Lifetime US5770689A (en) 1988-06-17 1995-06-07 Hepatitis E virus ORF Z peptides

Country Status (9)

Country Link
US (3) US6455492B1 (en)
EP (1) EP0623169B1 (en)
JP (2) JP3746291B2 (en)
AT (1) ATE236255T1 (en)
CA (1) CA2125701A1 (en)
DE (1) DE69332820T2 (en)
DK (1) DK0623169T3 (en)
ES (1) ES2196008T3 (en)
WO (1) WO1993014208A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057616A1 (en) * 2004-08-20 2006-03-16 Vironix Llc Sensitive detection of bacteria by improved nested polymerase chain reaction targeting the 16S ribosomal RNA gene and identification of bacterial species by amplicon sequencing

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789559A (en) * 1988-06-17 1998-08-04 Genelabs Technologies, Inc. DNA sequences of enterically transmitted non-A/non-B hepatitis viral agent
US5686239A (en) * 1988-06-17 1997-11-11 Genelabs Technologies, Inc. Hepatitis E virus peptides and methods
US6455492B1 (en) * 1988-06-17 2002-09-24 Genelabs Technologies, Inc. Hepatitis E virus vaccine and method
US6214970B1 (en) 1988-06-17 2001-04-10 Genelabs Technologies, Inc. Hepatitis E virus antigens and uses therefor
US6291641B1 (en) 1988-06-17 2001-09-18 Genelabs Technologies, Inc. Hepatitis E virus antigens and uses therefor
DE69334299D1 (en) * 1992-09-18 2009-12-31 Us Gov Health & Human Serv RECOMBINANT PROTEINS OF A PAKISTANI TRIBRAY OF HEPATITIS E-VIRUS AND THEIR USE IN DIAGNOSTIC PROCEDURES AND AS VACCINE
US6787145B1 (en) 1992-09-18 2004-09-07 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Recombinant proteins of a pakistani strain of hepatitis E and their use in diagnostic methods and vaccines
US6207416B1 (en) 1992-09-18 2001-03-27 The United States Of America As Represented By The Department Of Health And Human Services Recombinant proteins of a Pakistani strain of hepatitis E and their use in diagnostic methods and vaccines
US5736315A (en) * 1992-10-21 1998-04-07 National Institute Of Health Methods and compositions for detecting anti-hepatitis E virus activity
US5563032A (en) * 1992-10-21 1996-10-08 The United States Of America As Represented By The Department Of Health And Human Services Mosaic polypeptide and methods for detecting the hepatitis E virus
DE69435059D1 (en) * 1993-09-24 2008-02-14 Macfarlane Burnet Inst For Med IMMUNOREACTIVE ANTIGENES OF HEPATITIS E VIRUSES
US5830636A (en) * 1993-12-22 1998-11-03 Abbott Laboratories HEV orf-2 monoclonal antibodies and methods for using same
AU1437695A (en) * 1993-12-22 1995-07-10 Abbott Laboratories Monoclonal antibodies against hev orf-2 and methods for using same
JPH09507749A (en) * 1993-12-22 1997-08-12 アボツト・ラボラトリーズ Monoclonal antibodies against hepatitis E virus and methods of using them
US6054567A (en) * 1997-04-11 2000-04-25 The United States Of America As Represented By The Department Of Health And Human Services Recombinant proteins of a pakistani strain of hepatitis E and their use in diagnostic methods and vaccines
US6458562B1 (en) 1998-04-09 2002-10-01 The United States Of America As Represented By The Secretary Of Health And Human Services Recombinant proteins of a Pakistani strain of hepatitis E and their use in diagnostic methods and vaccines
CA2283538A1 (en) * 1999-09-30 2001-03-30 Mun Hon Ng New hev antigenic peptide and methods
US7005130B2 (en) 2001-01-05 2006-02-28 Virginia Tech Intellectual Properties, Inc. Avian hepatitis E virus, vaccines and methods of protecting against avian hepatitis-splenomegaly syndrome and mammalian hepatitis E
US20030220475A1 (en) * 2001-04-03 2003-11-27 Fields Howard A. Neutralizing immunogenic hev polypepetides
US6614586B2 (en) * 2001-07-30 2003-09-02 Dorsal Networks, Inc. Methods and systems for high performance, wide bandwidth optical communication systems using Raman amplification
RU2493249C1 (en) * 2012-04-27 2013-09-20 Закрытое акционерное общество научно-производственная компания "Комбиотех" Recombinant strain of yeast hansenula polymorpha - producent of capsid protein of hepatitis e virus
RU2501568C1 (en) * 2012-04-27 2013-12-20 Закрытое акционерное общество научно-производственная компания "Комбиотех" Recombinant vaccine for prevention of viral hepatitis e in animals
RU2501809C1 (en) * 2012-04-27 2013-12-20 Закрытое акционерное общество научно-производственная компания "Комбиотех" Method for obtaining recombinant core protein of hepatitis e virus and recombinant vaccine for prophylaxis of hepatitis e virus
WO2020011752A1 (en) * 2018-07-10 2020-01-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity for the orf2i protein of hepatitis e virus and uses thereof for diagnostic purposes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871659A (en) * 1986-04-16 1989-10-03 Institut Pasteur Reagent for detecting non-A, non-B viral hepatitis (NANBH) and an immunoenzymatic method for detecting NANBH antigens in fecal extracts
US5202430A (en) * 1990-01-16 1993-04-13 University Of Tennessee Transmissible gastroenteritis virus genes
US5218099A (en) * 1986-04-01 1993-06-08 The United States Of America As Represented By The Department Of Health And Human Services Post-transfusion, non-A, non-B hepatitis virus polynucleotides
US5686239A (en) * 1988-06-17 1997-11-11 Genelabs Technologies, Inc. Hepatitis E virus peptides and methods
US5741490A (en) * 1988-06-17 1998-04-21 Genelabs Technologies, Inc. Hepatitis E virus vaccine and method
US5770689A (en) * 1988-06-17 1998-06-23 Genelabs Technologies, Inc. Hepatitis E virus ORF Z peptides
US5885768A (en) * 1988-06-17 1999-03-23 The United States Of America As Represented By The Department Of Health And Human Services Hepatitis E virus peptide antigen and antibodies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012641A1 (en) * 1988-06-17 1989-12-28 Genelabs Incorporated Enterically transmitted non-a/non-b hepatitis viral agent
EP0476130B1 (en) * 1990-04-05 2008-07-09 Genelabs Technologies, Inc. Enterically transmitted non-a/non-b hepatitis viral agent and characteristic epitopes thereof
JPH04200388A (en) * 1990-11-29 1992-07-21 Chemo Sero Therapeut Res Inst Epidemic non-a non-b hepatitis virus antigen peptide and nucleic acid fragment coding the same
DE69334299D1 (en) * 1992-09-18 2009-12-31 Us Gov Health & Human Serv RECOMBINANT PROTEINS OF A PAKISTANI TRIBRAY OF HEPATITIS E-VIRUS AND THEIR USE IN DIAGNOSTIC PROCEDURES AND AS VACCINE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218099A (en) * 1986-04-01 1993-06-08 The United States Of America As Represented By The Department Of Health And Human Services Post-transfusion, non-A, non-B hepatitis virus polynucleotides
US4871659A (en) * 1986-04-16 1989-10-03 Institut Pasteur Reagent for detecting non-A, non-B viral hepatitis (NANBH) and an immunoenzymatic method for detecting NANBH antigens in fecal extracts
US5686239A (en) * 1988-06-17 1997-11-11 Genelabs Technologies, Inc. Hepatitis E virus peptides and methods
US5741490A (en) * 1988-06-17 1998-04-21 Genelabs Technologies, Inc. Hepatitis E virus vaccine and method
US5770689A (en) * 1988-06-17 1998-06-23 Genelabs Technologies, Inc. Hepatitis E virus ORF Z peptides
US5885768A (en) * 1988-06-17 1999-03-23 The United States Of America As Represented By The Department Of Health And Human Services Hepatitis E virus peptide antigen and antibodies
US5202430A (en) * 1990-01-16 1993-04-13 University Of Tennessee Transmissible gastroenteritis virus genes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057616A1 (en) * 2004-08-20 2006-03-16 Vironix Llc Sensitive detection of bacteria by improved nested polymerase chain reaction targeting the 16S ribosomal RNA gene and identification of bacterial species by amplicon sequencing

Also Published As

Publication number Publication date
US5770689A (en) 1998-06-23
JP3746291B2 (en) 2006-02-15
DE69332820D1 (en) 2003-05-08
US6455492B1 (en) 2002-09-24
ATE236255T1 (en) 2003-04-15
JPH08509201A (en) 1996-10-01
WO1993014208A3 (en) 1993-10-14
CA2125701A1 (en) 1993-07-22
DK0623169T3 (en) 2003-07-21
EP0623169B1 (en) 2003-04-02
JP2006036795A (en) 2006-02-09
DE69332820T2 (en) 2004-01-29
WO1993014208A2 (en) 1993-07-22
ES2196008T3 (en) 2003-12-16
EP0623169A1 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US6455492B1 (en) Hepatitis E virus vaccine and method
US5885768A (en) Hepatitis E virus peptide antigen and antibodies
JP2662358B2 (en) NANBV diagnostics
JP4296174B2 (en) Hepatitis G virus and its molecular cloning
CA2065287C (en) New hcv isolates
JPH07101986A (en) Polypeptide and immunoassay of c-hepatitis virus
EP0476130B1 (en) Enterically transmitted non-a/non-b hepatitis viral agent and characteristic epitopes thereof
US5741490A (en) Hepatitis E virus vaccine and method
EP0741787B1 (en) Mammalian expression systems for hepatitis c virus envelope genes
WO1989012462A1 (en) Enterically transmitted non-a/non-b hepatitis viral agent
US5686239A (en) Hepatitis E virus peptides and methods
EP0747482A2 (en) Hepatitis GB virus recombinant proteins and uses thereof
KR20020065475A (en) Novel hev antigenic peptide and methods
US6379891B1 (en) Method of detecting HEV infection
JP4390293B2 (en) Pakistani strain recombinant proteins of hepatitis E and their use in diagnostic methods and vaccines
US5824649A (en) DNA sequences of enterically transmitted non-A/non-B hepatitis viral agent and characteristic epitopes thereof
EP1023605A1 (en) Methods and compositions for detecting hepatitis e virus
AU684177C (en) Hepatitis G virus and molecular cloning thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION