US20030122010A1 - Uniform oscillation system - Google Patents

Uniform oscillation system Download PDF

Info

Publication number
US20030122010A1
US20030122010A1 US10/302,637 US30263702A US2003122010A1 US 20030122010 A1 US20030122010 A1 US 20030122010A1 US 30263702 A US30263702 A US 30263702A US 2003122010 A1 US2003122010 A1 US 2003122010A1
Authority
US
United States
Prior art keywords
crosswind
radial
block
spool
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/302,637
Inventor
Timothy Wiest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penn Fishing Tackle Manufacturing Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/302,637 priority Critical patent/US20030122010A1/en
Assigned to PENN FISHING TACKLE MFG. CO. reassignment PENN FISHING TACKLE MFG. CO. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WIEST, TIMOTHY A.
Publication of US20030122010A1 publication Critical patent/US20030122010A1/en
Priority to US10/973,785 priority patent/US7025295B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K89/00Reels
    • A01K89/01Reels with pick-up, i.e. with the guiding member rotating and the spool not rotating during normal retrieval of the line
    • A01K89/0114Reciprocating mechanisms

Definitions

  • This invention relates to fishing reels and particularly to a method and means of uniformly winding fishing line on to spinning reels.
  • U.S. Pat. No. 5,921,489 discloses a stud with an elliptical-shaped cross-section. In one embodiment, there is in a Z-shaped groove.
  • Italian reference number 694177 Sep. 3, 1965, discloses a Z-shaped groove which has straight sections as well as sharp breaks between sections.
  • U.S. Pat. No. 3,367,597 shows a V-shape in the groove as well as an irregular shape in both the stud and the groove.
  • U.S. Pat. No. 3,119,573 discloses an eccentric system including an eccentric curved captive cam groove or path (see FIG. 2).
  • U.S. Pat. No. 5,513,814 shows a crank pin, eccentrically on a satellite wheel.
  • My invention is an improved uniform oscillation system that has all the benefits of being durable, simple and compact while also producing a line lay that is comparable to more complicated systems. This is accomplished by making improvements to the common crosswind gear and block type system. These modifications allow the block to travel at a more uniform speed throughout the entire oscillation cycle by, among other things, reducing dwell at the ends of the stroke.
  • the common system utilizes a gear (with an off-center round pin), wherein the gear rotates, and the pin pushes the block back and forth to provide the oscillation (see prior art FIG. 1).
  • a gear with an off-center round pin
  • the pin pushes the block back and forth to provide the oscillation (see prior art FIG. 1).
  • FIGS. 2 and 3 I have made the following modifications: first, instead of being round, the pin has a leading edge to reduce dwell at the beginning of each stroke. Second, the pin has a corner to reduce dwell at the end of each stroke. Also, a ramp is incorporated in the block to increase the block speed at the end of each stroke.
  • this new system provides a relatively uniform line lay which is desirable from both cosmetic and performance standpoints, while being very durable, simple and compact. This is explained in more detail in the accompanying Figures.
  • a new fishing reel driven by a handle comprising: a reel frame; a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed; a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle; a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool; a crankshaft connected at one end of said handle for rotation therewith; a drive gear connected to said crankshaft for rotation therewith; a transmission system, for longitudinally reciprocating said spool spindle, including: a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein; a transverse crosswind post fixed to said frame; a crosswind gear rotating about said transverse crosswind post; said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear; a cam
  • FIG. 1 is a schematic layout of the common oscillating spinning reel winding system as known in the prior art
  • FIG. 2 is a schematic layout of an improved uniform winding oscillating system in accordance with the preferred embodiment of my invention
  • FIG. 3 is a schematic blow-up of a portion of the system shown in FIG. 2;
  • FIG. 4 is a perspective view of a portion of the apparatus shown in FIGS. 2 and 3;
  • FIG. 5 is a perspective view of a portion of the structure shown in FIG. 4;
  • FIG. 6 is a perspective view of a portion of the apparatus shown in FIG. 4;
  • FIG. 7 is a plan view of a lobe in accordance with the preferred embodiment of my invention, showing diagrammatically its position on the crosswind gear.
  • FIG. 8 is plan view of a crosswind block.
  • FIGS. 9A through 9F show the interaction of these parts in various time sequences.
  • FIG. 11 is a plot showing the motion of a prior art mechanism and the plot of a theoretically perfect line wrap and the plot of my improved line wrap.
  • FIG. 11 is a schematic plan view of an alternate embodiment of my oscillating system
  • FIG. 12 is a schematic plan view of a different alternate embodiment of my new oscillating system
  • FIG. 13 is a schematic plan view of a further alternate embodiment of my oscillating system.
  • FIG. 14 is a schematic plan view of a further alternate embodiment of my oscillating system.
  • the prior art as shown in FIG. 1, comprises a spool 10 , an oscillating spool shaft 12 , a crosswind block 14 , a rotating crosswind gear 16 and a pin 18 .
  • line 19 is laid on the spool (as shown by the dash line P) in accordance with the prior art, more fishing line is laid at the ends, as shown diagrammatically at numbers 11 and 13 on the spool 10 .
  • the lines L 1 through L 2 shown represent the movement of the crosswind block per the location of the pin 18 .
  • Each of the lines shown in this envelope within the spool represents a portion of the lay of the fishing line per the location of the pin 18 .
  • the shape of the lay of the spool lines is shown at 28 .
  • the oscillating travel of the spool shaft is shown by the double headed arrow T.
  • the movement of the crosswind block 14 is from the position shown in full lines to the position shown in phantom lines and return.
  • FIG. 3 shows the parts schematically; and FIG. 4 shows them in perspective view.
  • a crosswind gear 16 , FIGS. 4 and 5 supports a newly designed pin in the shape of a lobe means 32 which operates in cooperation with a newly designed crosswind block 34 .
  • the lines and arrows in FIG. 3 show moving stages.
  • the ramp 36 speeds up block travel at the end of the stroke because the corner 38 of the lobe 32 rides up the ramp 36 .
  • the corner speeds up block travel at the end of the stroke because the geometry of the lobe 32 rotates as the gear 16 itself rotates.
  • the leading edge speeds up block travel at the beginning of the stroke, because the geometry of lobe 32 rotates as the gear 16 itself rotates.
  • FIG. 9 a represents a schematic of the device at a starting position.
  • FIG. 9 b shows the device at the end of a first segment.
  • FIG. 9 c shows the apparatus at the end of a second segment.
  • FIG. 9 d shows the apparatus at the end of a third segment.
  • FIG. 9 e shows the apparatus at the end of a fourth segment.
  • FIG. 9 f shows the apparatus at the end of its cycle.
  • FIG. 9 shows the mechanism in positions that are transition points between different formulas that describe the motion of the mechanism.
  • the equations that describe the motion were entered into a Microsoft ExcelTM spreadsheet, and the results plotted for one rotation of the crosswind gear. For reference, a plot showing the motion of a prior art mechanism and a plot of a theoretically perfect line wrap has been plotted over the spreadsheet results as shown in FIG. 10.
  • the axial position of the spool is determined by the position of the crosswind block relative to the crosswind gear.
  • a cam lobe means on its upper surface contacts a uniquely shaped slot in the underside of the crosswind block.
  • 360 degrees of rotation of the gear will move the spool through a complete oscillation sequence, but symmetry of the crosswind block requires analysis of only the first 180 degrees of rotation. Displacements for the second 180 degrees of rotation are equal in magnitude, but opposite in direction to those of the first 180 degrees. It is theorized that five formulas may be used to describe the parameters of the oscillation system in accordance with my invention.
  • Formulas defining this motion are:
  • Second Segment The second segment of motion is for contact of the second radial surface of the cam lobe means with said second wall surface of the block.
  • Formulas defining this motion are:
  • ⁇ seg2 90 +A tan
  • the third segment of motion is for contact of the third radial surface of the cam lobe means with the second wall surface of the block.
  • the fourth segment of motion is for contact of the third radial surface of the cam lobe means with said first wall surface of the block.
  • Last Segment The final segment of motion is for positions starting at the point where the third radial surface just makes contact with the beginning of the first wall surface of the block to the point at which the crosswind gear has rotated 180 degrees.
  • my invention provides a new fishing reel driven by a handle comprising: a reel frame; a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed; a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle; a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool; a crankshaft connected at one end of said handle for rotation therewith; a drive gear connected to said crankshaft for rotation therewith; a transmission system, for longitudinally reciprocating said spool spindle, including: a transverse block connected said spool spindle to translate therewith; said transverse block having a guide slot therein; a transverse crosswind post fixed to said frame; a crosswind gear rotating about said transverse crosswind post; said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of
  • FIGS. 11 through 14 I have shown alternate and less desirable forms of my invention. These forms incorporate one or more of the features of my invention, but do not incorporate others. Accordingly, they provide a less uniform wind.
  • the device will produce a somewhat uniform oscillation, but because of the large difference between the distances “A” and “B” (as illustrated), excessive clearance between the lobe and crosswind block slot will occur at various degrees of the gear rotation. With one side of the lobe flat, the second radial surface is no longer there to make up the space. This causes a jerky movement, a slightly less uniform distribution of line, and excessive spool play longitudinally.
  • the lobe is reconfigured so it does not have a corner to speed up the block travel at the end of the stroke. Therefore, at least 90 degrees of rotation would have no more effect than just a round pin. Thus, this will produce not as uniform a distribution of line as would be the case if my preferred embodiment was used.
  • a crosswind block has been modified so that it does not have a ramp therein to speed up the block travel at the end of the stroke.
  • we get a little extra travel because of the ramp action.
  • the crosswind block has been modified so that it does not have a ramp therein.
  • the lobe has been modified so it does not have a corner on the lobe to speed up travel at the end of the stroke.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)

Abstract

A spinning reel has a level wind system wherein a slot is formed in the crosswind block. A lobe is carried on a crosswind gear. The surfaces of the lobe interact with the surfaces in the block. There are three curved surfaces on the lobe and four working surfaces in the block.

Description

    UNIFORM OSCILLATION SYSTEM
  • This application is a continuation-in-part of my prior co-pending provisional patent application, Serial No. 60/343441, filed Dec. 31, 2001, and incorporates that application herein as if fully set forth.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field [0002]
  • This invention relates to fishing reels and particularly to a method and means of uniformly winding fishing line on to spinning reels. [0003]
  • 2. Description of the Art [0004]
  • All spinning reels require some form of spool oscillation system that enables the spool to move back and forth as fishing line is being retrieved. Without this oscillation, the line would accumulate on the spool very unevenly. This is cosmetically and functionally undesirable. Performance problems resulting from uneven line lay are: (1) casting distance is adversely affected and (2) drag release (while fighting a fish) will not be as smooth. A uniform oscillation system allows the line to be laid flat on the spool and, as a result, corrects these problems. [0005]
  • In addition to producing uniform line lay, a good oscillation system should be durable (for reliability), simple (for low cost) and compact (to keep the reel small). Currently, there is no system which [suitably, appropriately, sufficiently, satisfactorily, adequately, in a prudent or sensible manner, in a favorable manner, thoroughly, clearly, appropriate manner] meets all of these criteria. Generally, there are two types of systems in use. The first, a crosswind gear and block type, is durable, simple and compact. However, the line lay is only somewhat uniform, and not flat across the length of the spool. The second, the worm type, does give a flat line lay, but it is not durable and simple because there are more parts in the mechanism. [0006]
  • In the prior art, U.S. Pat. Nos. 6,170,773, 5,012,990 and 6,000,653 show elliptical grooves. [0007]
  • U.S. Pat. No. 5,921,489 discloses a stud with an elliptical-shaped cross-section. In one embodiment, there is in a Z-shaped groove. [0008]
  • Italian reference number 694177, Sep. 3, 1965, discloses a Z-shaped groove which has straight sections as well as sharp breaks between sections. [0009]
  • A number of references show S-shaped grooves, such as U.S. Pat. Nos. 5,350,131 and 6,264,125. The latter has one straight leg in the groove as well as curved sections. [0010]
  • U.S. Pat. No. 3,367,597 shows a V-shape in the groove as well as an irregular shape in both the stud and the groove. [0011]
  • U.S. Pat. Nos. 2,990,130 and 3,055,607 disclose planetary gear systems with rounded gear teeth. [0012]
  • U.S. Pat. No. 3,119,573 discloses an eccentric system including an eccentric curved captive cam groove or path (see FIG. 2). [0013]
  • U.S. Pat. No. 5,513,814 shows a crank pin, eccentrically on a satellite wheel. [0014]
  • U.S. Pat. Nos. 3,948,465, 4,196,869 and Japanese reference 154543 (1994) all show straight grooves with studs having circular cross-sections. [0015]
  • U.S. Pat. Nos. 5,678,780, 5,941,470, 5,934,586, 4,618,107, 4,865,262 and 3,436,033 all show worm or helix gears with sliders, that is, eccentric crank pins engaging them. [0016]
  • DISCLOSURE OF THE INVENTION Summary of the Invention
  • My invention is an improved uniform oscillation system that has all the benefits of being durable, simple and compact while also producing a line lay that is comparable to more complicated systems. This is accomplished by making improvements to the common crosswind gear and block type system. These modifications allow the block to travel at a more uniform speed throughout the entire oscillation cycle by, among other things, reducing dwell at the ends of the stroke. [0017]
  • The common system utilizes a gear (with an off-center round pin), wherein the gear rotates, and the pin pushes the block back and forth to provide the oscillation (see prior art FIG. 1). As can be seen from FIGS. 2 and 3, I have made the following modifications: first, instead of being round, the pin has a leading edge to reduce dwell at the beginning of each stroke. Second, the pin has a corner to reduce dwell at the end of each stroke. Also, a ramp is incorporated in the block to increase the block speed at the end of each stroke. As a result, this new system provides a relatively uniform line lay which is desirable from both cosmetic and performance standpoints, while being very durable, simple and compact. This is explained in more detail in the accompanying Figures. [0018]
  • I have provided a new fishing reel driven by a handle comprising: a reel frame; a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed; a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle; a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool; a crankshaft connected at one end of said handle for rotation therewith; a drive gear connected to said crankshaft for rotation therewith; a transmission system, for longitudinally reciprocating said spool spindle, including: a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein; a transverse crosswind post fixed to said frame; a crosswind gear rotating about said transverse crosswind post; said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear; a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear; said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising: said block having walls forming said guide slot, comprising at least four surfaces; a first surface, a second surface at an angle to said first surface, a third surface, a fourth surface at an angle to said third surface; said first and third surfaces being substantially parallel to one another and said second and fourth surfaces being substantially parallel to one another; said cam stud means further comprising cam lobe means having at least three contiguous working surfaces; comprising a first radial surface; a second radial surface of a larger radius than said first radial surface; and a third radial surface following the second surface for engagement with the surfaces of said slot.[0019]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic layout of the common oscillating spinning reel winding system as known in the prior art; [0020]
  • FIG. 2 is a schematic layout of an improved uniform winding oscillating system in accordance with the preferred embodiment of my invention; [0021]
  • FIG. 3 is a schematic blow-up of a portion of the system shown in FIG. 2; [0022]
  • FIG. 4 is a perspective view of a portion of the apparatus shown in FIGS. 2 and 3; [0023]
  • FIG. 5 is a perspective view of a portion of the structure shown in FIG. 4; [0024]
  • FIG. 6 is a perspective view of a portion of the apparatus shown in FIG. 4; [0025]
  • FIG. 7 is a plan view of a lobe in accordance with the preferred embodiment of my invention, showing diagrammatically its position on the crosswind gear. [0026]
  • FIG. 8 is plan view of a crosswind block. [0027]
  • FIGS. 9A through 9F show the interaction of these parts in various time sequences. [0028]
  • FIG. 11 is a plot showing the motion of a prior art mechanism and the plot of a theoretically perfect line wrap and the plot of my improved line wrap. [0029]
  • FIG. 11 is a schematic plan view of an alternate embodiment of my oscillating system; [0030]
  • FIG. 12 is a schematic plan view of a different alternate embodiment of my new oscillating system; [0031]
  • FIG. 13 is a schematic plan view of a further alternate embodiment of my oscillating system; and [0032]
  • FIG. 14 is a schematic plan view of a further alternate embodiment of my oscillating system. [0033]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The prior art, as shown in FIG. 1, comprises a [0034] spool 10, an oscillating spool shaft 12, a crosswind block 14, a rotating crosswind gear 16 and a pin 18. As line 19 is laid on the spool (as shown by the dash line P) in accordance with the prior art, more fishing line is laid at the ends, as shown diagrammatically at numbers 11 and 13 on the spool 10. The lines L1 through L2 shown represent the movement of the crosswind block per the location of the pin 18. Each of the lines shown in this envelope within the spool represents a portion of the lay of the fishing line per the location of the pin 18. The shape of the lay of the spool lines is shown at 28. The oscillating travel of the spool shaft is shown by the double headed arrow T. The movement of the crosswind block 14 is from the position shown in full lines to the position shown in phantom lines and return.
  • In accordance with my new uniform oscillation system, as shown in FIG. 2, the shape S of the profile of the lay of the line on the spool [0035] 30 is substantially uniform. Note that ideally the same amount of line is laid at the ends of the spool as there is in the center. This is made possible by the improved mechanical pieces shown in FIGS. 3 through 6. FIG. 3 shows the parts schematically; and FIG. 4 shows them in perspective view. A crosswind gear 16, FIGS. 4 and 5, supports a newly designed pin in the shape of a lobe means 32 which operates in cooperation with a newly designed crosswind block 34. The lines and arrows in FIG. 3 show moving stages. There are various advantages to the geometry of this newly designed lobe rotating during the gear rotation. In particular, the ramp 36 speeds up block travel at the end of the stroke because the corner 38 of the lobe 32 rides up the ramp 36.
  • The corner speeds up block travel at the end of the stroke because the geometry of the [0036] lobe 32 rotates as the gear 16 itself rotates. The leading edge speeds up block travel at the beginning of the stroke, because the geometry of lobe 32 rotates as the gear 16 itself rotates.
  • Any one of these features will help with uniform oscillation; all three features produce the most uniform oscillation in accordance with the preferred embodiment of my invention. These features produce uniform oscillation in the horizontal direction by the gear rotating and the geometry of the [0037] lobe 32 rotating during the gear rotation.
  • The lobe and its position on the crosswind gear are shown in greater detail in FIG. 7; in which the values of the letters are as follows: [0038]
  • R−S=0.2285 [0039]
  • X−S=−0.1954 [0040]
  • Y−S=−0.1134 [0041]
  • R−T=0.0189 [0042]
  • X−T=−0.3717 [0043]
  • R−H=−0.0135 [0044]
  • X−H=−0.2259 [0045]
  • Y−H=0994 [0046]
  • The [0047] crosswind block 16 is shown in greater detail in FIG. 8, wherein F−S=0.1002 and F−H=0.0100.
  • The interaction of these parts is shown in various time sequences in FIGS. 9[0048] a through 9 f. FIG. 9a represents a schematic of the device at a starting position. FIG. 9b shows the device at the end of a first segment. FIG. 9c shows the apparatus at the end of a second segment. FIG. 9d shows the apparatus at the end of a third segment. FIG. 9e shows the apparatus at the end of a fourth segment. FIG. 9f shows the apparatus at the end of its cycle.
  • The following equations and explanations describe the motion of the spool oscillation mechanism with reference to these figures. Formulas are in terms of variables. Values of these variables for a specific example of a product are shown. FIG. 9 shows the mechanism in positions that are transition points between different formulas that describe the motion of the mechanism. The equations that describe the motion were entered into a Microsoft Excel™ spreadsheet, and the results plotted for one rotation of the crosswind gear. For reference, a plot showing the motion of a prior art mechanism and a plot of a theoretically perfect line wrap has been plotted over the spreadsheet results as shown in FIG. 10. [0049]
  • The following is an analysis of my new spool oscillation system. [0050]
  • The axial position of the spool is determined by the position of the crosswind block relative to the crosswind gear. As the crosswind gear rotates, a cam lobe means on its upper surface contacts a uniquely shaped slot in the underside of the crosswind block. 360 degrees of rotation of the gear will move the spool through a complete oscillation sequence, but symmetry of the crosswind block requires analysis of only the first 180 degrees of rotation. Displacements for the second 180 degrees of rotation are equal in magnitude, but opposite in direction to those of the first 180 degrees. It is theorized that five formulas may be used to describe the parameters of the oscillation system in accordance with my invention. [0051]
  • The five formulas describing the position of the block relative to the gear have been generated for the first 180 degrees of gear rotation. Each formula is valid only for a defined segment of the motion. [0052]
  • First Segment. The first segment of motion is for contact of a first radial surface with a second wall surface forming the guide slot in said block. This contact will take place from Φ=0° to a position where the centers of the first radial surface and a second radial surface are aligned along a line that is perpendicular to said second wall surface of said block. Formulas defining this motion are: [0053]
  • For Φ=0° to Φ=Φseq1[0054]
  • X=X H cos(−Φ)−Y H sin(−Φ)+R H
  • Φseq1=90+A tan|(X H −X S)/(Y H −Y S)|
  • Second Segment. The second segment of motion is for contact of the second radial surface of the cam lobe means with said second wall surface of the block. The range of this segment is from Φ=Φseq1 to a position where a line drawn between centers of the radii of the second and third radial surfaces are aligned along a line that is perpendicular to the second wall surface of the block. Formulas defining this motion are: [0055]
  • For Φ=Φseq1 to Φ=Φseq2[0056]
  • X=X S cos(−Φ)−Y S sin(−Φ)+R S
  • Φseg2=90+A tan|(X T −X S)/Y S|
  • Third Segment. The third segment of motion is for contact of the third radial surface of the cam lobe means with the second wall surface of the block. The range of this segment is from Φ=Φseq2 to a point where the third radial surface first contacts a first wall surface of the slot of said block. [0057]
  • For Φ=Φseq2 to Φ=Φseq3[0058]
  • X=X T cos(−Φ)+R T
  • Φseg3=180−|(F S +R T tan(A tan(F H /F S)/2))/X T|
  • Fourth Segment. The fourth segment of motion is for contact of the third radial surface of the cam lobe means with said first wall surface of the block. The range of this segment is from Φ=Φseq3 to a point where the third radial surface of the cam lobe means contacts the beginning of the first wall surface of the block. [0059]
  • For Φ=Φseq3 to Φ=Φseq4 [0060] X = cos ( 180 - Φ ) X T + cos ( A tan ( F H / F S ) ) R T + F H F S ( F S - sin ( 180 - Φ ) X T + R T sin ( A tan ( F H F S ) ) ) Φ seg4 = 180 - A sin [ sin ( A tan ( F H F S ) ) R T X T ]
    Figure US20030122010A1-20030703-M00001
  • Last Segment. The final segment of motion is for positions starting at the point where the third radial surface just makes contact with the beginning of the first wall surface of the block to the point at which the crosswind gear has rotated 180 degrees. [0061]
  • For Φ=Φseq4 to Φ180° [0062] X = cos ( 180 - Φ ) X T + cos [ A sin ( sin ( 180 - Φ ) X T R T ) ] R T + F H
    Figure US20030122010A1-20030703-M00002
  • From this analysis, it will be noted that my invention provides a new fishing reel driven by a handle comprising: a reel frame; a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed; a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle; a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool; a crankshaft connected at one end of said handle for rotation therewith; a drive gear connected to said crankshaft for rotation therewith; a transmission system, for longitudinally reciprocating said spool spindle, including: a transverse block connected said spool spindle to translate therewith; said transverse block having a guide slot therein; a transverse crosswind post fixed to said frame; a crosswind gear rotating about said transverse crosswind post; said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear; a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear; said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising: said block having walls forming said guide slot, comprising at least four surfaces; a first surface, a second surface at an angle to said first surface, a third surface, a fourth surface at an angle to said third surface; said first and third surfaces being substantially parallel to one another and said second and fourth surfaces being substantially parallel to one another; said cam stud means further comprising cam lobe means having at least three contiguous working surfaces; comprising a first radial surface; a second radial surface of a larger radius than said first radial surface; and a third radial surface following the second surface for engagement with the surfaces of said slot. [0063]
  • In FIGS. 11 through 14, I have shown alternate and less desirable forms of my invention. These forms incorporate one or more of the features of my invention, but do not incorporate others. Accordingly, they provide a less uniform wind. [0064]
  • In the alternate embodiment shown in FIG. 11, the device will produce a somewhat uniform oscillation, but because of the large difference between the distances “A” and “B” (as illustrated), excessive clearance between the lobe and crosswind block slot will occur at various degrees of the gear rotation. With one side of the lobe flat, the second radial surface is no longer there to make up the space. This causes a jerky movement, a slightly less uniform distribution of line, and excessive spool play longitudinally. [0065]
  • In the second alternate embodiment shown in FIG. 12, the lobe is reconfigured so it does not have a corner to speed up the block travel at the end of the stroke. Therefore, at least 90 degrees of rotation would have no more effect than just a round pin. Thus, this will produce not as uniform a distribution of line as would be the case if my preferred embodiment was used. [0066]
  • In the third alternate embodiment shown in FIG. 13, a crosswind block has been modified so that it does not have a ramp therein to speed up the block travel at the end of the stroke. In my preferred embodiment, we get a little extra travel because of the ramp action. Here, there is no ramp and thus that extra channel is missing. Therefore, one would not get as flat a line wrap. [0067]
  • In the fourth alternate embodiment shown in FIG. 14, the crosswind block has been modified so that it does not have a ramp therein. The lobe has been modified so it does not have a corner on the lobe to speed up travel at the end of the stroke. [0068]

Claims (38)

What is claimed is:
1. A fishing reel driven by a handle comprising:
a reel frame;
a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed;
a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle;
a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool;
a crankshaft connected at one end of said handle for rotation therewith;
a drive gear connected to said crankshaft for rotation therewith;
a transmission system, for longitudinally reciprocating said spool spindle, including:
a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein;
a transverse crosswind post fixed to said frame;
a crosswind gear rotating about said transverse crosswind post;
said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear;
a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear;
said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising:
said block having walls forming said guide slot, comprising at least four surfaces; a first surface, a second surface at an angle to said first surface, a third surface, a fourth surface at an angle to said third surface; said first and third surfaces being substantially parallel to one another and said second and fourth surfaces being substantially parallel to one another;
said cam stud means further comprising cam lobe means having at least three contiguous working surfaces; comprising a first radial surface; a second radial surface of a larger radius than said first radial surface; and a third radial surface following the second surface for engagement with the surfaces of said slot.
2. The reel of claim 1 wherein the third radial surface of the lobe means has a larger radius than that of the first radial surface of the lobe means.
3. The reel of claim 1 wherein said angle between said first and second surfaces of said guide slot is obtuse.
4. The reel of claim 1 wherein said angle between said third and fourth surfaces of said guide slot is obtuse.
5. The reel of claim 1 wherein the engagement between the cam lobe means and the wall surfaces of the block occurs along five segments of motion over 180 degrees of travel of said cam lobe means about the axis of rotation of the crosswind gear post.
6. The reel of claim 5 wherein the first radial surface of said cam lobe means engages said second wall surface of said guide slot at the beginning of a first segment of motion from a starting position to a position wherein the radial centers of the first and second radial surfaces are aligned along the line which is perpendicular to said second wall surface.
7. The reel of claim 5 wherein the first radial surface of said cam lobe means engages said second wall surface of said guide slot from a starting position at the beginning of a first segment of motion to a position wherein the second radial surface first engages the second wall surface.
8. The reel of claim 5 wherein the second radial surface of said cam lobe means engages said second wall surface of said guide slot at the beginning of a second segment of motion from a starting position wherein the radial centers of the first and second radial surfaces are aligned along the line which is perpendicular to said second wall surface, to a position wherein the radial centers of the second and third radial surfaces are aligned along the line which is perpendicular to said second wall surface.
9. The reel of claim 5 wherein the second radial surface of said cam lobe means engages said second wall surface of said guide slot at the beginning of a second segment of motion from a starting position wherein the second radial surface first engages the second wall surface to a position wherein the third radial surface contacts the second wall surface.
10. The reel of claim 5 wherein the third radial surface engages the second wall surface of said guide slot for a third segment of motion from the point where the third radius first contacts the second wall surface of the guide slot to a point where it first contacts the first wall surface of the guide slot.
11. The reel of claim 5 wherein the third radial surface contacts the first wall surface of said guide slot for a fourth segment of motion from the point where it first engages said wall surface to a point where it first engages the end of said wall surface.
12. The reel of claim 5 wherein the third radial surface contacts the first wall surface of said guide slot for a fifth segment of motion from the point where it first engages the end of said wall surface to a point where it disengages from the end of said wall surface.
13. The reel of claim 6 wherein this engagement will take place from Φ=0° to a position where the centers of the first radial surface and a second radial surface are aligned along a line that is perpendicular to said second wall surface of said block; the formulas defining this motion are:
For Φ=0° to Φ=Φseq1
X=X H cos(−Φ)−Y H sin(−Φ)+R HΦseg1=90+A tan|(X T −X S)/(Y T −Y S)|
14. The reel of claim 8 wherein this engagement is from Φ=Φseq1 to a position where a line drawn between centers of the radii of the second and third radial surfaces are aligned along a line that is perpendicular to the second wall surface of the block; the formulas defining this motion are:
For Φ=Φseq1 to Φ=Φseq2
X=X S cos(−Φ)−Y S sin(−Φ)+R SΦseg2=90+A tan|(X T −X S)/Y S|
15. The reel of claim 10 wherein this engagement is from Φ=Φseq2 to a point where the third radial surface first contacts a first wall surface of the slot of said block; The formulas defining this motion are:
For Φ=Φseq2 to Φ=Φseq3
X=X T cos(−Φ)+R TΦseg3=180−|(F S +R T tan(A tan(F H /F S)/2))/X T|
16. The reel of claim 11 wherein this engagement is from Φ=Φseq3 to a point where the third radial surface of the cam lobe means contacts the beginning of the first wall surface of the block; the formulas defining this motion are:
For Φ=Φseq3 to Φ=Φseq4
X = cos ( 180 - Φ ) X T + cos ( A tan ( F H / F S ) ) R T + F H F S ( F S - sin ( 180 - Φ ) X T + R T sin ( A tan ( F H F S ) ) ) Φ seg4 = 180 - A sin [ sin ( A tan ( F H F S ) ) R T X T ]
Figure US20030122010A1-20030703-M00003
17. The reel of claim 12 wherein this engagement is from the point where the third radial surface just makes contact with the beginning of the first wall surface of the block to the point at which the crosswind gear has rotated 180 degrees; the formulas defining this motion are:
For Φ=Φseq4 to Φ=180°
X = cos ( 180 - Φ ) X T + cos [ A sin ( sin ( 180 - Φ ) X T R T ) ] R T + F H
Figure US20030122010A1-20030703-M00004
18. A method of winding a line on a fishing reel driven by a handle, said fishing reel comprising:
a reel frame;
a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed;
a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle;
a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool;
a crankshaft connected at one end of said handle for rotation therewith; and
a drive gear connected to said crankshaft for rotation therewith; and
a transmission system, for longitudinally reciprocating said spool spindle, including:
a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein;
a transverse crosswind post fixed to said frame;
a crosswind gear rotating about said transverse crosswind post;
said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear;
said method comprising: providing
a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear;
said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis; said block having walls forming said guide slot, comprising at least four surfaces; a first surface, a second surface at an angle to said first surface, a third surface, a fourth surface at an angle to said third surface; said first and third surfaces being substantially parallel to one another and said second and fourth surfaces being substantially parallel to one another;
said cam stud means further comprising cam lobe means having at least three contiguous working surfaces; comprising a first radial surface; a second radial surface of a larger radius than said first radial surface; and a third radial surface following the second surface for engagement with the surfaces of said slot.
19. The method of claim 18 wherein the third radial surface of the lobe means has a larger radius than that of the first radial surface of the lobe means.
20. The method of claim 18 wherein said angle between said first and second surfaces of said guide slot is obtuse.
21. The method of claim 18 wherein said angle between said third and fourth surfaces of said guide slot is obtuse.
22. The method of claim 18 wherein the engagement between the cam lobe means and the wall surfaces of the block occurs along five segments of motion over 180 degrees of travel of said cam lobe means about the axis of rotation of the crosswind gear post.
23. The method of claim 22 wherein the first radial surface of said cam lobe means engages said second wall surface of said guide slot at the beginning of a first segment of motion from a starting position to a position wherein the radial centers of the first and second radial surfaces are aligned along the line which is perpendicular to said second wall surface.
24. The method of claim 22 wherein the first radial surface of said cam lobe means engages said second wall surface of said guide slot from a starting position at the beginning of a first segment of motion to a position wherein the second radial surface first engages the second wall surface.
25. The method of claim 22 wherein the second radial surface of said cam lobe means engages said second wall surface of said guide slot at the beginning of a second segment of motion from a starting position wherein the radial centers of the first and second radial surfaces are aligned along the line which is perpendicular to said second wall surface, to a position wherein the radial centers of the second and third radial surfaces are aligned along the line which is perpendicular to said second wall surface.
26. The method of claim 22 wherein the second radial surface of said cam lobe means engages said second wall surface of said guide slot at the beginning of a second segment of motion from a starting position wherein the second radial surface first engages the second wall surface to a position wherein the third radial surface contacts the second wall surface.
27. The method of claim 22 wherein the third radial surface engages the second wall surface of said guide slot for a third segment of motion from the point where the third radius first contacts the second wall surface of the guide slot to a point where it first contacts the first wall surface of the guide slot.
28. The method of claim 22 wherein the third radial surface contacts the first wall surface of said guide slot for a fourth segment of motion from the point where it first engages said wall surface to a point where it first engages the end of said wall surface.
29. The method of claim 22 wherein the third radial surface contacts the first wall surface of said guide slot for a fifth segment of motion from the point where it first engages the end of said wall surface to a point where it disengages from the end of said wall surface.
30. The method of claim 23 wherein this engagement will take place from Φ=0° to a position where the centers of the first radial surface and a second radial surface are aligned along a line that is perpendicular to said second wall surface of said block; the formulas defining this motion are:
For Φ=0° to Φ=Φseq1
X=X H cos(−Φ)−Y H sin(−Φ)+R HΦseg1=90+A tan|(X H −X S)/(Y H −Y S)|
31. The method of claim 25 wherein this engagement is from Φ=Φseq1 to a position where a line drawn between centers of the radii of the second and third radial surfaces are aligned along a line that is perpendicular to the second wall surface of the block; the formulas defining this motion are:
For Φ=Φseq1 to Φ=Φseq2
X=X S cos(−Φ)−Y S sin(−Φ)+R SΦseg2=90+A tan|(X T −X S)/Y S|
32. The method of claim 27 wherein this engagement is from Φ=Φseq2 to a point where the third radial surface first contacts a first wall surface of the slot of said block; the formulas defining this motion are:
For Φ=Φseq2 to Φ=Φseq3
X=X T cos(−Φ)+R TΦseg3=180−|(F S +R T tan(A tan(F H /F S)/2))/X T|
33. The method of claim 28 wherein this engagement is from Φ=Φseq3 to a point where the third radial surface of the cam lobe means contacts the beginning of the first wall surface of the block; the formulas defining this motion are:
For Φ=Φseq3 to Φ=Φseq4
X = cos ( 180 - Φ ) X T + cos ( A tan ( F H / F S ) ) R T + F H F S ( F S - sin ( 180 - Φ ) X T + R T sin ( A tan ( F H F S ) ) ) Φ seg4 = 180 - A sin [ sin ( A tan ( F H F S ) ) R T X T ]
Figure US20030122010A1-20030703-M00005
34. The method of claim 29 wherein this engagement is from the point where the third radial surface just makes contact with the beginning of the first wall surface of the block to the point at which the crosswind gear has rotated 180 degrees; the formulas defining this motion are:
For Φ=Φseq4 to Φ=180°
X = cos ( 180 - Φ ) X T + cos [ A sin ( sin ( 180 - Φ ) X T R T ) ] R T + F H
Figure US20030122010A1-20030703-M00006
35. A fishing reel driven by a handle comprising:
a reel frame;
a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed;
a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle;
a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool;
a crankshaft connected at one end of said handle for rotation therewith;
a drive gear connected to said crankshaft for rotation therewith;
a transmission system, for longitudinally reciprocating said spool spindle, including:
a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein;
a transverse crosswind post fixed to said frame;
a crosswind gear rotating about said transverse crosswind post;
said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear;
a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear;
said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising:
said block having walls forming said guide slot, comprising at least four surfaces; a first surface, a second surface at an angle to said first surface, a third surface, a fourth surface at an angle to said third surface; said first and third surfaces being substantially parallel to one another and said second and fourth surfaces being substantially parallel to one another;
said cam stud means further comprising cam lobe means having at least three contiguous working surfaces; comprising a first radial surface; a second surface larger than said first radial surface; and a third radial surface following the second surface for engagement with the surfaces of said slot.
36. A fishing reel driven by a handle comprising:
a reel frame;
a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed;
a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle;
a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool;
a crankshaft connected at one end of said handle for rotation therewith;
a drive gear connected to said crankshaft for rotation therewith;
a transmission system, for longitudinally reciprocating said spool spindle, including:
a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein;
a transverse crosswind post fixed to said frame;
a crosswind gear rotating about said transverse crosswind post;
said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear;
a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear;
said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising:
said block having walls forming said guide slot, comprising at least four surfaces; a first surface, a second surface at an angle to said first surface, a third surface, a fourth surface at an angle to said third surface; said first and third surfaces being substantially parallel to one another and said second and fourth surfaces being substantially parallel to one another;
said cam stud means further comprising cam lobe means having at least three contiguous surfaces; comprising a radial surface; a second surface at an angle to said radial surface; and a third surface at an angle to and following the second surface.
37. A fishing reel driven by a handle comprising:
a reel frame;
a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed;
a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle;
a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool;
a crankshaft connected at one end of said handle for rotation therewith;
a drive gear connected to said crankshaft for rotation therewith;
a transmission system, for longitudinally reciprocating said spool spindle, including:
a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein;
a transverse crosswind post fixed to said frame;
a crosswind gear rotating about said transverse crosswind post;
said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear;
a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear;
said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising:
said block having walls forming said guide slot, comprising at least two working surfaces; a first surface; and a second surface being substantially parallel to said first surface;
said cam stud means further comprising cam lobe means having at least three contiguous working surfaces; comprising a first radial surface; a second radial surface of a larger radius than said first radial surface; and a third radial surface following the second surface for engagement with the surfaces of said slot.
38. A fishing reel driven by a handle comprising:
a reel frame;
a spool spindle reciprocated longitudinally in said reel frame between two positions at which the direction of motion of said spool spindle is reversed;
a fixed spool, mounted at an end of said spool spindle and coaxially with said spool spindle;
a rotary line recovery device mounted coaxially with said spool for guiding fishing line onto said spool;
a crankshaft connected at one end of said handle for rotation therewith;
a drive gear connected to said crankshaft for rotation therewith;
a transmission system, for longitudinally reciprocating said spool spindle, including:
a transverse block connected to said spool spindle to translate therewith; said transverse block having a guide slot therein;
a transverse crosswind post fixed to said frame;
a crosswind gear rotating about said transverse crosswind post;
said drive gear engaging said crosswind gear for rotating said crosswind gear upon rotation of said drive gear;
a cam stud means eccentrically mounted on the crosswind gear to rotate in a circular path about the axis of rotation of said crosswind gear;
said cam stud means positioned within said guide slot and engaging said block to displace said block and move the spool spindle in the direction parallel to the longitudinal axis, the improvement comprising:
said block having walls forming said guide slot, comprising at least two working surfaces; a first surface, and a second surface being substantially parallel to said first surface;
said cam stud means further comprising cam lobe means having at least two contiguous surfaces; comprising a radial surface; a second surface at an angle to and following the second surface.
US10/302,637 2001-12-31 2002-11-21 Uniform oscillation system Abandoned US20030122010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/302,637 US20030122010A1 (en) 2001-12-31 2002-11-21 Uniform oscillation system
US10/973,785 US7025295B2 (en) 2001-12-31 2004-10-25 Fishing reel with uniform oscillation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34344101P 2001-12-31 2001-12-31
US10/302,637 US20030122010A1 (en) 2001-12-31 2002-11-21 Uniform oscillation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/973,785 Continuation US7025295B2 (en) 2001-12-31 2004-10-25 Fishing reel with uniform oscillation system

Publications (1)

Publication Number Publication Date
US20030122010A1 true US20030122010A1 (en) 2003-07-03

Family

ID=26973032

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/302,637 Abandoned US20030122010A1 (en) 2001-12-31 2002-11-21 Uniform oscillation system
US10/973,785 Expired - Fee Related US7025295B2 (en) 2001-12-31 2004-10-25 Fishing reel with uniform oscillation system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/973,785 Expired - Fee Related US7025295B2 (en) 2001-12-31 2004-10-25 Fishing reel with uniform oscillation system

Country Status (1)

Country Link
US (2) US20030122010A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029425A1 (en) * 2005-07-25 2007-02-08 Young John N Fishing reel oscillation
CN103004714A (en) * 2012-11-30 2013-04-03 宁波海宝渔具有限公司 Spinning wheel type fishing line reel with novel reciprocating mechanism for fishing
US20160345561A1 (en) * 2015-05-29 2016-12-01 Shimano Inc. Reciprocating mechanism for a fishing reel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300010B2 (en) * 2005-11-01 2007-11-27 Young John N Spool oscillation
US7341215B2 (en) * 2006-04-20 2008-03-11 Penn Fishing Tackle Mfg. Co. Fishing reel having a one-piece side plate and bridge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US562086A (en) * 1896-06-16 Mechanical movement
US5350131A (en) * 1990-11-10 1994-09-27 D.A.M. Deutsche Angelgerate Manufaktur Hellmuth Kuntze Gmbh & Co. Kg Fishing reels with a spool receiving the fishing line
US5921489A (en) * 1996-09-09 1999-07-13 Daiwa Seiko, Inc. Oscillate mechanism for a fishing spinning reel
US6394379B1 (en) * 2000-05-16 2002-05-28 Pure Fishing, Inc. Spinning reel with uniform velocity spool
US6655620B2 (en) * 2000-09-18 2003-12-02 Shimano Inc. Spinning-reel oscillating mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2528386A (en) * 1949-07-15 1950-10-31 Mannie I Napper Mechanical movement for the conversion of reciprocating and rotary motion
FR2705865B1 (en) * 1993-06-03 1995-07-21 Mitchell Sports Fishing reel with offset storage of the thread.
US6000653A (en) * 1996-01-31 1999-12-14 Ryobi Limited Spinning reel
US6264125B1 (en) * 1999-12-09 2001-07-24 Brunswick Corporation Asymmetric oscillation mechanism for a spinning reel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US562086A (en) * 1896-06-16 Mechanical movement
US5350131A (en) * 1990-11-10 1994-09-27 D.A.M. Deutsche Angelgerate Manufaktur Hellmuth Kuntze Gmbh & Co. Kg Fishing reels with a spool receiving the fishing line
US5921489A (en) * 1996-09-09 1999-07-13 Daiwa Seiko, Inc. Oscillate mechanism for a fishing spinning reel
US6394379B1 (en) * 2000-05-16 2002-05-28 Pure Fishing, Inc. Spinning reel with uniform velocity spool
US6655620B2 (en) * 2000-09-18 2003-12-02 Shimano Inc. Spinning-reel oscillating mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029425A1 (en) * 2005-07-25 2007-02-08 Young John N Fishing reel oscillation
CN103004714A (en) * 2012-11-30 2013-04-03 宁波海宝渔具有限公司 Spinning wheel type fishing line reel with novel reciprocating mechanism for fishing
US20160345561A1 (en) * 2015-05-29 2016-12-01 Shimano Inc. Reciprocating mechanism for a fishing reel
US9770017B2 (en) * 2015-05-29 2017-09-26 Shimano Inc. Reciprocating mechanism for a fishing reel

Also Published As

Publication number Publication date
US7025295B2 (en) 2006-04-11
US20050056714A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
DE10147407B4 (en) Silent chain power transmission device
DE10360929A1 (en) Reciprocating saw for cutting material e.g. metal conduit, has adjustment assembly to adjust range of movement of counterweight relative to housing and counterweight drive mechanism operated to move counterweight relative to housing
US20220316568A1 (en) Linear drive, longitudinal-adjustment unit for a seat, and motor vehicle
US20030122010A1 (en) Uniform oscillation system
DE69723377T2 (en) Oscillating mechanism for fishing winches
JPS62141358A (en) Tooth form of gearing mechanism
DE3418948A1 (en) CIGARETTE PRODUCTION MACHINE
DE4422893B4 (en) round braiding machine
DD290244A5 (en) METHOD AND DEVICE FOR PRODUCING A SELF-SUPPORTING, FLEXIBLE TUBE
DE2458721C3 (en) Device for manufacturing incandescent lamp filaments
DE3545080C2 (en)
DE60104496T2 (en) Oscillating mechanism for fishing winds
DE2115579B2 (en) Winding device
DE3505188A1 (en) THREAD TRANSVERSION DEVICE FOR A MACHINE PRODUCING CROSS-COILS
DE2444704A1 (en) MACHINE FOR CUTTING A RUNNING WEB OF MATERIAL, IN PARTICULAR CORRUGATED CARDBOARD WEB
EP0211242B1 (en) Spring-coiling machine
EP1971754A1 (en) Rotary piston machine having two piston mounts which are arranged on an axle
US4573247A (en) Artificial tree limb maker machine
EP0997422B1 (en) Yarn guide device
DE10246242C1 (en) fishing reel
DE951132C (en) Twin windshield wiper system
DE2406612B2 (en) Device for producing the stator winding of electrical machines
DE69912357T2 (en) Roller for guiding and / or tensioning a drive belt
RU2003116105A (en) FISHING REEL (OPTIONS)
JPS6026626Y2 (en) spinning reel

Legal Events

Date Code Title Description
AS Assignment

Owner name: PENN FISHING TACKLE MFG. CO., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WIEST, TIMOTHY A.;REEL/FRAME:013519/0926

Effective date: 20021119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION