US20030129727A1 - Nucleic acid encoding 5'-3' exonuclease of bacteriophage RM 378 - Google Patents

Nucleic acid encoding 5'-3' exonuclease of bacteriophage RM 378 Download PDF

Info

Publication number
US20030129727A1
US20030129727A1 US10/270,846 US27084602A US2003129727A1 US 20030129727 A1 US20030129727 A1 US 20030129727A1 US 27084602 A US27084602 A US 27084602A US 2003129727 A1 US2003129727 A1 US 2003129727A1
Authority
US
United States
Prior art keywords
bacteriophage
dna
dna polymerase
sequence
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/270,846
Inventor
Sigridur Hjorleifsdottir
Gudmundur Hreggvidsson
Olafur Fridjonsson
Arnthor Aevarsson
Jakob Kristjansson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prokaria Ltd
Original Assignee
Prokaria Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prokaria Ltd filed Critical Prokaria Ltd
Priority to US10/270,846 priority Critical patent/US20030129727A1/en
Publication of US20030129727A1 publication Critical patent/US20030129727A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10111Myoviridae
    • C12N2795/10121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10111Myoviridae
    • C12N2795/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • thermophilic enzymes have revolutionized the field of recombinant DNA technology.
  • Polymerases DNA and RNA
  • ligases exonucleases
  • reverse transcriptases polynucleotide kinases
  • lysozymes polynucleotide kinases
  • thermophilic enzymes are also used in commercial settings (e.g., proteases and lipases used in washing powder, hydrolidic enzymes used in bleaching). Identification of new thermophilic enzymes will facilitate continued DNA research as well as assist in improving commercial enzyme-based products.
  • This invention pertains to a novel bacteriophage of Rhodothermus marinus , bacteriophage RM 378, which can be isolated from its native environment or can be recombinantly produced.
  • the invention additionally pertains to the nucleic acids of the genome of bacteriophage RM 378 as deposited, as well as to the nucleic acids of a portion of the genome of bacteriophage RM 378 as shown in FIG. 1; to isolated nucleic acid molecules containing a nucleotide sequence of an open reading frame (or more than one open reading frame) of the genome of bacteriophage RM 378, such as an open reading frame as set forth in FIG.
  • nucleic acid molecules encoding a polypeptide obtainable from bacteriophage RM 378 or an active derivative or fragment of the polypeptide (e.g., a DNA polymerase, such as a DNA polymerase lacking exonuclease domains; a 3′-5′ exonuclease, such as a 3′-5′ exonuclease lacking DNA polymerase domain; a 5′-3′ exonuclease (RNase H); a DNA helicase; or an RNA ligase); to DNA constructs containing the isolated nucleic acid molecule operatively linked to a regulatory sequence; and also to host cells comprising the DNA constructs.
  • the invention further pertains to isolated polypeptides encoded by these nucleic acids, as well as active derivatives or fragments of the polypeptides.
  • the enzymes and proteins of the RM 378 bacteriophage are expected to be significantly more thermostable than those of other (e.g., mesophilic) bacteriophages, such as the T4 bacteriophage of Escherichia coli .
  • the enhanced stability of the enzymes and proteins of RM 378 bacteriophage allows their use under temperature conditions which would be prohibitive for other enzymes, thereby increasing the range of conditions which can be employed not only in DNA research but also in commercial settings.
  • FIGS. 1 A- 1 Q 2 are a depiction of the nucleic acid sequence (SEQ ID NO: 1) of the genome of bacteriophage RM 378.
  • FIGS. 2 A- 2 C delineate the open reading frames (ORFs) in the genome of bacteriophage RM 378.
  • FIGS. 3 A- 3 W depict a sequence alignment of the predicted gene products of ORF056e and ORF632e and sequences of DNA polymerases of family B.
  • the sequence marked RM378 (SEQ ID NO:36) is the combined sequences of the gene products of ORF056e and ORF632e in bacteriophage RM378. The end of one sequence and the beginning of another is indicated.
  • Vaccinia virus strain Copenhagen
  • DPOL_VACCC Vaccinia virus
  • WR Vaccinia virus
  • DPOL_VACCV DNA polymerase
  • Variola virus DNA polymerase DPOL_VARV
  • Fowlpox virus DNA polymerase DPOL_FOWPV
  • Bos taurus Bovine
  • DPOD_BOVIN Bos taurus
  • Human DNA polymerase delta catalytic chain DPOD_HUMAN
  • Candida albicans Yeast
  • DNA polymerase delta large chain DPOD_CANAL
  • Saccharomyces cerevisiae DNA polymerase delta large chain DPOD_YEAST
  • Sulfolobus solfataricus DNA polymerase I (DPO1_SULSO) (SEQ ID NO:33); Escherichia coli DNA polymerase II (DPO2_ECOLI) (SEQ ID NO:34); Desilforococcus strain Tok DNA polymerase (Dpol_Dtok) (SEQ ID NO:35); and bacteriophage RB69 DNA polymerase (RB69) (SEQ ID NO:37). Most of the sequences are partial as found in the Protein Families Data Base of Alignments and HMMs (Sanger Institute), family DNA_pol_B, accession no. PF00136.
  • FIG. 4 depicts a sequence alignment of the predicted gene product of ORF739f from bacteriophage RM378 (ORF-739f) (SEQ ID NO:40), Autographa californica nucleopolyhedrovirus putative bifunctional polynucleotide kinase and RNA ligase (ACNV-RNAlig) (SEQ ID NO:38); and bacteriophage T4 RNA ligase (T4-RNAlig) (SEQ ID NO:39).
  • FIG. 5 depicts a sequence alignment of the predicted gene product of ORF1218a from bacteriophage RM378 (ORF-1218a) (SEQ ID NO:43) with proteins or domains with 5′-3′ exonuclease activity, including: Escherichia coli DNA polymerase I (Ecoli-polI) (SEQ ID NO:41), Thermus aquaticus DNA polymerase I (Taq-polI) (SEQ ID NO:42), bacteriophage T4 ribonuclease H (T4-RNaseH) (SEQ ID NO:44) and bacteriophage T7 gene6 exonuclease (T7-gp6exo) (SEQ ID NO:45).
  • Ecoli-polI Escherichia coli DNA polymerase I
  • Taq-polI Thermus aquaticus DNA polymerase I
  • T4-RNaseH bacteriophage T4 ribonuclease H
  • FIGS. 6 A- 6 B depict a sequence alignment of the predicted gene product of ORF1293b (SEQ ID NO:55) from bacteriophage RM378 (ORF1293b) with sequences of replicative DNA helicases of the DnaB family, including: Escherichia coli (DnaB-Ecoli) (SEQ ID NO:46), Haemophilus influenza (DnaB-Hinflu) (SEQ ID NO:47), Chlamydomonas trachomatis (DnaB-Ctracho) (SEQ ID NO:48), Bacillus stearothermophilus (DnaB-Bstearo) (SEQ ID NO:49), Halobacter pylori (DnaB-Hpylor) (SEQ ID NO:50), Mycoplasma genitalium (DnaB-Mgenital) (SEQ ID NO:51), Borrelia burgdorferi (DnaB-Bburgdor) (SEQ ID NO
  • FIGS. 7 A- 7 B depict the nucleic acid sequence of open reading frame ORF 056e (nucleotides 21993-23042 of the genome) (SEQ ID NO:56) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:57) which displays amino acid sequence similarity to polymerase 3′-5′ exonucleases.
  • FIGS. 8 A- 8 B depict the nucleic acid sequence of open reading frame ORF 632e (nucleotides 79584-81152 of the genome) (SEQ ID NO:58) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:59) which displays amino acid sequence similarity to polymerases.
  • FIGS. 9 A- 9 B depict the nucleic acid sequence of open reading frame ORF 739f (nucleotides 90291-91607 of the genome) (SEQ ID NO:60) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:40) which displays amino acid sequence similarity to RNA ligase.
  • FIGS. 10 A- 10 B depict the nucleic acid sequence of open reading frame ORF 1218a (nucleotides 8212-9168 of the genome) (SEQ ID NO:61) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:43) which displays amino acid sequence similarity to 5′-3′ exonuclease of DNA polymerase I and T4 RNase H.
  • FIGS. 11 A- 11 B depict the nucleic acid sequence of open reading frame ORF 1293b (nucleotides 15785-17035 of the genome) (SEQ ID NO:62) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:55) which displays amino acid sequence similarity to T4 DNA helicase.
  • the present invention relates to a bacteriophage, the nucleic acid sequence of the bacteriophage genome as well as portions of the nucleic acid sequence of the bacteriophage genome (e.g., a portion containing an open reading frame), and proteins encoded by the nucleic acid sequences, as well as nucleic acid constructs comprising portions of the nucleic acid sequence of the bacteriophage genome, and host cells comprising such nucleic acid constructs.
  • Applicants have isolated and characterized a novel bacteriophage active against the slightly halophilic, thermophilic eubacterium Rhodothermus marinus .
  • RM 378 The bacteriophage, RM 378, is a member of the Myoviridae family, with an A2 morphology. RM 378, which is completely stable up to about 65° C., appears to consist of approximately 16 proteins with one major protein of molecular weight of 61,000 daltons. RM 378 can be replicated in Rhodothermus marinus species ITI 378.
  • Rhodothermus marinus species ITI 378 is the bacterium, Rhodothermus marinus species ITI 378.
  • Rhodothermus marinus , and particularly species ITI 378 can be cultured in a suitable medium, such as medium 162 for Thermus as described by Degryse et al. ( Arch. Microbiol. 117:189-196 (1978)), with ⁇ fraction (1/10) ⁇ buffer and with 1% NaCl.
  • Rhodothermus marinus species ITI 378 can be used in replication of bacteriophage RM 378, as described herein, or in replication or identification of other bacteriophages, particularly thermophilic bacteriophages.
  • Rhodothermus marinus species ITI 378 can also used in the study of the relationship between the bacteriophages and their host cells (e.g., between bacteriophage RM 378 and Rhodothermus marinus species ITI 378).
  • isolated RM 378 bacteriophage refers to bacteriophage that has been separated, partially or totally, from its native environment (e.g., separated from Rhodothermus marinus host cells) (“native bacteriophage”), and also refers to bacteriophage that has been chemically synthesized or recombinantly produced (“recombinant bacteriophage”).
  • a bacteriophage that has been “recombinantly produced” refers to a bacteriophage that has been manufactured using recombinant DNA technology, such as by inserting the bacteriophage genome into an appropriate host cell (e.g., by introducing the genome itself into a host cell, or by incorporating the genome into a vector, which is then introduced into the host cell).
  • Isolated bacteriophage RM 378 can be used in the study of the relationship between the bacteriophages and their host cells (e.g., Rhodothermus marinus , such as Rhodothermus marinus species ITI 378). Isolated bacteriophage RM 378 can also be used as a vector to deliver nucleic acids to a host cell; that is, the bacteriophage can be modified to deliver nucleic acids comprising a gene from an organism other than the bacteriophage (a “foreign” gene).
  • nucleic acids encoding a polypeptide can be inserted into the genome of bacteriophage RM 378, using standard techniques.
  • the resultant modified bacteriophage can be then used to infect host cells, and the protein encoded by the foreign nucleic acids can then be produced.
  • Bacteriophage RM 378 can be produced by inoculating appropriate host cells with the bacteriophage.
  • Representative host cells in which the bacteriophage can replicate include Rhodothermus marinus , particularly species isolated in a location that is geographically similar to the location where bacteriophage RM 378 was isolated (e.g., northwest Iceland).
  • the host cell is Rhodothermus marinus species ITI 378.
  • the host cells are cultured in a suitable medium (e.g., medium 162 for Thermus as described by Degryse et al., Arch. Microbiol 117:189-196 (1978), with ⁇ fraction (1/10) ⁇ buffer and with 1% NaCl).
  • the host cells are cultured under conditions suitable for replication of the bacteriophage.
  • the host cells are cultured at a temperature of at least approximately 50° C.
  • the host cells are cultured at a temperature between about 50° C. and about 80° C.
  • the bacteriophage can also be stored in a cell lysate at about 4° C.
  • Another embodiment of the invention pertains to isolated nucleic acid sequences obtainable from the genome of bacteriophage RM 378. As described herein, approximately 130 kB of the genome of bacteriophage RM 378 have been sequenced. The sequence of this 130 kB is set forth in FIG. 1. There are at least approximately 200 open reading frames (ORFs) in the sequence; of these, at least approximately 120 putatively encode a polypeptide of 100 amino acids in length or longer. These 120 are set forth in FIG. 2. FIG.
  • each ORF sets forth the locus of each ORF; the start and stop nucleotides in the sequence of each ORF; the number of nucleotides in the ORF, and the expected number of amino acids encoded therein; the direction of the ORF; the identity of the putative protein encoded therein; the protein identified by a BLAST search as being the closest match to the putative protein; the percentage identity at the amino acid level of the putative protein (based on partial sequence similarity; the overall similarity is lower); the organism from which the closest matching protein is derived; and other information relating to the ORFs.
  • the invention thus pertains to isolated nucleic acid sequence of the genome (“isolated genomic DNA”) of the bacteriophage RM 378 that has been deposited with the Deutsche Sammlung Von Mikroorganismen und Zellkulturen GmbH (DSMZ) as described below.
  • the invention also pertains to isolated nucleic acid sequence of the genome of bacteriophage RM 378 as is shown in FIG. 1 (SEQ ID NO: 1).
  • the invention additionally pertains to isolated nucleic acid molecules comprising the nucleotide sequences of each of the ORFs described above or fragments thereof, as well as nucleic acid molecules comprising nucleotide sequences of more than one of the ORFs described above or fragments of more than one of the ORFs.
  • the nucleic acid molecules of the invention can be DNA, or can also be RNA, for example, mRNA.
  • DNA molecules can be double-stranded or single-stranded; single stranded RNA or DNA can be either the coding, or sense, strand or the non-coding, or antisense, strand.
  • the nucleic acid molecule comprises at least about 100 nucleotides, more preferably at least about 150 nucleotides, and even more preferably at least about 200 nucleotides.
  • the nucleotide sequence can be only that which encodes at least a fragment of the amino acid sequence of a polypeptide; alternatively, the nucleotide sequence can include at least a fragment of a coding sequence along with additional non-coding sequences such as non-coding 3′ and 5′ sequences (including regulatory sequences, for example).
  • the nucleotide sequence comprises one of the following ORFs: ORF 056e, 632e, 739f, 1218a, 1293b.
  • ORF 056e SEQ ID NO:56
  • 632e SEQ ID NO:58
  • 739f SEQ ID NO:60
  • 1218a SEQ ID NO:61
  • 1293b SEQ ID NO:62
  • the nucleotide sequence(s) can be fused to a marker sequence, for example, a sequence which encodes a polypeptide to assist in isolation or purification of the polypeptide.
  • a marker sequence for example, a sequence which encodes a polypeptide to assist in isolation or purification of the polypeptide.
  • Representative sequences include, but are not limited to, those which encode a glutathione-S-transferase (GST) fusion protein.
  • the nucleotide sequence contains a single ORF in its entirety (e.g., encoding a polypeptide, as described below); or contains a nucleotide sequence encoding an active derivative or active fragment of the polypeptide; or encodes a polypeptide which has substantial sequence identity to the polypeptides described herein.
  • the nucleic acid encodes a polymerase (e.g., DNA polymerase); DNA polymerase accessory protein; dsDNA binding protein; deoxyriboncleotide-3-phosphatase; DNA topoisomerase; DNA helicase; an exonuclease (e.g., 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H)); RNA ligase; site-specific RNase inhibitor of protease; endonuclease; exonuclease; mobility nuclease; reverse transcriptase; single-stranded binding protein; endolysin; lysozyme; helicase; alpha-glucosyltransferase; or thymidine kinase, as described herein.
  • a polymerase e.g., DNA polymerase
  • DNA polymerase accessory protein e.g., DNA polymerase
  • dsDNA binding protein e
  • the nucleic acid encodes a DNA polymerase, 3′-5′ exonuclease, 5′-3 exonuclease (RNase H), DNA helicase or RNA ligase.
  • the nucleic acid encodes a DNA polymerase that lacks exonuclease domains, or a 3′-5′ exonuclease that lacks DNA polymerase domain, as described below.
  • nucleic acid molecules of the invention are “isolated;” as used herein, an “isolated” nucleic acid molecule or nucleotide sequence is intended to mean a nucleic acid molecule or nucleotide sequence which is not flanked by nucleotide sequences which normally (in nature) flank the gene or nucleotide sequence (as in genomic sequences) and/or has been completely or partially purified from other transcribed sequences (e.g., as in an RNA library).
  • an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs.
  • an isolated nucleic acid molecule or nucleotide sequence can include a nucleic acid molecule or nucleotide sequence which is synthesized chemically or by recombinant means. Therefore, recombinant DNA contained in a vector are included in the definition of “isolated” as used herein. Also, isolated nucleotide sequences include recombinant DNA molecules in heterologous organisms, as well as partially or substantially purified DNA molecules in solution. In vivo and in vitro RNA transcripts of the DNA molecules of the present invention are also encompassed by “isolated” nucleotide sequences.
  • the present invention also pertains to nucleotide sequences which are not necessarily found in nature but which encode the polypeptides described below.
  • DNA molecules which comprise a sequence which is different from the naturally-occurring nucleotide sequence but which, due to the degeneracy of the genetic code, encode the polypeptides of the present invention are the subject of this invention.
  • the invention also encompasses variations of the nucleotide sequences of the invention, such as those encoding active fragments or active derivatives of the polypeptides as described below. Such variations can be naturally-occurring, or non-naturally-occurring, such as those induced by various mutagens and mutagenic processes.
  • nucleotide or amino acid variations are silent or conserved; that is, they do not alter the characteristics or activity of the encoded polypeptide.
  • the invention described herein also relates to fragments of the isolated nucleic acid molecules described herein.
  • fragment is intended to encompass a portion of a nucleotide sequence described herein which is from at least about 25 contiguous nucleotides to at least about 50 contiguous nucleotides or longer in length; such fragments are useful as probes and also as primers.
  • Particularly preferred primers and probes selectively hybridize to the nucleic acid molecule encoding the polypeptides described herein. For example, fragments which encode polypeptides that retain activity, as described below, are particularly useful.
  • the invention also pertains to nucleic acid molecules which hybridize under high stringency hybridization conditions, such as for selective hybridization, to a nucleotide sequence described herein (e.g., nucleic acid molecules which specifically hybridize to a nucleotide sequence encoding polypeptides described herein, and, optionally, have an activity of the polypeptide).
  • Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Suitable probes include polypeptide nucleic acids, as described in (Nielsen et al., Science 254, 1497-1500 (1991)).
  • Such nucleic acid molecules can be detected and/or isolated by specific hybridization (e.g., under high stringency conditions).
  • “Stringency conditions” for hybridization is a term of art which refers to the incubation and wash conditions, e.g., conditions of temperature and buffer concentration, which permit hybridization of a particular nucleic acid to a second nucleic acid; the first nucleic acid may be perfectly (i.e., 100%) complementary to the second, or the first and second may share some degree of complementarity which is less than perfect (e.g., 60%, 75%, 85%, 95%).
  • certain high stringency conditions can be used which distinguish perfectly complementary nucleic acids from those of less complementarity.
  • the exact conditions which determine the stringency of hybridization depend not only on ionic strength (e.g., 0.2 ⁇ SSC, 0.1 ⁇ SSC), temperature (e.g., room temperature, 42° C., 68° C.) and the concentration of destabilizing agents such as formamide or denaturing agents such as SDS, but also on factors such as the length of the nucleic acid sequence, base composition, percent mismatch between hybridizing sequences and the frequency of occurrence of subsets of that sequence within other non-identical sequences. Thus, high, moderate or low stringency conditions can be determined empirically.
  • washing conditions are described in Krause, M. H. and S. A. Aaronson, Methods in Enzymology, 200:546-556 (1991). Also, in, Ausubel, et al., “ Current Protocols in Molecular Biology” , John Wiley & Sons, (1998), which describes the determination of washing conditions for moderate or low stringency conditions. Washing is the step in which conditions are usually set so as to determine a minimum level of complementarity of the hybrids. Generally, starting from the lowest temperature at which only homologous hybridization occurs, each ° C. by which the final wash temperature is reduced (holding SSC concentration constant) allows an increase by 1% in the maximum extent of mismatching among the sequences that hybridize. Generally, doubling the concentration of SSC results in an increase in T m of ⁇ 17° C. Using these guidelines, the washing temperature can be determined empirically for high, moderate or low stringency, depending on the level of mismatch sought.
  • a low stringency wash can comprise washing in a solution containing 0.2 ⁇ SSC/0.1% SDS for 10 min at room temperature;
  • a moderate stringency wash can comprise washing in a prewarmed solution (42° C.) solution containing 0.2 ⁇ SSC/0.1% SDS for 15 min at 42° C.;
  • a high stringency wash can comprise washing in prewarmed (68° C.) solution containing 0.1 ⁇ SSC/0.1%SDS for 15 min at 68° C.
  • washes can be performed repeatedly or sequentially to obtain a desired result as known in the art.
  • Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleic acid molecule and the primer or probe used.
  • Hybridizable nucleic acid molecules are useful as probes and primers, e.g., for diagnostic applications.
  • primer refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as, DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.
  • the appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
  • a primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template.
  • the term “primer site” refers to the area of the target DNA to which a primer hybridizes.
  • the term “primer pair” refers to a set of primers including a 5′ (upstream) primer that hybridizes with the 5′ end of the DNA sequence to be amplified and a 3′ (downstream) primer that hybridizes with the complement of the 3′ end of the sequence to be amplified.
  • the invention also pertains to nucleotide sequences which have a substantial identity with the nucleotide sequences described herein; particularly preferred are nucleotide sequences which have at least about 10%, preferably at least about 20%, more preferably at least about 30%, more preferably at least about 40%, even more preferably at least about 50%, yet more preferably at least about 70%, still more preferably at least about 80%, and even more preferably at least about 90% identity, with nucleotide sequences described herein. Particularly preferred in this instance are nucleotide sequences encoding polypeptides having an activity of a polypeptide described herein.
  • the nucleotide sequence encodes a DNA polymerase, 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H), DNA helicase, or RNA ligase, as described below.
  • the nucleotide encodes a DNA polymerase lacking exonuclease domains, or a 3′-5′ exonuclease lacking DNA polymerase domain, as described below.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first nucleotide sequence).
  • the nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
  • the determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • a preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin et al, Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST program which can be used to identify sequences having the desired identity to nucleotide sequences of the invention.
  • Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res, 25:3389-3402 (1997).
  • the invention also provides expression vectors containing a nucleic acid sequence encoding a polypeptide described herein (or an active derivative or fragment thereof), operably linked to at least one regulatory sequence.
  • Many expression vectors are commercially available, and other suitable vectors can be readily prepared by the skilled artisan.
  • “Operably linked” is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleic acid sequence. Regulatory sequences are art-recognized and are selected to produce the polypeptide or active derivative or fragment thereof.
  • regulatory sequence includes promoters, enhancers, and other expression control elements which are described in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990).
  • native regulatory sequences or regulatory sequences native to bacteriophage RM 378 can be employed. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of polypeptide desired to be expressed.
  • polypeptides of the present invention can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in an appropriate host cell (see, for example, Broach, et al., Experimental Manipulation of Gene Expression , ed. M. Inouye (Academic Press, 1983) p. 83; Molecular Cloning: A Laboratory Manual, 2nd Ed., ed. Sambrook et al. (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17).
  • expression constructs will contain one or more selectable markers, including, but not limited to, the gene that encodes dihydrofolate reductase and the genes that confer resistance to neomycin, tetracycline, ampicillin, chloramphenicol, kanamycin and streptomycin resistance.
  • selectable markers including, but not limited to, the gene that encodes dihydrofolate reductase and the genes that confer resistance to neomycin, tetracycline, ampicillin, chloramphenicol, kanamycin and streptomycin resistance.
  • prokaryotic and eukaryotic host cells transformed by the described expression vectors are also provided by this invention.
  • cells which can be transformed with the vectors of the present invention include, but are not limited to, bacterial cells such as Rhodothermus marinus, E. coli (e.g., E.
  • the host cells can be transformed by the described vectors by various methods (e.g., electroporation, transfection using calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection, infection where the vector is an infectious agent such as a retroviral genome, and other methods), depending on the type of cellular host.
  • the nucleic acid molecules of the present invention can be produced, for example, by replication in such a host cell, as described above. Alternatively, the nucleic acid molecules can also be produced by chemical synthesis.
  • the isolated nucleic acid molecules and vectors of the invention are useful in the manufacture of the encoded polypeptide, as probes for isolating homologous sequences (e.g., from other bacteriophage species), as well as for detecting the presence of the bacteriophage in a culture of host cells.
  • nucleotide sequences of the nucleic acid molecules described herein can be amplified by methods known in the art. For example, this can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, New York, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds.
  • LCR ligase chain reaction
  • NASBA nucleic acid based sequence amplification
  • the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • ssRNA single stranded RNA
  • dsDNA double stranded DNA
  • the amplified DNA can be radiolabelled and used as a probe for screening a library or other suitable vector to identify homologous nucleotide sequences.
  • Corresponding clones can be isolated, DNA can be obtained following in vivo excision, and the cloned insert can be sequenced in either or both orientations by art recognized methods, to identify the correct reading frame encoding a protein of the appropriate molecular weight.
  • the direct analysis of the nucleotide sequence of homologous nucleic acid molecules of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam Gilbert method (see Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual, (Acad. Press, 1988)).
  • the protein(s) and the DNA encoding the protein can be isolated, sequenced and further characterized.
  • the invention additionally relates to isolated polypeptides obtainable from the bacteriophage RM 378.
  • polypeptide includes proteins, enzymes, peptides, and gene products encoded by nucleic acids described herein.
  • the invention pertains to the polypeptides encoded by the ORFs as described above.
  • bacteriophage RM 378 is similar to the well-known E. coli bacteriophage T4. Thus, it is expected that bacteriophage RM 378 comprises additional polypeptides that are homologous to those found in bacteriophage T4.
  • representative proteins expected to be encoded by genes of bacteriophage RM 378 include the following: DNA topoisomerase; exonuclease (e.g., 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H)); helicase; enzymes related to DNA or RNA synthesis (e.g., dCTPase, dUTPase, dCDPase, dUDPase, GTPase, dGTPase, ATPase, dATPase); transposase; reverse transcriptase; polymerase (e.g., DNA polymerase, RNA polymerase); DNA polymerase accessory protein; DNA packaging protein; DNA topoisomerase; RNA polymerase binding protein; RNA polymerase sigma factor; site-specific RNase inhibitor of protease; recombinant protein; alpha-glucosyltransferas
  • the polypeptide is polymerase (e.g., DNA polymerase); DNA polymerase accessory protein; dsDNA binding protein; deoxyriboncleotide-3-phosphatase; DNA topoisomerase; RNA ligase; site-specific RNase inhibitor of protease; endonuclease; exonuclease (e.g., 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H)); nobility nuclease; reverse transcriptase; single-stranded binding protein; enolysin; lysozyme; helicase; alpha-glucosyltransferase; or thymidine kinase.
  • DNA polymerase DNA polymerase
  • DNA polymerase accessory protein e.g., DNA polymerase
  • dsDNA binding protein e.g., DNA polymerase
  • deoxyriboncleotide-3-phosphatase DNA topo
  • the polypeptide is a DNA polymerase, a 3′-5′ exonuclease, a 5′-3′ exonuclease (RNase H), a DNA helicase, or an RNA ligase, such as those shown in FIGS. 7 - 11 (e.g., for a DNA polymerase, SEQ ID NO:58; a 3′-5′ exonuclease, SEQ ID NO:56; a 5′-3′ exonuclease (RNase H) (SEQ ID NO:61); a DNA helicase (SEQ ID NO:62), or an RNA ligase (SEQ ID NO:60)).
  • a DNA polymerase SEQ ID NO:58; a 3′-5′ exonuclease, SEQ ID NO:56; a 5′-3′ exonuclease (RNase H) (SEQ ID NO:61); a DNA helicase (SEQ ID NO:62), or an RNA ligas
  • the polypeptide is a DNA polymerase that lacks exonuclease domains, or a 3′-5′ exonuclease that lacks DNA polymerase domain, as described in the examples below.
  • the term, “lacking exonuclease domains,” indicates that the polypeptide does not contain an amino acid domain (e.g., a consecutive or closely spaced series of amino acids) homologous to domains where such exonuclease activity resides in other similar polymerases (such as polymerases in the same family); it does not refer to the presence of a non-functional domain homologous to domains where exonuclease activity resides.
  • lacking DNA polymerase domain indicates that the polypeptide does not contain an amino acid domain (e.g., a consecutive or closely spaced series of amino acids) homologous to domains where such DNA polymerase activity resides in other similar exonucleases (such as exonucleases in the same family); it does not refer to the presence of a non-functional domain homologous to domains where DNA polymerase activity resides.
  • amino acid domain e.g., a consecutive or closely spaced series of amino acids
  • polypeptides can be used in a similar manner as the homologous polypeptides from bacteriophage T4; for example, polymerases and ligases of bacteriophage RM 378 can be used for amplification or manipulation of DNA and RNA sequences.
  • the polymerases and ligases of bacteriophage RM 378 are expected to be much more thermostable than those of bacteriophage T4, because of the thermophilic nature of the host of bacteriophage RM 378 (in contrast with the mesophilic nature of E. coli , the host of bacteriophage T4).
  • polypeptides of the invention can be partially or substantially purified (e.g., purified to homogeneity), and/or are substantially free of other polypeptides.
  • the amino acid sequence of the polypeptide can be that of the naturally-occurring polypeptide or can comprise alterations therein.
  • Polypeptides comprising alterations are referred to herein as “derivatives” of the native polypeptide.
  • Such alterations include conservative or non-conservative amino acid substitutions, additions and deletions of one or more amino acids; however, such alterations should preserve at least one activity of the polypeptide, i.e., the altered or mutant polypeptide should be an active derivative of the naturally-occurring polypeptide.
  • the mutation(s) can preferably preserve the three dimensional configuration of the binding site of the native polypeptide, or can preferably preserve the activity of the polypeptide (e.g., if the polypeptide is a DNA polymerase, any mutations preferably preserve the ability of the enzyme to catalyze combination of nucleotide triphosphates to form a nucleic acid strand complementary to a nucleic acid template strand).
  • the presence or absence of activity or activities of the polypeptide can be determined by various standard functional assays including, but not limited to, assays for binding activity or enzymatic activity.
  • an “active fragment,” as referred to herein, is a portion of polypeptide (or a portion of an active derivative) that retains the polypeptide's activity, as described above.
  • Appropriate amino acid alterations can be made on the basis of several criteria, including hydrophobicity, basic or acidic character, charge, polarity, size, the presence or absence of a functional group (e.g., —SH or a glycosylation site), and aromatic character. Assignment of various amino acids to similar groups based on the properties above will be readily apparent to the skilled artisan; further appropriate amino acid changes can also be found in Bowie et al. ( Science 247:1306-1310(1990)). For example, conservative amino acid replacements can be those that take place within a family of amino acids that are related in their side chains.
  • polypeptides of the invention can also be fusion polypeptides comprising all or a portion (e.g., an active fragment) of the native bacteriophage RM 378 polypeptide amino acid sequence fused to an additional component, with optional linker sequences.
  • Additional components such as radioisotopes and antigenic tags, can be selected to assist in the isolation or purification of the polypeptide or to extend the half life of the polypeptide; for example, a hexahistidine tag would permit ready purification by nickel chromatography.
  • the fusion protein can contain, e.g., a glutathione-S-transferase (GST), thioredoxin (TRX) or maltose binding protein (MBP) component to facilitate purification; kits for expression and purification of such fusion proteins are commercially available.
  • GST glutathione-S-transferase
  • TRX thioredoxin
  • MBP maltose binding protein
  • the polypeptides of the invention can also be tagged with an epitope and subsequently purified using antibody specific to the epitope using art recognized methods. Additionally, all or a portion of the polypeptide can be fused to carrier molecules, such as immunoglobulins, for many purposes, including increasing the valency of protein binding sites.
  • the polypeptide or a portion thereof can be linked to the Fc portion of an immunoglobulin; for example, such a fusion could be to the Fc portion of an IgG molecule to create a bivalent form of the protein.
  • polypeptides which are at least about 90% identical (i.e., polypeptides which have substantial sequence identity) to the polypeptides described herein.
  • polypeptides exhibiting lower levels of identity are also useful, particular if they exhibit high, e.g., at least about 90%, identity over one or more particular domains of the polypeptide.
  • polypeptides sharing high degrees of identity over domains necessary for particular activities, such as binding or enzymatic activity are included herein.
  • polypeptides which are at least about 10%, preferably at least about 20%, more preferably at least about 30%, more preferably at least about 40%, even more preferably at least about 50%, yet more preferably at least about 70%, still more preferably at least about 80%, and even more preferably at least about 90% identity, are encompassed by the invention.
  • Polypeptides described herein can be isolated from naturally-occurring sources (e.g., isolated from host cells infected with bacteriophage RM 378). Alternatively, the polypeptides can be chemically synthesized or recombinantly produced.
  • PCR primers can be designed to amplify the ORFs from the start codon to stop codon, using DNA of RM378 or related bacteriophages or respective recombinant clones as a template.
  • the primers can contain suitable restriction sites for an efficient cloning into a suitable expression vector.
  • the PCR product can be digested with the appropriate restriction enzyme and ligated between the corresponding restriction sites in the vector (the same restriction sites, or restriction sites producing the same cohesive ends or blunt end restriction sites).
  • Polypeptides of the present invention can be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using art-recognized methods. They are particularly useful for molecular weight markers for analysis of proteins from thermophilic organisms, as they will behave similarly (e.g., they will not denature as proteins from mesophilic organisms would).
  • polypeptides of the present invention can be isolated or purified (e.g., to homogeneity) from cell culture (e.g., from culture of host cells infected with bacteriophage RM 378) by a variety of processes. These include, but are not limited to, anion or cation exchange chromatography, ethanol precipitation, affinity chromatography and high performance liquid chromatography (HPLC). The particular method used will depend upon the properties of the polypeptide; appropriate methods will be readily apparent to those skilled in the art. For example, with respect to protein or polypeptide identification, bands identified by gel analysis can be isolated and purified by HPLC, and the resulting purified protein can be sequenced.
  • the purified protein can be enzymatically digested by methods known in the art to produce polypeptide fragments which can be sequenced.
  • the sequencing can be performed, for example, by the methods of Wilm et al. ( Nature 379(6564):466-469 (1996)).
  • the protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Scopes, Protein Purification, Principles and Practice, 2nd Edition, Springer-Verlag, N.Y. (1987); and Deutscher (ed), Guide to Protein Purification, Methods in Enzymology , Vol. 182 (1990).
  • Rhodothermus The thermophilic, slightly halophilic eubacterium, Rhodothermus marinus was first isolated from shallow water submarine hot springs in Isafjardardjup in northwest Iceland (Alfredsson, G. A. et al., J. Gen. Microbiol. 134:299-306 (1988)). Since then Rhodothermus has also been isolated from two other areas in Iceland (Petursdottir et al., in prep.), from the Azores and the Bay of Naples in Italy (Nunes, O. C. et al, Syst. Appl. Microbiol. 15:92-97 (1992); Moreira, L. et al., Syst. Appl. Microbiol.
  • Rhodothermus is distantly related to the group containing Flexibacter, Bacterioides and Cytophaga species (Anderson, O. S. and Fridjonsson, O. H., J. Bacteriol. 176:6165-6169 (1994)).
  • Strain ITI 378 (originally R-21) is one of the first Rhodothermus strains isolated from submarine hot springs in Isafjardardjup in northwest Iceland. The strain was grown at 65° C. in medium 162 for Thermus (Degryse et al., Arch. Microbiol. 117:189-196 (1978)), with ⁇ fraction (1/10) ⁇ the buffer and with 1% NaCl. Strain ITI 378 is phenotypically and phylogenetically similar (over 99% similarity in 16s rRNA sequence) to type strain DSM 4252.
  • plaque solution After pouring the sample onto a thin layer agar plate, the plates were incubated for 1-2 days at 65° C. A single, well-isolated plaque was stabbed with a sterile Pasteur pipette and dissolved in 100 ⁇ l of 10 mM MgCl 2 solution (forming the plaque solution).
  • the bacteriophage is sensitive to freezing; it can be stored in a cell lysate at 4° C. (e.g., as described below under “Liquid Lysate”).
  • Liquid cultures were infected when they had reached an absorbance of 0.5 at 600 nm (expected to contain 2.5 ⁇ 10 8 cells/ml).
  • the phage ratio was 0.1 pfu/cell culture.
  • the cultures were incubated at high shaking (300 rpm) and growth was followed by measuring absorbance at 600 nm.
  • chloroform was added to the cultures (10 ⁇ l/ml) and shaking continued for 1 hour.
  • Cell debris was removed by centrifugation and titer estimation was performed on the supernatant.
  • large-scale purification from 300 ml culture was undertaken for DNA isolation and for protein composition analysis, as well as for electron microcopy.
  • the bacteriophages were precipitated using PEG 8000 (Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and resuspended in SM buffer (Sambrook, J. et al, Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) before loading on the top of CsCl (0.75 g/ml). This sample was centrifuged for 23 hours at 38,000 rpm in TY-64 rotor (Sorvall Ultracentrifuge). The layer of bacteriophage was collected using a syringe.
  • Bacteriophage RM 378 at approximately 10 11 pfu/ml was incubated for 30 minutes over a temperature range of 50-96° C. before the remaining bacteriophage titer was determined.
  • the bacteriophage lysate at approximately 10 11 pfu/ml was mixed with an equal volume of chloroform, and incubated at room temperature. After 30 minutes, the remaining viable bacteriophage were titrated with strain ITI 378 as a host.
  • the mole percent guanine plus cytosine content of the bacteriophage was determined by CSM with HPLC according to Mesbah (Mesbah, M. U. et al., Int. J Syst. Bacteriol 39:159-167 (1989)).
  • Bacteriophage DNA was digested individually with a variety of restriction endonucleases, and the fragments separated by electrophoresis on 0.5-0.8% (w/v) agarose gel. Pulsed-field gel electrophoresis (PFGE) was also used for size estimation. Pulsed Field Certified Agarose from BioRad (Catalog No. 162-0137, Bio Rad) (1%) was used for the gel, and low-melt agarose (Catalog No. 162-0017, Bio Rad) (1%) for filling the wells when using marker plugs. Samples of 1.0 and 0.5 ⁇ g DNA were used and Bio Rad low range marker (#350) as well as ⁇ -ladder (Catalog No.
  • the bacteriophage was stained with 2.5% phosphotungstic acid and the grids examined with a Philips EM 300 electron microscope. Bacteriophage samples from CsCl purification, as well as directly from a liquid lysed culture with titer of 10 13 pfu/ml, were used for microscopy studies.
  • the phage genome was sequenced using the “shot gun sequencing” technique (see, e.g., Fleischmann, R. D. et al., Science 269:496-512 (1995)). The sequences were aligned (Ewing, B., et al., Genome Research 8:175-185 (1998)); Ewing, B. and Green, P., Genome Research 8:186-194 (1998)). The consensus sequence of 130,480 bp was visualized with the program XBB-Tools (Sicheritz-Ponten, T., Department of Molecular Evolution, Uppsala, Sweden) for open reading frames (ORFs).
  • XBB-Tools Suderitz-Ponten, T., Department of Molecular Evolution, Uppsala, Sweden
  • Bacteriophages were isolated from two of the strains infected with the sample from the southwest, and from all 7 of the strains infected with the sample from the northwest. Of these, one of the bacteriophages from the sample from the northwest was isolated from strain ITI 378 and designated RM 378. The titer of this bacteriophage was estimated; in liquid culture it repeatedly gave titers of 5-8 ⁇ 10 13 pfu/ml.
  • Bacteriophage RM 378 is a tailed phage with a moderately elongated head. It is a T4-like phage, resembling the T4 phage of Escherichia coli both in morphology and genome size, and has a double-stranded DNA genome. RM 378 belongs to the Myoviridae family and has the A2 morphology (Ackermann, H. W., Arch. Virol. 124:201-209 (1992)).
  • the bacteriophage head measures 85 nm on one side and 95 nm on the other.
  • the tail is 150 nm in length, with a clear right-handed spiral to the tail sheath.
  • the head/tail ratio is 0.63 and the total length is 245 nm.
  • RM 378 concentrated bacteriophage was tested against 9 different Rhodothermus strains from the two different areas (Isafjardardjup in northwest Iceland, and Reykjanes in southwest Iceland). It infected 5 strains from the northwest, but no strains from the southwest. Thus, the bacteriophage infected only strains of Rhodothermus from the same geographical area from which the bacteriophage was isolated. It did not infect any of the 6 Thermus strains that were tested.
  • Bacteriophage RM 378 was stable to 30 minutes exposure to chloroform, indicating that it probably does not contain lipids. Heat stability of the phage was tested at 50° C.-96° C. by incubating the phage concentrate for 30 minutes, followed by estimation of titer. There was no change of the titer up to 65° C., but at 70° C. and 80° C. a 100-fold drop in pfu/ml was measured. Linear decrease of the titer was observed up to 96° C., where it was 10,000 times lower after 30 minutes than in the starting solution. After 3 months of storage at 4° C. the titer dropped 100-fold (down to 10 11 pfu/ml). After 27 months of storage the titer had fallen from 10 11 pfu/ml to 10 5 pfu/ml in a CsCl-purified sample.
  • Purified bacteriophage was subjected to SDS-PAGE analysis for examination of its protein composition.
  • the phage was composed of at least 16 proteins with apparent molecular weights from 23-150 kDa.
  • the five main bands were at 92, 61, 52, 50 and 26 kDa, and were in a ratio of 0.14:0.45:0.21:0.13:0.06.
  • the major protein band of 61 kDa accounted for about 20% of the total protein; the five main bands together represented about 50% of total proteins.
  • the average G+C mol % of the RM 378 phage was 42.0 ⁇ 0.1.
  • the DNA was digested with a variety of restriction enzymes (HindIII, XhoI, ClaI, AluI, NotI, SacI, PstI, BamHI, SmaI, SpeI, EcoRV). Three of the enzymes (NotI, SmaI, SpeI) did not cleave RM 378, and the rest resulted in multiple fragments. Because the addition of the fragment sizes resulted in a variable amount for the total genome size, the phage DNA was also run on PFGE, which estimated the size of the DNA to be about 150 kb.
  • the RM 378 bacteriophage is a virulent bacteriophage following a lytic cycle of infection. Very high titer lysates of up to 10 13 pfu/ml could be obtained, which indicated a large burst size of more than 100. Because no bacteriophages have been reported against this bacterial genus, RM 378 represents a new species.
  • the nucleic acid sequence of RM 378 is set forth in FIG. 1.
  • the nucleic acid sequence of RM 378 contains at least 200 open reading frames (ORFs); see, for example, the ORFs described in FIG. 2. Of these, five were identified in more detail, as described in Example 2, including the ORFs expected to encode DNA polymerase, 3′-5′ exonuclease, 5′-3′ exonuclease, RNA ligase and DNA helicase.
  • RM 378 belongs in the T-even family, in that it is similar to bacteriophage T4 of Escherichia coli .
  • Bacteriophage T4 of E. coil is a well-studied phage which, together with T2 and T6, belongs to the family of bacteriophages known as T-even phages.
  • T-even phages are nearly identical not only in structure and composition, but also in properties.
  • enzymes isolated from bacteriophage T4 are used in the field of recombinant DNA technology as well as in other commercial applications. For example, T4 DNA polymerase, T4 DNA ligase and T4 RNA ligase are frequently used in the research industry today.
  • bacteriophage RM 378 comprises genes that are homologous to those found in bacteriophage T4, and that these genes in bacteriophage RM 378 encode proteins and enzymes that correlate to those proteins and enzymes found in bacteriophage T4.
  • ORFs Five open reading frames (ORFs) of the numerous ORFs described above in the genome of bacteriophage RM378, have been further characterized and the corresponding genes cloned and expressed.
  • the genes include a DNA polymerase, 3′-5′ exonuclease, 5′-3′-exonuclease (RNase H), replicative DNA helicase and RNA ligase. These genes were chosen as examples of the many valuable genes encoded by the bacteriophage genome.
  • the corresponding polypeptide products of these genes are mainly components of the bacteriophage replication machinery and can be utilized in various molecular biology applications as evident by the current use of homologous counterparts from other sources.
  • sequences of the five ORFs show low similarity to sequences in public databases indicative of distant relationship to known proteins; however, probable homology to known sequences can be established by comparison with families of sequences showing overall sequence similarity as well as conservation of shorter regions, sequence motifs and functionally important residues, in some cases aided by three-dimensional structural information.
  • the limited sequence similarity or these sequences to publicly available sequences suggests that these gene products have functional properties very different from corresponding proteins currently in use in molecular biology applications. Together with the presumed thermostability, the properties of these gene products render them valuable in various applications in molecular biology.
  • DNA polymerases have evolved to accommodate the varied tasks required for replication and repair.
  • DNA replication involves 1) local melting of the DNA duplex at an origin of the replication, 2) synthesis of a primer and Okazaki fragment, 3) DNA melting and unwinding at the replication fork, 4) extension of the primer on the leading strand and discontinuous synthesis of primers followed by extension of the lagging strand, 5) removal of RNA primers and 6) sealing of nicks. (Perler et al., Adv Protein Chem 48:377-435 (1996)).
  • DNA polymerases have been grouped into Families A, B, C and X corresponding to similarity with E. coli pol I, II and III and pol b respectively (Braithwaite, D. K. and Ito, J., Nucleic Acids Res. 21:787-802 (1993)). Each of these Families contains conserved sequence regions (Perler et al., Adv Protein Chem. 48:377-435 (1996); Blanco L., et al., Gene 100:27-38 (1991); Morrison A. et al., Proc Natl Acad Sci USA. 88:9473-9477 (1991)).
  • Family B DNA polymerasese are also called Pol ⁇ Family DNA polymerases.
  • the DNA polymerases of family B type include bacteriophage T4 and bacteriophage RB69 DNA polymerase as well as archaeal polymerases and E. coli polymerase II. Polymerases of this type normally have two activities, the polymerase activity and the proofreading 3′-5′ exonuclease activity, found in different domains within the same polypeptide with the exonuclease domain being N-terminal to the polymerase domain (Steitz, T. A., J Biol Chem 274:17395-8 (1999); Komberg, A. and Baker, T. A., DNA Replication, Freeman, N.Y. (1992); Brautigam, C. A. and Steitz, T.
  • Polymerases of family B have an overall domain architecture different from polymerases of family A and do not have a 5′-3′ exonuclease activity which is normally found in polymerases in family A.
  • the determined structure of RB69 DNA polymerase is a representative structure of family B type polymerase and shows clearly the modular organization of the enzyme with separate domains (Wang, J. et al., Cell 89:1087-99 (1997), Protein data bank (PDB) accession code 1WAJ).
  • the structure of the archaeal DNA polymerase from Desulfurococcus strain Tok was shown to have the same overall structure (Zhao, Y.
  • DNA polymerases may contain 5′-3′ and a 3′-5′ exonuclease activity.
  • the 3′-5′ exonuclease activity is required for proofreading.
  • the family B polymerases have 3′-5′ exonuclease activity, but not 5′-3′ exonuclease activity. If both exonucleases are present, the 5′-3′ exonuclease domain is at the N-terminal followed by the 3′-5′ exonuclease domain and the C-terminal polymerase domain.
  • the structure of the polymerases can be defined further in terms of domain structure.
  • the polymerase domain is thus composed of a number of smaller domains, often referred to as the palm, fingers and thumb, and although these parts are not homologous across families, they do show analogous structural features (Steitz, T. A., J Biol Chem 274:17395-8 (1999); Komberg, A. & Baker, T. A., DNA Replication, Freeman, N.Y. (1992); Brautigam, C. A. & Steitz, T. A., Curr.Opin.Struct.Biol. 8:45-63 (1998) ).
  • RNase H Ribonuclease H
  • T4 RNase H removes the RNA primers that initiate lagging strand fragments, during DNA replication of duplex DNA.
  • the enzyme has a 5′-3′ exonuclease activity on double-stranded DNA and RNA-DNA duplexes.
  • T4 RNase H has a flap endonuclease activity that cuts preferentially on either side of the junction between single and double-stranded DNA in flap and fork DNA structures.
  • T4 RNase H also plays a role in DNA repair and recombination. (Bhagwat, M., et al., J. Biol. Chem. 272:28531-28538 (1997); Bhagwat, M., et al. J. Biol. Chem. 272:28523-28530 (1997)).
  • T4 RNase H shows sequence similarity to other enzymes with a demonstrated role in removing RNA primers, including phage T7 gene 6 exonuclease, the 5′-3′ nuclease domain of E. coli DNA polymerase I, and human FEN-1 (flap endonuclease). These enzymes have 5′-3′-exonuclease activity on both RNA-DNA and DNA-DNA duplexes and most of them have a flap endonuclease activity that removes the 5-ssDNA tail of flap or fork structures.
  • the T4 enzyme homologous to members of the RAD2 family of prokaryotic and eukaryotic replication and repair nucleases (Mueser T. C., et al., Cell. 85:1101-1112 (1996)).
  • RNase H is a part of the reverse transcriptase complex of various retroviruses.
  • the HIV-1 RT associated ribonuclease H displays both endonuclease and 3′-5′ exonuclease activity (Ben-Artzi, H., et al., Nucleic Acids Res. 20:5115-5118 (1992); Schatz, O., et al., EMBO J. 4:1171-1176 (1990)).
  • RNase H is applied to the replacement synthesis of the second strand of cDNA.
  • the enzyme produces nicks and gaps in the mRNA strand of the cDNA:mRNA hybrid, creating a series of RNA primers that are used by the corresponding DNA polymerase during the synthesis of the second strand of cDNA (Sambrook, J., et al., Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbour Laboratory Press (1989)).
  • the RNase H of E. coli can promote the formation and cleavage of RNA-DNA hybrid between an RNA site and a base paired strand of a stable hairpin or duplex DNA at temperature below their Tm (Li. J., and R.
  • the enzyme has been used for site-directed cleavage of RNA using chimeric DNA splints (presence of complementary chimeric oligonucleotides) (Inoue, H., et al., Nucleic Acids Symp Ser. 19:135-138 (1988)) or oligoribonucleotide capable of forming a stem and loop structure (Hosaka H., et al., J. Biol. Chem. 269: 20090-20094 (1994)).
  • DNA helicases use energy derived from hydrolysis of nucleoside triphosphate to catalyze the disruption of the hydrogen bonds that hold the two strands of double-stranded DNA together.
  • the reaction results in the formation of the single-stranded DNA required as a template or reaction intermediate in DNA replication, repair or recombination (Matson, S. W., et al., BioEssays. 16:13-21 (1993)).
  • the bacteriophage T4 Gp4l is a highly processive replicative helicase (similar to the DNA B protein of E. coli ) and has been shown to form hexamer in the presence of ATP (Dong, F., and P. H. von Hippel, J. Biol. Chem. 271:19625-19631 (1996)).
  • the enzyme facilitates the unwinding of DNA helix ahead of the advancing DNA polymerase and accelerates the movement of the replication fork. It has been suggested that gp41 interacts with the polymerase holoenzyme at the replication fork (Schrock R. D. and B. Alberts, J. Biol. Chem. 271:16678-16682 (1996)).
  • Gp4l has a 5′-3′ polarity and requires a single stranded region on the 5′ side of the duplex to be unwound.
  • the ATP-activated helicase binds to a single gp61 primase molecule on appropriate DNA template (Morris, P. D., and K. D. Raney, Biochemistry. 38:5164-5171 (1999)) to reconstitute a stable primosome (Richardson, R. W. and N. G. Nossal, J. Biol. Chem. 264:4725-4731 (1989)).
  • the gp41 alone does not form a stable complex with DNA template, this helicase by itself can carry out moderately processive ATP-driven translocation along single strand DNA (Dong, F., and P. H. von Hippel. J. Biol. Chem. 271:19625-19631 (1996)).
  • the T4 gene 59 protein accelerates the loading of gp41 onto DNA, when it is covered with 32 protein (the T4 single strand binding protein), and stimulates the helicase activity to catalyze replication fork movement through a DNA double helix, even through a promoter-bound RNA polymerase molecule (Barry, J., and B. Alberts. J. Biol. Chem.
  • T4 gp41 helicase has also been disclosed to participate in DNA recombination. Following exonuclease nicking of ds DNA and further expansion into a gap, gp41 creates a free 3′ end, which is required as a substrate by recombination proteins (RecA like) (Tarumi, K., and T. Yonesaki. J Biol Chem. 270:2614-2619 (1995)).
  • RNA ligase is abundant in T4-infected cells and has been purified in high yields. Bacteriophage T4 RNA ligase catalyzes the ATP-dependent ligation of a 5′-phosphoryl-terminated nucleic acid donor (i.e. RNA or DNA) to a 3′-hydroxyl-terminated nucleic acid acceptor. The reaction can be either intramolecular or intermolecular, i.e., the enzyme catalyzes the formation of circular DNA/RNA, linear DNA/RNA dimers, and RNA-DNA or DNA-RNA block co-polymers.
  • a 5′-phosphoryl-terminated nucleic acid donor i.e. RNA or DNA
  • the reaction can be either intramolecular or intermolecular, i.e., the enzyme catalyzes the formation of circular DNA/RNA, linear DNA/RNA dimers, and RNA-DNA or DNA-RNA block co-polymers.
  • the enzyme can be an important tool in the synthesis of DNA of defined sequence (Marie I., et al., Biochemistry 19:635-642 (1980), Sugion, A. et al., J. Biol. Chem. 252:1732-1738 (1977)).
  • T4 RNA ligase has been demonstrated in many ways.
  • Various ligation-anchored PCR amplification methods have been developed, where an anchor of defined sequence is directly ligated to single strand DNA (following primer extension, e.g. first strand cDNA).
  • the PCR resultant product is amplified by using primers specific for both the DNA of interest and the anchor (Apte, A. N., and P. D. Siebert, BioTechniques. 15:890-893 (1993); Troutt, A. B., et al., Proc. Natl. Acad. Sci. USA. 89: 9823-9825 (1992); Zhang, X. H., and V. L.
  • T4 RNA ligase has been used in fluorescence-, isotope- or biotin- labeling of the 5′-end of single stranded DNA/RNA molecules (Kinoshita Y., et al., Nucleic Acid Res. 25: 3747-3748 (1997)), synthesis of circular hammer head ribozymes (Wang, L., and D. E. Ruffner. Nucleic Acids Res 26: 2502-2504 (1998)), synthesis of dinucleoside polyphosphates (Atencia, E. A., et al. Eur. J. Biochem. 261: 802-811 (1999)), and for the production of composite primers (Kaluz, S., et al., BioTechniques. 19: 182-186 (1995)).
  • all these sequences are DNA polymerase sequences having the sequence characteristics of the DNA polymerase domain as well as the 3′-5′ exonuclease domain and are considerably longer (excluding partial sequences) than the predicted gene product of ORF056e which has a length of 349 residues.
  • the similarity is restricted to the N-terminal halves of these sequences corresponding to the part of the protein where the 3′-5′ proofreading exonuclease domain is located.
  • Table 2 lists the 20 sequences with strongest similarity to the ORF056e sequence together with the length and E-value according to BLAST search.
  • the sequence identity with the ORF056e sequence ranges from 21 to 27%.
  • 34 are of viral origin and 15 of archaeal origin.
  • 16 are of viral origin.
  • sequence similarity program BLAST (Altschul, S. F. et al., J. Mol. Biol. 215:403-410 (1990)) was also used to identify potential homologues of the ORF632e (locus GP43b) gene product.
  • the 100 sequences in the sequence database (NCBI nr) with the strongest similarity to the ORF632e sequence were all defined as DNA polymerase sequences. These sequences all had an E value lower than 10-5 and are considerably longer (excluding partial sequences) than the predicted gene product of ORF632e which has a length of 522 residues (Table 3).
  • Table 3 lists the 20 sequences with strongest similarity to the ORF632e sequence together with the length and E-value according to a BLAST search.
  • the sequence identity with the ORF632e sequence rages from 23 to 28% within aligned regions of 300 to 428 residues.
  • the majority of these 20 sequences are of archaeal DNA polymerases of family B type.
  • ORF056e and ORF632e correspond to the exonuclease domain and the polymerase domain of family B type polymerases, respectively.
  • Partial alignment of sequences of a number of members of this family was obtained from the Protein Families Data Bases of Alignments and HMMs (Sanger Institute), accession number PF00136).
  • the sequences of ORF056e and ORF632e could be combined as one continuous polypeptide and aligned to the previous set of sequences.
  • Motif A corresponds to the DxxSLYPS motif mentioned above and includes an aspartic acid residue, involved in coordinating one of the two Mg2+ ions which are essential for the polymerase activity, and a tyrosine residue which stacks it side chain against an incoming nucleotide in the polymerase reaction.
  • Another aspartic residue which also acts as Mg2+ ion ligand (motif C), and is essential for the catalytic mechanism, is also found in the sequence of ORF632e (D215).
  • the polymerase activity encoded by bacteriophage RM378 thus resides in an enzyme which is relatively short corresponding only to the polymerase domain of other members in this family and unlike those relatives does not have an 3′-5′ exonuclease domain.
  • the 3′-5′ exonuclease is found as another protein encoded by a separate gene elsewhere in the genome.
  • the natural form of DNA polymerase from Thermus aquaticus also lacks the proofreading 3′-5′ exonuclease activity but this polymerase differs from the polymerase of RM378 in several aspects: i) it belong to a different family of polymerase (family A) which have a different general architecture, ii) the lack of 3′-5′ exonuclease activity is due to a non-functional domain since it still contains a structural domain homologous to a domain where this activity resides in other polymerase in this family, and iii) naturally occurring Taq has 5′-3′ exonuclease activity besides its polymerase activity (Kim, Y.
  • the current protein is the only known example of a DNA polymerase which by nature lacks proofreading activity and the corresponding structural domain present in other polymerases of this type, and therefore represents the discovery of a unique compact type of DNA polymerase found in nature lacking both 3′-5′ and 5′-3′ exonuclease activity.
  • ORF739f Encodes an RNA Ligase
  • RNA ligases in a protein sequence database showed similarity to the ORF739f sequence (locus GP63) as identified in a similarity search using BLAST (Altschul, S. F. et al., J. Mol. Biol. 215:403-410 (1990)).
  • the top scoring sequences found in the BLAST search are show in Table 4. Only 3 sequences showed a score with E-avlue below 1.0.
  • the two most significant and extensive similarities were found to the sequences of RNA ligases from Autographa californica nucleopolyhedrovirus and bacteriophage T4.
  • Table 4 shows sequences with strongest similarity (E-value cutoff of 1.0) to the ORF739f sequence together with their length and E-value according to BLAST search.
  • a BLAST search (Altschul, S. F. et al., J. Mol. Biol. 215:403-410 (1990)) identified about 60 sequences in the database (NCBI nr) with significant similarity (corresponding to E-value lower than 1) to the sequence of the predicted gene product of ORF 1218a (locus DAS). Almost all the identified sequences are of DNA polymerase I from bacterial species (DNA polymerase family A) and the similarity is restricted to the N-terminal halves of these sequences and the ORF 1218a sequence is much shorter, 318 residues, compared to the identified sequences which usually are between 800 and 900 residues (Table 5).
  • the 5′-3′ exonuclease domain of DNA polymerase I belongs to a large family of proteins which also include ribonuclease H (RNase H) including bacteriophage T4 RNase H.
  • RNase H ribonuclease H
  • the analysis of the structure of bacteriophage T4 RNase H revealed the conservation of a several acidic residues in this family of proteins. These residues are clustered at the active site, some of which help coordinate two functionally important Mg2+ ions (Mueser, T. C.,et al., Cell 85:1101-12 (1996)).
  • the corresponding alignment shown in FIG. 5, including the sequence of the ORF 1218a gene product shows that these acidic residues (possibly with the exception of one) are also found in the gene product of ORF1218a thus further supporting its proposed activity as 5′-3′ exonuclease.
  • the 5′-3′ exonuclease of polymerase I and RNase H both remove RNA primers that have been formed during replication but T4 DNA polymerases and other polymerases of the same type (family B), including the identified polymerase of phage RM378 identified here (see above), lack the 5′-3′ exonuclease activity.
  • T4 RNase H (305 residues) and the ORF1218a gene product (318 residues) are of similar size with conserved regions scattered throughout most of the sequences (FIG. 5). These proteins are likely to have a very similar structure given the structural similarity between T4 RNase H and 5′-3′ exonuclease domain of polymerase I (Mueser, T. C., et al., Cell 85:1101-12 (1996)).
  • the gene product of ORF1218a probably has a function analogous to the function of RNase H in bacteriophage T4.
  • Table 5 sets forth the 21 sequences with strongest similarity to the ORF1218a sequence together with the length and E-value according to BLAST search.
  • the sequence identity with the ORF1218a sequence ranges from 31 to 41% within aligned regions of 82 to 145 residues.
  • the replicative DNA helicases with similarity to the ORF1293b sequence are of the same protein family often named after the corresponding helicase in E. coli encoded by the DnaB gene (e.g. DnaB-like helicases).
  • the Protein Families Data Base of Alignments and HMMs holds 37 sequences in this family (family DnaB, accession number PF00772;) and the alignment of these sequences shows clearly several regions with conserved sequence motifs.
  • One of this motif is characteristic for ATPases and GTPases (Walker A motif, P-loop) and forms a loop that is involved in binding the phosphates of the nucleotide (Sawaya, M. R.
  • the replicative helicases bind single stranded DNA (at the replication fork) and translocate in the 5′-3′ direction with ATP (GTP) driven translocation (Matson, S. W., et al., BioEssays 16:13-22 (1993)).
  • GTP ATP driven translocation
  • FIG. 6 shows the sequence alignment of some members of the DnaB protein family together with the sequence of ORF1293b. Sawaya et al. have shown how several conserved motifs and functionally important residues of the DnaB family relate to the crystal structure of the helicase domain of the T7 helicase-primase (Sawaya, M. R. et al., Cell 99:167-77 (1999)). The alignment in FIG. 6 shows how these conserved motifs are present in the ORF1293b sequence thereby supporting its role as replicative helicase.
  • the bacteriophage T4 replicative helicase sequence was indicated as most closely related to the ORF1293b sequence in the similarity search.
  • the structure and function of the corresponding helicases may be very similar in these two bacteriophages and, together with the similarity of numerous other components of these phages, may be indicative of other similarities of their replication machinery.
  • T4 replicative helicase is known to be an essential protein in the phage replication and interact with other proteins at the replication fork such as the primase to form the primosome (Nossal, N. G., FASEB J. 6:871-8 (1992)).
  • the helicase encoded by ORF1293b may have an essential function in bacteriophage RM378.
  • Other homologues of components of the T4 replication system have been detected as well as shown above and still others may also be expected to be encoded by the bacteriophage genome.
  • Table 6 sets forth sequences with strongest similarity (E-value cutoff of 1.0) to the ORF1293b sequence together with the length and E-value according to BLAST search.
  • Plasmids were designated pSH1, pGK1, pOL6, pJB1 and pJB2, were generated for the genes encoding the 3′-5′ exonuclease, the DNA polymerase, the RNA-ligase gene, the RNaseH gene and the helicase gene, respectively.
  • the correct insertion of the ORFs into the expression vector was verified by DNA sequencing, and the expression of the genes was verified by SDS gel electrophoresis of respective host strain crude extracts.
  • E. coli strain JM109 [supE44 ⁇ (lac-proAB), hsdR17, recA1, endA1, gyrA96, thi-1, relA1 (F′traD36, proAB, lacIqZ ⁇ M15)] (Viera and Messing, Gene, 19:259-268 (1982)) and strain XL10-Gold [Tetr ⁇ (mcrA)183 ⁇ (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte (F′ proAB lacIqZ ⁇ M15 Tn10 (Tetr) Amy Camr)] (Stratagene) were used as hosts for expression plasmids.
  • the PCR amplification of the nucleic acids sequence containing the open reading frame (ORF) 056e, which displayed similarity to 3′-5′ exonuclease domain of family B polymerase genes was as follows.
  • the PCR amplification was performed with 0.5 U of Dynazyme DNA polymerase (Finnzyme), 10 ng of RM378 phage DNA, a 1 ⁇ M concentration of each synthetic primer, a 0.2 mM concentration of each deoxynucleoside triphosphate, and 1.5 mM MgCl 2 in the buffer recommended by the manufacturer. A total of 30 cycles were performed. Each cycle consisted of denaturing at 94° C. for 50 s, annealing at 50° C. for 40 s, and extension at 72° C. for 90 s.
  • PCR products were digested with Kpn I and Sac I and ligated into Kpn I and Sac I digested pTrcHis A (Invitrogen) to produce pSH1.
  • Epicurian Coli XL10-Gold (Stratagene) were transformed with pSH1 and used for induction of protein expression, although any host strain carrying a lac repressor could be used.
  • the PCR products were digested with Kpn I and Sac I and ligated into Kpn I and Sac I digested pTrcHis A (Invitrogen) to produce pGK1.
  • Epicurian Coli XL1 0-Gold (Stratagene) were transformed with pGK1 and used for induction of protein expression.
  • the expressed protein was observed with Anti-Xpress Antibody (Invitrogen) after Western Blot.
  • PCR products were digested with EcoRI and BglII. Subsequently the amplified products were cloned into EcoRI and BamHI digested pBTac1 (Amann et al., Gene 25:167-178 (1983)) to produce pOL6.
  • Cells of E. coli strain JM109 were transformed with pOL6 and used for induction of protein expression, although any host strain carrying a lac repressor could be used.
  • the forward primer RnH-f GGGAATTCTT ATG AAA AGA CTG AGG AAT AT (SEQ ID NO:70), spanning the start codon (underlined) and containing restriction enzyme sites was used with the reverse primer RnH-r: GGA GAT C TC A TA GTC TCC TCT TTC TT (SEQ ID NO:71), containing restriction site and spanning the stop codon (underlined reverse complement) [codon 319 of the ORF shown in FIG. 10].
  • the PCR products were digested with EcoRI and BglII and ligated into EcoRI and BamHI digested pBTac1 (Amann et al. Gene 25:167-178. 1983) to produce pJB1.
  • RNA ligase clone cells of E. coli strain JM109 were transformed with pJB1 and used for induction of protein expression.
  • the forward primer HelI-f GGGCAATTGTT ATG GAA ACG ATT GTA ATT TC (SEQ ID NO:72), spanning the start codon (underlined) and containing restriction enzyme sites was used with the reverse primer HelI-r: CGGGATCC TCA TTT AAC AGC AAC GTC (SEQ ID NO:73), containing restriction site and spanning the stop codon (underlined reverse complement) [codon 417 of the ORF shown in FIG. 11].
  • the PCR products were digested with EcoRI and BglII and ligated into EcoRI and BamHI digested pBTac1 (Amann et al. Gene 25:167-178 (1983)) to produce pJB2.
  • Cells of E. coli strain JM109 were transformed with pJB2 and used for induction of protein expression.
  • Rhodothermus marinus strain ITI 378 A deposit of Rhodothermus marinus strain ITI 378, and a deposit Rhodothermus marinus strain ITI 378 infected with bacteriophage RM 378, was made at the following depository under the terms of the Budapest Treaty:
  • Rhodothermus marinus strain ITI 378 received accession number DSM 12830, with an accession date of May 28 th , 1999.
  • the infected strain ( Rhodothermus marinus strain ITI 378 infected with bacteriophage RM 378) received accession number DSM 12831, with an accession date of May 31 st , 1999.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A novel bacteriophage RM 378 of Rhodothermus marinus, the nucleic acids of its genome, nucleic acids comprising nucleotide sequences of open reading frames (ORFs) of its genome, and polypeptides encoded by the nucleic acids, are described.

Description

    RELATED APPLICATIONS
  • This application is a Divisional of U.S. application Ser. No.: 09/585,858, filed Jun. 1, 2000, which claims the benefit of U.S. Provisional Application No. 60/137,120, filed Jun. 2, 1999, the entire teachings of which are incorporated herein by reference. Five separate divisional applications are being filed concurrently herewith.[0001]
  • BACKGROUND OF THE INVENTION
  • The use of thermophilic enzymes has revolutionized the field of recombinant DNA technology. Polymerases (DNA and RNA), ligases, exonucleases, reverse transcriptases, polynucleotide kinases and lysozymes, as well as many other thermophilic enzymes, are of great importance in the research industry today. In addition, thermophilic enzymes are also used in commercial settings (e.g., proteases and lipases used in washing powder, hydrolidic enzymes used in bleaching). Identification of new thermophilic enzymes will facilitate continued DNA research as well as assist in improving commercial enzyme-based products. [0002]
  • SUMMARY OF THE INVENTION
  • This invention pertains to a novel bacteriophage of [0003] Rhodothermus marinus, bacteriophage RM 378, which can be isolated from its native environment or can be recombinantly produced. The invention additionally pertains to the nucleic acids of the genome of bacteriophage RM 378 as deposited, as well as to the nucleic acids of a portion of the genome of bacteriophage RM 378 as shown in FIG. 1; to isolated nucleic acid molecules containing a nucleotide sequence of an open reading frame (or more than one open reading frame) of the genome of bacteriophage RM 378, such as an open reading frame as set forth in FIG. 2; to isolated nucleic acid molecules encoding a polypeptide obtainable from bacteriophage RM 378 or an active derivative or fragment of the polypeptide (e.g., a DNA polymerase, such as a DNA polymerase lacking exonuclease domains; a 3′-5′ exonuclease, such as a 3′-5′ exonuclease lacking DNA polymerase domain; a 5′-3′ exonuclease (RNase H); a DNA helicase; or an RNA ligase); to DNA constructs containing the isolated nucleic acid molecule operatively linked to a regulatory sequence; and also to host cells comprising the DNA constructs. The invention further pertains to isolated polypeptides encoded by these nucleic acids, as well as active derivatives or fragments of the polypeptides.
  • Because the host organism of the [0004] RM 378 bacteriophage is a thermophile, the enzymes and proteins of the RM 378 bacteriophage are expected to be significantly more thermostable than those of other (e.g., mesophilic) bacteriophages, such as the T4 bacteriophage of Escherichia coli. The enhanced stability of the enzymes and proteins of RM 378 bacteriophage allows their use under temperature conditions which would be prohibitive for other enzymes, thereby increasing the range of conditions which can be employed not only in DNA research but also in commercial settings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. [0005] 1A-1Q2 are a depiction of the nucleic acid sequence (SEQ ID NO: 1) of the genome of bacteriophage RM 378.
  • FIGS. [0006] 2A-2C delineate the open reading frames (ORFs) in the genome of bacteriophage RM 378.
  • FIGS. [0007] 3A-3W depict a sequence alignment of the predicted gene products of ORF056e and ORF632e and sequences of DNA polymerases of family B. The sequence marked RM378 (SEQ ID NO:36) is the combined sequences of the gene products of ORF056e and ORF632e in bacteriophage RM378. The end of one sequence and the beginning of another is indicated. Other sequences are: Vaccinia virus (strain Copenhagen) DNA polymerase (DPOL_VACCC) (SEQ ID NO:2); Vaccinia virus (strain WR) DNA polymerase (DPOL_VACCV) (SEQ ID NO:3); Variola virus DNA polymerase (DPOL_VARV) (SEQ ID NO:4); Fowlpox virus DNA polymerase (DPOL_FOWPV) (SEQ ID NO:5); Bos taurus (Bovine) DNA polymerase delta catalytic chain (DPOD_BOVIN) (SEQ ID NO:6); Human DNA polymerase delta catalytic chain (DPOD_HUMAN) (SEQ ID NO:7); Candida albicans (Yeast) DNA polymerase delta large chain (DPOD_CANAL) (SEQ ID NO:8); Saccharomyces cerevisiae DNA polymerase delta large chain (DPOD_YEAST) (SEQ ID NO:9); Schizosaccharomyces pombe DNA polymerase delta large chain (DPOD_SCHPO) (SEQ ID NO:10); Plasmodium falciparum DNA polymerase delta catalytic chain (DPOD_PLAFK) (SEQ ID NO: 11); Chlorella virus NY-2A DNA polymerase (DPOL_CHVN2) (SEQ ID NO: 12); Paramecium bursaria chlorella virus 1 DNA polymerase (DPOL_CHVP1) (SEQ ID NO:13); Epstein-barr virus (strain B95-8) DNA polymerase (DPOL_EBV) (SEQ ID NO: 14); Herpesvirus saimiri (strain 11) DNA polymerase (DPOL_HSVSA) (SEQ ID NO:15); Herpes simplex virus (type 1/strain 17) DNA polymerase (DPOL_HSV11) (SEQ ID NO: 16); Herpes simplex virus (type 2/strain 186) DNA polymerase (DPOL_HSV21) (SEQ ID NO:17); Equine herpesvirus type 1 (strain Ab4p) (EHV-1) DNA polymerase (DPOL_HSVEB) (SEQ ID NO: 18); Varicella-zoster virus (strain Dumas) (VZV) DNA polymerase (DPOL_VZVD) (SEQ ID NO: 19); Human cytomegalovirus (strain AD169) DNA polymerase (DPOL_HCMVA) (SEQ ID NO:20); Murine cytomegalovirus (strain Smith) DNA polymerase (DPOL_MCMVS) (SEQ ID NO:21); Herpes simplex virus (type 6/strain Uganda-1102) DNA polymerase (DPOL_HSV6U) (SEQ ID NO:22); Human DNA polymerase alpha catalytic subunit (DPOA_HUMAN) (SEQ ID NO:23); Mouse DNA polymerase alpha catalytic subunit (DPOA_MOUSE) (SEQ ID NO:24); Drosophila melanogaster DNA polymerase alpha catalytic subunit (DPOA_DROME) (SEQ ID NO:25); Schizosaccharomyces pombe DNA polymerase alpha catalytic subunit (DPOA_SCHPO) (SEQ ID NO:26); Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit (DPOA_YEAST) (SEQ ID NO:27); Trypanosoma brucei DNA polymerase alpha catalytic subunit (DPOA_TRYBB) (SEQ ID NO:28); Autographa californica nuclear polyhedrosis virus DNA polymerase (DPOL_NPVAC) (SEQ ID NO:29); Lymantria dispar multicapsid nuclear polyhedrosis virus DNA polymerase (DPOL_NPVLD) (SEQ ID NO:30); Saccharomyces cerevisiae DNA polymerase zeta catalytic subunit (DPOZ_YEAST) (SEQ ID NO:31); Pyrococcus woesei DNA polymerase (DPOL_PYRFU) (SEQ ID NO:32);. Sulfolobus solfataricus DNA polymerase I (DPO1_SULSO) (SEQ ID NO:33); Escherichia coli DNA polymerase II (DPO2_ECOLI) (SEQ ID NO:34); Desilforococcus strain Tok DNA polymerase (Dpol_Dtok) (SEQ ID NO:35); and bacteriophage RB69 DNA polymerase (RB69) (SEQ ID NO:37). Most of the sequences are partial as found in the Protein Families Data Base of Alignments and HMMs (Sanger Institute), family DNA_pol_B, accession no. PF00136.
  • FIG. 4 depicts a sequence alignment of the predicted gene product of ORF739f from bacteriophage RM378 (ORF-739f) (SEQ ID NO:40), [0008] Autographa californica nucleopolyhedrovirus putative bifunctional polynucleotide kinase and RNA ligase (ACNV-RNAlig) (SEQ ID NO:38); and bacteriophage T4 RNA ligase (T4-RNAlig) (SEQ ID NO:39).
  • FIG. 5 depicts a sequence alignment of the predicted gene product of ORF1218a from bacteriophage RM378 (ORF-1218a) (SEQ ID NO:43) with proteins or domains with 5′-3′ exonuclease activity, including: [0009] Escherichia coli DNA polymerase I (Ecoli-polI) (SEQ ID NO:41), Thermus aquaticus DNA polymerase I (Taq-polI) (SEQ ID NO:42), bacteriophage T4 ribonuclease H (T4-RNaseH) (SEQ ID NO:44) and bacteriophage T7 gene6 exonuclease (T7-gp6exo) (SEQ ID NO:45). Conservation of acidic residues mainly clustered at the proposed active site are seen.
  • FIGS. [0010] 6A-6B depict a sequence alignment of the predicted gene product of ORF1293b (SEQ ID NO:55) from bacteriophage RM378 (ORF1293b) with sequences of replicative DNA helicases of the DnaB family, including: Escherichia coli (DnaB-Ecoli) (SEQ ID NO:46), Haemophilus influenza (DnaB-Hinflu) (SEQ ID NO:47), Chlamydomonas trachomatis (DnaB-Ctracho) (SEQ ID NO:48), Bacillus stearothermophilus (DnaB-Bstearo) (SEQ ID NO:49), Halobacter pylori (DnaB-Hpylor) (SEQ ID NO:50), Mycoplasma genitalium (DnaB-Mgenital) (SEQ ID NO:51), Borrelia burgdorferi (DnaB-Bburgdor) (SEQ ID NO:52), bacteriophage T4 gene 41 (T4-gp41) (SEQ ID NO:53), bacteriophage T7 gene 4 (T7-gp4) (SEQ ID NO:54) (from the Protein Families Data Base of Alignments and HMMS (Sanger Institute), family DnaB, accession no. PF00772). The sequences have been truncated at the N-termini, and conserved sequence motifs are indicated.
  • FIGS. [0011] 7A-7B depict the nucleic acid sequence of open reading frame ORF 056e (nucleotides 21993-23042 of the genome) (SEQ ID NO:56) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:57) which displays amino acid sequence similarity to polymerase 3′-5′ exonucleases.
  • FIGS. [0012] 8A-8B depict the nucleic acid sequence of open reading frame ORF 632e (nucleotides 79584-81152 of the genome) (SEQ ID NO:58) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:59) which displays amino acid sequence similarity to polymerases.
  • FIGS. [0013] 9A-9B depict the nucleic acid sequence of open reading frame ORF 739f (nucleotides 90291-91607 of the genome) (SEQ ID NO:60) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:40) which displays amino acid sequence similarity to RNA ligase.
  • FIGS. [0014] 10A-10B depict the nucleic acid sequence of open reading frame ORF 1218a (nucleotides 8212-9168 of the genome) (SEQ ID NO:61) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:43) which displays amino acid sequence similarity to 5′-3′ exonuclease of DNA polymerase I and T4 RNase H.
  • FIGS. [0015] 11A-11B depict the nucleic acid sequence of open reading frame ORF 1293b (nucleotides 15785-17035 of the genome) (SEQ ID NO:62) with flanking sequences, and the putative encoded polypeptide (SEQ ID NO:55) which displays amino acid sequence similarity to T4 DNA helicase.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a bacteriophage, the nucleic acid sequence of the bacteriophage genome as well as portions of the nucleic acid sequence of the bacteriophage genome (e.g., a portion containing an open reading frame), and proteins encoded by the nucleic acid sequences, as well as nucleic acid constructs comprising portions of the nucleic acid sequence of the bacteriophage genome, and host cells comprising such nucleic acid constructs. As described herein, Applicants have isolated and characterized a novel bacteriophage active against the slightly halophilic, thermophilic eubacterium [0016] Rhodothermus marinus. The bacteriophage, RM 378, is a member of the Myoviridae family, with an A2 morphology. RM 378, which is completely stable up to about 65° C., appears to consist of approximately 16 proteins with one major protein of molecular weight of 61,000 daltons. RM 378 can be replicated in Rhodothermus marinus species ITI 378.
  • RHODOTHERMUS MARINUS ITI 378 [0017]
  • Accordingly, one embodiment of the invention is the bacterium, [0018] Rhodothermus marinus species ITI 378. Rhodothermus marinus, and particularly species ITI 378, can be cultured in a suitable medium, such as medium 162 for Thermus as described by Degryse et al. (Arch. Microbiol. 117:189-196 (1978)), with {fraction (1/10)} buffer and with 1% NaCl. Rhodothermus marinus species ITI 378 can be used in replication of bacteriophage RM 378, as described herein, or in replication or identification of other bacteriophages, particularly thermophilic bacteriophages. Rhodothermus marinus species ITI 378 can also used in the study of the relationship between the bacteriophages and their host cells (e.g., between bacteriophage RM 378 and Rhodothermus marinus species ITI 378).
  • BACTERIOPHAGE [0019] RM 378
  • Another embodiment of the invention is isolated RM 378 bacteriophage. “Isolated” RM 378 bacteriophage refers to bacteriophage that has been separated, partially or totally, from its native environment (e.g., separated from [0020] Rhodothermus marinus host cells) (“native bacteriophage”), and also refers to bacteriophage that has been chemically synthesized or recombinantly produced (“recombinant bacteriophage”). A bacteriophage that has been “recombinantly produced” refers to a bacteriophage that has been manufactured using recombinant DNA technology, such as by inserting the bacteriophage genome into an appropriate host cell (e.g., by introducing the genome itself into a host cell, or by incorporating the genome into a vector, which is then introduced into the host cell).
  • Isolated bacteriophage RM 378 can be used in the study of the relationship between the bacteriophages and their host cells (e.g., [0021] Rhodothermus marinus, such as Rhodothermus marinus species ITI 378). Isolated bacteriophage RM 378 can also be used as a vector to deliver nucleic acids to a host cell; that is, the bacteriophage can be modified to deliver nucleic acids comprising a gene from an organism other than the bacteriophage (a “foreign” gene). For example, nucleic acids encoding a polypeptide (e.g., an enzyme or pharmaceutical peptide) can be inserted into the genome of bacteriophage RM 378, using standard techniques. The resultant modified bacteriophage can be then used to infect host cells, and the protein encoded by the foreign nucleic acids can then be produced.
  • [0022] Bacteriophage RM 378 can be produced by inoculating appropriate host cells with the bacteriophage. Representative host cells in which the bacteriophage can replicate include Rhodothermus marinus, particularly species isolated in a location that is geographically similar to the location where bacteriophage RM 378 was isolated (e.g., northwest Iceland). In a preferred embodiment, the host cell is Rhodothermus marinus species ITI 378. The host cells are cultured in a suitable medium (e.g., medium 162 for Thermus as described by Degryse et al., Arch. Microbiol 117:189-196 (1978), with {fraction (1/10)} buffer and with 1% NaCl). In addition, the host cells are cultured under conditions suitable for replication of the bacteriophage. For example, in a preferred embodiment, the host cells are cultured at a temperature of at least approximately 50° C. In a more preferred embodiment, the host cells are cultured at a temperature between about 50° C. and about 80° C. The bacteriophage can also be stored in a cell lysate at about 4° C.
  • NUCLEIC ACIDS OF THE INVENTION [0023]
  • Another embodiment of the invention pertains to isolated nucleic acid sequences obtainable from the genome of [0024] bacteriophage RM 378. As described herein, approximately 130 kB of the genome of bacteriophage RM 378 have been sequenced. The sequence of this 130 kB is set forth in FIG. 1. There are at least approximately 200 open reading frames (ORFs) in the sequence; of these, at least approximately 120 putatively encode a polypeptide of 100 amino acids in length or longer. These 120 are set forth in FIG. 2. FIG. 2 sets forth the locus of each ORF; the start and stop nucleotides in the sequence of each ORF; the number of nucleotides in the ORF, and the expected number of amino acids encoded therein; the direction of the ORF; the identity of the putative protein encoded therein; the protein identified by a BLAST search as being the closest match to the putative protein; the percentage identity at the amino acid level of the putative protein (based on partial sequence similarity; the overall similarity is lower); the organism from which the closest matching protein is derived; and other information relating to the ORFs.
  • The invention thus pertains to isolated nucleic acid sequence of the genome (“isolated genomic DNA”) of the [0025] bacteriophage RM 378 that has been deposited with the Deutsche Sammlung Von Mikroorganismen und Zellkulturen GmbH (DSMZ) as described below. The invention also pertains to isolated nucleic acid sequence of the genome of bacteriophage RM 378 as is shown in FIG. 1 (SEQ ID NO: 1).
  • The invention additionally pertains to isolated nucleic acid molecules comprising the nucleotide sequences of each of the ORFs described above or fragments thereof, as well as nucleic acid molecules comprising nucleotide sequences of more than one of the ORFs described above or fragments of more than one of the ORFs. The nucleic acid molecules of the invention can be DNA, or can also be RNA, for example, mRNA. DNA molecules can be double-stranded or single-stranded; single stranded RNA or DNA can be either the coding, or sense, strand or the non-coding, or antisense, strand. Preferably, the nucleic acid molecule comprises at least about 100 nucleotides, more preferably at least about 150 nucleotides, and even more preferably at least about 200 nucleotides. The nucleotide sequence can be only that which encodes at least a fragment of the amino acid sequence of a polypeptide; alternatively, the nucleotide sequence can include at least a fragment of a coding sequence along with additional non-coding sequences such as [0026] non-coding 3′ and 5′ sequences (including regulatory sequences, for example).
  • In certain preferred embodiments, the nucleotide sequence comprises one of the following ORFs: [0027] ORF 056e, 632e, 739f, 1218a, 1293b. For example, the nucleotide sequence can consist essentially of one of the ORFs and its flanking sequences, such as are shown in FIGS. 7-11 (e.g., ORF 056e (SEQ ID NO:56), 632e (SEQ ID NO:58), 739f (SEQ ID NO:60), 1218a (SEQ ID NO:61), 1293b (SEQ ID NO:62)).
  • Additionally, the nucleotide sequence(s) can be fused to a marker sequence, for example, a sequence which encodes a polypeptide to assist in isolation or purification of the polypeptide. Representative sequences include, but are not limited to, those which encode a glutathione-S-transferase (GST) fusion protein. In one embodiment, the nucleotide sequence contains a single ORF in its entirety (e.g., encoding a polypeptide, as described below); or contains a nucleotide sequence encoding an active derivative or active fragment of the polypeptide; or encodes a polypeptide which has substantial sequence identity to the polypeptides described herein. In a preferred embodiment, the nucleic acid encodes a polymerase (e.g., DNA polymerase); DNA polymerase accessory protein; dsDNA binding protein; deoxyriboncleotide-3-phosphatase; DNA topoisomerase; DNA helicase; an exonuclease (e.g., 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H)); RNA ligase; site-specific RNase inhibitor of protease; endonuclease; exonuclease; mobility nuclease; reverse transcriptase; single-stranded binding protein; endolysin; lysozyme; helicase; alpha-glucosyltransferase; or thymidine kinase, as described herein. In a particularly preferred embodiment, the nucleic acid encodes a DNA polymerase, 3′-5′ exonuclease, 5′-3 exonuclease (RNase H), DNA helicase or RNA ligase. In another particularly preferred embodiment, the nucleic acid encodes a DNA polymerase that lacks exonuclease domains, or a 3′-5′ exonuclease that lacks DNA polymerase domain, as described below. [0028]
  • The nucleic acid molecules of the invention are “isolated;” as used herein, an “isolated” nucleic acid molecule or nucleotide sequence is intended to mean a nucleic acid molecule or nucleotide sequence which is not flanked by nucleotide sequences which normally (in nature) flank the gene or nucleotide sequence (as in genomic sequences) and/or has been completely or partially purified from other transcribed sequences (e.g., as in an RNA library). For example, an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs. In some instances, the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstance, the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC. Thus, an isolated nucleic acid molecule or nucleotide sequence can include a nucleic acid molecule or nucleotide sequence which is synthesized chemically or by recombinant means. Therefore, recombinant DNA contained in a vector are included in the definition of “isolated” as used herein. Also, isolated nucleotide sequences include recombinant DNA molecules in heterologous organisms, as well as partially or substantially purified DNA molecules in solution. In vivo and in vitro RNA transcripts of the DNA molecules of the present invention are also encompassed by “isolated” nucleotide sequences. [0029]
  • The present invention also pertains to nucleotide sequences which are not necessarily found in nature but which encode the polypeptides described below. Thus, DNA molecules which comprise a sequence which is different from the naturally-occurring nucleotide sequence but which, due to the degeneracy of the genetic code, encode the polypeptides of the present invention are the subject of this invention. The invention also encompasses variations of the nucleotide sequences of the invention, such as those encoding active fragments or active derivatives of the polypeptides as described below. Such variations can be naturally-occurring, or non-naturally-occurring, such as those induced by various mutagens and mutagenic processes. Intended variations include, but are not limited to, addition, deletion and substitution of one or more nucleotides which can result in conservative or non-conservative amino acid changes, including additions and deletions. Preferably, the nucleotide or amino acid variations are silent or conserved; that is, they do not alter the characteristics or activity of the encoded polypeptide. [0030]
  • The invention described herein also relates to fragments of the isolated nucleic acid molecules described herein. The term “fragment” is intended to encompass a portion of a nucleotide sequence described herein which is from at least about 25 contiguous nucleotides to at least about 50 contiguous nucleotides or longer in length; such fragments are useful as probes and also as primers. Particularly preferred primers and probes selectively hybridize to the nucleic acid molecule encoding the polypeptides described herein. For example, fragments which encode polypeptides that retain activity, as described below, are particularly useful. [0031]
  • The invention also pertains to nucleic acid molecules which hybridize under high stringency hybridization conditions, such as for selective hybridization, to a nucleotide sequence described herein (e.g., nucleic acid molecules which specifically hybridize to a nucleotide sequence encoding polypeptides described herein, and, optionally, have an activity of the polypeptide). Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Suitable probes include polypeptide nucleic acids, as described in (Nielsen et al., [0032] Science 254, 1497-1500 (1991)).
  • Such nucleic acid molecules can be detected and/or isolated by specific hybridization (e.g., under high stringency conditions). “Stringency conditions” for hybridization is a term of art which refers to the incubation and wash conditions, e.g., conditions of temperature and buffer concentration, which permit hybridization of a particular nucleic acid to a second nucleic acid; the first nucleic acid may be perfectly (i.e., 100%) complementary to the second, or the first and second may share some degree of complementarity which is less than perfect (e.g., 60%, 75%, 85%, 95%). For example, certain high stringency conditions can be used which distinguish perfectly complementary nucleic acids from those of less complementarity. [0033]
  • “High stringency conditions”, “moderate stringency conditions” and “low stringency conditions” for nucleic acid hybridizations are explained on pages 2.10.1-2.10.16 and pages 6.3.1-6 in [0034] Current Protocols in Molecular Biology (Ausubel, F. M. et al., “Current Protocols in Molecular Biology”, John Wiley & Sons, (1998)) the teachings of which are hereby incorporated by reference. The exact conditions which determine the stringency of hybridization depend not only on ionic strength (e.g., 0.2×SSC, 0.1×SSC), temperature (e.g., room temperature, 42° C., 68° C.) and the concentration of destabilizing agents such as formamide or denaturing agents such as SDS, but also on factors such as the length of the nucleic acid sequence, base composition, percent mismatch between hybridizing sequences and the frequency of occurrence of subsets of that sequence within other non-identical sequences. Thus, high, moderate or low stringency conditions can be determined empirically.
  • By varying hybridization conditions from a level of stringency at which no hybridization occurs to a level at which hybridization is first observed, conditions which will allow a given sequence to hybridize (e.g., selectively) with the most similar sequences in the sample can be determined. [0035]
  • Exemplary conditions are described in Krause, M. H. and S. A. Aaronson, [0036] Methods in Enzymology, 200:546-556 (1991). Also, in, Ausubel, et al., “Current Protocols in Molecular Biology”, John Wiley & Sons, (1998), which describes the determination of washing conditions for moderate or low stringency conditions. Washing is the step in which conditions are usually set so as to determine a minimum level of complementarity of the hybrids. Generally, starting from the lowest temperature at which only homologous hybridization occurs, each ° C. by which the final wash temperature is reduced (holding SSC concentration constant) allows an increase by 1% in the maximum extent of mismatching among the sequences that hybridize. Generally, doubling the concentration of SSC results in an increase in Tm of ˜17° C. Using these guidelines, the washing temperature can be determined empirically for high, moderate or low stringency, depending on the level of mismatch sought.
  • For example, a low stringency wash can comprise washing in a solution containing 0.2×SSC/0.1% SDS for 10 min at room temperature; a moderate stringency wash can comprise washing in a prewarmed solution (42° C.) solution containing 0.2×SSC/0.1% SDS for 15 min at 42° C.; and a high stringency wash can comprise washing in prewarmed (68° C.) solution containing 0.1×SSC/0.1%SDS for 15 min at 68° C. Furthermore, washes can be performed repeatedly or sequentially to obtain a desired result as known in the art. [0037]
  • Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleic acid molecule and the primer or probe used. Hybridizable nucleic acid molecules are useful as probes and primers, e.g., for diagnostic applications. [0038]
  • Such hybridizable nucleotide sequences are useful as probes and primers for diagnostic applications. As used herein, the term “primer” refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as, DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. The appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template. The term “primer site” refers to the area of the target DNA to which a primer hybridizes. The term “primer pair” refers to a set of primers including a 5′ (upstream) primer that hybridizes with the 5′ end of the DNA sequence to be amplified and a 3′ (downstream) primer that hybridizes with the complement of the 3′ end of the sequence to be amplified. [0039]
  • The invention also pertains to nucleotide sequences which have a substantial identity with the nucleotide sequences described herein; particularly preferred are nucleotide sequences which have at least about 10%, preferably at least about 20%, more preferably at least about 30%, more preferably at least about 40%, even more preferably at least about 50%, yet more preferably at least about 70%, still more preferably at least about 80%, and even more preferably at least about 90% identity, with nucleotide sequences described herein. Particularly preferred in this instance are nucleotide sequences encoding polypeptides having an activity of a polypeptide described herein. For example, in one embodiment, the nucleotide sequence encodes a DNA polymerase, 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H), DNA helicase, or RNA ligase, as described below. In a preferred embodiment, the nucleotide encodes a DNA polymerase lacking exonuclease domains, or a 3′-5′ exonuclease lacking DNA polymerase domain, as described below. [0040]
  • To determine the percent identity of two nucleotide sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first nucleotide sequence). The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions×100). [0041]
  • The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin et al, [0042] Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST program which can be used to identify sequences having the desired identity to nucleotide sequences of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res, 25:3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., NBLAST) can be used. See the programs provided by National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health. In one embodiment, parameters for sequence comparison can be set at W=12. Parameters can also be varied (e.g., W=5 or W=20). The value “W” determines how many continuous nucleotides must be identical for the program to identify two sequences as containing regions of identity.
  • The invention also provides expression vectors containing a nucleic acid sequence encoding a polypeptide described herein (or an active derivative or fragment thereof), operably linked to at least one regulatory sequence. Many expression vectors are commercially available, and other suitable vectors can be readily prepared by the skilled artisan. “Operably linked” is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleic acid sequence. Regulatory sequences are art-recognized and are selected to produce the polypeptide or active derivative or fragment thereof. Accordingly, the term “regulatory sequence” includes promoters, enhancers, and other expression control elements which are described in Goeddel, [0043] Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). For example, the native regulatory sequences or regulatory sequences native to bacteriophage RM 378 can be employed. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of polypeptide desired to be expressed. For instance, the polypeptides of the present invention can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in an appropriate host cell (see, for example, Broach, et al., Experimental Manipulation of Gene Expression, ed. M. Inouye (Academic Press, 1983) p. 83; Molecular Cloning: A Laboratory Manual, 2nd Ed., ed. Sambrook et al. (Cold Spring Harbor Laboratory Press, 1989) Chapters 16 and 17). Typically, expression constructs will contain one or more selectable markers, including, but not limited to, the gene that encodes dihydrofolate reductase and the genes that confer resistance to neomycin, tetracycline, ampicillin, chloramphenicol, kanamycin and streptomycin resistance. Thus, prokaryotic and eukaryotic host cells transformed by the described expression vectors are also provided by this invention. For instance, cells which can be transformed with the vectors of the present invention include, but are not limited to, bacterial cells such as Rhodothermus marinus, E. coli (e.g., E. coli K12 strains), Streptomyces, Pseudomonas, Bacillus, Serratia marcescens and Salmonella typhimurium. The host cells can be transformed by the described vectors by various methods (e.g., electroporation, transfection using calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection, infection where the vector is an infectious agent such as a retroviral genome, and other methods), depending on the type of cellular host. The nucleic acid molecules of the present invention can be produced, for example, by replication in such a host cell, as described above. Alternatively, the nucleic acid molecules can also be produced by chemical synthesis.
  • The isolated nucleic acid molecules and vectors of the invention are useful in the manufacture of the encoded polypeptide, as probes for isolating homologous sequences (e.g., from other bacteriophage species), as well as for detecting the presence of the bacteriophage in a culture of host cells. [0044]
  • The nucleotide sequences of the nucleic acid molecules described herein (e.g., a nucleic acid molecule comprising any of the open reading frames shown in FIG. 2, such as a nucleic acid molecule comprising the open reading frames depicted in FIGS. [0045] 7-11 (SEQ ID NO:56, 58, 60, 61 and 62, respectively)) can be amplified by methods known in the art. For example, this can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, New York, N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila et al., Nucleic Acids Res. 19, 4967 (1991); Eckert et al., PCR Methods and Applications 1, 17 (1991); PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat. No. 4,683,202.
  • Other suitable amplification methods include the ligase chain reaction (LCR) (see Wu and Wallace, [0046] Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)), and self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)) and nucleic acid based sequence amplification (NASBA). The latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • The amplified DNA can be radiolabelled and used as a probe for screening a library or other suitable vector to identify homologous nucleotide sequences. Corresponding clones can be isolated, DNA can be obtained following in vivo excision, and the cloned insert can be sequenced in either or both orientations by art recognized methods, to identify the correct reading frame encoding a protein of the appropriate molecular weight. For example, the direct analysis of the nucleotide sequence of homologous nucleic acid molecules of the present invention can be accomplished using either the dideoxy chain termination method or the Maxam Gilbert method (see Sambrook et al., [0047] Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al., Recombinant DNA Laboratory Manual, (Acad. Press, 1988)). Using these or similar methods, the protein(s) and the DNA encoding the protein can be isolated, sequenced and further characterized.
  • POLYPEPTIDES OF THE INVENTION [0048]
  • The invention additionally relates to isolated polypeptides obtainable from the [0049] bacteriophage RM 378. The term, “polypeptide,” as used herein, includes proteins, enzymes, peptides, and gene products encoded by nucleic acids described herein. In one embodiment, the invention pertains to the polypeptides encoded by the ORFs as described above. In addition, as described in detail below, bacteriophage RM 378 is similar to the well-known E. coli bacteriophage T4. Thus, it is expected that bacteriophage RM 378 comprises additional polypeptides that are homologous to those found in bacteriophage T4.
  • For example, representative proteins expected to be encoded by genes of [0050] bacteriophage RM 378 include the following: DNA topoisomerase; exonuclease (e.g., 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H)); helicase; enzymes related to DNA or RNA synthesis (e.g., dCTPase, dUTPase, dCDPase, dUDPase, GTPase, dGTPase, ATPase, dATPase); transposase; reverse transcriptase; polymerase (e.g., DNA polymerase, RNA polymerase); DNA polymerase accessory protein; DNA packaging protein; DNA topoisomerase; RNA polymerase binding protein; RNA polymerase sigma factor; site-specific RNase inhibitor of protease; recombinant protein; alpha-glucosyltransferase; mobility nuclease; endonuclease (e.g., endonuclease II, endonuclease V, endonuclease VII); inhibitor of Lon protease; thymidine kinase; site-specific RNase; N-glycosidase; endolysin; lysozyme; dNMP kinase; DNA ligase; deoxyribonucleotide-3′-phosphatase; ssDNA binding protein; dsDNA binding protein; and RNA ligase.
  • In a particularly preferred embodiment, the polypeptide is polymerase (e.g., DNA polymerase); DNA polymerase accessory protein; dsDNA binding protein; deoxyriboncleotide-3-phosphatase; DNA topoisomerase; RNA ligase; site-specific RNase inhibitor of protease; endonuclease; exonuclease (e.g., 3′-5′ exonuclease, 5′-3′ exonuclease (RNase H)); nobility nuclease; reverse transcriptase; single-stranded binding protein; enolysin; lysozyme; helicase; alpha-glucosyltransferase; or thymidine kinase. In an especially preferred embodiment, the polypeptide is a DNA polymerase, a 3′-5′ exonuclease, a 5′-3′ exonuclease (RNase H), a DNA helicase, or an RNA ligase, such as those shown in FIGS. [0051] 7-11 (e.g., for a DNA polymerase, SEQ ID NO:58; a 3′-5′ exonuclease, SEQ ID NO:56; a 5′-3′ exonuclease (RNase H) (SEQ ID NO:61); a DNA helicase (SEQ ID NO:62), or an RNA ligase (SEQ ID NO:60)). In a most preferred embodiment, the polypeptide is a DNA polymerase that lacks exonuclease domains, or a 3′-5′ exonuclease that lacks DNA polymerase domain, as described in the examples below. As used herein, the term, “lacking exonuclease domains,” indicates that the polypeptide does not contain an amino acid domain (e.g., a consecutive or closely spaced series of amino acids) homologous to domains where such exonuclease activity resides in other similar polymerases (such as polymerases in the same family); it does not refer to the presence of a non-functional domain homologous to domains where exonuclease activity resides. Similarly, the term, “lacking DNA polymerase domain,” indicates that the polypeptide does not contain an amino acid domain (e.g., a consecutive or closely spaced series of amino acids) homologous to domains where such DNA polymerase activity resides in other similar exonucleases (such as exonucleases in the same family); it does not refer to the presence of a non-functional domain homologous to domains where DNA polymerase activity resides.
  • These polypeptides can be used in a similar manner as the homologous polypeptides from bacteriophage T4; for example, polymerases and ligases of [0052] bacteriophage RM 378 can be used for amplification or manipulation of DNA and RNA sequences. The polymerases and ligases of bacteriophage RM 378, however, are expected to be much more thermostable than those of bacteriophage T4, because of the thermophilic nature of the host of bacteriophage RM 378 (in contrast with the mesophilic nature of E. coli, the host of bacteriophage T4).
  • The polypeptides of the invention can be partially or substantially purified (e.g., purified to homogeneity), and/or are substantially free of other polypeptides. According to the invention, the amino acid sequence of the polypeptide can be that of the naturally-occurring polypeptide or can comprise alterations therein. Polypeptides comprising alterations are referred to herein as “derivatives” of the native polypeptide. Such alterations include conservative or non-conservative amino acid substitutions, additions and deletions of one or more amino acids; however, such alterations should preserve at least one activity of the polypeptide, i.e., the altered or mutant polypeptide should be an active derivative of the naturally-occurring polypeptide. For example, the mutation(s) can preferably preserve the three dimensional configuration of the binding site of the native polypeptide, or can preferably preserve the activity of the polypeptide (e.g., if the polypeptide is a DNA polymerase, any mutations preferably preserve the ability of the enzyme to catalyze combination of nucleotide triphosphates to form a nucleic acid strand complementary to a nucleic acid template strand). The presence or absence of activity or activities of the polypeptide can be determined by various standard functional assays including, but not limited to, assays for binding activity or enzymatic activity. [0053]
  • Additionally included in the invention are active fragments of the polypeptides described herein, as well as fragments of the active derivatives described above. An “active fragment,” as referred to herein, is a portion of polypeptide (or a portion of an active derivative) that retains the polypeptide's activity, as described above. [0054]
  • Appropriate amino acid alterations can be made on the basis of several criteria, including hydrophobicity, basic or acidic character, charge, polarity, size, the presence or absence of a functional group (e.g., —SH or a glycosylation site), and aromatic character. Assignment of various amino acids to similar groups based on the properties above will be readily apparent to the skilled artisan; further appropriate amino acid changes can also be found in Bowie et al. ([0055] Science 247:1306-1310(1990)). For example, conservative amino acid replacements can be those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are generally divided into four families: (1) acidic=aspartate, glutamate; (2) basic=lysine, arginine, histidine; (3) nonpolar=alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar=glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine. Phenylalanine, tryptophan and tyrosine are sometimes classified jointly as aromatic amino acids. For example, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine or a similar conservative replacement of an amino acid with a structurally related amino acid will not have a major effect on activity or functionality.
  • The polypeptides of the invention can also be fusion polypeptides comprising all or a portion (e.g., an active fragment) of the [0056] native bacteriophage RM 378 polypeptide amino acid sequence fused to an additional component, with optional linker sequences. Additional components, such as radioisotopes and antigenic tags, can be selected to assist in the isolation or purification of the polypeptide or to extend the half life of the polypeptide; for example, a hexahistidine tag would permit ready purification by nickel chromatography. The fusion protein can contain, e.g., a glutathione-S-transferase (GST), thioredoxin (TRX) or maltose binding protein (MBP) component to facilitate purification; kits for expression and purification of such fusion proteins are commercially available. The polypeptides of the invention can also be tagged with an epitope and subsequently purified using antibody specific to the epitope using art recognized methods. Additionally, all or a portion of the polypeptide can be fused to carrier molecules, such as immunoglobulins, for many purposes, including increasing the valency of protein binding sites. For example, the polypeptide or a portion thereof can be linked to the Fc portion of an immunoglobulin; for example, such a fusion could be to the Fc portion of an IgG molecule to create a bivalent form of the protein.
  • Also included in the invention are polypeptides which are at least about 90% identical (i.e., polypeptides which have substantial sequence identity) to the polypeptides described herein. However, polypeptides exhibiting lower levels of identity are also useful, particular if they exhibit high, e.g., at least about 90%, identity over one or more particular domains of the polypeptide. For example, polypeptides sharing high degrees of identity over domains necessary for particular activities, such as binding or enzymatic activity, are included herein. Thus, polypeptides which are at least about 10%, preferably at least about 20%, more preferably at least about 30%, more preferably at least about 40%, even more preferably at least about 50%, yet more preferably at least about 70%, still more preferably at least about 80%, and even more preferably at least about 90% identity, are encompassed by the invention. [0057]
  • Polypeptides described herein can be isolated from naturally-occurring sources (e.g., isolated from host cells infected with bacteriophage RM 378). Alternatively, the polypeptides can be chemically synthesized or recombinantly produced. For example, PCR primers can be designed to amplify the ORFs from the start codon to stop codon, using DNA of RM378 or related bacteriophages or respective recombinant clones as a template. The primers can contain suitable restriction sites for an efficient cloning into a suitable expression vector. The PCR product can be digested with the appropriate restriction enzyme and ligated between the corresponding restriction sites in the vector (the same restriction sites, or restriction sites producing the same cohesive ends or blunt end restriction sites). [0058]
  • Polypeptides of the present invention can be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using art-recognized methods. They are particularly useful for molecular weight markers for analysis of proteins from thermophilic organisms, as they will behave similarly (e.g., they will not denature as proteins from mesophilic organisms would). [0059]
  • The polypeptides of the present invention can be isolated or purified (e.g., to homogeneity) from cell culture (e.g., from culture of host cells infected with bacteriophage RM 378) by a variety of processes. These include, but are not limited to, anion or cation exchange chromatography, ethanol precipitation, affinity chromatography and high performance liquid chromatography (HPLC). The particular method used will depend upon the properties of the polypeptide; appropriate methods will be readily apparent to those skilled in the art. For example, with respect to protein or polypeptide identification, bands identified by gel analysis can be isolated and purified by HPLC, and the resulting purified protein can be sequenced. Alternatively, the purified protein can be enzymatically digested by methods known in the art to produce polypeptide fragments which can be sequenced. The sequencing can be performed, for example, by the methods of Wilm et al. ([0060] Nature 379(6564):466-469 (1996)). The protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Scopes, Protein Purification, Principles and Practice, 2nd Edition, Springer-Verlag, N.Y. (1987); and Deutscher (ed), Guide to Protein Purification, Methods in Enzymology, Vol. 182 (1990).
  • The following Examples are offered for the purpose of illustrating the present invention and are not to be construed to limit the scope of this invention. The teachings of all references cited are hereby incorporated herein by reference in their entirety. [0061]
  • EXAMPLE 1 Isolation, Purification and Characterization of Bacteriophage A. Materials and Methods
  • Bacterial Strains and Growth Media [0062]
  • The thermophilic, slightly halophilic eubacterium, [0063] Rhodothermus marinus was first isolated from shallow water submarine hot springs in Isafjardardjup in northwest Iceland (Alfredsson, G. A. et al., J. Gen. Microbiol. 134:299-306 (1988)). Since then Rhodothermus has also been isolated from two other areas in Iceland (Petursdottir et al., in prep.), from the Azores and the Bay of Naples in Italy (Nunes, O. C. et al, Syst. Appl. Microbiol. 15:92-97 (1992); Moreira, L. et al., Syst. Appl. Microbiol. 19:83-90 (1996)). Rhodothermus is distantly related to the group containing Flexibacter, Bacterioides and Cytophaga species (Anderson, O. S. and Fridjonsson, O. H., J. Bacteriol. 176:6165-6169 (1994)).
  • Strain ITI 378 (originally R-21) is one of the first Rhodothermus strains isolated from submarine hot springs in Isafjardardjup in northwest Iceland. The strain was grown at 65° C. in [0064] medium 162 for Thermus (Degryse et al., Arch. Microbiol. 117:189-196 (1978)), with {fraction (1/10)} the buffer and with 1% NaCl. Strain ITI 378 is phenotypically and phylogenetically similar (over 99% similarity in 16s rRNA sequence) to type strain DSM 4252.
  • Bacteriophage Isolation [0065]
  • A water sample with some sand and mud was collected from a hot spring (62° C.) appearing at low tide in Isafjardardjup at the same site as the bacterium was originally isolated. The same kind of samples were collected from the Blue Lagoon and the Salt factory on Reykjanes in southwest Iceland. [0066]
  • After mixing a sample in a Waring blender, the sample was filtered through a Buchner funnel, followed by centrifugation, before filtering the water through a 0.45 μm membrane. After centrifuging again, the sample was filtered through a sterile 0.2 μm membrane. This filtrate was used for infecting 18 different Rhodothermus strains (8 from Isafjardardjup in northwest Iceland, and 10 from Reykjanes in southwest Iceland). The sample (4 ml) was mixed with 5 ml of soft agar A (the above growth medium with 2% agar) and 1 ml of overnight culture of different Rhodothermus strains. After pouring the sample onto a thin layer agar plate, the plates were incubated for 1-2 days at 65° C. A single, well-isolated plaque was stabbed with a sterile Pasteur pipette and dissolved in 100 μl of 10 mM MgCl[0067] 2 solution (forming the plaque solution).
  • The bacteriophage is sensitive to freezing; it can be stored in a cell lysate at 4° C. (e.g., as described below under “Liquid Lysate”). [0068]
  • Plate Lysate [0069]
  • Overnight culture (0.9 ml) was mixed with 100 μl of the plaque solution and incubated for 15 minutes at 65° C. before adding 3 ml of soft agar B (same as A, but 1% agar and 10 mM MgCl[0070] 2). After mixing and pouring onto thin layer agar plates, the plates were incubated for 1-2 days at 65° C. To nearly totally lysed plates was added 1 ml of 10 mM MgCl2, and after incubating at 4° C. for a few hours, the top layer was scraped off and put into a sterile tube. After adding 100 μl chloroform and mixing it, the sample was centrifuged and the supernatant collected. The sample was centrifuged again and filtered through a 0.2 μm filter; the filtrate was stored at 4° C. This lysate was used for testing host specificity.
  • Liquid Lysate [0071]
  • Liquid cultures were infected when they had reached an absorbance of 0.5 at 600 nm (expected to contain 2.5×10[0072] 8 cells/ml). The phage ratio was 0.1 pfu/cell culture. The cultures were incubated at high shaking (300 rpm) and growth was followed by measuring absorbance at 600 nm. When lysis had occurred, chloroform was added to the cultures (10 μl/ml) and shaking continued for 1 hour. Cell debris was removed by centrifugation and titer estimation was performed on the supernatant. large-scale purification from 300 ml culture was undertaken for DNA isolation and for protein composition analysis, as well as for electron microcopy.
  • Bacteriophage Purification [0073]
  • For electron microscopy, the bacteriophages were precipitated using PEG 8000 (Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and resuspended in SM buffer (Sambrook, J. et al, Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) before loading on the top of CsCl (0.75 g/ml). This sample was centrifuged for 23 hours at 38,000 rpm in TY-64 rotor (Sorvall Ultracentrifuge). The layer of bacteriophage was collected using a syringe. [0074]
  • Protein Determination and DNA Isolation [0075]
  • Purified bacteriophage supernatant with a titer of approximately 10[0076] 13 pfu/ml was boiled for 5 minutes in SDS and β-mercaptoethanol loading puffer according to the method of Laemmli (Laemmli, U. K., Nature 227:680-685 (1970)) using 10% polyacrylamide gel, and stained with Coomassie brilliant blue. Bio-Rad pre-stained low molecular weight standards (7.7-204 kDa) were used as size markers. Bacteriophage DNA was isolated from a purified phage lysate containing approximately 1013 pfu/ml using the Qiagen lambda kit (Catolog No. 12543, Qiagen) according to manufacturer's instructions.
  • Temperature and Chloroform Sensitivity [0077]
  • [0078] Bacteriophage RM 378 at approximately 1011 pfu/ml was incubated for 30 minutes over a temperature range of 50-96° C. before the remaining bacteriophage titer was determined. The bacteriophage lysate at approximately 1011 pfu/ml was mixed with an equal volume of chloroform, and incubated at room temperature. After 30 minutes, the remaining viable bacteriophage were titrated with strain ITI 378 as a host.
  • Determination of G+C Content [0079]
  • The mole percent guanine plus cytosine content of the bacteriophage was determined by CSM with HPLC according to Mesbah (Mesbah, M. U. et al., [0080] Int. J Syst. Bacteriol 39:159-167 (1989)).
  • Estimation of Genome Size [0081]
  • Bacteriophage DNA was digested individually with a variety of restriction endonucleases, and the fragments separated by electrophoresis on 0.5-0.8% (w/v) agarose gel. Pulsed-field gel electrophoresis (PFGE) was also used for size estimation. Pulsed Field Certified Agarose from BioRad (Catalog No. 162-0137, Bio Rad) (1%) was used for the gel, and low-melt agarose (Catalog No. 162-0017, Bio Rad) (1%) for filling the wells when using marker plugs. Samples of 1.0 and 0.5 μg DNA were used and Bio Rad low range marker (#350) as well as λ-ladder (Catalog No. 170-3635, Bio Rad) was employed. The running buffer was 0.5×TBE (Sambrook, J. et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989). Bio Rad Pulsed Field Electrophoresis system (CHEF-DRIII) was used with an initial switch time of 60 seconds, final switch time of 60 seconds, 6 V/cm angle of 120° and 21 hour run time. Gels were stained with ethidium bromide and washed in distilled water for 3 hours before photographing under a Uv light illuminator. [0082]
  • Electron Microscopy [0083]
  • The bacteriophage was stained with 2.5% phosphotungstic acid and the grids examined with a [0084] Philips EM 300 electron microscope. Bacteriophage samples from CsCl purification, as well as directly from a liquid lysed culture with titer of 1013 pfu/ml, were used for microscopy studies.
  • DNA Sequencing and Genome Analysis [0085]
  • The phage genome was sequenced using the “shot gun sequencing” technique (see, e.g., Fleischmann, R. D. et al., [0086] Science 269:496-512 (1995)). The sequences were aligned (Ewing, B., et al., Genome Research 8:175-185 (1998)); Ewing, B. and Green, P., Genome Research 8:186-194 (1998)). The consensus sequence of 130,480 bp was visualized with the program XBB-Tools (Sicheritz-Ponten, T., Department of Molecular Evolution, Uppsala, Sweden) for open reading frames (ORFs).
  • B. Results
  • Bacteriophage Isolation [0087]
  • The phage sample from the southwest area of Iceland, prepared as described above, infected 4 strains of Rhodothermus, all from Reykjanes in southwest Iceland. The phage sample from the northwest area of Iceland, prepared as described above, infected 7 strains of Rhodothermus, all from Isafjardardjup in northwest Iceland. Bacteriophages were isolated from two of the strains infected with the sample from the southwest, and from all 7 of the strains infected with the sample from the northwest. Of these, one of the bacteriophages from the sample from the northwest was isolated from [0088] strain ITI 378 and designated RM 378. The titer of this bacteriophage was estimated; in liquid culture it repeatedly gave titers of 5-8×1013 pfu/ml.
  • Attempts to isolate the bacteriophages from Rhodothermus by subjecting it to stress such as ultraviolet (UV) exposure did not succeed. Because such stress would have excised a prophage from the chromosome and have initiated a lytic response, the failed attempts suggest that Rhodothermus did not contain prophages. [0089]
  • Bacteriophage Morphology [0090]
  • [0091] Bacteriophage RM 378 is a tailed phage with a moderately elongated head. It is a T4-like phage, resembling the T4 phage of Escherichia coli both in morphology and genome size, and has a double-stranded DNA genome. RM 378 belongs to the Myoviridae family and has the A2 morphology (Ackermann, H. W., Arch. Virol. 124:201-209 (1992)). The bacteriophage head measures 85 nm on one side and 95 nm on the other. The tail is 150 nm in length, with a clear right-handed spiral to the tail sheath. The head/tail ratio is 0.63 and the total length is 245 nm.
  • Host Specificity and Infection [0092]
  • [0093] RM 378 concentrated bacteriophage was tested against 9 different Rhodothermus strains from the two different areas (Isafjardardjup in northwest Iceland, and Reykjanes in southwest Iceland). It infected 5 strains from the northwest, but no strains from the southwest. Thus, the bacteriophage infected only strains of Rhodothermus from the same geographical area from which the bacteriophage was isolated. It did not infect any of the 6 Thermus strains that were tested.
  • Growth of bacteria was followed at 65° C. in a liquid. Uninfected culture was used as control, and growth was followed until the control culture had reached stationary phase. Cell lysis started 9 hours after infection of the culture, and stationary phase in the control was reached about 14 hours after infection. [0094]
  • Stability of the Bacteriophage [0095]
  • [0096] Bacteriophage RM 378 was stable to 30 minutes exposure to chloroform, indicating that it probably does not contain lipids. Heat stability of the phage was tested at 50° C.-96° C. by incubating the phage concentrate for 30 minutes, followed by estimation of titer. There was no change of the titer up to 65° C., but at 70° C. and 80° C. a 100-fold drop in pfu/ml was measured. Linear decrease of the titer was observed up to 96° C., where it was 10,000 times lower after 30 minutes than in the starting solution. After 3 months of storage at 4° C. the titer dropped 100-fold (down to 1011 pfu/ml). After 27 months of storage the titer had fallen from 1011 pfu/ml to 105 pfu/ml in a CsCl-purified sample.
  • Composition of [0097] Bacteriophage RM 378
  • Purified bacteriophage was subjected to SDS-PAGE analysis for examination of its protein composition. The phage was composed of at least 16 proteins with apparent molecular weights from 23-150 kDa. The five main bands were at 92, 61, 52, 50 and 26 kDa, and were in a ratio of 0.14:0.45:0.21:0.13:0.06. The major protein band of 61 kDa accounted for about 20% of the total protein; the five main bands together represented about 50% of total proteins. [0098]
  • The average G+C mol % of the [0099] RM 378 phage was 42.0±0.1. The DNA was digested with a variety of restriction enzymes (HindIII, XhoI, ClaI, AluI, NotI, SacI, PstI, BamHI, SmaI, SpeI, EcoRV). Three of the enzymes (NotI, SmaI, SpeI) did not cleave RM 378, and the rest resulted in multiple fragments. Because the addition of the fragment sizes resulted in a variable amount for the total genome size, the phage DNA was also run on PFGE, which estimated the size of the DNA to be about 150 kb.
  • Characteristics of the Bacteriophage [0100]
  • The [0101] RM 378 bacteriophage is a virulent bacteriophage following a lytic cycle of infection. Very high titer lysates of up to 1013 pfu/ml could be obtained, which indicated a large burst size of more than 100. Because no bacteriophages have been reported against this bacterial genus, RM 378 represents a new species.
  • Genome Analysis and Comparison to T4 Bacteriophage [0102]
  • The nucleic acid sequence of [0103] RM 378 is set forth in FIG. 1. The nucleic acid sequence of RM 378 contains at least 200 open reading frames (ORFs); see, for example, the ORFs described in FIG. 2. Of these, five were identified in more detail, as described in Example 2, including the ORFs expected to encode DNA polymerase, 3′-5′ exonuclease, 5′-3′ exonuclease, RNA ligase and DNA helicase.
  • [0104] RM 378 belongs in the T-even family, in that it is similar to bacteriophage T4 of Escherichia coli. Bacteriophage T4 of E. coil is a well-studied phage which, together with T2 and T6, belongs to the family of bacteriophages known as T-even phages. T-even phages are nearly identical not only in structure and composition, but also in properties. Several enzymes isolated from bacteriophage T4 are used in the field of recombinant DNA technology as well as in other commercial applications. For example, T4 DNA polymerase, T4 DNA ligase and T4 RNA ligase are frequently used in the research industry today.
  • The genome of [0105] RM 378 was aligned in a consensus sequence, and the open reading frames (ORFs) were analyzed and compared to the T4 bacteriophage genome. The overall genome arrangement seemed to be different and the overall similarity to known proteins was low. However, despite this apparently high genetic divergence, several structural and morphological features were highly conserved. Furthermore, homologs to proteins in T4 were identified in the RM 378 bacteriophage. These similarities are set forth in Table 1, below.
  • In view of the similarities between bacteriophage T4 and [0106] bacteriophage RM 378, it is reasonable to expect that bacteriophage RM 378 comprises genes that are homologous to those found in bacteriophage T4, and that these genes in bacteriophage RM 378 encode proteins and enzymes that correlate to those proteins and enzymes found in bacteriophage T4.
  • EXAMPLE 2 Detailed Analysis of Five Open Reading Frames (ORFs) A. Selection of Reading Frames for Analysis
  • Five open reading frames (ORFs) of the numerous ORFs described above in the genome of bacteriophage RM378, have been further characterized and the corresponding genes cloned and expressed. The genes include a DNA polymerase, 3′-5′ exonuclease, 5′-3′-exonuclease (RNase H), replicative DNA helicase and RNA ligase. These genes were chosen as examples of the many valuable genes encoded by the bacteriophage genome. The corresponding polypeptide products of these genes are mainly components of the bacteriophage replication machinery and can be utilized in various molecular biology applications as evident by the current use of homologous counterparts from other sources. The sequences of the five ORFs show low similarity to sequences in public databases indicative of distant relationship to known proteins; however, probable homology to known sequences can be established by comparison with families of sequences showing overall sequence similarity as well as conservation of shorter regions, sequence motifs and functionally important residues, in some cases aided by three-dimensional structural information. The limited sequence similarity or these sequences to publicly available sequences suggests that these gene products have functional properties very different from corresponding proteins currently in use in molecular biology applications. Together with the presumed thermostability, the properties of these gene products render them valuable in various applications in molecular biology. [0107]
  • DNA Polymerase [0108]
  • DNA polymerases have evolved to accommodate the varied tasks required for replication and repair. DNA replication involves 1) local melting of the DNA duplex at an origin of the replication, 2) synthesis of a primer and Okazaki fragment, 3) DNA melting and unwinding at the replication fork, 4) extension of the primer on the leading strand and discontinuous synthesis of primers followed by extension of the lagging strand, 5) removal of RNA primers and 6) sealing of nicks. (Perler et al., [0109] Adv Protein Chem 48:377-435 (1996)).
  • The different types of DNA polymerases have been grouped into Families A, B, C and X corresponding to similarity with [0110] E. coli pol I, II and III and pol b respectively (Braithwaite, D. K. and Ito, J., Nucleic Acids Res. 21:787-802 (1993)). Each of these Families contains conserved sequence regions (Perler et al., Adv Protein Chem. 48:377-435 (1996); Blanco L., et al., Gene 100:27-38 (1991); Morrison A. et al., Proc Natl Acad Sci USA. 88:9473-9477 (1991)). Family B DNA polymerasese are also called Pol α Family DNA polymerases.
  • The DNA polymerases of family B type include bacteriophage T4 and bacteriophage RB69 DNA polymerase as well as archaeal polymerases and [0111] E. coli polymerase II. Polymerases of this type normally have two activities, the polymerase activity and the proofreading 3′-5′ exonuclease activity, found in different domains within the same polypeptide with the exonuclease domain being N-terminal to the polymerase domain (Steitz, T. A., J Biol Chem 274:17395-8 (1999); Komberg, A. and Baker, T. A., DNA Replication, Freeman, N.Y. (1992); Brautigam, C. A. and Steitz, T. A., Curr.Opin.Struct.Biol. 8:45-63 (1998) ). Polymerases of family B have an overall domain architecture different from polymerases of family A and do not have a 5′-3′ exonuclease activity which is normally found in polymerases in family A. The determined structure of RB69 DNA polymerase is a representative structure of family B type polymerase and shows clearly the modular organization of the enzyme with separate domains (Wang, J. et al., Cell 89:1087-99 (1997), Protein data bank (PDB) accession code 1WAJ). The structure of the archaeal DNA polymerase from Desulfurococcus strain Tok was shown to have the same overall structure (Zhao, Y. et al., Structure Fold Des 7:1189-99 (1999), PDB accession code 1QQC ). The alignment of polymerases in this family indicates the presence of several conserved region in the sequences with characteristic sequence motifs both belonging to both the exonuclease domain and the polymerase domain ( Hopfner, K. P. et al., Proc Natl Acad Sci USA 96:3600-3605 (1999)).
  • Exonucleases [0112]
  • Besides the basic polymerization function, DNA polymerases may contain 5′-3′ and a 3′-5′ exonuclease activity. The 3′-5′ exonuclease activity is required for proofreading. In general the family B polymerases have 3′-5′ exonuclease activity, but not 5′-3′ exonuclease activity. If both exonucleases are present, the 5′-3′ exonuclease domain is at the N-terminal followed by the 3′-5′ exonuclease domain and the C-terminal polymerase domain. The structure of the polymerases can be defined further in terms of domain structure. The polymerase domain is thus composed of a number of smaller domains, often referred to as the palm, fingers and thumb, and although these parts are not homologous across families, they do show analogous structural features (Steitz, T. A., [0113] J Biol Chem 274:17395-8 (1999); Komberg, A. & Baker, T. A., DNA Replication, Freeman, N.Y. (1992); Brautigam, C. A. & Steitz, T. A., Curr.Opin.Struct.Biol. 8:45-63 (1998) ).
  • RNase H ( Ribonuclease H), e.g. from bacteriophage T4, removes the RNA primers that initiate lagging strand fragments, during DNA replication of duplex DNA. The enzyme has a 5′-3′ exonuclease activity on double-stranded DNA and RNA-DNA duplexes. Further, T4 RNase H has a flap endonuclease activity that cuts preferentially on either side of the junction between single and double-stranded DNA in flap and fork DNA structures. Besides replication, T4 RNase H also plays a role in DNA repair and recombination. (Bhagwat, M., et al., [0114] J. Biol. Chem. 272:28531-28538 (1997); Bhagwat, M., et al. J. Biol. Chem. 272:28523-28530 (1997)).
  • T4 RNase H shows sequence similarity to other enzymes with a demonstrated role in removing RNA primers, including [0115] phage T7 gene 6 exonuclease, the 5′-3′ nuclease domain of E. coli DNA polymerase I, and human FEN-1 (flap endonuclease). These enzymes have 5′-3′-exonuclease activity on both RNA-DNA and DNA-DNA duplexes and most of them have a flap endonuclease activity that removes the 5-ssDNA tail of flap or fork structures. The T4 enzyme homologous to members of the RAD2 family of prokaryotic and eukaryotic replication and repair nucleases (Mueser T. C., et al., Cell. 85:1101-1112 (1996)).
  • RNase H is a part of the reverse transcriptase complex of various retroviruses. The HIV-1 RT associated ribonuclease H displays both endonuclease and 3′-5′ exonuclease activity (Ben-Artzi, H., et al., [0116] Nucleic Acids Res. 20:5115-5118 (1992); Schatz, O., et al., EMBO J. 4:1171-1176 (1990)).
  • In molecular biology, RNase H is applied to the replacement synthesis of the second strand of cDNA. The enzyme produces nicks and gaps in the mRNA strand of the cDNA:mRNA hybrid, creating a series of RNA primers that are used by the corresponding DNA polymerase during the synthesis of the second strand of cDNA (Sambrook, J., et al., Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbour Laboratory Press (1989)). The RNase H of [0117] E. coli can promote the formation and cleavage of RNA-DNA hybrid between an RNA site and a base paired strand of a stable hairpin or duplex DNA at temperature below their Tm (Li. J., and R. M. Wartell, Biochemistry 37:5154-5161 (1998); Shibahara, S., et al, Nucleic Acids Res. 15:4403-4415 (1987)). Thus, the enzyme has been used for site-directed cleavage of RNA using chimeric DNA splints (presence of complementary chimeric oligonucleotides) (Inoue, H., et al., Nucleic Acids Symp Ser. 19:135-138 (1988)) or oligoribonucleotide capable of forming a stem and loop structure (Hosaka H., et al., J. Biol. Chem. 269: 20090-20094 (1994)).
  • DNA Helicase [0118]
  • DNA helicases use energy derived from hydrolysis of nucleoside triphosphate to catalyze the disruption of the hydrogen bonds that hold the two strands of double-stranded DNA together. The reaction results in the formation of the single-stranded DNA required as a template or reaction intermediate in DNA replication, repair or recombination (Matson, S. W., et al., [0119] BioEssays. 16:13-21 (1993)).
  • The bacteriophage T4 Gp4l is a highly processive replicative helicase (similar to the DNA B protein of [0120] E. coli) and has been shown to form hexamer in the presence of ATP (Dong, F., and P. H. von Hippel, J. Biol. Chem. 271:19625-19631 (1996)). The enzyme facilitates the unwinding of DNA helix ahead of the advancing DNA polymerase and accelerates the movement of the replication fork. It has been suggested that gp41 interacts with the polymerase holoenzyme at the replication fork (Schrock R. D. and B. Alberts, J. Biol. Chem. 271:16678-16682 (1996)). Gp4l has a 5′-3′ polarity and requires a single stranded region on the 5′ side of the duplex to be unwound. The ATP-activated helicase binds to a single gp61 primase molecule on appropriate DNA template (Morris, P. D., and K. D. Raney, Biochemistry. 38:5164-5171 (1999)) to reconstitute a stable primosome (Richardson, R. W. and N. G. Nossal, J. Biol. Chem. 264:4725-4731 (1989)). Although the gp41 alone does not form a stable complex with DNA template, this helicase by itself can carry out moderately processive ATP-driven translocation along single strand DNA (Dong, F., and P. H. von Hippel. J. Biol. Chem. 271:19625-19631 (1996)). The T4 gene 59 protein accelerates the loading of gp41 onto DNA, when it is covered with 32 protein (the T4 single strand binding protein), and stimulates the helicase activity to catalyze replication fork movement through a DNA double helix, even through a promoter-bound RNA polymerase molecule (Barry, J., and B. Alberts. J. Biol. Chem. 269:33063-33068 (1994); Tarumi, K., and T. Yonesaki, J Biol Chem. 270:2614-2619 (1995)). The T4 gp41 helicase has also been disclosed to participate in DNA recombination. Following exonuclease nicking of ds DNA and further expansion into a gap, gp41 creates a free 3′ end, which is required as a substrate by recombination proteins (RecA like) (Tarumi, K., and T. Yonesaki. J Biol Chem. 270:2614-2619 (1995)).
  • RNA Ligase [0121]
  • RNA ligase is abundant in T4-infected cells and has been purified in high yields. Bacteriophage T4 RNA ligase catalyzes the ATP-dependent ligation of a 5′-phosphoryl-terminated nucleic acid donor (i.e. RNA or DNA) to a 3′-hydroxyl-terminated nucleic acid acceptor. The reaction can be either intramolecular or intermolecular, i.e., the enzyme catalyzes the formation of circular DNA/RNA, linear DNA/RNA dimers, and RNA-DNA or DNA-RNA block co-polymers. The use of a 5′-phosphate, 3′-hydroxyl terminated acceptor and a 5′-phosphate, 3′-phosphate terminated donor limits the reaction to a unique product. Thus, the enzyme can be an important tool in the synthesis of DNA of defined sequence (Marie I., et al., [0122] Biochemistry 19:635-642 (1980), Sugion, A. et al., J. Biol. Chem. 252:1732-1738 (1977)).
  • The practical use of T4 RNA ligase has been demonstrated in many ways. Various ligation-anchored PCR amplification methods have been developed, where an anchor of defined sequence is directly ligated to single strand DNA (following primer extension, e.g. first strand cDNA). The PCR resultant product is amplified by using primers specific for both the DNA of interest and the anchor (Apte, A. N., and P. D. Siebert, [0123] BioTechniques. 15:890-893 (1993); Troutt, A. B., et al., Proc. Natl. Acad. Sci. USA. 89: 9823-9825 (1992); Zhang, X. H., and V. L. Chiang, Nucleic Acids Res. 24:990-991(1996)). Furthermore, T4 RNA ligase has been used in fluorescence-, isotope- or biotin- labeling of the 5′-end of single stranded DNA/RNA molecules (Kinoshita Y., et al., Nucleic Acid Res. 25: 3747-3748 (1997)), synthesis of circular hammer head ribozymes (Wang, L., and D. E. Ruffner. Nucleic Acids Res 26: 2502-2504 (1998)), synthesis of dinucleoside polyphosphates (Atencia, E. A., et al. Eur. J. Biochem. 261: 802-811 (1999)), and for the production of composite primers (Kaluz, S., et al., BioTechniques. 19: 182-186 (1995)).
  • B. DNA Polymerase Activity and 3′-5′ Exonuclease Activity Are Found in Gene Products of Separate Genes in the Phage RM378 Genome
  • The predicted gene products of two open reading frames (ORF056e and ORF632e), which are widely separated in the genome of phage RM378, both showed similarity to family B type polymerases as shown below. [0124]
  • Identification of the ORF056e Gene Product as 3′-5′ Exonuclease [0125]
  • The predicted gene product of ORF056e (locus GP43a) was run against a sequence database (NCBI nr) in a similarity search using BLAST ( Altschul, S. F. et al., [0126] J. Mol. Biol. 215:403-410 (1990)) (Table 2). Out of 64 hits with E value lower (better) than 1, all sequences were of DNA polymerases of family B type including DNA polymerase from bacteriophage RB69, archaeal DNA polymerases and E. coli polymerase II. Importantly, all these sequences are DNA polymerase sequences having the sequence characteristics of the DNA polymerase domain as well as the 3′-5′ exonuclease domain and are considerably longer (excluding partial sequences) than the predicted gene product of ORF056e which has a length of 349 residues. The similarity is restricted to the N-terminal halves of these sequences corresponding to the part of the protein where the 3′-5′ proofreading exonuclease domain is located.
  • Table 2 lists the 20 sequences with strongest similarity to the ORF056e sequence together with the length and E-value according to BLAST search. The sequence identity with the ORF056e sequence ranges from 21 to 27%. Of the 64 sequences identified in the sequence database, 34 are of viral origin and 15 of archaeal origin. Out of the twenty top scoring sequences, 16 are of viral origin. [0127]
  • Identification of the ORF632e Gene Product as DNA Polymerase [0128]
  • The sequence similarity program BLAST (Altschul, S. F. et al., [0129] J. Mol. Biol. 215:403-410 (1990)) was also used to identify potential homologues of the ORF632e (locus GP43b) gene product. The 100 sequences in the sequence database (NCBI nr) with the strongest similarity to the ORF632e sequence were all defined as DNA polymerase sequences. These sequences all had an E value lower than 10-5 and are considerably longer (excluding partial sequences) than the predicted gene product of ORF632e which has a length of 522 residues (Table 3). Sequence alignments between the ORF632e sequence and the sequences identified in the database shows that the similarity is restricted to a domain with the DNA polymerase activity as characterized by conserved sequence motifs such as DxxSLYPS (Hopfner, K. P. et al., Proc Natl Acad Sci USA 96:3600-3605 (1999)). In these sequences this domain is always preceded by a long N-terminal region where the 3′-5′ exonuclease activity normally is found. The corresponding N-terminal region is lacking in ORF362e which consists only of the DNA polymerase domain (family B type polymerases). The sequence motif DXXSLYPS (SEQ ID NO:63) in the ORF632e sequence is found very close to its N-terminus unlike its location in all the 100 analyzed sequences in the public database.
  • Table 3 lists the 20 sequences with strongest similarity to the ORF632e sequence together with the length and E-value according to a BLAST search. The sequence identity with the ORF632e sequence rages from 23 to 28% within aligned regions of 300 to 428 residues. The majority of these 20 sequences are of archaeal DNA polymerases of family B type. [0130]
  • The results of the similarity searches indicated that gene products of ORF056e and ORF632e correspond to the exonuclease domain and the polymerase domain of family B type polymerases, respectively. Partial alignment of sequences of a number of members of this family was obtained from the Protein Families Data Bases of Alignments and HMMs (Sanger Institute), accession number PF00136). The sequences of ORF056e and ORF632e could be combined as one continuous polypeptide and aligned to the previous set of sequences. The coordinates of the three-dimensional structures of DNA polymerases from bacteriophage RB69 ([0131] PDB ID 1 WAJ), the archaea Thermococcus gorgonarius (PDB ID 1TGO) and the archaea Desulforococcus strain Tok (PDB ID 1 QQc) were structurally aligned and the sequence alignment produced from the structural alignment. The corresponding sequences were added to the previous alignment and the alignment adjusted, guided by the alignment from the structural superposition, mainly in regions which are less conserved. The resulting alignment, shown in FIG. 3, strongly supports the previous interpretation that 3′-5′ proofreading activity and DNA polymerase activity are found in two proteins encoded by separate genes in bacteriophage RM378. As seen in the alignment (FIG. 3), the major conserved regions in this protein family in the 5′-3′ exonuclease domain and in the polymerase domain are also conserved in the gene products of ORF056e and ORF632e, respectively. As defined by Hopfner et al. (Hopfner, K. P. et al., Proc Natl Acad Sci USA 96:3600-3605 (1999)), this includes regions exo I, -II and -III in the exonuclease domain and motifs A, -B and -C in the polymerase protein. Motif A corresponds to the DxxSLYPS motif mentioned above and includes an aspartic acid residue, involved in coordinating one of the two Mg2+ ions which are essential for the polymerase activity, and a tyrosine residue which stacks it side chain against an incoming nucleotide in the polymerase reaction. Another aspartic residue which also acts as Mg2+ ion ligand (motif C), and is essential for the catalytic mechanism, is also found in the sequence of ORF632e (D215). Inspection of the three-dimensional structure of bacteriophage RM69 DNA polymerase (PDB ID 1 WAJ), with respect to the alignment, shows that the end of the ORF056e sequence and the beginning of the ORF632e sequence are found between the 3′-5′ exonuclease domain and the DNA polymerase domain.
  • The polymerase activity encoded by bacteriophage RM378 thus resides in an enzyme which is relatively short corresponding only to the polymerase domain of other members in this family and unlike those relatives does not have an 3′-5′ exonuclease domain. The 3′-5′ exonuclease is found as another protein encoded by a separate gene elsewhere in the genome. The natural form of DNA polymerase from [0132] Thermus aquaticus (Taq) also lacks the proofreading 3′-5′ exonuclease activity but this polymerase differs from the polymerase of RM378 in several aspects: i) it belong to a different family of polymerase (family A) which have a different general architecture, ii) the lack of 3′-5′ exonuclease activity is due to a non-functional domain since it still contains a structural domain homologous to a domain where this activity resides in other polymerase in this family, and iii) naturally occurring Taq has 5′-3′ exonuclease activity besides its polymerase activity (Kim, Y. et al., Nature 376:612-616 (1995)). Thus, the current protein is the only known example of a DNA polymerase which by nature lacks proofreading activity and the corresponding structural domain present in other polymerases of this type, and therefore represents the discovery of a unique compact type of DNA polymerase found in nature lacking both 3′-5′ and 5′-3′ exonuclease activity.
  • C. ORF739f Encodes an RNA Ligase
  • Several sequences of RNA ligases in a protein sequence database showed similarity to the ORF739f sequence (locus GP63) as identified in a similarity search using BLAST (Altschul, S. F. et al., [0133] J. Mol. Biol. 215:403-410 (1990)). The top scoring sequences found in the BLAST search are show in Table 4. Only 3 sequences showed a score with E-avlue below 1.0. The two most significant and extensive similarities were found to the sequences of RNA ligases from Autographa californica nucleopolyhedrovirus and bacteriophage T4. The similarity to the third sequence, that of a DNA helicase, is much less extensive and has considerable higher E-value. The sequence identity between the ORF739f sequence and the two RNA ligase sequences is 23% over regions of 314 and 381 residues. A sequence alignment of these three sequences is shown in FIG. 4.
  • The site of covalent reaction with ATP (adenylation) has been located at residue K99 in bacteriophage T4 RNA ligase (Thogersen H C, et al., [0134] Eur J Biochem 147:325-9 (1985);Heaphy, S., Singh, M. and Gait, M. J., Biochemistry 26:1688-96 (1999)). A corresponding Lysine residue (K126) is also found in the sequence of ORF739f. An aspartic residue close to the adenylation site in T4 RNA ligase has also been implied as important for the catalytic mechanism (Heaphy, S., Singh, M. and Gait, M. J., Biochemistry 26:1688-96 (1999)). This residue is also conserved in ORF739f(D128). It has been suggested that the motif KX(D/N)G may be a signature element for covalent catalysis in nucleotidyl transfer (Cong, P., and Shuman, S., J Biol Chem 268:7256-60 (1993)). The conservation of these active site residues supports the interpretation of ORF739f gene product as RNA ligase having catalytic mechanism in common with other RNA ligases and involving covalent reaction with ATP.
  • Table 4 shows sequences with strongest similarity (E-value cutoff of 1.0) to the ORF739f sequence together with their length and E-value according to BLAST search. [0135]
  • D. Orf 1218a Encodes a Gene Product with 5′-3′ Exonuclease Activity
  • A BLAST search (Altschul, S. F. et al., [0136] J. Mol. Biol. 215:403-410 (1990)) identified about 60 sequences in the database (NCBI nr) with significant similarity (corresponding to E-value lower than 1) to the sequence of the predicted gene product of ORF 1218a (locus DAS). Almost all the identified sequences are of DNA polymerase I from bacterial species (DNA polymerase family A) and the similarity is restricted to the N-terminal halves of these sequences and the ORF 1218a sequence is much shorter, 318 residues, compared to the identified sequences which usually are between 800 and 900 residues (Table 5).
  • Structural and functional studies of DNA polymerases of this type (family A) have defined the different structural domains and how these correlate with the different activities of the enzyme. Polymerases of this type normally have a polymerase activity located in a C-terminal domain and two exonuclease activities, a 3′-5′ exonuclease proofreading activity in a central domain and a 5′-3 exonuclease activity in an N-terminal domain (Komberg, A. and Baker, T. A., DNA Replication, Freeman, N.Y. (1992); Brautigam, C. A. and Steitz, T. A., [0137] Curr. Opin. Struct. Biol. 8:45-63 (1998)). The sequence of ORF 1218a corresponds to the 5′-3′ exonuclease domain of these polymerases.
  • The 5′-3′ exonuclease domain of DNA polymerase I belongs to a large family of proteins which also include ribonuclease H (RNase H) including bacteriophage T4 RNase H. The analysis of the structure of bacteriophage T4 RNase H revealed the conservation of a several acidic residues in this family of proteins. These residues are clustered at the active site, some of which help coordinate two functionally important Mg2+ ions (Mueser, T. C.,et al., [0138] Cell 85:1101-12 (1996)). The corresponding alignment shown in FIG. 5, including the sequence of the ORF 1218a gene product, shows that these acidic residues (possibly with the exception of one) are also found in the gene product of ORF1218a thus further supporting its proposed activity as 5′-3′ exonuclease.
  • The 5′-3′ exonuclease of polymerase I and RNase H both remove RNA primers that have been formed during replication but T4 DNA polymerases and other polymerases of the same type (family B), including the identified polymerase of phage RM378 identified here (see above), lack the 5′-3′ exonuclease activity. T4 RNase H (305 residues) and the ORF1218a gene product (318 residues) are of similar size with conserved regions scattered throughout most of the sequences (FIG. 5). These proteins are likely to have a very similar structure given the structural similarity between T4 RNase H and 5′-3′ exonuclease domain of polymerase I (Mueser, T. C., et al., [0139] Cell 85:1101-12 (1996)). The gene product of ORF1218a probably has a function analogous to the function of RNase H in bacteriophage T4.
  • Table 5 sets forth the 21 sequences with strongest similarity to the ORF1218a sequence together with the length and E-value according to BLAST search. The sequence identity with the ORF1218a sequence ranges from 31 to 41% within aligned regions of 82 to 145 residues. [0140]
  • E. A Replicative DNA Helicase is Part of the Replication Machinery of Phage RM378
  • Several sequences of replicative DNA helicases were identified in a similarity search using BLAST (Altschul, S. F., et al., [0141] J. Mol Biol. 215:403-410 (1990)) with the ORF1293b (locus GP41) sequence as query sequence. 15 sequences had an E-value lower than 1.0 with the sequence of bacteriophage T4 replicative DNA helicase (product of gene 41, accession number P04530) having by far the lowest E-value. Some of the sequences found in the similarity search are hypothetical proteins and some are defined as RAD4 repair protein homologues. However, the most extensive similarity was found with the replicative helicase sequences, with sequence identity of 20-23% spanning 210-295 residues, and these sequences are all of length similar to the length of the ORF1293b gene product (416 residues). Table 6 shows the identified sequences of the similarity search.
  • The replicative DNA helicases with similarity to the ORF1293b sequence are of the same protein family often named after the corresponding helicase in [0142] E. coli encoded by the DnaB gene (e.g. DnaB-like helicases). The Protein Families Data Base of Alignments and HMMs (Sanger Institute), holds 37 sequences in this family (family DnaB, accession number PF00772;) and the alignment of these sequences shows clearly several regions with conserved sequence motifs. One of this motif is characteristic for ATPases and GTPases (Walker A motif, P-loop) and forms a loop that is involved in binding the phosphates of the nucleotide (Sawaya, M. R. et al., Cell 99:167-77 (1999)). The replicative helicases bind single stranded DNA (at the replication fork) and translocate in the 5′-3′ direction with ATP (GTP) driven translocation (Matson, S. W., et al., BioEssays 16:13-22 (1993)). The significant similarity found in the BLAST search to sequences other than helicase sequences is partly due to the presence of an ATP/GTP binding sequence motif in these sequences.
  • FIG. 6 shows the sequence alignment of some members of the DnaB protein family together with the sequence of ORF1293b. Sawaya et al. have shown how several conserved motifs and functionally important residues of the DnaB family relate to the crystal structure of the helicase domain of the T7 helicase-primase (Sawaya, M. R. et al., Cell 99:167-77 (1999)). The alignment in FIG. 6 shows how these conserved motifs are present in the ORF1293b sequence thereby supporting its role as replicative helicase. [0143]
  • The bacteriophage T4 replicative helicase sequence was indicated as most closely related to the ORF1293b sequence in the similarity search. The structure and function of the corresponding helicases may be very similar in these two bacteriophages and, together with the similarity of numerous other components of these phages, may be indicative of other similarities of their replication machinery. T4 replicative helicase is known to be an essential protein in the phage replication and interact with other proteins at the replication fork such as the primase to form the primosome (Nossal, N. G., [0144] FASEB J. 6:871-8 (1992)). Similarly, the helicase encoded by ORF1293b may have an essential function in bacteriophage RM378. Other homologues of components of the T4 replication system have been detected as well as shown above and still others may also be expected to be encoded by the bacteriophage genome.
  • Table 6 sets forth sequences with strongest similarity (E-value cutoff of 1.0) to the ORF1293b sequence together with the length and E-value according to BLAST search. [0145]
  • F. Subcloning of Selected ORFs from RM378
  • Plasmids were designated pSH1, pGK1, pOL6, pJB1 and pJB2, were generated for the genes encoding the 3′-5′ exonuclease, the DNA polymerase, the RNA-ligase gene, the RNaseH gene and the helicase gene, respectively. The correct insertion of the ORFs into the expression vector was verified by DNA sequencing, and the expression of the genes was verified by SDS gel electrophoresis of respective host strain crude extracts. [0146]
  • [0147] E. coli strain JM109 [supE44Δ(lac-proAB), hsdR17, recA1, endA1, gyrA96, thi-1, relA1 (F′traD36, proAB, lacIqZΔM15)] (Viera and Messing, Gene, 19:259-268 (1982)) and strain XL10-Gold [TetrΔ (mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte (F′ proAB lacIqZΔM15 Tn10 (Tetr) Amy Camr)] (Stratagene) were used as hosts for expression plasmids.
  • Restriction enzyme digestions, plasmid preparations, and other in vitro manipulation of DNA were performed using standard protocols (Sambrook et al., Molecular Cloning 2nd Ed. Cold Spring Harbor Press, 1989). [0148]
  • The PCR amplification of the nucleic acids sequence containing the open reading frame (ORF) 056e, which displayed similarity to 3′-5′ exonuclease domain of family B polymerase genes was as follows. The forward primer exo-f: CACGAGCTC [0149] ATG AAG ATC ACG CTA AGC GCA AGC (SEQ ID NO:64), spanning the start codon (underlined) and containing restriction enzyme site, was used with the reverse primer exo-r: ACAGGTACC TTA CTC AGG TAT TTT TTT GAA CAT (SEQ ID NO:65), containing restriction site and spanning the stop codon (underlined, reverse complement) [codon 350 of ORF 056E shown in FIG. 7]. The PCR amplification was performed with 0.5 U of Dynazyme DNA polymerase (Finnzyme), 10 ng of RM378 phage DNA, a 1 μM concentration of each synthetic primer, a 0.2 mM concentration of each deoxynucleoside triphosphate, and 1.5 mM MgCl2 in the buffer recommended by the manufacturer. A total of 30 cycles were performed. Each cycle consisted of denaturing at 94° C. for 50 s, annealing at 50° C. for 40 s, and extension at 72° C. for 90 s. The PCR products were digested with Kpn I and Sac I and ligated into Kpn I and Sac I digested pTrcHis A (Invitrogen) to produce pSH1. Epicurian Coli XL10-Gold (Stratagene) were transformed with pSH1 and used for induction of protein expression, although any host strain carrying a lac repressor could be used.
  • The PCR amplification of the nucleic acids sequence containing ORF 632e, which exhibited similarity to DNA polymerase domain of family B polymerase genes was similar as described above for the putative 3′-5′ exonuclease gene except that other PCR-primers were used. The forward primer pol-f: CACGAGCTC[0150] ATGAACATCAACAAGTATCGTTAT (SEQ ID NO:66), spanning the start codon (underlined) and containing restriction enzyme sites was used with the reverse primer pol-r: ACAGGTACCTTAGTTTTCACTCTCTACAAG (SEQ ID NO:67), containing restriction site and spanning the stop codon (underlined reverse complement) [codon 523 of ORF 632e shown in FIG. 8]. The PCR products were digested with Kpn I and Sac I and ligated into Kpn I and Sac I digested pTrcHis A (Invitrogen) to produce pGK1. Epicurian Coli XL1 0-Gold (Stratagene) were transformed with pGK1 and used for induction of protein expression. The expressed protein was observed with Anti-Xpress Antibody (Invitrogen) after Western Blot.
  • The PCR amplification of the nucleic acid [0151] sequence containing ORF 739f, (which displayed similarity to the T4 RNA ligase gene) was similar to the procedure described above for the putative 3′-5′ exonuclease gene. The forward primer Rlig-f: GGG AAT TCT TAT GAA CGT AAA ATA CCC G (SEQ ID NO:68), spanning the start codon (underlined) and containing restriction enzyme sites was used with the reverse primer Rlig-r: GGA GAT CTT ATT TAA ATA ACC CCT TTT C (SEQ ID NO:69), containing restriction site and spanning the stop codon (underlined reverse complement) [codon 437 of the ORF shown in FIG. 9]. The PCR products were digested with EcoRI and BglII. Subsequently the amplified products were cloned into EcoRI and BamHI digested pBTac1 (Amann et al., Gene 25:167-178 (1983)) to produce pOL6. Cells of E. coli strain JM109 were transformed with pOL6 and used for induction of protein expression, although any host strain carrying a lac repressor could be used.
  • The PCR amplification of the nucleic acid [0152] sequence containing ORF 1218a, (which displayed similarity to the T4 RNaseH gene) was similar to the procedure described above for the putative 3′-5′ exonuclease gene except that other PCR-primers were used. The forward primer RnH-f: GGGAATTCTT ATG AAA AGA CTG AGG AAT AT (SEQ ID NO:70), spanning the start codon (underlined) and containing restriction enzyme sites was used with the reverse primer RnH-r: GGA GAT CTC ATA GTC TCC TCT TTC TT (SEQ ID NO:71), containing restriction site and spanning the stop codon (underlined reverse complement) [codon 319 of the ORF shown in FIG. 10]. The PCR products were digested with EcoRI and BglII and ligated into EcoRI and BamHI digested pBTac1 (Amann et al. Gene 25:167-178. 1983) to produce pJB1. As for the RNA ligase clone, cells of E. coli strain JM109 were transformed with pJB1 and used for induction of protein expression.
  • The PCR amplification of the nucleic acid sequence containing ORF 1293b, which displayed similarity to the dnaB like helicase genes was as described above for the putative 3′-5′ exonuclease gene except other PCR-primers were used. The forward primer HelI-f: GGGCAATTGTT [0153] ATG GAA ACG ATT GTA ATT TC (SEQ ID NO:72), spanning the start codon (underlined) and containing restriction enzyme sites was used with the reverse primer HelI-r: CGGGATCC TCA TTT AAC AGC AAC GTC (SEQ ID NO:73), containing restriction site and spanning the stop codon (underlined reverse complement) [codon 417 of the ORF shown in FIG. 11]. The PCR products were digested with EcoRI and BglII and ligated into EcoRI and BamHI digested pBTac1 (Amann et al. Gene 25:167-178 (1983)) to produce pJB2. Cells of E. coli strain JM109 were transformed with pJB2 and used for induction of protein expression.
  • Deposit of Biological Material [0154]
  • A deposit of [0155] Rhodothermus marinus strain ITI 378, and a deposit Rhodothermus marinus strain ITI 378 infected with bacteriophage RM 378, was made at the following depository under the terms of the Budapest Treaty:
  • Deutsche Sammlung Von Mikroorganismen und Zellkulturen GmbH [0156]
  • (DSMZ) [0157]
  • Mascheroder Weg 1b [0158]
  • D-38124 Braunschweig, Germany. [0159]
  • The deposit of [0160] Rhodothermus marinus strain ITI 378 received accession number DSM 12830, with an accession date of May 28th, 1999. The infected strain (Rhodothermus marinus strain ITI 378 infected with bacteriophage RM 378) received accession number DSM 12831, with an accession date of May 31st, 1999.
  • During the pendency of this application, access to the deposits described herein will be afforded to the Commissioner upon request. All restrictions upon the availability to the public of the deposited material will be irrevocably removed upon granting of a patent on this application, except for the requirements specified in 37 C.F.R. 1.808(b) and 1.806. The deposits will be maintained in a public depository for a period of at least 30 years from the date of deposit or for the enforceable life of the patent or for a period of five years after the date of the most recent request for the furnishing of a sample of the biological material, whichever is longer. The deposits will be replaced if they should become nonviable or nonreplicable. [0161]
    TABLE 1
    Comparison of Structural Features of T4 and RM 378
    Feature T4 RM 378
    Phage type T-even, A2 morphology T-even, A2 morphology
    Family Myoviridae Myoviridae
    Genome size 168,900 bases ca 130,480 bases
    Number of ORFs ca 300 >200
    Characteristic GP3, GP13, GP17, GP18, Putative homologs of the
    structural proteins GP20, GP21, GP23 same were identified
    Arrangement of All of the above genes All of the above genes
    structural proteins are on the same strand were dispersed over the
    and clustered in a region whole genome and found
    covering 35 kb on both strands
    Representative lysozyme and thymidine lysozyme and thymidine
    enzymes kinase (on same strand) kinase (on different
    strands)
  • [0162]
    TABLE 2
    Source: Accession #: Definition: Length: E-value*:
    Spodoptera litura AAC33750.1 DNA polymerase 603 9e−08
    nucleopolyhedrovirus (partial)
    Spodoptera littoralis AAF61904.1 DNA polymerase 998 9e−08
    nucleopolyhedrovirus
    Sulfurisphaera O50607 DNA POLYMERASE I 872 3e−07
    ohwakuensis (DNA POLYMERASE
    B1)
    Xestia c-nigrum AAC06350.1 DNA polymerase 1098 4e−07
    granulovirus
    Lymantria dispar T30431 DNA-directed DNA 1014 5e−07
    nucleopolyhedrovirus polymerase
    Lymantria dispar P30318 DNA POLYMERASE 1013 5e−07
    nucleopolyhedrovirus
    Buzura suppressaria AAC33747.1 DNA polymerase 647 8e−07
    nucleopolyhedrovirus (partial)
    Sulfolobus P95690 DNA POLYMERASE I 875 4e−06
    acidocaldarius
    Bacteriophage RB69 Q38087 DNA POLYMERASE 903 5e−06
    Spodoptera exigua AAC33749.1 DNA polymerase 636 2e−04
    nucleopolyhedrovirus (partial)
    Spodoptera exigua AAF33622.1 DNA polymerase 1063 2e−04
    nucleopolyhedrovirus
    Mamestra brassicae AAC33746.1 DNA polymerase 628 9e−04
    nucleopolyhedrovirus (partial)
    Melanoplus sanguinipes AAC97837.1 putative DNA 1079 9e−04
    entomopoxvirus polymerase
    Orgyia anartoides AAC33748.1 DNA polymerase 658 0.003
    nucleopolyhedrovirus
    Sulfolobus solfataricus AAB53090.1 DNA polymerase 882 0.003
    Sulfolobus solfataricus P26811 DNA POLYMERASE I 882 0.003
    Human herpesvirus 7 AAC40752.1 catalytic subunit of 1013 0.004
    replicative DNA
    polymerase
    Human herpesvirus 7 AAC40752.1 catalytic subunit of 1013 0.004
    replicative DNA
    polymerase
    Methanococcus voltae P52025 DNA POLYMERASE 824 0.010
    Bombyx mori nuclear P41712 DNA POLYMERASE 986 0.013
    polyhedrosis virus
    Bombyx mori nuclear BAA03756.1 DNA polymerase 986 0.051
    polyhedrosis virus
  • [0163]
    TABLE 3
    Source: Accession #: Definition: Length: E-value*:
    Aeropyrum pernix 093745 DNA POLYMERASE I 959 4e−20
    Aeropyrum pernix BAA75662.1 DNA polymerase 923 4e−20
    Aeropyrum pernix BAA75663.1 DNA polymerase II 772 7e−14
    Aeropyrum pernix O93746 DNA POLYMERASE II 784 7e−14
    Pyrodictium BAA07579.1 DNA polymerase 914 2e−16
    occultum
    Pyrodictium A56277 DNA-directed DNA polymerase 879 2e−16
    occultum
    Pyrodictium B56277 DNA-directed DNA polymerase 803 6e−11
    occultum
    Sulfolobus P95690 DNA POLYMERASE I 875 5e−16
    acidocaldarius
    Archaeoglobus O29753 DNA POLYMERASE 781 1e−14
    fulgidus
    Chlorella virus P30320 DNA POLYMERASE 913 3e−14
    NY2A
    Thermococcus P56689 DNA POLYMERASE 773 4e−14
    gorgonarius
    Paramecium bursaria A42543 DNA-directed DNA polymerase 913 9e−14
    Chlorella virus 1
    Paramecium bursaria P30321 DNA POLYMERASE 913 4e−13
    Chlorella virus 1
    Pyrobaculum AAF27815.1 family B DNA polymerase 785 9e−14
    islandicum
    Homo sapiens P09884 DNA POLYMERASE ALPHA 1462 1e−13
    CATALYTIC SUBUNIT
    Homo sapiens NP_002682.1 polymerase (DNA directed), 1107 6e−07
    delta 1, catalytic subunit
    Homo sapiens S35455 DNA-directed DNA polymerase 107 9e−07
    delta 1
    Chlorella virus K2 BAA35142.1 DNA polymerase 913 3e−13
    Sulfolobus AAB53090.1 DNA polymerase 882 3e−13
    solfataricus
    Sulfolobus P26811 DNA POLYMERASE I 882 3e−13
    solfataricus
  • [0164]
    TABLE 4
    Source: Accession #: Definition: Length: E-value*:
    Autographa californica P41476 PUTATIVE BIFUNCTIONAL 694 3e−07
    nucleopolyhedrovirus POLYNUCLEOTIDE
    KINASE/RNA LIGASE
    Coliphage T4 P00971 RNA LIGASE 374 0.002
    Aquifex aeolicus D70476 DNA helicase 530 0.25
  • [0165]
    TABLE 5
    Source: Accession #: Definition: Length: E-value*:
    Streptococcus P13252 DNA POLYMERASE I 877 2e−08
    pneumoniae
    Lactococcus lactis O32801 DNA POLYMERASE I 877 2e−06
    subsp. cremoris
    Bacillus AAB52611.1 DNA polymerase I 876 1e−05
    stearothermophilus
    Bacillus AAB62092.1 DNA polymerase I 877 2e−05
    stearothermophilus
    Bacillus S70368 DNA polymerase I 876 2e−05
    stearothermophilus
    Bacillus P52026 DNA POLYMERASE I 876 2e−05
    stearothermophilus
    Bacillus JC4286 DNA-directed DNA polymerase 879 4e−05
    stearothermophilus
    Bacillus AAA85558.1 DNA polymerase 954 4e−05
    stearothermophilus
    Thermus thermophilus 2113329A DNA polymerase 834 3e−05
    Thermus thermophilus P52028 DNA POLYMERASE I 834 3e−05
    Thermus thermophilus BAA85001.1 DNA polymerase 834 3e−05
    Bacillus subtilis O34996 DNA POLYMERASE I 880 4e−05
    Bacillus caldotenax Q04957 DNA POLYMERASE I 877 4e−05
    Deinococcus A40597 DNA-directed DNA polymerase 921 4e−05
    radiodurans
    Deinococcus P52027 DNA POLYMERASE I 956 4e−05
    radiodurans
    Aquifex acolicus D70440 DNA polymerase I 3′-5′ exo domain 289 7e−05
    Thermus filiformis O52225 DNA POLYMERASE I 833 7e−05
    Anaerocellum Q59156 DNA POLYMERASE I 850 3e−04
    thermophilum
    Rickettsia felis CAB56067.1 DNA polymerase I 922 3e−04
    Rhodothermus sp. ′ITI AAC98908.1 DNA polymerase type I 924 4e−04
    518′
    Thermus aquaticus P19821 DNA POLYMERASE I 832 4e−04
  • [0166]
    TABLE 6
    Source: Accession #: Definition: Length: E-value*:
    coliphage T4 P04530 PRIMASE-HELICASE 475 3e−06
    (PROTEIN GP41)
    Campylobacter CAB75198.1 replicative DNA helicase 458 0.003
    jejuni
    Listeria Q48761 DNA REPAIR PROTETN 452 0.003
    monocytogenes RADA HOMOLOG
    Listeria AAC33293.1 RadA homolog 457 0.016
    monocytogenes
    Mycoplasma AAC33767.1 putative replication protein 276 .007
    arthritidis
    bacteriophage
    MAV1
    Aeropyrum pernix B72665 hypothetical protein 726 0.016
    Porphyra purpurea P51333 PROBABLE 568 0.027
    REPLICATIVE DNA
    HELICASE
    Escherichia coli P03005 REPLICATIVE DNA 471 0.047
    HELICASE
    Saccharomyces NP_011861.1 SH3 domain 452 0.047
    cerevisiae
    Chlamydia O84300 DNA REPAIR PROTEIN 454 0.14
    trachomatis RADA HOMOLOG
    Haemophilus P45256 REPLICATIVE DNA 504 0.14
    influenzae HELICASE
    Caenorhabditis T16375 hypothetical protein 566 0.18
    elegans
    Pyrococcus E71133 hypothetical protein 483 0.18
    horikoshii
    Cyanidium AAF12980.1 unknown; replication 489 0.53
    caldarium helicase subunit
    Rickettsia Q9ZD04 DNA REPAIR PROTEIN 448 0.69
    prowazekii RADA HOMOLOG
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. [0167]
  • 1 73 1 129908 DNA Bacteriophage RM378 1 cgggtctgct tttccttcac ggacccaatt ctccgtgaaa gaaatacgac attcatactg 60 cacctcctgg ttggtttaat tagggttaat gttatacctt ttcaggaact tcgatcgctt 120 taactccctc tgatgaagca cggtttccac cgcggcaaaa atcaccagca gcagaaacca 180 cgctcctatc agaagcagcg ccgtttcaaa ataaacccac ttcatcacaa gccccgccag 240 tacgaaggcg ggcaaaaaac ctgttataac gtaaacagcg ctcatggttc acccctgagt 300 ctggagtgca aaggcacctg taatatccac ccaaccctca tgacgaaata ccgtcttctt 360 gaccacggtt ccgtcgggct gctgctcctc caccgacacc ctcttcgtaa aggaaaacag 420 aggaatgata cagaaagcca tcagagcatt gaccagaaac ggcatgaagt agggcgcgcc 480 tccaatcatg gcggcaccca gcaaaatatc ctccgtctcc ccactcttct tgaaaaaccc 540 ggcggcaaga gcggcaatct cccacgcgcg agacatcatc tgatcgaaat caggaatttc 600 ctcgaacgta agaagctcct tcacccgatt ccactgatca tcaggaaggt ttacaacccc 660 cgcctccatc tgttcgggag tcggattgtg ctgggtgaga ttcagaatcg tcatggcttg 720 tacctccgtt tgtttgttaa gtgatccaca gccagtatac gcataaagcg gaaaaaagtc 780 aatcggtatt ttctttcttc atcttaattt catttttttc cttgagggaa atatccgccg 840 catacatttt ttcggcttcc ttcagcacct cagagactct gctgaagatc tccctgagct 900 gaaccattga ccactccgga tcgtcaagca ccagtggaag cgcgtagccg tcttcatacg 960 tttcatagtt atcctcaaac agatcttcca gcagacgatc cagcagtgca ggaatttcat 1020 atcggtaact cataactcct ccggcggtta acttatcggt aaaccttcac ggatgaaggt 1080 ctcatgtgaa tgaacacttt tgctcccgga tacacttcat ccagaaccat aagcgccaca 1140 agcgaagcaa gcgtcatgta caccccctgg atacctccca ccgtcatata atccagaaat 1200 ctgatcgtac ccgccgaaat ggtatcttca agccccccat cccagataag atattccacg 1260 atggagggaa tctgaaccct gatcttttcc agctcccgct cgatatggat atgcggatcc 1320 gaactacgcg ctgcttccct gcagatacct tccgccagaa caagcaacgt ttcatttcga 1380 ttctgataaa aataattcag agcaccctcg aacagcgctt caggatctgt agccgcacgc 1440 ggaacgcttc tggaaacgtc tttcagaatc tgcatcatga cgcacctcca ttttttccaa 1500 cataaccttc ttatttcctt ttcggttcca cgcaatccca attaccacta ttaatctcca 1560 tcaagtcaga aacccgaatt caatttaaaa cttttctgtc tgaaattccc ttataaccct 1620 taaaacttaa cactaccctt tcaacacaat cccaatcacc agtaaaaacc tacctgcatt 1680 agatctacta ctcccctttg aagcaaaaag gaaaaaacca aaaatcaaaa ttctataacc 1740 cctacaggat acgctcagct ttaagtcgca tattacccat tgggatttta gaattttaaa 1800 attttgtttt tctttaatct ccatagggta cgcttagcat tgagtcttaa tttaccattt 1860 gagggatttt aatttagaag tttttgtttt tctttaatct ccatagggta cgcttagcat 1920 tgagtcttaa tttaccattt gagggatttt aatttagaaa ttcaaaaatt taattttttc 1980 ataaccttga gtggcttatt tacctgtaga gcgtcattca aaaaacaccc catttcaaga 2040 aaccttcaca ttgatctgtc gttttacaac ataaaacctt taagtggtat atgatcagaa 2100 agcgtaaaaa atctgaacat atcggagcgg atgcgattcc aaagggattg gtctatgatg 2160 ttttaaatct tgggtatacc gataagctca aatcccgcat gattgctata ctgagcattc 2220 ttatctacca tcgccaccgg gaagatcaca cctacgagat tgaaacagga tcgaaatgca 2280 agcgcatggt ggaagttaaa aaaggggagt cctggatcag cattccaacg cttattgagc 2340 gggtttacaa cacatttgga attaagctta ccagggagca ggttaaatat gcccttcgtt 2400 tgcttttaca gcatggtctg atttcggtaa aggaagcaac cggtggggtt tcgaaaggtc 2460 attttggaaa catttataca ttcagagaaa cggattttga aggagagttt gtcgatcctg 2520 tggattttgt gagggaaaat agtgaaagtg aagaagaaat ctggtatgca gattatacgg 2580 aaagtcggta ttcgaatcgc gtaaccgtca gagaaggagc atttcatccg attatgaaaa 2640 gtaggacact tctaaaaacg catgtgctta gaaatcatcc agatagagaa aaagctacga 2700 agttttaccc gaaagagatt gttgtggata tcgaagcggg tggatatcgc gtagatgaaa 2760 cagagcggta cagacgcttt agactcttcg tgataaaccg cgctgcgaag tttgcgagaa 2820 agttcagagc acgctacggg gggaaagttg atatatgttt taccggaggt aggggaattc 2880 atctgcatat tacgggaagt gtgctcaatg ttccaatgaa ccgcagtcaa ttcgacagga 2940 ttttgaaaga agcaattgtt cgtatgctta aagatacgga actatggcgg tttttcgatc 3000 cttccacgct gaatcctttt cagcttgccg gggttcgcgg aaaacttcat gataaggctc 3060 cttttgacga ctgggtgtat gtgaagcgta cctatcaaac gattaagccg ctcaaagccg 3120 gaagtctgct ttcgagtttt gaggaggcgg ctttctggat ttcgcgtagc ttcgtcagaa 3180 aagcggctaa aggcaatcca tttagaacgt acagtctggt aaaggaaggg ctactggaag 3240 gggagccgtg gagcgatcac catgcgggaa gagatacggc tgctttctgc atggcatgcg 3300 atcttctgga agccggatac atgacggatc aggtgttgct gtttctgaaa gattgggata 3360 agaaaaacaa accttctctt ggagataaga ttatcgcgca gaaggtaaga tcggcgcggc 3420 ggcttcttgc gcgaaaagga aagcttaaag caaacccttc tctacagctt ctctaattgt 3480 tttgaaaaag tgatagaatc tttccgggga aaagctgtat ccgatcatgt cggtgataac 3540 gctcatcaca ttgaaaaatc gttggacttc atccggattt cttctgtcga ttttgataag 3600 aagttcgatt atacgtttaa acgatttagg ataatcgtac cacagaaagg aaagatatgc 3660 acccgacgat ccttcttcct cttctttttt catgtaagaa cgaatatctt catacagata 3720 ccatatatcc acaatgcttt gagcgagttt ctccataatt ctggtggcgg tgttgctgaa 3780 cgtattgata tactcacagg taacaacata catattcttt ttgatttctt cgataatttc 3840 aacatgaata tttgtttcca gaagataaac agggaaagaa attgaaagtt tttcaagctg 3900 cacaatttta tgcagaaagg tgttttcgcg cacttcccaa tcccacagac atttcacagt 3960 cagatatatt tcatttctta taactttctc cagttcgacg aaaatatacg atttattttc 4020 tataaagccg ggtaactctt catgaatgat gcggtttaag ttgctgtgtt ttttcatacg 4080 ggtgttatct ctcagcaatt ttcttttagc atttgccaca aatctctgat atctttcttc 4140 aaaatcttct tttttgaatt ggatgttggc ttcattttgc aattgtctgg ttcttatagc 4200 aagcgtctca atgaacgttt tgattagaag tattgctccc ttagccatat cctgaatggt 4260 ggaatcggcg ggtaaatcca cacgaaagat ttttcgagtt tcttcgtttt tgatcagtgc 4320 gacgttccat cccattctct tttccatgaa aaacctgagc gcccagacca gatattcgta 4380 gaagttttca gtcattttat tttaaatatt cccttatctg tattccactt ccggagattc 4440 tatatggatg taaagtatat tttttcgtgg tataaaattc atctgagcgt gcaccgcaat 4500 tttcaggtcg ttctcgctca aatgatgctc gccccacctg aacgatccga taaactgcag 4560 cgtgatatgg tgcgtgatca aatccgtaga aaactccagc ttatcatctg tttcgggtgg 4620 aagcacatcg gtagagggaa accgggattt cacatcaaga cgtgcaagca ccagataatg 4680 atggtaattc tcgacgtttg atgccggtga tatgtttttg agtttgtcgt ttaatgtgcg 4740 gattacttct ttcatttcct tttcgatggt ggtatcctct gattcttttc tggagaaaat 4800 gtttttataa gagggtcctt ttttgatatg ttctaccggg gaaatggctt taagcagtct 4860 gtaggcataa tgcaacgtgt cgtttatcat ctttatgaat tttctgatcg caacgcttac 4920 aggtgtatcc tcagagatgc tcaggtagac cagatcgggg tgttttctca aatgataatc 4980 aggtggagag aagccgggat atttttccag atagtttttg atggtgtttg taagcagttc 5040 ctgatacgat ggcattttat tttaaataag tgttgataaa caaacaggct tttttcacat 5100 attcgaacaa ttcatctttg gaaagatggt gtggtttgta ctgacgatgc ataaacttat 5160 aagcaatatc aaacaatacc ctaccctttt cctcactttc tttaataata tctataatgc 5220 tgtctatttc ctctttcagt tctctgtaaa tggttcggta tcggtttatg tcctgctctg 5280 tcaggtgttc actattttca tattttatcc cgaatacaga cataatacct attgttcctc 5340 cgataaattc cagtgttcca ttccgggtag aggcgcttac aaatgagttg cgaatcttca 5400 atgttttatc tgaaacgaaa cttttaaaac ttaagtcaag gagcatttct gtaacaaaca 5460 gaggagcatt caggtggaaa atttttgcaa attttgaatt ttctcgggga aaccatttaa 5520 caaaaccgat tatcattata ccaagatgag cttcctttgc aaaaaccggc ataatgtaaa 5580 gatgaatttc gtttcgaaat tctatttcgt ctgtgaagtg ggtgattaat tttttatcga 5640 tattattgta gtgtatagta tcgtctttaa gttctttcat ttttttctga agtttcttta 5700 atgcctgttg aaacttctcc tcaatttgat ctacagctat tttttcaact ccgatatctt 5760 cttcgaagtg tctgattttg gtaagtgata gttctatagt ctttttaagc gtatgaacat 5820 acatccgcgt aaaatctctg ggtaactgct tttcggcggg aataagacgc acttttacat 5880 aagaaggtcg tttctctata atttctacac tggaaaattc cgatcttttt tttaaaatat 5940 tcaatgatgt tcattgcaag tagtgcttca acaacgcctt ccatagtttt tttagctaag 6000 gttttttgtt tacagttttg tagttttcgt taattaaggt gtttaatgct attggttttt 6060 ttaactattc cccacgaact atctgtttca atacacgata tctttccacc atatcgaggt 6120 ttataatatc cagcgctcta cctatttcat caaacatttc gatcacgcgt tcatcctgat 6180 tgtttttgct gtgttcgata aggtttctga gttcaaaagc tccccgtata ccactggaat 6240 acagaaatgc gatttttgga atatcagggt gtccgggatt aataagagat agaaaatgtt 6300 caatgttttt tatgagttca tgaaggcgat tatactgcat gttgaaataa gcgtgggctt 6360 ttgtcagcct gatgttttct tctatcatgg ggcgcacgta aaaactccca tgcagagcgg 6420 ttccgatatt ggtaaaaact gtctcgtgaa acagaatagc ggaaagtgcg gcgtttttaa 6480 ccggatagag agaacttgca ccaataaccg atatatcaaa cagagcagga aaaaactcga 6540 aaagactctg atcattaaag aaaatatgca tttcgttttt tcgatatacc agatcagggt 6600 atttatgtgt ggtgttaaat attttctgta ttttctgaac cgtttctttc tccttattta 6660 ttttttcttt aaacttctca atagcctgct ggtacttatc atttattttg ctgtctacag 6720 aaaacccgga ataaatggtt cgtgtctttt ttataaaaaa ctcgatcagt tctttgaaca 6780 tgcgcggcgt ttcttttata atctcttttg cggttgcgtt ttcaccgatg tcaaggatta 6840 tggttacatg tttatcgccg gcgtctatgt ttaccggata ctttttttga aatctgtaat 6900 actgctgaat tgcacttaaa atctctttac ggtatttttt cggagtcata aggtgtcggg 6960 tttgatttta ttaaatcact caggttttta agtcgtgcat gtttaaccca gttttttaac 7020 caccctgtta ttccaccata tgacttttcc atctgatctt acgattcctc cgtatcccat 7080 gcggctcagg atctcattga tttttccgtt ttgaggaacg ttgagtgcac caaaatagag 7140 ttcagtaagt tgcttcataa aacggtttct atcctgattc agatcttctt ctatcatcat 7200 ctgaatgcgg gttggaaatg tatctacgat caggtttacg acgtagactc tatcgctggc 7260 ttcccatctt gaaaggaaaa aggaatcata tcgaagcaac cggtcaaacg tttcgtcaac 7320 gacggttttg acaaatgtcg caagttttcg ggtgaaaacg gctccggttt gctcgaaagt 7380 gataagcaac cctttgaaaa gcatttttcg gagtgcggag aggctgtagg gaacgtcaaa 7440 atgaattccc ctttcgacga atccatatgg cggctttcca aataccccct gaagtttcat 7500 tcggtgaagt tcccagccgc ttccaagaaa ttcgtcaatc tgaagttttt taagtttttt 7560 gagatcggag gagttaaggt gcacgccgaa atagttaagt gcgcccccgg tggacgcgaa 7620 aagggggagg ttgtaaaaat cttttggata atcgttttcc tttttgacgt tgagaaattc 7680 ctccggctcg atgatatagt agaggtgata cccgcgctcc aagatttccc gaagggtttt 7740 ttcgtttaac gggatttcgc tcataaggag tccgtttccc tccacagaag acacaatcag 7800 gtttgaggga tcaagcgttt cgattttttc aaggagctct ttcatacggg tatctgcagg 7860 gttatctgtt cgcggttaat ctgcacaacg attttgagaa ggtgtgtggc ttcgtcaaaa 7920 ctcacgtcta tagtatctat gtcgtagggt tcgaggttgg aggcaatcag gttgaacagt 7980 tcatcataat cataattctc gaaaagaatg ttgcgaatac cgatccctct ttctggatcg 8040 tagggatatt cccccggctc gatgaaaagc aggagtttta tcttatcgat caggagtttt 8100 accgggtcat caggaaatct gaaattcggt gcagtgtcgt tcagatagaa catttcattt 8160 ttgtttaaat aaatcctcga ggaatcttca aataaagagg ggcgttaatg gatgaaaaga 8220 ctgaggaata tggtcaatct tatcgatctc aaaaatcagt attatgctta ctctttcaag 8280 tttttcgact cctatcagat cagctgggat aattacccgc atcttaaaga gttcgtcatt 8340 gaaaactatc ccggcactta tttttcatgc tacgctccgg ggattctgta caagcttttc 8400 ctcaaatgga agcggggtat gatcattgac gactatgacc gacacccgct ccgaaagaag 8460 ttacttcctc agtacaaaga gcaccgctat gaatacattg agggaaaata cggtgtggtt 8520 cctttccccg ggtttctgaa atatctgaag ttccactttg aggacttgcg gtttaaaatg 8580 cgcgatcttg gaatcaccga tttcaaatat gcacttgcca tttctctttt ttacaaccgg 8640 gtaatgctca gagattttct gaaaaacttt acctgttatt acattgccga atatgaagct 8700 gacgatgtaa tcgcacatct ggcgcgtgag attgcacgaa gcaatatcga cgtaaacatc 8760 gtctcaacgg ataaagatta ttaccagcta tgggatgaag aggatataag agaaagggtt 8820 tatatcaatt ctctttcatg tagtgatgtg aagacacccc gctacggatt tcttaccatt 8880 aaagcacttc ttggagacaa aagcgataac attcccaaat ctctggaaaa aggaaaaggc 8940 gaaaagtatc ttgaaaagaa aggatttgcg gaggaagatt acgataagga actattcgag 9000 aataatctga aggtgatcag gtttggagac gaatatcttg gagaaaggga taaaagcttt 9060 atagaaaatt tttctacggg ggatactctg tggaactttt atgaattttt ttactatgac 9120 cctttgcatg aacttttcct cagaaatata agaaagagga gactatgaaa gtactcgcat 9180 ttaccgatgc acctacgttt cccacggggg tgggtcatca gcttcacaac attatcaatt 9240 acgggtttga cgcaaccgat cgctgggttg tggtgcaccc gccccggtcg ccaagggctg 9300 gagagactaa aaacgtcgtt attggaaaca ctccagtcaa gcttatcaat tctccgcgag 9360 gatatgcgga tgatccggcg tttgtgatga aggtggtgga agatgaaaag ccggatgtgc 9420 ttgtaatttt taccgatccg tgggcttacc acccctttat gcaacaactt tcttactgga 9480 ttatcgagcg gaatctcccg ctggtatatt atcatgtgtg ggataatttt ccggctcctc 9540 tgtacaacat ccccttctgg cacacctgca atgaagtgat aggaatttcg atgaaatcga 9600 cgatcaacgt gcagcttgcg aaggagtatg tggaggcgta tgaaatcacc atgtatcgcg 9660 atccggaggt attctatctt ccgcatgcgg tcgaacccaa tgtattcaaa cgcatggatc 9720 gcaagaaagc acgtgaattt gtgcggggac ttgtcggaga taggatgttt gatgacagcg 9780 tgatctggct ttacaacaat cgaaatattt cacgcaagaa tctgatggat accatttatg 9840 cttttctggt atacatgctc aaaaactaca ggaaacatca ccttttgatt ataaagtctg 9900 acccggttgt accggtggga acggatattc ccgcgtttct tgccgatatt aattcgtttt 9960 tccactaccg ggatattgac cttcgggaac acattgtttt catttccaat gacgaagtat 10020 ttcacaacgg cggattttca agggaggaaa tcgcattgct ttataacggc gccgatgtgg 10080 tgctgcagct ttcatctaat gaggggttcg ggatcgcttc gcttgaggcg tcgctgtgtg 10140 gagccccggt ggttgctact atgacgggtg gtattgcaga tcagtactcc ctctacgaaa 10200 tggattatga ggtggcggat ggaagtgatg aagatataat ctgcaagatt tatgaggaag 10260 tgcaccgtca ggtgctcaat cagtatctcg atatgctccg tcaaaacgga aaggatccgg 10320 aaagcgctcc ccgcaaaaat catatgatgc ggatggtgaa accttatcgt cattatcagg 10380 gatcgccggc tactccctac attcttgacg acagggttcc tatccgggac gtattcccga 10440 agttcgatga agcgctggcg ctgaggaatc gtgaggatta cgaaaaactt tatgaagaat 10500 cggttgagta catcaccatg cacttcgatg tagaggtgct cggaaaagag ttcaagaaat 10560 cccttagccg tgccattaag aataaccaga aaaccacaag acaggttgtc gtgctatgaa 10620 gaagaaagtg cttcttgttt cgccgcttcg ttccgttagc ggctatggaa ccgtaagtcg 10680 cggaatttat cgcattctga agcgaatgga aaaagagggg ttgatcgatt ttgatgtgat 10740 ggtattgcgg tggggtacgt tttcggaaac cacccacctt gatgatgaaa tcaagaagag 10800 aattcaggag aagtatgatc aggtgtacga tgttgcgatc atggtttctt ctccctacga 10860 ctatcgctac tggaacaaca tcttcagagc gaaacacctg ctctttttca atgcgatggt 10920 ggaaacgaaa ccgttccatc cgaatctgtt ccagcagctt ttcaacttca tgcttcaggt 10980 tcccaccgcg caccttgtgt ttccttcttc cgaaatcaag aggatctggg aagaaatcat 11040 caattcccaa cccatccatc cggcaatggg tgctgcagtg ctctcccgca ttcatgtagt 11100 acccaacccg gtagatgaag tttactatac ttcgaacttc gggaataaaa acgttcgtaa 11160 aaatgtgatc ggcgcgattc gaaagaagat tgaggaaatc cgtcgatcct atgaactgga 11220 gcgggtgttt ctgacttttg cgcctatggg agtagatcga aagaacacca gggttttacc 11280 cgaacttatc gaaatggtgg ggcgggttgg aattctggcg ctggcgggcg gaacaaattc 11340 ttttatactt tacgactttc agcggcttat ctggatggaa ggtgagaaag cctataagcg 11400 gcttccgctt caccgatcga tcgacgttac cccggaagag cttatgttcg tttttggatc 11460 gctgacggtg gaagagctga gtgcggtgat ggatatggtg gatggtggaa tcaacctttc 11520 gcatggagaa tcgtgggatt acctgttgca caacatgatg ctactgggca aaccctgtct 11580 ttacgtcgac ttcttccgtc gggattatat cccttcggag cttcgtgatg tgctgggggt 11640 ggatttcaat atggtacccc tcccgaaggt ggttcccaac attccgcacg atcatccgtt 11700 cttccacccg caaacgatgg tggcggaacc caatttgcag gatgcagcgg aaaagctcga 11760 ctgggtgttg cggaactacg gtgaagtctc aaagatgatt accagccata gagacgcttt 11820 caaaaccgac gatacgatct atgaatttct ggttgacgca ctggagtcga tcgaagaacc 11880 acaggcggca taaaaatttc acattctgga taaaccgggg gaattcgggc atttatcccg 11940 aaaatccccc ttttttgtct caaaaccgtt ttggcggggt agatatttaa tatcaccccg 12000 tggaaagttt aaccccaaaa caggagtgga tatgtcgtac tatactgaag tcggcgcacc 12060 ctactttaca cgtgaagagc agtttgttcg gaatttgctg ttcgacgtaa cttttaattc 12120 caaatattct ttcttcgatc tgacgctgca gcgtcgtctt acctttgagg aagtgctgga 12180 agaggtgctg gcggtgtttc atgcccgaat cgaggaagtc tgcaaaccca tttatcgcca 12240 gcaggcgcac cagtacgtgg agaagttcgg cgagtatttc cgccagcgca agctttttcc 12300 ctcgatgcgc cttgtgcagt tttcgcgcat ggttccttac aaccacaccc gtctttacaa 12360 ttgctcttat actcccgttg attccattga ttcgatcgcg gagcttttct acctgatgtt 12420 gtgtggcgtg ggtgtgggat acagcgtgga gcgtaaatat atcgaacagc ttcctgttgt 12480 atatcccgaa agtgaggggc agacaatcac ctatcaggtg gaggattcga tcgagggatg 12540 gtgctcggcg ctcaagcgtt atctctatgc gcggtttacg cccaaccacc cgaagattgt 12600 atttgactat tctcttttga gaccggaggg aagtgtgatt ggaaagcgtt acaatgctgc 12660 atttggttat actaaaaaca atcccatcaa agaagcaatc gaggcggtaa aggggatttt 12720 cgacaaagca gtaggaagga aactcaagcc gatcgaggta catgatctca ttacaacgtt 12780 cggcatgatt atcaatcgtg cgaacgtgcg cggaatggcg gcgatcgtct ttttcgatta 12840 tgatgatgaa gaaatgcttc gctgcaagga tttcacgcgc ggcgaagtcc ctcagaaccg 12900 ctggtatgcc aacaactctg tcgtgttgta tagagacggc gataaacttc gcggagtgcg 12960 cggggaaatc gtcgatcttc gggatatttt catggaagcc tattgtggga agtctggtga 13020 acccggcgtc tttgtaacca acgacgaaca ttatcgcacg aacccgtgtg gtgaagcttc 13080 tctttatcgc aatttctgca accttacgga gatcgccatt ccccgtgttc atcagagtga 13140 gatcgcggat gtgttgaaca cagctatctt cattggtgtg cttcagtcta cgtttaccga 13200 ctttaagttc cttcgcgatg tgtggaaaga gcgcaccgaa gaagacaact tgcttggcgt 13260 ttcgctgacc ggcatttacg aaaatctgga tgcgctcaaa gagtacatga agctttcttc 13320 gaaaggtcat gtcaaattca tggcggctca atttgccggt tggttcgggt tgaacaaccc 13380 ggctcgcatt acgctggtca agccctccgg cacggtgtcg ctgcttgccg gggtttctcc 13440 gggttgccac ccaccctatt ccgaatattt tatccggaga aaccgggtgg atatgaatca 13500 catgctggtt gaagttttga aggattatcc gtttatcatt gatgatgaag tgtatcccga 13560 taagaaagtg atcgaatttc cgcttcgggc gcaacgccac tttacgcacg atcccatgtt 13620 tcaggtgcgt cttcgcaacc agatcatgag gggctgggtg gaaccctcgc ataatcgcgg 13680 caaaaacaca cacaacgtat cgattacggt ttatgtaaga gatgaagggg aagtggagat 13740 tgtaagtcgc gaactcaaaa atgagcgaaa catttcggga atcacgattc ttccggtggt 13800 tgagaatggc tataaactgg caccattcga agcaattccc agggaaaagt atgccgacat 13860 gatgggcgaa atccacgtgt accttgatag aatcaaacac cagctaaacg gcacgcccga 13920 ctccccgcgt ctgaaactga tctccgattc cgacgttttt gagggagaga aaggttgtgc 13980 cggtctgcaa tgctatttcg acatgtaaca tgaaactcgt acttaaacac tccagagaag 14040 agtctttcta tcctgaaaca ataaaaactc ttgatcatct tagagagaat gggtgggaaa 14100 tcgttctcct acaggataat cgttttaata tcatagaagg ttacgatttc gatatggtga 14160 ttaccacgtc gaaccctcaa tacagctttg cggatttcca caatgaagca ttgaaatttg 14220 ccaagcacgg ggagtggctt ttttatcttg atttcgatga atatttatgt gataattttt 14280 gtgaaagggt taaaaaatat atcaacagag atgttcattg ttacaacatc gcacgcataa 14340 acattataat tcctcaggag aaaacgggtg atgtgtgcgg gatgtacgga tggcgtagtt 14400 ttaatatcaa tatacctgag gaagggagtg taaaagcgat aaatttcccc gattaccaga 14460 cgcgtctggt tcgcgccgga accggcaaat ggtacgggaa cgcccacgaa cgctttgtgt 14520 gcgataatgc ttttaaacac aaaacgttac cgtttgatgg tggatatatt atccaccgta 14580 aatcttttga gaaacagatt accgataacg cgctctggtc aacctataca ccgtgatata 14640 tgttcagcgt aattctcata cacggaaacg aggatcttat caataaagaa ctgatagata 14700 atcttaatga attcagggaa gcaggatgtg aactcatttt gctgcaggat gatcgttttt 14760 caccgcccga ctttttcaaa tttgatattg ttataaaaca ttccgtttcc gaagggatgg 14820 accgtcatcg aaattttgcc aatcaacatg cttcttttga atgggtgttg tggttggatt 14880 ttgacgaata tctattcccc ggatttacag aacgagctcc tgaatacatg aaaagggata 14940 tatgggggta tggattttac agattgaaca tgatcgttcc acctgaaaaa acttcatggt 15000 tcgttcagaa ttatggctgg tatgaaatgg ttgggtgggt ttcaaccata tcgatcaggg 15060 gggtttctta tcaggctata aattacccgg aggttcatta tcgttttgtt cgaagagatt 15120 gcggcaagtg ggttggtaaa agacatgaat actggtattc aggtgatttt cgtaaaaaag 15180 ccatatttcc ggcggatcga gaaacacttt tccacgttaa acccattgac aaagcaataa 15240 gagacaacta taaatggagg gcactatgat gaaccccgaa atgaaagaga ttctgaagaa 15300 gcttatgaaa cccttccacc ctgatcgcca ttcctatcgc gttaccggaa ccttccggac 15360 tcgggaaggg cggaacatgg gggtggtggc attttacatt tcatcacgcg acgtgatgga 15420 tcggttggat gcggtggtgg gaccagagaa ctggcgagac gaatatgaag tgccggctcc 15480 gggggtgatg aagtgtgtgc tttatttgcg tataggtggg gagtgggttg gaaagagtga 15540 tgtggggacc ggcaacatag aaaaccctga aagtggatgg aaaggcgccg cttctgacgc 15600 cttgaagcga gcggcggtca agtggggaat cgggcgttat ctctatgcac ttcccaaatg 15660 ctatgtggag gtggatgata gaaagcgtat tgttaatgaa gaggcggtca agtcttttct 15720 ccataagcat gttaccgaac tgctgaagaa ttatcagtaa cccaaaccta aacccgaaaa 15780 atatatggaa acgattgtaa tttcccaaaa caatacgacg gagatgacgg aaccccccca 15840 gaacatttcc gattcggtta aaagcgggtt tatctatctt atcgaaaagt ctcatttcct 15900 tgaaaagaaa aacttcctta aaatcatatc gaacatggac ccccgccgca tttccaatcc 15960 ggaggtgcgc gtggtggcgg agtacatata tgattatttc aaaagtcata gtaatttccc 16020 ttctaaaaga aatctttgcc atcactttga gtggagcgaa gatctggaag gagaccccgc 16080 cgattatcag cgtatcattc agtatctcaa atcttcttac attcgatcct ctataacaaa 16140 aacgctttca tatcttgaga aggatgacct ttccgcgttg aaagaaattg tcagagccat 16200 tcgggtggtg gaggatagtg gggtgtcgct ggtggaggaa ttcgatcttg caaccagcga 16260 gtttaatgaa ctttttgtta aagaagaacg cattcccacc ccctgggaga gtgtaaacaa 16320 aaatatggcg ggcggtcttg gtcggggaga gcttggaatc gttatgcttc cttcggggtg 16380 gggtaagtca tggttccttg tttcacttgg tcttcatgcc tttcgaacgg gtaagcgcgt 16440 gatttatttc actctggagc ttgaccaaaa atatgtgatg aagcggtttt taaagatgtt 16500 tgcaccttat tgcaaaggac gcgcttcttc ctatcgcgac gtttatcaaa taatgaaaga 16560 gcttatgttt tctcaggata atcttttgaa gattgttttc tgtaatgcga tggaagatat 16620 tgagcactat attgcgctgt ataaccccga cgttgtgctg attgactatg ccgatcttat 16680 ttatgatgtg gaaaccgaca aagagaaaaa ttatctgctt ttgcaaaaaa tttataggaa 16740 acttcgtctc attgcaaagg tatataatac agcagtatgg agcgcctctc agcttaatcg 16800 cggttccctt tcaaagcaag ccgacgtcga tttcattgag aaatacattg ccgattcatt 16860 tgcaaaagtt gttgaaatcg acttcgggat ggcgtttatt ccggatagcg agaactcaac 16920 ccccgatatt cacgtcggat tcggtaaaat cttcaaaaac cgtatgggtg cggtaagaaa 16980 gctggaatat acaattaact ttgaaaacta tacggtagac gttgctgtta aatgacacaa 17040 gttaagacaa aagggcttaa agacatcaga ataggtagaa aggagggtaa gttcacacat 17100 gtaaatacaa caaagaaagg aaagaataag aaatatttca gggcggaaca tgaacgcctg 17160 tttctcaacc ttattcgagc acttcaggtt ggggattatg ccgaaatcaa ttctcttttt 17220 cctcttgtcg aaaagcaact ccgatggatg gtacgaaaga tagtgaaccg actcaatctc 17280 acttcacttg tttcatatta tgaccacggc gaatgggagc atgatattgt aagttatgtg 17340 ttctccaaac tcgataacta ttctcccgaa aagggaaggg tgttcagtta tatcagtgtt 17400 atcatagtca attatgctat caatttgaac aataaaattt attataaccg ggtggggtat 17460 cattcagatt tctatgcaga taatcctacc accgaagact acaagggtct ggatgaaaag 17520 gaagagttga gttatgaaat agacgatcag attaatctga agattgattt tgagcatttc 17580 tgcaatctgt ttttaaatgc ttccgaagaa actttactca agcattttca ggaagacgaa 17640 gtttttattg ttaaaaatat tgcgctttct ctgaaatatg atccggatat tatcacgacg 17700 ccttttctgg gggttgtaca tcggatgatc tgtgagtttt gtggggtgga attttcccgc 17760 tataagtttt ccaaagtgtt caagaaaatg gttcaactat accacgaagt ttttaacggg 17820 gggtaaaggt tatttaaata aaaaatatgt tttcggcttc tgattataaa ggaaacgtaa 17880 cttttagttt tcacttccct tcgcttctca ccaatgccgg atcgcaccca aataaggcat 17940 atgtgtatta cgactatatg ggtagtgatc tggtgttcac tttttctcga ataagattca 18000 gcctgtcggc acccggcacc tacgatgctt attttgacgc tcatattcag gatgttgaca 18060 ccattacctt cgattcaaac ggataccgtg agctttattt cattttcagc gtttcctggg 18120 aaggatccaa cacttcgggc accatttcgg gtgccaatct tatcagcgta tcttcctttg 18180 ttactggata ccccgaaaac agttttcttg cctatacgct ttccgtttac tctgcttccg 18240 ccacaaccta tcttaacctt aatgatgctt acagaattta cgtagggaac attttcggca 18300 ccccgcaatg ggaagttggt tttaccggta gtttcacggt ttctgctacg ccttcaattt 18360 ctcacaaccg tttcaggatt ttacttcttt ctaactttga tagtgcactt aattactata 18420 ttactacgtt cagcgcacca gcattcgcct cacattcatt tcaggttatc aggaaaatat 18480 atgaagttga gccactttct gcttacacag taccgtctat cgtgtttttc tacacggttt 18540 cagctactaa cagcttcggg tggagctatt ccaatataga aatggggtct ctttacagaa 18600 tatcaactat gtccattcta agttatcctt acccctacac ggcaccggct ataacgtata 18660 tcactttttc tggcggaatt gtttcggatg aagaatttat tgtaaaggtg cccataaccc 18720 tttcttatat taacaacata ataccgtatt tcatcggcaa ccccactacc acttcaaaca 18780 ttgacgatgt gaatgctact gaagataaaa ttatccctac ttcgataagt aactttaaaa 18840 caaccctttc atttcaggtt tttgcttttc cgaacacact ccctgttaaa acggaacaag 18900 tatcaattcc cgttaccttc agtccggaaa cgggcaacat ttctattcct gtttccatct 18960 catttcctgc gtttgtaaga actgctgcgg ctacaatgga taatccgggc aatttttcca 19020 cttctgtcgg aaatggtatc gtggttagcg atcttgtgtg tcagaataca gggaatatac 19080 ctattacatt tagtggtgtc agtcttgcaa tagacgatgg taactggtat gtggacaccc 19140 cctccgtggg atatggtttt aacccgaaca gcgggttttg gttcgatgtt cactttatgc 19200 cttatgggga tgtaaactac agtcaatcca tttattttac gttttcgttc aattatccaa 19260 caaattatgg aaatatattg tcaggtagtt ttgttgaatc catttctttc catgcggttg 19320 ctacaggaac cgccccttcc ggtcaggtgg gtattacggt gtccaactgg aatgtggaca 19380 accctaacac cgttatggtt ggtaaatatg ttaccggttc cttcagcatc acggcaagtg 19440 ctacaaacaa tcagatcgct caggttaccc tgacttcatc aacccccaat ctgtatttca 19500 cgacggtttc aggtgttggt attaacaatc ttcatgctac ggcggtaaat tctctggcgc 19560 tacaggttgc tcccggagct tctctttctg tttataccca gtggtatatg aatatggttt 19620 atacggcttc ggctcctgat gtaaccatat cggtaacgtc ttctaatgct acggaaatga 19680 acggcgtgcc gggattgacg gaagttaagc gatcgcattc gctgacgaac cctgctcgat 19740 atgcaaattt gaatatagga attttttcac tcagtgctta tggtcccttc tatcaatcaa 19800 ccgcctctat tttgccgttc ccttattctt ttagtcttgg gggcatcaac gtcgttagaa 19860 atgttggttt ggcttggctt gatttttatc caacgaacag cactcattct gaaatgtatg 19920 ttaaattgac catgtctctg acaggatcgg ctttaaatgt tcatagcgta gtaacttcat 19980 cgtatttttc tgatccttct aatttcgagt gggaagtcaa cactttgcag catactctgt 20040 tcagcccccc ttatggatat tttcttcata ttagaataag accgactcca agtgatatta 20100 acataatacc gacttcaagt gcatatggat atggtacgtt tgttgtaagt tggagcatga 20160 gtcttatttc ccatataaat ggggtaagcg tggcttctct tggacagggg tattcaaatg 20220 ctttgagttt gtggtttgat catactgttt tctatgaagc accatagtaa tttcttatct 20280 atacgacaca tacttgataa aattgccgct ttctcccatt tcaaaatatt ttctgagcgt 20340 agaaggagta aaatccgtgg cgtctccaag ctttcgagtg ggggtgatca gtgttgcgtt 20400 gattttgaca tagtggcttt tgatcatttt gttgtggggg aaaagcaggt tgtaaagcgc 20460 catctggttt acgtcgttca aaagatgttc atgccagaga atatcgtaag tgcgggtaag 20520 cagcgcaaga agattggtgt agtagttccg ttcttcctta atggtgtaaa gcggcgtgca 20580 ggaaatgatg atcgcttgaa tttcctcacc cggctttaat tctttaagtt taataaggtt 20640 ttcaatggta aacccaagcg gaatcacttc tcttacccca ccgtctacat aggtgttgtc 20700 tccgatttta accggaggaa agaccagcgg aatgctacaa gaagcaagaa tggatttgag 20760 aagaagttcc tctttttgct cttccgggat ttcctgatct tcaaaaaggt agttaccgtc 20820 ttttacaacg attccggtgg atttgccgtt ttgcaaattc acagaacaat tgatatagat 20880 tttattgaaa ttcagaagcg ggagcacgtt tttctcaagg tatttcccaa gaggggaaaa 20940 atcatacaga taatttcgtt tgagaataag tgttttgaga agggcaaacc actcaggctg 21000 ctgtttgtaa acctgtttcg gggaaagaga aagccacatt tgcttcatga gatcggtacc 21060 tttcggggta agcgccgcgc gggaagcaca ccacacgccg ttgatacttc ccaccgaagt 21120 tccggctaca gcaagaattt cgttgtcttt aagcgctcct tccctcacca gacaggaaat 21180 gacgcccgcc tgaaaagcac ctttggctcc tccccccgac aggatcagca gttttttcat 21240 ttttaattaa ataatgctca ttttcccgat ggaagcatgg aaatccactt caatttggca 21300 aatccgtctt ccgttttccc gttgatcata tatgcgtagg ctccaaagac gtgagctatc 21360 ttgcaatact cctcttcgtt gtcaataaag attgtatagt ggttgggtgg aatgattcca 21420 tagatgagtt cgtttacttt cccgattttt ttgcccccga caatgcggtt gggaagtgga 21480 agattatgtt ttttcaaata cgactcgatg ttttcccggt ggtttgcgct caggatgtaa 21540 aggcggtgat agttcggatt tctttttacc agatcgtaaa gataggtgta caggttatga 21600 aatttcgtaa tcgttccgtc gaagtctata cacaccgcca ccttgattgg tttgacaaga 21660 atccgggaga gcaatatatg agcggatttg tgcatagtca tagacacctg atccggtgaa 21720 agatcgataa tgcggggaaa tttgtaaatg cggcggagac ggttggtaag gtagcggatg 21780 tatctatcca ttcccatgta cttctcgata atatcaaggt attccggatt tttccttaca 21840 aacacctctt tcatcaggtg tttaatatga atggtttccc gtcgggtgag aagaagtttt 21900 gttaaacctc tcacccgcaa ctcttcgaga atctccggag ataaatcttc gaactggaga 21960 taaagcgttt cgtcaatggt ctgcatattc atagtttact caggtatttt tttgaacatt 22020 gtattaatgg tgtcgatttt cttgatgtaa tcaacgaatt tgacaccaag ttttcctgta 22080 acatttccga taagaatatt ggaagcgttc aatgccagtg cgggagtcag atttgaaagt 22140 cttgcaattt caaacagcgt cgggagaata tggtttttat tttcgatttc ttccatcaaa 22200 atggcgtcta cggcgttgta ttccaccaac tttttatccg ggtagacagg aatctcatga 22260 tagaatctta cgtcgaaatc caccttacct tctcctattt cctctcgcgc aatatagtcg 22320 agccggtagg actccaactc tttgtatgcc acaaaggagc gataaagccg catgtaatca 22380 aaaaacacaa attctacagg ggtacgggga ttgaaataga atggtaggtt tcgatcggaa 22440 attttccgca ccagcttcca gtccggaagc aacttatcac taatgacatt cacctcatgg 22500 atatgactac gaatgagcag gtagggataa tcgaactgat aaccgttcca tgcgagcatg 22560 aaagtaaatt ttggtttcag cacattccag aaatactcga gcaatctttt ttccgaaagg 22620 aatgttctgt aatgaatttc aaatgtgtta tcccctacgc tggtggtaaa tttgttaaag 22680 ttatcgatat gagcctccgg gttggtgata aggagaagca ctaccaccac cggttttcca 22740 tacggtttga tggaaatgga ataaactggg tctctccacg ggtcgggaaa gctttttttc 22800 ggggaaatcg tctcaatatc gataaagacg cactgagaca aagcttccgg cgtgatgtgg 22860 cttttttgtt ctctgatgta ataggatata gcctcagcct caatcttccc tcgattctgc 22920 tgagcgatgc gcttcaaatg tgggggtacg ggtgattgaa ataagtgttt tttcccctcg 22980 attagctcca ctccgtaaat tttcatcgat cgggggtata cgcttgcgct tagcgtgatc 23040 ttcataattc tccttcaggt cttcttcgag gaaatcgttt aacgattgaa gcaactgata 23100 ataagcttcg cgggtttcga gcatgtcgaa tacttgcctg tgaaaaaaca gaaaatctct 23160 tatcttgcgc gtggctccga tcagaagacg gtgtttccgc tggaggatgt tataccttat 23220 gatataagta atcagcaccc cacttacggt tgccgcaata gcaaccccca accagaaata 23280 tacttcctgc atggtttctt tttttcttca aaaaaacctt tccgtgaaaa aatagtttca 23340 actggtaact gcaaacaaac ataaggagag agtcatgctc gacttttatc gctgctttgt 23400 caaaatcttt cagaatagct acttcgccaa cccaacaaaa taccggtttg gcgaaaaggt 23460 cagagaagca gtgttcaact ggggagcacg cgtggcacac cacgacatca attcgcgaga 23520 aaccgaaatc gttgcagatc cggagatgga tgattatttc agaagatcat ttttctccga 23580 aaacccctat atgcttgtta aaattaccca tcccgatgaa tcgatgataa atacggtaat 23640 atggcaaagc aagcgatatg aaaacttttc ccgcgtctat caactcattc gcacaattgc 23700 acagatgaga gaagaagaag tcgataacta catgaatcag atcatgccgt ttattgcgtt 23760 gaatctcaat acgatcaatc gctatatgaa caaaacaaat cttctctttc aaacccctta 23820 tgatgagtta tacggtttca ctctgctttt caagtcggta attcgcattg ccgaagaaga 23880 aaacgaactg gagtatcttg cgaataaaga tgtcattgat agttataata agaagattga 23940 ggaatttttc aataccgatg aaaatatcgc tacatttgga tatgttctaa aagatatgct 24000 gtctcactgc attattgcca tcggtatgat cctgctggaa gcgaaggata aaacacacat 24060 gaagttttat gaggaacttg gtgagtttat ggcggaaata ggtaaggtat acttaaaagt 24120 gatagaggaa ggtgagaaag atatgaatgc gctgacgcat ttatacctct ggtgtatgat 24180 tgccggttgt atcattaaca tgttgaacgt caggattccg gatgaattgc ggttggctgc 24240 tatcatggtt gaagaaacgc ttgcctcgca ccaactgcaa ccctttattt cgttaaactg 24300 aagaggggta tgatacagaa aacaaccccg tataaaaact acaaaaagta catggatcag 24360 cggggagaag tgctgagacc gcacccccgc aagaaggtat atatcccatt tcttattgcg 24420 gaatgtggaa cttatctatg gaacgacata agaaacatga tgtttgcgct tccggggtgg 24480 aaagatgtgg tgaaaaaata cggtgtgggg gaaaaatcca ccccggagcc tttctatgat 24540 ttcctttcgc tttttatcaa gaatactacg ctttacagtg attatagaac caaacaaacg 24600 ctttttcaat cgcgaataga gcgcataaaa atggaagagg aagtctggaa tctttccaat 24660 gcactgatca atctgttctt ttatctgaaa gagcattatc cctattattt ctcaaaagag 24720 tttgtctttt actttgacat taatttctat ttcaggaagc tcacatttta tgatattctt 24780 gccggggaag atttgcggaa taaaatcaac gacacatttc agaaaatgct ctctaaaggt 24840 tacacggtac acctttcaaa aatgaaacct cagagtagag aagattatct atgtttgcgt 24900 tatgccgaat atatggaagc tattatggct cgagatgagt tcaagcagga aatggatatg 24960 aaagggagtg ggaatctttt ttatcttatt gatggtttta aatgggggtt gataaataga 25020 aaagatgaag tagaatttgt tgtactggta aggtaaaaac tatataaata aaaggggtta 25080 gtttatggcg agctggactt acgataccac ttcgcgtatt ctgtcaatta ccgttagtgt 25140 ggtggatctc gacaataacg atgtactggt ttacaccggt agcaattatc ctacatggtt 25200 gagtccgccg accacttcgt acgtttccgg ttcgttgtct ccaaagcagt ttgatgtgta 25260 tatcagcggt agcacgctca acgttcagac agggtcttat caggttgatt tgcttgccat 25320 tgaacagggt gtgtcgttcc cgctcacctc ttcggcaagc ttcacgatta cggttacggc 25380 ggtttaacaa attttaggca agaagtctcc atcctctaca gggtggagat gaattgccta 25440 ttgacaaaat tcagtggtgt attacaataa aagcaagatg tttagagcat acaaatacag 25500 gatatatcct aacaaaaaac aaaaagaacc cttagagaaa acttttggtt gtgtggggtt 25560 ctactggaac agggcattag aaatcaaact caaagcttta ggaaataaag agaaaatacc 25620 acaggtcttg cccgccttaa gggtggtagg gtcggaacga cccgaactta tgcctgtgga 25680 ggagcgggta gctccgatga agcaggaagc tccatcttct acaagatgga gtagttcact 25740 tcacagaaac tttatttctg ttttatcgtt ttttccgtaa aaaaaaagaa attatggttg 25800 taaaactacc gctgcatgat ttttaccctg aaggttcacc tttcaaaacc gaaaacttta 25860 cggtaaaaga ccccaccatt gaagacgaag accgcctttt caacccggat cgcatcaagg 25920 ggggatatgc tctggatgat tttgtgagag gactccttcc cgaagaggct cagcgccagt 25980 acggaaacat gttcctcatt gacaggaatt tcattctgta tgccgtcagg gtggcaatgt 26040 tcggagacac cattgaattt cgggaaaaca tcgaatgttc tcattgcggc gcttcgcttc 26100 gggaggctac catagacagc gaggttttta ttcccgaaaa tcgtaagttt gagttaaaag 26160 aagggggtta ttttatccgt tttaagttgc ttaccgtttc agatcagaat gttatgagaa 26220 aagatccact catgaaaagc aactttctga cgcgcacgct ttattacgta atcgatacga 26280 ttgaaaaaga agagagcgac attaccgaca aatatgcgct tatccgttct attcctattt 26340 cacttggcac caagatcaga gagtttctga atacacaata tcctcgattt gatattttca 26400 tcaaatgcgg ttcgtgcgaa agcaccatcc cctttgagat gaacgaatcc tttttttgga 26460 ataagttatg attcagaaga agagcttgaa aaaatcgtgg tagaacggta tgaagcccga 26520 aggaaattgc ttctctttct gaaagaactg gatacctatt ccagtttaaa aacgaaaatt 26580 tctatatcag aactccgggt aattgcctat atgtataccc agcaactgga agagcaggaa 26640 agagagttca agcgttttcg gggaccgcac tgaagtcaag cgtggcgtag tcaaattgaa 26700 gggtaagctg cacgttcaca agacccgaag catcggagaa gtcgagcgag tcgccgttga 26760 tgtcggcaac ccaggctccg tggaaagtcc attgttcaat tacggcaccc tgaggatcaa 26820 gaagcagaag ctggatattt ttcttgtaaa catcctgata gccgtcgcgc ccggtggtag 26880 gatcgtggtg tgcaagtacc cactggtaaa ccgccatcat ccccgattcc tcgattggat 26940 cataaagcgt caggttgatt gggttccagc taatttttcc cttatatttg aagtaggtgt 27000 taatgtggtg cacttcgccg acggcaaagc tgaaattagg acgcgccgaa gcgtagacca 27060 tgtaggcggg aatcccgtcg atctgcatga ggaaaaggcg tttctgcttg ggttcaaaac 27120 gccggaaaag catgttttca acaacgcgtg ccatatcgtt cctttttctt taaatatgta 27180 taaatcgttt ttcaaaaaaa tgacagggaa aaatatttaa agttgacaat taacaacaaa 27240 accggaaaaa atatgtatag ggtaaacgta aaagaagtag acctttcgat tacccctgaa 27300 gtcgggacac cggtccaaac ggcgcttgta ggtgcgttcg atctaccgat tcccagcgaa 27360 cttccggtat cggtaacccc cgatgaattc cgccgcgtcg gatcaaccga actcagtctc 27420 attgcagatt cgctggtggg tggtcaggag gttacggtga tcagaccgcg aggagaaacg 27480 caatcgctga atgcggcatt tgttgtggtg ggtggttata atgtaaccct tggtgccttc 27540 aacgttttct atctgatgtt tctggggtat gatcctcaga aaggatatac tgatgtgtct 27600 tatgtagatg tgcaattggc tggtacccca acggatacca ttctgttcag ctactcgctg 27660 gacggttctt cgacaacgca ttcacttacc ataaatctaa acgcccccag tgttacgcta 27720 ccttctaata tcgtaccgct ctttttctac tatgaacctt atacgggttc gattacgctc 27780 cagagttccg ttaactatag tggattaaca ctgaattata cggtcagcaa agcgaccact 27840 ccttgggtgt attttgctga atatggcacg ccaacatctt ctcttacgct ttataaagga 27900 ttttatctgg aaggaattga cctgaacagc tttaacaaac aatttgttgt atctatcgaa 27960 aatattacgg taaatagaga aaaaggtcag gtgctttatc cttcgtttga tgtggtggta 28020 cacttccggg atattagggg ggtcagtgcc aataccgaat atattcgctt ccgtcaggtc 28080 aatctcaacc ctgaatctcc gaattatatc gagcgcgtaa ttggcaacat gacctttgag 28140 tttgacggtg agcgcattgt tacaggcggt gaatacccca atcaggtacc cttcctccgc 28200 gtggtggtct ctcaggatat taagcaaaac gtcgccgggg ttgaaaagtg ggttccggtt 28260 ggatttgaag gtatttattc tgtaggcgac ttcactgtta ttgttaacga attgaccaat 28320 gtgtcaatcc cggttacgga ttcggctatt attccgccca tgcggtttac ccgcattgaa 28380 cagattacgc tgtcgggcgg tgcttcgttc agcgtgatca gcaatcaacc gtatggtttc 28440 aatattcagg attctcgtca tagctactgg ctctcacctt tcaaagatga tgaactgata 28500 atcggaaccg aactggtact tccggctctg gatgtttcaa cggaattcgg agtttcaagt 28560 tgggaagaag cacttcctga attcagcttc ctgatgccgt tccagggcgg ttcagacgga 28620 tacattcgcg ttgatgaaaa tgagccggat acaatcgggc gcgtgaagat cactccggca 28680 ttgcttgcca actatgaaag gttgcttccg cttctgacgg aagatcaatt cgatctggtg 28740 ctcacgccct atctgacgtt tgctgatcat gccggaacgg tgaatgcttt catcaatcgc 28800 gccgaaaaca ggttcctata tctgtttgac attgccggag atgatgatac cgaaaatctg 28860 gctatttcgc ttgctggata tatcaactcc agcttcgcaa ctacgttctt tccgtgggtg 28920 cgtcgtctga ccaataaggg aatgcgtacg gttccggctt ctcttgcagc ctaccggagc 28980 attcgcacca ccgatccgga gacgggtctg gctccggtgg gagcgcggcg cggcgtggta 29040 acgggcgagc cggtgcgtca ggtggattgg gaagacctgt acaacaaccg aatcaacccg 29100 atcgttcgcg tcggaaacga tgtgcttctc ttcggtcaga agacgatgct caatgtcaat 29160 tcggcgctca atcgaatcaa cgtgcgtcga ctcctgattg ttatgcgcaa tcggatttct 29220 cagattcttt ccagctacct gtttgagaac aacaccagtg aaaaccggct tcgtgccgaa 29280 gcgctggtgc gccagtattt ggaatcactc cgtctccggg gcgctgtaac cgactatgag 29340 gtggcgatcg attcggttac cacaccgacg gatatcgaca acaacacgct ccgcgcacgg 29400 gttacggtgc agcccgcccg ctcgatcgaa tacatcgata ttacctttgt tatcacgccg 29460 acaggcgtag aaatcacctg agaaataaac ctttcaaaat ataaacccgc ctatcaaaag 29520 gggcgggttt ttttatttaa aataaaatga agtttaacaa ctgggttgag tataccgacg 29580 acgtactccg acttgagtat taccttgagt acgaaattcg ccggtggaga tatcagtatt 29640 gtgatccgtt ccccactttt gaagatttca aagaggcggt caaaaaagcc cctcgaatta 29700 tcgtaacgcc ggaacttgat aaaattataa gaaatcgttc tcgaacccgc acgtttgacg 29760 aactgcttgc attgattaaa acttaccggg gatatccgaa atttcgcaat gaaaagacgc 29820 ttcaggctat atatgacggg tttaaaaaca ataaacccat gaaaatgccg atcgtgttgg 29880 agcttcccga cggaacatta cgggttatgt ctggaaatac ccgtatggat gtggcattcc 29940 agctcgggat aaaccccaaa gttattctgg tgaaggttcc tgataggtgc cattaatcca 30000 cactttccat atcaccatac tgatctacaa tgtaaatctt gttgcagaat tctttaaatt 30060 tattcagcgg aaccactttg gggttggtga tagcccattc gtttacgata aatgcgtgga 30120 gacgcgatcc catttctttc aaatccctct ggatttgttc aacttcatca tcccattccc 30180 catcacttat cttatggatt cctccacttg gtacgggttt gccaagatag tgaaaaatga 30240 aagggtggga ggagtcgttt ttaagccgct gcaggatttt ctgacctgct ttcgaggaaa 30300 cgctgaacat tttcttttaa ataagattca taatcttcaa ttagcggaaa gtgttcaagc 30360 tgtttgagca gggtgttaac ttcataggca aaacgaaagc gggagttctg gtagaagtct 30420 ccgattgtta ccggaattct gaaatcagga atgtttttga tttcattgtc ttcaatattg 30480 aagacgaaat agcagtgaat gagcgggttt tgaagctctt gcttgataac ataacgatcg 30540 aacattttga tatatttcca gatcacttcc cggttgttca aatagatttc ttttgcccga 30600 ttcgggagaa actttgttat gaagaaatcg tcaagcagct cttcgatctc acttagtgca 30660 ctggtctgct tgttaataaa gcttttaatt actccgttga aatccccaag cacacattcg 30720 gagctatcgt gcatgagcac acaatagccg aaaagcgcat cgctacacac ttcgcgagcc 30780 acgtcgtaaa caatcagact atgttcgagc acggaataaa aatattttcc tccgtttccc 30840 tgatagcggc aaatgttgga gagccttgca gcaacatctt caatggtaat acggtgaagg 30900 ctcgggtgca attcgagttt catggtgtta tgactgtttg gttcacacga cacaatcctt 30960 aaagaggata aggttaaaag aggttccctt ccttcaatta aaattcaaaa atgtcaatat 31020 caatgtcaag atcagtgtcg tcttcggttt tacgttttcg aagaacataa tcgacgtaat 31080 ctatatggac cacaaagtag gaggtatcgt aaatctgaac caaaatcgca ttgacaaacc 31140 gttcaacata ctttttggag gaaaagaaag catttatcaa aatatctaac atcatcttat 31200 aatacctatc gtctgtgttc attacatttt taacaagtac atctttaatt tcatctaata 31260 tagatttgtt ttgaggtata gtttttattg cttgatctgt gatagctttc aataattcat 31320 cgtcattaag tattgttatt acagttttcc ataaatttgt aatcatattg ctgttatttg 31380 aagagaaaaa gttgcgtggg tcacttaaat gcaaaactac acttggtata aataaacggt 31440 aagtattact tacattatct tttaatccat tatcttttaa tcccagaaga gatttatagg 31500 tatcgataat tatagaaatt ttgtcaacat ccattataat atctttgtat ttaagtatat 31560 tttctctggt ggcgtcatta aaatctcttg tcggggtacc aaacagcgtt ttaataatct 31620 catctttcag tttaggtata atctcattta aaatttcctc tctttttgat tcgtattgtt 31680 ttactttgtt ttctataact aaagacgcga gaaatgtaga aaaaaggtca aatactgttt 31740 ttttggtctt ttcattatta ggtctcacca gatcttgata tttataatct ataaaaaatt 31800 tcaaattgtt ttctattttt tttctgttta tgttaataaa tttatctctg agcgttttat 31860 atacgacttc gttttgaaga tggaaatctc ccacaagatc tatggctgac gaactttctg 31920 gtggtatgaa ttgaagtttg acgttcttca caaggggaga atcctcttca tagttggctt 31980 ctgcaattct aaacgtttcg gagctaatta tatctgaaat aacttccagt tgggactctc 32040 tgataaagaa ggaaataaaa tcttttattt tatctttcaa ttgattccag agatcgtaac 32100 cgggtacgta ttcctgaaaa tctgtattca accatatatt aagtactttt cccacacttt 32160 ctattccctc ctttatttcc ttactattaa cagataaacc aatgactttg ttaataacat 32220 tttgtgcaat agttttaact ataccctcaa tgactttttc atccaaactc tgagagggtt 32280 gaagaatata gatgttagat acaaggttct ggagtaatag tagggcttcg ggggaaacat 32340 ttttcatgaa tttatctaaa gtggagtaaa gctcttcgag ttctttcttt gctttatcac 32400 tgagaccgat tatttccgct attttaaagt taatctcttt aataatgggc aaaggtagcg 32460 aaagtgtttc gagattttga ttgaactggt ttttatactc tctgatatcg gttgatttgt 32520 aagtaatgac atgggcaatg acgccgctgg tttcaattgt tccggtaaat gtggatactt 32580 ttattttatg gtaaaagtca tttctcgggt gtataaagag aataaaaaca taatcatgtt 32640 tataattatc ccaatagcta tcgttttgag caatacagac ggtggtactt ttgttggtgt 32700 tggtttcggt taacatttct ttgattcctt gataggatat ttcaggtaaa agtcgaacaa 32760 gtacggcatc gctatcttcc atttccggtt tattatgata gacaagttct atgtccccgt 32820 tcttgatata ttttctgacg gcttccatgg tgttgttcca gcgatccagg tagcgaaccg 32880 tataagaggg gaggtatgta tcgatgatct gctcgagatc gataaagctt ttaataaact 32940 tgaacttcat agaatgaagt tcgtcttttc ttccctcctg actcaatttt ttattgataa 33000 caaaaagagc cgccagttta tctacattgc tgagcatgtt atgataataa aaacgattct 33060 ccaccggaat atgactttca tccgatcgat ttgtatacat tgctacaata ccctgtagaa 33120 taaaaacctg agcctgctcc ggaagaggtg tgttgtaggt ggtttttgcc gattgcataa 33180 ttcgatcgac aagttctttt ttgaccttat cttttacaaa actgaaaaac atacttttaa 33240 gctcttgctc tgtagccgtt tccggatcaa tttctatatt gagtgtgggg tcttcgttta 33300 ttttttgtgc cagcttacgt gcaaaattaa tatcgaattg catatttgta gacttttatt 33360 ttaaataact tttcgttttc gggtataaaa aggtctggtt ttgctggtgg attcctccac 33420 ctgaatgttc agcgagaagt tcggatcacg cggaaattcc tgatagtttt ccatatgcat 33480 taaaattttc aggtgatagt ttatttccgc cacaaatacc agttcatcag acgacgggtt 33540 gatcatacga tcggaaattc cttctacgac aatatcccat accgccgcat tgtctttggt 33600 aaggataaga tcgggtctta cgtttgagag aatctgagtg atctcgcttt cttttgtaag 33660 ataataaaaa gcacgatagt tgactttata gggaaccggc accctgtact gaatggtgga 33720 ttggtgttga ttttccgtaa aggtaagaaa agcaggaaaa ttctgtataa cttcgattcc 33780 ttctcgcatg acaacaacga agggatactc cactttgaac atatccgtta ccatcgattt 33840 cctttgcgcc tgagatttgt cgaaaataat gcgcggtttg gtgccaagag ccttttgata 33900 gatttctttt gcaaaaacta cggcaaagta atcggctgta ataatttcgt tcattcttct 33960 tcagggaatg gaagttcttc ttcaccacca cccgtttctt cttcgaattc ttcgaaggct 34020 ccgccaagat taagttcgcc gcccagttct tctccgcctt ccgttccgaa atcgaattcc 34080 gttcttcctc ttggcgattc gatcggggag ccgcgctcgc caaggaagtc ggcgggggtt 34140 gtttcctcac cgaatccgcc cgtgtcgaaa agaccgccgc caccggctgc ttccgccact 34200 tcctcctggg gcttgagatc gtagggaatc tgaagaatgt tactataaat ccagtcttca 34260 cgaacccagc ctttgaggcg ttcggcaata ccgattcgct gctcaatcac ggcaaagcgc 34320 tcaccttcca caatcgaatt cgagcggttc attaccaggc ggaaatcctg atcggcaaac 34380 tctttgttca tgcgcaccat gcgttcgagt tcttccacaa agaacccctg aatgcgtttg 34440 atcgtgttgt tgaatttgat atcctgagta gccagtgtgt ttttagcatt cacgtctcct 34500 tcataaccaa tgaacgcctt tggtaccttg agtgcggaga tgagtcggtt gagcatgtat 34560 tccacatctt cagcaagatc tactttggaa ccctgaagaa tatcgatttc caccgcacga 34620 cgatctccgc gccggggaat gaagtaatct ttgagaatgc tttcgataga aaagtagtta 34680 tcgattccga gaaattgatt ctgattattt cttacccaat agtctcgctt atactgcatg 34740 gcaatattgg tcagatattc gttgatcttg tcgggcggca cgtttccgac atctacgtaa 34800 aacacccgtc tatcgacact acgaaccaca cggtaaagca tgagcgcatc ttccatgagt 34860 cgaagctggt tccatatcgc tcgagcactt tcaaggtagc ttctaccata ggggaagaag 34920 ttggtgtcga ttttgtgaga aaagtgaatg acatcttcct caggaatatc ttcgttaaag 34980 tatccgctta caacgttacg gtaaacgtcg gtaataacat aataccaggt atccgtttcg 35040 gggttatatc gctttgagaa aatgtaagga gagaccacct gaaatttttc gatcgtgcca 35100 tccgaacctt tttcaagaat atgaagaaac atatctccgt atttgatcat gttgcgaatg 35160 ataggatagg cgttcttttc aatatttata acataatcca gataggagag tattgctttt 35220 gcaagctcaa tgtcttttgt taccacatcc acaatattac cgttttcgtt gggaatcgtg 35280 cattcatctg caatgatatc cagcaccgtg gaaataagcg gatcggtata atccatgcga 35340 tcgtacatat cgtagaggaa aaaccggttg aattctattc ctccgtagaa cctgctcgca 35400 taccccgctg tcgcaaacgg gtggtacatg ttaatcggaa tcatggaaga gccacccgca 35460 ccgtgcggcg ctcccatacc atacatcgga gaaaggaaat tggtgaagtt gacagcttcg 35520 ttcagttttt tatatttttc cagagacggc atattctcca cttttttgtt aaataacatt 35580 aacctaataa tgtaccaaat aacgaaatgg tttcgtttat ttaaaagaaa atgacctatc 35640 gggaagccag agcacttttc aacaagatca aaacactccc tgattataga aaccgcgttg 35700 tcattcggat gtctgaaatc agagaaagac ccaccttcaa ccctcgagga caatataata 35760 ccacaccccc cggcacttat gcctatccac ttggcttcgt actggacatc gggggtgggg 35820 gcgaggattt tgtcgatttt attgcgggta ttatgctttt gccctacgct tcacatgccg 35880 aatgggtaca tatcttttac ataaaagaca tgggttgttt tctgaatctt ggggataaag 35940 aggatacaga ggaattcctg agaaagtatg cagagaaaaa tccttttata aatactttaa 36000 tagagcacat tcgcatttat cagccgataa atgataatac gctctttccc attctaaacc 36060 gctatcttgt cggaatgcct tatgaaaaca tatcaagcga agagtttcac cagagtttca 36120 acagggttct ggaaaagctg aaagaaggat acatagacat tttcaaaggt gtttaccagc 36180 atatcacccc agatgacgca cctgctgttg ctttcgtgaa cgaattcaga gattttattt 36240 ccaatctggg ggattatcac actggaaaaa atatactgga agtggcaata gcccgaattg 36300 tgttcgccgt tttcagacgt catgaactta tagaaatgat cgaagcaatg atcggtaatg 36360 caccgggaga aattacctcc tcacgcttta tcaactatct tccggtttct gattccagaa 36420 gtctgagtgc atttacccga tggtttgcca ttacacatcg cctgttttac tatgctttca 36480 ataaaggggt aatcagagag caatatcttg aagaatcggc tacgctgttt gtggatatga 36540 ttttcaccat tgccttttca aaggaaaaaa taagagctgc tatggataca atgttcagaa 36600 tgttaataga tcaaatcaaa gataaaggta tacccaaatc ctatcgggtt tacagcgaac 36660 ttggttattg cggaatatac gatccgggaa ccggcggtgt gcatgaagcc gaacctgctc 36720 aggtggtctg gtgggatccc tccgtggtgg aatactacgg ggcgattccc aacataggga 36780 tgcgagaacg taaaattcag aacctgaagg attatataac cgcccttgac gtggtcagat 36840 tttttgtcaa ggtgtttata tacaataaac atttacttac acaagaaccc cgtttgttta 36900 atcaatcggc tgaggatatt gcttggcatt ttaaaagaat attttataag aaagaattca 36960 tttacctttt tgaaaaaggt ttgcggatga ttagtagatt tatcaaaaca ggaaatgtaa 37020 atcagttgat gtctcttatt catgatgtac tcatgttgca ccttagaaca gatctcctcg 37080 cgagggtatc tgcagtttat agatcatact ctcttgaaga ttattataac gaagaactca 37140 aacatatgaa gagggtggta ggtgatattg ccgataacat ggttgcactt cttacaaatt 37200 acgccgtgga tattctgacc ggtaaagagc aggttaagga tatagacagc gcattttccc 37260 attatctcga tcatctcaga gaaaaacttc aagaattgtt agataagtct gctttagagt 37320 tgcgcggaaa agcaggtaca aaaacactat tgcaaagatc tttagcagta gagtcgggga 37380 tagagtctat tctttcagga attatcttca tgagaaagtt tctggaagct tatgattcgg 37440 atagagagaa gattgaggaa gcgttcaggg tggtaaaaga aagactaagg gattaaatac 37500 tggtaattgg gattgtgtgg aatgggtatt tttgaaaaga aggtgaatct gaaagagggg 37560 tggatccacc ttacaacatt tccgtagaaa gaggcaaaaa ggggagaatg ctatgaagat 37620 caaaaaggta attatagcgc tgctgtttct actcacagcc ttccagcttg gggggattat 37680 ggcattgtat ctttttccgc gataagcgcc tgtagctcaa ccggaaagag caccagcctt 37740 ctaagctggt ggttgtgggt tcgagtccca ccgggcgctc aggtgtaatc agaaacaaaa 37800 aaagggaggg agtcatgaca gtcatatggg caatcttttt tatagtcatg gtgttgatgg 37860 aaattcgaac ctttcgggta aagaggtatc tggaagatca ctccacccga caaggttctt 37920 atgcaaccga atggtattac cgggtggtga atgaaaagga ggaacgtaaa aaaccgggtt 37980 cgcaatggga tttgtaagaa aaaaagagcg ccttattatc aagcgtgatt tcgacgcgct 38040 taaatttgaa gacgcgttcg atcttgagat cgtgtttcac gtcaaccccg aagttgaaat 38100 tattgatcgg ggagaagacg tggttgtcgt atatgccccg cttggcattt tgggaagcgg 38160 ggaaacagtt gaagaggcaa tgaatagttt gcttcttcag gctgtaaagg aatataaaga 38220 gagcacttat gaaggagagc gagagatact tcgttccttt ataaagttgt acacgtcgtt 38280 tctcccgccc gactggaaaa gtcgggtttg agtaataggg cattcgtctg ctctcatgag 38340 taaccgataa ccaaacaaac ggaggtagcc atgaaagagg tcagcgtcac ccatgtcgtc 38400 gtttgcccct tctgtggcaa gacgggcgaa gtcaccatta cggcggatgg gagtggtccc 38460 cgcctcgtgg aaatggagcg catttgcccc cacgtagata ctgaatacga cgaaagaaag 38520 cgggggattt acgtacattt cagtgacggc gaaagggggg actacgtctt cctatacgcc 38580 ccccttgcgc tgtacgtccg ggagggcgat ccccatctga tcgcccgtgc gctccgccgg 38640 cggggcttta aggtacgggt cgacgggcgc cacatcatct tcaagacacc cgtctacccg 38700 tatccggtgg acttggcgct taggcagtat atgcttaacg ccgggcgcac ggtctcatac 38760 aaacacgtgc atctgtgaag attatgtgag ggggttgcgc ggcgcttggc attttcgtat 38820 attagaactg tcaccaacca aacaaaccaa ggaggtagcc acgaaagcga ttgacgttct 38880 caagacattc ccagccccgg acagcttcga gggcgtctat tactgtccgg agcatccaga 38940 ggttgaaatc aaagaaaccg tccgttggac ggaggttcca aaccccaacc ccgacgcccg 39000 caacccggtc gcagtacacc gggttgtgga ccgctggtgc ccggtctgcg ggagaccggc 39060 tgttctggga gctcgatccg catgacgggt gtttcggcga tattcgcaat cttcgcaacg 39120 ccgaagcaaa gcttgcccgc cacattttaa agtaatttcc gtttatattt acttatattt 39180 acataggggt ttagaacaaa ccggaagata ttatgaagtg gtttaaacga cttacgacgc 39240 tggagatttc ccttcttatt cctctcttta tttccttgag cgtttacttc tccactcagg 39300 gagtcgccaa atttgtggcg cttcctgtgt gggtggtggc actggtaata gcggctattg 39360 acgtggcaaa gttcgtaagt gtgggtctcc ttgttaccac aaggggatgg ctgctcaaaa 39420 caattctgat tccggtcatc ctgtgcgccg tctttgccac ttctttcagt ttttatgcgg 39480 cacttgttta ttcacacgcg gagtcggtgt cttcagagaa agttgaaaac atcacagaag 39540 ctaccataac tcgtgaaacc gttcagcgtc agatcgcgcg ttatgagcag cttcttgagg 39600 aggttgaccg ttctattgaa aatatgaaca acacaaccac agagagcatc tggcaagaac 39660 gtctccgcaa gcgagagttg gagtcgctgg tgaatcgaaa ggaggagtac cttgccgcta 39720 ttgactctct tgaagccgtt cttgtaagca gcacggtgga atcgaatcag cgtcaaaatc 39780 tatttttcct caactatatt actcccaact tctatttcgt gcttcttacg atcattttcg 39840 atccgcttgc cgttcttctt tacgcgctgt ttgtgcgcat gctgaagcaa aatgcgcgtg 39900 aggaagatga aaaagaagtg aaagaggaaa aaacgggagt ggaggttgtg aaacctaatg 39960 aacccgaaga gcaggatttc gtttccaagc aagaggaagc ggagcagctg ctgatggata 40020 aagtttttca aaccaaacgc tttgcatttg atccaacccg aatgcaaccc cagaaggtgg 40080 ttatacggga aaaaaggagg aggtgatatg tacattgtaa aaaaagtcag gatattgagt 40140 gagacggcaa cggtaatcgt cgaatattca gattacaggg caaatgtatg ggttgggaag 40200 ggaatctcct gtagagcctt tctcaaaagc aaagaggtta gaacaggggt aatcccttac 40260 ctgaccattt acaaaagata ccccagaaat ggaaagctac tggaagattt cttaaaatcg 40320 atggaacaac aatatgtaca acatacgcgt caacacatat agtgtagggc tgcattcgca 40380 ccaagttccg attctcaaag cagccaacga tccttccatt gttgatcaca acatgtatct 40440 gtacattacc gcccgccacc cctttttgcg gctcaagata gatttcacgt ttaacggcaa 40500 caaaagggtg gcgtcatcgg caattatttc catgcacaac agggggaaag atctgattaa 40560 agaatataag ctgttcgatc ttgatatata caaaccgaca actgcttcgt ataaaccctc 40620 agataagacc aagactgtaa agttgattta taacttttaa atgataatag acgttgggtg 40680 attatgtatt gtcttcgata taaaatagca gatatacgtt gtgccgccct taacgtacat 40740 gcgtcgaaag tggcaccccc ctcctatgta gacatagtga ttaagggggt ttttaagata 40800 aaaaaagggg cgctcagtat cgcggttcat cctgatacac ctgtgggaga cataaggttt 40860 gattgtctca tgaaggttta tggaagcgga gatgtgtttg aaatacactg ttttaaaatc 40920 atttttcatt tgaatgatat taaaaagagg tgttatcgga atcttttaaa gttggttata 40980 agttagtgta aatatgtggg ttctaaaacg gcaagagcag gaaataggga taaagagtca 41040 ggatacgccg attctggctc ctattaatgc tgaggtggaa atacacatag aaaagtatat 41100 aggcggattt ccgaagacaa aaggcttgta tgcagaagtg atctatgcgt caaaatataa 41160 caaaccggtt gtttttgcgc aaaccttaaa tgcgaactac gaaatgtact tatgttctat 41220 tggtatttat aaaaacgtcg gaagacagaa taacattata aacatcttaa aactttatgt 41280 aaacctgtaa caccatgtac gttttaaaaa ttaaaaaata cagctttcat accggatttt 41340 acaaaattcc ggcaaatggt atggtacggg atcctgagaa tgggtatatt gatctttgtc 41400 tcaaaacgga actcccgtta tgtgctttct ttgtaaacta tgaggaagaa gatgaaccgc 41460 gcgtttttgt tataaaagag gctggaaaag atcctcagga aactatcgta gaatttattg 41520 taagtaaaaa ctttcccatt aataggaatt tcaacataat caaactgata tttgcgccat 41580 gatggttgtt gccggtagaa attacaagct ggaatccagc gaaatgctga ttcccaacgt 41640 ggtggttaca tccaaaaacc gaatctataa cgtttcgata tgggttatag acatcggata 41700 tttctatgcg ggaaatgaac gggggtatct tggattaaga tgtggggttg aaaaaacgtt 41760 tactggcttt aaaattaatg tctataaaac cacaaatcgc gggaagtgat atgtatatga 41820 taagattgaa atgccacgat tatcccaata cggtcaacag caaaaaaatg gttaattaca 41880 aaataactct gaaatcagaa cacccatcaa acacacttac cattctgata aactgggttt 41940 caaccaatat cgaaagatat ggcaaccata ttatgtttca gcgtcccggt tattacctga 42000 gcgctacgtt tttgtttaaa aaacatcttt atttcaaagg cggttaccat ctacaaagct 42060 ttcgactgta aaaaatgtaa accgatatgt atctcataag acatagtctc aaaaataggg 42120 ttgcctatcc agaggatcct tactacaaac caccggtttc caccggcggg aaatgggtta 42180 cgcatctggg aaagctttgt aaaatagaat ttcacgcact ggttttgcag aaggaaatgt 42240 gggaagagat aagaagtagg aacaaatcac tattcaacga tcggattcgc aaagtacttt 42300 tgtacgatac tgaagaaaac ctatttgcca tatataagat aatctgatgt ttctgcttaa 42360 gacaacaccg cgcaatcaca atccgcgtca ggtatggttg aaactacctg accagagacg 42420 ggtgtttttt gaggtttcct acagattcgt agaaatttca catgcgactg gaaaccgtgt 42480 taacagaatt ctattacaac tcctgtcgga atatcatttt acatttgtaa aaaaggcgga 42540 ctatgctgct ggtcaaaaac agccacatcg atcccaatga tggtgaaatg cggctaaaat 42600 acagccgcgt tatggatgtt aaaatttatc ttggggcgtt tgggaaatac ccaaaccccc 42660 gaagggtgtc ttatagtctg gcaccctttg atgaactgtt tgagtttgca agctggatgt 42720 cacttttgat gatagaaaag cacataaacc ggaaaaagta atatgtacgt gtttaaagta 42780 agttatttta tgaacggcga gccgataggc atacgtaccc tttcaaggtg ggtgcaggtt 42840 gaaattgcct actggggtaa agaaggtaca cgttataaaa gagttaccgg tgggagattt 42900 gaggaaaatg attactggta cgaaatagag ataaaaaaat agaatgtgtc attatgtatc 42960 ttatgagaat gaataaaagt gtaccaataa cacccatttc cgggaggggg agtacactga 43020 gcgggcatag cgagattaga ataggagccg cgtgttttcg cgccatgcac tggacttata 43080 taataagtgt acacataccg aacaatcagt ttagtgtttg tttaatggaa aaaagagaat 43140 taataaacgt atttttagac aagcatataa aatgtacgta ttaagtacag gtgttgatga 43200 tccactattt atgaccggaa cttctacacc gggtgtgatc actcccaaag agggttttta 43260 tacaacccag aagtttattc gtgtgtggtt ttttgtacgc tactacagtg ttcccccaaa 43320 atcccacaac gttgtacatt ttaccagcgc caaccattat aaacttataa aaaaattcta 43380 ttatgtatac tattaaatta aacaaagggg ttaaaaacaa cgaatgtttt gtggttgtcg 43440 gaaacgaaat tctctccaat gaccccattg taaactataa tatatttagc aaacaggatg 43500 atctgttcgc atttacaatt caatactggc atagcttaag aacactggga ccagaaggca 43560 caccacttga tctggaactg acgtctaatg cgataaatct tggaaggatt tataacgaag 43620 aagatgaacc cttcccggat ttcatttttg aaaaactgat atataaagac tttcaagaaa 43680 gctctaaatt tgggtggtga tgtatataac aatcagaaaa caaatcgaat cggtagtata 43740 cgtagaacct gaattgctat atcatatgtt cgtagaaatg ctgggatacg atgtggtagt 43800 ttatacgcta tatgccgccc aatgtaccaa atatcccgat aataaaacgg gggtggttaa 43860 gatgtttagt aaaaagaagg tgttttatgt gctgaaggtg ataaaagtga gcaggaaacc 43920 ttctttctgg aaacgtcttt tagaatgggt aaaagctatt atcagggggt gatatgtatt 43980 acctcaagtt gccggtagca aagcactcac cctttgattg tatctgggtg ttgtttatga 44040 tacattactt tcctgtaagt gtttctttaa acaccccgaa cgctgtatat tttaacatca 44100 aaaattttaa acttattaag agaatttatc aaaggttata atgtggaaca atcaactttg 44160 gggtgatcac aatgattgta cttaaaacac cgatactcag agttacttcg tggttagata 44220 ttagaaccgt tttgtacgtt gaggggattg gatttgttac cagaatcccc tggatgtggg 44280 atattatctt tgaaattgtt tacgtttata ataaaattga gcgtaatgct tgttattata 44340 ccaattacat caatttcact ttgaatcttg attcagtagg cggtaaagcg tttgctgtgt 44400 tgaaaggggt cgcaccagaa caggtttttt ccattattat ggtggttaga agatagaaag 44460 gtgtcatgtt cgtattgaaa atgcgtgttg tcgaaaagat tagagatcat tatgtacctt 44520 ccgactatag atcttttata cgtcttggta actatacttg gttctatctt ttttatcatg 44580 acacccatga cataccgttg acaccggcgc ataatacctt cccacaaacg tttgccgcca 44640 tgcagacgct cacggtcaaa tgcaagctgg tcctctctaa ggagcagcga gaagcacttg 44700 acaccaccat gcgagcgttt gccgccgcgt gcaacgatgc aatcgccgtc ggtcgaagac 44760 tgaataccgc gtcgaacatt cgcatccacc gcgtctgcta cagcgacctc agagcaaggc 44820 atggtcttac agccaacctt gccgtccgtg ccattgcccg agcagcaggc attctcaaag 44880 tcaagaagcg ccagtgcagt acagtacgcc cgacaagcat cgactacgac gcccgcatct 44940 tctccttccg agaagccaac aagcgccgtg gtctggaaga cgcggcaagg agactactac 45000 atcggtatcc acattaacgt agagacgccc ccacctgaag atgagcacgg gtggattggc 45060 gtcgaccttg gaatcgcgag cattgccacg ctgagcgacg gcacggtgtt cagcggcgac 45120 cagatagagc gggtccgtgc tcggtatgaa agaacccgcc gctccctcca gcgaaaaggc 45180 acgaggggcg caaagcgcgt cctgaaacgg ctctcgggaa gggagcggcg cttccagcag 45240 gcgatcaacc acaccatcag tcgccgtatc gtagaccggg ctatcgccga gggtaagggt 45300 gtccggctcg aagacctcag cggcattcgc aaaagtgtgc gcgttcgaaa atcgcagcgc 45360 agaagaatcc accgctgggc gttctatgat ttgcgcatta aaatcgcgta caagtgcgcc 45420 cttgccgggg tgcccttcga gctgattgat ccccgatata cgtctcagcg ctgtccggtc 45480 tgcgggcata ccgagagggc aaaccgcaag agccagagca agtttgtctg ccgctcgtgc 45540 ggattggaag cgaacgccga tgtggttggc gcaattaaca ttgcactcgg gggcgttgtc 45600 aaccgtcccg aagtagcgcc cgatgatgtc gaagcggtgt tgcatggtca gcgccgaact 45660 gagacggagg gcagctacaa gcccacgact gaagtcgtgg gtagttgatg aatatccata 45720 gccatttatt taatcaaaaa tgcttctcga aagccgaaaa ggagaattcc tacaacagga 45780 aattcttcgg ttgtataaaa cctatgggga tcgtcttctg gtaagatttt ccagcgccga 45840 acgcgaaacc ttcaatcccg acgccgacta tttcacaacg cctatcggta cttacgccta 45900 tcctgtcggt gctatcttcc acatttcgga agacgatgtg gtgatcgatc ccgacatgta 45960 cggggtttcc gaaagaaaat atatttattt ttttgtggca agtaaagatg cttcttggct 46020 taacatatcc tctcaacatc cggcgtttga aattcccctt gttttgtaca accagttcag 46080 aaattatgcc gatctctatg acgtttcact ggatgatgtt ttccggaatc gaaacagtat 46140 ggaaagctat cttacctact ggtgctttgc cattgcatcc cgtgttttct ccgatcttac 46200 agagacactc aagcagaact tgatggaatt gcttcgaaaa gatcttcccc gtatgcgggg 46260 atattatcag gagctttcaa atatttgcag ggaatttgac gtcgatgttt caagattcta 46320 tcatgcacgt aacaatcccg aagaatggct caatttgctg attgcagaac ttcttgaccg 46380 gctcaacagc ggcttcagac acatgaaatc agccggggat gtaaagcata agtatttcat 46440 gtatcctctg atcgttttta taacattgct tcacaacagg tatgcacctt atccgaattc 46500 cattgaagcg gcttataata taggagccaa aaaagaccct gttgttctga cgggtttcct 46560 tcgaaaggtg ggatatgatg gaatctggga tcatggcacc ggagccattc actccaatga 46620 acccgctcag gtggtctggt ggaaacccac tgctgcaagg ctggtgaaca aaatggataa 46680 ccctctttat gtttcgcctt cctccatagg attcggttat cttgcgtttg ccgatgaagg 46740 ggttgcaccc tccaatgaaa aacagaaaaa atatttatgg aatctgattt taagtggtaa 46800 aatggatgag tttattgaaa tcatggatat gatcatgtac cgtaagtatc ttgcagcgct 46860 tttcaacgcg tttttgaatg aaagacgggt ggctctcaaa cacgctatcg gattcaaggc 46920 attcaaggaa tatctcaagc aaaatgcaga ggaaatcaga aactttttca gagtgagcag 46980 caatgcgccg gtgcagcttg tatgggaccg gttcagaaaa gcattcagaa tttctgaatt 47040 acttcgaaac tacgaagaat tgattgaccg gcacccttat gaggtggatg attttgccca 47100 caagcttctt ggtaatttta actttttgaa agaactgatt aagcccacca gactataaaa 47160 cgcaaaataa ttaaaaaaat gaaagttaat taaaataaaa ggaggtcaaa atgaagaggt 47220 tgacaaaaga acagtttatt aacaattttc acgagcccaa ctcgctgcat ttgttcccat 47280 ctatagagga tttcattaac cctcgacaag gagatattac tcaatcctac tgttatgtat 47340 tacctgttca ggatttaaaa atcgacaaca aaatgggcat accggtaaat tttgatttat 47400 cacaggcttt aaataagatg ataggttcta aaggtgagtt gaacaaaaat ttgatcaaac 47460 aaaaaaactc ggcacttaag gaattaaaaa atatattaca gaagtttcac aaaattttac 47520 aatcattaaa atctaatttt aatgaaggga tagcactggt ttttcattcc ttttttttta 47580 tgaaaaagtg cactcctttg atcatgctcg cgcatcgtat gattatgtaa aaagcaaccc 47640 caaaagtgtt ttagagccac tcaatgaagc attaaaatac gatgaagaaa tcgtcgagga 47700 agctattaga gaaacagtat cagattatct ggaaagtgga gactggtatg atatgattga 47760 aaatgcagtc gaaaagtatt tgaggggtta attaaaagaa aaccatgctt gatcagcttc 47820 tttctctttc cgggctttac tttgatcaac agctttttgc gggttcaccg ggagagttgt 47880 ttttgcggtt ggtggcggaa gcactcgatg aagcggagtt caatgtaagg agtctgcaga 47940 accgaagcta tccgctgact gtagagaata ctgatgatct gctgagactg gcacacctga 48000 acggtgtaag tattaccccc tacgttcagg gaattgtcaa agcagaactt cttgttactt 48060 tccccatttc ggttaccaca tctgttcctg acttgacaac acatgcaccg gaaattctct 48120 acatggatat tcttgccgat acggattatt tctatctgga ttataccgat ttccgccaga 48180 ccgatacccg tatcattacc accagcacca atcttatcta ctcaagagac gtagtctttc 48240 gtcatggtag ggttgagcgg agaagctatc cggtaagtca gacgatcccc ttcatgatgt 48300 tagaacttga ggaagatgtg gtggatgtta agaacgtttt cgtggaatac cctgatggaa 48360 ggctggtcaa gttttaccgc tcacgtaatc ttcatgaaaa tctggtggtt gaaaatgcgg 48420 taatttacaa cacccgccac atttacgacg tggtgttttc ctcggggaga gtgcatttgc 48480 ttttcggtag aaagatttct ctggaagacc cgatttcaca taccggctat acttttcccg 48540 ccggaagcac catatatgtc gacacggttg caatcgatcc gactaccctg aacagcttca 48600 ttccggaact tgaagcagat atcaaaaccg ttaagatcaa caaccgtatt ggggcaaccc 48660 ctcagattca ggtgctcacc gaaggtggat acacttcccg tcttaaagac atcgaatatc 48720 tcaaacggga actgcttgtc gctcttcaga aagacgaact ggaaagagaa atcgcaaaat 48780 atttcgataa atacagattc gttcgagaag atgatattgt ctatgtggaa ggagccatat 48840 accgcaacgg tagattcacc ttccacgaag ccgatcgatt ctatatgcag aaagtggttt 48900 ccacctacaa ccgcaacatg atcgtcagga aaattccgat cacccccctc aagatcatca 48960 ttcgcgcttc caacattctg aaccccggag aactgatcac tttcgtaaaa gattatatca 49020 gaaaacttcc gatcggtgga acgtggatca caaatgaact tgtggggtta ataaaagaaa 49080 aattcaatgt cgtatgtgtg ctggaaattt attttggaga aacttatgcc cgaaaggttt 49140 cggaagatat tatcatctac gacggcgtac tcgacgttga aagtgtagaa gtcaaacccg 49200 tactggtttg atggggcgct atgcaaaaac caagggaagg aaatttcaga actttgtaaa 49260 atcgctgctt gaatccacct tcaaaaattg gagcttcaag acagcaatca tgggcgaatc 49320 aggttcagat gtcaagatat ttccggagca gattttttcg gttgaagtaa aacaccacaa 49380 aaacggattg atcagaaagg atgatatgcc ttctgaaacc gtactcaagc aagcacgcga 49440 gcttatccgt aaggaaaaca gtcatttctg tttgatcgtt ttgaaggaga attacaaaac 49500 cccacaatat tttgtgcttt atcgaaacgg aaagctgaga aagctggaag atatatcgga 49560 gcttaaggaa attgtaaaaa gatataaatg atagttactt tgagagaaag accgtattgg 49620 agatatattt acctgttgaa aattccatag cggcgcttaa gcaaaaactg gcaaggttag 49680 ccgctgcaaa cgaaaccgca ggtggaacgc ctggaccccc cattttgctg aactcctgag 49740 caaacttgcg catcatcttc gtcatgaaag aattgaaaga ttttccaaga agcgcatttt 49800 cggtagcgct actggtattg cctatataaa ccctgtctcc atgtagatac atccgttcgg 49860 tggaaatcct cacctttctc tccgcaccca ttagcaattc ttcctgcatg gcaaggtgca 49920 atttttttgc agccacaagg attcgctcac gttgcagcag gtgcagtgaa tccgatctta 49980 ttttaacaac gtaaccgcca ctttcttcat ccaccgactc attcttgaaa gatattttat 50040 atgatttcag atttacctga tcgccgtcta ttttaccata gattccatac ggggatttat 50100 cttcgtcgac agaagtggtt aaatcgtcag agacttcatc actgtacttt ccaagaaaca 50160 gatttccctc ttcgtcaaac catagcgcct gcattccctt tccgttgaga aaatattcac 50220 ccggaaacga tcttatccgt gcccgtttca attgattaat cgtaacacca ctttcattgt 50280 cgttggtggt ttgaaggtag tttgacatgt tgacggggaa ggggaaatac cagagccttc 50340 cattgatttc cacataagca aggagatcac ccacctcagg ataaaatcct atgtgcacga 50400 aaaatggata ggctacacca atcacttctt cagaaatgtc tttgattctg accgccatgt 50460 atctttcggg agtatcgaca tcatctactt ccagtaccaa tccgaatttt accggagatg 50520 aaaagaaaga tattttgctg cttttgttag aaaagaattc ctgagtgttg aaccccattt 50580 tttattttat ttttgttagt taaacatata aactatatag ttttctttta aataaaacac 50640 caaatgattt ttaacacttc atactattga agatttttca gaatacgatc cacgacctgt 50700 ttccattttc ggttatcctt atattcacca acaatctctc ctgctatctc gaataccgct 50760 tctccaaaat accacaaatg tttttccagt tctacgtgca catgatattc gttcctttca 50820 atatagtctt caattaatcg tttgataaaa tgatgtaaaa cgtattcacc ttcgaatctt 50880 tctttaacat aaaacaccac aatttctgct cccagagata ccgcatctgt acctctttga 50940 ctgataggtt catcataacg cattccaacc acaatactca taagaacttc tgagggtaat 51000 ggatgacctt catgagagtg gaaaagatag tggttagtta ttttagtcag cagctttttt 51060 accgtctctc tatccagaaa gtgtgtgtag ttattgattc tatcttcaat atagtcaacg 51120 aattccaatt gcagtttggt gaatataaat tcttcttggg cgtatagttt atcatataca 51180 aaatctacaa gatcatcatt ttgttcattg tactgatcaa taatggaagt aacaattttt 51240 tctatcttat tctctataaa tttatctacg ttcaatgcgt gttttaaacc ttcctttata 51300 atctctaaaa tttcggggtc tgataaataa tcttcccaca aatcatcttt aagcatatct 51360 ttataaacaa tgaaggcaat cgcatctttt accggttcgg gaatgtgtgg aataaggtct 51420 tcaggttcat ttatgcgtat tgctctttcg atcaacaaac gaatataaaa atctatagat 51480 tcgggggttt gaatattaaa gtcaagtatc ctatcaaggt ctgttctgtc atcaatgcca 51540 tattttagca acagtctctg cttataagat ggaatagacg gcacctgttc cacaataaat 51600 tcataaagag gagaaccctc tttaagattg attacaaaaa ggtctctcaa ataattagca 51660 gccgtcatct ttactcgagc attgacaaac gccattttta taacgtgggg ttcattatag 51720 ttttgaacaa cattaaaaag tgaatggaaa tgttcagttg attcggctac tattagtttc 51780 ccatttctgg ttcccactat cataaaagaa taaaacaggg atgtgaaata ttccttgccg 51840 gttatgctgt atggaaaatt agactttcgt agtccacaaa aaacaagggc tacgcccctg 51900 tcaacaattg atttcaactt gtttaatatt tgcgaacctt tggtttttat ctcattttgt 51960 ttatgaataa tgaagtttct aagttgcaaa aattgatctt gggtgaccct tgatgaatgc 52020 ttatagatat aattgaatgt ttctaataag tggtgattca agggaatgcc ttcttgggga 52080 tgaaaactaa gtttttctac gggtaaaaca taacacctta aaaacagcga atccccacta 52140 tcgtttggta aaacatacat gaaccagtta attgaagaaa aaaagcttaa cgcctctttg 52200 ctgtggaagt tatccgcaaa ttgttctctt gtcagtatca gcatataacc taagcaaagt 52260 ttattataca aggtaaattt ggattaaata ataaccagac ttctcagatg taattattcg 52320 tcttttccaa ccacatcaga ataaaacgtt tctatttcgt taagatcttt gttgatcaga 52380 gtttcaattt gtttttttca gccccatgac acaccctcca ttttttggca tactaaacaa 52440 ggcaaaaccc agacagttcc atagccgccg acttatttaa agaaaaataa atgaaaaatg 52500 cttcaagtac tgaaagacac ctatttaaac agcgcttccc cgcataacaa ctatggagcc 52560 gacgaaattc tccggctcaa tgccacttcc agcattgcat tgcagtttga aaacccgatt 52620 ggaacgggtt atgagattcg cctgtttgtt gccgacgcgt ggattcccca tgtagaatat 52680 ctgggtgggg gaagctatca ccggctgctc ctcaccgttt cgctctacag cttttctatg 52740 gatgaaggat atggaaccga agtagaaccg cttataagcc agagtttcaa ctatgcgtcg 52800 ctgtcaacgc ttcctttacc actggaagtt cgcacggtaa gcgcatttat tcatctggca 52860 ccgctcaagc ggcgtatggt aagcattcca cttacaaact ttttcaacgc cggaaacttt 52920 gttcttatcg aatcggctga ggaaatggcg gtcaactttt tcagcagaca gacgcgcacg 52980 gctttcattc cctatactat tccgacagta tccttgcagc ccccggcgct ttcagacttc 53040 gtatacgata cccgcataga cgactacgga gtatatctgc aggcttggga gcggaagatt 53100 cccattgcgg taaggggtta tctcatgcag acgctgtcat acatagacct ctcaaccgta 53160 tggtttgaag tatacgtgtt cgacatgatc accggtgagg aacactatta tacatcgctg 53220 cttcccactc ccgttgggaa taactggtac tatattgaca tgagccgtgt caatatgaaa 53280 agaacccagt atgtgagact caaaccggtt ggaagcacca acgacatttt cctttccttc 53340 cacaaccgct atctgagact atgaacaccc aacagattat aaaacaggag cttgaaaaat 53400 gtaaaaacga tccgatttat ttcattcgta aatatgtgaa aatccagcac ccgatcaagc 53460 gcgtcatacc gttcgatcta tacccgattc aggagaaact cattaacttt tatcatacac 53520 accgatatgt aatcacggaa aaaccccgcc agatgggtgt aacgtggtgt gcagtggcgt 53580 atgcacttca tcagatgatc ttcaactcca actacaaggt actgattgca gccaacaagg 53640 aagccacggc aaaaaacgtg ctggaacgta tcaagtttgc ttatgagcag cttcccagat 53700 ttcttcagat taaaaaacgt acatggaata aaacctatat cgaattttcc aactattctt 53760 ccgcaagagc cgtctcttcc aaaagtgatt ctggacgttc ggaaagtatt acgcttctga 53820 ttgtggaaga agccgcgttc atttccaaca tggaggaact ctgggcttcg gtgcagcaga 53880 cgcttgccac cggtggtaaa tgtatcgtca actccaccta caacggggtt ggaaactggt 53940 acgaacgcac aatccgagcc gccaaggaag gaaaaagcga attcaagtat tttggtatca 54000 aatggagtga tcatcctgag cgagatgaaa aatggtttga ggagcaaaaa agattgcttc 54060 ccccacgtgt gtttgctcag gagattctct gcattcctca gggttcggga gaaaacgtca 54120 ttccgttcca tttgatcaga gaagaagaat ttatcgatcc gtttgtggta aaatacggtg 54180 gagattactg ggagtggtac cgcaaacccg gttattactt tatcagcgta gaccctgctt 54240 cgggtagagg ggaagatcga tccgccgtag gtgtgcaggt gctgtgggta gaccctcaga 54300 cgctcaccat tgaacaggtg gcggaattcg cctccgataa aacctcgctt cccgtcatgc 54360 gtcaggtgat caagcagatt tatgacgaat tcaaaccaca actcattttc atcgagacaa 54420 acggtatcgg catggggctc tatcagttca tggaagctta cacgcccagt attgtaggat 54480 actataccac acagcggaaa aaggtgcacg gatcggacct tctggcaaaa ctctacgaag 54540 acggtagatt gattctgaga tcgaaaagac tcttggagca gcttcagcgc acaacatggg 54600 ttaaaaacaa agtggaaaca gcaggaagaa atgaccttta catggcgctt atcaacggtc 54660 tcatggctat cgctactcac gaaatcatgg aagccaaccc tgaatgggaa aagattaacg 54720 taaccttcaa cagttatctt gggaataagg taacccccag cacgctcgac atcaaccaag 54780 agtttggagg agaatttacc tatatcgcca caccgaaggt aaatcctgat ctgaacaaaa 54840 atctattaat tcaaaaaaaa tccgaagatt tcatctggta tatctgaaaa cggctttcca 54900 cacaatccca attaccagta tttaatatcc ctctctgata tactcccccg ttatttaaaa 54960 gaaaatgcca ctgagtagag acatcataaa tcgaatcaaa gagaaacagg atactctcag 55020 agagaatatt acctacagcg caaagcttct caagaagatt acagaaacca accttcagaa 55080 attcttttca gagacgctta catgggggat aagggaagcc aaaaaccttg tactggcaca 55140 acttcctcct gaatacagaa ctcaaaatct aaacaacccc acacttactc ttcactggtt 55200 taccttcaat ttcaatccct ttgtttacaa acgcgaagtt aaaagcaaac tttatgattc 55260 tccgactccc aaggtttatc ctcttaaaag ccatgattat gggtatagaa cggagctttt 55320 gagtgggtct ccggttcctg ctcccaacct tcgctatatt gtcagataca atcctgaaac 55380 cgatcgtctt gaagctcgca cggtggatat taccaccgaa gaaggaatca gatatgtgtg 55440 gggtgcgtcg ggtaatattc ctcaggatac gctcgagttt acatcgctac gtggtcttgg 55500 taaagacgat atgatcgatc tggctcagag cggcgttccc tatgagaact cgctggtgca 55560 gcttttccga aacagagctt ccattgggtt tcagtatgat gaagaccttc gcaaacccat 55620 tcaggtggat cgtatcaata tggaaggatt tactcagaac gaatcggaga ttatcaatga 55680 ttatgttacg ttctatttca agagcgtagt gagcggctgg atatgtcagt tcagagcttt 55740 tatcaacagt tttggtgaat ccaccaacgc ttcatacaac actcaggatt atatcttcaa 55800 catcatcaaa atgtattcgt atatcaatgt agagaccacc tataacattt cgttcaccct 55860 gtttcctatg agtaagcagg agctttcaaa aatatggggt aagctctcat ttctcaaagc 55920 acacctgttt ccggcaaagc gggtaacacc cggcggcaac tttgtacctc cggtacttga 55980 agtaacgctt ggcaacgtct ggagaaaaag gaaggtgctt cttacttctc tcaatatctc 56040 attcggggaa gataccgtat gggaactgga tccaggtatg caacttcccc agtggatcaa 56100 agtggatctg aatttgattt tgctgtacga acagaatatt accacggaag actggcttca 56160 aaaccgcgtt aaaatgttcg attatacgac aaacaagccg ccttctacgc ttgccgcctc 56220 cgactccatg atcgatcccg caacaggcgt ggcacttgac atttcgacgt tcaaataccc 56280 ggaacccgaa agttttaacc tgaaacttgc aaaactcgat atacttaaaa accttggata 56340 aattatgaaa gtatattctt tttcgggaac gcgacgcgct cagaacatag ccgtacagga 56400 atatggagat tactcctact ggcaagatat gctgcttgca aacggtattt actccggatc 56460 gatcattccc ccgtatgttc cgtcgctttc catttacacc ccggaggaac tcgagaaccg 56520 tctggtagat aaataccata ttcccgatct gaaatatttt taacctatgc tgataagaag 56580 cctgcaccct tccgttgtaa agtatatcag acaatttgct tcgacatcga cggttcagaa 56640 gatttccgca aggcttgtgt tcatggtgcg cgtgagagac gccgcacctt tcagagcgta 56700 caacattgtc ttaaacaaca taaatttcta taccattgaa aacgaaatca ctcctgatct 56760 ccagtcgtac tacgattatc ttccggctcc agctattctt tcggtggacg tcgatccggc 56820 tcctgacggg atatacggta tgatggcgcg tgccaccgtc aatgtgcgtt gcttttctct 56880 caaacaactt cgggaactgg agtggagcct gtttccggga attacggcgc tcattgaagt 56940 agtgcgcaca aacaatgaaa ttcccgtgga ttttatttct gatcgctatg tgcgaaatcc 57000 ttcgcttctg aaagacattc tttttagccc gcaatcggta atcaaactcc atgagagaga 57060 tgaaggcaat aggatatttt tccccggaat acttaaaaga acaaatgttt cgtataacaa 57120 caataccttt gacattacct ttgagtttag taattttagt atagcttccg tatttttttc 57180 tcgaaactac gatattaagg atgtagagac ggctcgaaaa acgctggctg gtttctacaa 57240 tgagcgctgg agtacgcttt ccagccagaa gaaagtcaga tcgggtcagg atctgaacct 57300 tgacagaacc tatcagatgt tcggtggggg gaataaagca tttcccgccg aaaagggtat 57360 tgaagtgggc gtgggtactc atttcgatac aggcgacaaa actttcgccc cttcgcttcc 57420 ttccaacacc ttcgagtcgc tggaatatat tcgttttgaa gatttcctga aggaaattct 57480 gattccctat attcgggaca cctacccgga agatgttcct ccggaaatgg caattctacc 57540 gatcgacata gacaactcct atatgttcat tcataaacac ttgagaacca acaacgtaga 57600 tatcattttc ccaaccgaat acatggtgtt cgattctacg aatatgacgc cggattacat 57660 tatgggattt tcagattatg aggatcatgc agagtggttc gagaagaatt tcgggaaacc 57720 ttacacccgt cacccgattg gatcagttgg taaagtgggg aaagtgatgt tggctcgaaa 57780 gtatctttcc gaactgatcg gagaattcga acgcggcgac gacaagccgt tcagtttcat 57840 tattgataga atcattcagg atataataaa atccacctat ggcttttctc agcttttcct 57900 gatgaaggtg ggagagcaat acgtcattta tgataataga cttctggatg tagagacgcc 57960 tgttcagcag gtggaaaaca aatcccgtct tgaaccggaa gaaatcaaga tatgggaact 58020 tcacgacatc agctatacgc tggatattcc tgaatatctt gcgatggcgg taatgatgaa 58080 gcgtctttca gactcgctga atacctacgt caacgatcca gtggatttcc ttattcccgg 58140 ttccgttgag gatgtggtgc tgaagacgct taccggagag cgtgtgaaag gaaccgcgct 58200 ggaagatacc acggaaagtt cggatgtggt tgttaccaag gtgaacctga gcgctgaagt 58260 aatccgtgca ctcatgaaca atcccaattt cagagcgctc atgaatgtaa tcaaagaaaa 58320 tgaatcgggg ggcaactacg aagccattga aatagaacat attatagcaa aacacggaag 58380 ttatgataac gcttttgcgc tggcgcggct ggcgaacacc cgctttgcgc ggggtaaagt 58440 gtggtatcgg gtaagaggcg atcagaaaga ggaaattacc ggagagcttg taagaaaggt 58500 cgaacaggct tccagcttca gcgatctggt tacgcacccg ttcgtcgatg tgccgaaatc 58560 tcaggtgtcg cttccggttt ctcccggaag atataccacc gcctgtggcg cttaccagtt 58620 tacggaaaca acatggcggt ggatcgagag agagtacgcc gatctgtggc gggagcttag 58680 taagaaagcg gatgtggcgg tggattccgc cggaaatgaa atggtggtta ccggtcttcc 58740 acccgctacg gtatatgaat atcaggcggt tgtcgacact accgttcagt ctcgaattgt 58800 ggttcctccc acccccgtca atcaggatta catggtggca atttatctca cgatcattct 58860 caacaacgca aaccttaccg aagaagagtg gaatctgttt ttgaacgaag gattcgggtt 58920 taagcgtgag gaaatagtta aagaaaaact taccacccat tttgcttccc tcagaaaagt 58980 caatctcaat gcttcaatca gaagagacgc gtttgagcgc aaaggaaatg tcagtacatt 59040 tttgagtata aaacataagg atctgagcga aacaaaaagt gttaaatcta ttacatttga 59100 tgtaacgaag gttgacgata gatatgtagc ctacattccc atgcacctgt caacctatta 59160 caaagtgctt ctttatatgg gcacgctccc ggaaagacag cgggggaagg gtgctcagta 59220 tctgaccggt attacactca acataacggt tccgggtaat tcgctctgga ggatttttga 59280 cacgttcaaa atagaaggta ttcccgaaat ctattatgaa aacggctatt tcattgtaac 59340 gaaaatctcc cacaacatat caggcggaac atggaccacc ggggttacgg caaaatactt 59400 ttacacgggc aaaacgtaaa aaaaaactat gagcaagtac tttctaaaac caacttctta 59460 cgcttccgac gtttatcttg caccacacgt tcccgaactg gaatacgttc caaaggaact 59520 gataaaaggg tttgacatgc tcctcaactg gatcagtgca ctggaaacaa atcatctgtt 59580 ttacagcgca atcaactatc tggctaaaga ttaccatgta aagaaacacc gcgaatatgt 59640 gatccatttc atttatccta aattcaatct ttcggaaaag gattatccag aaaaagatga 59700 agattccctt attatgcttc ccgatcaccc ttttgctcgg caccgcaaag aggaaatctt 59760 aaaaccattt aagggtagat atcttgcgtt taccgcttcc ggaagatatc agtttattcg 59820 atccacatgg aaacatcttg taatgaatta tcacactcag aaaattaccg ccttttcttc 59880 gctaaatcag gattatcttg cgctgtgtct tgtaagggaa gccttaatgc gcgttaaggc 59940 aacggggaat aaacggtata tgaacctctg ggagtatttt atagactacg gatatattca 60000 tttcgatgaa ttcatgcacc ataaacaggt agtatatgcc ctttcaatgg tatgggaagc 60060 tttccagaaa tttcctgagg ggcttcagag tgatgaattt attaaagaat atgaaaagct 60120 ctatcgctga cgagtttctg ttacataccc cgtcgatttg atctgcataa tcgcttctct 60180 tctggtagag tcgtacagga tagaagtctc atgatccatg taacccaact ctccggcttt 60240 ttcatgaagg ataccgctca gcgtctgcgc caggttcgag ttgggaagaa tacccggcgt 60300 gatttcgata agatattttc ctccctgttt cgatccgttg agtttgccgc ccccaagacc 60360 aaattcccgc aaaacagatt tcaacctttc gacgttaatt tctttgcttt gagccgtaac 60420 gtatatcgag atcgtattcc gctctttttc ctgctggtat ttgtggttga acaccacttc 60480 gatcttttca ggggtttcaa aagcagtttg cagtctggag acaaaacgct caagtaccgg 60540 aatgcggagc gcggctttta caagttgacg cgttcccttc ttctggataa ttttgtgaga 60600 gcgctgaatg atgaatgaaa gatgctgaag cacttccaca gtgaattcgg caatgctttc 60660 gtctacttcg gcaagctgat cgtcgggtaa attgtcggct tcttccagcg attgataaag 60720 tgcgttaatg tattgcctta cttcatcagg gatatagaaa tgcatgaccg gctcaactct 60780 gaaaggtagc gtgccgtaaa aaagtacggc atgaccgttt tctctgttaa tttcgatcat 60840 ggtggtaccg atattctgta aataattacc ttcaatcggc acccttcttt tggacgcccg 60900 ctccagagga atctccatct cctcctgttc gatttcttcc tcttcttcct cctcttcttc 60960 ctgagctaaa acaagcatgt catcttcttc ttcctcgaca taagcaggct caccggtggt 61020 cttgaagaat tggagcgtaa tgattgccac ctcttgcggc tgaggaagtc tgatcacacc 61080 accttctccc caccccggcg gcggctcaaa acccatgcga atcagcgctt gcatttcctc 61140 cggggttgga gccggaagtt ccataccccc ttcggtaatc tgacagataa ttgaaagctc 61200 cgggggattg atgcgcctta cgtaaacgat gcgatcgtaa gggctgtacg caccgacgta 61260 ttcgtgctcc tgcaaagtgg aaaaatagga aagaaatgtc tgtattccct ttagcggatt 61320 cattttcttt taaatatatg cttcttcagg aacaagcgaa atggtgggag gagacgtgat 61380 tcgggaaaaa tctttaaatt cataatcatt cccacgatac agtagatatg gagagattcc 61440 ccctacaggc aaaggtggtg tgggttttct tgggggagta ccaccgccgc cgggttcatc 61500 ttcatcgtca tccatatctt tgtttctttt tccaccaaac agattttggc ggtattttgc 61560 ctcgaaaata atttcaataa tgtagtaaag aacaacgcac atgacgatac aggcgagcag 61620 aaaaacgctg acgacaaata tgtactggat caggtactcc atgttacaaa ccgttcaaaa 61680 caacttttac atacgggttt ataatggctt acctccggca caattaaata agggtcttcc 61740 agagggttca ggtaacccat tcccctcaaa tccacacttc cattcacaaa tcgtatgttg 61800 tattgcgttg gattaccgca ctcacaacga ctggaaatgt ttattttaat gggattgtat 61860 ttttcttcga tctgtttcca taccggaaat tctcttccaa gatagtcggt tctgagaccg 61920 ctgagcacca cttctatttt ccacgaaaaa ataaattcga tctcttcagg tgttgcaaac 61980 tggaattcat caacggctat gagcgaacac ctaccggttt taagctggag atattcggct 62040 tcataaaatg tggggttttg aatgaagtcg gtaagattgt aaacgcaaga atgggtaaat 62100 ccgcttcgag atttcaaggt aggggaatag ccgtaaatgc ttccgggttt aaagacaaga 62160 taatcgtcaa agttttctaa aagttttata agaaaatgag ttttacccga tgccatcgcc 62220 ccgttgatga cggtaacgga gcgggttgag cgttccttca gaaattttat aacagcctta 62280 tccagttcga tattgtgcag ggtggtatct ccggaaagcg tctcagggaa atcgtacttc 62340 atagttgatt tatttttaag ccgaagtctc tgaccacaag gggtttgtca tcggttctac 62400 cccagttgtc gatcagggta aaatcctcac ccagcagatt gaattgccga atcagcctta 62460 cggtttcccg gattacagga tttttaagaa cggtgaagta aaaagtgtgc ctatcttcta 62520 cgcttacgtt gtcaagcgtg agtctattaa tggcatttcc aaatatatcg gcaaaacgcc 62580 tatcataagc agaaaccacc tcgaaaccct cgaacgttgc gtcttcccgt aagtagcgtt 62640 tccggataaa cccttcaatc agaacactat aaacatcaaa gtcaatatca gcgacacttt 62700 caaaataggc ttcattgaca ggtgcgacaa attcggtgat tagaacccca ccttctttga 62760 aaacctgagc gtagtcgacg gcgatttcac ttcctgacct acgcaccacc tcatattcgg 62820 taatgttctg tttgattcca ttgtcattat gagcaatttt caaaaccagt tcggtgtcgg 62880 gtattctgaa tacttctctc cctcttcccc ttttgacggg ttcaaggtat ttcttttgag 62940 ccagaaggta agccgcgcga agcgggtttt cacttcgctg aaagtaagtc agaatatccc 63000 ggagcgtgtc tgtttctttt aaggttatca taggctaatc cagtgttata tcatacatga 63060 tttgtgcggc aaccacttct ttaaaatatt caacgaaatc tctgtcgtct ctaacgtcct 63120 ttaaatactt ttctatttcc ggttttacat attcaaaaaa ctcatccata ataacttgtt 63180 tgataaataa tgtaaaatga tccccctctt catccatatt gagtttgtta atgataacac 63240 cataagcaat tcgtataaag gtttgtacat ctattacgtg gcgaaggtct ttctgaataa 63300 ggatattttc tatcttatgc tttattggaa aatatccgga aagaaaccga atcgcttcct 63360 caagattttt gctgacaaaa gctataatat cgctctgcag ttttcgcaaa atataatgat 63420 aatgtgcatc ttcgatttta taataagccg catctctgag ataatcgtat atctgatccg 63480 cgatattaag atgatctatt gcttccttta tggcttttgc tttgaaattt ctgtcaaaga 63540 aaattgggtg ttgccttctt tcctcttctt caaatttacg tacaacatat tgtgcgatcg 63600 gatttaaatg atcttgcccg taatgataag ccgcgaatct tatgacattt gaccagaaat 63660 attcgatttg gggaggaaaa agcacattta ttagactggt tccaccgtat tcttcataaa 63720 gaaaagagcg aacacaccag cggataatgt cttcgttatt tttataatcc gacagaatca 63780 aataaacctg attggtggga tcgaagccgc caagtacatc tcgagtcaat tttgagattg 63840 tctctttcag ttcaaaagaa ggggtggttt cttttagcag gaatatcatt ccgtccccgc 63900 ggggtatttt accttcgtgg atgtaaaaat agtagtacat ttcacgggtt acaatgatat 63960 tccagagagg agtagccacc cattgataaa cttcgtcatc ataccgcgcc cctataagta 64020 tagaacccat aaacagaaaa tctatatctc gatacttttc attgagcgtg cttacctcaa 64080 taatcacaaa aaaatggtct gtcatggact tcaattttct ttccaataac accaatgttt 64140 ttcctgtttt tatcaacgct ttccgtgttt cttcaagtag ttcacccgcc cattggtgct 64200 gtcttaattt ttcttcaatg aaatttttgt aaatctgttg gtacataaca tttgacaggc 64260 ttgttctggt aagatcctct gaagtcaata tgaaatagtt ggtgttgtaa taatatgggg 64320 tgtttggggg caaattggtt ttaataaact gttgacttaa cccgttgaac aacggtttat 64380 taagaacaaa ggtatcggtg tttatcgttt ccattggttt ttatttaaat aaaaagaacg 64440 tatgagagaa ccttttctgt ttcgagatcc gacaatcgaa agctttggaa gctttttatt 64500 ggaatacctt gacattcagg aagttcgtgt taaaaccgaa tttttcggcg gtaaactgca 64560 aaaactcaaa gatggttatc attttccgga tgtaaaactt aaacccggta aagatgtcga 64620 aaagttccga actctgtgca acgcattcgg gtttgatgtg gaaatatccg aaaacgggat 64680 aacgttcaca aaaagacagg aatattgttt tatcgaggag gctctgaaaa aggcgacaga 64740 gaaatatcag attttcgttc ttgcaccaat agaagttgat cttgttttta catgttgcaa 64800 ccagatattt gtcgaatatg aaatatgagc actgttaaaa tacctttagc cgttaacata 64860 tacgacccca agggcgacga atgggaattt atctacagca actatgcggt agaagttgta 64920 ggaagtgaat atctggttcc ggttgtaaca ctgaaaaccg gatcggttaa ctatttcaga 64980 ttcaatgtgc ttctaaccta ctctcagacc gggtctttcc ccctttatct gaattttctg 65040 aacaaaaaca ccaatcagat caatgtagtt taccgaaata tcagttacag ttatatcagt 65100 tccagcaatg tgaactggta tcccacaagt atatccggtc ttcttggttg gtggcaagca 65160 tatcatccgt cacgtgttaa agattacatc atagaccgca ctgaaaacca gagccatctg 65220 gtaaaaattg aaaggtatac ctataatgat cagtggctta accctacaac aacattcgtt 65280 tctcatgaga gtaataggat aaaaatgatg cttccaatga atgatttgat tgataatcac 65340 gggaataact gggtgtcaga accccgaaat tcttatgtag gatatgtttc acaatctcag 65400 aaattcctgt cgaaggaata cacttttttc tatgtttttt cggtagttga aaaaaacccc 65460 tatgtaacag taagtgggga gccgctgata ccgggtgctg catatcccgc cctttcaaca 65520 agctattact ctattattcc caagggtggc gaatatctgg ctggtttaca tatatttcgt 65580 tctaaaactt atagttctgt aaacgataaa atgaatacgg cttctcttat gattcttttt 65640 accacctatc ccgttataag tagttctacg tttgctccgg aatataaggg ggataatgaa 65700 aacgcttttt ccaatacaca atatcgcata caccccgcta tagcggctat cggagagaaa 65760 gatttaaagt ctcattatgt tccgggaata agaatagtct atcatacaga atctacaatg 65820 aacccgggag ttcagcttta tgagctttat cttggttata agaataccac ttcactttat 65880 gaactggaag taacttcttc agatatagca cgttttgatg tacctaccat tgtagggtac 65940 cgcattaaac aaagtggtag cgttatttct tattctgtta ctttgaacaa tgaaccgccg 66000 gtatggtatg taattacggc aagcattcct tccatcgatc tttctgatcc gatttttacc 66060 gatcatagaa acgaagccgg cattattata gggtcgctgt acgggtatct atatgattat 66120 cagcttggag atgtcggaaa tctttcggct atttatcggt ggggatccaa gggtatttac 66180 ttttatgaag cactgttata tacccgctcg cttgacgatg cagaatacca gcaagtgaac 66240 gaacaccttg ttaagaaata ccgattcggg ctgtaatggg aagaataaat acgacatatt 66300 ttatttatct gtatttcccg cgtatagata taagcggtct tgataatata catattgaaa 66360 tagaaatatt gggtggcttt agttttacac ccgtttctta tacctacaat acatctggct 66420 cttttattac aacagaaacc cccgttgtca gggtgatgga aaatcgcaca ccggatatat 66480 accttcatgt tgtgagttta agtgctttat atagtaattt cgacccctct cttcattctt 66540 ggcatatctg gcttgatttc acaaggctta cggcttctaa aaccgacggt caacctgttt 66600 atacatcgga tatacaatcc attcagagtg atatatctat ggaaaactcc ggaggctata 66660 cgtattatga aaatattatg aatgggcttc ctatggtgcg aaccaacaat acaggattga 66720 caaaaaccgg tggcattctg acggatgatc cgatcatggt agtcgcagcg gtttatatca 66780 gccaatccgc tacatattgt cgtcttataa gctggggata tagtattaat gaagcatggg 66840 atgtatatgc tgagttttct ggcgcgttgg taagatttat atttgtcacc gatacggcga 66900 cggctgggag cggtcctact ataaccagtg actggttcag ttatcctcag gggtttgtac 66960 ttgccgcatg gcaagaggat gacgaaacca tgcatttccg gattatggat gaaagcggaa 67020 atgagtacga ttatcctgta attaccggac gcgggggcgg attttcaaac ttcagattgt 67080 tcgatattta ttatccaagt tacaactggg gatttaataa ttatgtggga gaaatcattg 67140 ttcacaatga tatatatatg gttgaagacg tctttcatta tatggctttc aaatgggtgc 67200 cgggattaac cggaagggtg cggataaatc gcttgtggga aaatctttat aaacctgaat 67260 tatatacatc gctcaatagt gttgtactta ttacaggctc aacatctttt accggttcta 67320 ttattaataa cgatccaatt attctaactt caataaataa catagataca ctacaatgga 67380 acccgcaatt taccggatct attgtcaata acaacccaat catcctaacc ccggtaaaca 67440 acatagatac actacaatgg aacccgcaat ttaccggatc tattgtcaat aacaaccctg 67500 ttttgttaac aacgataagt aacgtattac ttttgatgtt taattaataa aaaaaccacg 67560 aaagctatgc cttattattt cgagtttaaa gttagagaac tggatcttga accggtaagt 67620 gtaacgctct ctccggctcc aagttgggtt tcggtttata aatacaacac ccagcctttt 67680 gaccaatttt acggaactta tgacattaca gtgtttctgg tagcaaaccc acccccggga 67740 acaccggatg gtacctattc gatagggctt actttgagcg acgcgctggg cggaataacc 67800 acacattcag tcaatttcat aatcaacact tctggaacca ttacatttga tcctgtttcg 67860 gtgccggggc tctggggttg gtggcaaccc ggaaactggc ttactcagag cagtgatact 67920 ttcaatgatg tggctatatg gtatgacgct tctccggggg cacatcatct tacacttgat 67980 aggagaatta ctattttacc atggaatagt acagatgctg gaagtgctta tgtcggatct 68040 tacataaaaa cactttcgga taattcactt ctgttttcat ggagccatgt caatcaccaa 68100 tttgccaata tgaattattc gtcgggggct gataactaca aacccgaaaa tgttttgatt 68160 acaaaagata cttcttttta ctccaatcag tactctattt tctttgttta tagaaatcat 68220 ctcgactggt tttctcatcg tataaccgga atgagattaa ctataaatca ctatgaatac 68280 tgggcaacca atatatggga ctttgatgtt gaacggggta ataatcatct tgcaatgccg 68340 gtctattccc cggtggtgat taacagagcg gcgccttata caaccgtctc ttatggatca 68400 tactggaatg acgattataa tcacgggttt gtcggcggct ggtttattgc gttctgtctt 68460 cctccctatg ccgctaatcc gtcagccaga gacgcttatt actatgatga cgggggcgga 68520 cttaccacca tgagcgtatt caactatgcc cccggctatt accagaataa tgttccgcat 68580 caaccttata ttaccatatt caaagttaat aaatatgctt ctcaaacaga tgggtctctc 68640 ggtattcacc ctattaaatt gttttattac accaatgaag aatatgcgtc tatgtcgcta 68700 attgaaagaa acaacaggtt cagcagattt gtctttacta aagatcagtg gaatgctgtt 68760 ggatatattg ttgaggaaaa tccccttatt tccaacagcg ttgttatcgg ttattcctac 68820 acttacagca tttatttcaa cgaaacaact tccgttacaa aatctctgga agtaacattt 68880 tatgacataa atggcaattt cagacccccg acaacttatg cttatattga cggttcagac 68940 aaccagcagg catatataga cgtatatggt gggtttggca taggaacacg ttttgcgaca 69000 gctcagagtc aatattatgc caacaccggt actataggat ggagaactta taactttaca 69060 cccggggtgt tttctctctc tttcaaggaa tgtctgtttt atacccgcgc attatggaac 69120 gaagcgcccc agatcatgga ttatcttatg aaaaaacacg gtatcccgtt tgtaagctga 69180 tatgctggaa tttacctaca gtggtacgtt ttcatacccg gatagtcaaa cactttccag 69240 tttttactgg attattaacg ccccgtctgg aagtgttgtt acttattccg aaattttaaa 69300 ccccccgctt aaagaaatcc ctattgaagt aaccatttcc ctcgatacca caagtatacc 69360 gtcaggaaat gtaacatgga gtgttaactt ttttgcatat acaaccacct ctattacagg 69420 agaagtttat ctttatattt ccaatatctc aggattggaa ccatatagca tatctatctt 69480 tctgacttca agttatgaga aagaagggct ctggagaaat ctcgggttgg gtgaatcttt 69540 ttactgctat tcgctttcca ccactccgaa tgtacgattt atcaaacaca ccatttctct 69600 tcagagtatc agtttgatac cagccggtgg tagtatcaaa tgggaaaaac ccccggaaaa 69660 aacttattat tctttttcga ttttcgccaa agggtttttc cttagaacag ttgattttga 69720 ggggttgact acaagtcagc ttagctggta taatgatatt ccatttgctg tttcaggagc 69780 ctatctgtat accggatcag gatttccgct cattactttt atcaaccaga gtatgcttta 69840 tctggtaact tcatcggggg acttcagtaa ctttgttttt agagatctga caactaacac 69900 cgatgtgttt tctttcagtg tggaatatcc aacgctttct cttgcaagaa tatatatcac 69960 ctacgatggg aatgattttg tcataacatt cagcagtact gttagtgatt attactatac 70020 ctataatttg cccggactca gtttttctga tcatctactt attgggaatt atcaatcttt 70080 ttcgggtcat tccgcatgga actcttttat tgtacttgac tataatgcga caggaagtgc 70140 gtaccagaca ataagcaacc tgatatgagc cattttgatg aactacacga acattacagc 70200 accaccacgc tcagcgttaa cggggtagtg gtaagtcata gttacagagc atttccttcg 70260 cttagctacg ttgaaattac gctgtacaac gtacctgcac ctactggatc aaattatttc 70320 tttgtttatg atcacgttta caatcaaaac atatttcttt atgcgctgaa acctcaggat 70380 atagggaaag aaattctgga aacggttagt ttcaggatta ttgttgattg atcatcaata 70440 gataataaat tctggttttg taagcgtaat attgatctca aaccacccgt cttcgataaa 70500 cagtgcccct gctcctgaaa gtgtgtaatt tcctgtaatt atattgattc ttctgttgaa 70560 atgggatgta gtcaattccc atatactacc acccgaaaca aacgtctcaa attcttcttc 70620 ctctataaca ggttgatgtt ctatctcaac cagactcata gaagcaatta tggtgcgcct 70680 gtagttgaat tcagatatat gattcatttc tattgtgctg taggaaacga gtcggaattg 70740 ttgatgttcg ggaatggtga taaccgaaag agatatcccg tctactttgt gagaaaagaa 70800 aattctgttt tgagcgaagt ttgagtaaat agagtcgtgg gttttggtat atgtcccaag 70860 cccgatatat ctcaaataat atcttaccgg atattccaga ctaccgctga agttgtagat 70920 tttatcaaga atgcgttcct gaagtgcagc atatcgtatt tcacttgctg taaatacata 70980 aggtatggtg gtgcggatat acgggaatgt aatataatcc agttcagagc cggtaagtgc 71040 tatgatacct ttgaaaatct catttggaaa cgtgatataa cttatagata attgtgtata 71100 ggtataaaga taggtaagtc tcctgttttc aaacgtttct acaaaggaaa tggtatccat 71160 tgaatggctt gcgaagaaaa agagataatt ttcaatcaga tgctgtaaag tagcattaac 71220 aagagatttt gttaaacgat taaaatagag ggttctgttg aaatgaaaag atacataatc 71280 taacccgtaa ttattggttc gaagtgcaat aagatcagtg ttttgctcaa caggagcatt 71340 tacaaaccct gaaagcgttc taaaaagggt atatattttc cccgtctgaa aagcctctaa 71400 gttcaatccg atcggatcgg taagatatcc cctgaaatat ttttcattgc gcaattgtgt 71460 attgaagctt acgtaatagc tgaaggagta aagggtagtt ggatcaactg tatcgtgaac 71520 aggaggaaca atcaaatcat aagtcatggg gagaaagtct attttttcaa tgctgattgg 71580 atcataaaac tcatttttcc acccaatgcg gttgaacaca aagaacggag gaactccttc 71640 ggtggaataa gtgccagcgg gtatggaacc agacaaaacg aattctgaat aagtgggtct 71700 gtaggtgtaa agccgataga tgatagattg ggaatactga gatgtagtag actgatgata 71760 taccgaaacg gtgaacgaat gggttccgga tacgaaccca ctcattgtga tataaagaac 71820 caattctttg tattcaggat ttccctgata gaaattatca attatgctgt gcgaaaaaac 71880 aaaaggtgga agggatgata ccacttccac ctgattgaga aatacccttc ttacagggta 71940 agaaactgaa taagtcatgg tttcatatca tcacttaagg attacaaagt ggtcagcatg 72000 aacgtctgca cggttcataa gcgtgaagct acgcgcggca agatactgtt caagcaggat 72060 aatatcgcgc tccgtcggtg atttgataat aaccagttcg taaatgctac cgacaagcgg 72120 gcgcacgccg tcggtaccaa ttgtgagaat attgattccg tctggaccca ccgccacatt 72180 gttcatcaag gggataccgg aaatccggag cgaactgttc ccgctgaaca cacccactac 72240 cacctgatcg cgggtagcga gtgaaagcgt atattccgtg ctggagcctc cgattcccca 72300 gttgtggggc atttcacaga aaatatgggg gttgacagaa agtgtaccac cggagaacaa 72360 cccaccgttg gcgaaagaac ccacaatacc gatagcgaac ggctgctcga tttccagacc 72420 ggtaccttcg agacccatcg accgaagcca ttcgtttcca cggaacacca ccgccgacaa 72480 tccgttgtat gcatcccgca cgaaaatggg ctggttatcc gggttggatt gtgtgaggga 72540 gtaagataga taagccgatg ttgaaacata tgctggcacc cacgcatcaa ccttatcgcc 72600 cgtgttgtag gaagccgtga gggtgttcgc atcaaagcga agcaccactt tgggcaccca 72660 gctttcaatg gtttccgccg gatcgacaaa ataggggatg ttatatttct tagccagata 72720 gttttcaacg ttctgacgtt cagcgttggt aagtttacgg tcaaacacgc atagctcagc 72780 aatatagcct ctcaggttcc accctatgaa catattcgat tcaacacggt taccggtctt 72840 accttccata taccgcacac cgttgatgta aatgcggtca agcggatatt tggggtggga 72900 agtagcaaag cgaacatcgt tggttgttgg cgaaccagag agaccactaa tgtggtacag 72960 attgacatat gaacctgttt cattttcaag tatcaccgta atgatattcc agtcattcag 73020 gggtacaaaa gcgtctgcgg gttgtggaac agtattgtac ccaccgtaag agtccggtag 73080 tgcgttggag actcgagggt tgcgatatga agagttcaaa taaatccagt gttcaacctg 73140 attttctttt acttcaaggc ggggcacaat tactgaataa ctgtgaacat tattttcatc 73200 aaccattctg aaataaggta catccgtatc gtctgtgttg tgagtatccg actttggttg 73260 aggatcccac atggagaaca tccacagaaa cctacccgga atgtttccgt aatttactga 73320 attgttagga atgggattag aagaattggt tgtaatattg ctgtaattcg gatgataaac 73380 ccacaccgat ccactctgca caaacacccc agatgtcgta tccgggagtc tatccagttt 73440 ggcaaccatg ataatggtgc gttcagtatt ctgagaataa tctccggtgc ccggatagtt 73500 aatacgcata accgaaccgg aaccgaaata ccaagccgga taaccgttga caatattttc 73560 gacgaaaata ggtttgcgga aatcgttaac ctgagtagct ttaaatccgg aatatgcggg 73620 aacaaggttg ggaatttcgt caacgtaatc gccggtttca agctgaggag tggagccgtc 73680 ggcgctcatc cagattttgc agttggggac gtccgacggc gaagaatacg cattgatcgt 73740 ctgaacataa atgggataag tgcgaactgt ttccggggta acgccatcgg tagagcgtac 73800 cgtaatgctg taggtgcccg gcgctacacc cgacagatca ccgtatacac tcagaatccc 73860 ttcggtgcgc ccgtcgggaa gaatggactg ggtaaaatca tatccggtaa cccagctcgg 73920 ggcggcggaa accgtagcag taatcgtatt accgtcgtta tcgtagatat aaatggaaaa 73980 cgttacggtg ttagaactct ggtaagtcgg cattgtttat cccggttttg ttttaaatat 74040 tcttatttca ctcaaaataa aaagtcaaat agagataagg cacagaaata ctgctatagt 74100 cattgatgga gtctatatag tcttttccaa tatacatgtg tgtgataaca tctccgctat 74160 tatagtcata catcaagatg tattcggcta catcgggagg aatgttgttc ataaagaacc 74220 ctgaaaatgt tatggagtaa atatttccgt caaactgttc gtcaatcata ctgacagttt 74280 gcgtcagatc cccccccact acccgttaca acatacaaac tgaaagatga gtgtgtaacg 74340 ttaaattccg gataataaga attaaccggc accactgaaa gagtttttcc atagaaaata 74400 tttcttaccg cttctttaaa agcattcatt atggtttctt ttcggtaaaa aggttcggtg 74460 ttgtaagata gattgataaa tccatagatt ttatctctgt atagagagta actgtaacct 74520 actctatagt taattaagtt gtattcctga tttagtgtat ggttaacagg ctgactgtat 74580 acccatttgt aagcaagcca gcggtgtttt tcatacatgc tggatataag cggctttcga 74640 gagatcacag gcgatgtgtt tctttgagta gcatttatcc agtaattgat aggcgattcc 74700 acctttctgc tcatgatgtt tgttctattt ccggcaatga tcgctcttct taatgtgtgt 74760 ttattaatcg ttttgaacaa ttgtcgatag atagtgcggg tcttgttttt gacagtgttt 74820 ccggttctat gatatgctat aagtatctgt cggagttggt tgagatcaag gagaaaattt 74880 tgagttttct ttacagaagt gagcaggacg ttaccctgaa aacttggaaa gaagtctctg 74940 gtggtacgga taacttcccg gatttttaaa agtctccggt caaaatgggg gatatcatag 75000 cttgcataaa tgttagtgcc cctgaagaac aatccgatta ttctatcaat ggttgtttta 75060 tagtttaatt ttattgtgcg tatggttaat tttatcaaac gttgcatctg atttgctata 75120 aggttaaggt actttttaaa actcagaagt ctgatggtta catatggctc taaggtggaa 75180 taaatgattt ttccaacaaa tctgacctgt ttaataatct gttggtaaaa acgtagcaca 75240 tagttaaccg gtgtgtatcc ggtcaaagtt ttaaagaaag ttttattcac cagagtcgat 75300 ttaatgagtg atctggtctt gatgatagtt ttaataaaaa agtttttgat tgaattcaac 75360 agactgttaa aggaggtaga tatatttaaa actttaaaaa attcttcagt gctccataca 75420 aaagcggaaa gcaatttatt gaaagttttt aaattgggaa atctcagttt taaagtgggg 75480 gtgtagttga caggtgtgtt ttttgttttc aagatatact tgaactcatt agaactaaga 75540 ggttggttga cagcattata tccattgaaa agcgtaagtg cgtaggggtt gtcgtagttg 75600 ttgtcaagga aaagtcgaag tgctgtcggg tcatcatttt ctatcaacag cggatcatca 75660 atcgggtcta tataaggatc atagggaacg gaaaatatat ccctgaaatc gtttgtcgaa 75720 gtataaatat aagataatgt atagttaaag attaccgact ttgtttcata tttgtcagtt 75780 gaataaaacc tgaaccgtat acttccagta taccagtcag gcggaaagga agatgccgtt 75840 aaaagattga gataggttat agtagacccg gagtgcgata caccaaacca gaacttattg 75900 ggtggggatt gttgaacgat aagtgggctg aatactcctc ttcctttgtg gtctacttta 75960 aatctcattt tgttcgtagg ttatgtcata ttcgtccagt atcaaagcgt tgtcaacaaa 76020 tagagaattt tcatatccgt gcatgaatgg aatgggttct ccatcgagtg atatgtcttg 76080 aataccaatg aatatgggaa aatacagact gatcgatata tccattactt ctataatcgg 76140 ataatgatat tcgatagtta tattgaatac tgttatttca gggtaattca aacttatggt 76200 gaagataaac ccatattcca taagagggtg atatagatta attgaaatgg tgttgaagtt 76260 aatgtcaaaa tcgagggtgg attcatattg tgtgctgaac gttttgccgt ttatgtcgct 76320 gagatcaggt gaataaagat aaatattaaa atcgaggggg gtatctataa tcaaagcttc 76380 catatctata taatagaggt ctatatcggc aatctttttt ccttgataat acacatcata 76440 ttccagatct tttgaaaaac tggtactgaa aaaataccgg taagtgtcaa acagatcaag 76500 aattattgaa actgtgtgtt cgttttggaa gaccagacta taactgacat ctgaaactaa 76560 cgtcagacta ctggtactta caggatatct gaaataaatg tctctataac gtaaatacct 76620 gtcggctgat tcggtatata cttttattat gtaatctgta ttaatactca taatttatcg 76680 atataagttc gtttcccttt ttaaccagaa tagtactgat gggtacattt ccgttcatga 76740 attcaccaag catatcgata ataaaatcta cttcttccct cacttccagc ataagtgtgg 76800 ggggtatttc aagatagaca ataccatctt gataggaacc ttttacatat tcacggtttt 76860 tataccaatt gatatatcgg ctcatagaat gttgaatttt ccaatcgtct tttttaaagg 76920 aaaacattcc ttcatatttg ttgaagggat cgtaaacgaa accgacgtag tctttcatgt 76980 ttttctttaa ataaacaggc ggttgtgttt ttattcagaa aaaacttatt taaagaaaaa 77040 agatgtatac cgaactgttc aagaaaagca acccgcacaa ctcatattac tatcattacg 77100 tgcattttga cagtaattca aacacacatt caatcgatgt tcccggcgga aatgcgctca 77160 aaaacattct tattgtgggt aacgcttcta ccccttattt tgtctctttt aaaatctata 77220 catcgcatag cgggtttgtg ccggttccag tatcctacga ttacgaagcg cttggaaaca 77280 atgcgctgat tacccctaat atctcttcat ttgcagtttt ttcctctatt caaacctcat 77340 cgcttcgcat tagcattacc aatatcaccc cgtttagcgg aagtgtttac atactgttta 77400 aagtcgagta acgtatgttt tacgaacctt ctgtaagctt ttttgcagta tatcctcagt 77460 acagcaccag cgcggctttt ctcacagaat tcaataaatc atcggcgtgg gtgctccaca 77520 aactgggcta cccggtggta tcggtggaat tgacgaaaga tcagcttatg tttctctttc 77580 acgaagcatg gcaagaatac tctcagtata tttcagaatt tctgattcag gaaaactatg 77640 ataacgtttt aataaaaaac attttccaga cggaagggga aatctttgag aagtttccca 77700 aacctaacag ttcgcttatc atcgagcttt ctgatcgcta tggaatgtac gacatgaaca 77760 ccgaatatgt aatcattcca cttaccgctt ctcaatcggt ttatgacttg aagaattaca 77820 ttaccgcatc cggaaaaatt cacgttcagc aggtgcttgt caatagaccg cgcgttggtc 77880 ttggttctac gctgtacggt aatgcttttg tcttcaacaa ctattctccc ttcaccgtag 77940 gatacggcgc gggctggaat atcggtcagg tgctcacgcc gctttcctat cttgccacca 78000 ccatgcaggc taccgatctt gcctacaata tgtatcgcaa gctccacttc tttgaaattg 78060 tctctggaag tatgattcgc atttctcctg ttcccgattc caacgactcc cggcttacaa 78120 tcagatacaa actggaacgg gaagaaggtg atcttattga aatgtacaat tcaatatttt 78180 atacgaaaac aggtctcctc gatctggaaa aactaaatga aaactccctt attgtgcttc 78240 ggcatatctt cctcatgaag gtgatcgata cgcttatttt catccgcaag aagtacgaca 78300 actacgcact tcccaatgcg gaacttacgc tgaacgtcga caacctgaag gaactcaggg 78360 aatccaccaa ggaaaagatc gacaaataca aagagtggct tgacaacatg aaacttcacg 78420 caaggcttca gcggaaagga gaagaagcag aagcgctgga gcgggaactc cagcgctatc 78480 ctatggggtt cctatttatg taatctctca cctgcaatca ctcagcgtgc aggcgcccat 78540 ggggtgatct cctctaccgg gctttttgaa cggcggtgga atcttatgtc ccggtttgtg 78600 gtgtgcagta acttcctcaa cctttccata ggttgtgagc atgggggtaa tccacctttt 78660 catggcttct ccgatttttt attgttggtt cttatagata aataaccctg tggcacgcat 78720 cgtaagtgaa aaaccacccc aacagccacc accggttcac ataacggaaa aattctttgc 78780 cttttttaaa ctctttcatg attgttcttc ttttggaaga ttcagcttaa tggtgatata 78840 atccgagtcg gggaattctt ttcttaaatc ctccagcgac tcatacacaa aaatcatccc 78900 gacggcaccg gtgttagcta tcttagaaag tggatagacg actttctgaa cgccgttatt 78960 gatgacaacc tgcaggtcat ccagaaagtt aagctgcatc gcgacgtaat acacgcgctc 79020 ttcgttattg ttgtcgttca tggcacacag ggttttaagg ttacgcatgg tagtctattt 79080 ttacaatgta ggttttgtcg ttatattcta tcatgtgata atgcgcctga taaatatggg 79140 ttccttccag aaataggggc tcgttacctt caaggtagac gaacaccata tcttcgtctc 79200 cacccccctg agaaaggcgg ataaagggag tgtgctgact ctggtgagta ataccgataa 79260 caacatcggg gtttttctcg ataaaatcga gaatttcccg ctcctgttca gtgggttcaa 79320 aatgcttcca ttgatacacc cggtaggggc gattcgaagc gatgtaatag ggaagagaag 79380 ctacatgtcg gttataaata tccagaacaa tctcttcaat atcagtattt tctttatttt 79440 taatttcttc ctcgagtagc atgttaagat caagtatcat gtgagccagc gtgctgactt 79500 ctgcttcatg cattttaata cctttctttt caaggatacg aacaatgcct tcagtgtcga 79560 atttgagaat catggcgcta atgggtttag ttttcactct ctacaagaaa acgaataaga 79620 tcctcaacgg tttttatctt tgtagtattt tcaacatacc cgagactttt cagcagatca 79680 attgttttct ctgaaatgat ctgacagtat ttgtctctat ctatgtattt tttaacgatt 79740 tcaagaccct cctcatcatc ctcacgtatg ctaagtgcgt ggatattgcg gagcctgttg 79800 atatgcgttt tctttcccgc tttcagaata tcccacacgc cgctcccatg ttcggggtta 79860 acttcttcca gagaaagcgg gagattggtt ctggaaggat ccagcatggt gcagtagaac 79920 cagtagatct tgtctcccat ttgcgggggt ttgcatccta taatggaagc gaaaagcgct 79980 cccttataat gaatgggaag tgtatggtca tacattttta tgaatatctc agagattggg 80040 acattctcct ttttcatctt cataacttcc tctacatact ccacatatct ttcggcgctg 80100 tcagacgaag atattttcat tttgtgatag agatcttcaa tagaccagaa attcttttga 80160 gacacaaagt tattgtagaa cgctatggtg gcggaaatga catcgatgtc gggttggctg 80220 atatacttca ggtaacccct gaaatacttc ttgacaattt caggcaccga agagttgatc 80280 acttcgattc ccttcatctc ttctttaccg tctacagtaa ccgcaaagta gcggttgatt 80340 tctttgataa gaatggattt gaacacgaac tcctgcttta actccagctt gaaatcttct 80400 cttgcattaa agttattttc catatagtca ttgataaaag agttgagatg ttcttgaagc 80460 tcaccggctt ccgccaccgg atcatccgta aaagctttga cgaaaatgga gtcggtatgc 80520 gaataaatga agcgatcgcg aatctgagaa atcacggagc gaatagacat gcgcccggcg 80580 gcggttacac tttccgcaat gggaaggcac cccatgtaca ccgaacggtt tccgaagata 80640 ccgtacatgg agttcatcat aattttaagt gcccattgac ggaaatggtg ttccatgttg 80700 ccagtttctt tgaaaagctt acgttcttcc ttacgtcggg tgaaaatctc ccgaatgata 80760 gaaggaagca cgccaaccgg ctctttcctg taaaaccagc agatacccga cgggttgggc 80820 accataatga tatttcgact ttttaaaaat tgccggagtt cctcaaagct gttgatgaca 80880 aagaggggtt cactccggta agaagggttc atccctgaat cgaagatgta gaggggaaac 80940 ccgaattccg gttcttcctg atctaccgga atcactttgt tctccacccg catacacccg 81000 taaaactccg ttacgaacgt agcgggatcg atattgaatt tgctgattac agaggggtac 81060 agcgatgtaa aatcaagatc gaatacgttg aagtaaatat cggggttggt aagttcaatg 81120 taagcaccgc gataacgata cttgttgatg ttcatagcag aatacgtttg ttttacattg 81180 cgggatcaaa atgggtatct ttcacctcga taaggtaggt gtcttttaaa tcacatttgt 81240 ataatacgcc atcgagtgga gaaagatcaa taattctcaa aacttcatcc gtatagaatt 81300 ttcgctcgat aagattatgc gtttccagac gtttgcagta ctcgaagata gcgtctccaa 81360 caacatagct ttccaggtgc cagcaggcaa gcccatcata atgataaagc ccccaccaac 81420 catttgctct ttccctgacc actgcaggga taacccccag atcttcaaga aatgcttcaa 81480 gtttattttc atccatataa agcaaatcgc gtcgcattat gttttttccc cgctcctcaa 81540 gaaacgcatc aacatacatc cacccggttt catcccggat aagcttgcga agtgaagggt 81600 atgcctcaac cgatgtaaac ccggtcttca aatcggtaat aatatcccgc gaaaaccgca 81660 taacgaaata ataaggggtt tcgtagtcga taagtttttc aataatttta atgatttcgt 81720 acttcatggc taaaacgcta cttcatggct aatacgctac ggttagttta agtgtcgggt 81780 aaacctttcc attaactaat gccacgccca cccccccgta aatggatccg aaaaatctct 81840 tctggaaaga aaagtcgtaa taattgagcc ctacggaagc gctgataagg ttgtgcgttt 81900 ttctaacctt cagcgcaaaa tcttcctgca tgaaacgtcc ggtttccggg ttgaaaaacg 81960 ttacgcggag cgtgttgccc ttccacgtgg catatctttc cggaagaagc ccgtagagtt 82020 tcatgtccac cggcttcgga cactccaccg tgtcaatctt ccccacgggc gtctcccggt 82080 aaatgatctg tttgaccggc tgggcaaact tcccttcaac cttcaattct gaaggaaaaa 82140 ctctgtccga aagttccact ctgacttccg gtctgtaaac ggtgcggttg acgtaaagat 82200 gtatgttaac cgcgatcagg atcaaaagga gtgcttcttt ccagtacttc ataagtcttc 82260 ctcttcttgg aatttgtctt cttcgtctct gatcatagcg tatagaatga tcagatagtt 82320 aattgcgtca atgattctac cttcgacagc atcccgctgg tttttaaccc ctctgatcca 82380 gcgtgccacc cctcttaaat gtttatccag aaatacatac agcacttctt cccttgaaat 82440 acccaatcgc tttgcagttt cttcaaaatt ctgaaataca ttgtcggttt cggcatactc 82500 ctgttgggct tggagtcgga cacgatttac ttctccaata agctctttta caatgcgttc 82560 gaattttgtg gtattcatgg atttcctcca ttaagtttct ggtatttatc ttatttaaag 82620 aaaaagatga atactccccg caaaatattt cttaatccac ccacctcaag atccctacag 82680 gatattgaat acctttacct caccaacaaa cacatcatta ccggcgcgat aaataaagcc 82740 ggtatgagca ttgatgaagc ttgtgaatgt gttgtggggg ggatcgtgct cgaatataaa 82800 gaaacacacg gcatcaatat ttttgataat ctgactatgg cggtggagta tttcattaac 82860 aggtacaaag aggatttaaa aaccgggcgc atttaactca tcatcttttc gttgataaat 82920 tgaatgagtt cctgtacgga aggataaaac tgttcctcga aaatctggtg gtttgtcttt 82980 atcaattctt caagtttatc cacatccgcc ccgatctttt caaaaaaggt acgggcttcg 83040 gaaaacagtt cccctctggt ttcacattcg gtataaacca gaagaggaac cataacccgg 83100 tagaaaaatt cttccggtgc ttccctatca acatactctt caataagttt ctctgtaata 83160 ggaaccccgc acgcctcaaa cacgtcatcc tgcacggcga agtgaatgac gccgttatac 83220 aaaaggtgcc gcaaccgcac cttccacatc agggaagggt cggttacgaa ctcatacacc 83280 atttggagag cattctcgag aggaacctcc tttaacggaa gctcctcaat ttcttcttcg 83340 atcgggtaga agacgttctc ttctttggag aacttacgct ccggggtaat tataatccag 83400 agcgcttctt tgacctgagc agcgttcaag ttgcccatgt tgtacctcct tgtttttgtt 83460 agttacagat taaacaattt gctggttttc tcgaactcct cgaaccactg tttccggagt 83520 tcatccgaac ccctgtattt caggggcttg ctatcttctt taactttcga ttccggttca 83580 ggttgctcct gggtttcgag tttcagggga atttcaactt tccctttgag ttctttgagc 83640 ttgttctcaa tacccggcgg aacaatccga tttttgaaga ccagttccac cgctttgtta 83700 atcacttcat cagcggcttt acgggtgcgc tgataaatgg catcctgctg agcctctttg 83760 agtaaataca aagcgcggcg ttttagataa tcctcgctgg cgcatctctg catggtgaac 83820 tccagcgaac gtcggttgtg gatttcgctg ttagccataa ggctctccca ccacatatac 83880 tctttttcag aattgaggat ataagccccc ttgaatctga cataggtatc ctcatcaagc 83940 ttgaaccagt atgcatcata gaaactgtac ccccgcaagg aatcgtcaat aacgtacccc 84000 gcaaggggtt cgacaaaaac aagctccaga tcggctactg atagtacatc gatcatatag 84060 tcgcatcctt tgttcatagc gtctttgaat ttttctctaa tcatggcttt ttcctccttt 84120 ggtttatcgt taaacccacc aacgtcaaaa agagggagtt tgtttttcgg atggagacag 84180 aattcggagt ttttgggcat accccgcttc cagtgttcca cccagctatg acatacttcc 84240 tcaaacatat cggggtatgt ctctctgaac ttgggaatta cgtatcgata gaattcgata 84300 tcgtatttga atagcgcatt tcttataacc gtaggatctt tttccattgt gctctgtacg 84360 cggagatttc tatgaaaatc aagactctgg tacaggaaga aaaacgttgc gttcacaaca 84420 aaaagatatg ctgtaaactc gatccaacta aatgctctat attcggttgc aacagggtaa 84480 aatttgtaaa gccagtagcc cacgaaacca aacgccacaa ccttcaaagg ttcgtgtacc 84540 ttgttcacaa cacgcgggct gtaaagctta aaacccgaaa gcacgttgta cgtgccggta 84600 acgaaccacc tcccaatcca acacaaaccg atagaacccg atacaagaat ggtgatcatt 84660 gtctggctca tgtgggcgac ggcttcgtgg tgcccgagca taaacgggaa accaataaac 84720 cgcccgaata ttagcaagac cgggaatgac agaaggtccc cggttataat gcagacggcg 84780 gcaatgaatg caatccacgc aataccggcg gcaaacgtaa acgacagata aagggcgtcg 84840 ttaaacgctt ccgcctcctt gcgccacagc ttcaaattat ctccataata aaaccccaga 84900 accggaaccg ctacaagata gcgatccagc ccctccacca cttccttctt gctcaactca 84960 agttcgccct taccccactt gaggagctta tctcgataaa gcttgaaagc tgtaagggcg 85020 tactttcttg ttactccggc gtacatggct ttccgggttt gagttatcaa tctgcttata 85080 acatacgccg gaaatccaga aaagtcaagg ggattacgtt aattttttac gaagaagaag 85140 acgtgctacg tcgtcaaagt aaatggcggt tttagtggcg ttgagacgct tgactttgag 85200 cggtttataa agtctgttct tgataaaaaa cgaagctctg ataattttcc agacgtttac 85260 gtaaaaacta ctattctttt cgtaaaaaat gcagagggcg ataaaatcgt cagattgggg 85320 gttatagaca agccggtcat ttttctgaaa cacccaagac ctctctattc tggtgtatct 85380 atatctgggt acatcctcac aggttttaac atgtatatat ctaccctcgc atatcagatc 85440 agccgcatag gatttgtctg aagtgatagt cagatcgggt ggggtgcatt cataaccaag 85500 gttggtgaga tattcataaa cggcgaattc tcctatttta ccaacaaaat aattccattt 85560 tattctttcg gggttgtgct ggtggcgctt tttgtattgc tcaagcacaa tcccgtcgtt 85620 tatctgattc ttagcatatt ccatgcagat gggcacatac tgatctactt ttatcatctt 85680 acccaccctt acccaagagc gatacttgtg gacggattga taaggtacat caccgccgtt 85740 tcacggtaaa acgttgattt tgtgtaatgg atcccaagcg aagagacaaa gggagttccc 85800 ggataagcca tttgtgtgtt gtatctattg acaccgcttt tcggaaatgt atctgctaca 85860 atggaaaaga ccgcaccctc gcgctctgtt gctatacggt cgactgtaac ggtatccgga 85920 attggaattt caccatcgaa agatttgaac atactgaaag aaaattgctc aaaatgaggg 85980 attgactgag tcatctgaaa tgcgtagaaa ggtttacctt caattaccac tcccgcgaag 86040 aaattctctc cggcaaaaag ctgacgaagc aacaagatag cgtcgcgggt tttgtttacc 86100 acctcaagca tatcctgatt gcgggtttca ataacgtgta cattatcccc ctccgccaga 86160 tttctaacgc ggttggaaag atttcgctgc aaaaacacca cggcggaata aggagtatct 86220 tcgagttttt gaacagggtt ttcggtaatg atatgatccg gttgataaat cgagccttcg 86280 aaagcgttat ccgtaatgac tccgatatgt ctcagattgg attccatgta ggaaagcgtt 86340 gaaacataat aactgtaact gatcgtcgat gtggtaacct ctggaaacat gctgtaggtg 86400 tggttgtcaa tgagccacat tgagatagta ctgtcagatg tacctttcag gtagaaataa 86460 accgaagtgg aaataacagt aggcattacc atcatcatgt agctcatgct gtaaagctga 86520 tctattccgg ggaaaagcag cgtaatcact ttcccctgaa gcaccacatt gaacggaagc 86580 agcgaaagac cattttccaa atctctcatg tagcagacgc cgtggaaatt cagactatct 86640 acaacaaaac cggaattatc aataacattt acagaaactg aagttataag ctcgccgcga 86700 gatgtataga ccggatagtt aaaagccccg gttacataat aggggttggc gttgctgacg 86760 gtaatggaga aggtaataga atcgagaaag ctattggcgg taacttcata atattctcta 86820 atatccttat gttcattata gggaatgaac ccgtaaaacg taaaataatt attcaacaca 86880 atatcttccg gaggaatgtt ttgacttacc ggtataatgt gttccgtgat gtaatactga 86940 tcccccagaa acgcgtcatg aatgatcaca tcaaactgat aatctttatt tcgtaaatcc 87000 agcgattcag ccagcgtgtt taaccattta actttcattt tgcgattgaa ggcgtgatag 87060 gtaatacgat tgatctgatc gtgcagcgcg tcgaacgcat cgagaagttt tccggtaagc 87120 tgctcaagcg tttgagacgg gttctgagtt gtcggttcat tcaaaatatt tgtttccaca 87180 aactgaagat cattgcggaa gtagaaaaca tccatgatat tcccgatcat atccatatag 87240 gtgagatatg aaggatcgaa cacttcttca ggaagtcttg aagaaaggcg atacgggttg 87300 gatacgtcgt attcagtcgc agcataaagg tgcatatcaa gaagcacctg atacggattg 87360 acgcccggat aaattgaaga aaacgaagga aatacttctt cccagaaatg tatggggagc 87420 agataaaagg tacccggaag cgatgtcgag ttgtagtagt aatccagata tcccagcgcg 87480 taactctgac gaatggagtc gtctctaaag taatggttga tgtgcgttac gtcttccgaa 87540 gcaaaccatt taatgaatgg aaggaagcta tcgtagagtt tattttttat ttccttatat 87600 ttttcagcct tctccggata aaaacctgaa agcgtggtga taatctcatc atatttcctg 87660 agcagcgtga ttcctttgaa cgccgcctga atgagcgctt ctgctgaccc gaatttgaca 87720 aatccggaga gcagatggaa attggatttc tgctccatac ttccgaagct aaaagacggg 87780 atataggtgt tgattcgatt gtattcaatg tattccagta gatcgacggg actcctatct 87840 tcaaattcga gatgaaacac gttgttggca aacgcatctt ccctaccccc aatggcgctg 87900 aaggtaaccg tgtctgtttc cgtgagattt accggaatgg attcctgcaa atccacctga 87960 cgcacaagat acacttcttt tgtcgagtga aggagtgatg aagttccata tacataaaac 88020 gtttcctgat aataaaccgg ggtacccagt ttatgaatat tcccgtttac tttaaccaga 88080 atactgtagc tattctggat tcgagcggtt acttcagcgt aatagttgaa caggtcttca 88140 aaagtgatac tggtgctgat gtagttttca aaagcttcgt taatctggtt ttcaagttgt 88200 tctatggctt cgacggcaaa tgaaatggtg aggaatatct gattgagacc ggtttgcgca 88260 gaaaggtatt ctttcgaaag tggttcggct tcttcaagaa cttgctgata agcggaaatt 88320 tcattttgat aaaaattatt gaaaaactcc tgtacatcgt tgaaactgac ggtagaggtg 88380 agttccagcc gggaggttgt aaaactaaac gcctgctctt ctacgtagct gtaagttcct 88440 aattttttga aataagcgta gacgggatag gagtctacag agaaggtata aacaaacgga 88500 agcgaaatgg tgggtttttc aattccttca aaaacttcag ccggaacaga gtcaaccacc 88560 agatagacgt ttccacttct tacatacttg gaggttactt tgccaataaa atcaacggaa 88620 taaatgattt ccccggctga agaaccgctg aagtgttcaa tgtaaatgta aggatttgtg 88680 taggaaagag aatatggagt aaacccggct acaatttgag aacccgaaat aattataaaa 88740 tcttgcattc ctctttttct gttaaataat aacgcaataa gtcaagtgca tctttgggat 88800 agaaaggctg atagtctttc atggaatgtg gatattcgcc ccagtctttg taaccggcgg 88860 gaggaaacag aaaaccaact ttacatacgc cgctatagag ttccaacact ttagaaattt 88920 cttcaacgct tacatccgaa tcaaaacaga acaccagttc tttaaccttt aatttttgca 88980 caacgtagga atccggaata cgattctttc cacagagtac gcacattccc acacccaacc 89040 catccgttgc atggggaagc atatcgaaca ttccctcgaa cagataaatc tttccttttc 89100 gagccgcttc gtagaaatag accgggagct tacccaccat ataggaaaga taccgaacct 89160 tatcgaaagg ttgatagaat tgaacgtttc ctatggaatc accgaaggca acccgctttt 89220 catctaccac cttgaaaaat ccttttgacg acatatagct gagaagttcc ggttttaccc 89280 ggcgctcttc aatgatgtgt ttgataaccg gatattcgat attttcctct gaaagaggag 89340 ccgccttttt aaaaagcgag cggtagtaaa agtttttctt gacgtttgtc tgttcaacat 89400 ccgtaaaatc gatatcaccc gaattcttat aatatgaaat gagttcgaca ggtttaaatc 89460 cgaaaatgcg ctcgaagtct ctataaacgg tgcctgaaaa cccacaacgg aaacagatga 89520 aaagaggggc gtctatggaa aagtaaagcg tgagtcggcg gttgttttta tgcggggcgc 89580 acttagggca caaacaggct acttctttac cgcccccggc aactttagct tcgctgaagt 89640 atttggtgag gatttctaca atcatggttt tttctacaaa aactctaagg aatcacaatg 89700 gttcccggtg tagtaatcac aggatgattt aaagtaatgt tcacatcggt taccgttata 89760 tccggcggaa tcgttgaaat gtcaatcggg atatcgcagt atttgctctg agaaatctct 89820 acggcttcga cggttacgga aaaattgaaa tcatcgtcgg tatcgaatgc agccatgaaa 89880 aactgttcat cggtacgtac gttgacaatt tcataccatc ttctggattc cccaagcacc 89940 agatctcccg gttgtggaaa atagtcgaat tctttcagca cattcctaag aagatgaagt 90000 cggagtttcc gcaccgatcg cattccaacc tcctctgaag ccggttcccc aacctcatat 90060 tccacacgac aggggatccg gtacatttta tattctctaa tatctttctt aggagactct 90120 ccatacagat agtgcaatac gtcgttttcg tcatcttcca ccgcgttttc aataatacga 90180 acaaaaagga agttggcgtt gagaatatcc tcaagcgctt caagggcaaa atgctgaaga 90240 agattgagtt cccgtcttcc ccagaaaaga ggattacgct tttttatcat ttttatttaa 90300 ataacccctt ttcaattctc tccgttagaa gcttcttttc cgacttttgc attttctctt 90360 cgtcgccgtc aaggcgggca aaaaaccaac ttttatcatg ataatccata agtcgaagag 90420 cgaacctttt gcgaaactct ccggggtttt cttccggaga aacctgttcg gaaatctctt 90480 tataaatcgt atcaaaagat gactcaagct gatttcgcat atcggtataa atttctttga 90540 gtttcatcac ggtttcctgt tcatccgggg taagtacaaa atcatcaagt ttgttttcaa 90600 gaaaaagatc ggcgagcttc tcaggagtga ttgtagtttt aatccggtgg agctccagat 90660 ataccgggtg cttgatcttt gtgcggtaat aaacacgcgg ggcaatttcc tgtacggcta 90720 caaatccttc atataccacc tcataaccgt ctctcaggct tttgaaaagc ggtgtaactt 90780 cctcaaatag ttcctgaagg cgattggcac gaaaaagagt atagttttgc tcttgagaca 90840 gaacagccgg tagcttaaga tttatttttc cgccactttc gttgaaaatg cgtacggctt 90900 cttcggaggg acccacctcg aaatatccct tctccggatc caccgaacgc acaccgatca 90960 gaatgatatt tggctcctca taaggaacca ccactcgcgc gtccggatga accatttcaa 91020 atatgtaaca gtatgaggag ttcaaatgat agagaaggta aggcggatat ttcttttcaa 91080 aggtttccca gaacaattct cgatatgttt tatccatatg agtggtaacc attccgtttt 91140 tgacaatgga tccatttgcg tcaatactcc caagagtgtg aattttccac ccttcatcat 91200 aatataaaac cacacaagta ccatccagct tttcaaccag tttcatggga agtttgaaca 91260 tgaaaccggc tttgcgcttt tcattcaggg gagacgcgta acgaagcgtc tgataatagt 91320 ttacgatttc cggctggagt tcttcccccc agttgaaaaa tttgtcaaag ggataagaca 91380 gaactttcca accactatcc gttttgcgga gaatcgcccc gcgacaggca aggtgatata 91440 tcttatcaaa cttacaacca aggtgatatt tgaacatgta tagatcaccc cggtttttgc 91500 acataatccc ctccttgcga agggattcga cggctacttc cggagactca aaagagttca 91560 ggtgttcgat aaggtactca accgggtatt ttacgttcat cgattccata gcgtactata 91620 agtcttgttt tgagttttcg gaagcgtcgg ttgatcaggg agttcgtcta caacttcata 91680 gtttccggat aggaaaccgt agcaatcaca cacctccttc gtaaatctgt ttacgggaat 91740 tggttacaag tttttcagct acgcgcaaca ttttgttact ccacttttca accggggttt 91800 ccacaaggaa atgaccaata cgggtatcaa accggttgaa gcccacattg ttgcgctgag 91860 ccgcgcggtc tttatccagc gccgccacga tcgccagctt ctgctgaagc tccagcgcat 91920 aaccccgctc ttcctccgaa atggttttac tttcttcttc ctcctcccgc tgctgcttct 91980 gctcagacgt agtaatcaca tcgagcagag atacaggctt ctcaagttga gtcttcatac 92040 gctcatgatt gagtgccttt tcgataattt caatcttgcg cgtcaggtaa tcggcaaagt 92100 tttcatccag cgtatgacgc gcaacaatgt agtgaatatc cacacattcg gcttcctgac 92160 caatgcggtg gagacgatct tccgcctgca ggatattgcc gggtacccag tccaattcca 92220 caaacacggc ggtcttagca cgcgtcagcg taatgccgac accagccgcc agaatgctgc 92280 agagcaccac gtccacctta ccactctgaa aatcctccac cgccttttga cgctgcacca 92340 cattttcctc gccggtaatg cgggcgtagg taataccttt agcttcaagc accttctgaa 92400 tgatctcgaa cacatcatga tggtgtgcaa acacaaccaa cccgtccact tcttcctctt 92460 tcacaagaga aacaatatag tcagcagcga acggggcttt gtgaatggca taaaagcgcc 92520 gcatttctgc aacgcgctca aacataacct tcattttttc atcaaactcc gccattgcct 92580 cagccagatc agcgctttca accccaaccc gctcaaactc gcggagaacg gaaatataat 92640 ttttgagatt ctggagatct tcagccagct tgaaaatttc ttcttcagca aacatcttat 92700 taagttttac aggaacgatt ttacggcttt tcggcggaag ctccttgagc acatcttttt 92760 tcaagcgacg aatcatgata gtggagcgaa gctttccctg aagttcttca aggttacttg 92820 caccacgaaa atcccaacca tacccattat agtaagcgtt gcaataccgc ttggcgtagc 92880 cccagaaatt accaaacacc ttcggagccg ccatctcaag aatgggataa agctcaatcg 92940 gtctattgac gataggagta ccggtaagaa agagcacctt cccgccctgt tctatggaag 93000 atttgacaat agattttaca aacccggagc gcttcgtctt cgggtttttg atataatggc 93060 attcgtctac gatcacaaga tcgtaagcat aatcctcttc cgaaatgcgg tggagaatgt 93120 cataattgat aatgtaaatg gtgtttttca gagaaaaatc gacttcattg ccgttaacca 93180 caataatttc tttttcgtga accacccagc gcttcaattc ccgctcccag ttgtacttca 93240 gagaagcggg acacactacc agcacgcgat cggggttcat tacattgata accccggcgc 93300 tctgaattgt ttttccggta cccatttcgt ctgcaatgag agcacccgga tattctttaa 93360 aaacttcggt aacaaaatgc acccccgcct tctgaaatgg gaaataatca tatccggtag 93420 gtgcaggtac ggcaaaatcg ctgctggtga cgctgctgag ctcgagcttg tgattttttt 93480 cttccaggag aaggttgtac tgctgagcag ccttttcgtc gaaataacct ttcagtttac 93540 tcgcataatc gagaattgtc gtataccata ccctcttatc cggatcccac ttccacccgg 93600 catttttggg gatcagacgt tcttcgtagg ttcctttcca ctcgaaccgg ttgttgtaag 93660 taacgtagcc catgaccgcc ctgtctttgg ctgtcaatct gctgataata tacgacactg 93720 aacaagaaaa gtcaacccct tgacagaaat ttcaattaga agggaaacga aagttgaaca 93780 aacaggtgat tgaaatgctt ccgatagcgc gtcggaagat caaaggtgtc gtggataaac 93840 ttttcaaatt catctttttc accctctaaa acatcatcaa gccatagtct tcgacgttca 93900 aggctcccaa taatcgcctc aatcggatat gcttctataa aagcattacc gggataatca 93960 tctacaacac tcctcacaac ttcttcaatg tttgttgtat ctatcaatcc cctttccgta 94020 taatacacta tatgtggttc ttcgtttgat ccgtaatctg attctaagta tactataact 94080 tcatattcta ctatatcttt aacatactcg ataatacttt ctattccact ttcaaccatt 94140 tcctctactt tctcccccca ctcttcatca aaatgatcta aaatatcatc cgagttgatt 94200 attttttcta taagatcata gtttacattt tcaggtttaa ttgtgctgta aaaatattca 94260 aaacagccgg ttgtcgacat atttttataa agagaagcaa ctacatcggg atatgcttcg 94320 tgttccgccc atttaccaat atgttgtttg aaaagaaaat aggcgatacg ataagaacct 94380 ctgttggctc tccttttttc tatatcttct ggcaactcta tattaagata ttcatgaagg 94440 tctttaatac cctccgcttc ccccatatga tcaattgcga tatctacaaa ttgtcttatg 94500 agatcgacaa ccaccgaaag attgatatat tcctcgaatt tattcttctg ataaagcaca 94560 aatacctgca gggtttcagc gggaatataa acagtatcat aattataagc gaggacgctc 94620 cttacactgt ctaaagccat attaatataa tattcgattg catcttctga aggtgcaaga 94680 ttttctacca gatggggata tttttcagca atcacatcca gcatccgcgc cgcataagta 94740 gcatagggtt cttcgtcaat cggtaccatt gtattatcag gaaggtgaaa ttcctttccc 94800 ttaccaaatg tagcgattgc gtaaacaagt ccgtcatacg gattgctact atcggcttcg 94860 aaatctattc ccggtttgat cgccgaagga tgaaataccc ccacgaacaa gggataataa 94920 tagttgaaat gttgatcgcc aagtcccaca cacacatgaa tatgattacc aatcatcccg 94980 agaatacgtc tgttttccac cacattttgg gggtgatata tgatcataga attgtcttcg 95040 tagataatca aatccgcata ttctgtgtgc ataagctgac gaaacttctc ccacaatgcc 95100 agataagaag cccccacctc ttccactttt ccggcgcgtt gatatgcccc aacgactttt 95160 ccgggatcga gaagctgaag gttatccgta agatcaaatt ccctcaaaac ggagggttgg 95220 tgtcgcaccg aaaaatacca gcgaaatggc tcgatgtaaa gagggagatc gatcggatcg 95280 attttgtcgc tcatcaccat acgataaaaa tattcaacca gcgcatttgt cgagataagg 95340 ttatattcgg gattgttgcg aagcggctca aaaatagact gagcaacttt gtgaagaata 95400 tttccaaaaa ataaaatacg ctcccccgga tcacggggaa cttctccaag atttaattgc 95460 tgagccagaa acctgagttt gttttcggga agttttgcaa gtagttcttt acccctacgg 95520 gaccccggag caggaaaagt aaacgccatt tttttatttt aaataactac gccccaaaat 95580 ccacataaag atagcaaatt ttccagctat cctccatcga gatagtatat tttttatccc 95640 cctctttttt aatctgataa tcttccttac cgacataatg taaaaattgc cttataagtt 95700 gccacaacct atcatattcc tccgtttcat cagtgcaagc cagcttgtac tgataatcaa 95760 cgaaggacat atcgtttatt tcatcataaa aattgtcatt gccccccaca atgataactt 95820 ctggatcaaa tacaacccat tcgataaaat caagcataaa ctggcttaat tccggatttt 95880 taagaatata acgccagttc cagcgcgatt catgatcaca tcgatcaagc ctttctatca 95940 ccttataatc ttcattatat ctggcaagta gaaaacgtct catttcggca acgttcatat 96000 cgtagctcag attatctgaa atatcgttca acatctcccg aagtgcgtct ataaagagac 96060 gcttgatagg ctcgcgttca aacatcaatt ctacaaactt cacaaccaca caatccagtt 96120 ctctatgatt tttcagataa gcgtcaatgt atatatccga cgccgcgttg gcaatcagat 96180 agcacatctt agccagcggc gttttgcaga caaaaaattc ccacccgaaa tcgcaagggt 96240 aaaaatcctc cttcacctta tcaggataac ggctgataag gatggagtgg gaagacgatg 96300 aatttgtgga aagaccgaaa cgaatgaatg ctttcatgac ttcctccttt gtttgtcaat 96360 ggttacatag acaacgtaaa aaacaacggt aagaataaaa agaagtaaaa actttatgtt 96420 caaccagaag ggattctctc ctcttagcac cagcgctgca gggtttctca agtataatga 96480 aagataaacc aaatacagcg caagcgccag cgaaatagag cctatcagta ttttgaacac 96540 tttcatagtt ttttccagat gttgagaaaa gttaccggat cgaacagttt ttccctcgac 96600 accctgaaac ccttttcttt caaataggat cccggagcaa caagtgcttc cggctcactc 96660 atgtcgatgt agcaggaaaa aagtccttcc tgatcggtag tgctatgtgg aaattctctt 96720 ttgaacaccg ggtaagtttt aacaaaaagg gaatccaccg aaatggtgag ttctttcata 96780 aaatacttca ccgcttccag tgtcttgttt tctggaattg gtatgttatt ataagtttct 96840 cccctcccca ctttcttaaa accaagtagc agaagatggc tcccctctac ctgagaaagc 96900 atttgcatca tttcaatggt ttcttcaaag ggaacgctcc cccatacgtg ctgagccacc 96960 agttgcacat tggggggctt ctgattcaga agatcgatat acgactccac cgatttcaaa 97020 ccatgcacgc tgaaacctat cccaaaaagc cgattcggaa aataatgccg gtagaacttc 97080 ataagctttc gggcaaacga agcattgaag gtggttacgt taacataacc ccggctgaac 97140 gttttgacaa tgcgatataa ctcttccaga aatctcccct tccagaaaaa gcaggggtct 97200 ccacccccta tgctgagttc gtaggtaccc atttcgttta acattcgtgc gaaccggatc 97260 atgtcacccg gatcacactc tgatccctcc ggggtggagt tttcataaca gaaagcacac 97320 ccaaaattac acacgttgga gggtttgaca tcaacgatat gcggcacctg agtcttaaac 97380 atgattacct ctgagttttg ttttcggtgc gtatgttttc cacaaaaact acataggctg 97440 aaaatacacc aagaataaaa atctgagcaa accccacaac ccccgttttt ggatttactt 97500 ccgcttttac ttcaaaaacg atacatatga ttcaaaggtc tttgattttc ggaatttctt 97560 cacaaactgc tcaagggctt cgtaaacgtc ggggcgaacc aagttcttct ccttcgtgaa 97620 caccacccgc cttgactccc agtcaacccc gaagttaaaa aagttattaa ggctgacaca 97680 aagcgaagtg aggggaaact catatatttt tacaatttcc ccatttctgt ctataagcac 97740 cgaataatat cctctaaaag cgtcgcacag gttgcgcaca gtctccagaa aatccgaaac 97800 cggcgcaaag tcttcaagca catagcaggt tagttgaacg gctttttctt cattcaggtg 97860 cgttacggaa tacattaccg gcttgactac catacttcct ccgttttttt gaccggaaaa 97920 ccgaatcaaa acaccagagt tccattccac acaatactaa ttaccagtat ttaattccct 97980 gttatttcac ataccctctg gatcattctg ttttctttct tatatattcc attgtcagtt 98040 gaaaccaaac agatgagcca tgccgaactt cattacaaac atcaggaatt cccgttttaa 98100 ggaagttctg accgaaatgt accattgcca tcacgaaagc gagtaccacc ttgagggaaa 98160 tgttttaaat cacacgctta tggtattgca ggtggtagat aagataaccg ctgatcaccg 98220 ggagcaaact aatctatcct taaccgccct tcttcatgat agtgggaaac cctatacccg 98280 tgttgtcgaa aggggaagag taatgttccc cggtcatgaa ggggtgtcta cgtatatcgc 98340 tcctcttctg ctgtgtgaag tattgaggga ttccctcatc acaccaaaag acgccattca 98400 aatcctttac ggcgtcaatt accatatgtt gcactggaaa aatccaaacc tttttatgcg 98460 gcttttcacc gaaatggtta attatacctg tttatataac ttcttgaaaa aattcaatca 98520 gtgtgatcta aagggtaggg tttctacaaa accccaaaag caggaattcc ccgtaatcca 98580 ttattttgag aataccccga tcggtactgt tgagcgccat gtttatttta tgatcggggt 98640 tccggggagt ggaaagagca cgtttcttca gaaagttgga gagggggcga ttgtatcccg 98700 tgatgaaatc atgatggaat acgccgctga aatagggatc acaggagact acaatactgt 98760 tttccgggag attcacaaca accctatgca taaaaccaag gtcaacaacc gctacatgaa 98820 cgctttccgt aaggcggttg aagagaatga aaaggtattt gtagacgcaa ccaacatgag 98880 ttataagagc cggagacgtt tttacaatgc gcttcggcgg gatattgcgg aaaccgtggg 98940 ttaccattat atcgtaatgc ttcccgatta ttttacgtgc attgaacgcg ccgaaaatcg 99000 ggaaggaaag tcgatttcaa gggaagtggt aaccgatatt gcgcggagtc tgcttcttcc 99060 gtgcagggaa catcccaaca gcattgatac gacaatttat atgtctgatg ggcatgatga 99120 acatgtgttg agagtagctt ggtagttttt aagattcgac gatgctcccc ctgctcaagc 99180 ggggggattt tttatttaat caaaaagtgg aacctttaga gaaactactt gccgttctca 99240 aaaagcttga agcgtttgag gaatatcttt caaagataga tcttggaacg ctggatcagg 99300 tgattacccg gcttagaaag ctccgggaat ccaacgaaaa actgtacaaa gactatcttg 99360 aagaacttga aaagcttttc agcaccaatc aggaaacgct cgaaaagctg gtagacgccc 99420 tttcggagtt tacggaagag gaaaaggaaa aacttgaaaa tttccttgag acgcaccaga 99480 aagacgccgc acgacttctt ggatatattg acgtttttga agcgtcgtgg aaacacatga 99540 gcgccgaaca acgggcggca tttgaatcct ttatcgacag actcagagaa cttcgtagaa 99600 acctcaatct cgatcgattc aagacggaaa cagcattcga tgttttcgac aaagcacgaa 99660 gagaccttgg ggtgccttat gaatatatca atcggtttgc attagacttt atcagatttc 99720 gccagcgatc agaaattttc ttcaaacaga tcatggcatt tttcacctat gaaagggtga 99780 caaggtatac cgcttatgga atggcaatta atctggtaca gggggcgctt gaacgctaca 99840 ttgaaactac tgatgaagtg atcagagtta ccggtattta caaccggctg cttagggatc 99900 aggcgcttca gttttaccgc gcaaatattg atctgagacg cttcggtgtt cagctccggg 99960 atactacccg ctttattgcc gaattttatg catttacgcg cacgcgcgat ccgttcgcgt 100020 tgatagctca gacagcagcg ggtgctggag acaacatcga cggattcatg cgtcagatga 100080 ttctcttgaa tcagcgcctg aatattgaca gccgcacgct aacacgtaac atgctacttg 100140 cagctaccac gctggaagat aatatcatgc aacatattca gcttatcact gcttttgcaa 100200 atgaagcaaa tttgagcgct accgaactgg tcagcgatct tgttgaaagt tattcagaat 100260 ttgtcgtgct gcttggaagc ggggcgcgtc agatcacgca aactcagatt gcactggcgc 100320 ggtggaatat gtcgctcaga gacggcatga atattctgaa aggtctctat caatctcagg 100380 aatcggtgat cgactcgctc attcagattc agattctctc gcgccagccg gttgatttcg 100440 aacgcttctt tggagccatg ctcaccggcg acattgaagg aatcgtcgat cagcttgcgg 100500 aaatggcaat gcagatgcgg ggcatgatgg atgaactccc catttatcgt atgcagtttg 100560 agcgggcact tgaagggttg ggcttaacct ccgagcagat cgcaacgatt cttggaaagt 100620 ccagagagca gcttacaggg ttcggcacta tcgtggaaga tttccgccgg aagctttcac 100680 ctgaaatgct tatccagact tttgatgaac ttctgagacc caacgaatgg gaagaattga 100740 agaatgcggt ggatgcattc ttcgagacgt ttatgcttta cggcgctgaa ctcattcgca 100800 acatgattcc ggtgcttaga attctgacac agggaatgca attgatgttc aagtggtctc 100860 aggctatgac cgatcttatc gataaggttg gtagccttgg tggattgttg aaagacaacg 100920 ttcttggaga tttcttcaaa agcattttcg cgtttcttgg acccggtgcc gcgctttacg 100980 ctattgcgaa tatcggaaag cttggaactg cactcaagat gttatttgat ttaatcattt 101040 ccattcctcg ccgcattggg ggaggggttg taaaccgtat tggttccttt ttcagtcgtc 101100 ttggagatgt gttcaagaag ttcttcggta gccgggaaat gaaacaggtt gcggaggatg 101160 caacttcaag aagaggaatt ctccgtcgaa tcaccggtgg agtcaaagat tttaccaaaa 101220 acctctttca aagcttttcg cttggatcga tcgttcgttt tacagcagcg gtgggggtgc 101280 tggttggtgg tatttatctt ttcggaaaag ctgtgaaatc acttcaggga atcgactggg 101340 gtgagacttc gaaaggattg cttgccttct ttggagcgct taccactacg gtagggttga 101400 tcagtcttgg tggtcttctt tcacttcccg cacttcttac cggtcttgca gcttccatag 101460 gcgctattgc cgtggtggcg ggcggtctct atctcaccgg tgaagctatg ggagtgtttg 101520 ccagcaacct tcagagactt gcttccacgc tggaaaccta ccccaatctg acttccggta 101580 tattccgtct ggctggagca cttggtacgc ttggtgccgt cggtacgatt gctgctccgg 101640 gcatgctggt tggagctatt accgaagccg taagtgcggc gatcaaaccc gatgtggctg 101700 taaaagccat tatcgatcca gatgtaatta ccgccggaga aaaactgatc gcaaacaaac 101760 ttgaccggat tattgcgctg cttacggaaa tgcaaaatag aacggagcca agagtggtta 101820 cgctgaataa gccggaaaag ccggttgaaa aaccaatctt cagcacattt aacttttaat 101880 cttcatcctt ttcttctccc tttttccaga ccggatgata ccagtcgttt tctttcatca 101940 ggttgatgta aaatacatat ttataatttt caaatttttc attcatgcga agcttataga 102000 gataatcatc tttgaacttt tggataggta ttcttcctcc aacataaagc agaccacctt 102060 ttcccaccac aaagaacata tcttcgggga aacgtttgat ctgaagcact tcgatcacat 102120 cgtcaatggt aaaaaacttg tatgcggttt ctttggatgc gttgtaaatg taataatgat 102180 gcgcaacgtt ggattttctg ttatccgtaa tcatagaagt ttctgcttaa gtagctaaat 102240 atcactatta aataaccgga tttgatattt aaagaaaaag atgaaattaa ccgatctcag 102300 aaataaagtt acaaacgcat ataaccagat ttccaagcag aaccgcgagt taatcgccgc 102360 caaacttcgt aaagactcca gtgccaccat ttacttcggg gctgctgtcg aaaaacttga 102420 cgacgctacg atcaaagaac gtatgatcga cgtttttgcc acgatcattg ctcaggcgta 102480 tgatcgcgcg atttccttgc gcaaaggaaa accgacacat ctaccctccc ctcagtcaat 102540 ggtacttacg ctggcaagat tttacgtgga aaatgaagac attacgctca gcaaacttaa 102600 cgaaatttcc attgcgctgg gctggtatat cgcgctggta aacgaaccga atttgcttca 102660 aaaatacaac ctccccaaac agatcacgga acttgagccg gagcagcttc tgcacactta 102720 caaccagatc gcaagatatt ccgacaccta tcaggtggaa ctggtaaatc gctataaaga 102780 aattatcgat ttcctgacgc aaaacggtga agagttctgg gaaaaagaat acggggttat 102840 tttcaaacct tcctcttacg aaatcaacgc caaagtgctt cagcttgcct ccgatcgtct 102900 ttttatctgc accgcactta accctatttt ccacgacacc tattatcctt actatgtgct 102960 tgtagtcaac ccggcttaca agggagacgg caatgttcac tatatcaaag acggcgtcaa 103020 gggatattca ggtatggagt tttatcttgc caccttctcc gacaaacacc cctaccagaa 103080 gggattattt gctcagtttc gtagccagta taatatcgcc acccctctca gctttatcga 103140 aagcagactg tatctggggg attttatgga gtttttgtgg aaacgtaaag atcttcagcc 103200 gcatatctct aaactcataa acctttacaa acaacacccg gcttatcttt tcgatgagaa 103260 cgcaatgaaa aggtttgtgg aaaatgagct tttcgatttc aaaaatatca acgactcacc 103320 cggcgcacgc gaagccgtag cttattttta ttccaagatc gacaaccgtt cttttatcga 103380 ggggctgact ccgctgatcg gagccgccgt tgaaacggtt atggaatcgg gagaagaccc 103440 caattacaaa aatgtacttc cggtgctggt agagcttatg gtcaaaaaca actacgctat 103500 gaaaaagatt gaagaagctg taatcgaagc ggtgcataga aaagcggaaa acattctcaa 103560 attcaccccg gaagaccata tcagatatat ggcaattcat ttcgctcata aaaatattcc 103620 ttcaaattct gaagaagaag gaagagattt tgccgaacag atttattata acataatcag 103680 acctcagatt acaggcacct caccgtatgc tattatgttt aaacgtttta tatattcaat 103740 cattcttgcc gaaatgaaag gtattctcaa aaacaagata aatcaggtgg ttaaagaaat 103800 ggaagaagaa ttcgggtttg gagacatttc ccttgccgat ttcgactggg ggggcggtga 103860 agaagacgaa gattcgttcg aaatggaact ttaactggaa gtgtacaccg tttctccgac 103920 gatatagaga cgctgtccac gagatgttct tgaaacctga aaggtggcat tgtaaatgtc 103980 gtgatcttca accacttctt caagcttttt cttaatatct cgataaagaa atgacttttc 104040 atccacgtag aagaagtaca tccacgtctg atactcttct ccccccattt tttccgaaga 104100 gtgatcttcc tgatacaggt gaaatccgta atcctttaaa ataggtatat gttttttgat 104160 ggcgtcggat gaagcctcgc ttccgtcata aaataccttg agaatcatat tctccattcc 104220 ggtggaagga atgacaactt tcccttcttc cgtatacgca ccctgaatgg caataagcag 104280 cagccccgga gatatttcat caaagaactg gtaggtatcc tcgacggcgc gaatatcggt 104340 aatcaatgta atcttggttt tacctttttt gacaaggttg cgaagggcaa aaatggaaag 104400 gaaaacaacc gcttcgagaa cctgatccgg agacaaatct tccgatcttc ttatgcttaa 104460 gaaatactcc cggtggtagt ctctcagacg aaatctcaga tcttcctctt tcctcaaaac 104520 cctcgcaatg cgacggtctg tttcaacaat gaagtcggta tgcgttattt ttttctccca 104580 ttctccgtcg aaaaattcta catcgtaaac aataaaacct atcgtgttgt agtggtagtt 104640 gatttctact tcgattcccc atgaactatc aggcgcacga aacagaaagt ttcgcggggt 104700 aagcttccac ttctccagaa ccgcgctttg aaaattgacg aagtttgtaa tgattttcct 104760 gagtgcattc ctcagttcac tcataaatag cgataaagag ttttctcaac cgtttccaat 104820 atctgaagcg actgtttggt tccaaatcga gattcctgaa gcactcttgc actttgaaaa 104880 gaaggaacgg ctacaacatc tatcgctgtg ataaagaagt cgtcaacaat ttctacccgt 104940 ttttgctggc ggtaacctac tttggtttta ccgctcccac gaagggaaaa cccgaaattg 105000 ataccgtttt caagaagcga tttgaccaga tttccgtaag gagttgggag aatgcggaat 105060 tttccgtaca ctttatttcc ttccatccat acgtctaccc actgcacggc aaggcgctca 105120 agcgacacga acccgattcg aaaatcgttc tggtaggggt gatccagctc gccgtacatc 105180 tgaccctttt caatctcctg cttcatacgc tccactgctt tttttacggc ttccggcgtg 105240 tagagtgtac cattgtcgga aatgacgtcg gcttccataa tcagagccgt ataagtttta 105300 tcgttaactt ccatagcggt tattcttcag ttttattgtt ttcttcttcc tttttgtctt 105360 cggcgtacag gaaaacggct tccaccgaag gaagcatttc gcgaagccgc gcaagcacat 105420 cggtaagcgc aaccagcttg gaaacacttc cgcgagaagc ttcgatcgtg ttgataagct 105480 cgcgaatgta attgcgatag ttttcatcca gcgtaatctt gtcaatgatc tcttcgatca 105540 tttcacacaa ttcctcgctc acgcgggcaa tatccttttc cagttcttcc gtgatttttt 105600 cggcttcttt caccctcttt tcttcgggga tttcataact attctgatcg ttttcctcct 105660 ccattaacac cttttcctct tcatctttct tgtcctgctt gacatcttta cggatttttt 105720 ccacatcacg gctggagtaa cctaccggcg cgtcataccc cgcaatgtcg ccggtggtgg 105780 tcatctcctc gatctgtttc aacgccgatt cataaaggtg cgagaggatt gccgccactt 105840 tagcaggttt ccttgcgctc aggaaaagct cagccacacc agccgcgcga taaatgcggg 105900 gatcgatacg ggtttcgtaa acttttgaaa gctgtttttc tccaatgatc ttttccagcg 105960 cttcatggaa accgttgtac tggcgctttt tgcggtattc gtggacgaaa tagggaaccc 106020 tttcatattc ctgatctatg caggcttcga caattttggt aatgtaataa acatcgtcag 106080 attccacgaa attcatcaat tcacttgcgg aagccgactc cagcaatttc ttgtcttccg 106140 aagaagcctt catgaactgg aatagaagga ttatatcctt ctgcttcata acaacctttt 106200 ttttcttaaa taaataaaat cgaaggagaa ttaaacaact acggtattat aaccccatcc 106260 accgatatag ttgtaattgt ggctggtttt atatacgggt aacagtcatg aaatactctg 106320 tttctgatgt ggcgaatttg ttcttgtgtc atatcacccg gtattagagt ggaattcaga 106380 taggctgcat ctttagttat tgctatgtga tacaaaaggg gcgccatttc actgtaagtg 106440 tgtgtatctc taaatataag tctattattc aaataaaatg aaacagtaag atcattacta 106500 agagggtcca tttcataatg aaattcatgg aacacaaaat aagaccggtt tggattataa 106560 aatccccatt cagatactgt tatactatga gttactttct ttgttaaaaa tggggtaact 106620 atagtcgaat aagttactcg aatacccaga ttcccggaag ataatgtaga ataatatatt 106680 gaaataatat tttcaccact taaaattcta cctatgtaac taacatctac attgaacacc 106740 gaagagtcat ctgcataacc gtcaagaaat attgtctgaa ataaatggaa tttttctttt 106800 ttaccattta taaaaagttc gatattgttt acagttcccc aataatccaa atcgtaaaaa 106860 agactaaaag aataattggg gaaatgactc tgatacgccg cttgactacc accagcatag 106920 ctatctgcaa tataaaattg attccatcta cttatagctc cataattgat atttgccctg 106980 gcaataaaag cattatgacc aaaatcatag aaaaaagaag aattaaaaaa ctttgttcta 107040 actgattggg taccatttat tccatctgta tattcggtta ctatataata gcccgaaccc 107100 gtttcaatag tggggtgatc tgttttgatt aaataatata catctctgac gctcatactc 107160 cctttatatc ccccagctac cagatattga ttggaaactg aaaccgtcaa ccagtcgggt 107220 aaaaagggtg taacatcaac accatttata gccgaaacat aagtgttcaa gacactgatg 107280 ttatcttgat ccgggtcaaa taacgaaaat gaaatggtaa catagccgtt tgcatccggg 107340 gtatataaaa tctggtatgc cataacttaa atgtttttta ttaaatatta caagctgtaa 107400 atgaagactg cagccgcaac cgaagaagta aacctgtcaa gtctgaacaa ttcgtaaata 107460 aatttaatat tatcacttcc ggcaactccg ctgtatgaaa acaccccctg tctgcgtgtg 107520 atgatattgt cggtaagcat ataaacatac atgctgttgg taacataagg agggaaacca 107580 tctggattga tccaattgac aacatagcta tgggtttctc ccggagcaat tgatgaagag 107640 ggataagtgt acaccgtaga gttagtaaca aactcaaaat aagatgtact gttatacgta 107700 tcgggtgtgg aaccgctcaa tgtataaaat agagaaaaag tgttgttaat atgagacata 107760 attgaaaggg taaacgaaaa tgtatacggt tgtgtcgaaa gagtccccat taaagacgga 107820 taatcaacag atcgactgct cagtatgttg aatgacttac cttcatataa cagcatattg 107880 tacttatact tatgataata atattttcga atcatagaga ctgtaggagc cgggagagaa 107940 gtactaaaaa cagcgatttc gtaaaattta aaagcagggt ctccagcatg atctctgata 108000 agcaatctgt taatatctcg ccttgtgtct gtattatact tttcaccaac aaaaactccg 108060 ttgatataaa atgatgttgt agaattgtta tgagacactt caaaaagaag aggataagat 108120 aatacatctg agtaagaaaa ctccagacca tagccactac acgtatatgc ggtgctccca 108180 acagaagaac cgctatcaag actgaaaagc actacattta gtttattgtt gttgtttaca 108240 aaccctgttc ctataaagcg gttgttgtct gtactggtat ttaacatcat cacatccata 108300 aactgggaaa tgctatgtag cattgcagga gcaaaaacca taaaaacatg gaatggtgaa 108360 tctgggttat tgtctaacag attaacacta aatgtgttgt tataattata actatttata 108420 tggctggcaa gataagaata gcctttgtcc cagtaataat gccaaccttg ccctgttgaa 108480 tataaagata catggcgatt acccgttaaa gacggtaaaa cagaaatggt tggggtatat 108540 ccactttgtg ttatagttat atactcgaca ctccaaattt cacttaaact actcaaagaa 108600 acaatttcaa aattggaagt aaaaagagac agattataaa actttacgtt attatcaaaa 108660 tacacataaa cacccatatc atacacactt tcaagggaaa aagacgggtg tgtatggtca 108720 aaagatattg taacatcaat gacacttctg gtgccgatgt aatataaaga actggtaaca 108780 accgtaaacc agggcggtgt aacagaaaaa gatatattat tttctttcaa tatggaagca 108840 cttactgaaa agggtattcc ataatcatct ttcactgaaa aggtgataat gatggagtta 108900 ctgcttatta tgtaatctct gttcatctca ttctttaaaa tttaaacctt aaataatcaa 108960 gatcaacttc gggggttgtg gttggataac ttttattggc tgctttaagc tcccatttaa 109020 acccggcatt agaaaatggt ggaacttgag aatatgtatc aaacggataa tttgccgcct 109080 tgagttccca tttaaacccg gcattagaaa atggtggaac ttgagaatat gtatcaaacg 109140 gataatttgc cgccttgagt tcccatttaa acccggcatt agaaaatggt ggaacttgag 109200 aatatgtatc atatggtatt tcagatgata caagttgggt gttaagagca gcggaagggg 109260 ttaaccctaa actctggaag gaatttttca tagaagaatt gctattagtc agataaacgt 109320 tactaacagg cacataattt accaccggag caatctgtct gacaaatttt gataccgctc 109380 caataaacga cacgcttaca ctcgatttgg gagatttgaa aagtccccat gcacttccgg 109440 ttaccgctga aaagaaaagg agattgaccg gctcattcca gacgttttcc caatcgactt 109500 ccagcgcacc catttgagga gatgagtaga aagtcagatt gttacccgta cttttgagaa 109560 caacgtttgc tccggatgac gtcagataga aatactgagt agatgtagag acatatactg 109620 agaagtaaga aagataactt accgtcagaa atcctgaatt aattgggttg aagaaatagg 109680 gtgatgtggt tgtataactg gcatatttca aataaggtgt attatccgtg taatacagaa 109740 cacttgtcga ataattcaaa tccatgaaaa tgcttgccgt tccgaaaaag tcggagaagg 109800 tgactaaata gggtgatttc cgaaccatgt atgttccatt atcagccgaa acgataaaaa 109860 cagattttgt tatatcgtaa agtaatgcgt tgaatgtggt gctaccctga ttggaaaatg 109920 ttatataatc ttcaatatat ccgccgccaa ggaaaagacg tttgattgag acggtttcgg 109980 tgctggatgt cgtgtaataa tccaaccaga acacatcata tccccatgca gctaccccac 110040 cgtattgaat gctggtggtg gtaacctgtt tataacttcc actggaatcc aggagtccca 110100 cttctccgga agatccatcg tgcagattga gaaagagtgc gggagattga tcgtaaaaga 110160 atccaagcga tacgattata tccgaagggg tagtaatatc cgggaagtaa agagagatat 110220 tcgggtctgt agttgtaatg ttcgggaaat acagttctat attaacgtcg gatgtagtaa 110280 tcggaggcgg ttcacttggg gatgggggcg gaggaggaac atacgaataa gaggggatca 110340 gaatcttctg cacgaaaaca taagcttcat ccagcttgat cggttgagaa aacttcgata 110400 caaacaccac gtccccattc tgattcattc catagattcc gctgacataa ggagaaaccc 110460 ccggaacagc cgtgggattg gtggtaaagt ttttggctac aaattcggca acgagaagct 110520 tcagaggctg caattcataa agcgtaaggg taaagaaaag cggggaaata gccggtactt 110580 tctttcccac aaccacaaac gattcatttc gaacaaggat aaaatccggg tgatcataat 110640 aactgtcatt cacaagcgag ataggatttc ctccatacgt aatggaatgt atgtgatagt 110700 actgtcgctt gattctcaca atttcaaaag tgagcgcatc aaaatcgata ttcagcttac 110760 gaaaaagatc gataaaaagc gcacgaatct gagctttgag ttgatcatcc ggggcaattt 110820 ccagttttat attatcattt tcgtagctac cgggagaagg gaaaccaaca acttcggtga 110880 atacttttat atcggtttta taaaaatcct tcgctctcat tttatacttg atgttcttct 110940 ctattaaata agaaaagttt attcaggggc tacctttgat aatattccct gtacacccag 111000 ccggtaaacc caaggtccag aagtttggga atatcccctt ctcttcccca ctgctttttc 111060 tgaaatacat cccccacgtt cagatcaaaa ctcataaccg gatcctgtaa atcttcaatg 111120 taacggctgg cgaaaccgtt atctctgatc ctcaaaattt cttcatcggt tatctgatca 111180 tgaggaagat cataaagctc tatcagctta cgacaggatt gaatatagcg gttatcttca 111240 taaaaattag gcggatgtgg gttaatccag ccggataaaa tatcggaata aaccttaccg 111300 gcaatcagtt cgtgagcttt gtttttcata tcgggttcga gaatatccag aagtatataa 111360 agctcttgat aggttttaac cggctcataa tacctgagta tggaagcgat cgccattctg 111420 gtttttgtgt tctcataaaa agcatggagt tccggtagaa tatactccgc cgaagaatgt 111480 cttattatat ccacttccgc catattctga gccataccct tttgattgta tgcaattttt 111540 ataacataag gagttccaac tatgcgataa accttacgag aagaaccacc tcctatatac 111600 tccacagaag gcaattcatc catcaaagct ttaagtgctc tgaaggaaag atgattgttc 111660 agcaactctt caaaatactc aaataaatcc tgatctaacg atatgttgta accgtaaaca 111720 attttctctt tcattacttc ttcttattgt ttttctccgt tcgcttaaga taagcgcgag 111780 ccgatttgaa aacccgttta ttactggtat ttgctgcaaa attgatcatt ttcatagccc 111840 gatctctacc cacttttctg ataagggcac gcgccagcga ttcacccgac ttgtacacat 111900 catcaatatc tttgtctttg gggattccaa gcacttcatg cattttcccg cgcttgactt 111960 taccgctttt gaatgcttat tgaatccact tttcttcctt tttagcctca gccagtttac 112020 gtttcttgag ttccttgata tacttcagag cgcggtcata aatattgtgt tcagggttga 112080 cgttggcggc aaaaaccaac atccccacgg cttctttgta cgaaactttc ttcaggagat 112140 cacgcaccaa tttgcggtga tctttgtaat gatcgacaat atcttcatct tcggggattc 112200 caagcacttc cttcatgtgc ccggcttcac gcttgacctt gctcacccag tctttttccc 112260 gcgcttctgc aacggtttcc ccaccttcat ccagaagtgc aatagcttcc gtatagaaga 112320 aagaatcccc ctccgtttct tccagaacgc gcaacgcttc tttcagaagc tccttgtgtt 112380 caatatgcat acgctttgcc attttcaaca aatctttgac aaaagaccgg gcatcataac 112440 cgtaatactt ggcgacagaa acgacggaag gaactccaag atacttacgc aacttcattg 112500 ctatgcgttc agccgttgcc tctggattac ccatcttttg aatgagttct tcgcgggtga 112560 cattttcggt cagcagtttc tggcgaaatt cgttaagctt ggttctggtc tcctgcaaaa 112620 gccgcgcaac acggagaatt tcctttcggt tcatatctta ttctcctttt cttttaatta 112680 aagaaaaata aagactctat gaaaacagaa gacagaaaaa aacttgctca ggaaatcctc 112740 gacaaaatcg taaacaaagc catgcagctt gaaacgttga ttgacgatga atacaactat 112800 ctcaacagaa ccagtgtgct ggttgaagag gagagcaatc tgatgtcggc aaaggctcga 112860 atgcttgagc tacatattaa gattctcgac acgctgcaga aagtgtataa agatctgaaa 112920 gaagggattc aggaagaaga cgaaacggaa aagattctca tggagattat caatcagagc 112980 aaggctaacc tgtgaaaaca ggtagttcat tcaatttttt agctatattg attccctgag 113040 ctatcacctg atccatgttg taatagttat aagtagccag tctacccacc agtataatcc 113100 catggcactc cagttcgttc ttcatagaag ccgccttttc tctgtaggtt ttcttgttaa 113160 tcggataggc tttgaacgaa ttttcctgag gatgttgaga gggatactct atggtataaa 113220 ccctgtcaag attcagcctg gagtgatcga taacgcgggt aaagggttct ctatcagagg 113280 aaagatgaaa tccgatggat tcgagcgtac tccactcttt cagtttgcga agcacatagg 113340 gatcggaaga tataccttca agtttttctc tggtttcaat tctgagatga atgtaaggga 113400 gatgttcttc tttacctgtt actctctggt aaagcctatc aaggtccccg gtataaataa 113460 aagggttatt ttttatgtcg tttagatgat caagcgcgtc ttcggaataa actatattga 113520 ctaccggcac ataatttctg atataatcaa tcatccgtat aatcattttc cagtaaccat 113580 caaccgggag cgccaccatt ttatcgtcaa aataagagtg atatcttttc cagtcggtaa 113640 agaagggaac gcgggaagct accgttttta ccatctcttc atcccagtaa tctccccaca 113700 ccttttttga gtaaggggca taccagtttt catagacgaa agatttaagc ggttccggga 113760 gattgcctac cggaattttt ctgttaagaa gttcttcttc cagctcaatt tctccaagat 113820 acagccgcac ccagaaaaga gatgaaggaa taaatgaaca tatatcattt tcggtaacag 113880 cataggcatt gtaactgata gagtaaaagg aagagaatcg cgacacaaat ttgatcactt 113940 cgggggaatt ggtatgaaag atatgaaccc cgtatcggtg atattttttc ccccggtcaa 114000 aatcccagac gttcccaccg gggtggttgc gcttttcaaa aaaagtaatc tcttcaaatc 114060 tgaagccacg atcaaggaga gaaataacgg tgctgagtgc cgcaagacct gttcccccta 114120 caaacaaccg tttcataatt ttctgacctc cgggtctctt agcacttgag gaaacatacc 114180 ctgtacctgc tttccgacaa aataatccat gttgacgcgc cgaacggaga atatccgaga 114240 aggtctgtac atatgtgcgt gagataaata cggaagcgtg gcatatctcc acttgaacgc 114300 atgtgccaca tggattaaaa aagtttccgt gtgggttgga agataatcgt aatactttct 114360 cagagattcg agataatacc tgttaataac gtgccccccg tcaagatgca tgaaaacgcc 114420 gcgcttgtgc agtttgtttg aagtgaaata attgtagaca taatcggcat attcattaaa 114480 aagctttaca tcgaaataat cgagaaaatg ttcttctctg ataacaatct ctctccagtc 114540 tttttttgcg aaagtctcca cataacatgc ggcggcgtaa atgtaatatc cctcaggggt 114600 ttttaacctt tcatcggcaa gatgatcggg aagctcaatt cgctcatacg gatctttgaa 114660 aggtgtttcg ttttgatagg gaacaacccc gtaaggttct accatgttgg agcaaatcat 114720 aaaatattta tcgaaacacc cctcctcgaa tgctttatcc aaccctttca gatatgccgg 114780 gggaatataa acatcgtcgt gcacaaacac cccggcttct acaccaagaa gaccaagtgc 114840 gtcaataaat gcagcaaact gagagtactg aatttcatct acaagaaaaa cattaagttt 114900 gtgatgttcc agttgatttt taagccacga tctccaaact tctttatctt ttaccggttg 114960 aaggttgaaa tgctggagca atttataatc cgggtgaaag cgcatttccg gataaacaaa 115020 aatataaaaa taatcccgaa ggtgtgaaat gtgtgggtaa atatttttaa gccacacttc 115080 gggaatttcc ccgagcgtta tcattacaaa ggcgatttcc ccgcgataaa aagaagggtt 115140 cggggaagaa gaaatcttct caaccttcat tgttttccgc aattttaatt acaacccggt 115200 tttcttcaaa gttaagctcg aattcctttt ccgacgcatt gattccaagt tcttccagtt 115260 ccttttgaag ttcccccatg atcttcatgc gctcccgctt ggctttaagc gcatgctcga 115320 atacgttcac atcgccttca tcgacgattt ccaccagcat atcaaagaca agcaccgcca 115380 tttcaatgta ggcgttgcgg agttgcattt cacgaagtgc aagggatttg agctggtcaa 115440 ccttctcttt gtcttctacg acaatggtat tttcagagcg tgtaacggta ggttcaccca 115500 ctttaatgaa atctttccct ttcatggctt tttttgatga aaaaacgatc gggttcaaga 115560 aaggtttcag aaggtgttaa gcggatattc ttcagacgcc tgagcttccg aagccgcatc 115620 gtaatcgcca accgtaatat aaatatcctc aattccaaaa aattggggcg gatagcgaaa 115680 ttcataaagc gtaagttcag acggcgttac aacaatatca aatatccaca caccaccttc 115740 atcatttcca agaataatcg ctttgcagtt gatcttatcc gattcggtaa agaaaggttt 115800 gcttctgaga acaaatcttc tccctaccgc aacaaaaagg ttggtgccgc tttccgggta 115860 aaaatcgacg tcgttgtctt cagaatcaac gatggtaaac acattgggtt gaatataaag 115920 cgtataagat ttgttgactc cataagcggt ttgtggttcg atgataaagt tctgaggata 115980 ctgtgtttca tagaggatat ttacgtttac gatcatcggc atgaaatccc ttcgatcccc 116040 ttcatccgtt tcatacagcg taaccagatg aaatttgctg tcaaaaatat tccccacttc 116100 gcgaggttga cgaatgatag aaacagttgg ggagtataca ttataaacca cttcgtcatc 116160 tgaaagggcg aattttccca tcgtacgaag ataatcggca atggagattt tctggcgaat 116220 gagctttgca atcaaacgct gaccgtattc tgtaagagac gccgtaacaa gcatatcaga 116280 attccacctt cagtttaatc acgtattcat cttcgttggt cttacgaagc ggagaggaaa 116340 gtcttccaag cgccacaagc tgattgttct gatcatagat tccaacggtg gtaatataag 116400 taccctgatc aggatacaaa atgcgtccgg aagtgggatc gtagaatgtg ggattgagcg 116460 agtaattgaa ttcgccagcc tttacgcgac agaaaataac catagagtga atgttatcca 116520 ccattgaaag cgtcatgtca agaataaggt tggcgatgtt ttcatgaagt ttcgcaacgc 116580 caccgaccgg aggattgctg tcaatcggga atccggttgg atccagcatg taaagcgaag 116640 tgctgtatcc ccccgatcca accccaagcg aatgagagac aaaatcgccg catgcatcca 116700 gatcgatcag aagcagcgcc gactgaggga atacgattcc aaacaccttc tgagttatgg 116760 agtgggttac aggaaccgcc tttccactct gaagtgaacc cgacaccaga tagtagaacg 116820 gctgcacctg ggtgcggatc ggagtagcga ggttggtttc gccgctgttg tcaaccagag 116880 acagggttgc gcggtttgat ccgtcggtga aagacaggtt aatctggaaa ttaccaacat 116940 caattgtatc ggcaaaatta tggaaggaga ctaccatgaa gttcttaagt tcactgaatc 117000 cggcaccggg atttgcggga tcacggggaa cagtaataac atcagaagcc agattggttt 117060 tgaattgatt gataaaagcc agataatgct ttcgagtaat ttcattagtt ccaccgccat 117120 agttcccttt ggaagcaaac gccacggaaa actccggatc ggtggtaagc gatcctttga 117180 agatattcac atagtaatcg ttgtaatgat cgggttgcga agaataagtt acaaaatcgt 117240 ttcgtgcaat aactccgctt ttatcccaga accccggaac ggctacattt ctcgtgctgt 117300 acaccacgtc gtcaatttgc ttgaagacaa acccctgagg ctgcggagcc gtctcagctt 117360 ccgtagcgat gttgttgaca acgtttcgta tagtttcgag ctcttccgta gtgatagaca 117420 gattcgattg cagatagttc agaaatccct gcaaaatctg tcgcttggaa taatcggtaa 117480 ccgttccaag tagcgtggta atgtaggaaa taagttgctc tctcataatc ttatgtaatc 117540 agttttactt tcagttcagc ttgtgcacca ctttcgttgc ccctgataag cacaatggtt 117600 tcggtgttgg gcgtagccgt ttgcgccggt tcgatcacaa acttgcgccc ggaaatcgct 117660 ttatagtcgg ggttgcttgt cgggaagggg aacggcgcct gtgtcgacgg ttcagcaaca 117720 gaaatgttta gctgtttgct atcataaagc aatgaataac caagaatctt atcaagtgca 117780 accacaaact ttgtacttgg gatgaagaga tatcggcgaa ggttatctgt agaagtaacc 117840 ctgagcacga tttcactctg atccagaagc aaaatgggaa tttcgttgac aatgatattc 117900 ggatcgccta ccacactgaa aagatgatag cgcggcactt caaacggctt gggttctacc 117960 agcgaatagc tcagaatttg cggagggtta cccgcgcttg cagaaaacac atattcataa 118020 tcgattccgt cgtcagaaag tgcaaagtag gcaatatcga aactaccgga cgcaaacaac 118080 cttctaccgt atgccgtgag cgtggctacg gaatataccg tgttttctga tttggtgggg 118140 ataaacattt ttttctttaa ataaagtttt cagttaccca ctacaagttt taaaagctca 118200 accagtatcg aagggtctac aatagccagc gcaatgaagg gaaaaagtgg caaaatcaac 118260 ccgacaataa atccggtgag tagcaatttg atgaacagtt gttgttgatc ttttctgttc 118320 tgcaatgcat tgtcataagc gccctgcaat agatcacgat atttttcacc cacctccgtt 118380 ttatctttaa gagactcgat ttgaacgctc agtcgattca atatatcttc tatatcatca 118440 agtttttctc taatgttgtt tctatcctgt acaacggttc tgagcacatc tttaatatct 118500 ttaatcattt caatgatgtt cgatagaatg aaacgtatct gataatctct gtcaaactgt 118560 tcttcgttca tccctgtttt taaattaaat aaaaaagggg agacgacacg tagtacatct 118620 cccccataaa attatttttt atgcgaatta aggcgtgcgc ttttccagaa gatacatcgt 118680 aagaacatcg ccatttacag caagcagttt ggtaccttcc cggttgggga aaggattgat 118740 ccggttgaaa tcaatgcggc gcatttcctg acgactatcc ttttcaaaat ggtttctcag 118800 gaaattcaga gcatttagcg tataatacat gtcattttct ttccagtagt gcgcaatgat 118860 cttgcgtttg tggttcagca cgaaatcctt ttcgcggtgg aattccggaa cggaataaat 118920 gacattatcc accagcgagc agtaatcggc aagatcctga agatgagcat attcagttga 118980 aagaatatca ggaacctcgc tgggaatgta cgtgtcataa tccccgtaaa caattccccg 119040 gatattagcc gcattgtaag tcgaagactc gacaaaatgc gttttcaacc gcttgtctga 119100 gtaatccttg gaaaacagaa atatccggct tggattttca ggatcgtcga acattaaaag 119160 cttttcagcc ttaacaaacc actcatattc cgacttgaat accggcttga aatagaacac 119220 ggtgcggaat tgagtggaac gtcgagagcg tcttggtttt gccaacgtac ccatagtctt 119280 tctcctattt tttttttgtt tggttttaaa tacattctgt gtaacaataa aaattcataa 119340 aggtttcaaa gatttttaca atttcttatt taaagaaaaa tgcccgcaaa atcaagaaaa 119400 caacagagat atatattcta tctcagaaac aaatatggat caccggaaaa aacccccaag 119460 aaatacaaat ggatatggca caaagattgg gagaaactgg aggaagccaa acgtaaaaag 119520 aaaaagaaga aaagacgtaa aaataaacgc tcttacctga agccggattc ctattataag 119580 aaaccatacg gttattacgg aatctggtat taccattatg atgacggtgt ggatgatggg 119640 ggagatgcgg gtgatggtgg aagtggtgct ggtgtgggtg aagctaaagg tgcaaaacct 119700 gctaagaaat ctaaaaaaga agtgctccgc gatcttgagg tcaaactgca cgacttcaac 119760 aaggagttga aaaaactcct cgagaatctc ggattctaaa aaaagaaagc cggggaatca 119820 accccggcat tttttgtttc accaaggtaa atcgttatta tccgtctgac acgactcaat 119880 caattcctct tcttccggtt cttcttcttc ataactgtaa aaccatatat gaaagtaata 119940 tccccgccct tcttcccact ctcgcatttg ctgctcttcg aagacgtctt gcaaaaaacg 120000 ctttgtcaaa ctcatggctc cctcctattt ttggttgaca aatcgattct actggtaata 120060 tacgcattga tcagagaaaa gtcaaatgaa gaatctgtta aacagagata tatccgcact 120120 cagcggaagt gtagatgtca acctcagata caatcttata aagttttttc attagcacca 120180 caaagtcttc ttccggaagc tctaatagca attcctcatt atatttgaga aggggaagca 120240 tagctttact tccgctaccc accgaataat agggatcacg aatgaacatt gtcgtgaaat 120300 tgtcggatac cacaaacacc ccgtgctgac tgattcccat aattttcccg ttcatatccc 120360 cattatcatt cagaagattc aaccccttca gatgatctct ccacttgtac gtaaacgtct 120420 ctacaatcgt gtttttgctg taggattctc tgttaaagat aagcggcgag gaaaattttg 120480 caaaggcgtt ctgatagatt acccttccga caaaaccaag cggaattcga tccaccagtt 120540 cggacggcgt ctgaatatcc agaaaagcgg ctttggggtc atccctgacc accagcatgc 120600 cgtccattgt ggtggtatag tcaaaaaaaa cataccgctt atcggctctg tcaatggcta 120660 ctaccgtgct catgattatt taagggtttg cgttaaggtg tctttcaaat gatacacaat 120720 gtctctaatc tcagcaggta taagttctct gatggtaaaa aattcgtcag gaaatattat 120780 ctgtctcaga ttaatatatc ctattcggtt gtgatagcga actccgttcc ccaccgctac 120840 cacaatatgc tcgaaaggtg agcggtgtcc gtttttgtaa agtcttcttg caagttttaa 120900 atttttatct aagtcggatt catcagaagc ataggaaacg cgggctatac gcgccaccga 120960 tgtaaccagt agtttggaat tcaattcctc cggtgaaata actccctgaa gaggatcgac 121020 aatatctccg ggattggctt cgaaagccgg ggagttgtcg tagatatagc gaatcaggag 121080 cgctattttt cggaattcgg gttgtgcgtc ggaagcgcaa cgaagtctga aaaagttgtc 121140 aagcgaatac ggatcggcaa tggaagcgat gacatctgta tatgcatagg gtgaaagtat 121200 tcgattagcg tgttgcttgt gtacattgag tttctcgagc acaaaatgca accccgctga 121260 tgtatataac ccggtatacc aacaccacct tgccagcaca tctttccacc ctcctatttt 121320 tttatcggaa aacattgccc ctgagttttc cacaaaatca tctggaacaa aggggttttc 121380 aagtacacgc ttccggtatt ttttcaagga aatggctctt gtagaagcgg cattcctcga 121440 aaaggcgcga tgtgtattaa attcagccag tatgactgtg ggaatttgaa agcgaaagca 121500 gaagaagata tcgttattcg tcttcgtttt gatcagatac cacaccattg ctttctgagt 121560 tttttccatt taaaaccgat ccatttaaac aaagtttcat ttctctgatt tcatctttca 121620 gggtttcaga aaggtgtaat atttcatccc actcgcgagt attgcgctca aaaatctcaa 121680 ctccactgga aacatcactc atcatttttt tcctccttgt gtttaatgtt gtggtaaatc 121740 tataatttgc gggtgttgcc agaagcgcat ttcatagata ccccactttc ttttaaataa 121800 aagaaaaata acttttttta aaaaattatt taccccggtc gtcaagtctt ccaatatccg 121860 gctctttata gggatgaatg cgatatttct tctggaaaaa ctccttccac tccggcgatt 121920 tttcaaatac gacatccaga ttgtcgataa gtgcctttgc caccatgtgt ttgcagattc 121980 tcccccggta gtaatgatcc gggcacgtac atttgaatgt gcgggtgtca aaattgacgc 122040 gcgttacgta ttttttgtag gagccgcttt cgagagtatc acgggcgcgt tcaagcagcg 122100 ttctcccctg tttgtctttc tgagtctgac accatttgag aaaagagagg agttgtttat 122160 atcgcttatc gaacgtttca agccgcttgc gctcgcgttc ttcaatagag cgcttgagtt 122220 cttcagcctt ttgctgtctc tcttttatac ttggcggcgg catacgctca gatgtttaaa 122280 attctccgaa gcagactttc gatctgatct tcggtaaaat ctcttttgga tatataaagc 122340 acaagattgc gctccgtgtt gtttttcggt ggggtgtttc ctttgagaag gtttctgaaa 122400 tattcgatga actctttttt aagctctttt tccgactttc cggttttatt ctgcacaagt 122460 gttttttcgg tggaagtagc ctcttcttcg ttgacggcga cattatatat agagagcatg 122520 agaaacatct ctaccgccgg atcggtagca tgacgtgcag ccatatcggc acttcggcgc 122580 tgaatggctt catatagcag tgattcctcg cgggtcattc ttttctgtta aataaatgtg 122640 aatccgtagg aaagggaaaa catcagggga aagcacacat ataagaacca gaacccagaa 122700 caaaaaatag gaggaaggtt atgggtaaga tcgatgtttc gaacatcaaa accgccgttg 122760 ccatctccca gaaagccaat gttcctcttt atctgtgggg tggtgtggga atctccaaaa 122820 cccaacaaat ctatcagtat gccaccagca ccaatcaaaa atgtgctgtc gttacggggt 122880 tggcaataga tccaaccgac gtagtgggtc attacattgc cgacttcaat aaacgtatca 122940 cctaccagac caaaccctat ctttatgaac tcttcggtga ggaagagcgg ggaatcatct 123000 tccttgacga attcaacaac tcagaaagtg atgtgatggg ggtgtttcta aagcttctcg 123060 acgaaaagag gcttggaagc tacaaactcc ctgatggaat tcacatcatt gcagccggta 123120 atccccccga actggctcca aatgcttcct cgcttccgct tgccgtcgct actcgatttg 123180 cccatcttta tgtggaagcg gatttcatct cccttaagag atggttgaaa ggagcggaag 123240 atgaagagga ttatgtaaag attttcaatc ttgaagtcgg ggaagatgtt gttcagcagg 123300 tgttcgatat tttcgttgac tactgcattg aaaacggtct tttcccggct tcagaagatt 123360 ctcgtagttg cgagtgggag gggagcctga attaccgcac attgcactat gcagcaaaaa 123420 tcggggctgt atacaaagtt gcttacaaaa atgtatcaaa tcaatcgaca ctgtataatg 123480 taactgtaga aatgatccac ggtctggttg gaaccatcgc ttccaacctg atggaacatc 123540 ttgaaaacaa gtggcttcca tcggcaaaag agattctcga aaactatgat attgtgctca 123600 agcatcgaga cgcctatgcc gcccttgcct acaaccttat gagcggcatt caggaagaag 123660 actatccgag gttggtggat ttcatgcaat ggttagaaaa gaaaaacgaa cttgtaatgc 123720 ttgcggcgat agtggaatct ttccagtcgt tcattccgaa gaaaaggttt ctgacaagcc 123780 ggttcgaata ctacaaccag attttcaaaa tcattaatcg atcgctggac gtctataaga 123840 aagtcaaacc cacaaacaac aagtgattga ttatggaacc gattgtcgaa aaaaagctct 123900 atgaactgat taactgcatt gtaaaaaatc ataccccact cgccatgatt ctttcccgaa 123960 tcaaagtgcg ggtagggggt agggataaat acacactggg actctgcaaa gaacgggaaa 124020 tcattctcag ccggtgtctc tttgatgatg aaatcgttta tcccaaactt gtatttatca 124080 aagaccccga caccggcgag atcgtagact atgatattga agactatgtt gccaaaatcg 124140 atgatgaagg gcggtatcat accctgctgg aagaaatcat tcatgccggt ctcatgcacc 124200 ccatgcgtgt agaccggttt cagaaaacat atcaggagct ttttgaaaag aacaagcggc 124260 tggtgaattt tctgtacctt tgtcttgagg ttgagcgtca tgcaatacat accgctgtag 124320 ccaacatcga tctacttaag cccgtgttca aagacaacac gcgggatgaa aagattgtgg 124380 aattcattaa agttattcaa catgatcatc ccgatcaaaa gctgtttggg tttacttttg 124440 aaagactgtt tttgaagtat ctcaacgatt ttgagggagg taaaattgca gcccccgcaa 124500 tttacgatct gatggaatac gacgggaata ccgttcccga caagttcata gaagcaatcg 124560 aaaaatctct tcataaaggg aaaaagtatg gaaatcagac actggatgaa atctttgaaa 124620 tccggcgtgt ggatcaaaag gggttgcaat tgacgcaact cctgaagcag atttgcttcc 124680 gcagggcacg taaaaaaccc tcgctgcacg tgctcgacaa aaagcggaag cactacgaac 124740 cgctcaggtt tgggaaaatc aaagaaaaaa cttcaaatat cgccattatt ctggatgtgt 124800 cgggaagtat gcttcgtgat ttcaaaaagc atcgcctgat tgacatcgcg acaagtatga 124860 tcgtggaaac tttcaaaaac gcacccaata tcgatgtata catcggagat accgaaatca 124920 aggataaagc gaagatccgc accctgtttt cccgtttcaa agggggcggt ggaaccgata 124980 tgtctaacat ctataaacaa ctgaaagatc gataccagaa aatactggtt gttaccgacg 125040 gggagacacc cttccccgaa ccaaaagact accgccctca ggatactttt atcatcatta 125100 atgatgaaat gcccgaaatt cccaattaca tcaaaaccct gaaggtgaaa ctatgaacga 125160 aaaagcgttc cagttccgca atcttctaaa ggaagtgatc ggcatgcgaa tcctcgagcg 125220 attcaaccac atagaacctg aaggaaaaag gaaatgggta attttatccg cctacattct 125280 aatagtggaa gaagaaaatg caccccagat ctgcaaggaa cttgttcgaa acaatacaga 125340 gatagatcct ctggaatttg tcagatcttt caaagaagaa cttataaaca tgatcgaaaa 125400 tcaaaattat cgaaatgaat ttgagaaata cgttgcaaac tacgcgatag aaaacgaaat 125460 caattacaga aacatgatag caaacttttt ctgatataaa aaggaaaacc cccggttcat 125520 caccgggggc ttcctcagcg tctattccct atcgggtaag ttccgccatt acggctgcag 125580 gagcttcaca tacagcagac catagaactc tggacgcacc acctccagag cgtagcgggt 125640 catcagacca cgccggtaag agaagttaac gggatcgacg atcgtcggcg tgaacagcag 125700 cggcacatac ggagcgtaaa ccgcacccgt ttgccacggc gtgttcagat cttgattacc 125760 catgatgatc accggctggt tctgatagat gttcttgtac aggcggtagc gtccctgcac 125820 catacctaca tagaagatac cggtaccacc atcgcggttg tcgttacccg gcgtaaagcc 125880 cggcatcgac tccagcagcg cagccacctg tgggctggta acaaggaagt tggcacccgc 125940 aaccgccgtc ttctgctgaa tgcggttgct gaccttgttc agttcgatca tcagggtagc 126000 caaccattcc tgcttcgagc cgtagaagtt gccggcaaca aagttacccg acgtttcatc 126060 gtagtattca ccgaccactt ccgaccagaa gccatagttg tcagtgcgcc gggcatgcgc 126120 catgatcgtc gacaggattt ccagatcgat ctcacgggca atatactgag acatgagcgt 126180 aacgatttcg ttttcaagat cgacgccctt atgataggcg gcgagatcct gcatcgcttc 126240 cggcgtccag gcggcacgca gcttacgggt cttggtagcc accggacggc tccgaagctc 126300 aaggttgatc tccggaatat ccagcgactg gaatccggga tccggatagt caggatccgt 126360 cgactggtct tcgaagtcgt ttcgagcatc gatgtagtag accagatcaa ggtcttgagt 126420 cgacggagta ccaccggcaa cggtcgcaaa gtcagagccg gttacgaaga acaaccgcgc 126480 gtacagcgcc gaaccgacgg caccgacgat ccggttgtag cgcggaagcg ggtaagcgac 126540 cgtgttttca ggatcaccgg aagcgtcgtc atattgccag aagcgcaccg tattcacatc 126600 ggcgacaccg ggaagcgacg caaccggcac atccacatag tacaccgcac cgctcgagac 126660 cagtgaagca atgccggtgt caaaaccgac atcccgcatc gtcgcctgct gggcggtagc 126720 cagatccacg gtgatcgtgg tctcatactc ccgacgcgac aggcgagcgt tttcatcata 126780 cagaccgccc gtagccgtgt cggtggtcag accggtacca ccgtagaccg agccgtttcc 126840 gggaagctca ggcgacttga aatccagata gaagaccaga cctgttggga gcgacagcgg 126900 ctgcaccgac accagatccg tcgcacgcag gttggcgaac acacggcgca caatcggaag 126960 tgccagattc cagccgtcaa cctccgtggt ctgggtggtc tccatcaggt gcttcttagc 127020 ctcgcggtac tggttctcca gcagggtagc gagcgtatgc cgctcccagt cgttacggca 127080 accctccaga agcggttgcc acttctcgat aagttgttcg ttaattttcg gttggctcat 127140 tttactctta tttttttttt gttttaaatc tctaaaaaca ttcggtattt aaccgaatta 127200 gagtccggca agacgcttaa tgcgctccag atccaacagc ggatcctcaa ccgaacccga 127260 cgtgcgggat tcggcgacag gtttcaccac acgggtttcc tgcagcttgc gcttgatccg 127320 ctcacgaatg cgctggcggg taacttcgtc aatgacgggc ttcttcaccc ggctttcccg 127380 catacggcgc ggcgtcggac acgaagcagc ttccgccatt tcctccgtct cctcaccagc 127440 caccttgcga agcagttcga tagcctcctc tacgcgctca agaagcgtgt gcaaaagatc 127500 catttcttca cgcacatgct cctcgctttc gacggcaccc ttgatgtcaa catcaatatc 127560 gagttcttcg tcgtccgaaa gatcggcatc ctttaactcg atttcggctt ccagctcgcc 127620 gtcttcgtcg acgtcttcaa catcgatttt gatgtcttcg tcatccagat ccagttccag 127680 atcctcctca tcgagatcca gttccagatc ttcgtcttcg tgttcggctt cggtaatccg 127740 acgcttcatt ttgtgtttag cttctcgcat ttcttcctgt tgtttagttt cccaggcttt 127800 ttgcaacgtt tgcgcgactt cttcggcaaa cgaagcaagc gtgtcatcgt cagtttcatc 127860 aaccttcgct tccgtcaggg gattaccttc aggctcttcc acctgctcaa gctcttcttc 127920 gagttccttc aaagcctccc gaatttcttc ggtgatcgag tgaatggaag cttcctgaag 127980 atgcctcttc tgcttttcct gacgaagcga ctcaaggtaa cccacaaagt ctttaaattc 128040 ctgcataact caaatttaaa tatatttaat cgccattcat tttaaaaaat ggcacctgct 128100 acgtgggaat attaaacccc acatcaaatt taaatatata tttttccgca cgaaataaaa 128160 aaaagggaga gaaactgatc tctcccccag gggtaacatg tattttataa cttgtgaact 128220 accaccacct atagatgtgg atggcttcgt ggtcaaggta gctcttgcta ccagattccc 128280 cacgctcaaa gggctgttcc atccccgaat ttgccaatta ttggctaatt aaatcacttt 128340 cttcttcaca agcgcctcgc gcaatctatg gcgtgctctg ttgattcgag atttgacggt 128400 tccgatagga atgttgtttt tctcagccag cgcctgcatg gcacattttt ccttcaactc 128460 catgtactgt ttcattatat tgtaaaacgg gttatcgcct ttttcaagtt cttcctgaat 128520 cacctccacc gcacgtttca attcatactg ctcatcaagc agcggctctc cggattcaat 128580 ttctacaggg gtatcccgat ctccaaatgt aatttcttcc atgtaaatcc tgggaccacg 128640 tcgagaattg tatcgataac gggtaattac aacggatttg aatacagtgt aaatatacgt 128700 agcgaaagaa gctccttcaa ccacgctata ggaatcaaat ctaagaagcc ttagaaacgt 128760 atcctgcacc atatcctcga tttcatgctc cgactttgta tatttctttc cgaaattttt 128820 gagccgctca gcatacctac tgtaaagcac ttcataacgg atttcgagcg gaacgttctg 128880 aaggaaaagt tcttcgtcgg tcatctgata gtatttacgc ttatccataa cttctcctct 128940 gttttaaagg ttgaaaatga tttcgtagcc gtcaatgcgg tcatcagtta tgagcttgtc 129000 ataaagatcg tcaatctttt ctatgttgtc ataaatcatg agcatttcat caatatcatg 129060 cacaacaaca gaaatgtaat aaccgttttc ttcatcaaaa cagagttcgg cgtagctttt 129120 atgaagatcc cccacacatt ttttgatatt ctctacaaat acttctacag gataatatct 129180 aaccagacaa aaatcgagat gcggaagcac actgttcatt atctgctcca gcacctcttc 129240 attagaaatc agcagttcat aatcgtcaat ggtatttaca ttgtagacaa gatggttgtt 129300 ggatgtaata gtaggaatga cttcgtgagt tgggttgaaa tatgtgttta ccagatcttg 129360 aacggaatcg agcgcgtcgc gataatcaat tttagtctcc atagccatat cctaaaaggt 129420 tggttgatat ataccggtta tggaaaataa aaaaggggag agagggtgtt tcctttccca 129480 caccctctct ccgcgtttat agggaaagtc gtcatcgaag tagccctcaa tctcctccat 129540 cgaatgagat tctttttcgg gagagattca cctttttctt ggggggatta caaaattcct 129600 cttccgcggg atcaaagccc ctaatggaga atctcttcct ggcgggagcg ggttcatgct 129660 tccccaatca ttgttatttc cccagacaaa cacatggacg tctcttccac caacaaaacg 129720 aacttctccc gaatcggcgg agatgttcgg gagttcaccg cgaacccgga tcagggatcc 129780 caccccggct ttccgcacaa gatcggaagg tcccgttgta aaagtaaatg ttgaaccact 129840 cggtgctttc ttgctgaccg tcccaccgac ggaccgccag ccgtacggtg gtataactgt 129900 ttccgcta 129908 2 892 PRT Vaccinia virus (strain Copenhagen) 2 Gln Asn Ala Thr Met Asp Glu Phe Leu Asn Ile Ser Trp Phe Tyr Ile 1 5 10 15 Ser Asn Gly Ile Ser Pro Asp Gly Cys Tyr Ser Leu Asp Glu Gln Tyr 20 25 30 Leu Thr Lys Ile Asn Asn Gly Cys Tyr His Cys Asp Asp Pro Arg Asn 35 40 45 Cys Phe Ala Lys Lys Ile Pro Arg Phe Asp Ile Pro Arg Ser Tyr Leu 50 55 60 Phe Leu Asp Ile Glu Cys His Phe Asp Lys Lys Phe Pro Ser Val Phe 65 70 75 80 Ile Asn Pro Ile Ser His Thr Ser Tyr Cys Tyr Ile Asp Leu Ser Gly 85 90 95 Lys Arg Leu Leu Phe Thr Leu Ile Asn Glu Glu Met Leu Thr Glu Gln 100 105 110 Glu Ile Gln Glu Ala Val Asp Arg Gly Cys Leu Arg Ile Gln Ser Leu 115 120 125 Met Glu Met Asp Tyr Glu Arg Glu Leu Val Leu Cys Ser Glu Ile Val 130 135 140 Leu Leu Arg Ile Ala Lys Gln Leu Leu Glu Leu Thr Phe Asp Tyr Val 145 150 155 160 Val Thr Phe Asn Gly His Asn Phe Asp Leu Arg Tyr Ile Thr Asn Arg 165 170 175 Leu Glu Leu Leu Thr Gly Glu Lys Ile Ile Phe Arg Ser Pro Asp Lys 180 185 190 Lys Glu Ala Val His Leu Cys Ile Tyr Glu Arg Asn Gln Ser Ser His 195 200 205 Lys Gly Val Gly Gly Met Ala Asn Thr Thr Phe His Val Asn Asn Asn 210 215 220 Asn Gly Thr Ile Phe Phe Asp Leu Tyr Ser Phe Ile Gln Lys Ser Glu 225 230 235 240 Lys Leu Asp Ser Tyr Lys Leu Asp Ser Ile Ser Lys Asn Ala Phe Ser 245 250 255 Cys Met Gly Lys Val Leu Asn Arg Gly Val Arg Glu Met Thr Phe Ile 260 265 270 Gly Asp Asp Thr Thr Asp Ala Lys Gly Lys Ala Ala Ala Phe Ala Lys 275 280 285 Val Leu Thr Thr Gly Asn Tyr Val Thr Val Asp Glu Asp Ile Ile Cys 290 295 300 Lys Val Ile Arg Lys Asp Ile Trp Glu Asn Gly Phe Lys Val Val Leu 305 310 315 320 Leu Cys Pro Thr Leu Pro Asn Asp Thr Tyr Lys Leu Ser Phe Gly Lys 325 330 335 Asp Asp Val Asp Leu Ala Gln Met Tyr Lys Asp Tyr Asn Leu Asn Ile 340 345 350 Ala Leu Asp Met Ala Arg Tyr Cys Ile His Asp Ala Cys Leu Cys Gln 355 360 365 Tyr Leu Trp Glu Tyr Tyr Gly Val Glu Thr Lys Thr Asp Ala Gly Ala 370 375 380 Ser Thr Tyr Val Leu Pro Gln Ser Met Val Phe Glu Tyr Arg Ala Ser 385 390 395 400 Thr Val Ile Lys Gly Pro Leu Leu Lys Leu Leu Leu Glu Thr Lys Thr 405 410 415 Ile Leu Val Arg Ser Glu Thr Lys Gln Lys Phe Pro Tyr Glu Gly Gly 420 425 430 Lys Val Phe Ala Pro Lys Gln Lys Met Phe Ser Asn Asn Val Leu Ile 435 440 445 Phe Asp Tyr Asn Ser Leu Tyr Pro Asn Val Cys Ile Phe Gly Asn Leu 450 455 460 Ser Pro Glu Thr Leu Val Gly Val Val Val Ser Thr Asn Arg Leu Glu 465 470 475 480 Glu Glu Ile Asn Asn Gln Leu Leu Leu Gln Lys Tyr Pro Pro Pro Arg 485 490 495 Tyr Ile Thr Val His Cys Glu Pro Arg Leu Pro Asn Leu Ile Ser Glu 500 505 510 Ile Ala Ile Phe Asp Arg Ser Ile Glu Gly Thr Ile Pro Arg Leu Leu 515 520 525 Arg Thr Phe Leu Ala Glu Arg Ala Arg Tyr Lys Lys Met Leu Lys Gln 530 535 540 Ala Thr Ser Ser Thr Glu Lys Ala Ile Tyr Asp Ser Met Gln Tyr Thr 545 550 555 560 Tyr Lys Ile Val Ala Asn Ser Val Tyr Gly Leu Met Gly Phe Arg Asn 565 570 575 Ser Ala Leu Tyr Ser Tyr Ala Ser Ala Lys Ser Cys Thr Ser Ile Gly 580 585 590 Arg Arg Met Ile Leu Tyr Leu Glu Ser Val Leu Asn Gly Ala Glu Leu 595 600 605 Ser Asn Gly Met Leu Arg Phe Ala Asn Pro Leu Ser Asn Pro Phe Tyr 610 615 620 Met Asp Asp Arg Asp Ile Asn Pro Ile Val Lys Thr Ser Leu Pro Ile 625 630 635 640 Asp Tyr Arg Phe Arg Phe Arg Ser Val Tyr Gly Asp Thr Asp Ser Val 645 650 655 Phe Thr Glu Ile Asp Ser Gln Asp Val Asp Lys Ser Ile Glu Ile Ala 660 665 670 Lys Glu Leu Glu Arg Leu Ile Asn Asn Arg Val Leu Phe Asn Asn Phe 675 680 685 Lys Ile Glu Phe Glu Ala Val Tyr Lys Asn Leu Ile Met Gln Ser Lys 690 695 700 Lys Lys Tyr Thr Thr Met Lys Tyr Ser Ala Ser Ser Asn Ser Lys Ser 705 710 715 720 Val Pro Glu Arg Ile Asn Lys Gly Thr Ser Glu Thr Arg Arg Asp Val 725 730 735 Ser Lys Phe His Lys Asn Met Ile Lys Thr Tyr Lys Thr Arg Leu Ser 740 745 750 Glu Met Leu Ser Glu Gly Arg Met Asn Ser Asn Gln Val Cys Ile Asp 755 760 765 Ile Leu Arg Ser Leu Glu Thr Asp Leu Arg Ser Glu Phe Asp Ser Arg 770 775 780 Ser Ser Pro Leu Glu Leu Phe Met Leu Ser Arg Met His His Ser Asn 785 790 795 800 Tyr Lys Ser Ala Asp Asn Pro Asn Met Tyr Leu Val Thr Glu Tyr Asn 805 810 815 Lys Asn Asn Pro Glu Thr Ile Glu Leu Gly Glu Arg Tyr Tyr Phe Ala 820 825 830 Tyr Ile Cys Pro Ala Asn Val Pro Trp Thr Lys Lys Leu Val Asn Ile 835 840 845 Lys Thr Tyr Glu Thr Ile Ile Asp Arg Ser Phe Lys Leu Gly Ser Asp 850 855 860 Gln Arg Ile Phe Tyr Glu Val Tyr Phe Lys Arg Leu Thr Ser Glu Ile 865 870 875 880 Val Asn Leu Leu Asp Asn Lys Val Leu Cys Ile Ser 885 890 3 892 PRT Vaccinia virus (strain WR) 3 Gln Asn Ala Thr Met Asp Glu Phe Leu Asn Ile Ser Trp Phe Tyr Ile 1 5 10 15 Ser Asn Gly Ile Ser Pro Asp Gly Cys Tyr Ser Leu Asp Glu Gln Tyr 20 25 30 Leu Thr Lys Ile Asn Asn Gly Cys Tyr His Cys Asp Asp Pro Arg Asn 35 40 45 Cys Phe Ala Lys Lys Ile Pro Arg Phe Asp Ile Pro Arg Ser Tyr Leu 50 55 60 Phe Leu Asp Ile Glu Cys His Phe Asp Lys Lys Phe Pro Ser Val Phe 65 70 75 80 Ile Asn Pro Ile Ser His Thr Ser Tyr Cys Tyr Ile Asp Leu Ser Gly 85 90 95 Lys Arg Leu Leu Phe Thr Leu Ile Asn Glu Glu Met Leu Thr Glu Gln 100 105 110 Glu Ile Gln Glu Ala Val Asp Arg Gly Cys Leu Arg Ile Gln Ser Leu 115 120 125 Met Glu Met Asp Tyr Glu Arg Glu Leu Val Leu Cys Ser Glu Ile Val 130 135 140 Leu Leu Arg Ile Ala Lys Gln Leu Leu Glu Leu Thr Phe Asp Tyr Val 145 150 155 160 Val Thr Phe Asn Gly His Asn Phe Asp Leu Arg Tyr Ile Thr Asn Arg 165 170 175 Leu Glu Leu Leu Thr Gly Glu Lys Ile Ile Phe Arg Ser Pro Asp Lys 180 185 190 Lys Glu Ala Val Tyr Leu Cys Ile Tyr Glu Arg Asn Gln Ser Ser His 195 200 205 Lys Gly Val Gly Gly Met Ala Asn Thr Thr Phe His Val Asn Asn Asn 210 215 220 Asn Gly Thr Ile Phe Phe Asp Leu Tyr Ser Phe Ile Gln Lys Ser Glu 225 230 235 240 Lys Leu Asp Ser Tyr Lys Leu Asp Ser Ile Ser Lys Asn Ala Phe Ser 245 250 255 Cys Met Gly Lys Val Leu Asn Arg Gly Val Arg Glu Met Thr Phe Ile 260 265 270 Gly Asp Asp Thr Thr Asp Ala Lys Gly Lys Ala Ala Ala Phe Ala Lys 275 280 285 Val Leu Thr Thr Gly Asn Tyr Val Thr Val Asp Glu Asp Ile Ile Cys 290 295 300 Lys Val Ile Arg Lys Asp Ile Trp Glu Asn Gly Phe Lys Val Val Leu 305 310 315 320 Leu Cys Pro Thr Leu Pro Asn Asp Thr Tyr Lys Leu Ser Phe Gly Lys 325 330 335 Asp Asp Val Asp Leu Ala Gln Met Tyr Lys Asp Tyr Asn Leu Asn Ile 340 345 350 Ala Leu Asp Met Ala Arg Tyr Cys Ile His Asp Ala Cys Leu Cys Gln 355 360 365 Tyr Leu Trp Glu Tyr Tyr Gly Val Glu Thr Lys Thr Asp Ala Gly Ala 370 375 380 Ser Thr Tyr Val Leu Pro Gln Ser Met Val Phe Glu Tyr Arg Ala Ser 385 390 395 400 Thr Val Ile Lys Gly Pro Leu Leu Lys Leu Leu Leu Glu Thr Lys Thr 405 410 415 Ile Leu Val Arg Ser Glu Thr Lys Gln Lys Phe Pro Tyr Glu Gly Gly 420 425 430 Lys Val Phe Ala Pro Lys Gln Lys Met Phe Ser Asn Asn Val Leu Ile 435 440 445 Phe Asp Tyr Asn Ser Leu Tyr Pro Asn Val Cys Ile Phe Gly Asn Leu 450 455 460 Ser Pro Glu Thr Leu Val Gly Val Val Val Ser Thr Asn Arg Leu Glu 465 470 475 480 Glu Glu Ile Asn Asn Gln Leu Leu Leu Gln Lys Tyr Pro Pro Pro Arg 485 490 495 Tyr Ile Thr Val His Cys Glu Pro Arg Leu Pro Asn Leu Ile Ser Glu 500 505 510 Ile Ala Ile Phe Asp Arg Ser Ile Glu Gly Thr Ile Pro Arg Leu Leu 515 520 525 Arg Thr Phe Leu Ala Glu Arg Ala Arg Tyr Lys Lys Met Leu Lys Gln 530 535 540 Ala Thr Ser Ser Thr Glu Lys Ala Ile Tyr Asp Ser Met Gln Tyr Thr 545 550 555 560 Tyr Lys Ile Val Ala Asn Ser Val Tyr Gly Leu Met Gly Phe Arg Asn 565 570 575 Ser Ala Leu Tyr Ser Tyr Ala Ser Ala Lys Ser Cys Thr Ser Ile Gly 580 585 590 Arg Arg Met Ile Leu Tyr Leu Glu Ser Val Leu Asn Gly Ala Glu Leu 595 600 605 Ser Asn Gly Met Leu Arg Phe Ala Asn Pro Leu Ser Asn Pro Phe Tyr 610 615 620 Met Asp Asp Arg Asp Ile Asn Pro Ile Val Lys Thr Ser Leu Pro Ile 625 630 635 640 Asp Tyr Arg Phe Arg Phe Arg Ser Val Tyr Gly Asp Thr Asp Ser Val 645 650 655 Phe Thr Glu Ile Asp Ser Gln Asp Val Asp Lys Ser Ile Glu Ile Ala 660 665 670 Lys Glu Leu Glu Arg Leu Ile Asn Asn Arg Val Leu Phe Asn Asn Phe 675 680 685 Lys Ile Glu Phe Glu Ala Val Tyr Lys Asn Leu Ile Met Gln Ser Lys 690 695 700 Lys Lys Tyr Thr Thr Met Lys Tyr Ser Ala Ser Ser Asn Ser Lys Ser 705 710 715 720 Val Pro Glu Arg Ile Asn Lys Gly Thr Ser Glu Thr Arg Arg Asp Val 725 730 735 Ser Lys Phe His Lys Asn Met Ile Lys Thr Tyr Lys Thr Arg Leu Ser 740 745 750 Glu Met Leu Ser Glu Gly Arg Met Asn Ser Asn Gln Val Cys Ile Asp 755 760 765 Ile Leu Arg Ser Leu Glu Thr Asp Leu Arg Ser Glu Phe Asp Ser Arg 770 775 780 Ser Ser Pro Leu Glu Leu Phe Met Leu Ser Arg Met His His Ser Asn 785 790 795 800 Tyr Lys Ser Ala Asp Asn Pro Asn Met Tyr Leu Val Thr Glu Tyr Asn 805 810 815 Lys Asn Asn Pro Glu Thr Ile Glu Leu Gly Glu Arg Tyr Tyr Phe Ala 820 825 830 Tyr Ile Cys Pro Ala Asn Val Pro Trp Thr Lys Lys Leu Val Asn Ile 835 840 845 Lys Thr Tyr Glu Thr Ile Ile Asp Arg Ser Phe Lys Leu Gly Ser Asp 850 855 860 Gln Arg Ile Phe Tyr Glu Val Tyr Phe Lys Arg Leu Thr Ser Glu Ile 865 870 875 880 Val Asn Leu Leu Asp Asn Lys Val Leu Cys Ile Ser 885 890 4 891 PRT Variola virus 4 Gln Asn Ala Thr Met Asp Glu Phe Leu Asn Ile Ser Trp Phe Tyr Ile 1 5 10 15 Ser Asn Gly Ile Ser Pro Asp Gly Cys Tyr Ser Leu Asp Asp Gln Tyr 20 25 30 Leu Thr Lys Ile Asn Asn Gly Cys Tyr His Cys Gly Asp Pro Arg Asn 35 40 45 Cys Phe Ala Lys Glu Ile Pro Arg Phe Asp Ile Pro Arg Ser Tyr Leu 50 55 60 Phe Leu Asp Ile Glu Cys His Phe Asp Lys Lys Phe Pro Ser Val Phe 65 70 75 80 Ile Asn Pro Ile Ser His Thr Ser Tyr Cys Tyr Ile Asp Leu Ser Gly 85 90 95 Lys Arg Leu Leu Phe Thr Leu Ile Asn Glu Glu Met Leu Thr Glu Gln 100 105 110 Glu Ile Gln Glu Ala Val Asp Arg Gly Cys Leu Arg Ile Gln Ser Leu 115 120 125 Met Glu Met Asp Tyr Glu Arg Glu Leu Val Leu Cys Ser Glu Ile Val 130 135 140 Leu Leu Gln Ile Ala Lys Gln Leu Leu Glu Leu Thr Phe Asp Tyr Ile 145 150 155 160 Val Thr Phe Asn Gly His Asn Phe Asp Leu Arg Tyr Ile Thr Asn Arg 165 170 175 Leu Glu Leu Leu Thr Gly Glu Lys Ile Ile Phe Arg Ser Pro Asp Lys 180 185 190 Lys Glu Ala Val His Leu Cys Ile Tyr Glu Arg Asn Gln Ser Ser His 195 200 205 Lys Gly Val Gly Gly Met Ala Asn Thr Thr Phe His Val Asn Asn Asn 210 215 220 Asn Gly Thr Ile Phe Phe Asp Leu Tyr Ser Phe Ile Gln Lys Ser Glu 225 230 235 240 Lys Leu Asp Ser Tyr Lys Leu Asp Ser Ile Ser Lys Asn Ala Phe Ser 245 250 255 Cys Met Gly Lys Val Leu Asn Arg Gly Val Arg Glu Met Thr Phe Ile 260 265 270 Gly Asp Asp Thr Thr Asp Ala Lys Gly Lys Ala Ala Val Phe Ala Lys 275 280 285 Val Leu Thr Thr Gly Asn Tyr Val Thr Val Asp Asp Ile Ile Cys Lys 290 295 300 Val Ile His Lys Asp Ile Trp Glu Asn Gly Phe Lys Val Val Leu Ser 305 310 315 320 Cys Pro Thr Leu Thr Asn Asp Thr Tyr Lys Leu Ser Phe Gly Lys Asp 325 330 335 Asp Val Asp Leu Ala Gln Met Tyr Lys Asp Tyr Asn Leu Asn Ile Ala 340 345 350 Leu Asp Met Ala Arg Tyr Cys Ile His Asp Ala Cys Leu Cys Gln Tyr 355 360 365 Leu Trp Glu Tyr Tyr Gly Val Glu Thr Lys Thr Asp Ala Gly Ala Ser 370 375 380 Thr Tyr Val Leu Pro Gln Ser Met Val Phe Gly Tyr Lys Ala Ser Thr 385 390 395 400 Val Ile Lys Gly Pro Leu Leu Lys Leu Leu Leu Glu Thr Lys Thr Ile 405 410 415 Leu Val Arg Ser Glu Thr Lys Gln Lys Phe Pro Tyr Glu Gly Gly Lys 420 425 430 Val Phe Ala Pro Lys Gln Lys Met Phe Ser Asn Asn Val Leu Ile Phe 435 440 445 Asp Tyr Asn Ser Leu Tyr Pro Asn Val Cys Ile Phe Gly Asn Leu Ser 450 455 460 Pro Glu Thr Leu Val Gly Val Val Val Ser Ser Asn Arg Leu Glu Glu 465 470 475 480 Glu Ile Asn Asn Gln Leu Leu Leu Gln Lys Tyr Pro Pro Pro Arg Tyr 485 490 495 Ile Thr Val His Cys Glu Pro Arg Leu Pro Asn Leu Ile Ser Glu Ile 500 505 510 Ala Ile Phe Asp Arg Ser Ile Glu Gly Thr Ile Pro Arg Leu Leu Arg 515 520 525 Thr Phe Leu Ala Glu Arg Ala Arg Tyr Lys Lys Met Leu Lys Gln Ala 530 535 540 Thr Ser Ser Thr Glu Lys Ala Ile Tyr Asp Ser Met Gln Tyr Thr Tyr 545 550 555 560 Lys Ile Ile Ala Asn Ser Val Tyr Gly Leu Met Gly Phe Arg Asn Ser 565 570 575 Ala Leu Tyr Ser Tyr Ala Ser Ala Lys Ser Cys Thr Ser Ile Gly Arg 580 585 590 Arg Met Ile Leu Tyr Leu Glu Ser Val Leu Asn Gly Ala Glu Leu Ser 595 600 605 Asn Gly Met Leu Arg Phe Ala Asn Pro Leu Ser Asn Pro Phe Tyr Met 610 615 620 Asp Asp Arg Asp Ile Asn Pro Ile Val Lys Thr Ser Leu Pro Ile Asp 625 630 635 640 Tyr Arg Phe Arg Phe Arg Ser Val Tyr Gly Asp Thr Asp Ser Val Phe 645 650 655 Thr Glu Ile Asp Ser Gln Asp Val Asp Lys Ser Ile Glu Ile Ala Lys 660 665 670 Glu Leu Glu Arg Leu Ile Asn Ser Arg Val Leu Phe Asn Asn Phe Lys 675 680 685 Ile Glu Phe Glu Ala Val Tyr Lys Asn Leu Ile Met Gln Ser Lys Lys 690 695 700 Lys Tyr Thr Thr Met Lys Tyr Ser Ala Ser Ser Asn Ser Lys Ser Val 705 710 715 720 Pro Glu Arg Ile Asn Lys Gly Thr Ser Glu Thr Arg Arg Asp Val Ser 725 730 735 Lys Phe His Lys Asn Met Ile Lys Ile Tyr Lys Thr Arg Leu Ser Glu 740 745 750 Met Leu Ser Glu Gly Arg Met Asn Ser Asn Gln Val Cys Ile Asp Ile 755 760 765 Leu Arg Ser Leu Glu Thr Asp Leu Arg Ser Glu Phe Asp Ser Arg Ser 770 775 780 Ser Pro Leu Glu Leu Phe Met Leu Ser Arg Met His His Leu Asn Tyr 785 790 795 800 Lys Ser Ala Asp Asn Pro Asn Met Tyr Leu Val Thr Glu Tyr Asn Lys 805 810 815 Asn Asn Pro Glu Thr Ile Glu Leu Gly Glu Arg Tyr Tyr Phe Ala Tyr 820 825 830 Ile Cys Pro Ala Asn Val Pro Trp Thr Lys Lys Leu Val Asn Ile Lys 835 840 845 Thr Tyr Glu Thr Ile Ile Asp Arg Ser Phe Lys Leu Gly Ser Asp Gln 850 855 860 Arg Ile Phe Tyr Glu Val Tyr Phe Lys Arg Leu Thr Ser Glu Ile Val 865 870 875 880 Asn Leu Leu Asp Asn Lys Val Leu Cys Ile Ser 885 890 5 874 PRT Fowlpox virus 5 Glu Lys Gln Tyr Leu Gln Glu Tyr Leu Asp Ile Thr Trp Phe Tyr Leu 1 5 10 15 Leu Asn Asn Ile Thr Pro Asp Gly Cys Tyr Lys Ile Asp Ile Glu His 20 25 30 Leu Thr Pro Ile Lys Lys Asp Cys Tyr His Cys Asp Asp Val Ser Lys 35 40 45 Val Phe Ile Gln Glu Ile Pro Ile Phe Glu Val Lys Phe Thr Tyr Leu 50 55 60 Leu Phe Asp Ile Glu Cys Gln Phe Asp Lys Lys Phe Pro Ser Val Phe 65 70 75 80 Val Asn Pro Ile Ser His Ile Ser Cys Trp Ile Ile Asp Lys Val Thr 85 90 95 Glu Tyr Lys Phe Thr Leu Ile Asn Thr Asp Ile Leu Pro Asp Lys Glu 100 105 110 Pro Ser Ile Leu His His Lys Asp Phe Ser Pro Lys Asp Arg Ile Thr 115 120 125 Tyr Cys Thr Glu Ile Val Met Leu Leu Ile Met Lys Lys Ile Leu Glu 130 135 140 His Arg Phe Asp Phe Val Ile Thr Phe Asn Gly Asn Asn Phe Asp Ile 145 150 155 160 Arg Tyr Ile Ser Gly Arg Leu Glu Ile Leu Glu Lys Ser Phe Ile Tyr 165 170 175 Phe Ser Leu Pro Asp Ala Thr Glu Thr Val Lys Leu Lys Ile Phe Glu 180 185 190 Arg Phe Val Thr Gly Gly Thr Phe Thr Asn Lys Thr Tyr His Ile Asn 195 200 205 Asn Asn Asn Gly Val Met Phe Phe Asp Leu Tyr Ala Phe Ile Gln Lys 210 215 220 Thr Glu Arg Leu Asp Ser Tyr Lys Leu Asp Ser Ile Ser Lys Asn Ile 225 230 235 240 Phe Asn Cys Asn Val Ala Ile Lys Glu Ile Asp Asp Thr Ile Leu Thr 245 250 255 Leu Glu Ala Thr Val Lys Asp Asn Ser Lys Asp Lys Leu Ser Ile Phe 260 265 270 Ser Arg Val Leu Glu Thr Gly Asn Tyr Ile Thr Ile Gly Asp Asn Asn 275 280 285 Val Ser Lys Ile Val Tyr Lys Asp Ile Asn Gln Asp Ser Phe Ile Ile 290 295 300 Lys Val Ile Ser Asn Arg Asp Tyr Glu Ile Gly Ser Val His Asn Ile 305 310 315 320 Ser Phe Gly Lys Asp Asp Val Asp Leu Lys Asp Met Tyr Lys Asn Tyr 325 330 335 Asn Leu Glu Ile Ala Leu Asp Met Glu Arg Tyr Cys Ile His Asp Ala 340 345 350 Cys Leu Cys Lys Tyr Ile Trp Asp Tyr Tyr Arg Val Pro Ser Lys Ile 355 360 365 Asn Ala Ala Ser Ser Thr Tyr Leu Leu Pro Gln Ser Leu Ala Leu Glu 370 375 380 Tyr Arg Ala Ser Thr Leu Ile Lys Gly Pro Leu Leu Lys Leu Leu Leu 385 390 395 400 Glu Glu Arg Val Ile Tyr Thr Arg Lys Ile Thr Lys Val Arg Tyr Pro 405 410 415 Tyr Ile Gly Gly Lys Val Phe Leu Pro Ser Gln Lys Thr Phe Glu Asn 420 425 430 Asn Val Met Ile Phe Asp Tyr Asn Ser Leu Tyr Pro Asn Val Cys Ile 435 440 445 Tyr Gly Asn Leu Ser Pro Glu Lys Leu Val Cys Ile Leu Leu Asn Ser 450 455 460 Asn Lys Leu Glu Ser Glu Ile Asn Met Arg Thr Ile Lys Ser Lys Tyr 465 470 475 480 Pro Tyr Pro Glu Tyr Val Cys Val Ser Cys Glu Ser Arg Leu Ser Asp 485 490 495 Tyr Tyr Ser Glu Ile Ile Val Tyr Asp Arg Arg Glu Lys Gly Ile Ile 500 505 510 Pro Lys Leu Leu Glu Met Phe Ile Gly Lys Arg Lys Glu Tyr Lys Asn 515 520 525 Leu Leu Lys Thr Ala Ser Thr Thr Ile Glu Ser Thr Leu Tyr Asp Ser 530 535 540 Leu Gln Tyr Ile Tyr Lys Ile Ile Ala Asn Ser Val Tyr Gly Leu Met 545 550 555 560 Gly Phe Ser Asn Ser Thr Leu Tyr Ser Tyr Ser Ser Ala Lys Thr Cys 565 570 575 Thr Thr Ile Gly Arg Asn Met Ile Thr Tyr Leu Asp Ser Ile Met Asn 580 585 590 Gly Ala Val Trp Glu Asn Asp Lys Leu Ile Leu Ala Asp Phe Pro Arg 595 600 605 Asn Ile Phe Ser Gly Glu Thr Met Phe Asn Lys Glu Leu Glu Val Pro 610 615 620 Asn Met Asn Glu Ser Phe Lys Phe Arg Ser Val Tyr Gly Asp Thr Asp 625 630 635 640 Ser Ile Phe Ser Glu Ile Ser Thr Lys Asp Ile Glu Lys Thr Ala Lys 645 650 655 Ile Ala Lys His Leu Glu His Ile Ile Asn Thr Lys Ile Leu His Ala 660 665 670 Asn Phe Lys Ile Glu Phe Glu Ala Ile Tyr Thr Gln Leu Ile Leu Gln 675 680 685 Ser Lys Lys Lys Tyr Thr Thr Ile Lys Tyr Leu Ala Asn Tyr Lys Pro 690 695 700 Gly Asp Lys Pro Ile Arg Val Asn Lys Gly Thr Ser Glu Thr Arg Arg 705 710 715 720 Asp Val Ala Leu Phe His Lys His Met Ile Gln Arg Tyr Lys Asp Met 725 730 735 Leu Met Lys Leu Leu Met Gln Ser Lys Gly Gln Gln Glu Ile Thr Arg 740 745 750 Leu Ile Leu Gln Ser Leu Glu Thr Asp Met Ile Ser Glu Phe Thr His 755 760 765 Asn Arg Glu Phe Glu Lys Tyr Leu Leu Ser Arg Lys His His Asn Asn 770 775 780 Tyr Lys Ser Ala Thr His Ser Asn Phe Glu Leu Val Lys Arg Tyr Asn 785 790 795 800 Leu Glu Asn Thr Glu Lys Ile Glu Ile Gly Glu Arg Tyr Tyr Tyr Ile 805 810 815 Tyr Ile Cys Asp Ile Ser Leu Pro Trp Gln Lys Lys Leu Cys Asn Ile 820 825 830 Leu Ser Tyr Glu Val Ile Ala Asp Ser Lys Phe Tyr Leu Pro Lys Asp 835 840 845 Lys Arg Ile Phe Tyr Glu Ile Tyr Phe Lys Arg Ile Ala Ser Glu Val 850 855 860 Val Asn Leu Leu Thr Asp Lys Thr Gln Cys 865 870 6 738 PRT Bos taurus (Bovine) 6 Pro Ser Phe Ala Pro Tyr Glu Ala Asn Val Asp Phe Glu Ile Arg Phe 1 5 10 15 Met Val Asp Thr Asp Ile Val Gly Cys Asn Trp Leu Glu Leu Pro Ala 20 25 30 Gly Lys Tyr Ile Leu Arg Pro Glu Gly Lys Ala Thr Leu Cys Gln Leu 35 40 45 Glu Ala Asp Val Leu Trp Ser Asp Val Ile Ser His Pro Pro Glu Gly 50 55 60 Glu Trp Gln Arg Ile Ala Pro Leu Arg Val Leu Ser Phe Asp Ile Glu 65 70 75 80 Cys Ala Gly Arg Lys Gly Ile Phe Pro Glu Pro Glu Arg Asp Pro Val 85 90 95 Ile Gln Ile Cys Ser Leu Gly Leu Arg Trp Gly Glu Pro Glu Pro Phe 100 105 110 Leu Arg Leu Ala Leu Thr Leu Arg Pro Cys Ala Pro Ile Leu Gly Ala 115 120 125 Lys Val Gln Ser Tyr Glu Arg Glu Glu Asp Leu Leu Gln Ala Trp Ser 130 135 140 Thr Phe Ile Arg Ile Met Asp Pro Asp Val Ile Thr Gly Tyr Asn Ile 145 150 155 160 Gln Asn Phe Asp Leu Pro Tyr Leu Ile Ser Arg Ala Gln Thr Leu Lys 165 170 175 Val Pro Gly Phe Pro Leu Leu Gly Arg Val Ile Gly Leu Arg Ser Asn 180 185 190 Ile Arg Glu Ser Ser Phe Gln Ser Arg Gln Thr Gly Arg Arg Asp Ser 195 200 205 Lys Val Val Ser Met Val Gly Arg Val Gln Met Asp Met Leu Gln Val 210 215 220 Leu Leu Arg Glu Tyr Lys Leu Arg Ser Tyr Thr Leu Asn Ala Val Ser 225 230 235 240 Phe His Phe Leu Gly Glu Gln Lys Glu Asp Val Gln His Ser Ile Ile 245 250 255 Thr Asp Leu Gln Asn Gly Asn Asp Gln Thr Arg Arg Arg Leu Ala Val 260 265 270 Tyr Cys Leu Lys Asp Ala Phe Leu Pro Leu Arg Leu Leu Glu Arg Leu 275 280 285 Met Val Leu Val Asn Ala Met Glu Met Ala Arg Val Thr Gly Val Pro 290 295 300 Leu Gly Tyr Leu Leu Ser Arg Gly Gln Gln Val Lys Val Val Ser Gln 305 310 315 320 Leu Leu Arg Gln Ala Met Arg Gln Gly Leu Leu Met Pro Val Val Lys 325 330 335 Thr Glu Gly Gly Glu Asp Tyr Thr Gly Ala Thr Val Ile Glu Pro Leu 340 345 350 Lys Gly Tyr Tyr Asp Val Pro Ile Ala Thr Leu Asp Phe Ser Ser Leu 355 360 365 Tyr Pro Ser Ile Met Met Ala His Asn Leu Cys Tyr Thr Thr Leu Leu 370 375 380 Arg Pro Gly Ala Ala Gln Lys Leu Gly Leu Thr Glu Asp Gln Phe Ile 385 390 395 400 Lys Thr Pro Thr Gly Asp Glu Phe Val Lys Ala Ser Val Arg Lys Gly 405 410 415 Leu Leu Pro Gln Ile Leu Glu Asn Leu Leu Ser Ala Arg Lys Arg Ala 420 425 430 Lys Ala Glu Leu Ala Lys Glu Thr Asp Pro Leu Arg Arg Gln Val Leu 435 440 445 Asp Gly Arg Gln Leu Ala Leu Lys Val Ser Ala Asn Ser Val Tyr Gly 450 455 460 Phe Thr Gly Ala Gln Val Gly Arg Leu Pro Cys Leu Glu Ile Ser Gln 465 470 475 480 Ser Val Thr Gly Phe Gly Arg Gln Met Ile Glu Lys Thr Lys Gln Leu 485 490 495 Val Glu Thr Lys Tyr Thr Val Glu Asn Gly Tyr Ser Thr Ser Ala Lys 500 505 510 Val Val Tyr Gly Asp Thr Asp Ser Val Met Cys Arg Phe Gly Val Ser 515 520 525 Ser Val Ala Glu Ala Met Ala Leu Gly Arg Glu Ala Ala Asp Trp Val 530 535 540 Ser Gly His Phe Pro Ser Pro Ile Arg Leu Glu Phe Glu Lys Val Tyr 545 550 555 560 Phe Pro Tyr Leu Leu Ile Ser Lys Lys Arg Tyr Ala Gly Leu Leu Phe 565 570 575 Ser Ser Arg Pro Asp Ala His Asp Arg Met Asp Cys Lys Gly Leu Glu 580 585 590 Ala Val Arg Arg Asp Asn Cys Pro Leu Val Ala Asn Leu Val Thr Ala 595 600 605 Ser Leu Arg Arg Leu Leu Ile Asp Arg Asp Pro Ser Gly Ala Val Ala 610 615 620 His Ala Gln Asp Val Ile Ser Asp Leu Leu Cys Asn Arg Ile Asp Ile 625 630 635 640 Ser Gln Leu Val Ile Thr Lys Glu Leu Thr Arg Ala Ala Ala Asp Tyr 645 650 655 Ala Gly Lys Gln Ala His Val Glu Leu Ala Glu Arg Met Arg Lys Arg 660 665 670 Asp Pro Gly Ser Ala Pro Ser Leu Gly Asp Arg Val Pro Tyr Val Ile 675 680 685 Ile Ser Ala Ala Lys Gly Val Ala Ala Tyr Met Lys Ser Glu Asp Pro 690 695 700 Leu Phe Val Leu Glu His Ser Leu Pro Ile Asp Thr Gln Tyr Tyr Leu 705 710 715 720 Glu Gln Gln Leu Ala Lys Pro Leu Leu Arg Ile Phe Glu Pro Ile Leu 725 730 735 Gly Glu 7 738 PRT Homo sapiens 7 Pro Ser Phe Ala Pro Tyr Glu Ala Asn Val Asp Phe Glu Ile Arg Phe 1 5 10 15 Met Val Asp Thr Asp Ile Val Gly Cys Asn Trp Leu Glu Leu Pro Ala 20 25 30 Gly Lys Tyr Ala Leu Arg Leu Lys Glu Lys Ala Thr Gln Cys Gln Leu 35 40 45 Glu Ala Asp Val Leu Trp Ser Asp Val Val Ser His Pro Pro Glu Gly 50 55 60 Pro Trp Gln Arg Ile Ala Pro Leu Arg Val Leu Ser Phe Asp Ile Glu 65 70 75 80 Cys Ala Gly Arg Lys Gly Ile Phe Pro Glu Pro Glu Arg Asp Pro Val 85 90 95 Ile Gln Ile Cys Ser Leu Gly Leu Arg Trp Gly Glu Pro Glu Pro Phe 100 105 110 Leu Arg Leu Ala Leu Thr Leu Arg Pro Cys Ala Pro Ile Leu Gly Ala 115 120 125 Lys Val Gln Ser Tyr Glu Lys Glu Glu Asp Leu Leu Gln Ala Trp Ser 130 135 140 Thr Phe Ile Arg Ile Met Asp Pro Asp Val Ile Thr Gly Tyr Asn Ile 145 150 155 160 Gln Asn Phe Asp Leu Pro Tyr Leu Ile Ser Arg Ala Gln Thr Leu Lys 165 170 175 Val Gln Thr Phe Pro Phe Leu Gly Arg Val Ala Gly Leu Cys Ser Asn 180 185 190 Ile Arg Asp Ser Ser Phe Gln Ser Lys Gln Thr Gly Arg Arg Asp Thr 195 200 205 Lys Val Val Ser Met Val Gly Arg Val Gln Met Asp Met Leu Gln Val 210 215 220 Leu Leu Arg Glu Tyr Lys Leu Arg Ser His Thr Leu Asn Ala Val Ser 225 230 235 240 Phe His Phe Leu Gly Glu Gln Lys Glu Asp Val Gln His Ser Ile Ile 245 250 255 Thr Asp Leu Gln Asn Gly Asn Asp Gln Thr Arg Arg Arg Leu Ala Val 260 265 270 Tyr Cys Leu Lys Asp Ala Tyr Leu Pro Leu Arg Leu Leu Glu Arg Leu 275 280 285 Met Val Leu Val Asn Ala Val Glu Met Ala Arg Val Thr Gly Val Pro 290 295 300 Leu Ser Tyr Leu Leu Ser Arg Gly Gln Gln Val Lys Val Val Ser Gln 305 310 315 320 Leu Leu Arg Gln Ala Met His Glu Gly Leu Leu Met Pro Val Val Lys 325 330 335 Ser Glu Gly Gly Glu Asp Tyr Thr Gly Ala Thr Val Ile Glu Pro Leu 340 345 350 Lys Gly Tyr Tyr Asp Val Pro Ile Ala Thr Leu Asp Phe Ser Ser Leu 355 360 365 Tyr Pro Ser Ile Met Met Ala His Asn Leu Cys Tyr Thr Thr Leu Leu 370 375 380 Arg Pro Gly Thr Ala Gln Lys Leu Gly Leu Thr Glu Asp Gln Phe Ile 385 390 395 400 Arg Thr Pro Thr Gly Asp Glu Phe Val Lys Thr Ser Val Arg Lys Gly 405 410 415 Leu Leu Pro Gln Ile Leu Glu Asn Leu Leu Ser Ala Arg Lys Arg Ala 420 425 430 Lys Ala Glu Leu Ala Lys Glu Thr Asp Pro Leu Arg Arg Gln Val Leu 435 440 445 Asp Gly Arg Gln Leu Ala Leu Lys Val Ser Ala Asn Ser Val Tyr Gly 450 455 460 Phe Thr Gly Ala Gln Val Gly Lys Leu Pro Cys Leu Glu Ile Ser Gln 465 470 475 480 Ser Val Thr Gly Phe Gly Arg Gln Met Ile Glu Lys Thr Lys Gln Leu 485 490 495 Val Glu Ser Lys Tyr Thr Val Glu Asn Gly Tyr Ser Thr Ser Ala Lys 500 505 510 Val Val Tyr Gly Asp Thr Asp Ser Val Met Cys Arg Phe Gly Val Ser 515 520 525 Ser Val Ala Glu Ala Met Ala Leu Gly Arg Glu Ala Ala Asp Trp Val 530 535 540 Ser Gly His Phe Pro Ser Pro Ile Arg Leu Glu Phe Glu Lys Val Tyr 545 550 555 560 Phe Pro Tyr Leu Leu Ile Ser Lys Lys Arg Tyr Ala Gly Leu Leu Phe 565 570 575 Ser Ser Arg Pro Asp Ala His Asp Arg Met Asp Cys Lys Gly Leu Glu 580 585 590 Ala Val Arg Arg Asp Asn Cys Pro Leu Val Ala Asn Leu Val Thr Ala 595 600 605 Ser Leu Arg Arg Leu Leu Ile Asp Arg Asp Pro Glu Gly Ala Val Ala 610 615 620 His Ala Gln Asp Val Ile Ser Asp Leu Leu Cys Asn Arg Ile Asp Ile 625 630 635 640 Ser Gln Leu Val Ile Thr Lys Glu Leu Thr Arg Ala Ala Ser Asp Tyr 645 650 655 Ala Gly Lys Gln Ala His Val Glu Leu Ala Glu Arg Met Arg Lys Arg 660 665 670 Asp Pro Gly Ser Ala Pro Ser Leu Gly Asp Arg Val Pro Tyr Val Ile 675 680 685 Ile Ser Ala Ala Lys Gly Val Ala Ala Tyr Met Lys Ser Glu Asp Pro 690 695 700 Leu Phe Val Leu Glu His Ser Leu Pro Ile Asp Thr Gln Tyr Tyr Leu 705 710 715 720 Glu Gln Gln Leu Ala Lys Pro Leu Leu Arg Ile Phe Glu Pro Ile Leu 725 730 735 Gly Glu 8 734 PRT Candida albicans (Yeast) 8 Ile Asp Pro Cys Ile Thr Tyr Asp Asn Ile Asn Tyr Leu Leu Arg Leu 1 5 10 15 Met Ile Asp Cys Lys Ile Thr Gly Met Ser Trp Ile Thr Leu Pro Arg 20 25 30 Asp Lys Tyr Lys Ile Val Asn Asn Lys Ile Ser Thr Cys Gln Ile Glu 35 40 45 Cys Ser Ile Asp Tyr Arg Asp Leu Ile Ser His Pro Pro Glu Gly Glu 50 55 60 Trp Leu Lys Met Ala Pro Leu Arg Ile Leu Ser Phe Asp Ile Glu Cys 65 70 75 80 Ala Gly Arg Lys Gly Val Phe Pro Glu Ala Glu His Asp Pro Val Ile 85 90 95 Gln Ile Ala Asn Val Val Gln Lys Ser Gly Glu Ser Lys Pro Phe Val 100 105 110 Arg Asn Val Phe Thr Val Asn Thr Cys Ser Ser Ile Ile Gly Ser Gln 115 120 125 Ile Phe Glu His Gln Arg Glu Glu Asp Met Leu Met His Trp Lys Glu 130 135 140 Phe Ile Thr Lys Val Asp Pro Asp Val Ile Ile Gly Tyr Asn Thr Ala 145 150 155 160 Asn Phe Asp Ile Pro Tyr Val Leu Asn Arg Ala Lys Ala Leu Gly Leu 165 170 175 Asn Asp Phe Pro Phe Phe Gly Arg Leu Lys Arg Val Lys Gln Glu Ile 180 185 190 Lys Asp Ala Val Phe Ser Ser Arg Ala Tyr Gly Thr Arg Glu Asn Lys 195 200 205 Val Val Asn Ile Asp Gly Arg Met Gln Leu Asp Leu Leu Gln Phe Ile 210 215 220 Gln Arg Glu Tyr Lys Leu Arg Ser Tyr Thr Leu Asn Ser Val Ser Ala 225 230 235 240 His Phe Leu Gly Glu Gln Lys Glu Asp Val Gln His Ser Ile Ile Thr 245 250 255 Asp Leu Gln Asn Gly Thr Lys Glu Thr Arg Arg Arg Leu Ala Val Tyr 260 265 270 Cys Leu Lys Asp Ala Phe Leu Pro Leu Arg Leu Leu Asp Lys Leu Met 275 280 285 Cys Leu Val Asn Tyr Thr Glu Met Ala Arg Val Thr Gly Val Pro Phe 290 295 300 Ser Tyr Leu Leu Ser Arg Gly Gln Gln Ile Lys Val Ile Ser Gln Leu 305 310 315 320 Phe Arg Lys Cys Leu Gln Glu Asp Ile Val Ile Pro Asn Leu Lys Ser 325 330 335 Glu Gly Ser Asn Glu Glu Tyr Glu Gly Ala Thr Val Ile Glu Pro Glu 340 345 350 Arg Gly Tyr Tyr Asp Val Pro Ile Ala Thr Leu Asp Phe Ser Ser Leu 355 360 365 Tyr Pro Ser Ile Met Met Ala His Asn Leu Cys Tyr Thr Thr Leu Leu 370 375 380 Asn Lys Asn Ser Ile Lys Ala Phe Gly Leu Thr Glu Asp Asp Tyr Thr 385 390 395 400 Lys Thr Pro Asn Gly Asp Tyr Phe Val His Ser Asn Leu Arg Lys Gly 405 410 415 Ile Leu Pro Thr Ile Leu Asp Glu Leu Leu Thr Ala Arg Lys Lys Ala 420 425 430 Lys Ala Asp Leu Lys Lys Glu Thr Asp Pro Phe Lys Lys Asp Val Leu 435 440 445 Asn Gly Arg Gln Leu Ala Leu Lys Ile Ser Ala Asn Ser Val Tyr Gly 450 455 460 Phe Thr Gly Ala Thr Val Gly Lys Leu Pro Cys Leu Ala Ile Ser Ser 465 470 475 480 Ser Val Thr Ala Phe Gly Arg Glu Met Ile Glu Lys Thr Lys Asn Glu 485 490 495 Val Gln Glu Tyr Tyr Ser Lys Lys Asn Gly His Pro Tyr Asp Ala Lys 500 505 510 Val Ile Tyr Gly Asp Thr Asp Ser Val Met Val Lys Phe Gly Tyr Gln 515 520 525 Asp Leu Glu Thr Cys Met Lys Leu Gly Glu Glu Ala Ala Asn Tyr Val 530 535 540 Ser Thr Lys Phe Lys Asn Pro Ile Lys Leu Glu Phe Glu Lys Val Tyr 545 550 555 560 Phe Pro Tyr Leu Leu Ile Asn Lys Lys Arg Tyr Ala Gly Leu Tyr Trp 565 570 575 Thr Arg Pro Glu Lys Phe Asp Lys Met Asp Thr Lys Gly Ile Glu Thr 580 585 590 Val Arg Arg Asp Asn Cys Gln Leu Val Gln Asn Val Ile Thr Lys Val 595 600 605 Leu Glu Phe Ile Leu Glu Glu Arg Asp Val Pro Lys Ala Gln Arg Phe 610 615 620 Val Lys Gln Thr Ile Ala Asp Leu Leu Gln Asn Arg Ile Asp Leu Ser 625 630 635 640 Gln Leu Val Ile Thr Lys Ala Tyr Ser Lys His Asp Tyr Ser Ala Lys 645 650 655 Gln Ala His Val Glu Leu Ala Glu Arg Met Arg Lys Arg Asp Pro Gly 660 665 670 Ser Ala Pro Thr Leu Gly Asp Arg Val Ala Tyr Val Ile Ile Lys Thr 675 680 685 Gly Gly Asp Lys Asn Tyr Glu Lys Ser Glu Asp Pro Leu Tyr Val Leu 690 695 700 Glu Asn Ser Leu Pro Ile Asp Val Lys Tyr Tyr Leu Asp Gln Gln Leu 705 710 715 720 Thr Lys Pro Leu Glu Arg Ile Phe Ile Pro Ile Leu Gly Glu 725 730 9 734 PRT Saccharomyces cerevisiae 9 Ser Asn Gly Thr Thr Thr Tyr Asp Asn Ile Ala Tyr Thr Leu Arg Leu 1 5 10 15 Met Val Asp Cys Gly Ile Val Gly Met Ser Trp Ile Thr Leu Pro Lys 20 25 30 Gly Lys Tyr Ser Met Ile Glu Pro Asn Asn Arg Val Ser Ser Cys Gln 35 40 45 Leu Glu Val Ser Ile Asn Tyr Arg Asn Leu Ile Ala His Pro Ala Glu 50 55 60 Gly Asp Trp Ser His Thr Ala Pro Leu Arg Ile Met Ser Phe Asp Ile 65 70 75 80 Glu Cys Ala Gly Arg Ile Gly Val Phe Pro Glu Pro Glu Tyr Asp Pro 85 90 95 Val Ile Gln Ile Ala Asn Val Val Ser Ile Ala Gly Ala Lys Lys Pro 100 105 110 Phe Ile Arg Asn Val Phe Thr Leu Asn Thr Cys Ser Pro Ile Thr Gly 115 120 125 Ser Met Ile Phe Ser His Ala Thr Glu Glu Glu Met Leu Ser Asn Trp 130 135 140 Arg Asn Phe Ile Ile Lys Val Asp Pro Asp Val Ile Ile Gly Tyr Asn 145 150 155 160 Thr Thr Asn Phe Asp Ile Pro Tyr Leu Leu Asn Arg Ala Lys Ala Leu 165 170 175 Lys Val Asn Asp Phe Pro Tyr Phe Gly Arg Leu Lys Thr Val Lys Gln 180 185 190 Glu Ile Lys Glu Ser Val Phe Ser Ser Lys Ala Tyr Gly Thr Arg Glu 195 200 205 Thr Lys Asn Val Asn Ile Asp Gly Arg Leu Gln Leu Asp Leu Leu Gln 210 215 220 Phe Ile Gln Arg Glu Tyr Lys Leu Arg Ser Tyr Thr Leu Asn Ala Val 225 230 235 240 Ser Ala His Phe Leu Gly Glu Gln Lys Glu Asp Val His Tyr Ser Ile 245 250 255 Ile Ser Asp Leu Gln Asn Gly Asp Ser Glu Thr Arg Arg Arg Leu Ala 260 265 270 Val Tyr Cys Leu Lys Asp Ala Tyr Leu Pro Leu Arg Leu Met Glu Lys 275 280 285 Leu Met Ala Leu Val Asn Tyr Thr Glu Met Ala Arg Val Thr Gly Val 290 295 300 Pro Phe Ser Tyr Leu Leu Ala Arg Gly Gln Gln Ile Lys Val Val Ser 305 310 315 320 Gln Leu Phe Arg Lys Cys Leu Glu Ile Asp Thr Val Ile Pro Asn Met 325 330 335 Gln Ser Gln Ala Ser Asp Asp Gln Tyr Glu Gly Ala Thr Val Ile Glu 340 345 350 Pro Ile Arg Gly Tyr Tyr Asp Val Pro Ile Ala Thr Leu Asp Phe Asn 355 360 365 Ser Leu Tyr Pro Ser Ile Met Met Ala His Asn Leu Cys Tyr Thr Thr 370 375 380 Leu Cys Asn Lys Ala Thr Val Glu Arg Leu Asn Leu Lys Ile Asp Glu 385 390 395 400 Asp Tyr Val Ile Thr Pro Asn Gly Asp Tyr Phe Val Thr Thr Lys Arg 405 410 415 Arg Arg Gly Ile Leu Pro Ile Ile Leu Asp Glu Leu Ile Ser Ala Arg 420 425 430 Lys Arg Ala Lys Lys Asp Leu Arg Asp Glu Lys Asp Pro Phe Lys Arg 435 440 445 Asp Val Leu Asn Gly Arg Gln Leu Ala Leu Lys Ile Ser Ala Asn Ser 450 455 460 Val Tyr Gly Phe Thr Gly Ala Thr Val Gly Lys Leu Pro Cys Leu Ala 465 470 475 480 Ile Ser Ser Ser Val Thr Ala Tyr Gly Arg Thr Met Ile Leu Lys Thr 485 490 495 Lys Thr Ala Val Gln Glu Lys Tyr Cys Ile Lys Asn Gly Tyr Lys His 500 505 510 Asp Ala Val Val Val Tyr Gly Asp Thr Asp Ser Val Met Val Lys Phe 515 520 525 Gly Thr Thr Asp Leu Lys Glu Ala Met Asp Leu Gly Thr Glu Ala Ala 530 535 540 Lys Tyr Val Ser Thr Leu Phe Lys His Pro Ile Asn Leu Glu Phe Glu 545 550 555 560 Lys Ala Tyr Phe Pro Tyr Leu Leu Ile Asn Lys Lys Arg Tyr Ala Gly 565 570 575 Leu Phe Trp Thr Asn Pro Asp Lys Phe Asp Lys Leu Asp Gln Lys Gly 580 585 590 Leu Ala Ser Val Arg Arg Asp Ser Cys Ser Leu Val Ser Ile Val Met 595 600 605 Asn Lys Val Leu Lys Lys Ile Leu Ile Glu Arg Asn Val Asp Gly Ala 610 615 620 Leu Ala Phe Val Arg Glu Thr Ile Asn Asp Ile Leu His Asn Arg Val 625 630 635 640 Asp Ile Ser Lys Leu Ile Ile Ser Lys Thr Leu Ala Pro Asn Tyr Thr 645 650 655 Asn Pro Gln Pro His Ala Val Leu Ala Glu Arg Met Lys Arg Arg Glu 660 665 670 Gly Val Gly Pro Asn Val Gly Asp Arg Val Asp Tyr Val Ile Ile Gly 675 680 685 Gly Asn Asp Lys Leu Tyr Asn Arg Ala Glu Asp Pro Leu Phe Val Leu 690 695 700 Glu Asn Asn Ile Gln Val Asp Ser Arg Tyr Tyr Leu Thr Asn Gln Leu 705 710 715 720 Gln Asn Pro Ile Ile Ser Ile Val Ala Pro Ile Ile Gly Asp 725 730 10 735 PRT Schizosaccharomyces pombe 10 Val Gly Val Thr Thr Phe Glu Ser Asn Thr Gln Tyr Leu Leu Arg Phe 1 5 10 15 Met Ile Asp Cys Asp Val Val Gly Met Asn Trp Ile His Leu Pro Ala 20 25 30 Ser Lys Tyr Gln Phe Arg Tyr Gln Asn Arg Val Ser Asn Cys Gln Ile 35 40 45 Glu Ala Trp Ile Asn Tyr Lys Asp Leu Ile Ser Leu Pro Ala Glu Gly 50 55 60 Gln Trp Ser Lys Met Ala Pro Leu Arg Ile Met Ser Phe Asp Ile Glu 65 70 75 80 Cys Ala Gly Arg Lys Gly Val Phe Pro Asp Pro Ser Ile Asp Pro Val 85 90 95 Ile Gln Ile Ala Ser Ile Val Thr Gln Tyr Gly Asp Ser Thr Pro Phe 100 105 110 Val Arg Asn Val Phe Cys Val Asp Thr Cys Ser Gln Ile Val Gly Thr 115 120 125 Gln Val Tyr Glu Phe Gln Asn Gln Ala Glu Met Leu Ser Ser Trp Ser 130 135 140 Lys Phe Val Arg Asp Val Asp Pro Asp Val Leu Ile Gly Tyr Asn Ile 145 150 155 160 Cys Asn Phe Asp Ile Pro Tyr Leu Leu Asp Arg Ala Lys Ser Leu Arg 165 170 175 Ile His Asn Phe Pro Leu Leu Gly Arg Ile His Asn Phe Phe Ser Val 180 185 190 Ala Lys Glu Thr Ser Phe Ser Ser Lys Ala Tyr Gly Thr Arg Glu Ser 195 200 205 Lys Thr Thr Ser Ile Pro Gly Arg Leu Gln Leu Asp Met Leu Gln Val 210 215 220 Met Gln Arg Asp Phe Lys Leu Arg Ser Tyr Ser Leu Asn Ala Val Cys 225 230 235 240 Ser Gln Phe Leu Gly Glu Gln Lys Glu Asp Val His Tyr Ser Ile Ile 245 250 255 Thr Asp Leu Gln Asn Gly Thr Ala Asp Ser Arg Arg Arg Leu Ala Ile 260 265 270 Tyr Cys Leu Lys Asp Ala Tyr Leu Pro Gln Arg Leu Met Asp Lys Leu 275 280 285 Met Cys Phe Val Asn Tyr Thr Glu Met Ala Arg Val Thr Gly Val Pro 290 295 300 Phe Asn Phe Leu Leu Ala Arg Gly Gln Gln Ile Lys Val Ile Ser Gln 305 310 315 320 Leu Phe Cys Lys Ala Leu Gln His Asp Leu Val Val Pro Asn Ile Arg 325 330 335 Val Asn Gly Thr Asp Glu Gln Tyr Glu Gly Ala Thr Val Ile Glu Pro 340 345 350 Ile Lys Gly Tyr Tyr Asp Thr Pro Ile Ala Thr Leu Asp Phe Ser Ser 355 360 365 Leu Tyr Pro Ser Ile Met Gln Ala His Asn Leu Cys Tyr Thr Thr Leu 370 375 380 Leu Asp Ser Asn Thr Ala Glu Leu Leu Lys Leu Lys Gln Asp Val Asp 385 390 395 400 Tyr Ser Val Thr Pro Asn Gly Asp Tyr Phe Val Lys Pro His Val Arg 405 410 415 Lys Gly Leu Leu Pro Ile Ile Leu Ala Asp Leu Leu Asn Ala Arg Lys 420 425 430 Lys Ala Lys Ala Asp Leu Lys Lys Glu Thr Asp Pro Phe Lys Lys Ala 435 440 445 Val Leu Asp Gly Arg Gln Leu Ala Leu Lys Val Ser Ala Asn Ser Val 450 455 460 Tyr Gly Phe Thr Gly Ala Thr Asn Gly Arg Leu Pro Cys Leu Ala Ile 465 470 475 480 Ser Ser Ser Val Thr Ser Tyr Gly Arg Gln Met Ile Glu Lys Thr Lys 485 490 495 Asp Val Val Glu Lys Arg Tyr Arg Ile Glu Asn Gly Tyr Ser His Asp 500 505 510 Ala Val Val Ile Tyr Gly Asp Thr Asp Ser Val Met Val Lys Phe Gly 515 520 525 Val Lys Thr Leu Pro Glu Ala Met Lys Leu Gly Glu Glu Ala Ala Asn 530 535 540 Tyr Val Ser Asp Gln Phe Pro Asn Pro Ile Asn Trp Ser Phe Ser Thr 545 550 555 560 Phe Pro Tyr Leu Leu Ile Ser Lys Lys Arg Tyr Ala Gly Leu Phe Trp 565 570 575 Thr Arg Thr Asp Thr Tyr Asp Lys Met Asp Ser Lys Gly Ile Glu Thr 580 585 590 Val Arg Arg Asp Asn Cys Pro Leu Val Ser Tyr Val Ile Asp Thr Ala 595 600 605 Leu Arg Lys Met Leu Ile Asp Gln Asp Val Glu Gly Ala Gln Leu Phe 610 615 620 Thr Lys Lys Val Ile Ser Asp Leu Leu Gln Asn Lys Ile Asp Met Ser 625 630 635 640 Gln His Val Ile Thr Lys Ala Leu Ser Lys Thr Asp Tyr Ala Ala Lys 645 650 655 Met Ala His Val Glu Leu Ala Glu Arg Met Arg Lys Arg Asp Ala Gly 660 665 670 Ser Ala Pro Ala Ile Gly Asp Arg Val Ala Tyr Val Ile Ile Lys Gly 675 680 685 Ala Gln Gly Asp Gln Phe Tyr Met Arg Ser Glu Asp Pro Ile Tyr Val 690 695 700 Leu Glu Asn Asn Ile Pro Ile Asp Ala Lys Tyr Tyr Leu Glu Asn Gln 705 710 715 720 Leu Ser Lys Pro Leu Leu Arg Ile Phe Glu Pro Ile Leu Gly Glu 725 730 735 11 741 PRT Plasmodium falciparum 11 Ile Gly Gly Ile Val Tyr Glu Ala Asn Leu Pro Phe Ile Leu Arg Tyr 1 5 10 15 Ile Ile Asp His Lys Ile Thr Gly Ser Ser Trp Ile Asn Cys Lys Lys 20 25 30 Gly His Tyr Tyr Ile Arg Asn Lys Asn Lys Lys Ile Ser Asn Cys Thr 35 40 45 Phe Glu Ile Asp Ile Ser Tyr Glu His Val Glu Pro Ile Thr Leu Glu 50 55 60 Asn Glu Tyr Gln Gln Ile Pro Lys Leu Arg Ile Leu Ser Phe Asp Ile 65 70 75 80 Glu Cys Ile Lys Leu Asp Gly Lys Gly Phe Pro Glu Ala Lys Asn Asp 85 90 95 Pro Ile Ile Gln Ile Ser Ser Ile Leu Tyr Phe Gln Gly Glu Pro Ile 100 105 110 Asp Asn Cys Thr Lys Phe Ile Phe Thr Leu Leu Glu Cys Ala Ser Ile 115 120 125 Pro Gly Ser Asn Val Ile Trp Phe Asn Asp Glu Lys Thr Leu Leu Glu 130 135 140 Ala Trp Asn Glu Phe Ile Ile Arg Ile Asp Pro Asp Phe Leu Thr Gly 145 150 155 160 Tyr Asn Ile Ile Asn Phe Asp Leu Pro Tyr Ile Leu Asn Arg Gly Thr 165 170 175 Ala Leu Asn Leu Lys Lys Leu Lys Phe Leu Gly Arg Ile Lys Asn Val 180 185 190 Ala Ser Thr Val Lys Asp Ser Ser Phe Ser Ser Lys Gln Phe Gly Thr 195 200 205 His Glu Thr Lys Glu Ile Asn Ile Phe Gly Arg Ile Gln Phe Asp Val 210 215 220 Tyr Asp Leu Ile Lys Arg Asp Tyr Lys Leu Lys Ser Tyr Thr Leu Asn 225 230 235 240 Tyr Val Ser Phe Glu Phe Leu Lys Glu Gln Lys Glu Asp Val His Tyr 245 250 255 Ser Ile Met Asn Asp Leu Gln Asn Glu Ser Pro Glu Ser Arg Lys Arg 260 265 270 Ile Ala Thr Tyr Cys Ile Lys Asp Gly Val Leu Pro Leu Arg Leu Ile 275 280 285 Asp Lys Leu Leu Phe Ile Tyr Asn Tyr Val Glu Met Ala Arg Val Thr 290 295 300 Gly Thr Pro Phe Val Tyr Leu Leu Thr Arg Gly Gln Gln Ile Lys Val 305 310 315 320 Thr Ser Gln Leu Tyr Arg Lys Cys Lys Glu Leu Asn Tyr Val Ile Pro 325 330 335 Ser Thr Tyr Met Lys Val Asn Thr Asn Glu Lys Tyr Glu Gly Ala Thr 340 345 350 Val Leu Glu Pro Ile Lys Gly Tyr Tyr Ile Glu Pro Ile Ser Thr Leu 355 360 365 Asp Phe Ala Ser Leu Tyr Pro Ser Ile Met Ile Ala His Asn Leu Cys 370 375 380 Tyr Ser Thr Leu Ile Lys Ser Asn His Glu Val Ser Asp Leu Gln Asn 385 390 395 400 Asp Asp Ile Thr Thr Ile Gln Gly Lys Asn Asn Leu Lys Phe Val Lys 405 410 415 Lys Asn Val Lys Lys Gly Ile Leu Pro Leu Ile Val Glu Glu Leu Ile 420 425 430 Glu Ala Arg Lys Lys Val Lys Leu Leu Ile Lys Asn Glu Lys Asn Asn 435 440 445 Ile Thr Lys Met Val Leu Asn Gly Arg Gln Leu Ala Leu Lys Ile Ser 450 455 460 Ala Asn Ser Val Tyr Gly Tyr Thr Gly Ala Ser Ser Gly Gly Gln Leu 465 470 475 480 Pro Cys Leu Glu Val Ala Val Ser Ile Thr Thr Leu Gly Arg Ser Met 485 490 495 Ile Glu Lys Thr Lys Glu Arg Val Glu Ser Phe Tyr Cys Lys Ser Asn 500 505 510 Gly Tyr Glu His Asn Ser Thr Val Ile Tyr Gly Asp Thr Asp Ser Val 515 520 525 Met Val Lys Phe Gly Thr Asn Asn Ile Glu Glu Ala Met Thr Leu Gly 530 535 540 Lys Asp Ala Ala Glu Arg Ile Ser Lys Glu Phe Leu Ser Pro Ile Lys 545 550 555 560 Leu Glu Phe Glu Lys Val Tyr Cys Pro Tyr Leu Leu Leu Asn Lys Lys 565 570 575 Arg Tyr Ala Gly Leu Leu Tyr Thr Asn Pro Asn Lys His Asp Lys Met 580 585 590 Asp Cys Lys Gly Ile Glu Thr Val Arg Arg Asp Phe Cys Ile Leu Ile 595 600 605 Gln Gln Met Met Glu Thr Val Leu Asn Lys Leu Leu Ile Glu Lys Asn 610 615 620 Leu Asn Ser Ala Ile Glu Tyr Thr Lys Ser Lys Ile Lys Glu Leu Leu 625 630 635 640 Thr Asn Asn Ile Asp Met Ser Leu Leu Val Val Thr Lys Ser Leu Gly 645 650 655 Lys Thr Asp Tyr Glu Thr Arg Leu Pro His Val Glu Leu Ala Lys Lys 660 665 670 Leu Lys Gln Arg Asp Ser Ala Thr Ala Pro Asn Val Gly Asp Arg Val 675 680 685 Ser Tyr Ile Ile Val Lys Gly Val Lys Gly Gln Ala Gln Tyr Glu Arg 690 695 700 Ala Glu Asp Pro Leu Tyr Val Leu Asp Asn Asn Leu Ala Ile Asp Tyr 705 710 715 720 Asn His Tyr Leu Asp Ala Ile Lys Ser Pro Leu Ser Arg Ile Phe Glu 725 730 735 Val Ile Met Gln Asn 740 12 744 PRT Chlorella virus NY-2A 12 Glu Tyr Gln Ile Tyr Glu Ser Ser Val Asp Pro Ile Ile Arg Ile Phe 1 5 10 15 His Leu Arg Asn Ile Asn Pro Ala Asp Trp Met His Val Ser Lys Ala 20 25 30 Phe Pro Val Glu Thr Arg Ile Ser Asn Ser Asp Ile Glu Val Glu Thr 35 40 45 Ser Phe Gln His Leu Gly Pro Ser Asp Leu Lys Glu Val Pro Pro Leu 50 55 60 Ile Ile Ala Ser Trp Asp Ile Glu Thr Tyr Ser Lys Asp Arg Lys Phe 65 70 75 80 Pro Leu Ala Glu Asn Pro Ala Asp Tyr Cys Ile Gln Ile Ala Thr Thr 85 90 95 Phe Gln Lys Tyr Gly Glu Pro Glu Pro Tyr Arg Arg Val Val Val Cys 100 105 110 Tyr Lys Gln Thr Ala Ser Val Glu Gly Val Glu Ile Ile Ser Cys Ala 115 120 125 Glu Glu Ala Asp Val Met Asn Thr Trp Met Thr Ile Leu Gln Asp Glu 130 135 140 Ile Thr Asp Val Ser Ile Gly Tyr Asn Leu Trp Gln Tyr Asp Leu Arg 145 150 155 160 Tyr Ile His Gly Arg Ser Met Met Cys Val Asp Asp Ile Thr Gly Glu 165 170 175 Asp Asn Val Arg Leu Lys Asn Leu Gly Arg Leu Leu Val Gly Gly Gly 180 185 190 Glu Val Ile Glu Arg Asp Leu Ser Ser Asn Ala Phe Gly Gln Asn Lys 195 200 205 Phe Phe Leu Leu Asp Met Pro Gly Val Met Gln Ile Asp Leu Leu Gln 210 215 220 Trp Phe Arg Lys Asn Arg Asn Leu Glu Ser Tyr Ser Leu Asn Asn Val 225 230 235 240 Ser Lys Leu Tyr Leu Gly Asp Gln Lys Asn Asp Leu Pro Ala Met Gln 245 250 255 Ile Phe Glu Lys Phe Glu Gly Gly Ala Asp Asp Arg Ala Ile Ile Ala 260 265 270 Ala Tyr Ala Arg Lys Asp Thr Asp Leu Pro Leu Lys Leu Leu Lys Lys 275 280 285 Met Ala Ile Leu Glu Asp Ile Thr Glu Met Ala Asn Ala Val Lys Val 290 295 300 Pro Val Asp Tyr Ile Asn Phe Arg Gly Gln Gln Val Arg Ala Phe Ser 305 310 315 320 Cys Leu Val Gly Lys Ala Arg Gln Met Asn Tyr Ala Ile Pro Asp Asp 325 330 335 Lys Met Trp Thr Val Asp Gly Lys Tyr Glu Gly Ala Thr Val Leu Asp 340 345 350 Ala Lys Lys Gly Ala Tyr Phe Thr Ser Ile Ala Ala Leu Asp Phe Ala 355 360 365 Ser Leu Tyr Pro Ser Ile Ile Arg Ala His Asn Met Ser Pro Glu Thr 370 375 380 Leu Val Met Asp Lys Arg Phe Glu Asn Leu Pro Gly Ile Glu Tyr Tyr 385 390 395 400 Glu Ile Glu Thr Gly Leu Gly Thr Phe Lys Tyr Pro Gln Lys Asn Asp 405 410 415 Glu Thr Gly Glu Gly Gln Gly Val Val Pro Ala Leu Leu Asp Asp Leu 420 425 430 Ala Lys Phe Arg Lys Gln Ala Lys Lys His Met Ala Glu Ala Lys Lys 435 440 445 Asn Asp Asp Glu Phe Arg Glu Ala Leu Tyr Asp Ala Gln Gln Arg Ser 450 455 460 Tyr Lys Ile Val Met Asn Ser Val Tyr Gly Phe Leu Gly Ala Ser Arg 465 470 475 480 Gly Phe Ile Pro Cys Val Pro Ile Ala Ala Ser Val Thr Ala Thr Gly 485 490 495 Arg Lys Met Ile Glu His Thr Ala Lys Arg Val Thr Glu Leu Leu Pro 500 505 510 Gly Ser Glu Val Ile Tyr Gly Asp Thr Asp Ser Val Met Ile Arg Met 515 520 525 Lys Leu Pro Asp Asp Lys Ile His Asp Met Asp Glu Gln Phe Lys Met 530 535 540 Ala Lys Trp Leu Ala Gly Glu Ile Thr Lys Asp Phe Lys Ala Pro Asn 545 550 555 560 Asp Leu Glu Phe Glu Lys Ile Tyr Tyr Pro Tyr Ile Leu Tyr Ser Lys 565 570 575 Lys Arg Tyr Ala Ala Ile Lys Phe Glu Asp Pro Asp Glu Lys Gly Lys 580 585 590 Val Asp Val Lys Gly Leu Ala Leu Val Arg Arg Asp Phe Ser Pro Ile 595 600 605 Thr Arg Glu Ile Leu Lys Glu Ser Leu Asp Thr Ile Leu Phe Lys Lys 610 615 620 Asp Thr Pro Thr Ala Val Thr Glu Thr Val Glu Cys Ile Arg Lys Val 625 630 635 640 Leu Asp Asn Glu Tyr Pro Met Glu Lys Phe Thr Met Ser Lys Thr Leu 645 650 655 Lys Thr Gly Tyr Lys Asn Glu Cys Gln Pro His Leu His Val Ser Asn 660 665 670 Lys Ile Phe Glu Arg Thr Gly Phe Pro Val Pro Ser Gly Ala Arg Val 675 680 685 Pro Phe Val Tyr Ile Glu Asp Lys Lys Asn Leu Asp Thr Lys Gln Ser 690 695 700 Phe Arg Ala Glu Asp Pro Thr Phe Ala Gln Glu Asn Asp Leu Ile Val 705 710 715 720 Asp Arg Leu Phe Tyr Ile Glu His Gln Leu Met Lys Pro Ile Cys Ser 725 730 735 Leu Phe Glu Pro Leu Leu Asp Asp 740 13 743 PRT Paramecium bursaria chlorella virus 1 13 Tyr Gln Ile Tyr Glu Ser Ser Val Asp Pro Ile Ile Arg Val Phe His 1 5 10 15 Leu Arg Asn Ile Asn Pro Ala Asp Trp Ile Arg Val Ser Lys Ala Tyr 20 25 30 Pro Ala Gln Thr Arg Ile Ser Asn Ser Asp Ile Glu Val Glu Thr Ser 35 40 45 Phe Gln His Leu Gly Pro Val Glu Asp Lys Thr Val Pro Pro Leu Val 50 55 60 Ile Ala Ser Trp Asp Ile Glu Thr Tyr Ser Lys Asp Arg Lys Phe Pro 65 70 75 80 Leu Ala Glu Asn Pro Thr Asp Tyr Cys Ile Gln Ile Ala Thr Thr Phe 85 90 95 Gln Lys Tyr Gly Glu Pro Glu Pro Tyr Arg Arg Val Val Val Cys Tyr 100 105 110 Lys Gln Thr Ala Pro Val Glu Gly Val Glu Ile Ile Ser Cys Leu Glu 115 120 125 Glu Ser Asp Val Met Asn Thr Trp Met Lys Ile Leu Gln Asp Glu Lys 130 135 140 Thr Asp Val Ser Ile Gly Tyr Asn Thr Trp Gln Tyr Asp Leu Arg Tyr 145 150 155 160 Val His Gly Arg Thr Gln Met Cys Val Asp Asp Met Thr Gly Glu Asp 165 170 175 Lys Val Lys Leu Ser Asn Leu Gly Arg Leu Leu Ser Gly Gly Gly Glu 180 185 190 Val Val Glu Arg Asp Leu Ser Ser Asn Ala Phe Gly Gln Asn Lys Phe 195 200 205 Phe Leu Leu Asp Met Pro Gly Val Met Gln Ile Asp Leu Leu Gln Trp 210 215 220 Phe Arg Lys Asn Arg Asn Leu Glu Ser Tyr Ser Leu Asn Asn Val Ser 225 230 235 240 Lys Leu Tyr Leu Gly Asp Gln Lys Asn Asp Leu Pro Ala Met Gln Ile 245 250 255 Phe Glu Lys Phe Glu Gly Asn Ala Glu Asp Arg Ala Ile Ile Ala Ala 260 265 270 Tyr Ala Ala Lys Asp Thr Asp Leu Pro Leu Lys Leu Leu Lys Lys Met 275 280 285 Ala Ile Leu Glu Asp Leu Thr Glu Met Ala Asn Ala Val Lys Val Pro 290 295 300 Val Asp Tyr Ile Asn Phe Arg Gly Gln Gln Ile Arg Ala Phe Ser Cys 305 310 315 320 Leu Val Gly Lys Ala Arg Gln Met Asn Tyr Ala Ile Pro Asp Asp Lys 325 330 335 Ala Trp Ala Thr Glu Gly Lys Tyr Glu Gly Ala Thr Val Leu Asp Ala 340 345 350 Lys Lys Gly Ala Tyr Phe Thr Pro Ile Ala Ala Leu Asp Phe Ala Ser 355 360 365 Leu Tyr Pro Ser Ile Ile Arg Ala His Asn Met Ser Pro Glu Thr Leu 370 375 380 Val Met Glu Lys Arg Phe Glu Asn Val Pro Gly Val Glu Tyr Tyr Glu 385 390 395 400 Ile Glu Thr Gly Leu Gly Lys Phe Lys Tyr Ala Gln Lys Asn Asp Glu 405 410 415 Thr Gly Glu Gly Gln Gly Val Val Pro Ala Leu Leu Asp Asp Leu Ala 420 425 430 Lys Phe Arg Lys Leu Ala Lys Lys His Met Ala Glu Ala Lys Arg Asn 435 440 445 Gly Asp Asp Phe Lys Glu Ala Leu Tyr Asp Ala Gln Gln Arg Ser Phe 450 455 460 Lys Val Val Met Asn Ser Val Tyr Gly Phe Leu Gly Ala Ser Lys Gly 465 470 475 480 Phe Ile Pro Cys Val Pro Ile Ala Ala Ser Val Thr Ala Thr Gly Arg 485 490 495 Lys Met Ile Glu His Thr Ala Lys Arg Ala Val Glu Leu Leu Pro Gly 500 505 510 Ser Glu Val Ile Tyr Gly Asp Thr Asp Ser Val Met Val Lys Met Lys 515 520 525 Leu Pro Asp Asp Lys Val His Asp Met Asp Glu Gln Phe Lys Met Ala 530 535 540 Lys Trp Leu Ala Gly Glu Ile Thr Lys Asp Phe Arg Ala Pro Asn Asp 545 550 555 560 Leu Glu Phe Glu Lys Ile Tyr Tyr Pro Tyr Ile Leu Tyr Ser Lys Lys 565 570 575 Arg Tyr Ala Ala Val Lys Phe Glu Glu Pro Asp Glu Lys Gly Lys Val 580 585 590 Asp Val Lys Gly Leu Ala Leu Val Arg Arg Asp Phe Ser Pro Ile Thr 595 600 605 Arg Asp Ile Leu Lys Glu Ser Leu Asp Thr Ile Leu Tyr Lys Lys Asp 610 615 620 Thr Pro Thr Ala Val Ser Glu Thr Leu Glu Arg Ile Arg Lys Val Leu 625 630 635 640 Asp Asn Glu Tyr Pro Met Glu Lys Phe Met Met Ser Lys Leu Leu Lys 645 650 655 Thr Gly Tyr Lys Asn Glu Cys Gln Pro His Leu His Val Ala Asn Lys 660 665 670 Ile Tyr Glu Arg Thr Gly Phe Pro Val Pro Ser Gly Ala Arg Val Pro 675 680 685 Phe Val Tyr Ile Glu Asp Lys Lys Asn Pro Asp Ile Lys Gln Ser Phe 690 695 700 Lys Ala Glu Asp Pro Thr Phe Ala Gln Asp Asn Gly Leu Ile Val Asp 705 710 715 720 Arg Leu Phe Tyr Ile Glu His Gln Leu Leu Lys Pro Ile Cys Ser Leu 725 730 735 Phe Glu Pro Leu Leu Asp Asp 740 14 773 PRT Epstein-barr virus (strain B95-8) 14 Gly Cys Arg Ile Phe Glu Ala Asn Val Asp Ala Thr Arg Arg Phe Val 1 5 10 15 Leu Asp Asn Asp Phe Val Thr Phe Gly Trp Tyr Ser Cys Arg Arg Ala 20 25 30 Ile Pro Arg Leu Gln His Arg Asp Ser Tyr Ala Glu Leu Glu Tyr Asp 35 40 45 Cys Glu Val Gly Asp Leu Ser Val Arg Arg Glu Asp Ser Ser Trp Pro 50 55 60 Ser Tyr Gln Ala Leu Ala Phe Asp Ile Glu Cys Leu Gly Glu Glu Gly 65 70 75 80 Phe Pro Thr Ala Thr Asn Glu Ala Asp Leu Ile Leu Gln Ile Ser Cys 85 90 95 Val Leu Trp Ser Thr Gly Glu Glu Ala Gly Arg Tyr Arg Arg Ile Leu 100 105 110 Leu Thr Leu Gly Thr Cys Glu Asp Ile Glu Gly Val Glu Val Tyr Glu 115 120 125 Phe Pro Ser Glu Leu Asp Met Leu Tyr Ala Phe Phe Gln Leu Ile Arg 130 135 140 Asp Leu Ser Val Glu Ile Val Thr Gly Tyr Asn Val Ala Asn Phe Asp 145 150 155 160 Trp Pro Tyr Ile Leu Asp Arg Ala Arg His Ile Tyr Ser Ile Asn Pro 165 170 175 Ala Ser Leu Gly Lys Ile Arg Ala Gly Gly Val Cys Glu Val Arg Arg 180 185 190 Pro His Asp Ala Gly Lys Gly Phe Leu Arg Ala Asn Thr Lys Val Arg 195 200 205 Ile Thr Gly Leu Ile Pro Ile Asp Met Tyr Ala Val Cys Arg Asp Lys 210 215 220 Leu Ser Leu Ser Asp Tyr Lys Leu Asp Thr Val Ala Arg His Leu Leu 225 230 235 240 Gly Ala Lys Lys Glu Asp Val His Tyr Lys Glu Ile Pro Arg Leu Phe 245 250 255 Ala Ala Gly Pro Glu Gly Arg Arg Arg Leu Gly Met Tyr Cys Val Gln 260 265 270 Asp Ser Ala Leu Val Met Asp Leu Leu Asn His Phe Val Ile His Val 275 280 285 Glu Val Ala Glu Ile Ala Lys Ile Ala His Ile Pro Cys Arg Arg Val 290 295 300 Leu Asp Asp Gly Gln Gln Ile Arg Val Phe Ser Cys Leu Leu Ala Ala 305 310 315 320 Ala Gln Lys Glu Asn Phe Ile Leu Pro Met Pro Ser Ala Ser Asp Arg 325 330 335 Asp Gly Tyr Gln Gly Ala Thr Val Ile Gln Pro Leu Ser Gly Phe Tyr 340 345 350 Asn Ser Pro Val Leu Val Val Asp Phe Ala Ser Leu Tyr Pro Ser Ile 355 360 365 Ile Gln Ala His Asn Leu Cys Tyr Ser Thr Met Ile Thr Pro Gly Glu 370 375 380 Glu His Arg Leu Ala Gly Leu Arg Pro Gly Glu Asp Tyr Glu Ser Phe 385 390 395 400 Arg Leu Thr Gly Gly Val Tyr His Phe Val Lys Lys His Val His Glu 405 410 415 Ser Phe Leu Ala Ser Leu Leu Thr Ser Trp Leu Ala Lys Arg Lys Ala 420 425 430 Ile Lys Lys Leu Leu Ala Ala Cys Glu Asp Pro Arg Gln Arg Thr Ile 435 440 445 Leu Asp Lys Gln Gln Leu Ala Ile Lys Cys Thr Cys Asn Ala Val Tyr 450 455 460 Gly Phe Thr Gly Val Ala Asn Gly Leu Phe Pro Cys Leu Ser Ile Ala 465 470 475 480 Glu Thr Val Thr Leu Gln Gly Arg Thr Met Leu Glu Arg Ala Lys Ala 485 490 495 Phe Val Glu Ala Leu Ser Pro Ala Asn Leu Gln Ala Leu Ala Pro Ser 500 505 510 Pro Asp Ala Trp Ala Pro Leu Asn Pro Glu Gly Gln Leu Arg Val Ile 515 520 525 Tyr Gly Asp Thr Asp Ser Leu Phe Ile Glu Cys Arg Gly Phe Ser Glu 530 535 540 Ser Glu Thr Leu Arg Phe Ala Asp Ala Leu Ala Ala His Thr Thr Arg 545 550 555 560 Ser Leu Phe Val Ala Pro Ile Ser Leu Glu Ala Glu Lys Thr Phe Ser 565 570 575 Cys Leu Met Leu Ile Thr Lys Lys Arg Tyr Val Gly Val Leu Thr Asp 580 585 590 Gly Lys Thr Leu Met Lys Gly Val Glu Leu Val Arg Lys Thr Ala Cys 595 600 605 Lys Phe Val Gln Thr Arg Cys Arg Arg Val Leu Asp Leu Val Leu Ala 610 615 620 Asp Ala Arg Val Lys Glu Ala Ala Ser Leu Leu Ser His Arg Pro Phe 625 630 635 640 Gln Glu Ser Phe Thr Gln Gly Leu Pro Val Gly Phe Leu Pro Val Ile 645 650 655 Asp Ile Leu Asn Gln Ala Tyr Thr Asp Leu Arg Glu Gly Arg Val Pro 660 665 670 Met Gly Glu Leu Cys Phe Ser Thr Glu Leu Ser Arg Lys Leu Ser Ala 675 680 685 Tyr Lys Ser Thr Gln Met Pro His Leu Ala Val Tyr Gln Lys Phe Val 690 695 700 Glu Arg Asn Glu Glu Leu Pro Gln Ile His Asp Arg Ile Gln Tyr Val 705 710 715 720 Phe Val Glu Pro Lys Gly Gly Val Lys Gly Ala Arg Lys Thr Glu Met 725 730 735 Ala Glu Asp Pro Ala Tyr Ala Glu Arg His Gly Val Pro Val Ala Val 740 745 750 Asp His Tyr Phe Asp Lys Leu Leu Gln Gly Ala Ala Asn Ile Leu Gln 755 760 765 Cys Leu Phe Asp Asn 770 15 764 PRT Herpesvirus saimiri (strain 11) 15 Gly Cys Glu Val Phe Glu Thr Asn Val Asp Ala Ile Arg Arg Phe Val 1 5 10 15 Ile Asp Asn Asp Phe Ser Thr Phe Gly Trp Tyr Thr Cys Lys Ser Ala 20 25 30 Cys Pro Arg Ile Thr Asn Arg Asp Ser His Thr Asp Ile Glu Phe Asp 35 40 45 Cys Gly Tyr Tyr Asp Leu Glu Phe His Ala Asp Arg Thr Glu Trp Pro 50 55 60 Pro Tyr Asn Ile Met Ser Phe Asp Ile Glu Cys Ile Gly Glu Lys Gly 65 70 75 80 Phe Pro Cys Ala Lys Asn Glu Gly Asp Leu Ile Ile Gln Ile Ser Cys 85 90 95 Val Phe Trp His Ala Gly Ala Leu Asp Thr Thr Arg Asn Met Leu Leu 100 105 110 Ser Leu Gly Thr Cys Ser Ala Val Glu Asn Thr Glu Val Tyr Glu Phe 115 120 125 Pro Ser Glu Ile Asp Met Leu His Gly Phe Phe Ser Leu Ile Arg Asp 130 135 140 Phe Asn Val Glu Ile Ile Thr Gly Tyr Asn Ile Ser Asn Phe Asp Leu 145 150 155 160 Pro Tyr Leu Ile Asp Arg Ala Thr Gln Ile Tyr Asn Ile Lys Leu Ser 165 170 175 Asp Tyr Ser Arg Val Lys Thr Gly Ser Ile Phe Gln Val His Thr Pro 180 185 190 Lys Asp Thr Gly Asn Gly Phe Met Arg Ser Val Ser Lys Ile Lys Ile 195 200 205 Ser Gly Ile Ile Ala Ile Asp Met Tyr Ile Val Cys Lys Asp Lys Leu 210 215 220 Ser Leu Ser Asn Tyr Lys Leu Asp Thr Val Ala Asn His Cys Ile Gly 225 230 235 240 Ala Lys Lys Glu Asp Val Ser Tyr Lys Asp Ile Met Pro Leu Phe Met 245 250 255 Ser Gly Pro Glu Gly Arg Ala Lys Ile Gly Leu Tyr Cys Val Ile Asp 260 265 270 Ser Val Leu Val Met Lys Leu Leu Lys Phe Phe Met Ile His Val Glu 275 280 285 Ile Ser Glu Ile Ala Lys Leu Ala Lys Ile Pro Thr Arg Arg Val Leu 290 295 300 Thr Asp Gly Gln Gln Ile Arg Val Phe Ser Cys Leu Leu Ala Ala Ala 305 310 315 320 Arg Ala Glu Asn Tyr Ile Leu Pro Val Ser Asn Asp Val Asn Ala Asp 325 330 335 Gly Phe Gln Gly Ala Thr Val Ile Asn Pro Ile Pro Gly Phe Tyr Asn 340 345 350 Asn Ala Val Leu Val Val Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile 355 360 365 Gln Ala His Asn Leu Cys Tyr Ser Thr Leu Ile Pro His His Ala Leu 370 375 380 His Asn Tyr Pro His Leu Lys Ser Ser Asp Tyr Glu Thr Phe Met Leu 385 390 395 400 Ser Ser Gly Pro Ile His Phe Val Lys Lys His Ile Gln Ala Ser Leu 405 410 415 Leu Ser Arg Leu Leu Thr Val Trp Leu Ser Lys Arg Lys Ala Ile Arg 420 425 430 Gln Lys Leu Ala Glu Cys Glu Asp Leu Asp Thr Lys Thr Ile Leu Asp 435 440 445 Lys Gln Gln Leu Ala Ile Lys Val Thr Cys Asn Ala Val Tyr Gly Phe 450 455 460 Thr Gly Val Ala Ser Gly Leu Leu Pro Cys Ile Ser Ile Ala Glu Thr 465 470 475 480 Val Thr Leu Gln Gly Arg Thr Met Leu Glu Lys Ser Lys Ile Phe Ile 485 490 495 Glu Ala Met Thr Pro Asp Thr Leu Gln Glu Ile Val Pro His Ile Val 500 505 510 Lys His Glu Pro Asp Ala Lys Phe Arg Val Ile Tyr Gly Asp Thr Asp 515 520 525 Ser Leu Phe Val Glu Cys Val Gly Tyr Ser Val Asp Thr Val Val Lys 530 535 540 Phe Gly Asp Phe Leu Ala Ala Phe Thr Ser Glu Lys Leu Phe Asn Ala 545 550 555 560 Pro Ile Lys Leu Glu Ser Glu Lys Thr Phe Gln Cys Leu Leu Leu Leu 565 570 575 Ala Lys Lys Arg Tyr Ile Gly Ile Leu Ser Asn Asp Lys Leu Leu Met 580 585 590 Lys Gly Val Asp Leu Val Arg Lys Thr Ala Cys Lys Phe Val Gln Asn 595 600 605 Thr Ser Ser Lys Ile Leu Asn Leu Ile Leu Lys Asp Pro Glu Val Lys 610 615 620 Ala Ala Ala Gln Leu Leu Ser Thr Lys Asp Pro Asp Tyr Ala Phe Arg 625 630 635 640 Glu Gly Leu Pro Asp Gly Phe Leu Lys Val Ile Asp Ile Leu Asn Glu 645 650 655 Ser His Lys Asn Leu Arg Thr Gly Gln Val Pro Val Glu Glu Leu Thr 660 665 670 Phe Ser Thr Glu Leu Ser Arg Pro Ile Ser Ser Tyr Lys Thr Glu Asn 675 680 685 Leu Pro His Leu Thr Val Tyr Lys Lys Ile Ile Thr Arg His Glu Glu 690 695 700 Pro Pro Gln Val His Asp Arg Ile Pro Tyr Val Phe Val Gly Lys Thr 705 710 715 720 Thr Ser Cys Ile Ser Asn Met Ala Glu Asp Pro Thr Tyr Thr Val Gln 725 730 735 Asn Asn Ile Pro Ile Ala Val Asp Leu Tyr Phe Asp Lys Leu Ile His 740 745 750 Gly Val Ala Asn Ile Ile Gln Cys Leu Phe Lys Asp 755 760 16 892 PRT Herpes simplex virus (type 1/strain 17) 16 Pro Ala Ile Lys Lys Tyr Glu Gly Gly Val Asp Ala Thr Thr Arg Phe 1 5 10 15 Ile Leu Asp Asn Pro Gly Phe Val Thr Phe Gly Trp Tyr Arg Leu Lys 20 25 30 Pro Gly Arg Asn Asn Thr Leu Ala Gln Pro Ala Ala Pro Met Ala Phe 35 40 45 Gly Thr Ser Ser Asp Val Glu Phe Asn Cys Thr Ala Asp Asn Leu Ala 50 55 60 Ile Glu Gly Gly Met Ser Asp Leu Pro Ala Tyr Lys Leu Met Cys Phe 65 70 75 80 Asp Ile Glu Cys Lys Ala Gly Gly Glu Asp Glu Leu Ala Phe Pro Val 85 90 95 Ala Gly His Pro Glu Asp Leu Val Ile Gln Ile Ser Cys Leu Leu Tyr 100 105 110 Asp Leu Ser Thr Thr Ala Leu Glu His Val Leu Leu Phe Ser Leu Gly 115 120 125 Ser Cys Asp Leu Pro Glu Ser His Leu Asn Glu Leu Ala Ala Arg Gly 130 135 140 Leu Pro Thr Pro Val Val Leu Glu Phe Asp Ser Glu Phe Glu Met Leu 145 150 155 160 Leu Ala Phe Met Thr Leu Val Lys Gln Tyr Gly Pro Glu Phe Val Thr 165 170 175 Gly Tyr Asn Ile Ile Asn Phe Asp Trp Pro Phe Leu Leu Ala Lys Leu 180 185 190 Thr Asp Ile Tyr Lys Val Pro Leu Asp Gly Tyr Gly Arg Met Asn Gly 195 200 205 Arg Gly Val Phe Arg Val Trp Asp Ile Gly Gln Ser His Phe Gln Lys 210 215 220 Arg Ser Lys Ile Lys Val Asn Gly Met Val Asn Ile Asp Met Tyr Gly 225 230 235 240 Ile Ile Thr Asp Lys Ile Lys Leu Ser Ser Tyr Lys Leu Asn Ala Val 245 250 255 Ala Glu Ala Val Leu Lys Asp Lys Lys Lys Asp Leu Ser Tyr Arg Asp 260 265 270 Ile Pro Ala Tyr Tyr Ala Ala Gly Pro Ala Gln Arg Gly Val Ile Gly 275 280 285 Glu Tyr Cys Ile Gln Asp Ser Leu Leu Val Gly Gln Leu Phe Phe Lys 290 295 300 Phe Leu Pro His Leu Glu Leu Ser Ala Val Ala Arg Leu Ala Gly Ile 305 310 315 320 Asn Ile Thr Arg Thr Ile Tyr Asp Gly Gln Gln Ile Arg Val Phe Thr 325 330 335 Cys Leu Leu Arg Leu Ala Asp Gln Lys Gly Phe Ile Leu Pro Asp Thr 340 345 350 Gln Gly Arg Phe Arg Gly Ala Gly Gly Glu Ala Pro Lys Arg Pro Ala 355 360 365 Ala Ala Arg Glu Asp Glu Glu Arg Pro Glu Glu Glu Gly Glu Asp Glu 370 375 380 Asp Glu Arg Glu Glu Gly Gly Gly Glu Arg Glu Pro Glu Gly Ala Arg 385 390 395 400 Glu Thr Ala Gly Arg His Val Gly Tyr Gln Gly Ala Arg Val Leu Asp 405 410 415 Pro Thr Ser Gly Phe His Val Asn Pro Val Val Val Phe Asp Phe Ala 420 425 430 Ser Leu Tyr Pro Ser Ile Ile Gln Ala His Asn Leu Cys Phe Ser Thr 435 440 445 Leu Ser Leu Arg Ala Asp Ala Val Ala His Leu Glu Ala Gly Lys Asp 450 455 460 Tyr Leu Glu Ile Glu Val Gly Gly Arg Arg Leu Phe Phe Val Lys Ala 465 470 475 480 His Val Arg Glu Ser Leu Leu Ser Ile Leu Leu Arg Asp Trp Leu Ala 485 490 495 Met Arg Lys Gln Ile Arg Ser Arg Ile Pro Gln Ser Ser Pro Glu Glu 500 505 510 Ala Val Leu Leu Asp Lys Gln Gln Ala Ala Ile Lys Val Val Cys Asn 515 520 525 Ser Val Tyr Gly Phe Thr Gly Val Gln His Gly Leu Leu Pro Cys Leu 530 535 540 His Val Ala Ala Thr Val Thr Thr Ile Gly Arg Glu Met Leu Leu Ala 545 550 555 560 Thr Arg Glu Tyr Val His Ala Arg Trp Ala Ala Phe Glu Gln Leu Leu 565 570 575 Ala Asp Phe Pro Glu Ala Ala Asp Met Arg Ala Pro Gly Pro Tyr Ser 580 585 590 Met Arg Ile Ile Tyr Gly Asp Thr Asp Ser Ile Phe Val Leu Cys Arg 595 600 605 Gly Leu Thr Ala Ala Gly Leu Thr Ala Val Gly Asp Lys Met Ala Ser 610 615 620 His Ile Ser Arg Ala Leu Phe Leu Pro Pro Ile Lys Leu Glu Cys Glu 625 630 635 640 Lys Thr Phe Thr Lys Leu Leu Leu Ile Ala Lys Lys Lys Tyr Ile Gly 645 650 655 Val Ile Tyr Gly Gly Lys Met Leu Ile Lys Gly Val Asp Leu Val Arg 660 665 670 Lys Asn Asn Cys Ala Phe Ile Asn Arg Thr Ser Arg Ala Leu Val Asp 675 680 685 Leu Leu Phe Tyr Asp Asp Thr Val Ser Gly Ala Ala Ala Ala Leu Ala 690 695 700 Glu Arg Pro Ala Glu Glu Trp Leu Ala Arg Pro Leu Pro Glu Gly Leu 705 710 715 720 Gln Ala Phe Gly Ala Val Leu Val Asp Ala His Arg Arg Ile Thr Asp 725 730 735 Pro Glu Arg Asp Ile Gln Asp Phe Val Leu Thr Ala Glu Leu Ser Arg 740 745 750 His Pro Arg Ala Tyr Thr Asn Lys Arg Leu Ala His Leu Thr Val Tyr 755 760 765 Tyr Lys Leu Met Ala Arg Arg Ala Gln Val Pro Ser Ile Lys Asp Arg 770 775 780 Ile Pro Tyr Val Ile Val Ala Gln Thr Arg Glu Val Glu Glu Thr Val 785 790 795 800 Ala Arg Leu Ala Ala Leu Arg Glu Leu Asp Ala Ala Ala Pro Gly Asp 805 810 815 Glu Pro Ala Pro Pro Ala Ala Leu Pro Ser Pro Ala Lys Arg Pro Arg 820 825 830 Glu Thr Pro Ser Pro Ala Asp Pro Pro Gly Gly Ala Ser Lys Pro Arg 835 840 845 Lys Leu Leu Val Ser Glu Leu Ala Glu Asp Pro Ala Tyr Ala Ile Ala 850 855 860 His Gly Val Ala Leu Asn Thr Asp Tyr Tyr Phe Ser His Leu Leu Gly 865 870 875 880 Ala Ala Cys Val Thr Phe Lys Ala Leu Phe Gly Asn 885 890 17 896 PRT Herpes simplex virus (type 2/strain 186) 17 Pro Ala Ile Arg Lys Tyr Glu Gly Gly Val Asp Ala Thr Thr Arg Phe 1 5 10 15 Ile Leu Asp Asn Pro Gly Phe Val Thr Phe Gly Trp Tyr Arg Leu Lys 20 25 30 Pro Gly Arg Gly Asn Ala Pro Ala Gln Pro Arg Pro Pro Thr Ala Phe 35 40 45 Gly Thr Ser Ser Asp Val Glu Phe Asn Cys Thr Ala Asp Asn Leu Ala 50 55 60 Val Glu Gly Ala Met Cys Asp Leu Pro Ala Tyr Lys Leu Met Cys Phe 65 70 75 80 Asp Ile Glu Cys Lys Ala Gly Gly Glu Asp Glu Leu Ala Phe Pro Val 85 90 95 Ala Glu Arg Pro Glu Asp Leu Val Ile Gln Ile Ser Cys Leu Leu Tyr 100 105 110 Asp Leu Ser Thr Thr Ala Leu Glu His Ile Leu Leu Phe Ser Leu Gly 115 120 125 Ser Cys Asp Leu Pro Glu Ser His Leu Ser Asp Leu Ala Ser Arg Gly 130 135 140 Leu Pro Ala Pro Val Val Leu Glu Phe Asp Ser Glu Phe Glu Met Leu 145 150 155 160 Leu Ala Phe Met Thr Phe Val Lys Gln Tyr Gly Pro Glu Phe Val Thr 165 170 175 Gly Tyr Asn Ile Ile Asn Phe Asp Trp Pro Phe Val Leu Thr Lys Leu 180 185 190 Thr Glu Ile Tyr Lys Val Pro Leu Asp Gly Tyr Gly Arg Met Asn Gly 195 200 205 Arg Gly Val Phe Arg Val Trp Asp Ile Gly Gln Ser His Phe Gln Lys 210 215 220 Arg Ser Lys Ile Lys Val Asn Gly Met Val Asn Ile Asp Met Tyr Gly 225 230 235 240 Ile Ile Thr Asp Lys Val Lys Leu Ser Ser Tyr Lys Leu Asn Ala Val 245 250 255 Ala Glu Ala Val Leu Lys Asp Lys Lys Lys Asp Leu Ser Tyr Arg Asp 260 265 270 Ile Pro Ala Tyr Tyr Ala Ser Gly Pro Ala Gln Arg Gly Val Ile Gly 275 280 285 Glu Tyr Cys Val Gln Asp Ser Leu Leu Val Gly Gln Leu Phe Phe Lys 290 295 300 Phe Leu Pro His Leu Glu Leu Ser Ala Val Ala Arg Leu Ala Gly Ile 305 310 315 320 Asn Ile Thr Arg Thr Ile Tyr Asp Gly Gln Gln Ile Arg Val Phe Thr 325 330 335 Cys Leu Leu Arg Leu Ala Gly Gln Lys Gly Phe Ile Leu Pro Asp Thr 340 345 350 Gln Gly Arg Phe Arg Gly Leu Asp Lys Glu Ala Pro Lys Arg Pro Ala 355 360 365 Val Pro Arg Gly Glu Gly Glu Arg Pro Gly Asp Gly Asn Gly Asp Glu 370 375 380 Asp Lys Asp Asp Asp Glu Asp Gly Asp Glu Asp Gly Asp Glu Arg Glu 385 390 395 400 Glu Val Ala Arg Glu Thr Gly Gly Arg His Val Gly Tyr Gln Gly Ala 405 410 415 Arg Val Leu Asp Pro Thr Ser Gly Phe His Val Asp Pro Val Val Val 420 425 430 Phe Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile Gln Ala His Asn Leu 435 440 445 Cys Phe Ser Thr Leu Ser Leu Arg Pro Glu Ala Val Ala His Leu Glu 450 455 460 Ala Asp Arg Asp Tyr Leu Glu Ile Glu Val Gly Gly Arg Arg Leu Phe 465 470 475 480 Phe Val Lys Ala His Val Arg Glu Ser Leu Leu Ser Ile Leu Leu Arg 485 490 495 Asp Trp Leu Ala Met Arg Lys Gln Ile Arg Ser Arg Ile Pro Gln Ser 500 505 510 Pro Pro Glu Glu Ala Val Leu Leu Asp Lys Gln Gln Ala Ala Ile Lys 515 520 525 Val Val Cys Asn Ser Val Tyr Gly Phe Thr Gly Val Gln His Gly Leu 530 535 540 Leu Pro Cys Leu His Val Ala Ala Thr Val Thr Thr Ile Gly Arg Glu 545 550 555 560 Met Leu Leu Ala Thr Arg Ala Tyr Val His Ala Arg Trp Ala Glu Phe 565 570 575 Asp Gln Leu Leu Ala Asp Phe Pro Glu Ala Ala Gly Met Arg Ala Pro 580 585 590 Gly Pro Tyr Ser Met Arg Ile Ile Tyr Gly Asp Thr Asp Ser Ile Phe 595 600 605 Val Leu Cys Arg Gly Leu Thr Gly Glu Ala Leu Val Ala Met Gly Asp 610 615 620 Lys Met Ala Ser His Ile Ser Arg Ala Leu Phe Leu Pro Pro Ile Lys 625 630 635 640 Leu Glu Cys Glu Lys Thr Phe Thr Lys Leu Leu Leu Ile Ala Lys Lys 645 650 655 Lys Tyr Ile Gly Val Ile Cys Gly Gly Lys Met Leu Ile Lys Gly Val 660 665 670 Asp Leu Val Arg Lys Asn Asn Cys Ala Phe Ile Asn Arg Thr Ser Arg 675 680 685 Ala Leu Val Asp Leu Leu Phe Tyr Asp Asp Thr Val Ser Gly Ala Ala 690 695 700 Ala Ala Leu Ala Glu Arg Pro Ala Glu Glu Trp Leu Ala Arg Pro Leu 705 710 715 720 Pro Glu Gly Leu Gln Ala Phe Gly Ala Val Leu Val Asp Ala His Arg 725 730 735 Arg Ile Thr Asp Pro Glu Arg Asp Ile Gln Asp Phe Val Leu Thr Ala 740 745 750 Glu Leu Ser Arg His Pro Arg Ala Tyr Thr Asn Lys Arg Leu Ala His 755 760 765 Leu Thr Val Tyr Tyr Lys Leu Met Ala Arg Arg Ala Gln Val Pro Ser 770 775 780 Ile Lys Asp Arg Ile Pro Tyr Val Ile Val Ala Gln Thr Arg Glu Val 785 790 795 800 Glu Glu Thr Val Ala Arg Leu Ala Ala Leu Arg Glu Leu Asp Ala Ala 805 810 815 Ala Pro Gly Asp Glu Pro Ala Pro Pro Ala Ala Leu Pro Ser Pro Ala 820 825 830 Lys Arg Pro Arg Glu Thr Pro Ser His Ala Asp Pro Pro Gly Gly Ala 835 840 845 Ser Lys Pro Arg Lys Leu Leu Val Ser Glu Leu Ala Glu Asp Pro Gly 850 855 860 Tyr Ala Ile Ala Arg Gly Val Pro Leu Asn Thr Asp Tyr Tyr Phe Ser 865 870 875 880 His Leu Leu Gly Ala Ala Cys Val Thr Phe Lys Ala Leu Phe Gly Asn 885 890 895 18 875 PRT Equine herpesvirus type 1 (strain Ab4p) 18 Pro Glu Ile Thr Lys Phe Glu Gly Ser Val Asp Val Thr Thr Arg Leu 1 5 10 15 Leu Leu Asp Asn Glu Asn Phe Thr Ser Phe Gly Trp Tyr Arg Leu Arg 20 25 30 Pro Gly Thr His Gly Glu Arg Val Gln Leu Arg Pro Val Glu Arg His 35 40 45 Val Thr Ser Ser Asp Val Glu Ile Asn Cys Thr Pro Asp Asn Leu Glu 50 55 60 Pro Ile Pro Asp Glu Ala Ala Trp Pro Asp Tyr Lys Leu Met Cys Phe 65 70 75 80 Asp Ile Glu Cys Lys Ala Gly Thr Gly Asn Glu Met Ala Phe Pro Val 85 90 95 Ala Thr Asn Gln Glu Asp Leu Val Ile Gln Ile Ser Cys Leu Leu Tyr 100 105 110 Ser Leu Ala Thr Gln Asn His Glu His Thr Leu Leu Phe Ser Leu Gly 115 120 125 Ser Cys Asp Ile Ser Glu Glu Tyr Ser Phe Ala Cys Val Gln Arg Gly 130 135 140 Glu Pro Arg Pro Thr Val Leu Glu Phe Asp Ser Glu Tyr Glu Leu Leu 145 150 155 160 Val Ala Phe Leu Thr Phe Leu Lys Gln Tyr Ser Pro Glu Phe Ala Thr 165 170 175 Gly Tyr Asn Ile Val Asn Phe Asp Trp Ala Tyr Ile Val Asn Lys Val 180 185 190 Thr Ser Val Tyr Asn Ile Lys Leu Asp Gly Tyr Gly Lys Phe Asn Lys 195 200 205 Gly Gly Leu Phe Lys Val Trp Asp Ile Ala Thr Asn His Phe Gln Lys 210 215 220 Lys Ser Lys Val Lys Ile Asn Gly Leu Ile Ser Leu Asp Met Tyr Ser 225 230 235 240 Val Ala Thr Glu Lys Leu Lys Leu Pro Ser Tyr Lys Leu Asp Ala Val 245 250 255 Val Gly Asp Val Leu Gly Glu His Lys Ile Asp Leu Pro Tyr Lys Glu 260 265 270 Ile Pro Ser Tyr Tyr Ala Gly Gly Pro Asp Arg Arg Gly Val Ile Gly 275 280 285 Glu Tyr Cys Ile Gln Asp Ser Arg Leu Val Gly Lys Leu Phe Phe Lys 290 295 300 Tyr Leu Pro His Leu Glu Leu Ser Ala Val Ala Lys Leu Ala Arg Ile 305 310 315 320 Thr Leu Thr Arg Val Ile Phe Asp Gly Gln Gln Ile Arg Val Tyr Thr 325 330 335 Cys Leu Leu Lys Leu Ala Arg Glu Arg Asn Phe Ile Leu Pro Asp Asn 340 345 350 Arg Arg Arg Phe Asp Ser Gln Ala Asp Ala Ala Ser Glu Thr Ser Glu 355 360 365 Leu Ala Met Asp Ser Gln Ser His Ala Phe Asp Ser Thr Asp Glu Pro 370 375 380 Asp Gly Val Asp Gly Thr Pro Asp Ala Ala Gly Ser Gly Ala Thr Ser 385 390 395 400 Glu Asn Gly Gly Gly Lys Pro Gly Val Gly Arg Ala Val Gly Tyr Gln 405 410 415 Gly Ala Lys Val Leu Asp Pro Val Ser Gly Phe His Val Asp Pro Val 420 425 430 Val Val Phe Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile Gln Ala His 435 440 445 Asn Leu Cys Phe Thr Thr Leu Ala Leu Asp Glu Val Asp Leu Ala Gly 450 455 460 Leu Gln Pro Ser Val Asp Tyr Ser Thr Phe Glu Val Gly Asp Gln Lys 465 470 475 480 Leu Phe Phe Val His Ala His Ile Arg Glu Ser Leu Leu Gly Ile Leu 485 490 495 Leu Arg Asp Trp Leu Ala Met Arg Lys Ala Val Arg Ala Arg Ile Pro 500 505 510 Thr Ser Thr Pro Glu Glu Ala Val Leu Leu Asp Lys Gln Gln Ser Ala 515 520 525 Ile Lys Val Ile Cys Asn Ser Val Tyr Gly Phe Thr Gly Val Ala Asn 530 535 540 Gly Leu Leu Pro Cys Leu Arg Ile Ala Ala Thr Val Thr Thr Ile Gly 545 550 555 560 Arg Asp Met Leu Leu Lys Thr Arg Asp Tyr Val His Ser Arg Trp Ala 565 570 575 Thr Arg Glu Leu Leu Glu Asp Asn Phe Pro Gly Ala Ile Gly Phe Arg 580 585 590 Asn His Lys Pro Tyr Ser Val Arg Val Ile Tyr Gly Asp Thr Asp Ser 595 600 605 Val Phe Ile Lys Phe Val Gly Leu Thr Tyr Glu Gly Val Ser Glu Leu 610 615 620 Gly Asp Ala Met Ser Arg Gln Ile Ser Ala Asp Leu Phe Arg Ala Pro 625 630 635 640 Ile Lys Leu Glu Cys Glu Lys Thr Phe Gln Arg Leu Leu Leu Ile Thr 645 650 655 Lys Lys Lys Tyr Ile Gly Val Ile Asn Gly Gly Lys Met Leu Met Lys 660 665 670 Gly Val Asp Leu Val Arg Lys Asn Asn Cys Ser Phe Ile Asn Leu Tyr 675 680 685 Ala Arg His Leu Val Asp Leu Leu Leu Tyr Asp Glu Asp Val Ala Thr 690 695 700 Ala Ala Ala Glu Val Thr Asp Val Pro Pro Ala Glu Trp Val Gly Arg 705 710 715 720 Pro Leu Pro Ser Gly Phe Asp Lys Phe Gly Arg Val Leu Val Glu Ala 725 730 735 Tyr Asn Arg Ile Thr Ala Pro Asn Leu Asp Val Arg Glu Phe Val Met 740 745 750 Thr Ala Glu Leu Ser Arg Ser Pro Glu Ser Tyr Thr Asn Lys Arg Leu 755 760 765 Pro His Leu Thr Val Tyr Phe Lys Leu Ala Met Arg Asn Glu Glu Leu 770 775 780 Pro Ser Val Lys Glu Arg Ile Pro Tyr Val Ile Val Ala Gln Thr Glu 785 790 795 800 Ala Ala Glu Arg Glu Ala Gly Val Val Asn Ser Met Arg Gly Thr Ala 805 810 815 Gln Asn Pro Val Val Thr Lys Thr Ala Arg Pro Gln Pro Lys Arg Lys 820 825 830 Leu Leu Val Ser Asp Leu Ala Glu Asp Pro Thr Tyr Val Ser Glu Asn 835 840 845 Asp Val Pro Leu Asn Thr Asp Tyr Tyr Phe Ser His Leu Leu Gly Thr 850 855 860 Ile Ser Val Thr Phe Lys Ala Leu Phe Gly Asn 865 870 875 19 852 PRT Varicella-zoster virus (strain Dumas) 19 Pro Glu Leu Lys Lys Tyr Glu Gly Arg Val Asp Ala Thr Thr Arg Phe 1 5 10 15 Leu Met Asp Asn Pro Gly Phe Val Ser Phe Gly Trp Tyr Gln Leu Lys 20 25 30 Pro Gly Val Asp Gly Glu Arg Val Arg Val Arg Pro Ala Ser Arg Gln 35 40 45 Leu Thr Leu Ser Asp Val Glu Ile Asp Cys Met Ser Asp Asn Leu Gln 50 55 60 Ala Ile Pro Asn Asp Asp Ser Trp Pro Asp Tyr Lys Leu Leu Cys Phe 65 70 75 80 Asp Ile Glu Cys Lys Ser Gly Gly Ser Asn Glu Leu Ala Phe Pro Asp 85 90 95 Ala Thr His Leu Glu Asp Leu Val Ile Gln Ile Ser Cys Leu Leu Tyr 100 105 110 Ser Ile Pro Arg Gln Ser Leu Glu His Ile Leu Leu Phe Ser Leu Gly 115 120 125 Ser Cys Asp Leu Pro Gln Arg Tyr Val Gln Glu Met Lys Asp Ala Gly 130 135 140 Leu Pro Glu Pro Thr Val Leu Glu Phe Asp Ser Glu Phe Glu Leu Leu 145 150 155 160 Ile Ala Phe Met Thr Leu Val Lys Gln Tyr Ala Pro Glu Phe Ala Thr 165 170 175 Gly Tyr Asn Ile Val Asn Phe Asp Trp Ala Phe Ile Met Glu Lys Leu 180 185 190 Asn Ser Ile Tyr Ser Leu Lys Leu Asp Gly Tyr Gly Ser Ile Asn Arg 195 200 205 Gly Gly Leu Phe Lys Ile Trp Asp Val Gly Lys Ser Gly Phe Gln Arg 210 215 220 Arg Ser Lys Val Lys Ile Asn Gly Leu Ile Ser Leu Asp Met Tyr Ala 225 230 235 240 Ile Ala Thr Glu Lys Leu Lys Leu Ser Ser Tyr Lys Leu Asp Ser Val 245 250 255 Ala Arg Glu Ala Leu Asn Glu Ser Lys Arg Asp Leu Pro Tyr Lys Asp 260 265 270 Ile Pro Gly Tyr Tyr Ala Ser Gly Pro Asn Thr Arg Gly Ile Ile Gly 275 280 285 Glu Tyr Cys Ile Gln Asp Ser Ala Leu Val Gly Lys Leu Phe Phe Lys 290 295 300 Tyr Leu Pro His Leu Glu Leu Ser Ala Val Ala Arg Leu Ala Arg Ile 305 310 315 320 Thr Leu Thr Lys Ala Ile Tyr Asp Gly Gln Gln Val Arg Ile Tyr Thr 325 330 335 Cys Leu Leu Gly Leu Ala Ser Ser Arg Gly Phe Ile Leu Pro Asp Gly 340 345 350 Gly Tyr Pro Ala Thr Phe Glu Tyr Lys Asp Val Ile Pro Asp Val Gly 355 360 365 Asp Val Glu Glu Glu Met Asp Glu Asp Glu Ser Val Ser Pro Thr Gly 370 375 380 Thr Ser Ser Gly Arg Asn Val Gly Tyr Lys Gly Ala Arg Val Phe Asp 385 390 395 400 Pro Asp Thr Gly Phe Tyr Ile Asp Pro Val Val Val Leu Asp Phe Ala 405 410 415 Ser Leu Tyr Pro Ser Ile Ile Gln Ala His Asn Leu Cys Phe Thr Thr 420 425 430 Leu Thr Leu Asn Phe Glu Thr Val Lys Arg Leu Asn Pro Ser Asp Tyr 435 440 445 Ala Thr Phe Thr Val Gly Gly Lys Arg Leu Phe Phe Val Arg Ser Asn 450 455 460 Val Arg Glu Ser Leu Leu Gly Val Leu Leu Lys Asp Trp Leu Ala Met 465 470 475 480 Arg Lys Ala Ile Arg Ala Arg Ile Pro Gly Ser Ser Ser Asp Glu Ala 485 490 495 Val Leu Leu Asp Lys Gln Gln Ala Ala Ile Lys Val Val Cys Asn Ser 500 505 510 Val Tyr Gly Phe Thr Gly Val Ala Gln Gly Phe Leu Pro Cys Leu Tyr 515 520 525 Val Ala Ala Thr Val Thr Thr Ile Gly Arg Gln Met Leu Leu Ser Thr 530 535 540 Arg Asp Tyr Ile His Asn Asn Trp Ala Ala Phe Glu Arg Phe Ile Thr 545 550 555 560 Ala Phe Pro Asp Ile Glu Ser Ser Val Leu Ser Gln Lys Ala Tyr Glu 565 570 575 Val Lys Val Ile Tyr Gly Asp Thr Asp Ser Val Phe Ile Arg Phe Lys 580 585 590 Gly Val Ser Val Glu Gly Ile Ala Lys Ile Gly Glu Lys Met Ala His 595 600 605 Ile Ile Ser Thr Ala Leu Phe Cys Pro Pro Ile Lys Leu Glu Cys Glu 610 615 620 Lys Thr Phe Ile Lys Leu Leu Leu Ile Thr Lys Lys Lys Tyr Ile Gly 625 630 635 640 Val Ile Tyr Gly Gly Lys Val Leu Met Lys Gly Val Asp Leu Val Arg 645 650 655 Lys Asn Asn Cys Gln Phe Ile Asn Asp Tyr Ala Arg Lys Leu Val Glu 660 665 670 Leu Leu Leu Tyr Asp Asp Thr Val Ser Arg Ala Ala Ala Glu Ala Ser 675 680 685 Cys Val Ser Ile Ala Glu Trp Asn Arg Arg Ala Met Pro Ser Gly Met 690 695 700 Ala Gly Phe Gly Arg Ile Ile Ala Asp Ala His Arg Gln Ile Thr Ser 705 710 715 720 Pro Lys Leu Asp Ile Asn Lys Phe Val Met Thr Ala Glu Leu Ser Arg 725 730 735 Pro Pro Ser Ala Tyr Ile Asn Arg Arg Leu Ala His Leu Thr Val Tyr 740 745 750 Tyr Lys Leu Val Met Arg Gln Gly Gln Ile Pro Asn Val Arg Glu Arg 755 760 765 Ile Pro Tyr Val Ile Val Ala Pro Thr Asp Glu Val Glu Ala Asp Ala 770 775 780 Lys Ser Val Ala Leu Leu Arg Gly Asp Pro Leu Gln Asn Thr Ala Gly 785 790 795 800 Lys Arg Cys Gly Glu Ala Lys Arg Lys Leu Ile Ile Ser Asp Leu Ala 805 810 815 Glu Asp Pro Ile His Val Thr Ser His Gly Leu Ser Leu Asn Ile Asp 820 825 830 Tyr Tyr Phe Ser His Leu Ile Gly Thr Ala Ser Val Thr Phe Lys Ala 835 840 845 Leu Phe Gly Asn 850 20 978 PRT Human cytomegalovirus (strain AD169) 20 Gly Phe Pro Val Tyr Glu Val Arg Val Asp Pro Leu Thr Arg Leu Val 1 5 10 15 Ile Asp Arg Arg Ile Thr Thr Phe Gly Trp Cys Ser Val Asn Arg Tyr 20 25 30 Asp Trp Arg Gln Gln Gly Arg Ala Ser Thr Cys Asp Ile Glu Val Asp 35 40 45 Cys Asp Val Ser Asp Leu Val Ala Val Pro Asp Asp Ser Ser Trp Pro 50 55 60 Arg Tyr Arg Cys Leu Ser Phe Asp Ile Glu Cys Met Ser Gly Glu Gly 65 70 75 80 Gly Phe Pro Cys Ala Glu Lys Ser Asp Asp Ile Val Ile Gln Ile Ser 85 90 95 Cys Val Cys Tyr Glu Thr Gly Gly Asn Thr Ala Val Asp Gln Gly Ile 100 105 110 Pro Asn Gly Asn Asp Gly Arg Gly Cys Thr Ser Glu Gly Val Ile Phe 115 120 125 Gly His Ser Gly Leu His Leu Phe Thr Ile Gly Thr Cys Gly Gln Val 130 135 140 Gly Pro Asp Val Asp Val Tyr Glu Phe Pro Ser Glu Tyr Glu Leu Leu 145 150 155 160 Leu Gly Phe Met Leu Phe Phe Gln Arg Tyr Ala Pro Ala Phe Val Thr 165 170 175 Gly Tyr Asn Ile Asn Ser Phe Asp Leu Lys Tyr Ile Leu Thr Arg Leu 180 185 190 Glu Tyr Leu Tyr Lys Val Asp Ser Gln Arg Phe Cys Lys Leu Pro Thr 195 200 205 Ala Gln Gly Gly Arg Phe Phe Leu His Ser Pro Ala Val Gly Phe Lys 210 215 220 Arg Gln Tyr Ala Ala Ala Phe Pro Ser Ala Ser His Asn Asn Pro Ala 225 230 235 240 Ser Thr Ala Ala Thr Lys Val Tyr Ile Ala Gly Ser Val Val Ile Asp 245 250 255 Met Tyr Pro Val Cys Met Ala Lys Thr Asn Ser Pro Asn Tyr Lys Leu 260 265 270 Asn Thr Met Ala Glu Leu Tyr Leu Arg Gln Arg Lys Asp Asp Leu Ser 275 280 285 Tyr Lys Asp Ile Pro Arg Cys Phe Val Ala Asn Ala Glu Gly Arg Ala 290 295 300 Gln Val Gly Arg Tyr Cys Leu Gln Asp Ala Val Leu Val Arg Asp Leu 305 310 315 320 Phe Asn Thr Ile Asn Phe His Tyr Glu Ala Gly Ala Ile Ala Arg Leu 325 330 335 Ala Lys Ile Pro Leu Arg Arg Val Ile Phe Asp Gly Gln Gln Ile Arg 340 345 350 Ile Tyr Thr Ser Leu Leu Asp Glu Cys Ala Cys Arg Asp Phe Ile Leu 355 360 365 Pro Asn His Tyr Ser Lys Gly Thr Thr Val Pro Glu Thr Asn Ser Val 370 375 380 Ala Val Ser Pro Asn Ala Ala Ile Ile Ser Thr Ala Ala Val Pro Gly 385 390 395 400 Asp Ala Gly Ser Val Ala Ala Met Phe Gln Met Ser Pro Pro Leu Gln 405 410 415 Ser Ala Pro Ser Ser Gln Asp Gly Val Ser Pro Gly Ser Gly Ser Asn 420 425 430 Ser Ser Ser Ser Val Gly Val Phe Ser Val Gly Ser Gly Ser Ser Gly 435 440 445 Gly Val Gly Val Ser Asn Asp Asn His Gly Ala Gly Gly Thr Ala Ala 450 455 460 Val Ser Tyr Gln Gly Ala Thr Val Phe Glu Pro Glu Val Gly Tyr Tyr 465 470 475 480 Asn Asp Pro Val Ala Val Phe Asp Phe Ala Ser Leu Tyr Pro Ser Ile 485 490 495 Ile Met Ala His Asn Leu Cys Tyr Ser Thr Leu Leu Val Pro Gly Gly 500 505 510 Glu Tyr Pro Val Asp Pro Ala Asp Val Tyr Ser Val Thr Leu Glu Asn 515 520 525 Gly Val Thr His Arg Phe Val Arg Ala Ser Val Arg Val Ser Val Leu 530 535 540 Ser Glu Leu Leu Asn Lys Trp Val Ser Gln Arg Arg Ala Val Arg Glu 545 550 555 560 Cys Met Arg Glu Cys Gln Asp Pro Val Arg Arg Met Leu Leu Asp Lys 565 570 575 Glu Gln Met Ala Leu Lys Val Thr Cys Asn Ala Phe Tyr Gly Phe Thr 580 585 590 Gly Val Val Asn Gly Met Met Pro Cys Leu Pro Ile Ala Ala Ser Ile 595 600 605 Thr Arg Ile Gly Arg Asp Met Leu Glu Arg Thr Ala Arg Phe Ile Lys 610 615 620 Asp Asn Phe Ser Glu Pro Cys Phe Leu His Asn Phe Phe Asn Gln Glu 625 630 635 640 Asp Tyr Val Val Gly Thr Arg Glu Gly Asp Ser Glu Glu Ser Ser Ala 645 650 655 Leu Pro Glu Gly Leu Glu Thr Ser Ser Gly Gly Ser Asn Glu Arg Arg 660 665 670 Val Glu Ala Arg Val Ile Tyr Gly Asp Thr Asp Ser Val Phe Val Arg 675 680 685 Phe Arg Gly Leu Thr Pro Gln Ala Leu Val Ala Arg Gly Pro Ser Leu 690 695 700 Ala His Tyr Val Thr Ala Cys Leu Phe Val Glu Pro Val Lys Leu Glu 705 710 715 720 Phe Glu Lys Val Phe Val Ser Leu Met Met Ile Cys Lys Lys Arg Tyr 725 730 735 Ile Gly Lys Val Glu Gly Ala Ser Gly Leu Ser Met Lys Gly Val Asp 740 745 750 Leu Val Arg Lys Thr Ala Cys Glu Phe Val Lys Gly Val Thr Arg Asp 755 760 765 Val Leu Ser Leu Leu Phe Glu Asp Arg Glu Val Ser Glu Ala Ala Val 770 775 780 Arg Leu Ser Arg Leu Ser Leu Asp Glu Val Lys Lys Tyr Gly Val Pro 785 790 795 800 Arg Gly Phe Trp Arg Ile Leu Arg Arg Leu Val Gln Ala Arg Asp Asp 805 810 815 Leu Tyr Leu His Arg Val Arg Val Glu Asp Leu Val Leu Ser Ser Val 820 825 830 Leu Ser Lys Asp Ile Ser Leu Tyr Arg Gln Ser Asn Leu Pro His Ile 835 840 845 Ala Val Ile Lys Arg Leu Ala Ala Arg Ser Glu Glu Leu Pro Ser Val 850 855 860 Gly Asp Arg Val Phe Tyr Val Leu Thr Ala Pro Gly Val Arg Thr Ala 865 870 875 880 Pro Gln Gly Ser Ser Asp Asn Gly Asp Ser Val Thr Ala Gly Val Val 885 890 895 Ser Arg Ser Asp Ala Ile Asp Gly Thr Asp Asp Asp Ala Asp Gly Gly 900 905 910 Gly Val Glu Glu Ser Asn Arg Arg Gly Gly Glu Pro Ala Lys Lys Arg 915 920 925 Ala Arg Lys Pro Pro Ser Ala Val Cys Asn Tyr Glu Val Ala Glu Asp 930 935 940 Pro Ser Tyr Val Arg Glu His Gly Val Pro Ile His Ala Asp Lys Tyr 945 950 955 960 Phe Glu Gln Val Leu Lys Ala Val Thr Asn Val Leu Ser Pro Val Phe 965 970 975 Pro Gly 21 814 PRT Murine cytomegalovirus (strain Smith) 21 Gly Arg Lys Val Tyr Glu Leu Gly Val Asp Pro Leu Ala Arg Phe Leu 1 5 10 15 Ile Asp Arg Lys Ile Pro Ser Phe Gly Trp Cys Leu Ala Arg Arg Tyr 20 25 30 Ser Val Arg Ala Ala Gly Tyr Val Ser Arg Ala Gln Leu Glu Ile Asp 35 40 45 Cys Asp Val Ala Asp Ile Leu Pro Ile Glu Glu Gln Ser Asn Trp Pro 50 55 60 Phe Tyr Arg Cys Leu Ser Phe Asp Ile Glu Cys Met Ser Gly Thr Gly 65 70 75 80 Ala Phe Pro Ala Ala Glu Asn Val Asp Asp Ile Ile Ile Gln Ile Ser 85 90 95 Cys Val Cys Phe Gly Val Gly Glu Met Val His His Ala Tyr Asp Val 100 105 110 His Ala Asp Leu Ser Thr Pro Ala Val Pro Glu Asn His Leu Phe Thr 115 120 125 Ile Gly Pro Cys Ala Pro Ile Pro Asp Val Lys Ile Tyr Thr Phe Pro 130 135 140 Ser Glu Tyr Glu Met Leu Arg Gly Phe Phe Ile Phe Leu Ser Trp Tyr 145 150 155 160 Ser Pro Glu Phe Ile Thr Gly Tyr Asn Ile Asn Gly Phe Asp Ile Lys 165 170 175 Tyr Ile Leu Thr Arg Ala Glu Lys Leu Tyr Lys Met Asp Val Gly Gln 180 185 190 Phe Thr Lys Leu Arg Arg Gly Gly Arg Met Phe Val Phe Ser Pro Glu 195 200 205 Lys Gly Lys Ala Gly Phe Gly Thr Ser Asn Thr Val Lys Val Phe Trp 210 215 220 Ser Gly Thr Val Val Leu Asp Met Tyr Pro Val Cys Thr Ala Lys Ala 225 230 235 240 Ser Ser Pro Asn Tyr Lys Leu Asp Thr Met Ala Glu Ile Tyr Leu Lys 245 250 255 Lys Lys Lys Asp Asp Leu Ser Tyr Lys Glu Ile Pro Val Gln Phe Ser 260 265 270 Ala Gly Asp Glu Gly Arg Ala Pro Gly Gly Lys Tyr Cys Leu Gln Asp 275 280 285 Ala Val Leu Val Arg Glu Leu Phe Glu Met Leu Ala Phe His Phe Glu 290 295 300 Ala Ala Ala Ile Ala Arg Leu Ala Arg Ile Pro Leu Arg Lys Val Ile 305 310 315 320 Phe Asp Gly Gln Gln Ile Arg Ile Tyr Thr Cys Leu Leu Glu Glu Cys 325 330 335 Ser Gly Arg Asp Met Ile Leu Pro Asn Met Pro Ser Leu Gly His Gly 340 345 350 Ala Ala Ala Ala Ile Glu Glu Ala Ala Ala Gly Gly Glu Gly Asp Glu 355 360 365 Thr Ser Glu Gly Glu Asn Ser Asn Asn Ser Arg Thr Val Gly Tyr Gln 370 375 380 Gly Ala Thr Val Leu Glu Pro Glu Cys Gly Phe His His Val Pro Val 385 390 395 400 Cys Val Phe Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile Met Ser Asn 405 410 415 Asn Leu Cys Tyr Ser Thr Leu Leu Val Glu Gly Ser Pro Glu Val Pro 420 425 430 Glu Lys Asp Val Leu Arg Val Glu Ile Gly Asp Gln Cys His Arg Phe 435 440 445 Val Arg Glu Asn Val His Arg Ser Leu Leu Ala Glu Leu Leu Val Arg 450 455 460 Trp Leu Thr Gln Arg Lys Leu Val Arg Glu Ala Met Lys Gln Cys Thr 465 470 475 480 Asn Glu Met Gln Arg Met Ile Met Asp Lys Gln Gln Leu Ala Leu Lys 485 490 495 Val Thr Cys Asn Ala Phe Tyr Gly Phe Thr Gly Val Ala Ala Gly Met 500 505 510 Leu Pro Cys Leu Pro Ile Ala Ala Ser Ile Thr Lys Ile Gly Arg Asp 515 520 525 Met Leu Leu Ala Thr Ala Gly His Ile Glu Asp Arg Cys Asn Arg Pro 530 535 540 Asp Phe Leu Arg Thr Val Leu Gly Leu Pro Pro Glu Ala Ile Asp Pro 545 550 555 560 Glu Ala Leu Arg Val Lys Ile Ile Tyr Gly Asp Thr Asp Ser Val Phe 565 570 575 Ala Ala Phe Tyr Gly Ile Asp Lys Glu Ala Leu Leu Lys Ala Val Gly 580 585 590 Ala Leu Ala Ala Asn Val Thr Asn Ala Leu Phe Lys Glu Pro Val Arg 595 600 605 Leu Glu Phe Glu Lys Met Phe Val Ser Leu Met Met Ile Cys Lys Lys 610 615 620 Arg Tyr Ile Gly Lys Val His Gly Ser Gln Asn Leu Ser Met Lys Gly 625 630 635 640 Val Asp Leu Val Arg Arg Thr Ala Cys Gly Phe Val Lys Ala Val Val 645 650 655 Ser Asp Val Leu His Met Val Phe Asn Asp Glu Thr Val Ser Glu Gly 660 665 670 Thr Met Lys Leu Ser Arg Met Thr Phe Asp Asp Leu Lys Lys Asn Gly 675 680 685 Ile Pro Cys Glu Phe Gly Pro Val Val Ser Arg Leu Cys Arg Ala Arg 690 695 700 Asp Asp Leu His Leu Lys Lys Val Pro Val Pro Glu Leu Thr Leu Ser 705 710 715 720 Ser Val Leu Ser Gln Glu Leu Ser Cys Tyr Lys Gln Lys Asn Leu Pro 725 730 735 His Leu Ala Val Ile Arg Arg Leu Ala Ala Arg Lys Glu Glu Leu Pro 740 745 750 Ala Val Gly Asp Arg Val Glu Tyr Val Leu Thr Leu Pro Asp Gly Cys 755 760 765 Lys Lys Asn Val Pro Asn Tyr Glu Ile Ala Glu Asp Pro Arg His Val 770 775 780 Val Glu Ala Lys Leu Ser Ile Asn Ala Glu Lys Tyr Tyr Glu Gln Val 785 790 795 800 Val Lys Ala Val Thr Asn Thr Leu Met Pro Val Phe Pro Arg 805 810 22 771 PRT Herpes simplex virus type 6/strain Uganda-1102 22 Gly Phe Val Val Tyr Glu Ile Asp Val Asp Val Leu Thr Arg Phe Phe 1 5 10 15 Val Asp Asn Gly Phe Leu Ser Phe Gly Trp Tyr Asn Val Lys Lys Tyr 20 25 30 Ile Pro Gln Asp Met Gly Lys Gly Ser Asn Leu Glu Val Glu Ile Asn 35 40 45 Cys His Val Ser Asp Leu Val Ser Leu Glu Asp Val Asn Trp Pro Leu 50 55 60 Tyr Gly Cys Trp Ser Phe Asp Ile Glu Cys Leu Gly Gln Asn Gly Asn 65 70 75 80 Phe Pro Asp Ala Glu Asn Leu Gly Asp Ile Val Ile Gln Ile Ser Val 85 90 95 Ile Ser Phe Asp Thr Glu Gly Asp Arg Asp Glu Arg His Leu Phe Thr 100 105 110 Leu Gly Thr Cys Glu Lys Ile Asp Gly Val His Ile Tyr Glu Phe Ala 115 120 125 Ser Glu Phe Glu Leu Leu Leu Gly Phe Phe Ile Phe Leu Arg Ile Glu 130 135 140 Ser Pro Glu Phe Ile Thr Gly Tyr Asn Ile Asn Asn Phe Asp Leu Lys 145 150 155 160 Tyr Leu Cys Ile Arg Met Asp Lys Ile Tyr His Tyr Asp Ile Gly Cys 165 170 175 Phe Ser Lys Leu Lys Asn Gly Lys Ile Gly Ile Ser Val Pro His Glu 180 185 190 Gln Tyr Arg Lys Gly Phe Leu Gln Ala Gln Thr Lys Val Phe Thr Ser 195 200 205 Gly Val Leu Tyr Leu Asp Met Tyr Pro Val Tyr Ser Ser Lys Ile Thr 210 215 220 Ala Gln Asn Tyr Lys Leu Asp Thr Ile Ala Lys Ile Cys Leu Gln Gln 225 230 235 240 Glu Lys Glu Gln Leu Ser Tyr Lys Glu Ile Pro Lys Lys Phe Ile Ser 245 250 255 Gly Pro Ser Gly Arg Ala Val Val Gly Lys Tyr Cys Leu Gln Asp Ser 260 265 270 Val Leu Val Val Arg Leu Phe Lys Gln Ile Asn Tyr His Phe Glu Val 275 280 285 Ala Glu Val Ala Arg Leu Ala His Val Thr Ala Arg Cys Val Val Phe 290 295 300 Glu Gly Gln Gln Lys Lys Ile Phe Pro Cys Ile Leu Thr Glu Ala Lys 305 310 315 320 Arg Arg Asn Met Ile Leu Pro Ser Met Val Ser Ser His Asn Arg Gln 325 330 335 Gly Ile Gly Tyr Lys Gly Ala Thr Val Leu Glu Pro Lys Thr Gly Tyr 340 345 350 Tyr Ala Val Pro Thr Val Val Phe Asp Phe Gln Ser Leu Tyr Pro Ser 355 360 365 Ile Met Met Ala His Asn Leu Cys Tyr Ser Thr Leu Val Leu Asp Glu 370 375 380 Arg Gln Ile Ala Gly Leu Ser Glu Ser Asp Ile Leu Thr Val Lys Leu 385 390 395 400 Gly Asp Glu Thr His Arg Phe Val Lys Pro Cys Ile Arg Glu Ser Val 405 410 415 Leu Gly Ser Leu Leu Lys Asp Trp Leu Ala Lys Arg Arg Glu Val Lys 420 425 430 Ala Glu Met Gln Asn Cys Ser Asp Pro Met Met Lys Leu Leu Leu Asp 435 440 445 Lys Lys Gln Leu Ala Leu Lys Thr Thr Cys Asn Ser Val Tyr Gly Val 450 455 460 Thr Gly Ala Ala His Gly Leu Leu Pro Cys Val Ala Ile Ala Ala Ser 465 470 475 480 Val Thr Cys Leu Gly Arg Glu Met Leu Cys Ser Thr Val Asp Tyr Val 485 490 495 Asn Ser Lys Met Gln Ser Glu Gln Phe Phe Cys Glu Glu Phe Gly Leu 500 505 510 Thr Ser Ser Asp Phe Thr Gly Asp Leu Glu Val Glu Val Ile Tyr Gly 515 520 525 Asp Thr Asp Ser Ile Phe Met Ser Val Arg Asn Met Val Asn Gln Ser 530 535 540 Leu Arg Arg Ile Ala Pro Met Ile Ala Lys His Ile Thr Asp Arg Leu 545 550 555 560 Phe Lys Ser Pro Ile Lys Leu Glu Phe Glu Lys Ile Leu Cys Pro Leu 565 570 575 Ile Leu Ile Cys Lys Lys Arg Tyr Ile Gly Arg Gln Asp Asp Ser Leu 580 585 590 Leu Ile Phe Lys Gly Val Asp Leu Val Arg Lys Thr Ser Cys Asp Phe 595 600 605 Val Lys Gly Val Val Lys Asp Ile Val Asp Leu Leu Phe Phe Asp Glu 610 615 620 Glu Val Gln Thr Ala Ala Val Glu Phe Ser His Met Thr Gln Thr Gln 625 630 635 640 Leu Arg Glu Gln Gly Val Pro Val Gly Ile His Lys Ile Leu Arg Arg 645 650 655 Leu Cys Glu Ala Arg Glu Glu Leu Phe Gln Asn Arg Ala Asp Val Arg 660 665 670 His Leu Met Leu Ser Ser Val Leu Ser Lys Glu Met Ala Ala Tyr Lys 675 680 685 Gln Pro Asn Leu Ala His Leu Ser Val Ile Arg Arg Leu Ala Gln Arg 690 695 700 Lys Glu Glu Ile Pro Asn Val Gly Asp Arg Ile Met Tyr Val Leu Ile 705 710 715 720 Ala Pro Ser Ile Gly Asn Lys Gln Thr His Asn Tyr Glu Leu Ala Glu 725 730 735 Asp Pro Asn Tyr Val Ile Glu His Lys Ile Pro Ile His Ala Glu Lys 740 745 750 Tyr Phe Asp Gln Ile Ile Lys Ala Val Thr Asn Ala Ile Ser Pro Ile 755 760 765 Phe Pro Lys 770 23 757 PRT Homo sapiens 23 Ser His Val Phe Gly Thr Asn Thr Ser Ser Leu Glu Leu Phe Leu Met 1 5 10 15 Asn Arg Lys Ile Lys Gly Pro Cys Trp Leu Glu Val Lys Lys Ser Thr 20 25 30 Ala Leu Asn Gln Pro Val Ser Trp Cys Lys Val Glu Ala Met Ala Leu 35 40 45 Lys Pro Asp Leu Val Asn Val Ile Lys Asp Val Ser Pro Pro Pro Leu 50 55 60 Val Val Met Ala Phe Ser Met Lys Thr Met Gln Asn Ala Lys Asn His 65 70 75 80 Gln Asn Glu Ile Ile Ala Met Ala Ala Leu Val His His Ser Phe Ala 85 90 95 Leu Asp Lys Ala Ala Pro Lys Pro Pro Phe Gln Ser His Phe Cys Val 100 105 110 Val Ser Lys Pro Lys Asp Cys Ile Phe Pro Tyr Ala Phe Lys Glu Val 115 120 125 Ile Glu Lys Lys Asn Val Lys Val Glu Val Ala Ala Thr Glu Arg Thr 130 135 140 Leu Leu Gly Phe Phe Leu Ala Lys Val His Lys Ile Asp Pro Asp Ile 145 150 155 160 Ile Val Gly His Asn Ile Tyr Gly Phe Glu Leu Glu Val Leu Leu Gln 165 170 175 Arg Ile Asn Val Cys Lys Ala Pro His Trp Ser Lys Ile Gly Arg Leu 180 185 190 Lys Arg Ser Asn Met Pro Lys Leu Gly Gly Arg Ser Gly Phe Gly Glu 195 200 205 Arg Asn Ala Thr Cys Gly Arg Met Ile Cys Asp Val Glu Ile Ser Ala 210 215 220 Lys Glu Leu Ile Arg Cys Lys Ser Tyr His Leu Ser Glu Leu Val Gln 225 230 235 240 Gln Ile Leu Lys Thr Glu Arg Val Val Ile Pro Met Glu Asn Ile Gln 245 250 255 Asn Met Tyr Ser Glu Ser Ser Gln Leu Leu Tyr Leu Leu Glu His Thr 260 265 270 Trp Lys Asp Ala Lys Phe Ile Leu Gln Ile Met Cys Glu Leu Asn Val 275 280 285 Leu Pro Leu Ala Leu Gln Ile Thr Asn Ile Ala Gly Asn Ile Met Ser 290 295 300 Arg Thr Leu Met Gly Gly Arg Ser Glu Arg Asn Glu Phe Leu Leu Leu 305 310 315 320 His Ala Phe Tyr Glu Asn Asn Tyr Ile Val Pro Asp Lys Gln Ile Phe 325 330 335 Arg Lys Pro Gln Gln Lys Leu Gly Asp Glu Asp Glu Glu Ile Asp Gly 340 345 350 Asp Thr Asn Lys Tyr Lys Lys Gly Arg Lys Lys Gly Ala Tyr Ala Gly 355 360 365 Gly Leu Val Leu Asp Pro Lys Val Gly Phe Tyr Asp Lys Phe Ile Leu 370 375 380 Leu Leu Asp Phe Asn Ser Leu Tyr Pro Ser Ile Ile Gln Glu Phe Asn 385 390 395 400 Ile Cys Phe Thr Thr Val Gln Arg Val Ala Ser Glu Ala Gln Lys Val 405 410 415 Thr Glu Asp Gly Glu Gln Glu Gln Ile Pro Glu Leu Pro Asp Pro Ser 420 425 430 Leu Glu Met Gly Ile Leu Pro Arg Glu Ile Arg Lys Leu Val Glu Arg 435 440 445 Arg Lys Gln Val Lys Gln Leu Met Lys Gln Gln Asp Leu Asn Pro Asp 450 455 460 Leu Ile Leu Gln Tyr Asp Ile Arg Gln Lys Ala Leu Lys Leu Thr Ala 465 470 475 480 Asn Ser Met Tyr Gly Cys Leu Gly Phe Ser Tyr Ser Arg Phe Tyr Ala 485 490 495 Lys Pro Leu Ala Ala Leu Val Thr Tyr Lys Gly Arg Glu Ile Leu Met 500 505 510 His Thr Lys Glu Met Val Gln Lys Met Asn Leu Glu Val Ile Tyr Gly 515 520 525 Asp Thr Asp Ser Ile Met Ile Asn Thr Asn Ser Thr Asn Leu Glu Glu 530 535 540 Val Phe Lys Leu Gly Asn Lys Val Lys Ser Glu Val Asn Lys Leu Tyr 545 550 555 560 Lys Leu Leu Glu Ile Asp Ile Asp Gly Val Phe Lys Ser Leu Leu Leu 565 570 575 Leu Lys Lys Lys Lys Tyr Ala Ala Leu Val Val Glu Pro Thr Ser Asp 580 585 590 Gly Asn Tyr Val Thr Lys Gln Glu Leu Lys Gly Leu Asp Ile Val Arg 595 600 605 Arg Asp Trp Cys Asp Leu Ala Lys Asp Thr Gly Asn Phe Val Ile Gly 610 615 620 Gln Ile Leu Ser Asp Gln Ser Arg Asp Thr Ile Val Glu Asn Ile Gln 625 630 635 640 Lys Arg Leu Ile Glu Ile Gly Glu Asn Val Leu Asn Gly Ser Val Pro 645 650 655 Val Ser Gln Phe Glu Ile Asn Lys Ala Leu Thr Lys Asp Pro Gln Asp 660 665 670 Tyr Pro Asp Lys Lys Ser Leu Pro His Val His Val Ala Leu Trp Ile 675 680 685 Asn Ser Gln Gly Gly Arg Lys Val Lys Ala Gly Asp Thr Val Ser Tyr 690 695 700 Val Ile Cys Gln Asp Gly Ser Asn Leu Thr Ala Ser Gln Arg Ala Tyr 705 710 715 720 Ala Pro Glu Gln Leu Gln Lys Gln Asp Asn Leu Thr Ile Asp Thr Gln 725 730 735 Tyr Tyr Leu Ala Gln Gln Ile His Pro Val Val Ala Arg Ile Cys Glu 740 745 750 Pro Ile Asp Gly Ile 755 24 757 PRT Mus musculus 24 Ser His Val Phe Gly Thr Asn Thr Ser Ser Leu Glu Leu Phe Leu Met 1 5 10 15 Asn Arg Lys Ile Lys Gly Pro Cys Trp Leu Glu Val Lys Asn Pro Gln 20 25 30 Leu Leu Asn Gln Pro Ile Ser Trp Cys Lys Phe Glu Val Met Ala Leu 35 40 45 Lys Pro Asp Leu Val Asn Val Ile Lys Asp Val Ser Pro Pro Pro Leu 50 55 60 Val Val Met Ser Phe Ser Met Lys Thr Met Gln Asn Val Gln Asn His 65 70 75 80 Gln His Glu Ile Ile Ala Met Ala Ala Leu Val His His Ser Phe Ala 85 90 95 Leu Asp Lys Ala Pro Pro Glu Pro Pro Phe Gln Thr His Phe Cys Val 100 105 110 Val Ser Lys Pro Lys Asp Cys Ile Phe Pro Cys Asp Phe Lys Glu Val 115 120 125 Ile Ser Lys Lys Asn Met Lys Val Glu Ile Ala Ala Thr Glu Arg Thr 130 135 140 Leu Ile Gly Phe Phe Leu Ala Lys Val His Lys Ile Asp Pro Asp Ile 145 150 155 160 Leu Val Gly His Asn Ile Cys Ser Phe Glu Leu Glu Val Leu Leu Gln 165 170 175 Arg Ile Asn Glu Cys Lys Val Pro Tyr Trp Ser Lys Ile Gly Arg Leu 180 185 190 Arg Arg Ser Asn Met Pro Lys Leu Gly Ser Arg Ser Gly Phe Gly Glu 195 200 205 Arg Asn Ala Thr Cys Gly Arg Met Ile Cys Asp Val Glu Ile Ser Ala 210 215 220 Lys Glu Leu Ile His Cys Lys Ser Tyr His Leu Ser Glu Leu Val Gln 225 230 235 240 Gln Ile Leu Lys Thr Glu Arg Ile Val Ile Pro Thr Glu Asn Ile Arg 245 250 255 Asn Met Tyr Ser Glu Ser Ser Tyr Leu Leu Tyr Leu Leu Glu His Ile 260 265 270 Trp Lys Asp Ala Arg Phe Ile Leu Gln Ile Met Cys Glu Leu Asn Val 275 280 285 Leu Pro Leu Ala Leu Gln Ile Thr Asn Ile Ala Gly Asn Ile Met Ser 290 295 300 Arg Thr Leu Met Gly Gly Arg Ser Glu Arg Asn Glu Phe Leu Leu Leu 305 310 315 320 His Ala Phe Tyr Glu Asn Asn Tyr Ile Val Pro Asp Lys Gln Ile Phe 325 330 335 Arg Lys Pro Gln Gln Lys Leu Gly Asp Glu Asp Glu Glu Ile Asp Gly 340 345 350 Asp Thr Asn Lys Tyr Lys Lys Gly Arg Lys Lys Ala Thr Tyr Ala Gly 355 360 365 Gly Leu Val Leu Asp Pro Lys Val Gly Phe Tyr Asp Lys Phe Ile Leu 370 375 380 Leu Leu Asp Phe Asn Ser Leu Tyr Pro Ser Ile Ile Gln Glu Phe Asn 385 390 395 400 Ile Cys Phe Thr Thr Val Gln Arg Val Thr Ser Glu Val Gln Lys Ala 405 410 415 Thr Glu Asp Glu Glu Gln Glu Gln Ile Pro Glu Leu Pro Asp Pro Asn 420 425 430 Leu Glu Met Gly Ile Leu Pro Arg Glu Ile Arg Lys Leu Val Glu Arg 435 440 445 Arg Lys Gln Val Lys Gln Leu Met Lys Gln Gln Asp Leu Asn Pro Asp 450 455 460 Leu Val Leu Gln Tyr Asp Ile Arg Gln Lys Ala Leu Lys Leu Thr Ala 465 470 475 480 Asn Ser Met Tyr Gly Cys Leu Gly Phe Ser Tyr Ser Arg Phe Tyr Ala 485 490 495 Lys Pro Leu Ala Ala Leu Val Thr Tyr Lys Gly Arg Glu Ile Leu Met 500 505 510 His Thr Lys Asp Met Val Gln Lys Met Asn Leu Glu Val Ile Tyr Gly 515 520 525 Asp Thr Asp Ser Ile Met Ile Asn Thr Asn Ser Thr Asn Leu Glu Glu 530 535 540 Val Phe Lys Leu Gly Asn Lys Val Lys Ser Glu Val Asn Lys Leu Tyr 545 550 555 560 Lys Leu Leu Glu Ile Asp Ile Asp Ala Val Phe Lys Ser Leu Leu Leu 565 570 575 Leu Lys Lys Lys Lys Tyr Ala Ala Leu Val Val Glu Pro Thr Ser Asp 580 585 590 Gly Asn Tyr Ile Thr Lys Gln Glu Leu Lys Gly Leu Asp Ile Val Arg 595 600 605 Arg Asp Trp Cys Asp Leu Ala Lys Asp Thr Gly Asn Phe Val Ile Gly 610 615 620 Gln Ile Leu Ser Asp Gln Ser Arg Asp Thr Ile Val Glu Asn Ile Gln 625 630 635 640 Lys Arg Leu Ile Glu Ile Gly Glu Asn Val Leu Asn Gly Ser Val Pro 645 650 655 Val Ser Gln Phe Glu Ile Asn Lys Ala Leu Thr Lys Asp Pro Gln Asp 660 665 670 Tyr Pro Asp Arg Lys Ser Leu Pro His Val His Val Ala Leu Trp Ile 675 680 685 Asn Ser Gln Gly Gly Arg Lys Val Lys Ala Gly Asp Thr Val Ser Tyr 690 695 700 Val Ile Cys Gln Asp Gly Ser Asn Leu Thr Ala Thr Gln Arg Ala Tyr 705 710 715 720 Ala Pro Glu Gln Leu Gln Lys Leu Asp Asn Leu Ala Ile Asp Thr Gln 725 730 735 Tyr Tyr Leu Ala Gln Gln Ile His Pro Val Val Ala Arg Ile Cys Glu 740 745 750 Pro Ile Asp Gly Ile 755 25 748 PRT Drosophila melanogaster 25 Ala His Ile Phe Gly Ala Thr Thr Asn Ala Leu Glu Arg Phe Leu Leu 1 5 10 15 Asp Arg Lys Ile Lys Gly Pro Cys Trp Leu Gln Val Thr Gly Phe Lys 20 25 30 Val Ser Pro Thr Pro Met Ser Trp Cys Asn Thr Glu Val Thr Leu Thr 35 40 45 Glu Pro Lys Asn Val Glu Leu Val Gln Asp Lys Gly Lys Pro Ala Pro 50 55 60 Pro Pro Pro Leu Thr Leu Leu Ser Leu Asn Val Arg Thr Ser Met Asn 65 70 75 80 Pro Lys Thr Ser Arg Asn Glu Ile Cys Met Ile Ser Met Leu Thr His 85 90 95 Asn Arg Phe His Ile Asp Arg Pro Ala Pro Gln Pro Ala Phe Asn Arg 100 105 110 His Met Cys Ala Leu Thr Arg Pro Ala Val Val Ser Trp Pro Leu Asp 115 120 125 Leu Asn Phe Glu Met Ala Lys Tyr Lys Ser Thr Thr Val His Lys His 130 135 140 Asp Ser Glu Arg Ala Leu Leu Ser Trp Phe Leu Ala Gln Tyr Gln Lys 145 150 155 160 Ile Asp Ala Asp Leu Ile Val Thr Phe Asp Ser Met Asp Cys Gln Leu 165 170 175 Asn Val Ile Thr Asp Gln Ile Val Ala Leu Lys Ile Pro Gln Trp Ser 180 185 190 Arg Met Gly Arg Leu Arg Leu Ser Gln Ser Phe Gly Lys Arg Leu Leu 195 200 205 Glu His Phe Val Gly Arg Met Val Cys Asp Val Lys Arg Ser Ala Glu 210 215 220 Glu Cys Ile Arg Ala Arg Ser Tyr Asp Leu Gln Thr Leu Cys Lys Gln 225 230 235 240 Val Leu Lys Leu Lys Glu Ser Glu Arg Met Glu Val Asn Ala Asp Asp 245 250 255 Leu Leu Glu Met Tyr Glu Lys Gly Glu Ser Ile Thr Lys Leu Ile Ser 260 265 270 Leu Thr Met Gln Asp Asn Ser Tyr Leu Leu Arg Leu Met Cys Glu Leu 275 280 285 Asn Ile Met Pro Leu Ala Leu Gln Ile Thr Asn Ile Cys Gly Asn Thr 290 295 300 Met Thr Arg Thr Leu Gln Gly Gly Arg Ser Glu Arg Asn Glu Phe Leu 305 310 315 320 Leu Leu His Ala Ser Thr Glu Lys Asn Tyr Ile Val Pro Asp Lys Lys 325 330 335 Pro Val Ser Lys Arg Ser Gly Ala Gly Asp Thr Asp Arg Thr Leu Ser 340 345 350 Gly Ala Asp Ala Thr Met Gln Thr Lys Lys Lys Ala Ala Tyr Ala Gly 355 360 365 Gly Leu Val Leu Glu Pro Met Arg Gly Leu Tyr Glu Lys Tyr Val Leu 370 375 380 Leu Met Asp Leu Asn Ser Leu Tyr Pro Ser Ile Ile Gln Glu Tyr Asn 385 390 395 400 Ile Cys Phe Asn Pro Val Gln Gln Pro Val Asp Ala Asp Glu Leu Pro 405 410 415 Thr Leu Pro Asp Ser Lys Thr Glu Pro Gly Ile Leu Pro Leu Gln Leu 420 425 430 Lys Arg Leu Val Glu Ser Arg Lys Glu Val Lys Lys Leu Met Ala Ala 435 440 445 Pro Asp Leu Ser Pro Glu Leu Gln Met Gln Tyr His Ile Arg Gln Met 450 455 460 Ala Leu Lys Leu Thr Ala Asn Ser Met Tyr Gly Cys Leu Gly Phe Ala 465 470 475 480 His Ser Arg Phe Phe Ala Gln His Leu Ala Ala Leu Val Thr His Lys 485 490 495 Gly Arg Asp Leu Thr Asn Thr Gln Gln Leu Val Gln Lys Met Asn Tyr 500 505 510 Asp Val Val Tyr Gly Asp Thr Asp Ser Leu Met Ile Asn Thr Asn Ile 515 520 525 Thr Asp Tyr Asp Gln Val Tyr Lys Ile Gly His Asn Ile Lys Gln Ser 530 535 540 Val Asn Lys Leu Tyr Lys Gln Leu Glu Leu Asp Ile Asp Gly Val Phe 545 550 555 560 Gly Cys Leu Leu Leu Leu Lys Lys Lys Lys Tyr Ala Ala Ile Lys Leu 565 570 575 Ser Lys Asp Ser Lys Gly Asn Leu Arg Arg Glu Gln Glu His Lys Gly 580 585 590 Leu Asp Ile Val Arg Arg Asp Trp Ser Gln Leu Ala Val Met Val Gly 595 600 605 Lys Ala Val Leu Asp Glu Val Leu Ser Glu Lys Pro Leu Glu Glu Lys 610 615 620 Leu Asp Ala Val His Ala Gln Leu Glu Lys Ile Lys Thr Gln Ile Ala 625 630 635 640 Glu Gly Val Val Pro Leu Pro Leu Phe Val Ile Thr Lys Gln Leu Thr 645 650 655 Arg Thr Pro Gln Asp Tyr Arg Asn Ser Ala Ser Leu Pro His Val Gln 660 665 670 Val Ala Leu Arg Met Asn Arg Glu Arg Asn Arg Arg Tyr Lys Lys Gly 675 680 685 Asp Met Val Asp Leu Cys Asp Cys Leu Asp Gly Thr Thr Asn Ala Ala 690 695 700 Met Gln Arg Ala Tyr His Leu Asp Glu Leu Lys Thr Ser Glu Asp Lys 705 710 715 720 Lys Leu Gln Leu Asp Thr Asn Tyr Tyr Leu Gly His Gln Ile His Pro 725 730 735 Val Val Thr Arg Met Val Glu Val Leu Glu Gly Thr 740 745 26 752 PRT Schizosaccharomyces pombe 26 Ser His Val Phe Gly Thr Asn Thr Ala Leu Phe Glu Gln Phe Val Leu 1 5 10 15 Ser Arg Arg Val Met Gly Pro Cys Trp Leu Lys Ile Gln Gln Pro Asn 20 25 30 Phe Asp Ala Val Lys Asn Ala Ser Trp Cys Arg Val Glu Ile Gly Cys 35 40 45 Ser Ser Pro Gln Asn Ile Ser Val Ser Phe Glu Lys Asn Glu Ile Thr 50 55 60 Ser Lys Thr Pro Pro Met Thr Val Met Ser Leu Ala Phe Arg Thr Leu 65 70 75 80 Ile Asn Lys Glu Gln Asn Lys Gln Glu Val Val Met Ile Ser Ala Arg 85 90 95 Ile Phe Glu Asn Val Asp Ile Glu Lys Gly Leu Pro Ala Asn Asp Met 100 105 110 Pro Ser Tyr Ser Phe Ser Leu Ile Arg Pro Leu Lys Gln Ile Phe Pro 115 120 125 Asn Gly Phe Glu Lys Leu Ala Arg Gln His Lys Ser Ser Ile Phe Cys 130 135 140 Glu Arg Ser Glu Val Ser Leu Leu Asn Asn Phe Leu Asn Lys Val Arg 145 150 155 160 Thr Tyr Asp Pro Asp Val Tyr Phe Gly His Asp Phe Glu Met Cys Tyr 165 170 175 Ser Val Leu Leu Ser Arg Leu Lys Glu Arg Lys Ile His Asn Trp Ser 180 185 190 Ser Ile Gly Arg Leu Arg Arg Ser Glu Trp Pro Arg Ser Phe Asn Arg 195 200 205 Ser Ser Gln Gln Phe Val Glu Lys Gln Ile Ile Ala Gly Arg Leu Met 210 215 220 Cys Asp Leu Ser Asn Asp Phe Gly Arg Ser Met Ile Lys Ala Gln Ser 225 230 235 240 Trp Ser Leu Ser Glu Ile Val Leu Lys Glu Leu Asp Ile Lys Arg Gln 245 250 255 Asp Ile Asn Gln Glu Lys Ala Leu Gln Ser Trp Thr Asp Thr Ala His 260 265 270 Gly Leu Leu Asp Tyr Leu Val His Cys Glu Ile Asp Thr Phe Phe Ile 275 280 285 Ala Ala Val Ala Phe Lys Ile Gln Met Leu Gln Leu Ser Lys Asn Leu 290 295 300 Thr Asn Ile Ala Gly Asn Ser Trp Ala Arg Thr Leu Thr Gly Thr Arg 305 310 315 320 Ala Glu Arg Asn Glu Tyr Ile Leu Leu His Glu Phe Lys Lys Asn Gly 325 330 335 Tyr Ile Val Pro Asp Lys Gln Gln Ser Ile Arg Arg His Ala Glu Ala 340 345 350 Phe Gly Ala Glu Asp Gly Leu Gln Glu Glu Ser Leu Gly Lys Lys Lys 355 360 365 Asp Lys Tyr Lys Gly Gly Leu Val Phe Glu Pro Gln Lys Gly Leu Tyr 370 375 380 Glu Thr Cys Ile Leu Val Met Asp Phe Asn Ser Leu Tyr Pro Ser Ile 385 390 395 400 Ile Gln Glu Tyr Asn Ile Cys Phe Thr Thr Val Asp Arg Ser Pro Ser 405 410 415 Asn Ser Asp Ser Asp Asp Gln Ile Pro Asp Thr Pro Ser Ala Ser Ala 420 425 430 Asn Gln Gly Ile Phe Pro Arg Leu Ile Ala Asn Leu Val Glu Arg Arg 435 440 445 Arg Gln Ile Lys Gly Leu Leu Lys Asp Asn Ser Ala Thr Pro Thr Gln 450 455 460 Arg Leu Gln Trp Asp Ile Gln Gln Gln Ala Leu Lys Leu Thr Ala Asn 465 470 475 480 Ser Met Tyr Gly Cys Leu Gly Tyr Thr Lys Ser Arg Phe Tyr Ala Arg 485 490 495 Pro Leu Ala Val Leu Ile Thr Tyr Lys Gly Arg Glu Ala Leu Met Asn 500 505 510 Thr Lys Glu Leu Ala Asp Gln Met Gly Leu Gln Val Ile Tyr Gly Asp 515 520 525 Thr Asp Ser Val Met Leu Asn Thr Asn Val Thr Asp Lys Asn His Ala 530 535 540 Leu Arg Ile Gly Asn Glu Phe Lys Glu Lys Val Asn Glu Arg Tyr Ser 545 550 555 560 Lys Leu Glu Ile Asp Ile Asp Asn Val Tyr Gln Arg Met Leu Leu His 565 570 575 Ala Lys Lys Lys Tyr Ala Ala Leu Gln Leu Asp Ser Gln Gly Lys Pro 580 585 590 Asn Leu Asp Val Lys Gly Leu Asp Met Lys Arg Arg Glu Phe Cys Thr 595 600 605 Leu Ala Lys Glu Ala Ser Lys Phe Cys Leu Asp Gln Ile Leu Ser Gly 610 615 620 Glu Leu Thr Glu Thr Val Ile Glu Asn Ile His Ser Tyr Leu Met Asp 625 630 635 640 Phe Ser Glu Lys Met Arg Asn Gly Lys Phe Pro Ala Asn Lys Phe Ile 645 650 655 Ile Phe Asn Arg Leu Gly Lys Asn Pro Glu Asp Tyr Pro Asn Gly Lys 660 665 670 Thr Met Pro Phe Val Gln Val Ala Leu Lys Lys Lys Ala Arg Gly Glu 675 680 685 Asn Val Arg Val Gly Asp Val Ile Pro Phe Ile Ile Ala Gly Ser Asp 690 695 700 Ala Asp Gly His Pro Ala Asp Arg Ala Tyr Ser Pro Gln Glu Ile Met 705 710 715 720 Asn Thr Asn Ser Thr Leu Val Ile Asp Tyr Asn Tyr Tyr Leu Ser His 725 730 735 Gln Ile Leu Pro Pro Ile Glu Arg Val Ile Ala Pro Ile Glu Gly Thr 740 745 750 27 761 PRT Saccharomyces cerevisiae 27 Tyr His Val Phe Gly Gly Asn Ser Asn Ile Phe Glu Ser Phe Val Ile 1 5 10 15 Gln Asn Arg Ile Met Gly Pro Cys Trp Leu Asp Ile Lys Gly Ala Asp 20 25 30 Phe Asn Ser Ile Arg Asn Ala Ser His Cys Ala Val Glu Val Ser Val 35 40 45 Asp Lys Pro Gln Asn Ile Thr Pro Thr Thr Thr Lys Thr Met Pro Asn 50 55 60 Leu Arg Cys Leu Ser Leu Ser Ile Gln Thr Leu Met Asn Pro Lys Glu 65 70 75 80 Asn Lys Gln Glu Ile Val Ser Ile Thr Leu Ser Ala Tyr Arg Asn Ile 85 90 95 Ser Leu Asp Ser Pro Ile Pro Glu Asn Ile Lys Pro Asp Asp Leu Cys 100 105 110 Thr Leu Val Arg Pro Pro Gln Ser Thr Ser Phe Pro Leu Gly Leu Ala 115 120 125 Ala Leu Ala Lys Gln Lys Leu Pro Gly Arg Val Arg Leu Phe Asn Asn 130 135 140 Glu Lys Ala Met Leu Ser Cys Phe Cys Ala Met Leu Lys Val Glu Asp 145 150 155 160 Pro Asp Val Ile Ile Gly His Arg Leu Gln Asn Val Tyr Leu Asp Val 165 170 175 Leu Ala His Arg Met His Asp Leu Asn Ile Pro Thr Phe Ser Ser Ile 180 185 190 Gly Arg Arg Leu Arg Arg Thr Trp Pro Glu Lys Phe Gly Arg Gly Asn 195 200 205 Ser Asn Met Asn His Phe Phe Ile Ser Asp Ile Cys Ser Gly Arg Leu 210 215 220 Ile Cys Asp Ile Ala Asn Glu Met Gly Gln Ser Leu Thr Pro Lys Cys 225 230 235 240 Gln Ser Trp Asp Leu Ser Glu Met Tyr Gln Val Thr Cys Glu Lys Glu 245 250 255 His Lys Pro Leu Asp Ile Asp Tyr Gln Asn Pro Gln Tyr Gln Asn Asp 260 265 270 Val Asn Ser Met Thr Met Ala Leu Gln Glu Asn Ile Thr Asn Cys Met 275 280 285 Ile Ser Ala Glu Val Ser Tyr Arg Ile Gln Leu Leu Thr Leu Thr Lys 290 295 300 Gln Leu Thr Asn Leu Ala Gly Asn Ala Trp Ala Gln Thr Leu Gly Gly 305 310 315 320 Thr Arg Ala Gly Arg Asn Glu Tyr Ile Leu Leu His Glu Phe Ser Arg 325 330 335 Asn Gly Phe Ile Val Pro Asp Lys Glu Gly Asn Arg Ser Arg Ala Gln 340 345 350 Lys Gln Arg Gln Asn Glu Glu Asn Ala Asp Ala Pro Val Asn Ser Lys 355 360 365 Lys Ala Lys Tyr Gln Gly Gly Leu Val Phe Glu Pro Glu Lys Gly Leu 370 375 380 His Lys Asn Tyr Val Leu Val Met Asp Phe Asn Ser Leu Tyr Pro Ser 385 390 395 400 Ile Ile Gln Glu Phe Asn Ile Cys Phe Thr Thr Val Asp Arg Asn Lys 405 410 415 Glu Asp Ile Asp Glu Leu Pro Ser Val Pro Pro Ser Glu Val Asp Gln 420 425 430 Gly Val Leu Pro Arg Leu Leu Ala Asn Leu Val Asp Arg Arg Arg Glu 435 440 445 Val Lys Lys Val Met Lys Thr Glu Thr Asp Pro His Lys Arg Val Gln 450 455 460 Cys Asp Ile Arg Gln Gln Ala Leu Lys Leu Thr Ala Asn Ser Met Tyr 465 470 475 480 Gly Cys Leu Gly Tyr Val Asn Ser Arg Phe Tyr Ala Lys Pro Leu Ala 485 490 495 Met Leu Val Thr Asn Lys Gly Arg Glu Ile Leu Met Asn Thr Arg Gln 500 505 510 Leu Ala Glu Ser Met Asn Leu Leu Val Val Tyr Gly Asp Thr Asp Ser 515 520 525 Val Met Ile Asp Thr Gly Cys Asp Asn Tyr Ala Asp Ala Ile Lys Ile 530 535 540 Gly Leu Gly Phe Lys Arg Leu Val Asn Glu Arg Tyr Arg Leu Leu Glu 545 550 555 560 Ile Asp Ile Asp Asn Val Phe Lys Lys Leu Leu Leu His Ala Lys Lys 565 570 575 Lys Tyr Ala Ala Leu Thr Val Asn Leu Asp Lys Asn Gly Asn Gly Thr 580 585 590 Thr Val Leu Glu Val Lys Gly Leu Asp Met Lys Arg Arg Glu Phe Cys 595 600 605 Pro Leu Ser Arg Asp Val Ser Ile His Val Leu Asn Thr Ile Leu Ser 610 615 620 Asp Lys Asp Pro Glu Glu Ala Leu Gln Glu Val Tyr Asp Tyr Leu Glu 625 630 635 640 Asp Ile Arg Ile Lys Val Glu Thr Asn Asn Ile Arg Ile Asp Lys Tyr 645 650 655 Lys Ile Asn Met Lys Leu Ser Lys Asp Pro Lys Ala Tyr Pro Gly Gly 660 665 670 Lys Asn Met Pro Ala Val Gln Val Ala Leu Arg Met Arg Lys Ala Gly 675 680 685 Arg Val Val Lys Ala Gly Ser Val Ile Thr Phe Val Ile Thr Lys Gln 690 695 700 Asp Glu Ile Asp Asn Ala Ala Asp Thr Pro Ala Leu Ser Val Ala Glu 705 710 715 720 Arg Ala His Ala Leu Asn Glu Val Met Ile Lys Ser Asn Asn Leu Ile 725 730 735 Pro Asp Pro Gln Tyr Tyr Leu Glu Lys Gln Ile Phe Ala Pro Val Glu 740 745 750 Arg Leu Leu Glu Arg Ile Asp Ser Phe 755 760 28 761 PRT Trypanosoma brucei 28 Gln Val Val Val Gly Ala Ser Arg Ser Leu Leu Glu Leu Phe Leu Ile 1 5 10 15 Lys Lys Arg Leu Met Gly Pro Ser Tyr Leu Glu Ile Glu His Leu Val 20 25 30 Thr Ala Met Asp Arg Val Ser His Cys Lys Thr Glu Phe Leu Val Pro 35 40 45 Ser Pro Lys Asp Ile Lys Val Tyr Asn Ser Ser Lys Pro Pro Pro Pro 50 55 60 Phe Thr Val Ala Ser Ile Gln Leu His Ala Gln Leu Asp Ser Asp Gly 65 70 75 80 Val Lys Asn Glu Val Ile Ala Ala Ser Ile Ala Leu Tyr Gly Asp Val 85 90 95 Ser Ile Asp Gly Glu Arg Lys Pro Asn Ile Thr Glu Cys Phe Thr Gly 100 105 110 Val Arg Gln Leu Ser Pro Asp Ala Pro Leu Pro Leu Asp Leu Glu Thr 115 120 125 Tyr Cys Leu Ser Lys Arg Met Pro Gly Val His Arg Phe Ile Asn Glu 130 135 140 Arg Ala Leu Leu Thr Trp Phe Ala Glu Thr Leu Ala Ala Leu Asp Pro 145 150 155 160 Asp Ile Ile Val Gly His Asn Ile Ile Gly Tyr Thr Val Glu Thr Leu 165 170 175 Leu Asn Arg Tyr Gln Glu Leu Asn Ile Val Arg Trp Ser Thr Ile Gly 180 185 190 Arg Leu Asp Val Arg Arg Phe Pro Arg Ile Gln Gly Asn Asn Phe Asn 195 200 205 Leu Ala Ile Glu Lys Glu Ala Cys Val Gly Arg Leu Val Val Asp Thr 210 215 220 Tyr Leu Leu Ala Arg Glu Tyr Tyr Lys Ser Thr Asn Tyr Lys Leu Leu 225 230 235 240 Ser Leu Ser Thr Gln Met Glu Ile Lys Gly Ile Thr Asp Asn Arg Gly 245 250 255 His Phe Glu Pro Gly Ser Thr Val Leu Val Lys Asp Ser Met Met Ser 260 265 270 Ser Glu Ala Leu Cys Pro Ile Leu Leu Gln Leu Leu Asn Cys Ala Val 275 280 285 Leu Ser Phe Asn Val Ala Ser Phe Leu Asp Val Ile Pro Leu Thr Lys 290 295 300 Arg Leu Thr Leu Leu Ala Gly Asn Leu Trp Ser Arg Thr Leu Tyr Gly 305 310 315 320 Ala Arg Ser Glu Arg Ile Glu Tyr Leu Leu Leu His Ala Phe His Asn 325 330 335 Leu Lys Phe Val Thr Pro Asp Lys Lys Lys Arg Asp Leu Lys Arg Gly 340 345 350 Arg Glu Asp Asp Asp Asp Glu Gly Lys Arg Lys Thr Lys Tyr Gln Gly 355 360 365 Gly Met Val Leu Glu Pro Lys Ser Gly Leu Tyr Ser Glu Tyr Ile Leu 370 375 380 Leu Leu Asp Phe Asn Ser Leu Tyr Pro Ser Leu Ile Gln Glu Phe Asn 385 390 395 400 Val Cys Tyr Thr Thr Ile Asp Arg Asp Glu Asn Thr Val Ser Ala Glu 405 410 415 Val Pro Pro Pro Glu Ser Leu Ile Cys Leu Ser Cys Arg Ala Ala Gly 420 425 430 Leu Pro Ser Pro Cys Leu His Lys Cys Ile Leu Pro Lys Val Ile Arg 435 440 445 Gly Leu Val Asp Ser Arg Arg Glu Ile Lys Arg Met Met Lys Ser Glu 450 455 460 Lys Asp Pro Gly Asn Leu Ala Met Leu Glu Ile Arg Gln Leu Ala Leu 465 470 475 480 Lys Leu Thr Ala Asn Ser Met Tyr Gly Cys Leu Gly Phe Glu Tyr Ser 485 490 495 Arg Phe Tyr Ala Gln Pro Leu Ala Glu Leu Val Thr Arg Gln Gly Arg 500 505 510 Leu Ala Leu Gln Asn Thr Val Glu Leu Ile Pro Gln Ile Ser Pro Ser 515 520 525 Ile Arg Val Ile Tyr Gly Asp Thr Asp Ser Val Met Ile Gln Thr Gly 530 535 540 Ile Lys Asp Asp Ile Val Lys Val Arg Asn Leu Gly Phe Glu Ile Lys 545 550 555 560 Gly Lys Val Asn Gln Arg Tyr Gln Ser Leu Glu Leu Asp Ile Asp Gly 565 570 575 Val Phe Arg Ala Met Leu Leu Leu Arg Lys Lys Lys Tyr Ala Ala Leu 580 585 590 Ser Val Val Asp Trp Gln Gly Glu Gly Lys Val Tyr Lys Arg Glu Val 595 600 605 Lys Gly Leu Asp Met Val Arg Arg Asp Trp Cys Pro Leu Ser Gln His 610 615 620 Val Ser Asp Ala Val Leu Lys Arg Ile Leu Asn Ala Glu Gly Gly Glu 625 630 635 640 Asp Ile Leu Asp Phe Val Ile Lys Tyr Met Lys Gly Val Ala Gln Asp 645 650 655 Val Arg Ser Gly Asn Val Tyr Pro Leu Glu Glu Phe Val Ile Ser Lys 660 665 670 Ser Leu Thr Lys Glu Pro Glu Ser Tyr His Gly Thr Gly Tyr Pro His 675 680 685 Ala Val Val Ala Leu Arg Met Lys Gln Arg Lys Glu Gly Val Arg Val 690 695 700 Gly Asp Leu Ile Pro Tyr Val Ile Cys Glu Gly Asp Glu His Ile Asp 705 710 715 720 Asp Lys Ala Tyr His Ile Asp Glu Val Arg Arg Ser Asp Gly Leu Ser 725 730 735 Val Asp Val Glu Trp Tyr Leu Ser Ser Gln Leu Tyr Pro Pro Val Met 740 745 750 Arg Leu Cys Glu His Ile Gln Gly Phe 755 760 29 782 PRT Autographa californica nucleopolynedrovirus 29 Asn Ala Ala Cys Leu Asp Lys Phe Leu His Asn Val Asn Arg Val His 1 5 10 15 Met Gln Thr Pro Phe Val Glu Gly Ala Tyr Met Arg Phe Lys Lys Thr 20 25 30 Gln Arg Cys Gln Asn Asn Tyr Val Gly Gly Ser Thr Thr Arg Met Phe 35 40 45 Asn Leu Gln His Phe Asn Glu Asp Phe Glu Leu Val Asp Glu Met Thr 50 55 60 Leu Thr Ser Gly Ile Met Pro Val Leu Ser Cys Tyr Asp Ile Glu Thr 65 70 75 80 His Ser Asp Gly His Asn Met Ser Lys Ala Ser Val Asp Cys Ile Met 85 90 95 Ser Ile Gly Phe Val Val Tyr Lys Asn Asp Glu Tyr Ala Lys Phe Cys 100 105 110 Phe Met Tyr His Lys Leu Pro Thr Gln Ile Pro Glu Thr Tyr Asp Asp 115 120 125 Asp Thr Tyr Val Val Met Phe Gln Asn Glu Ile Asp Met Ile Thr Ala 130 135 140 Phe Phe Asp Met Ile Lys Ile Thr Asn Pro Asp Val Ile Leu Asp Phe 145 150 155 160 Asn Gly Asp Val Phe Asp Leu Pro Tyr Ile Leu Gly Arg Leu Asn Lys 165 170 175 Thr Lys Met Leu Leu Lys Arg Tyr Asp Leu Pro Ala Ala Ala Pro Thr 180 185 190 Thr Lys Leu Phe Ile Asn Lys Leu Gly Asn Lys Val Asp Thr Tyr Tyr 195 200 205 Phe Asn Tyr Tyr Ile His Ile Asp Leu Tyr Lys Phe Phe Ser Ser Asp 210 215 220 Ser Asn Gln His Lys Val Glu Asn Phe Gln Leu Asn Thr Ile Ser Ser 225 230 235 240 Tyr Tyr Leu Gly Glu Asn Lys Ile Asp Leu Pro Trp Thr Glu Met Val 245 250 255 Lys Met Tyr Asn Thr Arg Arg Leu Asp Val Ile Ala Lys Tyr Asn Val 260 265 270 Gln Asp Cys Met Leu Pro Ile Lys Leu Phe Val Lys Leu Lys Met Ala 275 280 285 Asp Ser Val Tyr Ser Gln Cys Ile Leu His Arg Leu Cys Thr Asp Asp 290 295 300 Val Ile Cys Asn Ile Ser His Leu Ile Ser Val Ala Cys Phe Tyr Ala 305 310 315 320 Ala Ile Thr Asn Thr Arg Ile Asn Glu Ser Thr Gly Lys Glu Glu Pro 325 330 335 Asp Pro Tyr Phe Phe Asn Lys Asn Asp Leu Ser Ile Ile Ser Gly Gln 340 345 350 Phe Lys Ala Asp Lys Ala Ala Ala Gly Ile Ser Asn Leu Lys Arg Lys 355 360 365 Leu Ile Pro Leu Lys Asn Ile Pro Lys Asp Ala Ile Asn Leu Gly Pro 370 375 380 Ala Asn Gln Thr Val Lys Tyr Lys Gly Gly Lys Val Leu Lys Pro Arg 385 390 395 400 Ala Gly Ile Tyr Lys Asn Ala Phe Ser Leu Asp Phe Asn Ser Leu Tyr 405 410 415 Leu Thr Ile Met Ile Ala Ile Cys Ala Cys Leu Ser Asn Leu Ile Leu 420 425 430 Cys Glu Asp Gly Asn Val Tyr Leu Asn His Asn Ser Arg Ala Ile Val 435 440 445 Val Lys Leu Leu Leu Lys Leu Leu Ser Glu Arg Cys Lys Phe Lys Lys 450 455 460 Asn Arg Asp Asn Gln Ser Glu Ser Ala Phe Leu Tyr Asp Leu Tyr Asp 465 470 475 480 Gln Lys Gln Asn Ser Val Lys Arg Thr Ala Asn Ser Ile Tyr Gly Tyr 485 490 495 Tyr Gly Ile Phe Tyr Lys Val Leu Ala Asn Tyr Ile Thr Arg Val Gly 500 505 510 Arg Asn Gln Leu Arg Leu Ala Ile Ser Leu Ile Glu Gly Leu Ser Asn 515 520 525 Asp Pro Glu Ile Leu Glu Lys Phe Asn Leu Gly Ser Ile Thr Phe Lys 530 535 540 Val Val Tyr Gly Asp Thr Asp Ser Thr Phe Val Leu Pro Thr Phe Asn 545 550 555 560 Tyr Asn Glu Ile Ser Asn Glu Thr Asp Thr Leu Lys Gln Ile Cys Thr 565 570 575 His Val Glu Thr Arg Val Asn Asn Ser Phe Thr Asp Gly Tyr Lys Met 580 585 590 Ala Phe Glu Asn Leu Met Lys Val Leu Ile Leu Leu Lys Lys Lys Lys 595 600 605 Tyr Cys Tyr Leu Asn Ser Glu Asn Lys Ile Val Tyr Lys Gly Trp Leu 610 615 620 Val Lys Lys Asp Met Pro Val Phe Met Arg Ile Ala Phe Arg Thr Ala 625 630 635 640 Val Glu Gln Ile Leu Arg His Leu Asp Met Asp Lys Cys Leu Gln Ser 645 650 655 Leu Gln Thr Ser Phe Tyr Glu Tyr Tyr Asp Glu Phe Ala Lys Ser Lys 660 665 670 Ser Leu Thr Asp Tyr Ser Phe Ser Met Thr Tyr Asn Asp Asn Pro Gly 675 680 685 Lys Lys Arg Lys Ser Thr Asp Asp Asn Glu Gly Pro Ser Pro Lys Arg 690 695 700 Arg Val Ile Thr Val Ala Arg His Cys Arg Glu Ile Leu Val Asn Lys 705 710 715 720 Gly Thr Asp Phe Val Pro Gly Asn Gly Asp Arg Ile Pro Tyr Leu Leu 725 730 735 Ile Asp Ile Glu Gly Lys Val Thr Glu Lys Ala Tyr Pro Leu Arg Leu 740 745 750 Phe Asp Pro Val Lys Met Arg Ile Ser Trp Ile Lys His Met Gly Ile 755 760 765 Leu Cys Thr Phe Met Asn Glu Leu Leu Glu Ile Phe Gly Asp 770 775 780 30 797 PRT Lymantria dispar multicapsid nuclear polyhedrosis 30 Asp Lys Asn Cys Leu Asp Gly Tyr Leu Ala Asp Val Asn Arg Val His 1 5 10 15 Met Gln Thr Ser Leu Leu Glu Gly Gln Tyr Val Arg Phe Lys Asn Ala 20 25 30 His Ala Cys Arg Asp Tyr Arg Leu Ser His Thr Ala Lys Asp Val His 35 40 45 Glu Phe Glu Ser Met Leu Glu Arg Val Gln Val Ser Ala Leu Ser His 50 55 60 Glu Ile Leu Pro Val Val Ala Cys Tyr Asp Ile Glu Thr His Ser Asp 65 70 75 80 Gly Gln Arg Phe Ser Ala Pro Asp Ala Asp Phe Ile Ile Ser Ile Ala 85 90 95 Val Val Val Arg Arg Asp Ala Ala Asp Thr Arg Ile Cys Leu Phe Tyr 100 105 110 Ser Pro Asp Asp Pro Val Asp Leu Ser Ser Ser Ser Ser Ser Pro Pro 115 120 125 Ala Ala Pro Asp Thr Ala Ala Val His Phe Arg Ala Glu Arg Asp Met 130 135 140 Ile Ala Ala Phe Phe Gln Leu Leu Pro Leu Leu Asn Ala Asp Val Val 145 150 155 160 Leu Asp Phe Asn Gly Asp Lys Phe Asp Leu Pro Phe Leu Thr Gly Arg 165 170 175 Ala Asn Lys Leu Cys Gly Pro Ala Glu Ala Ala Arg Ala Thr Lys Ile 180 185 190 Ala Arg Tyr Asp Leu Ser Pro Val Asn Val Val Thr Gln Gln Ser Tyr 195 200 205 Asp Lys Phe Ser Asn Lys Leu His Ser His Tyr Leu Thr Tyr Tyr Ile 210 215 220 His Ile Asp Leu Tyr Gln Phe Leu Ser Thr Asp Ser Glu His Asn Asp 225 230 235 240 Leu Glu Asn Phe Gln Leu Asn Thr Val Ala Glu His Tyr Leu Lys Lys 245 250 255 Ser Lys Val Asp Leu Pro Ile His Asp Met Leu Gln Met Tyr Gly Glu 260 265 270 Lys Arg Leu Ser Arg Ile Val Glu Tyr Asn Val Gln Asp Cys Val Leu 275 280 285 Pro Val Glu Leu Phe Leu Lys Leu Glu Ile Ala Asp Tyr Met Tyr Thr 290 295 300 Gln Cys Met Leu Leu Tyr Leu Cys Thr Asp Asp Leu Leu Arg Asn Ile 305 310 315 320 Ser His Lys Ile Thr Val Ala Tyr Phe His Leu Ala Leu Thr Asn Thr 325 330 335 Val Ala Arg Arg Pro Asp Pro Thr Pro Asp Pro Tyr Phe Phe Asn Lys 340 345 350 Tyr Asp Leu Ser Val Thr Ser Gly Ala Ser Ala Pro Ser Thr Ser Arg 355 360 365 Pro Ala Asn Ala Ile Asp Leu Ser Gln Leu Lys Arg Thr Pro Val Asp 370 375 380 Ala Ala Arg Ile Pro Pro Ser Ala Val Lys Leu Cys Ser Thr Arg Gln 385 390 395 400 Ser Cys Thr Tyr Lys Gly Gly Lys Val Leu Ser Pro Lys Pro Gly Phe 405 410 415 Asn Arg Trp Val Ala Thr Leu Asp Phe Asn Ala Leu Tyr Pro Thr Ile 420 425 430 Met Met Trp Glu Gly Val Cys Met Ser Ser Asn Val Phe Ile Ala Ser 435 440 445 Asp Gly Asn Val Tyr Leu Asp Lys Asn Val Asn Ala Val Asn Pro Lys 450 455 460 Leu Leu Lys Thr Leu Ser Glu Met Arg Val Arg Tyr Lys Gly Leu Arg 465 470 475 480 Asp Gln Cys Glu Tyr Asn Ser Phe Tyr Tyr Lys Leu Tyr Asp Lys Ile 485 490 495 Gln Asn Ala Leu Lys Arg Ile Ala Asn Ser Ile Tyr Gly Tyr Tyr Gly 500 505 510 Ile Phe Phe Lys Pro Leu Ala Asn Tyr Ile Thr Lys Met Gly Arg Gly 515 520 525 Lys Leu Lys Glu Val Val Gly Lys Val Glu Ala Met Ser Asp Asp Pro 530 535 540 Arg Ile Leu Arg Glu Phe Gly Leu Ser Lys Ile Asn Phe Ser Val Ile 545 550 555 560 Tyr Gly Asp Thr Asp Ser Cys Phe Ile Arg Val Leu Phe Asp Glu Ala 565 570 575 Glu Trp Arg Arg Thr Ala Ala Arg Pro Arg Ser Ala Pro Ser Cys Arg 580 585 590 Thr Thr Cys Ala Lys Arg Ser Thr Thr Leu Trp Cys Gly Tyr Lys Met 595 600 605 Ser Leu Glu Asn Ile Met Leu Ser Leu Ile Leu Leu Lys Lys Lys Lys 610 615 620 Tyr Cys Tyr Leu Asn Asn Glu Gln Arg Thr Lys Tyr Lys Gly Trp Leu 625 630 635 640 Ile Lys Arg Asp Met Pro Leu Phe Met Arg Lys Ala Phe Arg Ala Thr 645 650 655 Val Asp Ser Phe Ser Ala Ala Thr Arg Arg Val Arg Ala Arg Pro Ala 660 665 670 Arg Arg Glu Met Leu Arg Tyr Tyr Arg Glu Phe Gly Ala Pro Arg Glu 675 680 685 Asn Leu Val Asp Tyr Cys Phe Ser Met Ser Tyr Asn Glu Thr Ser Thr 690 695 700 Thr Ala Lys Arg Arg Lys Glu Glu Asp Pro Ala Arg Lys Pro Val Ile 705 710 715 720 Thr Ile Ala Lys His Cys Arg Glu Leu Leu Ala Asn Pro Gly Val Asp 725 730 735 Phe Leu Pro Gly Asn Gly Asp Arg Ile Gln Tyr Val Leu Val Asp Val 740 745 750 Lys Glu Lys Ile Thr Gln Lys Ala Phe Pro Leu Lys Leu Phe Asp Pro 755 760 765 Asp Ser Pro Thr Leu Gln Ile Ser Trp Leu Lys His Met Asn Ile Leu 770 775 780 Cys Thr Phe Met Asn Glu Leu Ile Gln Val Phe Gly Asn 785 790 795 31 745 PRT Saccharomyces cerevisiae 31 Asn Lys Val Pro Ser Met Gly Asn Lys Lys Thr Glu Ser Gln Ile Ser 1 5 10 15 Met His Thr Pro His Ser Lys Phe Leu Tyr Lys Phe Ala Ser Asp Val 20 25 30 Ser Gly Lys Gln Lys Arg Lys Lys Ser Ser Val His Asp Ser Leu Thr 35 40 45 His Leu Thr Leu Glu Ile His Ala Asn Thr Arg Ser Asp Lys Ile Pro 50 55 60 Asp Pro Ala Ile Asp Glu Val Ser Met Ile Ile Trp Cys Leu Glu Glu 65 70 75 80 Glu Thr Phe Pro Leu Asp Leu Asp Ile Ala Tyr Glu Gly Ile Met Ile 85 90 95 Val His Lys Ala Ser Glu Asp Ser Thr Phe Pro Thr Lys Ile Gln His 100 105 110 Cys Ile Asn Glu Ile Pro Val Met Phe Tyr Glu Ser Glu Phe Glu Met 115 120 125 Phe Glu Ala Leu Thr Asp Leu Val Leu Leu Leu Asp Pro Asp Ile Leu 130 135 140 Ser Gly Phe Glu Ile His Asn Phe Ser Trp Gly Tyr Ile Ile Glu Arg 145 150 155 160 Cys Gln Lys Ile His Gln Phe Asp Ile Val Arg Glu Leu Ala Arg Val 165 170 175 Lys Cys Gln Ile Lys Thr Lys Leu Ser Asp Thr Trp Gly Tyr Ala His 180 185 190 Ser Ser Gly Ile Met Ile Thr Gly Arg His Met Ile Asn Ile Trp Arg 195 200 205 Ala Leu Arg Ser Asp Val Asn Leu Thr Gln Tyr Thr Ile Glu Ser Ala 210 215 220 Ala Phe Asn Ile Leu His Lys Arg Leu Pro His Phe Ser Phe Glu Ser 225 230 235 240 Leu Thr Asn Met Trp Asn Ala Lys Lys Ser Thr Thr Glu Leu Lys Thr 245 250 255 Val Leu Asn Tyr Trp Leu Ser Arg Ala Gln Ile Asn Ile Gln Leu Leu 260 265 270 Arg Lys Gln Asp Tyr Ile Ala Arg Asn Ile Glu Gln Ala Arg Leu Ile 275 280 285 Gly Ile Asp Phe His Ser Val Tyr Tyr Arg Gly Ser Gln Phe Lys Val 290 295 300 Glu Ser Phe Leu Ile Arg Ile Cys Lys Ser Glu Ser Phe Ile Leu Leu 305 310 315 320 Ser Pro Gly Lys Lys Asp Val Arg Lys Gln Lys Ala Leu Glu Cys Val 325 330 335 Pro Leu Val Met Glu Pro Glu Ser Ala Phe Tyr Lys Ser Pro Leu Ile 340 345 350 Val Leu Asp Phe Gln Ser Leu Tyr Pro Ser Ile Met Ile Gly Tyr Asn 355 360 365 Tyr Cys Tyr Ser Thr Met Ile Gly Arg Val Arg Glu Ile Asn Leu Thr 370 375 380 Glu Asn Asn Leu Gly Val Ser Lys Phe Ser Leu Pro Arg Asn Ile Leu 385 390 395 400 Ala Leu Leu Lys Asn Asp Val Thr Ile Ala Pro Asn Gly Val Val Tyr 405 410 415 Ala Lys Thr Ser Val Arg Lys Ser Thr Leu Ser Lys Met Leu Thr Asp 420 425 430 Ile Leu Asp Val Arg Val Met Ile Lys Lys Thr Met Asn Glu Ile Gly 435 440 445 Asp Asp Asn Thr Thr Leu Lys Arg Leu Leu Asn Asn Lys Gln Leu Ala 450 455 460 Leu Lys Leu Leu Ala Asn Val Thr Tyr Gly Tyr Thr Ser Ala Ser Phe 465 470 475 480 Ser Gly Arg Met Pro Cys Ser Asp Leu Ala Asp Ser Ile Val Gln Thr 485 490 495 Gly Arg Glu Thr Leu Glu Lys Ala Ile Asp Ile Ile Glu Lys Asp Glu 500 505 510 Thr Trp Asn Ala Lys Val Val Tyr Gly Asp Thr Asp Ser Leu Phe Val 515 520 525 Tyr Leu Pro Gly Lys Thr Ala Ile Glu Ala Phe Ser Ile Gly His Ala 530 535 540 Met Ala Glu Arg Val Thr Gln Asn Asn Pro Lys Pro Ile Phe Leu Lys 545 550 555 560 Phe Glu Lys Val Tyr His Pro Ser Ile Leu Ile Ser Lys Lys Arg Tyr 565 570 575 Val Gly Phe Ser Tyr Glu Ser Pro Ser Gln Thr Leu Pro Ile Phe Asp 580 585 590 Ala Lys Gly Ile Glu Thr Val Arg Arg Asp Gly Ile Pro Ala Gln Gln 595 600 605 Lys Ile Ile Glu Lys Cys Ile Arg Leu Leu Phe Gln Thr Lys Asp Leu 610 615 620 Ser Lys Ile Lys Lys Tyr Leu Gln Asn Glu Phe Phe Lys Ile Gln Ile 625 630 635 640 Gly Lys Val Ser Ala Gln Asp Phe Cys Phe Ala Lys Glu Val Lys Leu 645 650 655 Gly Ala Tyr Lys Ser Glu Lys Thr Ala Pro Ala Gly Ala Val Val Val 660 665 670 Lys Arg Arg Ile Asn Glu Asp His Arg Ala Glu Pro Gln Tyr Lys Glu 675 680 685 Arg Ile Pro Tyr Leu Val Val Lys Gly Lys Gln Gly Gln Leu Leu Arg 690 695 700 Glu Arg Cys Val Ser Pro Glu Glu Phe Leu Glu Gly Glu Asn Leu Glu 705 710 715 720 Leu Asp Ser Glu Tyr Tyr Ile Asn Lys Ile Leu Ile Pro Pro Leu Asp 725 730 735 Arg Leu Phe Asn Leu Ile Gly Ile Asn 740 745 32 727 PRT Pyrococcus woesei 32 Phe Lys Ile Glu His Asp Arg Thr Phe Arg Pro Tyr Ile Tyr Ala Leu 1 5 10 15 Leu Arg Asp Asp Ser Lys Ile Glu Glu Val Lys Lys Ile Thr Gly Glu 20 25 30 Arg His Gly Lys Ile Val Arg Ile Val Asp Val Glu Lys Val Glu Lys 35 40 45 Lys Phe Leu Gly Lys Pro Ile Thr Val Trp Lys Leu Tyr Leu Glu His 50 55 60 Pro Gln Asp Val Pro Thr Ile Arg Glu Lys Val Arg Glu His Pro Ala 65 70 75 80 Val Val Asp Ile Phe Glu Tyr Asp Ile Pro Phe Ala Lys Arg Tyr Leu 85 90 95 Ile Asp Lys Gly Leu Ile Pro Met Glu Gly Glu Glu Glu Leu Lys Ile 100 105 110 Leu Ala Phe Asp Ile Glu Thr Leu Tyr His Glu Gly Glu Glu Phe Gly 115 120 125 Lys Gly Pro Ile Ile Met Ile Ser Tyr Ala Asp Glu Asn Glu Ala Lys 130 135 140 Val Ile Thr Trp Lys Asn Ile Asp Leu Pro Tyr Val Glu Val Val Ser 145 150 155 160 Ser Glu Arg Glu Met Ile Lys Arg Phe Leu Arg Ile Ile Arg Glu Lys 165 170 175 Asp Pro Asp Ile Ile Val Thr Tyr Asn Gly Asp Ser Phe Asp Phe Pro 180 185 190 Tyr Leu Ala Lys Arg Ala Glu Lys Leu Gly Ile Lys Leu Thr Ile Gly 195 200 205 Arg Asp Gly Ser Glu Pro Lys Met Gln Arg Ile Gly Asp Met Thr Ala 210 215 220 Val Glu Val Lys Gly Arg Ile His Phe Asp Leu Tyr His Val Ile Thr 225 230 235 240 Arg Thr Ile Asn Leu Pro Thr Tyr Thr Leu Glu Ala Val Tyr Glu Ala 245 250 255 Ile Phe Gly Lys Pro Lys Glu Lys Val Tyr Ala Asp Glu Ile Ala Lys 260 265 270 Ala Trp Glu Ser Gly Glu Asn Leu Glu Arg Val Ala Lys Tyr Ser Met 275 280 285 Glu Asp Ala Lys Ala Thr Tyr Glu Leu Gly Lys Glu Phe Leu Pro Met 290 295 300 Glu Ile Gln Leu Ser Arg Leu Val Gly Gln Pro Leu Trp Asp Val Ser 305 310 315 320 Arg Ser Ser Thr Gly Asn Leu Val Glu Trp Phe Leu Leu Arg Lys Ala 325 330 335 Tyr Glu Arg Asn Glu Val Ala Pro Asn Lys Pro Ser Glu Glu Glu Tyr 340 345 350 Gln Arg Arg Leu Arg Glu Ser Tyr Thr Gly Gly Phe Val Lys Glu Pro 355 360 365 Glu Lys Gly Leu Trp Glu Asn Ile Val Tyr Leu Asp Phe Arg Ala Leu 370 375 380 Tyr Pro Ser Ile Ile Ile Thr His Asn Val Ser Pro Asp Thr Leu Asn 385 390 395 400 Leu Glu Gly Cys Lys Asn Tyr Asp Ile Ala Pro Gln Val Gly His Lys 405 410 415 Phe Cys Lys Asp Ile Pro Gly Phe Ile Pro Ser Leu Leu Gly His Leu 420 425 430 Leu Glu Glu Arg Gln Lys Ile Lys Thr Lys Met Lys Glu Thr Gln Asp 435 440 445 Pro Ile Glu Lys Ile Leu Leu Asp Tyr Arg Gln Lys Ala Ile Lys Leu 450 455 460 Leu Ala Asn Ser Phe Tyr Gly Tyr Tyr Gly Tyr Ala Lys Ala Arg Trp 465 470 475 480 Tyr Cys Lys Glu Cys Ala Glu Ser Val Thr Ala Trp Gly Arg Lys Tyr 485 490 495 Ile Glu Leu Val Trp Lys Glu Leu Glu Glu Lys Phe Gly Phe Lys Val 500 505 510 Leu Tyr Ile Asp Thr Asp Gly Leu Tyr Ala Thr Ile Pro Gly Gly Glu 515 520 525 Ser Glu Glu Ile Lys Lys Lys Ala Leu Glu Phe Val Lys Tyr Ile Asn 530 535 540 Ser Lys Leu Pro Gly Leu Leu Glu Leu Glu Tyr Glu Gly Phe Tyr Lys 545 550 555 560 Arg Gly Phe Phe Val Thr Lys Lys Arg Tyr Ala Val Ile Asp Glu Glu 565 570 575 Gly Lys Val Ile Thr Arg Gly Leu Glu Ile Val Arg Arg Asp Trp Ser 580 585 590 Glu Ile Ala Lys Glu Thr Gln Ala Arg Val Leu Glu Thr Ile Leu Lys 595 600 605 His Gly Asp Val Glu Glu Ala Val Arg Ile Val Lys Glu Val Ile Gln 610 615 620 Lys Leu Ala Asn Tyr Glu Ile Pro Pro Glu Lys Leu Ala Ile Tyr Glu 625 630 635 640 Gln Ile Thr Arg Pro Leu His Glu Tyr Lys Ala Ile Gly Pro His Val 645 650 655 Ala Val Ala Lys Lys Leu Ala Ala Lys Gly Val Lys Ile Lys Pro Gly 660 665 670 Met Val Ile Gly Tyr Ile Val Leu Arg Gly Asp Gly Pro Ile Ser Asn 675 680 685 Arg Ala Ile Leu Ala Glu Glu Tyr Asp Pro Lys Lys His Lys Tyr Asp 690 695 700 Ala Glu Tyr Tyr Ile Glu Asn Gln Val Leu Pro Ala Val Leu Arg Ile 705 710 715 720 Leu Glu Gly Phe Gly Tyr Arg 725 33 702 PRT Sulfolobus solfataricus 33 Phe Asn Asn Tyr Met Tyr Asp Ile Gly Leu Ile Pro Gly Met Pro Tyr 1 5 10 15 Val Val Lys Asn Gly Lys Leu Glu Ser Val Tyr Leu Ser Leu Asp Glu 20 25 30 Lys Asp Val Glu Glu Ile Lys Lys Ala Phe Ala Asp Ser Asp Glu Met 35 40 45 Thr Arg Gln Met Ala Val Asp Trp Leu Pro Ile Phe Glu Thr Glu Ile 50 55 60 Pro Lys Ile Lys Arg Val Ala Ile Asp Ile Glu Val Tyr Thr Pro Val 65 70 75 80 Lys Gly Arg Ile Pro Asp Ser Gln Lys Ala Glu Phe Pro Ile Ile Ser 85 90 95 Ile Ala Leu Ala Gly Ser Asp Gly Leu Lys Lys Val Leu Val Leu Asn 100 105 110 Arg Asn Asp Val Asn Glu Gly Ser Val Lys Leu Asp Gly Ile Ser Val 115 120 125 Glu Arg Phe Asn Thr Glu Tyr Glu Leu Leu Gly Arg Phe Phe Asp Ile 130 135 140 Leu Leu Glu Tyr Pro Ile Val Leu Thr Phe Asn Gly Asp Asp Phe Asp 145 150 155 160 Leu Pro Tyr Ile Tyr Phe Arg Ala Leu Lys Leu Gly Tyr Phe Pro Glu 165 170 175 Glu Ile Pro Ile Asp Val Ala Gly Lys Asp Glu Ala Lys Tyr Leu Ala 180 185 190 Gly Leu His Ile Asp Leu Tyr Lys Phe Phe Phe Asn Lys Ala Val Arg 195 200 205 Asn Tyr Ala Phe Glu Gly Lys Tyr Asn Glu Tyr Asn Leu Asp Ala Val 210 215 220 Ala Lys Ala Leu Leu Gly Thr Ser Lys Val Lys Val Asp Thr Leu Ile 225 230 235 240 Ser Phe Leu Asp Val Glu Lys Leu Ile Glu Tyr Asn Phe Arg Asp Ala 245 250 255 Glu Ile Thr Leu Gln Leu Thr Thr Phe Asn Asn Asp Leu Thr Met Lys 260 265 270 Leu Ile Val Leu Phe Ser Arg Ile Ser Arg Leu Gly Ile Glu Glu Leu 275 280 285 Thr Arg Thr Glu Ile Ser Thr Trp Val Lys Asn Leu Tyr Tyr Trp Glu 290 295 300 His Arg Lys Arg Asn Trp Leu Ile Pro Leu Lys Glu Glu Ile Leu Ala 305 310 315 320 Lys Ser Ser Asn Ile Arg Thr Ser Ala Leu Ile Lys Gly Lys Gly Tyr 325 330 335 Lys Gly Ala Val Val Ile Asp Pro Pro Ala Gly Ile Phe Phe Asn Ile 340 345 350 Thr Val Leu Asp Phe Ala Ser Leu Tyr Pro Ser Ile Ile Arg Thr Trp 355 360 365 Asn Leu Ser Tyr Glu Thr Val Asp Ile Gln Gln Cys Lys Lys Pro Tyr 370 375 380 Glu Val Lys Asp Glu Thr Gly Glu Val Leu His Ile Val Cys Met Asp 385 390 395 400 Arg Pro Gly Ile Thr Ala Val Ile Thr Gly Leu Leu Arg Asp Phe Arg 405 410 415 Val Lys Ile Tyr Lys Lys Lys Ala Lys Asn Pro Asn Asn Ser Glu Glu 420 425 430 Gln Lys Leu Leu Tyr Asp Val Val Gln Arg Ala Met Lys Val Phe Ile 435 440 445 Asn Ala Thr Tyr Gly Val Phe Gly Ala Glu Thr Phe Pro Leu Tyr Ala 450 455 460 Pro Arg Val Ala Glu Ser Val Thr Ala Leu Gly Arg Tyr Val Ile Thr 465 470 475 480 Ser Thr Val Lys Lys Ala Arg Glu Glu Gly Leu Thr Val Leu Tyr Gly 485 490 495 Asp Thr Asp Ser Leu Phe Leu Leu Asn Pro Pro Lys Asn Ser Leu Glu 500 505 510 Asn Ile Ile Lys Trp Val Lys Thr Thr Phe Asn Leu Asp Leu Glu Val 515 520 525 Asp Lys Thr Tyr Lys Phe Val Ala Phe Ser Gly Leu Lys Lys Asn Tyr 530 535 540 Phe Gly Val Tyr Gln Asp Gly Lys Val Asp Ile Lys Gly Met Leu Val 545 550 555 560 Lys Lys Arg Asn Thr Pro Glu Phe Val Lys Lys Val Phe Asn Glu Val 565 570 575 Lys Glu Leu Met Ile Ser Ile Asn Ser Pro Asn Asp Val Lys Glu Ile 580 585 590 Lys Arg Lys Ile Val Asp Val Val Lys Gly Ser Tyr Glu Lys Leu Lys 595 600 605 Asn Lys Gly Tyr Asn Leu Asp Glu Leu Ala Phe Lys Val Met Leu Ser 610 615 620 Lys Pro Leu Asp Ala Tyr Lys Lys Asn Thr Pro Gln His Val Lys Ala 625 630 635 640 Ala Leu Gln Leu Arg Pro Phe Gly Val Asn Val Leu Pro Arg Asp Ile 645 650 655 Ile Tyr Tyr Val Lys Val Arg Ser Lys Asp Gly Val Lys Pro Val Gln 660 665 670 Leu Ala Lys Val Thr Glu Ile Asp Ala Glu Lys Tyr Leu Glu Ala Leu 675 680 685 Arg Ser Thr Phe Glu Gln Ile Leu Arg Ala Phe Gly Val Ser 690 695 700 34 719 PRT Escherichia coli 34 Ala Gln His Ile Leu Gln Gly Glu Gln Gly Phe Arg Leu Thr Pro Leu 1 5 10 15 Ala Leu Lys Asp Phe His Arg Gln Pro Val Tyr Gly Leu Tyr Cys Arg 20 25 30 Ala His Arg Gln Leu Met Asn Tyr Glu Lys Arg Leu Arg Glu Gly Gly 35 40 45 Val Thr Val Tyr Glu Ala Asp Val Arg Pro Pro Glu Arg Tyr Leu Met 50 55 60 Glu Arg Phe Ile Thr Ser Pro Val Trp Val Glu Gly Asp Met His Asn 65 70 75 80 Gly Thr Ile Val Asn Ala Arg Leu Lys Pro His Pro Asp Tyr Arg Pro 85 90 95 Pro Leu Lys Trp Val Ser Ile Asp Ile Glu Thr Thr Arg His Gly Glu 100 105 110 Leu Tyr Cys Ile Gly Leu Glu Gly Cys Gly Gln Arg Ile Val Tyr Met 115 120 125 Leu Gly Pro Glu Asn Gly Asp Ala Ser Ser Leu Asp Phe Glu Leu Glu 130 135 140 Tyr Val Ala Ser Arg Pro Gln Leu Leu Glu Lys Leu Asn Ala Trp Phe 145 150 155 160 Ala Asn Tyr Asp Pro Asp Val Ile Ile Gly Trp Asn Val Val Gln Phe 165 170 175 Asp Leu Arg Met Leu Gln Lys His Ala Glu Arg Tyr Arg Leu Pro Leu 180 185 190 Arg Leu Gly Arg Asp Asn Ser Glu Leu Glu Trp Arg Glu His Gly Phe 195 200 205 Lys Asn Gly Val Phe Phe Ala Gln Ala Lys Gly Arg Leu Ile Ile Asp 210 215 220 Gly Ile Glu Ala Leu Lys Ser Ala Phe Trp Asn Phe Ser Ser Phe Ser 225 230 235 240 Leu Glu Thr Val Ala Gln Glu Leu Leu Gly Glu Gly Lys Ser Ile Asp 245 250 255 Asn Pro Trp Asp Arg Met Asp Glu Ile Asp Arg Arg Phe Ala Glu Asp 260 265 270 Lys Pro Ala Leu Ala Thr Tyr Asn Leu Lys Asp Cys Glu Leu Val Thr 275 280 285 Gln Ile Phe His Lys Thr Glu Ile Met Pro Phe Leu Leu Glu Arg Ala 290 295 300 Thr Val Asn Gly Leu Pro Val Asp Arg His Gly Gly Ser Val Ala Ala 305 310 315 320 Phe Gly His Leu Tyr Phe Pro Arg Met His Arg Ala Gly Tyr Val Ala 325 330 335 Pro Asn Leu Gly Glu Val Pro Pro His Ala Ser Pro Gly Gly Tyr Val 340 345 350 Met Asp Ser Arg Pro Gly Leu Tyr Asp Ser Val Leu Val Leu Asp Tyr 355 360 365 Lys Ser Leu Tyr Pro Ser Ile Ile Arg Thr Phe Leu Ile Asp Pro Val 370 375 380 Gly Leu Val Glu Gly Met Ala Gln Pro Asp Pro Glu His Ser Thr Glu 385 390 395 400 Gly Phe Leu Asp Ala Trp Phe Ser Arg Glu Lys His Cys Leu Pro Glu 405 410 415 Ile Val Thr Asn Ile Trp His Gly Arg Asp Glu Ala Lys Arg Gln Gly 420 425 430 Asn Lys Pro Leu Ser Gln Ala Leu Lys Ile Ile Met Asn Ala Phe Tyr 435 440 445 Gly Val Leu Gly Thr Thr Ala Cys Arg Phe Phe Asp Pro Arg Leu Ala 450 455 460 Ser Ser Ile Thr Met Arg Gly His Gln Ile Met Arg Gln Thr Lys Ala 465 470 475 480 Leu Ile Glu Ala Gln Gly Tyr Asp Val Ile Tyr Gly Asp Thr Asp Ser 485 490 495 Thr Phe Val Trp Leu Lys Gly Ala His Ser Glu Glu Glu Ala Ala Lys 500 505 510 Ile Gly Arg Ala Leu Val Gln His Val Asn Ala Trp Trp Ala Glu Thr 515 520 525 Leu Gln Lys Gln Arg Leu Thr Ser Ala Leu Glu Leu Glu Tyr Glu Thr 530 535 540 His Phe Cys Arg Phe Leu Met Pro Thr Ile Arg Gly Ala Asp Thr Gly 545 550 555 560 Ser Lys Lys Arg Tyr Ala Gly Leu Ile Gln Glu Gly Asp Lys Gln Arg 565 570 575 Met Val Phe Lys Gly Leu Glu Thr Val Arg Thr Asp Trp Thr Pro Leu 580 585 590 Ala Gln Gln Phe Gln Gln Glu Leu Tyr Leu Arg Ile Phe Arg Asn Glu 595 600 605 Pro Tyr Gln Glu Tyr Val Arg Glu Thr Ile Asp Lys Leu Met Ala Gly 610 615 620 Glu Leu Asp Ala Arg Leu Val Tyr Arg Lys Arg Leu Arg Arg Pro Leu 625 630 635 640 Ser Glu Tyr Gln Arg Asn Val Pro Pro His Val Arg Ala Ala Arg Leu 645 650 655 Ala Asp Glu Glu Asn Gln Lys Arg Gly Arg Pro Leu Gln Tyr Gln Asn 660 665 670 Arg Gly Thr Ile Lys Tyr Val Trp Thr Thr Asn Gly Pro Glu Pro Leu 675 680 685 Asp Tyr Gln Arg Ser Pro Leu Asp Tyr Glu His Tyr Leu Thr Arg Gln 690 695 700 Leu Gln Pro Val Ala Glu Gly Ile Leu Pro Phe Ile Glu Asp Asn 705 710 715 35 773 PRT Desilforococcus strain Tok 35 Met Ile Leu Asp Ala Asp Tyr Ile Thr Glu Asp Gly Lys Pro Val Ile 1 5 10 15 Arg Val Phe Lys Lys Glu Lys Gly Glu Phe Lys Ile Asp Tyr Asp Arg 20 25 30 Asp Phe Glu Pro Tyr Ile Tyr Ala Leu Leu Lys Asp Asp Ser Ala Ile 35 40 45 Glu Asp Ile Lys Lys Ile Thr Ala Glu Arg His Gly Thr Thr Val Arg 50 55 60 Val Thr Arg Ala Glu Arg Val Lys Lys Lys Phe Leu Gly Arg Pro Val 65 70 75 80 Glu Val Trp Lys Leu Tyr Phe Thr His Pro Gln Asp Val Pro Ala Ile 85 90 95 Arg Asp Lys Ile Arg Glu His Pro Ala Val Val Asp Ile Tyr Glu Tyr 100 105 110 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Arg Gly Leu Ile Pro 115 120 125 Met Glu Gly Asp Glu Glu Leu Arg Met Leu Ala Phe Asp Ile Glu Thr 130 135 140 Leu Tyr His Glu Gly Glu Glu Phe Gly Glu Gly Pro Ile Leu Met Ile 145 150 155 160 Ser Tyr Ala Asp Glu Glu Gly Ala Arg Val Ile Thr Trp Lys Asn Ile 165 170 175 Asp Leu Pro Tyr Val Glu Ser Val Ser Thr Glu Lys Glu Met Ile Lys 180 185 190 Arg Phe Leu Lys Val Ile Gln Glu Lys Asp Pro Asp Val Leu Ile Thr 195 200 205 Tyr Asn Gly Asp Asn Phe Asp Phe Ala Tyr Leu Lys Lys Arg Ser Glu 210 215 220 Met Leu Gly Val Lys Phe Ile Leu Gly Arg Asp Gly Ser Glu Pro Lys 225 230 235 240 Ile Gln Arg Met Gly Asp Arg Phe Ala Val Glu Val Lys Gly Arg Ile 245 250 255 His Phe Asp Leu Tyr Pro Val Ile Arg Arg Thr Ile Asn Leu Pro Thr 260 265 270 Tyr Thr Leu Glu Thr Val Tyr Glu Pro Val Phe Gly Gln Pro Lys Glu 275 280 285 Lys Val Tyr Ala Glu Glu Ile Ala Arg Ala Trp Glu Ser Gly Glu Gly 290 295 300 Leu Glu Arg Val Ala Arg Tyr Ser Met Glu Asp Ala Lys Ala Thr Tyr 305 310 315 320 Glu Leu Gly Lys Glu Phe Phe Pro Met Glu Ala Gln Leu Ser Arg Leu 325 330 335 Val Gly Gln Ser Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu 340 345 350 Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Asp Val Ala 355 360 365 Pro Asn Lys Pro Asp Glu Arg Glu Leu Ala Arg Arg Thr Glu Ser Tyr 370 375 380 Ala Gly Gly Tyr Val Lys Glu Pro Glu Lys Gly Leu Trp Glu Asn Ile 385 390 395 400 Val Tyr Leu Asp Tyr Lys Ser Leu Tyr Pro Ser Ile Ile Ile Thr His 405 410 415 Asn Val Ser Pro Asp Thr Leu Asn Arg Glu Gly Cys Arg Glu Tyr Asp 420 425 430 Val Ala Pro Gln Val Gly His Arg Phe Cys Lys Asp Phe Pro Gly Phe 435 440 445 Ile Pro Ser Leu Leu Gly Asp Leu Leu Glu Glu Arg Gln Lys Val Lys 450 455 460 Lys Lys Met Lys Ala Thr Val Asp Pro Ile Glu Arg Lys Leu Leu Asp 465 470 475 480 Tyr Arg Gln Arg Ala Ile Lys Ile Leu Ala Asn Ser Tyr Tyr Gly Tyr 485 490 495 Tyr Ala Tyr Ala Asn Ala Arg Trp Tyr Cys Arg Glu Cys Ala Glu Ser 500 505 510 Val Thr Ala Trp Gly Arg Gln Tyr Ile Glu Thr Thr Met Arg Glu Ile 515 520 525 Glu Glu Lys Phe Gly Phe Lys Val Leu Tyr Ala Asp Thr Asp Gly Phe 530 535 540 Phe Ala Thr Ile Pro Gly Ala Asp Ala Glu Thr Val Lys Asn Lys Ala 545 550 555 560 Lys Glu Phe Leu Asn Tyr Ile Asn Pro Arg Leu Pro Gly Leu Leu Glu 565 570 575 Leu Glu Tyr Glu Gly Phe Tyr Arg Arg Gly Phe Phe Val Thr Lys Lys 580 585 590 Lys Tyr Ala Val Ile Asp Glu Glu Asp Lys Ile Thr Thr Arg Gly Leu 595 600 605 Glu Ile Val Arg Arg Asp Trp Ser Glu Ile Ala Lys Glu Thr Gln Ala 610 615 620 Arg Val Leu Glu Ala Ile Leu Lys His Gly Asp Val Glu Glu Ala Val 625 630 635 640 Arg Ile Val Lys Glu Val Thr Glu Lys Leu Ser Arg His Glu Val Pro 645 650 655 Pro Glu Lys Leu Val Ile Tyr Glu Gln Ile Thr Arg Asp Leu Arg Ser 660 665 670 Tyr Arg Ala Thr Gly Pro His Val Ala Val Ala Lys Arg Leu Ala Ala 675 680 685 Arg Gly Ile Lys Ile Arg Pro Gly Thr Val Ile Ser Tyr Ile Val Leu 690 695 700 Lys Gly Pro Gly Arg Val Gly Asp Arg Ala Ile Pro Phe Asp Glu Phe 705 710 715 720 Asp Pro Ala Lys His Arg Tyr Asp Ala Glu Tyr Tyr Ile Glu Asn Gln 725 730 735 Val Leu Pro Ala Val Glu Arg Ile Leu Arg Ala Phe Gly Tyr Arg Lys 740 745 750 Glu Asp Leu Arg Tyr Gln Lys Thr Lys Gln Ala Gly Leu Gly Ala Trp 755 760 765 Leu Lys Pro Lys Thr 770 36 871 PRT Bacteriophage RM378 36 Met Lys Ile Thr Leu Ser Ala Ser Val Tyr Pro Arg Ser Met Lys Ile 1 5 10 15 Tyr Gly Val Glu Leu Ile Glu Gly Lys Lys His Leu Phe Gln Ser Pro 20 25 30 Val Pro Pro His Leu Lys Arg Ile Ala Gln Gln Asn Arg Gly Lys Ile 35 40 45 Glu Ala Glu Ala Ile Ser Tyr Tyr Ile Arg Glu Gln Lys Ser His Ile 50 55 60 Thr Pro Glu Ala Leu Ser Gln Cys Val Phe Ile Asp Ile Glu Thr Ile 65 70 75 80 Ser Pro Lys Lys Ser Phe Pro Asp Pro Trp Arg Asp Pro Val Tyr Ser 85 90 95 Ile Ser Ile Lys Pro Tyr Gly Lys Pro Val Val Val Val Leu Leu Leu 100 105 110 Ile Thr Asn Pro Glu Ala His Ile Asp Asn Phe Asn Lys Phe Thr Thr 115 120 125 Ser Val Gly Asp Asn Thr Phe Glu Ile His Tyr Arg Thr Phe Leu Ser 130 135 140 Glu Lys Arg Leu Leu Glu Tyr Phe Trp Asn Val Leu Lys Pro Lys Phe 145 150 155 160 Thr Phe Met Leu Ala Trp Asn Gly Tyr Gln Phe Asp Tyr Pro Tyr Leu 165 170 175 Leu Ile Arg Ser His Ile His Glu Val Asn Val Ile Ser Asp Lys Leu 180 185 190 Leu Pro Asp Trp Lys Leu Val Arg Lys Ile Ser Asp Arg Asn Leu Pro 195 200 205 Phe Tyr Phe Asn Pro Arg Thr Pro Val Glu Phe Val Phe Phe Asp Tyr 210 215 220 Met Arg Leu Tyr Arg Ser Phe Val Ala Tyr Lys Glu Leu Glu Ser Tyr 225 230 235 240 Arg Leu Asp Tyr Ile Ala Arg Glu Glu Ile Gly Glu Gly Lys Val Asp 245 250 255 Phe Asp Val Arg Phe Tyr His Glu Ile Pro Val Tyr Pro Asp Lys Lys 260 265 270 Leu Val Glu Tyr Asn Ala Val Asp Ala Ile Leu Met Glu Glu Ile Glu 275 280 285 Asn Lys Asn His Ile Leu Pro Thr Leu Phe Glu Ile Ala Arg Leu Ser 290 295 300 Asn Leu Thr Pro Ala Leu Ala Leu Asn Ala Ser Asn Ile Leu Ile Gly 305 310 315 320 Asn Val Thr Gly Lys Leu Gly Val Lys Phe Val Asp Tyr Ile Lys Lys 325 330 335 Ile Asp Thr Ile Asn Thr Met Phe Lys Lys Ile Pro Glu Met Asn Ile 340 345 350 Asn Lys Tyr Arg Tyr Arg Gly Ala Tyr Ile Glu Leu Thr Asn Pro Asp 355 360 365 Ile Tyr Phe Asn Val Phe Asp Leu Asp Phe Thr Ser Leu Tyr Pro Ser 370 375 380 Val Ile Ser Lys Phe Asn Ile Asp Pro Ala Thr Phe Val Thr Glu Phe 385 390 395 400 Tyr Gly Cys Met Arg Val Glu Asn Lys Val Ile Pro Val Asp Gln Glu 405 410 415 Glu Pro Glu Phe Gly Phe Pro Leu Tyr Ile Phe Asp Ser Gly Met Asn 420 425 430 Pro Ser Tyr Arg Ser Glu Pro Leu Phe Val Ile Asn Ser Phe Glu Glu 435 440 445 Leu Arg Gln Phe Leu Lys Ser Arg Asn Ile Ile Met Val Pro Asn Pro 450 455 460 Ser Gly Ile Cys Trp Phe Tyr Arg Lys Glu Pro Val Gly Val Leu Pro 465 470 475 480 Ser Ile Ile Arg Glu Ile Phe Thr Arg Arg Lys Glu Glu Arg Lys Leu 485 490 495 Phe Lys Glu Thr Gly Asn Met Glu His His Phe Arg Gln Trp Ala Leu 500 505 510 Lys Ile Met Met Asn Ser Met Tyr Gly Ile Phe Gly Asn Arg Ser Val 515 520 525 Tyr Met Gly Cys Leu Pro Ile Ala Glu Ser Val Thr Ala Ala Gly Arg 530 535 540 Met Ser Ile Arg Ser Val Ile Ser Gln Ile Arg Asp Arg Phe Ile Tyr 545 550 555 560 Ser His Thr Asp Ser Ile Phe Val Lys Ala Phe Thr Asp Asp Pro Val 565 570 575 Ala Glu Ala Gly Glu Leu Gln Glu His Leu Asn Ser Phe Ile Asn Asp 580 585 590 Tyr Met Glu Asn Asn Phe Asn Ala Arg Glu Asp Phe Lys Leu Glu Leu 595 600 605 Lys Gln Glu Phe Val Phe Lys Ser Ile Leu Ile Lys Glu Ile Asn Arg 610 615 620 Tyr Phe Ala Val Thr Val Asp Gly Lys Glu Glu Met Lys Gly Ile Glu 625 630 635 640 Val Ile Asn Ser Ser Val Pro Glu Ile Val Lys Lys Tyr Phe Arg Gly 645 650 655 Tyr Leu Lys Tyr Ile Ser Gln Pro Asp Ile Asp Val Ile Ser Ala Thr 660 665 670 Ile Ala Phe Tyr Asn Asn Phe Val Ser Gln Lys Asn Phe Trp Ser Ile 675 680 685 Glu Asp Leu Tyr His Lys Met Lys Ile Ser Ser Ser Asp Ser Ala Glu 690 695 700 Arg Tyr Val Glu Tyr Val Glu Glu Val Met Lys Met Lys Lys Glu Asn 705 710 715 720 Val Pro Ile Ser Glu Ile Phe Ile Lys Met Tyr Asp His Thr Leu Pro 725 730 735 Ile His Tyr Lys Gly Ala Leu Phe Ala Ser Ile Ile Gly Cys Lys Pro 740 745 750 Pro Gln Met Gly Asp Lys Ile Tyr Trp Phe Tyr Cys Thr Met Leu Asp 755 760 765 Pro Ser Arg Thr Asn Leu Pro Leu Ser Leu Glu Glu Val Asn Pro Glu 770 775 780 His Gly Ser Gly Val Trp Asp Ile Leu Lys Ala Gly Lys Lys Thr His 785 790 795 800 Ile Asn Arg Leu Arg Asn Ile His Ala Leu Ser Ile Arg Glu Asp Asp 805 810 815 Glu Glu Gly Leu Glu Ile Val Lys Lys Tyr Ile Asp Arg Asp Lys Tyr 820 825 830 Cys Gln Ile Ile Ser Glu Lys Thr Ile Asp Leu Leu Lys Ser Leu Gly 835 840 845 Tyr Val Glu Asn Thr Thr Lys Ile Lys Thr Val Glu Asp Leu Ile Arg 850 855 860 Phe Leu Val Glu Ser Glu Asn 865 870 37 898 PRT Bacteriophage RB69 37 Met Lys Glu Phe Tyr Leu Thr Val Glu Gln Ile Gly Asp Ser Ile Phe 1 5 10 15 Glu Arg Tyr Ile Asp Ser Asn Gly Arg Glu Arg Thr Arg Glu Val Glu 20 25 30 Tyr Lys Pro Ser Leu Phe Ala His Cys Pro Glu Ser Gln Ala Thr Lys 35 40 45 Tyr Phe Asp Ile Tyr Gly Lys Pro Cys Thr Arg Lys Leu Phe Ala Asn 50 55 60 Met Arg Asp Ala Ser Gln Trp Ile Lys Arg Met Glu Asp Ile Gly Leu 65 70 75 80 Glu Ala Leu Gly Met Asp Asp Phe Lys Leu Ala Tyr Leu Ser Asp Thr 85 90 95 Tyr Asn Tyr Glu Ile Lys Tyr Asp His Thr Lys Ile Arg Val Ala Asn 100 105 110 Phe Asp Ile Glu Val Thr Ser Pro Asp Gly Phe Pro Glu Pro Ser Gln 115 120 125 Ala Lys His Pro Ile Asp Ala Ile Thr His Tyr Asp Ser Ile Asp Asp 130 135 140 Arg Phe Tyr Val Phe Asp Leu Leu Asn Ser Pro Tyr Gly Asn Val Glu 145 150 155 160 Glu Trp Ser Ile Glu Ile Ala Ala Lys Leu Gln Glu Gln Gly Gly Asp 165 170 175 Glu Val Pro Ser Glu Ile Ile Asp Lys Ile Ile Tyr Met Pro Phe Asp 180 185 190 Asn Glu Lys Glu Leu Leu Met Glu Tyr Leu Asn Phe Trp Gln Gln Lys 195 200 205 Thr Pro Val Ile Leu Thr Gly Trp Asn Val Glu Ser Phe Asp Ile Pro 210 215 220 Tyr Val Tyr Asn Arg Ile Lys Asn Ile Phe Gly Glu Ser Thr Ala Lys 225 230 235 240 Arg Leu Ser Pro His Arg Lys Thr Arg Val Lys Val Ile Glu Asn Met 245 250 255 Tyr Gly Ser Arg Glu Ile Ile Thr Leu Phe Gly Ile Ser Val Leu Asp 260 265 270 Tyr Ile Asp Leu Tyr Lys Lys Phe Ser Phe Thr Asn Gln Pro Ser Tyr 275 280 285 Ser Leu Asp Tyr Ile Ser Glu Phe Glu Leu Asn Val Gly Lys Leu Lys 290 295 300 Tyr Asp Gly Pro Ile Ser Lys Leu Arg Glu Ser Asn His Gln Arg Tyr 305 310 315 320 Ile Ser Tyr Asn Ile Ile Asp Val Tyr Arg Val Leu Gln Ile Asp Ala 325 330 335 Lys Arg Gln Phe Ile Asn Leu Ser Leu Asp Met Gly Tyr Tyr Ala Lys 340 345 350 Ile Gln Ile Gln Ser Val Phe Ser Pro Ile Lys Thr Trp Asp Ala Ile 355 360 365 Ile Phe Asn Ser Leu Lys Glu Gln Asn Lys Val Ile Pro Gln Gly Arg 370 375 380 Ser His Pro Val Gln Pro Tyr Pro Gly Ala Phe Val Lys Glu Pro Ile 385 390 395 400 Pro Asn Arg Tyr Lys Tyr Val Met Ser Phe Asp Leu Thr Ser Leu Tyr 405 410 415 Pro Ser Ile Ile Arg Gln Val Asn Ile Ser Pro Glu Thr Ile Ala Gly 420 425 430 Thr Phe Lys Val Ala Pro Leu His Asp Tyr Ile Asn Ala Val Ala Glu 435 440 445 Arg Pro Ser Asp Val Tyr Ser Cys Ser Pro Asn Gly Met Met Tyr Tyr 450 455 460 Lys Asp Arg Asp Gly Val Val Pro Thr Glu Ile Thr Lys Val Phe Asn 465 470 475 480 Gln Arg Lys Glu His Lys Gly Tyr Met Leu Ala Ala Gln Arg Asn Gly 485 490 495 Glu Ile Ile Lys Glu Ala Leu His Asn Pro Asn Leu Ser Val Asp Glu 500 505 510 Pro Leu Asp Val Asp Tyr Arg Phe Asp Phe Ser Asp Glu Ile Lys Glu 515 520 525 Lys Ile Lys Lys Leu Ser Ala Lys Ser Leu Asn Glu Met Leu Phe Arg 530 535 540 Ala Gln Arg Thr Glu Val Ala Gly Met Thr Ala Gln Ile Asn Arg Lys 545 550 555 560 Leu Leu Ile Asn Ser Leu Tyr Gly Ala Leu Gly Asn Val Trp Phe Arg 565 570 575 Tyr Tyr Asp Leu Arg Asn Ala Thr Ala Ile Thr Thr Phe Gly Gln Met 580 585 590 Ala Leu Gln Trp Ile Glu Arg Lys Val Asn Glu Tyr Leu Asn Glu Val 595 600 605 Cys Gly Thr Glu Gly Glu Ala Phe Val Leu Tyr Gly Asp Thr Asp Ser 610 615 620 Ile Tyr Val Ser Ala Asp Lys Ile Ile Asp Lys Val Gly Glu Ser Lys 625 630 635 640 Phe Arg Asp Thr Asn His Trp Val Asp Phe Leu Asp Lys Phe Ala Arg 645 650 655 Glu Arg Met Glu Pro Ala Ile Asp Arg Gly Phe Arg Glu Met Cys Glu 660 665 670 Tyr Met Asn Asn Lys Gln His Leu Met Phe Met Asp Arg Glu Ala Ile 675 680 685 Ala Gly Pro Pro Leu Gly Ser Lys Gly Ile Gly Gly Phe Trp Thr Gly 690 695 700 Lys Lys Arg Tyr Ala Leu Asn Val Trp Asp Met Glu Gly Thr Arg Tyr 705 710 715 720 Ala Glu Pro Lys Leu Lys Ile Met Gly Leu Glu Thr Gln Lys Ser Ser 725 730 735 Thr Pro Lys Ala Val Gln Lys Ala Leu Lys Glu Cys Ile Arg Arg Met 740 745 750 Leu Gln Glu Gly Glu Glu Ser Leu Gln Glu Tyr Phe Lys Glu Phe Glu 755 760 765 Lys Glu Phe Arg Gln Leu Asn Tyr Ile Ser Ile Ala Ser Val Ser Ser 770 775 780 Ala Asn Asn Ile Ala Lys Tyr Asp Val Gly Gly Phe Pro Gly Pro Lys 785 790 795 800 Cys Pro Phe His Ile Arg Gly Ile Leu Thr Tyr Asn Arg Ala Ile Lys 805 810 815 Gly Asn Ile Asp Ala Pro Gln Val Val Glu Gly Glu Lys Val Tyr Val 820 825 830 Leu Pro Leu Arg Glu Gly Asn Pro Phe Gly Asp Lys Cys Ile Ala Trp 835 840 845 Pro Ser Gly Thr Glu Ile Thr Asp Leu Ile Lys Asp Asp Val Leu His 850 855 860 Trp Met Asp Tyr Thr Val Leu Leu Glu Lys Thr Phe Ile Lys Pro Leu 865 870 875 880 Glu Gly Phe Thr Ser Ala Ala Lys Leu Asp Tyr Glu Lys Lys Ala Ser 885 890 895 Leu Phe 38 394 PRT Autographa californica nucleopolynedrovirus 38 Met Leu His Val Ser Arg Leu Leu Ala Asn Gly Gly Val Lys Asn Leu 1 5 10 15 Cys Asp Lys Phe Lys Val Lys Ile Lys Asn Tyr Thr Glu His Asp Leu 20 25 30 Met Val Leu Asn Tyr Glu Ser Phe Glu Arg Asp Arg Asp His Pro Val 35 40 45 Val Val Glu Cys Arg Gly Leu Ile Leu Asn Ser Arg Thr Tyr Ala Val 50 55 60 Val Ser Arg Ser Phe Asp Arg Phe Phe Asn Phe Gln Glu Leu Leu Gln 65 70 75 80 Asn Ile Gly Gly Glu Asp Ala His His Lys Leu Phe Gln Ser Lys Glu 85 90 95 Asn Phe Lys Phe Tyr Glu Lys Ile Asp Gly Ser Leu Ile Lys Ile Tyr 100 105 110 Lys Tyr Asn Gly Glu Trp His Ala Ser Thr Arg Gly Ser Ala Phe Ala 115 120 125 Glu Asn Leu Cys Val Ser Asp Val Thr Phe Lys Arg Leu Val Leu Gln 130 135 140 Ala Leu Gln Leu Asp Glu Ala His Asn Gln Phe Gln Ala Leu Cys Asn 145 150 155 160 Glu Tyr Leu Asp Cys Ala Ser Thr His Met Phe Glu Leu Thr Ser Lys 165 170 175 His Asn Arg Ile Val Thr Val Tyr Asp Glu Gln Pro Thr Leu Trp Tyr 180 185 190 Leu Ala Ser Arg Asn Asn Glu Thr Gly Asp Tyr Phe Tyr Cys Ser Asn 195 200 205 Leu Pro Phe Cys Lys Tyr Pro Lys Cys Tyr Glu Phe Thr Ser Val Gln 210 215 220 Glu Cys Val Glu His Ala Ala Gln Leu Lys Asn Leu Glu Glu Gly Phe 225 230 235 240 Val Val Tyr Asp Lys Asn Asn Ala Pro Leu Cys Lys Ile Lys Ser Asp 245 250 255 Val Tyr Leu Asn Met His Lys Asn Gln Ser Arg Ala Glu Asn Pro Thr 260 265 270 Lys Leu Ala Gln Leu Val Ile Asn Gly Glu His Asp Asp Phe Leu Ala 275 280 285 Leu Phe Pro His Leu Lys Ser Val Ile Lys Pro Tyr Val Asp Ala Arg 290 295 300 Asn Thr Phe Thr Asn Glu Ser Thr Ile Asn Ile Met Val Ser Gly Leu 305 310 315 320 Thr Leu Asn Gln Gln Arg Phe Asn Glu Leu Val Gln Thr Leu Pro Trp 325 330 335 Lys Cys Leu Ala Tyr Arg Cys Arg Lys Ala Gln Thr Ile Asp Val Glu 340 345 350 Ser Glu Phe Leu Lys Leu Thr Glu Pro Glu Lys Ile Lys Met Ile Lys 355 360 365 Asn Ile Ile Lys Phe Val Ser Thr Lys Gln Ala Leu Asn Asn Lys Leu 370 375 380 Ala Pro Thr Ile Lys Leu Pro Ser Ser Lys 385 390 39 374 PRT Bacteriophage T4 39 Met Gln Glu Leu Phe Asn Asn Leu Met Glu Leu Cys Lys Asp Ser Gln 1 5 10 15 Arg Lys Phe Phe Tyr Ser Asp Asp Val Ser Ala Ser Gly Arg Thr Tyr 20 25 30 Arg Ile Phe Ser Tyr Asn Tyr Ala Ser Tyr Ser Asp Trp Leu Leu Pro 35 40 45 Asp Ala Leu Glu Cys Arg Gly Ile Met Phe Glu Met Asp Gly Glu Lys 50 55 60 Pro Val Arg Ile Ala Ser Arg Pro Met Glu Lys Phe Phe Asn Leu Asn 65 70 75 80 Glu Asn Pro Phe Thr Met Asn Ile Asp Leu Asn Asp Val Asp Tyr Ile 85 90 95 Leu Thr Lys Glu Asp Gly Ser Leu Val Ser Thr Tyr Leu Asp Gly Asp 100 105 110 Glu Ile Leu Phe Lys Ser Lys Gly Ser Ile Lys Ser Glu Gln Ala Leu 115 120 125 Met Ala Asn Gly Ile Leu Met Asn Ile Asn His His Arg Leu Arg Asp 130 135 140 Arg Leu Lys Glu Leu Ala Glu Asp Gly Phe Thr Ala Asn Phe Glu Phe 145 150 155 160 Val Ala Pro Thr Asn Arg Ile Val Leu Ala Tyr Gln Glu Met Lys Ile 165 170 175 Ile Leu Leu Asn Val Arg Glu Asn Glu Thr Gly Glu Tyr Ile Ser Tyr 180 185 190 Asp Asp Ile Tyr Lys Asp Ala Thr Leu Arg Pro Tyr Leu Val Glu Arg 195 200 205 Tyr Glu Ile Asp Ser Pro Lys Trp Ile Glu Glu Ala Lys Asn Ala Glu 210 215 220 Asn Ile Glu Gly Tyr Val Ala Val Met Lys Asp Gly Ser His Phe Lys 225 230 235 240 Ile Lys Ser Asp Trp Tyr Val Ser Leu His Ser Thr Lys Ser Ser Leu 245 250 255 Asp Asn Pro Glu Lys Leu Phe Lys Thr Ile Ile Asp Gly Ala Ser Asp 260 265 270 Asp Leu Lys Ala Met Tyr Ala Asp Asp Glu Tyr Ser Tyr Arg Lys Ile 275 280 285 Glu Ala Phe Glu Thr Thr Tyr Leu Lys Tyr Leu Asp Arg Ala Leu Phe 290 295 300 Leu Val Leu Asp Cys His Asn Lys His Cys Gly Lys Asp Arg Lys Thr 305 310 315 320 Tyr Ala Met Glu Ala Gln Gly Val Ala Lys Gly Ala Gly Met Asp His 325 330 335 Leu Phe Gly Ile Ile Met Ser Leu Tyr Gln Gly Tyr Asp Ser Gln Glu 340 345 350 Lys Val Met Cys Glu Ile Glu Gln Asn Phe Leu Lys Asn Tyr Lys Lys 355 360 365 Phe Ile Pro Glu Gly Tyr 370 40 437 PRT Bacteriophage RM378 40 Met Ser Met Asn Val Lys Tyr Pro Val Glu Tyr Leu Ile Glu His Leu 1 5 10 15 Asn Ser Phe Glu Ser Pro Glu Val Ala Val Glu Ser Leu Arg Lys Glu 20 25 30 Gly Ile Met Cys Lys Asn Arg Gly Asp Leu Tyr Met Phe Lys Tyr His 35 40 45 Leu Gly Cys Lys Phe Asp Lys Ile Tyr His Leu Ala Cys Arg Gly Ala 50 55 60 Ile Leu Arg Lys Thr Asp Ser Gly Trp Lys Val Leu Ser Tyr Pro Phe 65 70 75 80 Asp Lys Phe Phe Asn Trp Gly Glu Glu Leu Gln Pro Glu Ile Val Asn 85 90 95 Tyr Tyr Gln Thr Leu Arg Tyr Ala Ser Pro Leu Asn Glu Lys Arg Lys 100 105 110 Ala Gly Phe Met Phe Lys Leu Pro Met Lys Leu Val Glu Lys Leu Asp 115 120 125 Gly Thr Cys Val Val Leu Tyr Tyr Asp Glu Gly Trp Lys Ile His Thr 130 135 140 Leu Gly Ser Ile Asp Ala Asn Gly Ser Ile Val Lys Asn Gly Met Val 145 150 155 160 Thr Thr His Met Asp Lys Thr Tyr Arg Glu Leu Phe Trp Glu Thr Phe 165 170 175 Glu Lys Lys Tyr Pro Pro Tyr Leu Leu Tyr His Leu Asn Ser Ser Tyr 180 185 190 Cys Tyr Ile Phe Glu Met Val His Pro Asp Ala Arg Val Val Val Pro 195 200 205 Tyr Glu Glu Pro Asn Ile Ile Leu Ile Gly Val Arg Ser Val Asp Pro 210 215 220 Glu Lys Gly Tyr Phe Glu Val Gly Pro Ser Glu Glu Ala Val Arg Ile 225 230 235 240 Phe Asn Glu Ser Gly Gly Lys Ile Asn Leu Lys Leu Pro Ala Val Leu 245 250 255 Ser Gln Glu Gln Asn Tyr Thr Leu Phe Arg Ala Asn Arg Leu Gln Glu 260 265 270 Leu Phe Glu Glu Val Thr Pro Leu Phe Lys Ser Leu Arg Asp Gly Tyr 275 280 285 Glu Val Val Tyr Glu Gly Phe Val Ala Val Gln Glu Ile Ala Pro Arg 290 295 300 Val Tyr Tyr Arg Thr Lys Ile Lys His Pro Val Tyr Leu Glu Leu His 305 310 315 320 Arg Ile Lys Thr Thr Ile Thr Pro Glu Lys Leu Ala Asp Leu Phe Leu 325 330 335 Glu Asn Lys Leu Asp Asp Phe Val Leu Thr Pro Asp Glu Gln Glu Thr 340 345 350 Val Met Lys Leu Lys Glu Ile Tyr Thr Asp Met Arg Asn Gln Leu Glu 355 360 365 Ser Ser Phe Asp Thr Ile Tyr Lys Glu Ile Ser Glu Gln Val Ser Pro 370 375 380 Glu Glu Asn Pro Gly Glu Phe Arg Lys Arg Phe Ala Leu Arg Leu Met 385 390 395 400 Asp Tyr His Asp Lys Ser Trp Phe Phe Ala Arg Leu Asp Gly Asp Glu 405 410 415 Glu Lys Met Gln Lys Ser Glu Lys Lys Leu Leu Thr Glu Arg Ile Glu 420 425 430 Lys Gly Leu Phe Lys 435 41 300 PRT Escherichia coli 41 Met Val Gln Ile Pro Gln Asn Pro Leu Ile Leu Val Asp Gly Ser Ser 1 5 10 15 Tyr Leu Tyr Arg Ala Tyr His Ala Phe Pro Pro Leu Thr Asn Ser Ala 20 25 30 Gly Glu Pro Thr Gly Ala Met Tyr Gly Val Leu Asn Met Leu Arg Ser 35 40 45 Leu Ile Met Gln Tyr Lys Pro Thr His Ala Ala Val Val Phe Asp Ala 50 55 60 Lys Gly Lys Thr Phe Arg Asp Glu Leu Phe Glu His Tyr Lys Ser His 65 70 75 80 Arg Pro Pro Met Pro Asp Asp Leu Arg Ala Gln Ile Glu Pro Leu His 85 90 95 Ala Met Val Lys Ala Met Gly Leu Pro Leu Leu Ala Val Ser Gly Val 100 105 110 Glu Ala Asp Asp Val Ile Gly Thr Leu Ala Arg Glu Ala Glu Lys Ala 115 120 125 Gly Arg Pro Val Leu Ile Ser Thr Gly Asp Lys Asp Met Ala Gln Leu 130 135 140 Val Thr Pro Asn Ile Thr Leu Ile Asn Thr Met Thr Asn Thr Ile Leu 145 150 155 160 Gly Pro Glu Glu Val Val Asn Lys Tyr Gly Val Pro Pro Glu Leu Ile 165 170 175 Ile Asp Phe Leu Ala Leu Met Gly Asp Ser Ser Asp Asn Ile Pro Gly 180 185 190 Val Pro Gly Val Gly Glu Lys Thr Ala Gln Ala Leu Leu Gln Gly Leu 195 200 205 Gly Gly Leu Asp Thr Leu Tyr Ala Glu Pro Glu Lys Ile Ala Gly Leu 210 215 220 Ser Phe Arg Gly Ala Lys Thr Met Ala Ala Lys Leu Glu Gln Asn Lys 225 230 235 240 Glu Val Ala Tyr Leu Ser Tyr Gln Leu Ala Thr Ile Lys Thr Asp Val 245 250 255 Glu Leu Glu Leu Thr Cys Glu Gln Leu Glu Val Gln Gln Pro Ala Ala 260 265 270 Glu Glu Leu Leu Gly Leu Phe Lys Lys Tyr Glu Phe Lys Arg Trp Thr 275 280 285 Ala Asp Val Glu Ala Gly Lys Trp Leu Gln Ala Lys 290 295 300 42 300 PRT Thermus aquaticaus 42 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu 1 5 10 15 Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly 20 25 30 Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala 35 40 45 Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val 50 55 60 Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly 65 70 75 80 Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu 85 90 95 Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu 100 105 110 Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys 115 120 125 Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp 130 135 140 Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly 145 150 155 160 Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro 165 170 175 Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn 180 185 190 Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu 195 200 205 Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu 210 215 220 Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys 225 230 235 240 Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val 245 250 255 Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe 260 265 270 Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu Leu 275 280 285 Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro 290 295 300 43 318 PRT Bacteriophage RM378 43 Met Lys Arg Leu Arg Asn Met Val Asn Leu Ile Asp Leu Lys Asn Gln 1 5 10 15 Tyr Tyr Ala Tyr Ser Phe Lys Phe Phe Asp Ser Tyr Gln Ile Ser Trp 20 25 30 Asp Asn Tyr Pro His Leu Lys Glu Phe Val Ile Glu Asn Tyr Pro Gly 35 40 45 Thr Tyr Phe Ser Cys Tyr Ala Pro Gly Ile Leu Tyr Lys Leu Phe Leu 50 55 60 Lys Trp Lys Arg Gly Met Ile Ile Asp Asp Tyr Asp Arg His Pro Leu 65 70 75 80 Arg Lys Lys Leu Leu Pro Gln Tyr Lys Glu His Arg Tyr Glu Tyr Ile 85 90 95 Glu Gly Lys Tyr Gly Val Val Pro Phe Pro Gly Phe Leu Lys Tyr Leu 100 105 110 Lys Phe His Phe Glu Asp Leu Arg Phe Lys Met Arg Asp Leu Gly Ile 115 120 125 Thr Asp Phe Lys Tyr Ala Leu Ala Ile Ser Leu Phe Tyr Asn Arg Val 130 135 140 Met Leu Arg Asp Phe Leu Lys Asn Phe Thr Cys Tyr Tyr Ile Ala Glu 145 150 155 160 Tyr Glu Ala Asp Asp Val Ile Ala His Leu Ala Arg Glu Ile Ala Arg 165 170 175 Ser Asn Ile Asp Val Asn Ile Val Ser Thr Asp Lys Asp Tyr Tyr Gln 180 185 190 Leu Trp Asp Glu Glu Asp Ile Arg Glu Arg Val Tyr Ile Asn Ser Leu 195 200 205 Ser Cys Ser Asp Val Lys Thr Pro Arg Tyr Gly Phe Leu Thr Ile Lys 210 215 220 Ala Leu Leu Gly Asp Lys Ser Asp Asn Ile Pro Lys Ser Leu Glu Lys 225 230 235 240 Gly Lys Gly Glu Lys Tyr Leu Glu Lys Lys Gly Phe Ala Glu Glu Asp 245 250 255 Tyr Asp Lys Glu Leu Phe Glu Asn Asn Leu Lys Val Ile Arg Phe Gly 260 265 270 Asp Glu Tyr Leu Gly Glu Arg Asp Lys Ser Phe Ile Glu Asn Phe Ser 275 280 285 Thr Gly Asp Thr Leu Trp Asn Phe Tyr Glu Phe Phe Tyr Tyr Asp Pro 290 295 300 Leu His Glu Leu Phe Leu Arg Asn Ile Arg Lys Arg Arg Leu 305 310 315 44 305 PRT Bacteriophage T4 44 Met Asp Leu Glu Met Met Leu Asp Glu Asp Tyr Lys Glu Gly Ile Cys 1 5 10 15 Leu Ile Asp Phe Ser Gln Ile Ala Leu Ser Thr Ala Leu Val Asn Phe 20 25 30 Pro Asp Lys Glu Lys Ile Asn Leu Ser Met Val Arg His Leu Ile Leu 35 40 45 Asn Ser Ile Lys Phe Asn Val Lys Lys Ala Lys Thr Leu Gly Tyr Thr 50 55 60 Lys Ile Val Leu Cys Ile Asp Asn Ala Lys Ser Gly Tyr Trp Arg Arg 65 70 75 80 Asp Phe Ala Tyr Tyr Tyr Lys Lys Asn Arg Gly Lys Ala Arg Glu Glu 85 90 95 Ser Thr Trp Asp Trp Glu Gly Tyr Phe Glu Ser Ser His Lys Val Ile 100 105 110 Asp Glu Leu Lys Ala Tyr Met Pro Tyr Ile Val Met Asp Ile Asp Lys 115 120 125 Tyr Glu Ala Asp Asp His Ile Ala Val Leu Val Lys Lys Phe Ser Leu 130 135 140 Glu Gly His Lys Ile Leu Ile Ile Ser Ser Asp Gly Asp Phe Thr Gln 145 150 155 160 Leu His Lys Tyr Pro Asn Val Lys Gln Trp Ser Pro Met His Lys Lys 165 170 175 Trp Val Lys Ile Lys Ser Gly Ser Ala Glu Ile Asp Cys Met Thr Lys 180 185 190 Ile Leu Lys Gly Asp Lys Lys Asp Asn Val Ala Ser Val Lys Val Arg 195 200 205 Ser Asp Phe Trp Phe Thr Arg Val Glu Gly Glu Arg Thr Pro Ser Met 210 215 220 Lys Thr Ser Ile Val Glu Ala Ile Ala Asn Asp Arg Glu Gln Ala Lys 225 230 235 240 Val Leu Leu Thr Glu Ser Glu Tyr Asn Arg Tyr Lys Glu Asn Leu Val 245 250 255 Leu Ile Asp Phe Asp Tyr Ile Pro Asp Asn Ile Ala Ser Asn Ile Val 260 265 270 Asn Tyr Tyr Asn Ser Tyr Lys Leu Pro Pro Arg Gly Lys Ile Tyr Ser 275 280 285 Tyr Phe Val Lys Ala Gly Leu Ser Lys Leu Thr Asn Ser Ile Asn Glu 290 295 300 Phe 305 45 300 PRT Bacteriophage T7 45 Met Ala Leu Leu Asp Leu Lys Gln Phe Tyr Glu Leu Arg Glu Gly Cys 1 5 10 15 Asp Asp Lys Gly Ile Leu Val Met Asp Gly Asp Trp Leu Val Phe Gln 20 25 30 Ala Met Ser Ala Ala Glu Phe Asp Ala Ser Trp Glu Glu Glu Ile Trp 35 40 45 His Arg Cys Cys Asp His Ala Lys Ala Arg Gln Ile Leu Glu Asp Ser 50 55 60 Ile Lys Ser Tyr Glu Thr Arg Lys Lys Ala Trp Ala Gly Ala Pro Ile 65 70 75 80 Val Leu Ala Phe Thr Asp Ser Val Asn Trp Arg Lys Glu Leu Val Asp 85 90 95 Pro Asn Tyr Lys Ala Asn Arg Lys Ala Val Lys Lys Pro Val Gly Tyr 100 105 110 Phe Glu Phe Leu Asp Ala Leu Phe Glu Arg Glu Glu Phe Tyr Cys Ile 115 120 125 Arg Glu Pro Met Leu Glu Gly Asp Asp Val Met Gly Val Ile Ala Ser 130 135 140 Asn Pro Ser Ala Phe Gly Ala Arg Lys Ala Val Ile Ile Ser Cys Asp 145 150 155 160 Lys Asp Phe Lys Thr Ile Pro Asn Cys Asp Phe Leu Trp Cys Thr Thr 165 170 175 Gly Asn Ile Leu Thr Gln Thr Glu Glu Ser Ala Asp Trp Trp His Leu 180 185 190 Phe Gln Thr Ile Lys Gly Asp Ile Thr Asp Gly Tyr Ser Gly Ile Ala 195 200 205 Gly Trp Gly Asp Thr Ala Glu Asp Phe Leu Asn Asn Pro Phe Ile Thr 210 215 220 Glu Pro Lys Thr Ser Val Leu Lys Ser Gly Lys Asn Lys Gly Gln Glu 225 230 235 240 Val Thr Lys Trp Val Lys Arg Asp Pro Glu Pro His Glu Thr Leu Trp 245 250 255 Asp Cys Ile Lys Ser Ile Gly Ala Lys Ala Gly Met Thr Glu Glu Asp 260 265 270 Ile Ile Lys Gln Gly Gln Met Ala Arg Ile Leu Arg Phe Asn Glu Tyr 275 280 285 Asn Phe Ile Asp Lys Glu Ile Tyr Leu Trp Arg Pro 290 295 300 46 287 PRT Escherichia coli 46 Val Leu Asp Ala Thr Val Ala Arg Ile Glu Gln Leu Phe Gln Gln Pro 1 5 10 15 His Asp Gly Val Thr Gly Val Asn Thr Gly Tyr Asp Asp Leu Asn Lys 20 25 30 Lys Thr Ala Gly Leu Gln Pro Ser Asp Leu Ile Ile Val Ala Ala Arg 35 40 45 Pro Ser Met Gly Lys Thr Thr Phe Ala Met Asn Leu Val Glu Asn Ala 50 55 60 Ala Met Leu Gln Asp Lys Pro Val Leu Ile Phe Ser Leu Glu Met Pro 65 70 75 80 Ser Glu Gln Ile Met Met Arg Ser Leu Ala Ser Leu Ser Arg Val Asp 85 90 95 Gln Thr Lys Ile Arg Thr Gly Gln Leu Asp Asp Glu Asp Trp Ala Arg 100 105 110 Ile Ser Gly Thr Met Gly Ile Leu Leu Glu Lys Arg Asn Ile Tyr Ile 115 120 125 Asp Asp Ser Ser Gly Leu Thr Pro Thr Glu Val Arg Ser Arg Ala Arg 130 135 140 Arg Ile Ala Arg Glu His Gly Gly Ile Gly Leu Ile Met Ile Asp Tyr 145 150 155 160 Leu Gln Leu Met Arg Val Pro Ala Leu Ser Asp Asn Arg Thr Leu Glu 165 170 175 Ile Ala Glu Ile Ser Arg Ser Leu Lys Ala Leu Ala Lys Glu Leu Asn 180 185 190 Val Pro Val Val Ala Leu Ser Gln Leu Asn Arg Ser Leu Glu Gln Arg 195 200 205 Ala Asp Lys Arg Pro Val Asn Ser Asp Leu Arg Glu Ser Gly Ser Ile 210 215 220 Glu Gln Asp Ala Asp Leu Ile Met Phe Ile Tyr Arg Asp Glu Val Tyr 225 230 235 240 His Glu Asn Ser Asp Leu Lys Gly Ile Ala Glu Ile Ile Ile Gly Lys 245 250 255 Gln Arg Asn Gly Pro Ile Gly Thr Val Arg Leu Thr Phe Asn Gly Gln 260 265 270 Trp Ser Arg Phe Asp Asn Tyr Ala Gly Pro Gln Tyr Asp Asp Glu 275 280 285 47 291 PRT Haemophilus influenza 47 Val Leu Glu Ser Thr Ile Glu Lys Ile Asp Ile Leu Ser Lys Leu Glu 1 5 10 15 Asn His Ser Gly Val Thr Gly Val Thr Thr Gly Phe Thr Asp Leu Asp 20 25 30 Lys Lys Thr Ala Gly Leu Gln Pro Ser Asp Leu Ile Ile Val Ala Ala 35 40 45 Arg Pro Ser Met Gly Lys Thr Thr Phe Ala Met Asn Leu Cys Glu Asn 50 55 60 Ala Ala Met Ala Ser Glu Lys Pro Val Leu Val Phe Ser Leu Glu Met 65 70 75 80 Pro Ala Glu Gln Ile Met Met Arg Met Ile Ala Ser Leu Ala Arg Val 85 90 95 Asp Gln Thr Lys Ile Arg Thr Gly Gln Asn Leu Asp Glu Ile Glu Trp 100 105 110 Asn Lys Ile Ala Ser Val Val Gly Met Phe Lys Gln Lys Asn Asn Leu 115 120 125 Phe Ile Asp Asp Ser Ser Gly Leu Thr Pro Thr Asp Val Arg Ser Arg 130 135 140 Ala Arg Arg Val Tyr Arg Glu Asn Gly Gly Leu Ser Met Ile Met Val 145 150 155 160 Asp Tyr Leu Gln Leu Met Arg Ala Pro Ala Phe Ser Asp Asn Arg Thr 165 170 175 Leu Glu Ile Ala Glu Ile Ser Arg Ser Leu Lys Ala Leu Ala Lys Glu 180 185 190 Leu Gln Val Pro Val Val Ala Leu Ser Gln Leu Asn Arg Thr Leu Glu 195 200 205 Gln Arg Gly Asp Lys Arg Pro Val Asn Ser Asp Leu Arg Glu Ser Gly 210 215 220 Ser Ile Glu Gln Asp Ala Asp Leu Ile Met Phe Ile Tyr Arg Asp Glu 225 230 235 240 Val Tyr Asn Asp Asn Ser Glu Asp Lys Gly Val Ala Glu Ile Ile Ile 245 250 255 Gly Lys Gln Arg Asn Gly Pro Ile Gly Arg Val Arg Leu Lys Phe Asn 260 265 270 Gly Gln Phe Ser Arg Phe Asp Asn Leu Ala Glu Gln Arg Glu Tyr Arg 275 280 285 Asp Asp Tyr 290 48 287 PRT Chlamydomonas trachomatis 48 Ala Leu Gln Glu Arg Gln Glu Ala Phe Gln Ala Ser Ala His Asp Ser 1 5 10 15 Ser Ser Pro Met Leu Ser Gly Phe Pro Thr His Phe Leu Asp Leu Asp 20 25 30 Lys Met Ile Ser Gly Phe Ser Pro Ser Asn Leu Ile Ile Leu Ala Ala 35 40 45 Arg Pro Ala Met Gly Lys Thr Ala Leu Ala Leu Asn Ile Val Glu Asn 50 55 60 Phe Cys Phe Asp Ser Arg Leu Pro Val Gly Ile Phe Ser Leu Glu Met 65 70 75 80 Thr Val Asp Gln Leu Ile His Arg Ile Ile Cys Ser Arg Ser Glu Val 85 90 95 Glu Ala Lys Lys Ile Ser Val Gly Asp Ile Ser Gly Arg Asp Phe Gln 100 105 110 Arg Val Val Ser Val Val Arg Glu Met Glu Glu His Thr Leu Leu Ile 115 120 125 Asp Asp Tyr Pro Gly Leu Lys Ile Thr Asp Leu Arg Ala Arg Ala Arg 130 135 140 Arg Met Lys Glu Ser Tyr Asp Ile Gln Phe Leu Val Ile Asp Tyr Leu 145 150 155 160 Gln Leu Ile Ser Ser Ser Gly Asn Leu Arg Asn Ser Asp Ser Arg Asn 165 170 175 Gln Glu Ile Ser Glu Ile Ser Arg Met Leu Lys Asn Leu Ala Arg Glu 180 185 190 Leu Asn Ile Pro Ile Leu Cys Leu Ser Gln Leu Ser Arg Lys Val Glu 195 200 205 Asp Arg Ala Asn His Arg Pro Leu Met Ser Asp Leu Arg Glu Ser Gly 210 215 220 Ser Ile Glu Gln Asp Ala Asp Gln Ile Met Phe Leu Leu Arg Arg Glu 225 230 235 240 Tyr Tyr Asp Pro Asn Asp Lys Pro Gly Thr Ala Glu Leu Ile Val Ala 245 250 255 Lys Asn Arg His Gly Ser Ile Gly Ser Val Gln Leu Val Phe Glu Lys 260 265 270 Asp Phe Ala Arg Phe Arg Asn Tyr Ala Gly Cys Glu Phe Pro Gly 275 280 285 49 290 PRT Bacillus stearothermophilus 49 Ile Leu Val Gln Thr Tyr Asp Asn Ile Glu Met Leu His Asn Arg Asp 1 5 10 15 Gly Glu Ile Thr Gly Ile Pro Thr Gly Phe Thr Glu Leu Asp Arg Met 20 25 30 Thr Ser Gly Phe Gln Arg Ser Asp Leu Ile Ile Val Ala Ala Arg Pro 35 40 45 Ser Val Gly Lys Thr Ala Phe Ala Leu Asn Ile Ala Gln Asn Val Ala 50 55 60 Thr Lys Thr Asn Glu Asn Val Ala Ile Phe Ser Leu Glu Met Ser Ala 65 70 75 80 Gln Gln Leu Val Met Arg Met Leu Cys Ala Glu Gly Asn Ile Asn Ala 85 90 95 Gln Asn Leu Arg Thr Gly Lys Leu Thr Pro Glu Asp Trp Gly Lys Leu 100 105 110 Thr Met Ala Met Gly Ser Leu Ser Asn Ala Gly Ile Tyr Ile Asp Asp 115 120 125 Thr Pro Ser Ile Arg Val Ser Asp Ile Arg Ala Lys Cys Arg Arg Leu 130 135 140 Lys Gln Glu Ser Gly Leu Gly Met Ile Val Ile Asp Tyr Leu Gln Leu 145 150 155 160 Ile Gln Gly Ser Gly Arg Ser Lys Glu Asn Arg Gln Gln Glu Val Ser 165 170 175 Glu Ile Ser Arg Ser Leu Lys Ala Leu Ala Arg Glu Leu Glu Val Pro 180 185 190 Val Ile Ala Leu Ser Gln Leu Ser Arg Ser Val Glu Gln Arg Gln Asp 195 200 205 Lys Arg Pro Met Met Ser Asp Ile Arg Glu Ser Gly Ser Ile Glu Gln 210 215 220 Asp Ala Asp Ile Val Ala Phe Leu Tyr Arg Asp Asp Tyr Tyr Asn Lys 225 230 235 240 Asp Ser Glu Asn Lys Asn Ile Ile Glu Ile Ile Ile Ala Lys Gln Arg 245 250 255 Asn Gly Pro Val Gly Thr Val Gln Leu Ala Phe Ile Lys Glu Tyr Asn 260 265 270 Lys Phe Val Asn Leu Glu Arg Arg Phe Asp Glu Ala Gln Ile Pro Pro 275 280 285 Gly Ala 290 50 332 PRT Halobacter pylori 50 Val Leu Glu Ser Ala Met Asp Leu Ile Thr Glu Asn Gln Arg Lys Gly 1 5 10 15 Ser Leu Glu Val Thr Gly Ile Pro Thr Gly Phe Val Gln Leu Asp Asn 20 25 30 Tyr Thr Ser Gly Phe Asn Lys Gly Ser Leu Val Ile Ile Gly Ala Arg 35 40 45 Pro Ser Met Gly Lys Thr Ser Leu Met Met Asn Met Val Leu Ser Ala 50 55 60 Leu Asn Asp Asp Arg Gly Val Ala Val Phe Ser Leu Glu Met Ser Ala 65 70 75 80 Glu Gln Leu Ala Leu Arg Ala Leu Ser Asp Leu Thr Ser Ile Asn Met 85 90 95 His Asp Leu Glu Ser Gly Arg Leu Asp Asp Asp Gln Trp Glu Asn Leu 100 105 110 Ala Lys Cys Phe Asp His Leu Ser Gln Lys Lys Leu Phe Phe Tyr Asp 115 120 125 Lys Ser Tyr Val Arg Ile Glu Gln Ile Arg Leu Gln Leu Arg Lys Leu 130 135 140 Lys Ser Gln His Lys Glu Leu Gly Ile Ala Phe Ile Asp Tyr Leu Gln 145 150 155 160 Leu Met Ser Gly Ser Lys Ala Thr Lys Glu Arg His Glu Gln Ile Ala 165 170 175 Glu Ile Ser Arg Glu Leu Lys Thr Leu Ala Arg Glu Leu Glu Ile Pro 180 185 190 Ile Ile Ala Leu Val Gln Leu Asn Arg Ser Leu Glu Asn Arg Asp Asp 195 200 205 Lys Arg Pro Ile Leu Ser Asp Ile Lys Asp Ser Gly Gly Ile Glu Gln 210 215 220 Asp Ala Asp Ile Val Leu Phe Leu Tyr Arg Gly Tyr Ile Tyr Gln Met 225 230 235 240 Arg Ala Glu Asp Asn Lys Ile Asp Lys Leu Lys Lys Glu Gly Lys Ile 245 250 255 Glu Glu Ala Gln Glu Leu Tyr Leu Lys Val Asn Glu Glu Arg Arg Ile 260 265 270 His Lys Gln Asn Gly Ser Ile Glu Glu Ala Glu Ile Ile Val Ala Lys 275 280 285 Asn Arg Asn Gly Ala Thr Gly Thr Val Tyr Thr Arg Phe Asn Ala Pro 290 295 300 Phe Thr Arg Tyr Glu Asp Met Pro Ile Asp Ser His Leu Glu Glu Gly 305 310 315 320 Gln Glu Thr Lys Val Asp Tyr Asp Ile Val Thr Thr 325 330 51 295 PRT Mycolplasma genitalium 51 Glu Ile Ala Asn Gln Glu Glu Ala Leu Ile Lys Lys Val His Arg Gly 1 5 10 15 Glu Leu Ile Ile Ser Gly Leu Ser Ser Gly Phe Leu Lys Leu Asp Gln 20 25 30 Leu Thr Ser Gly Trp Lys Pro Gly Glu Leu Ile Val Ile Ala Ala Arg 35 40 45 Pro Gly Arg Gly Lys Thr Ala Leu Leu Ile Asn Phe Met Ala Ser Ala 50 55 60 Ala Lys Gln Ile Asp Pro Lys Thr Asp Val Val Leu Phe Phe Ser Leu 65 70 75 80 Glu Met Arg Asn Arg Glu Ile Tyr Gln Arg His Leu Met His Glu Ser 85 90 95 Gln Thr Ser Tyr Thr Leu Thr Asn Arg Gln Arg Ile Asn Asn Val Phe 100 105 110 Glu Glu Leu Met Glu Ala Ser Ser Arg Ile Lys Asn Leu Pro Ile Lys 115 120 125 Leu Phe Asp Tyr Ser Ser Leu Thr Leu Gln Glu Ile Arg Asn Gln Ile 130 135 140 Thr Glu Val Ser Lys Thr Ser Asn Val Arg Leu Val Ile Ile Asp Tyr 145 150 155 160 Leu Gln Leu Val Asn Ala Leu Lys Asn Asn Tyr Gly Leu Thr Arg Gln 165 170 175 Gln Glu Val Thr Met Ile Ser Gln Ser Leu Lys Ala Phe Ala Lys Glu 180 185 190 Phe Asn Thr Pro Ile Ile Ala Ala Ala Gln Leu Ser Arg Arg Ile Glu 195 200 205 Glu Arg Lys Asp Ser Arg Pro Ile Leu Ser Asp Leu Arg Glu Ser Gly 210 215 220 Ser Ile Glu Gln Asp Ala Asp Met Val Leu Phe Ile His Arg Thr Asn 225 230 235 240 Asp Asp Lys Lys Glu Gln Glu Glu Glu Asn Thr Asn Leu Phe Glu Val 245 250 255 Glu Leu Ile Leu Glu Lys Asn Arg Asn Gly Pro Asn Gly Lys Val Lys 260 265 270 Leu Asn Phe Arg Ser Asp Thr Ser Ser Phe Ile Ser Gln Tyr Ser Pro 275 280 285 Ser Phe Asp Asp Gln Tyr Ser 290 295 52 283 PRT Borrelia burgdorferi 52 Ile Ala Glu Arg Val His Asn Glu Ile Tyr Glu Arg Ser Met Lys Lys 1 5 10 15 Lys Glu Ala Asn Phe Gly Ile Pro Ser Gly Phe Arg Lys Val Asp Ser 20 25 30 Leu Ile Gly Gly Phe Arg Asn Ser Asp Phe Ile Ile Val Gly Ala Arg 35 40 45 Pro Ser Ile Gly Lys Thr Ala Phe Ala Leu Asn Ile Ala Ser Tyr Ile 50 55 60 Ala Leu Arg Lys Glu Glu Lys Lys Lys Val Gly Phe Phe Ser Leu Glu 65 70 75 80 Met Thr Ala Asp Ala Leu Ile Lys Arg Ile Ile Ser Ser Gln Ser Cys 85 90 95 Ile Asp Ser Phe Lys Val Gln Asn Ser Ile Leu Ser Gly Gln Glu Ile 100 105 110 Lys Ser Leu Asn Asp Ile Ile Asn Glu Ile Ser Asp Ser Glu Leu Tyr 115 120 125 Ile Glu Asp Thr Pro Asn Ile Ser Leu Leu Thr Leu Ala Thr Gln Ala 130 135 140 Arg Lys Leu Lys Arg Phe Tyr Gly Ile Asp Ile Ile Phe Val Asp Tyr 145 150 155 160 Ile Ser Leu Ile Ser Phe Glu Thr Lys Asn Leu Pro Arg His Glu Gln 165 170 175 Val Ala Ser Ile Ser Lys Ser Leu Lys Glu Leu Ala Arg Glu Leu Glu 180 185 190 Ile Pro Ile Val Ala Leu Ser Gln Leu Thr Arg Asp Thr Glu Gly Arg 195 200 205 Glu Pro Asn Leu Ala Ser Leu Arg Glu Ser Gly Ala Leu Glu Gln Asp 210 215 220 Ala Asp Ile Val Ile Leu Leu His Arg Asp Lys Asp Phe Lys Phe Glu 225 230 235 240 Ser Ser Ala Glu Ile Glu Pro Ile Glu Thr Lys Val Ile Val Ala Lys 245 250 255 His Arg Asn Gly Pro Thr Gly Arg Ala Asp Ile Leu Phe Leu Pro His 260 265 270 Ile Thr Lys Phe Val Asn Lys Asp His Gln Tyr 275 280 53 327 PRT Bacteriophage T4 53 Tyr Val Gly His Asp Trp Met Asp Asp Tyr Glu Ala Arg Trp Leu Ser 1 5 10 15 Tyr Met Asn Lys Ala Arg Lys Val Pro Phe Lys Leu Arg Ile Leu Asn 20 25 30 Lys Ile Thr Lys Gly Gly Ala Glu Thr Gly Thr Leu Asn Val Leu Met 35 40 45 Ala Gly Val Asn Val Gly Lys Ser Leu Gly Leu Cys Ser Leu Ala Ala 50 55 60 Asp Tyr Leu Gln Leu Gly His Asn Val Leu Tyr Ile Ser Met Glu Met 65 70 75 80 Ala Glu Glu Val Cys Ala Lys Arg Ile Asp Ala Asn Met Leu Asp Val 85 90 95 Ser Leu Asp Asp Ile Asp Asp Gly His Ile Ser Tyr Ala Glu Tyr Lys 100 105 110 Gly Lys Met Glu Lys Trp Arg Glu Lys Ser Thr Leu Gly Arg Leu Ile 115 120 125 Val Lys Gln Tyr Pro Thr Gly Gly Ala Asp Ala Asn Thr Phe Arg Ser 130 135 140 Leu Leu Asn Glu Leu Lys Leu Lys Lys Asn Phe Val Pro Thr Ile Ile 145 150 155 160 Ile Val Asp Tyr Leu Gly Ile Cys Lys Ser Cys Arg Ile Arg Val Tyr 165 170 175 Ser Glu Asn Ser Tyr Thr Thr Val Lys Ala Ile Ala Glu Glu Leu Arg 180 185 190 Ala Leu Ala Val Glu Thr Glu Thr Val Leu Trp Thr Ala Ala Gln Val 195 200 205 Gly Lys Gln Ala Trp Asp Ser Ser Asp Val Asn Met Ser Asp Ile Ala 210 215 220 Glu Ser Ala Gly Leu Pro Ala Thr Ala Asp Phe Met Leu Ala Val Ile 225 230 235 240 Glu Thr Glu Glu Leu Ala Ala Ala Glu Gln Gln Leu Ile Lys Gln Ile 245 250 255 Lys Ser Arg Tyr Gly Asp Lys Asn Lys Trp Asn Lys Phe Leu Met Gly 260 265 270 Val Gln Lys Gly Asn Gln Lys Trp Val Glu Ile Glu Gln Asp Ser Thr 275 280 285 Pro Thr Glu Val Asn Glu Val Ala Gly Ser Gln Gln Ile Gln Ala Glu 290 295 300 Gln Asn Arg Tyr Gln Arg Asn Glu Ser Thr Arg Ala Gln Leu Asp Ala 305 310 315 320 Leu Ala Asn Glu Leu Lys Phe 325 54 302 PRT Bacteriophage T7 54 Val Val Ser Ala Leu Ser Leu Arg Glu Arg Ile Arg Glu His Leu Ser 1 5 10 15 Ser Glu Glu Ser Val Gly Leu Leu Phe Ser Gly Cys Thr Gly Ile Asn 20 25 30 Asp Lys Thr Leu Gly Ala Arg Gly Gly Glu Val Ile Met Val Thr Ser 35 40 45 Gly Ser Gly Met Gly Lys Ser Thr Phe Val Arg Gln Gln Ala Leu Gln 50 55 60 Trp Gly Thr Ala Met Gly Lys Lys Val Gly Leu Ala Met Leu Glu Glu 65 70 75 80 Ser Val Glu Glu Thr Ala Glu Asp Leu Ile Gly Leu His Asn Arg Val 85 90 95 Arg Leu Arg Gln Ser Asp Ser Leu Lys Arg Glu Ile Ile Glu Asn Gly 100 105 110 Lys Phe Asp Gln Trp Phe Asp Glu Leu Phe Gly Asn Asp Thr Phe His 115 120 125 Leu Tyr Asp Ser Phe Ala Glu Ala Glu Thr Asp Arg Leu Leu Ala Lys 130 135 140 Leu Ala Tyr Met Arg Ser Gly Leu Gly Cys Asp Val Ile Ile Leu Asp 145 150 155 160 His Ile Ser Ile Val Val Ser Ala Ser Gly Glu Ser Asp Glu Arg Lys 165 170 175 Met Ile Asp Asn Leu Met Thr Lys Leu Lys Gly Phe Ala Lys Ser Thr 180 185 190 Gly Val Val Leu Val Val Ile Cys His Leu Lys Asn Pro Asp Lys Gly 195 200 205 Lys Ala His Glu Glu Gly Arg Pro Val Ser Ile Thr Asp Leu Arg Gly 210 215 220 Ser Gly Ala Leu Arg Gln Leu Ser Asp Thr Ile Ile Ala Leu Glu Arg 225 230 235 240 Asn Gln Gln Gly Asp Met Pro Asn Leu Val Leu Val Arg Ile Leu Lys 245 250 255 Cys Arg Phe Thr Gly Asp Thr Gly Ile Ala Gly Tyr Met Glu Tyr Asn 260 265 270 Lys Glu Thr Gly Trp Leu Glu Pro Ser Ser Tyr Ser Gly Glu Glu Glu 275 280 285 Ser His Ser Glu Ser Thr Asp Trp Ser Asn Asp Thr Asp Phe 290 295 300 55 270 PRT Bacteriophage RM378 55 Val Ser Leu Val Glu Glu Phe Asp Leu Ala Thr Ser Glu Phe Asn Glu 1 5 10 15 Leu Phe Val Lys Glu Glu Arg Ile Pro Thr Pro Trp Glu Ser Val Asn 20 25 30 Lys Asn Met Ala Gly Gly Leu Gly Arg Gly Glu Leu Gly Ile Val Met 35 40 45 Leu Pro Ser Gly Trp Gly Lys Ser Trp Phe Leu Val Ser Leu Gly Leu 50 55 60 His Ala Phe Arg Thr Gly Lys Arg Val Ile Tyr Phe Thr Leu Glu Leu 65 70 75 80 Asp Gln Lys Tyr Val Met Lys Arg Phe Leu Lys Met Phe Ala Pro Tyr 85 90 95 Cys Lys Gly Arg Ala Ser Ser Tyr Arg Asp Val Tyr Gln Ile Met Lys 100 105 110 Glu Leu Met Phe Ser Gln Asp Asn Leu Leu Lys Ile Val Phe Cys Asn 115 120 125 Ala Met Glu Asp Ile Glu His Tyr Ile Ala Leu Tyr Asn Pro Asp Val 130 135 140 Val Leu Ile Asp Tyr Ala Asp Leu Ile Tyr Asp Val Glu Thr Asp Lys 145 150 155 160 Glu Lys Asn Tyr Leu Leu Leu Gln Lys Ile Tyr Arg Lys Leu Arg Leu 165 170 175 Ile Ala Lys Val Tyr Asn Thr Ala Val Trp Ser Ala Ser Gln Leu Asn 180 185 190 Arg Gly Ser Leu Ser Lys Gln Ala Asp Val Asp Phe Ile Glu Lys Tyr 195 200 205 Ile Ala Asp Ser Phe Ala Lys Val Val Glu Ile Asp Phe Gly Met Ala 210 215 220 Phe Ile Pro Asp Ser Glu Asn Ser Thr Pro Asp Ile His Val Gly Phe 225 230 235 240 Gly Lys Ile Phe Lys Asn Arg Met Gly Ala Val Arg Lys Leu Glu Tyr 245 250 255 Thr Ile Asn Phe Glu Asn Tyr Thr Val Asp Val Ala Val Lys 260 265 270 56 1197 DNA Bacteriophage RM378 CDS (112)...(1158) 56 attttctgtt ttttcacagg caagtattcg acatgctcga aacccgcgaa gcttattatc 60 agttgcttca atcgttaaac gatttcctcg aagaagacct gaaggagaat t atg aag 117 Met Lys 1 atc acg cta agc gca agc gta tac ccc cga tcg atg aaa att tac gga 165 Ile Thr Leu Ser Ala Ser Val Tyr Pro Arg Ser Met Lys Ile Tyr Gly 5 10 15 gtg gag cta atc gag ggg aaa aaa cac tta ttt caa tca ccc gta ccc 213 Val Glu Leu Ile Glu Gly Lys Lys His Leu Phe Gln Ser Pro Val Pro 20 25 30 cca cat ttg aag cgc atc gct cag cag aat cga ggg aag att gag gct 261 Pro His Leu Lys Arg Ile Ala Gln Gln Asn Arg Gly Lys Ile Glu Ala 35 40 45 50 gag gct ata tcc tat tac atc aga gaa caa aaa agc cac atc acg ccg 309 Glu Ala Ile Ser Tyr Tyr Ile Arg Glu Gln Lys Ser His Ile Thr Pro 55 60 65 gaa gct ttg tct cag tgc gtc ttt atc gat att gag acg att tcc ccg 357 Glu Ala Leu Ser Gln Cys Val Phe Ile Asp Ile Glu Thr Ile Ser Pro 70 75 80 aaa aaa agc ttt ccc gac ccg tgg aga gac cca gtt tat tcc att tcc 405 Lys Lys Ser Phe Pro Asp Pro Trp Arg Asp Pro Val Tyr Ser Ile Ser 85 90 95 atc aaa ccg tat gga aaa ccg gtg gtg gta gtg ctt ctc ctt atc acc 453 Ile Lys Pro Tyr Gly Lys Pro Val Val Val Val Leu Leu Leu Ile Thr 100 105 110 aac ccg gag gct cat atc gat aac ttt aac aaa ttt acc acc agc gta 501 Asn Pro Glu Ala His Ile Asp Asn Phe Asn Lys Phe Thr Thr Ser Val 115 120 125 130 ggg gat aac aca ttt gaa att cat tac aga aca ttc ctt tcg gaa aaa 549 Gly Asp Asn Thr Phe Glu Ile His Tyr Arg Thr Phe Leu Ser Glu Lys 135 140 145 aga ttg ctc gag tat ttc tgg aat gtg ctg aaa cca aaa ttt act ttc 597 Arg Leu Leu Glu Tyr Phe Trp Asn Val Leu Lys Pro Lys Phe Thr Phe 150 155 160 atg ctc gca tgg aac ggt tat cag ttc gat tat ccc tac ctg ctc att 645 Met Leu Ala Trp Asn Gly Tyr Gln Phe Asp Tyr Pro Tyr Leu Leu Ile 165 170 175 cgt agt cat atc cat gag gtg aat gtc att agt gat aag ttg ctt ccg 693 Arg Ser His Ile His Glu Val Asn Val Ile Ser Asp Lys Leu Leu Pro 180 185 190 gac tgg aag ctg gtg cgg aaa att tcc gat cga aac cta cca ttc tat 741 Asp Trp Lys Leu Val Arg Lys Ile Ser Asp Arg Asn Leu Pro Phe Tyr 195 200 205 210 ttc aat ccc cgt acc cct gta gaa ttt gtg ttt ttt gat tac atg cgg 789 Phe Asn Pro Arg Thr Pro Val Glu Phe Val Phe Phe Asp Tyr Met Arg 215 220 225 ctt tat cgc tcc ttt gtg gca tac aaa gag ttg gag tcc tac cgg ctc 837 Leu Tyr Arg Ser Phe Val Ala Tyr Lys Glu Leu Glu Ser Tyr Arg Leu 230 235 240 gac tat att gcg cga gag gaa ata gga gaa ggt aag gtg gat ttc gac 885 Asp Tyr Ile Ala Arg Glu Glu Ile Gly Glu Gly Lys Val Asp Phe Asp 245 250 255 gta aga ttc tat cat gag att cct gtc tac ccg gat aaa aag ttg gtg 933 Val Arg Phe Tyr His Glu Ile Pro Val Tyr Pro Asp Lys Lys Leu Val 260 265 270 gaa tac aac gcc gta gac gcc att ttg atg gaa gaa atc gaa aat aaa 981 Glu Tyr Asn Ala Val Asp Ala Ile Leu Met Glu Glu Ile Glu Asn Lys 275 280 285 290 aac cat att ctc ccg acg ctg ttt gaa att gca aga ctt tca aat ctg 1029 Asn His Ile Leu Pro Thr Leu Phe Glu Ile Ala Arg Leu Ser Asn Leu 295 300 305 act ccc gca ctg gca ttg aac gct tcc aat att ctt atc gga aat gtt 1077 Thr Pro Ala Leu Ala Leu Asn Ala Ser Asn Ile Leu Ile Gly Asn Val 310 315 320 aca gga aaa ctt ggt gtc aaa ttc gtt gat tac atc aag aaa atc gac 1125 Thr Gly Lys Leu Gly Val Lys Phe Val Asp Tyr Ile Lys Lys Ile Asp 325 330 335 acc att aat aca atg ttc aaa aaa ata cct gag taaactatga atatgcagac 1178 Thr Ile Asn Thr Met Phe Lys Lys Ile Pro Glu 340 345 cattgacgaa acgctttat 1197 57 349 PRT Bacteriophage RM378 57 Met Lys Ile Thr Leu Ser Ala Ser Val Tyr Pro Arg Ser Met Lys Ile 1 5 10 15 Tyr Gly Val Glu Leu Ile Glu Gly Lys Lys His Leu Phe Gln Ser Pro 20 25 30 Val Pro Pro His Leu Lys Arg Ile Ala Gln Gln Asn Arg Gly Lys Ile 35 40 45 Glu Ala Glu Ala Ile Ser Tyr Tyr Ile Arg Glu Gln Lys Ser His Ile 50 55 60 Thr Pro Glu Ala Leu Ser Gln Cys Val Phe Ile Asp Ile Glu Thr Ile 65 70 75 80 Ser Pro Lys Lys Ser Phe Pro Asp Pro Trp Arg Asp Pro Val Tyr Ser 85 90 95 Ile Ser Ile Lys Pro Tyr Gly Lys Pro Val Val Val Val Leu Leu Leu 100 105 110 Ile Thr Asn Pro Glu Ala His Ile Asp Asn Phe Asn Lys Phe Thr Thr 115 120 125 Ser Val Gly Asp Asn Thr Phe Glu Ile His Tyr Arg Thr Phe Leu Ser 130 135 140 Glu Lys Arg Leu Leu Glu Tyr Phe Trp Asn Val Leu Lys Pro Lys Phe 145 150 155 160 Thr Phe Met Leu Ala Trp Asn Gly Tyr Gln Phe Asp Tyr Pro Tyr Leu 165 170 175 Leu Ile Arg Ser His Ile His Glu Val Asn Val Ile Ser Asp Lys Leu 180 185 190 Leu Pro Asp Trp Lys Leu Val Arg Lys Ile Ser Asp Arg Asn Leu Pro 195 200 205 Phe Tyr Phe Asn Pro Arg Thr Pro Val Glu Phe Val Phe Phe Asp Tyr 210 215 220 Met Arg Leu Tyr Arg Ser Phe Val Ala Tyr Lys Glu Leu Glu Ser Tyr 225 230 235 240 Arg Leu Asp Tyr Ile Ala Arg Glu Glu Ile Gly Glu Gly Lys Val Asp 245 250 255 Phe Asp Val Arg Phe Tyr His Glu Ile Pro Val Tyr Pro Asp Lys Lys 260 265 270 Leu Val Glu Tyr Asn Ala Val Asp Ala Ile Leu Met Glu Glu Ile Glu 275 280 285 Asn Lys Asn His Ile Leu Pro Thr Leu Phe Glu Ile Ala Arg Leu Ser 290 295 300 Asn Leu Thr Pro Ala Leu Ala Leu Asn Ala Ser Asn Ile Leu Ile Gly 305 310 315 320 Asn Val Thr Gly Lys Leu Gly Val Lys Phe Val Asp Tyr Ile Lys Lys 325 330 335 Ile Asp Thr Ile Asn Thr Met Phe Lys Lys Ile Pro Glu 340 345 58 1764 DNA Bacteriophage RM378 CDS (142)...(1707) 58 ctatacggat gaagttttga gaattattga tctttctcca ctcgatggcg tattatacaa 60 atgtgattta aaagacacct accttatcga ggtgaaagat acccattttg atcccgcaat 120 gtaaaacaaa cgtattctgc t atg aac atc aac aag tat cgt tat cgc ggt 171 Met Asn Ile Asn Lys Tyr Arg Tyr Arg Gly 1 5 10 gct tac att gaa ctt acc aac ccc gat att tac ttc aac gta ttc gat 219 Ala Tyr Ile Glu Leu Thr Asn Pro Asp Ile Tyr Phe Asn Val Phe Asp 15 20 25 ctt gat ttt aca tcg ctg tac ccc tct gta atc agc aaa ttc aat atc 267 Leu Asp Phe Thr Ser Leu Tyr Pro Ser Val Ile Ser Lys Phe Asn Ile 30 35 40 gat ccc gct acg ttc gta acg gag ttt tac ggg tgt atg cgg gtg gag 315 Asp Pro Ala Thr Phe Val Thr Glu Phe Tyr Gly Cys Met Arg Val Glu 45 50 55 aac aaa gtg att ccg gta gat cag gaa gaa ccg gaa ttc ggg ttt ccc 363 Asn Lys Val Ile Pro Val Asp Gln Glu Glu Pro Glu Phe Gly Phe Pro 60 65 70 ctc tac atc ttc gat tca ggg atg aac cct tct tac cgg agt gaa ccc 411 Leu Tyr Ile Phe Asp Ser Gly Met Asn Pro Ser Tyr Arg Ser Glu Pro 75 80 85 90 ctc ttt gtc atc aac agc ttt gag gaa ctc cgg caa ttt tta aaa agt 459 Leu Phe Val Ile Asn Ser Phe Glu Glu Leu Arg Gln Phe Leu Lys Ser 95 100 105 cga aat atc att atg gtg ccc aac ccg tcg ggt atc tgc tgg ttt tac 507 Arg Asn Ile Ile Met Val Pro Asn Pro Ser Gly Ile Cys Trp Phe Tyr 110 115 120 agg aaa gag ccg gtt ggc gtg ctt cct tct atc att cgg gag att ttc 555 Arg Lys Glu Pro Val Gly Val Leu Pro Ser Ile Ile Arg Glu Ile Phe 125 130 135 acc cga cgt aag gaa gaa cgt aag ctt ttc aaa gaa act ggc aac atg 603 Thr Arg Arg Lys Glu Glu Arg Lys Leu Phe Lys Glu Thr Gly Asn Met 140 145 150 gaa cac cat ttc cgt caa tgg gca ctt aaa att atg atg aac tcc atg 651 Glu His His Phe Arg Gln Trp Ala Leu Lys Ile Met Met Asn Ser Met 155 160 165 170 tac ggt atc ttc gga aac cgt tcg gtg tac atg ggg tgc ctt ccc att 699 Tyr Gly Ile Phe Gly Asn Arg Ser Val Tyr Met Gly Cys Leu Pro Ile 175 180 185 gcg gaa agt gta acc gcc gcc ggg cgc atg tct att cgc tcc gtg att 747 Ala Glu Ser Val Thr Ala Ala Gly Arg Met Ser Ile Arg Ser Val Ile 190 195 200 tct cag att cgc gat cgc ttc att tat tcg cat acc gac tcc att ttc 795 Ser Gln Ile Arg Asp Arg Phe Ile Tyr Ser His Thr Asp Ser Ile Phe 205 210 215 gtc aaa gct ttt acg gat gat ccg gtg gcg gaa gcc ggt gag ctt caa 843 Val Lys Ala Phe Thr Asp Asp Pro Val Ala Glu Ala Gly Glu Leu Gln 220 225 230 gaa cat ctc aac tct ttt atc aat gac tat atg gaa aat aac ttt aat 891 Glu His Leu Asn Ser Phe Ile Asn Asp Tyr Met Glu Asn Asn Phe Asn 235 240 245 250 gca aga gaa gat ttc aag ctg gag tta aag cag gag ttc gtg ttc aaa 939 Ala Arg Glu Asp Phe Lys Leu Glu Leu Lys Gln Glu Phe Val Phe Lys 255 260 265 tcc att ctt atc aaa gaa atc aac cgc tac ttt gcg gtt act gta gac 987 Ser Ile Leu Ile Lys Glu Ile Asn Arg Tyr Phe Ala Val Thr Val Asp 270 275 280 ggt aaa gaa gag atg aag gga atc gaa gtg atc aac tct tcg gtg cct 1035 Gly Lys Glu Glu Met Lys Gly Ile Glu Val Ile Asn Ser Ser Val Pro 285 290 295 gaa att gtc aag aag tat ttc agg ggt tac ctg aag tat atc agc caa 1083 Glu Ile Val Lys Lys Tyr Phe Arg Gly Tyr Leu Lys Tyr Ile Ser Gln 300 305 310 ccc gac atc gat gtc att tcc gcc acc ata gcg ttc tac aat aac ttt 1131 Pro Asp Ile Asp Val Ile Ser Ala Thr Ile Ala Phe Tyr Asn Asn Phe 315 320 325 330 gtg tct caa aag aat ttc tgg tct att gaa gat ctc tat cac aaa atg 1179 Val Ser Gln Lys Asn Phe Trp Ser Ile Glu Asp Leu Tyr His Lys Met 335 340 345 aaa ata tct tcg tct gac agc gcc gaa aga tat gtg gag tat gta gag 1227 Lys Ile Ser Ser Ser Asp Ser Ala Glu Arg Tyr Val Glu Tyr Val Glu 350 355 360 gaa gtt atg aag atg aaa aag gag aat gtc cca atc tct gag ata ttc 1275 Glu Val Met Lys Met Lys Lys Glu Asn Val Pro Ile Ser Glu Ile Phe 365 370 375 ata aaa atg tat gac cat aca ctt ccc att cat tat aag gga gcg ctt 1323 Ile Lys Met Tyr Asp His Thr Leu Pro Ile His Tyr Lys Gly Ala Leu 380 385 390 ttc gct tcc att ata gga tgc aaa ccc ccg caa atg gga gac aag atc 1371 Phe Ala Ser Ile Ile Gly Cys Lys Pro Pro Gln Met Gly Asp Lys Ile 395 400 405 410 tac tgg ttc tac tgc acc atg ctg gat cct tcc aga acc aat ctc ccg 1419 Tyr Trp Phe Tyr Cys Thr Met Leu Asp Pro Ser Arg Thr Asn Leu Pro 415 420 425 ctt tct ctg gaa gaa gtt aac ccc gaa cat ggg agc ggc gtg tgg gat 1467 Leu Ser Leu Glu Glu Val Asn Pro Glu His Gly Ser Gly Val Trp Asp 430 435 440 att ctg aaa gcg gga aag aaa acg cat atc aac agg ctc cgc aat atc 1515 Ile Leu Lys Ala Gly Lys Lys Thr His Ile Asn Arg Leu Arg Asn Ile 445 450 455 cac gca ctt agc ata cgt gag gat gat gag gag ggt ctt gaa atc gtt 1563 His Ala Leu Ser Ile Arg Glu Asp Asp Glu Glu Gly Leu Glu Ile Val 460 465 470 aaa aaa tac ata gat aga gac aaa tac tgt cag atc att tca gag aaa 1611 Lys Lys Tyr Ile Asp Arg Asp Lys Tyr Cys Gln Ile Ile Ser Glu Lys 475 480 485 490 aca att gat ctg ctg aaa agt ctc ggg tat gtt gaa aat act aca aag 1659 Thr Ile Asp Leu Leu Lys Ser Leu Gly Tyr Val Glu Asn Thr Thr Lys 495 500 505 ata aaa acc gtt gag gat ctt att cgt ttt ctt gta gag agt gaa aac 1707 Ile Lys Thr Val Glu Asp Leu Ile Arg Phe Leu Val Glu Ser Glu Asn 510 515 520 taaacccatt agcgccatga ttctcaaatt cgacactgaa ggcattgttc gtatcct 1764 59 522 PRT Bacteriophage RM378 59 Met Asn Ile Asn Lys Tyr Arg Tyr Arg Gly Ala Tyr Ile Glu Leu Thr 1 5 10 15 Asn Pro Asp Ile Tyr Phe Asn Val Phe Asp Leu Asp Phe Thr Ser Leu 20 25 30 Tyr Pro Ser Val Ile Ser Lys Phe Asn Ile Asp Pro Ala Thr Phe Val 35 40 45 Thr Glu Phe Tyr Gly Cys Met Arg Val Glu Asn Lys Val Ile Pro Val 50 55 60 Asp Gln Glu Glu Pro Glu Phe Gly Phe Pro Leu Tyr Ile Phe Asp Ser 65 70 75 80 Gly Met Asn Pro Ser Tyr Arg Ser Glu Pro Leu Phe Val Ile Asn Ser 85 90 95 Phe Glu Glu Leu Arg Gln Phe Leu Lys Ser Arg Asn Ile Ile Met Val 100 105 110 Pro Asn Pro Ser Gly Ile Cys Trp Phe Tyr Arg Lys Glu Pro Val Gly 115 120 125 Val Leu Pro Ser Ile Ile Arg Glu Ile Phe Thr Arg Arg Lys Glu Glu 130 135 140 Arg Lys Leu Phe Lys Glu Thr Gly Asn Met Glu His His Phe Arg Gln 145 150 155 160 Trp Ala Leu Lys Ile Met Met Asn Ser Met Tyr Gly Ile Phe Gly Asn 165 170 175 Arg Ser Val Tyr Met Gly Cys Leu Pro Ile Ala Glu Ser Val Thr Ala 180 185 190 Ala Gly Arg Met Ser Ile Arg Ser Val Ile Ser Gln Ile Arg Asp Arg 195 200 205 Phe Ile Tyr Ser His Thr Asp Ser Ile Phe Val Lys Ala Phe Thr Asp 210 215 220 Asp Pro Val Ala Glu Ala Gly Glu Leu Gln Glu His Leu Asn Ser Phe 225 230 235 240 Ile Asn Asp Tyr Met Glu Asn Asn Phe Asn Ala Arg Glu Asp Phe Lys 245 250 255 Leu Glu Leu Lys Gln Glu Phe Val Phe Lys Ser Ile Leu Ile Lys Glu 260 265 270 Ile Asn Arg Tyr Phe Ala Val Thr Val Asp Gly Lys Glu Glu Met Lys 275 280 285 Gly Ile Glu Val Ile Asn Ser Ser Val Pro Glu Ile Val Lys Lys Tyr 290 295 300 Phe Arg Gly Tyr Leu Lys Tyr Ile Ser Gln Pro Asp Ile Asp Val Ile 305 310 315 320 Ser Ala Thr Ile Ala Phe Tyr Asn Asn Phe Val Ser Gln Lys Asn Phe 325 330 335 Trp Ser Ile Glu Asp Leu Tyr His Lys Met Lys Ile Ser Ser Ser Asp 340 345 350 Ser Ala Glu Arg Tyr Val Glu Tyr Val Glu Glu Val Met Lys Met Lys 355 360 365 Lys Glu Asn Val Pro Ile Ser Glu Ile Phe Ile Lys Met Tyr Asp His 370 375 380 Thr Leu Pro Ile His Tyr Lys Gly Ala Leu Phe Ala Ser Ile Ile Gly 385 390 395 400 Cys Lys Pro Pro Gln Met Gly Asp Lys Ile Tyr Trp Phe Tyr Cys Thr 405 410 415 Met Leu Asp Pro Ser Arg Thr Asn Leu Pro Leu Ser Leu Glu Glu Val 420 425 430 Asn Pro Glu His Gly Ser Gly Val Trp Asp Ile Leu Lys Ala Gly Lys 435 440 445 Lys Thr His Ile Asn Arg Leu Arg Asn Ile His Ala Leu Ser Ile Arg 450 455 460 Glu Asp Asp Glu Glu Gly Leu Glu Ile Val Lys Lys Tyr Ile Asp Arg 465 470 475 480 Asp Lys Tyr Cys Gln Ile Ile Ser Glu Lys Thr Ile Asp Leu Leu Lys 485 490 495 Ser Leu Gly Tyr Val Glu Asn Thr Thr Lys Ile Lys Thr Val Glu Asp 500 505 510 Leu Ile Arg Phe Leu Val Glu Ser Glu Asn 515 520 60 1619 DNA Bacteriophage RM378 60 ccggtttgat acccgtattg gtcatttcct tgtggaaacc ccggttgaaa agtggagtaa 60 caaaatgttg cgcgtagctg aaaaacttgt aaccaattcc cgtaaacaga tttacgaagg 120 aggtgtgtga ttgctacggt ttcctatccg gaaactatga agttgtagac gaactccctg 180 atcaaccgac gcttccgaaa actcaaaaca agacttatag tacgctatgg aatcgatgaa 240 cgtaaaatac ccggttgagt accttatcga acacctgaac tcttttgagt ctccggaagt 300 agccgtcgaa tcccttcgca aggaggggat tatgtgcaaa aaccggggtg atctatacat 360 gttcaaatat caccttggtt gtaagtttga taagatatat caccttgcct gtcgcggggc 420 gattctccgc aaaacggata gtggttggaa agttctgtct tatccctttg acaaattttt 480 caactggggg gaagaactcc agccggaaat cgtaaactat tatcagacgc ttcgttacgc 540 gtctcccctg aatgaaaagc gcaaagccgg tttcatgttc aaacttccca tgaaactggt 600 tgaaaagctg gatggtactt gtgtggtttt atattatgat gaagggtgga aaattcacac 660 tcttgggagt attgacgcaa atggatccat tgtcaaaaac ggaatggtta ccactcatat 720 ggataaaaca tatcgagaat tgttctggga aacctttgaa aagaaatatc cgccttacct 780 tctctatcat ttgaactcct catactgtta catatttgaa atggttcatc cggacgcgcg 840 agtggtggtt ccttatgagg agccaaatat cattctgatc ggtgtgcgtt cggtggatcc 900 ggagaaggga tatttcgagg tgggtccctc cgaagaagcc gtacgcattt tcaacgaaag 960 tggcggaaaa ataaatctta agctaccggc tgttctgtct caagagcaaa actatactct 1020 ttttcgtgcc aatcgccttc aggaactatt tgaggaagtt acaccgcttt tcaaaagcct 1080 gagagacggt tatgaggtgg tatatgaagg atttgtagcc gtacaggaaa ttgccccgcg 1140 tgtttattac cgcacaaaga tcaagcaccc ggtatatctg gagctccacc ggattaaaac 1200 tacaatcact cctgagaagc tcgccgatct ttttcttgaa aacaaacttg atgattttgt 1260 acttaccccg gatgaacagg aaaccgtgat gaaactcaaa gaaatttata ccgatatgcg 1320 aaatcagctt gagtcatctt ttgatacgat ttataaagag atttccgaac aggtttctcc 1380 ggaagaaaac cccggagagt ttcgcaaaag gttcgctctt cgacttatgg attatcatga 1440 taaaagttgg ttttttgccc gccttgacgg cgacgaagag aaaatgcaaa agtcggaaaa 1500 gaagcttcta acggagagaa ttgaaaaggg gttatttaaa taaaaatgat aaaaaagcgt 1560 aatcctcttt tctggggaag acgggaactc aatcttcttc agcattttgc ccttgaagc 1619 61 1440 DNA Bacteriophage RM378 61 gcttcgtcaa aactcacgtc tatagtatct atgtcgtagg gttcgaggtt ggaggcaatc 60 aggttgaaca gttcatcata atcataattc tcgaaaagaa tgttgcgaat accgatccct 120 ctttctggat cgtagggata ttcccccggc tcgatgaaaa gcaggagttt tatcttatcg 180 atcaggagtt ttaccgggtc atcaggaaat ctgaaattcg gtgcagtgtc gttcagatag 240 aacatttcat ttttgtttaa ataaatcctc gaggaatctt caaataaaga ggggcgttaa 300 tggatgaaaa gactgaggaa tatggtcaat cttatcgatc tcaaaaatca gtattatgct 360 tactctttca agtttttcga ctcctatcag atcagctggg ataattaccc gcatcttaaa 420 gagttcgtca ttgaaaacta tcccggcact tatttttcat gctacgctcc ggggattctg 480 tacaagcttt tcctcaaatg gaagcggggt atgatcattg acgactatga ccgacacccg 540 ctccgaaaga agttacttcc tcagtacaaa gagcaccgct atgaatacat tgagggaaaa 600 tacggtgtgg ttcctttccc cgggtttctg aaatatctga agttccactt tgaggacttg 660 cggtttaaaa tgcgcgatct tggaatcacc gatttcaaat atgcacttgc catttctctt 720 ttttacaacc gggtaatgct cagagatttt ctgaaaaact ttacctgtta ttacattgcc 780 gaatatgaag ctgacgatgt aatcgcacat ctggcgcgtg agattgcacg aagcaatatc 840 gacgtaaaca tcgtctcaac ggataaagat tattaccagc tatgggatga agaggatata 900 agagaaaggg tttatatcaa ttctctttca tgtagtgatg tgaagacacc ccgctacgga 960 tttcttacca ttaaagcact tcttggagac aaaagcgata acattcccaa atctctggaa 1020 aaaggaaaag gcgaaaagta tcttgaaaag aaaggatttg cggaggaaga ttacgataag 1080 gaactattcg agaataatct gaaggtgatc aggtttggag acgaatatct tggagaaagg 1140 gataaaagct ttatagaaaa tttttctacg ggggatactc tgtggaactt ttatgaattt 1200 ttttactatg accctttgca tgaacttttc ctcagaaata taagaaagag gagactatga 1260 aagtactcgc atttaccgat gcacctacgt ttcccacggg ggtgggtcat cagcttcaca 1320 acattatcaa ttacgggttt gacgcaaccg atcgctgggt tgtggtgcac ccgccccggt 1380 cgccaagggc tggagagact aaaaacgtcg ttattggaaa cactccagtc aagcttatca 1440 62 1508 DNA Bacteriophage RM378 62 acttcccaaa tgctatgtgg aggtggatga tagaaagcgt attgttaatg aagaggcggt 60 caagtctttt ctccataagc atgttaccga actgctgaag aattatcagt aacccaaacc 120 taaacccgaa aaatatatgg aaacgattgt aatttcccaa aacaatacga cggagatgac 180 ggaacccccc cagaacattt ccgattcggt taaaagcggg tttatctatc ttatcgaaaa 240 gtctcatttc cttgaaaaga aaaacttcct taaaatcata tcgaacatgg acccccgccg 300 catttccaat ccggaggtgc gcgtggtggc ggagtacata tatgattatt tcaaaagtca 360 tagtaatttc ccttctaaaa gaaatctttg ccatcacttt gagtggagcg aagatctgga 420 aggagacccc gccgattatc agcgtatcat tcagtatctc aaatcttctt acattcgatc 480 ctctataaca aaaacgcttt catatcttga gaaggatgac ctttccgcgt tgaaagaaat 540 tgtcagagcc attcgggtgg tggaggatag tggggtgtcg ctggtggagg aattcgatct 600 tgcaaccagc gagtttaatg aactttttgt taaagaagaa cgcattccca ccccctggga 660 gagtgtaaac aaaaatatgg cgggcggtct tggtcgggga gagcttggaa tcgttatgct 720 tccttcgggg tggggtaagt catggttcct tgtttcactt ggtcttcatg cctttcgaac 780 gggtaagcgc gtgatttatt tcactctgga gcttgaccaa aaatatgtga tgaagcggtt 840 tttaaagatg tttgcacctt attgcaaagg acgcgcttct tcctatcgcg acgtttatca 900 aataatgaaa gagcttatgt tttctcagga taatcttttg ragattgttt tctgtaatgc 960 gatggaagat attgagcact atattgcgct gtataacccc gacgttgtgc tgattgacta 1020 tgccgatctt atttatgatg tggaaaccga caaagagaaa aattatctgc ttttgcaaaa 1080 aatttatagg aaacttcgtc tcattgcaaa ggtatataat acagcagtat ggagcgcctc 1140 tcagcttaat cgcggttccc tttcaaagca agccgacgtc gatttcattg agaaatacat 1200 tgccgattca tttgcaaaag ttkttgaaat cgacttcggg atggcgttta ttccggatag 1260 cgagaactca acccccgata ttcacgtcgg attcggtaaa atcttcaaaa accgtatggg 1320 tgcggtaaga aagctggaat atacaattaa ctttgaaaac tatacggtag acgttgctgt 1380 taaatgacac aagttaagac aaaagggctt aaagacatca gaataggtag aaaggagggt 1440 aagttcacac atgtaaatac aacaaagaaa ggaaagaata agaaatattt cagggcggaa 1500 catgaacg 1508 63 8 PRT Artificial Sequence Peptide 63 Asp Xaa Xaa Ser Leu Tyr Pro Ser 1 5 64 33 DNA Artificial Sequence Nucleic acid 64 cacgagctca tgaagatcac gctaagcgca agc 33 65 33 DNA Artificial Sequence Nucleic acid 65 acaggtacct tactcaggta tttttttgaa cat 33 66 33 DNA Artificial Sequence Nucleic acid 66 cacgagctca tgaacatcaa caagtatcgt tat 33 67 30 DNA Artificial Sequence Nucleic acid 67 acaggtacct tagttttcac tctctacaag 30 68 28 DNA Artificial Sequence Nucleic acid 68 gggaattctt atgaacgtaa aatacccg 28 69 28 DNA Artificial Sequence Nucleic acid 69 ggagatctta tttaaataac cccttttc 28 70 30 DNA Artificial Sequence Nucleic acid 70 gggaattctt atgaaaagac tgaggaatat 30 71 26 DNA Artificial Sequence Nucleic acid 71 ggagatctca tagtctcctc tttctt 26 72 31 DNA Artificial Sequence Nucleic acid 72 gggcaattgt tatggaaacg attgtaattt c 31 73 26 DNA Artificial Sequence Nucleic acid 73 cgggatcctc atttaacagc aacgtc 26

Claims (10)

What is claimed is:
1. An isolated nucleic acid molecule comprising a nucleotide sequence of an open reading frame of the nucleotide sequence SEQ ID NO:1, wherein the open reading frame is ORF 1218a (locus DAS) .
2. An isolated nucleic acid molecule which encodes a polypeptide obtainable from bacteriophage RM 378, or an active derivative or fragment thereof, wherein the polypeptide is a 5′-3′ exonuclease, wherein the bacteriophage RM 378 is deposited in Rhodothermus marinus strain ITI 378 infected with bacteriophage RM 378 in the Deutsche Sammlung Von Mikroorganismen und Zelkulturen GmbH (DSMZ), accession number DSM 12831.
3. An isolated nucleic acid molecule of claim 2, wherein the polypeptide is a derivative possessing substantial sequence identity with the endogenous polypeptide.
4. An isolated nucleic acid molecule which encodes a polypeptide that possesses substantial sequence identity with an endogenous polypeptide obtainable from bacteriophage RM 378, wherein the polypeptide is a 5′-3′ exonuclease.
5. A DNA construct comprising an isolated nucleic acid molecule of claim 1, operatively linked to a regulatory sequence.
6. A host cell comprising a DNA construct of claim 5.
7. A DNA construct comprising an isolated nucleic acid molecule of claim 2, operatively linked to a regulatory sequence.
8. A host cell comprising a DNA construct of claim 7.
9. A DNA construct comprising an isolated nucleic acid molecule of claim 4, operatively linked to a regulatory sequence.
10. A host cell comprising a DNA construct of claim 9.
US10/270,846 1999-06-02 2002-10-11 Nucleic acid encoding 5'-3' exonuclease of bacteriophage RM 378 Abandoned US20030129727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/270,846 US20030129727A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding 5'-3' exonuclease of bacteriophage RM 378

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13712099P 1999-06-02 1999-06-02
US09/585,858 US6492161B1 (en) 1999-06-02 2000-06-01 Bacteriophage RM 378 of a thermophilic host organism
US10/270,846 US20030129727A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding 5'-3' exonuclease of bacteriophage RM 378

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/585,858 Division US6492161B1 (en) 1999-06-02 2000-06-01 Bacteriophage RM 378 of a thermophilic host organism

Publications (1)

Publication Number Publication Date
US20030129727A1 true US20030129727A1 (en) 2003-07-10

Family

ID=22475913

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/585,858 Expired - Fee Related US6492161B1 (en) 1999-06-02 2000-06-01 Bacteriophage RM 378 of a thermophilic host organism
US10/270,710 Abandoned US20030092128A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding RNA ligase of bacteriophage RM 378
US10/270,846 Abandoned US20030129727A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding 5'-3' exonuclease of bacteriophage RM 378
US10/270,875 Abandoned US20030082741A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding DNA helicase of bacteriophage RM 378
US10/270,859 Abandoned US20030092134A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding 3'-5' exonuclease of bacteriophage RM 378
US10/270,786 Abandoned US20030087392A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding DNA polymerase of bacteriophage RM 378
US10/270,878 Expired - Lifetime US6818425B2 (en) 1999-06-02 2002-10-11 RNA ligase of bacteriophage RM 378

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/585,858 Expired - Fee Related US6492161B1 (en) 1999-06-02 2000-06-01 Bacteriophage RM 378 of a thermophilic host organism
US10/270,710 Abandoned US20030092128A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding RNA ligase of bacteriophage RM 378

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/270,875 Abandoned US20030082741A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding DNA helicase of bacteriophage RM 378
US10/270,859 Abandoned US20030092134A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding 3'-5' exonuclease of bacteriophage RM 378
US10/270,786 Abandoned US20030087392A1 (en) 1999-06-02 2002-10-11 Nucleic acid encoding DNA polymerase of bacteriophage RM 378
US10/270,878 Expired - Lifetime US6818425B2 (en) 1999-06-02 2002-10-11 RNA ligase of bacteriophage RM 378

Country Status (4)

Country Link
US (7) US6492161B1 (en)
EP (1) EP1185661A2 (en)
AU (1) AU5419500A (en)
WO (1) WO2000075335A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492161B1 (en) * 1999-06-02 2002-12-10 Prokaria Ltd. Bacteriophage RM 378 of a thermophilic host organism
US7257562B2 (en) * 2000-10-13 2007-08-14 Thallion Pharmaceuticals Inc. High throughput method for discovery of gene clusters
DE60320119D1 (en) * 2002-09-20 2008-05-15 Prokaria Ehf Thermostabile ligase aus thermus phage
US20040058330A1 (en) * 2002-09-20 2004-03-25 Prokaria, Ltd. Methods of use for thermostable RNA ligases
US20090246756A1 (en) * 2004-05-06 2009-10-01 Prokaria Ehe Thermostable polypeptide having polynucleotide kinase activity and/or phosphatase activity
US20050282155A1 (en) * 2004-06-17 2005-12-22 Lucigen Corporation Viral libraries from uncultivated viruses and polypeptides produced therefrom
WO2006037102A2 (en) * 2004-09-27 2006-04-06 Epicentre Technologies Methods for identifying polymerase inhibitors
US20100291638A1 (en) * 2005-10-06 2010-11-18 Thomas William Schoenfeld Thermostable dna polymerases and methods of use
JP2009511019A (en) 2005-10-06 2009-03-19 ルシジェン コーポレイション Thermostable viral polymerase and use thereof
CN101356623B (en) * 2006-01-19 2012-05-09 株式会社尼康 Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
KR100777230B1 (en) * 2006-11-30 2007-11-28 한국해양연구원 Mutant dna polymerases and their genes from themococcus
EP2128250A4 (en) 2007-03-07 2011-01-26 Univ Waseda Composition for cleaving and/or connecting single strand dna
EP2318552B1 (en) 2008-09-05 2016-11-23 TOMA Biosciences, Inc. Methods for stratifying and annotating cancer drug treatment options
WO2010141390A2 (en) 2009-06-05 2010-12-09 Life Technologies Corporation Nucleotide transient binding for sequencing methods
MX346956B (en) 2010-09-24 2017-04-06 Univ Leland Stanford Junior Direct capture, amplification and sequencing of target dna using immobilized primers.
EP3567121B1 (en) 2011-01-17 2023-08-30 Life Technologies Corporation Workflow for detection of ligands using nucleic acids
DK3161154T3 (en) 2014-06-27 2020-06-15 Illumina Inc Modified polymerases for improved incorporation of nucleotide analogues
AU2017246593C1 (en) * 2016-04-08 2023-12-21 Phico Therapeutics Ltd Modified bacteriophage
AU2019374098A1 (en) 2018-10-31 2021-01-07 Illumina Singapore Pte. Ltd. Polymerases, compositions, and methods of use
US10704094B1 (en) 2018-11-14 2020-07-07 Element Biosciences, Inc. Multipart reagents having increased avidity for polymerase binding
US10768173B1 (en) 2019-09-06 2020-09-08 Element Biosciences, Inc. Multivalent binding composition for nucleic acid analysis
US10876148B2 (en) 2018-11-14 2020-12-29 Element Biosciences, Inc. De novo surface preparation and uses thereof
KR20210098844A (en) 2018-12-05 2021-08-11 일루미나, 인코포레이티드 Polymerases, compositions, and methods of use
US11287422B2 (en) 2019-09-23 2022-03-29 Element Biosciences, Inc. Multivalent binding composition for nucleic acid analysis
US12077789B2 (en) 2021-08-14 2024-09-03 Illumina, Inc. Polymerases, compositions, and methods of use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436149A (en) 1993-02-19 1995-07-25 Barnes; Wayne M. Thermostable DNA polymerase with enhanced thermostability and enhanced length and efficiency of primer extension
US6492161B1 (en) 1999-06-02 2002-12-10 Prokaria Ltd. Bacteriophage RM 378 of a thermophilic host organism

Also Published As

Publication number Publication date
WO2000075335A2 (en) 2000-12-14
US20030082741A1 (en) 2003-05-01
US20030092128A1 (en) 2003-05-15
AU5419500A (en) 2000-12-28
US20030087392A1 (en) 2003-05-08
US20030092134A1 (en) 2003-05-15
EP1185661A2 (en) 2002-03-13
WO2000075335A3 (en) 2001-09-20
US6492161B1 (en) 2002-12-10
US6818425B2 (en) 2004-11-16
US20030082790A1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
US6492161B1 (en) Bacteriophage RM 378 of a thermophilic host organism
Duplessis et al. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages
Kropinski et al. Salmonella phages and prophages—genomics and practical aspects
Casjens et al. The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy
Byl et al. Sequence of the genome of Salmonella bacteriophage P22
Chandry et al. Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1
AU2013260247B2 (en) A bacteriophage for biocontrol of salmonella and in the manufacturing or processing of foods
Inokuchi et al. Interference with viral infection by defective RNA replicase
Bidnenko et al. Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1
Lucchini et al. The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21
Lucchini et al. The Structural Gene Module inStreptococcus thermophilusBacteriophage φSfi11 Shows a Hierarchy of Relatedness to Siphoviridae from a Wide Range of Bacterial Hosts
BRUTTIN et al. Site-Specific Spontaneous Deletions in Three Genome Regions of a TemperateStreptococcus thermophilusPhage
US20150247127A1 (en) Bacteriophages for use against bacterial infections
Li et al. Characterization and genome sequencing of a novel coliphage isolated from engineered Escherichia coli
Moscoso et al. Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei
Garcia et al. Analysis of the morphogenetic cluster and genome of the temperate Lactobacillus casei bacteriophage A2
AU2007346006B2 (en) Method for the preparation of modified bacteriophages by insertion of random sequences in the targeting proteins of said bacteriophages
KR101601912B1 (en) 14 New bacteriophage Ep14
JP2010512774A5 (en)
Mills et al. Bacteriophage and anti-phage mechanisms in lactic acid bacteria
García-Rodríguez et al. Similar mechanisms of retron-mediated anti-phage defense for different families of tailed phages
Matsuzaki et al. A vibriophage, KVP40, with major capsid protein homologous to gp23* of coliphage T4
CA2311598A1 (en) Dna encoding phage resistance protein
Brøndsted et al. Phages of Lactococcus lactis
Allison et al. Morphology of temperate bacteriophage SfV and characterisation of the DNA packaging and capsid genes: the structural genes evolved from two different phage families

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION