US20030114561A1 - Alkylphenol ethoxylate-free surfactant package for polymer emulsions - Google Patents

Alkylphenol ethoxylate-free surfactant package for polymer emulsions Download PDF

Info

Publication number
US20030114561A1
US20030114561A1 US10/024,939 US2493901A US2003114561A1 US 20030114561 A1 US20030114561 A1 US 20030114561A1 US 2493901 A US2493901 A US 2493901A US 2003114561 A1 US2003114561 A1 US 2003114561A1
Authority
US
United States
Prior art keywords
moles
ethylene oxide
nonionic surfactant
polymer emulsion
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/024,939
Inventor
Joel Goldstein
Ronald Pangrazi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Polymers LP
Original Assignee
Wacker Polymers LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Polymers LP filed Critical Wacker Polymers LP
Priority to US10/024,939 priority Critical patent/US20030114561A1/en
Assigned to AIR PRODUCTS POLYMERS, L.P. reassignment AIR PRODUCTS POLYMERS, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOLDSTEIN, JOEL ERWIN, PANGRAZI, RONALD JOSEPH
Publication of US20030114561A1 publication Critical patent/US20030114561A1/en
Priority to US10/752,248 priority patent/US6908524B2/en
Priority to US11/153,577 priority patent/US6974520B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/12Crêping
    • B31F1/126Crêping including making of the paper to be crêped
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents

Definitions

  • Crepe processes especially double recrepe (DRC) processes, have been used to produce paper products, such as paper towels and wipes, with specific properties.
  • the DRC process involves creping a base sheet or nonwoven web on a drum, printing a polymeric binder on one side of the sheet, flash drying the binder, creping the base sheet on a drum again, printing a polymeric binder on the other side of the base sheet, flash drying the binder, and then creping the base sheet a third time.
  • the base sheet is printed while traveling through gravure nip rolls.
  • Various crepe processes and binding materials used in the processes are known. Examples of such processes are disclosed in U.S. Pat. Nos. 3,879,257, 3,903,342, 4,057,669, 5,674,590, and 5,776,306.
  • polymeric binders used in creping processes are typically emulsion polymers containing surfactants that are based on alkylphenol ethoxylates (APEs).
  • This invention is directed to an APE-free surfactant system that is used in the production of polymer emulsions and to the polymer emulsions formed therefrom.
  • the polymer emulsions are formed by emulsion polymerization of ethylenically unsaturated monomers in the presence of a surfactant system comprising a combination of a particular anionic surfactant, i.e., a sodium laureth sulfate containing 1 to 12 moles of ethylene oxide, and a particular nonionic surfactant, i.e., a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide.
  • the primary or secondary alcohol can contain 7 to 18, preferably 9 to 14 carbons.
  • the weight ratio of active anionic to active nonionic surfactant used in the preparation of the emulsion polymers can range from 4:1 to 1.5:1.
  • One embodiment of the invention is polymer emulsions comprising vinyl acetate, ethylene, and one or more crosslinking monomers, such as N-methylol acrylamide, formed under emulsion polymerization conditions in the presence of a surfactant system comprising a sodium laureth sulfate containing 1 to 12 moles of ethylene oxide and a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide.
  • the polymer emulsions are particularly useful as binders in DRC processes for making absorbent products such as wipes.
  • the polymer emulsions of this invention provide the following advantages, compared to known polymer emulsions:
  • the web after application to a cellulosic web, the web has excellent adhesion to a creping drum;
  • the polymers are stable at elevated temperatures (e.g., 550° F., (280° C.); and
  • An APE-free polymer emulsion is formed by polymerizing one or more ethylenically unsaturated monomers and optionally one or more crosslinking monomers, under emulsion polymerization conditions, in the presence of a combination of a specific anionic surfactant and a specific nonionic surfactant, wherein said anionic surfactant is a sodium laureth sulfate having 1 to 12 moles of ethylene oxide, said nonionic surfactant is a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide, said primary or secondary alcohol containing 7 to 18 carbons
  • Ethylenically unsaturated monomers that can be used in the preparation of the polymer emulsions of this invention include, but are not limited to, vinyl esters, such as vinyl acetate, ethylene, styrene, butadiene, C 1-8 alkyl esters of acrylic and methacrylic acid, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, diacrylates, unsaturated carboxylic acid, such as acrylic, methacrylic, crotonic, itaconic, and maleic acid, acrylonitrile, and vinyl esters of C 2-10 alcohols.
  • vinyl esters such as vinyl acetate, ethylene, styrene, butadiene
  • C 1-8 alkyl esters of acrylic and methacrylic acid such as methyl (meth)acrylate, ethy
  • the polymer can contain up to 10% of one or more crosslinking monomers.
  • crosslinking monomers are N-(C 1-4 ) alkylol (meth)acrylamide, such as N-methylol acrylamide, i-butoxy methylacrylamide, acrylamidoglycolic acid, acrylamidobutyraldehyde, and the dialkyl acetal of acrylamidobutyraldehyde in which the alkyl can have 1 to 4 carbons. Any of the crosslinking monomers can be used alone, together, or in combination with acrylamide.
  • One embodiment of the invention is polymer emulsions comprising 50 to 90 wt % (preferably 70 to 85 wt %) vinyl acetate, 5 to 44 wt % (preferably 10 to 30 wt %) ethylene, and 1 to 10 wt % (preferably 3 to 8 wt %) one or more crosslinking monomer, based on the total weight of monomers.
  • Another embodiment of the invention is polymer emulsions comprising 50 to 90 wt % (preferably 70 to 85 wt %) vinyl acetate, 5 to 44 wt % (preferably 10 to 30 wt %) ethylene, and 1 to 10 wt % (preferably 3 to 8 wt %) N-methylol acrylamide, based on the total weight of monomers
  • the emulsion polymerization may be conducted in a stage or sequential manner and can be initiated by thermal initiators or by a redox system.
  • a thermal initiator is typically used at temperatures at or above about 70° C. and redox systems are preferred at temperatures below about 70° C.
  • the amount of thermal initiator used in the process is 0.1 to 3 wt %, preferably more than about 0.5 wt %, based on total monomers.
  • Thermal initiators are well known in the emulsion polymer art and include, for example, ammonium persulfate, sodium persulfate, and the like.
  • the amount of oxidizing and reducing agent in the redox system is about 0.1 to 3 wt %.
  • the reducing agent can be a bisulfite, a sulfoxylate, ascorbic acid, erythorbic acid, and the like.
  • oxidizing agent are hydrogen peroxide, organic peroxides, such as t-butyl peroxide or t-butyl hydroperoxide, persulfates, and the like.
  • Effective emulsion polymerization reaction temperatures range from about 50 and 100° C.; preferably, 75 to 90° C.; depending on whether the initiator is a thermal or redox system.
  • anionic surfactant is a sodium laureth sulfate having 1 to 12, preferably 2 to 5, moles of ethylene oxide.
  • An example of an appropriate anionic surfactant is Disponil FES 32 IS (sodium laureth sulfate containing 4 moles of ethylene oxide), supplied by Cognis as a 30% aqueous solution.
  • the nonionic surfactant is a secondary alcohol ethoxylate, such as 2-pentadecanol ethoxylate, containing 7 to 30 moles, preferably 12 to 20 moles, of ethylene oxide or an ethoxylated branched primary alcohol, such as tridecanol ethoxylate, containing 3 to 30 moles, preferably 9 to 20 moles, of ethylene oxide.
  • the primary or secondary alcohol can contain 7 to 18, preferably 9 to 14 carbons.
  • An example of an appropriate nonionic surfactant is Tergitol 15-S-20 (a secondary alcohol ethoxylate containing 20 moles of ethylene oxide), supplied by Dow as an 80% aqueous solution.
  • the amount of active surfactant, based on total polymer, can be 1 to 5 wt % (preferably 1.5 to 2 wt %) for the anionic surfactant and 0.25 to 5 wt % (preferably 0.5 to 1.5 wt %) for the nonionic surfactant.
  • the weight ratio of anionic to nonionic surfactant can range from 4:1 to 1.5:1.
  • a weight ratio of 65:35 (anionic:nonionic surfactant) has been found to give a latex that provides appropriate adhesion to creping drums, has a moderate viscosity with little foam generation, results in less off-gassing than APE-based latexes, and has an accelerated sedimentation of no greater than 1%.
  • the polymer emulsions when used as binders, should have a viscosity of 5 to 80 cps and should be capable of being thickened to 100 cps with a thickener, such as a hydroxyethyl cellulose-based thickener. Viscosity is measured using a Brookfield viscometer, Model LVT, spindle #3 at 60 rpm.
  • the emulsion polymers of this invention should also be stable at temperatures up to about 550° F. (288° C.), produce a minimal amount of foam when pumped and when beaten during a DRC process, and adhere to a creping drum when used as a nonwoven binder.
  • Adhesion to the creping drum can be evaluated by various methods; e.g., using a mill scale machine, or a pilot scale DRC line.
  • a modified release and adhesion test procedure has been found to provide accurate data regarding effectiveness of a binder in a creping process, especially a DRC process.
  • the modified test procedure is described in the example.
  • the polymer emulsions of this invention can be used as binders in creping processes well known in the art. Examples of creping processes are described in the publications listed in the “Background of the Invention” section of the specification.
  • Nonwoven webs typically used in a creping process are wood pulp (alone or blended with natural or synthetic fibers) processed by a dry (air-laid, carded, rando) or wet-laid process.
  • the amount of binder applied to the web can vary over a wide range; for example, about 5 to 40%; preferably 10 to 35% of the finished product.
  • the products are wiper products, it is desirable to keep the amount to a minimum.
  • Emulsion polymerization of vinyl acetate, ethylene, and N-methylol acrylamide was carried out in presence of various surfactant systems in a one-gallon stirred, stainless steel reaction vessel equipped with a jacket.
  • reaction vessel was charged initially with 883.5 g of deionized water, 126.75 g of Disponil FES 32 IS, 25.625 g of Tergitol 15-S-20, 0.91 g of sodium citrate, 3.5 g of 50% aqueous citric acid, 2.3 g of 5% aqueous ferric ammonium sulfate and 312.0 g of vinyl acetate.
  • Viscosity was measured using a Brookfield Viscometer, Model LVT, spindle #3 @ 60 rpm and 77° F. (25° C.), at about 24 hours after preparation to allow for cooling and the finishing of any residual-free monomer.
  • Emulsion stability was measured by measuring the viscosity at 4 intervals: after forming the polymer emulsion; after 3 days in a 120° F. oven; after 1 week in a 120° F. oven; and after 2 weeks in a 120° F. oven.
  • Accelerated sedimentation was measured by taking a sample of the polymer emulsion product and diluting it in half with water, spinning it in a centrifuge for five minutes at a predetermined setting, e.g., 2800 rpm ⁇ 100, and measuring the amount of precipitate forced to the bottom of the tube.
  • a predetermined setting e.g. 2800 rpm ⁇ 100
  • an accelerated sedimentation higher than 1% is considered unsatisfactory. However in a plant-size operation, up to about 3% is acceptable.
  • Peel was measured using a modified release and adhesion tester.
  • a 2-inch ⁇ 6-inch ⁇ fraction (1/32) ⁇ -inch stainless steel plate was attached to a movable heated (350° F.; 177° C.) inclined (45°) metal platform and allowed to equilibrate to the temperature of the platform (2 minutes.)
  • Approximately 0.42 g of the polymer emulsion was applied to a 11 ⁇ 2-inch ⁇ 6-inch piece of bleached, mercerized cotton poplin.
  • the jaws of a Testing Machine, Inc. gram tensile measuring apparatus were attached to a long end of the cotton poplin.
  • the coated side of the coated cotton poplin was then pressed onto the heated stainless steel plate with a 3-pound lab roller by rolling the lab roller back and forth over the substrate for 10 seconds. After 30 seconds, the stainless steel plate was moved away from the tensile measuring device (to which the substrate was attached) at a rate of 12 inches/minute (30.48 cm/minute). The amount of force needed to remove the cotton from the stainless steel plate was recorded and compared to AIRFLEX® 105 vinyl acetate-ethylene (VAE) polymer emulsion control.
  • VAE vinyl acetate-ethylene
  • the polymeric binder of Run 1 showed a peel value of 100% of the AIRFLEX 105 VAE emulsion control and had excellent viscosity as well as a good value for accelerated sedimentation.
  • Other representative examples of the binders of this invention (Runs 2-9) also gave good peel values, however accelerated sedimentation is higher than desired.
  • DOSS was the anionic surfactant
  • the binder was too thin, could not be effectively thickened with hydroxyethyl cellulosic thickeners, and showed excessive foaming.
  • the stability of the binder in Run 15 was unacceptable. Off-gassing was observed using the binder of Run 16, making it unacceptable as a binder for a crepe process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This invention is directed an alkylphenol ethoxylate-free surfactant system for preparation of polymer emulsions. The surfactant system comprises a combination of a specific active anionic surfactant (sodium laureth sulfate containing 1 to 12 moles of ethylene oxide) and a specific active nonionic surfactant (a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide.)

Description

    BACKGROUND OF THE INVENTION
  • Crepe processes, especially double recrepe (DRC) processes, have been used to produce paper products, such as paper towels and wipes, with specific properties. The DRC process involves creping a base sheet or nonwoven web on a drum, printing a polymeric binder on one side of the sheet, flash drying the binder, creping the base sheet on a drum again, printing a polymeric binder on the other side of the base sheet, flash drying the binder, and then creping the base sheet a third time. The base sheet is printed while traveling through gravure nip rolls. Various crepe processes and binding materials used in the processes are known. Examples of such processes are disclosed in U.S. Pat. Nos. 3,879,257, 3,903,342, 4,057,669, 5,674,590, and 5,776,306. [0001]
  • In order for the base sheet or web to adhere adequately to the creping drum, polymeric binders used in creping processes are typically emulsion polymers containing surfactants that are based on alkylphenol ethoxylates (APEs). [0002]
  • Due in part to regulations in Europe, regarding use of APE-based products, there has been a need to identify APE-free polymer emulsion binders for use in crepe processes. Known emulsion polymeric binders, that are free of APEs, have not been effective in creping processes, especially DRC processes, because they do not provide the necessary adhesion to creping drums, produce an unacceptable amount of foam, are too low in viscosity, and/or decompose at elevated temperatures causing an unacceptable odor. [0003]
  • Publications, such as U.S. Pat. Nos. 3,714,099, 4,745,025, 4,847,143, 5,109,063, and JP 94055982 (Abstract), disclose self-crosslinkable vinyl ester-ethylene latexes which can be use as nonwoven binders. Foamability is considered an important property for applying an emulsion binder. However this property is not desired in a creping process. [0004]
  • There is therefore a need for APE-free polymer emulsion binders, for use in crepe processes, that provide the necessary adhesion to creping drums while reducing the unacceptable properties described above. [0005]
  • BRIEF SUMMARY OF THE INVENTION
  • This invention is directed to an APE-free surfactant system that is used in the production of polymer emulsions and to the polymer emulsions formed therefrom. The polymer emulsions are formed by emulsion polymerization of ethylenically unsaturated monomers in the presence of a surfactant system comprising a combination of a particular anionic surfactant, i.e., a sodium laureth sulfate containing 1 to 12 moles of ethylene oxide, and a particular nonionic surfactant, i.e., a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide. The primary or secondary alcohol can contain 7 to 18, preferably 9 to 14 carbons. The weight ratio of active anionic to active nonionic surfactant used in the preparation of the emulsion polymers can range from 4:1 to 1.5:1. [0006]
  • One embodiment of the invention is polymer emulsions comprising vinyl acetate, ethylene, and one or more crosslinking monomers, such as N-methylol acrylamide, formed under emulsion polymerization conditions in the presence of a surfactant system comprising a sodium laureth sulfate containing 1 to 12 moles of ethylene oxide and a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide. The polymer emulsions are particularly useful as binders in DRC processes for making absorbent products such as wipes. [0007]
  • When used as binders, the polymer emulsions of this invention provide the following advantages, compared to known polymer emulsions: [0008]
  • after application to a cellulosic web, the web has excellent adhesion to a creping drum; [0009]
  • there is a minimum amount of foaming, when used in a DRC process; [0010]
  • they can be thickened with a hydroxyethyl cellulose based thickener prior to use; [0011]
  • the polymers are stable at elevated temperatures (e.g., 550° F., (280° C.); and [0012]
  • they can be prepared in the absence of an APE surfactant. [0013]
  • DETAILED DESCRIPTION OF THE INVENTION
  • An APE-free polymer emulsion is formed by polymerizing one or more ethylenically unsaturated monomers and optionally one or more crosslinking monomers, under emulsion polymerization conditions, in the presence of a combination of a specific anionic surfactant and a specific nonionic surfactant, wherein said anionic surfactant is a sodium laureth sulfate having 1 to 12 moles of ethylene oxide, said nonionic surfactant is a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide, said primary or secondary alcohol containing 7 to 18 carbons [0014]
  • Ethylenically unsaturated monomers that can be used in the preparation of the polymer emulsions of this invention include, but are not limited to, vinyl esters, such as vinyl acetate, ethylene, styrene, butadiene, C[0015] 1-8 alkyl esters of acrylic and methacrylic acid, such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, diacrylates, unsaturated carboxylic acid, such as acrylic, methacrylic, crotonic, itaconic, and maleic acid, acrylonitrile, and vinyl esters of C2-10 alcohols.
  • The polymer can contain up to 10% of one or more crosslinking monomers. Examples of crosslinking monomers are N-(C[0016] 1-4) alkylol (meth)acrylamide, such as N-methylol acrylamide, i-butoxy methylacrylamide, acrylamidoglycolic acid, acrylamidobutyraldehyde, and the dialkyl acetal of acrylamidobutyraldehyde in which the alkyl can have 1 to 4 carbons. Any of the crosslinking monomers can be used alone, together, or in combination with acrylamide.
  • One embodiment of the invention is polymer emulsions comprising 50 to 90 wt % (preferably 70 to 85 wt %) vinyl acetate, 5 to 44 wt % (preferably 10 to 30 wt %) ethylene, and 1 to 10 wt % (preferably 3 to 8 wt %) one or more crosslinking monomer, based on the total weight of monomers. [0017]
  • Another embodiment of the invention is polymer emulsions comprising 50 to 90 wt % (preferably 70 to 85 wt %) vinyl acetate, 5 to 44 wt % (preferably 10 to 30 wt %) ethylene, and 1 to 10 wt % (preferably 3 to 8 wt %) N-methylol acrylamide, based on the total weight of monomers [0018]
  • The emulsion polymerization may be conducted in a stage or sequential manner and can be initiated by thermal initiators or by a redox system. A thermal initiator is typically used at temperatures at or above about 70° C. and redox systems are preferred at temperatures below about 70° C. The amount of thermal initiator used in the process is 0.1 to 3 wt %, preferably more than about 0.5 wt %, based on total monomers. Thermal initiators are well known in the emulsion polymer art and include, for example, ammonium persulfate, sodium persulfate, and the like. The amount of oxidizing and reducing agent in the redox system is about 0.1 to 3 wt %. Any suitable redox system known in the art can be used; for example, the reducing agent can be a bisulfite, a sulfoxylate, ascorbic acid, erythorbic acid, and the like. Examples of oxidizing agent are hydrogen peroxide, organic peroxides, such as t-butyl peroxide or t-butyl hydroperoxide, persulfates, and the like. [0019]
  • Effective emulsion polymerization reaction temperatures range from about 50 and 100° C.; preferably, 75 to 90° C.; depending on whether the initiator is a thermal or redox system. [0020]
  • The specific combination of anionic and nonionic surfactants for the emulsion polymerization process has been shown to produce crosslinking polymer emulsions that are effective as binders in a creping process, especially a DRC process. The anionic surfactant is a sodium laureth sulfate having 1 to 12, preferably 2 to 5, moles of ethylene oxide. An example of an appropriate anionic surfactant is Disponil FES 32 IS (sodium laureth sulfate containing 4 moles of ethylene oxide), supplied by Cognis as a 30% aqueous solution. The nonionic surfactant is a secondary alcohol ethoxylate, such as 2-pentadecanol ethoxylate, containing 7 to 30 moles, preferably 12 to 20 moles, of ethylene oxide or an ethoxylated branched primary alcohol, such as tridecanol ethoxylate, containing 3 to 30 moles, preferably 9 to 20 moles, of ethylene oxide. The primary or secondary alcohol can contain 7 to 18, preferably 9 to 14 carbons. An example of an appropriate nonionic surfactant is Tergitol 15-S-20 (a secondary alcohol ethoxylate containing 20 moles of ethylene oxide), supplied by Dow as an 80% aqueous solution. [0021]
  • The amount of active surfactant, based on total polymer, can be 1 to 5 wt % (preferably 1.5 to 2 wt %) for the anionic surfactant and 0.25 to 5 wt % (preferably 0.5 to 1.5 wt %) for the nonionic surfactant. The weight ratio of anionic to nonionic surfactant can range from 4:1 to 1.5:1. A weight ratio of 65:35 (anionic:nonionic surfactant) has been found to give a latex that provides appropriate adhesion to creping drums, has a moderate viscosity with little foam generation, results in less off-gassing than APE-based latexes, and has an accelerated sedimentation of no greater than 1%. [0022]
  • At about 30% solids, the polymer emulsions, when used as binders, should have a viscosity of 5 to 80 cps and should be capable of being thickened to 100 cps with a thickener, such as a hydroxyethyl cellulose-based thickener. Viscosity is measured using a Brookfield viscometer, Model LVT, spindle #3 at 60 rpm. The emulsion polymers of this invention should also be stable at temperatures up to about 550° F. (288° C.), produce a minimal amount of foam when pumped and when beaten during a DRC process, and adhere to a creping drum when used as a nonwoven binder. Adhesion to the creping drum can be evaluated by various methods; e.g., using a mill scale machine, or a pilot scale DRC line. A modified release and adhesion test procedure has been found to provide accurate data regarding effectiveness of a binder in a creping process, especially a DRC process. The modified test procedure is described in the example. [0023]
  • The polymer emulsions of this invention can be used as binders in creping processes well known in the art. Examples of creping processes are described in the publications listed in the “Background of the Invention” section of the specification. Nonwoven webs typically used in a creping process are wood pulp (alone or blended with natural or synthetic fibers) processed by a dry (air-laid, carded, rando) or wet-laid process. [0024]
  • The amount of binder applied to the web can vary over a wide range; for example, about 5 to 40%; preferably 10 to 35% of the finished product. When the products are wiper products, it is desirable to keep the amount to a minimum. [0025]
  • The invention will be further clarified by a consideration of the following example, which is intended to be purely exemplary of the use of the invention. [0026]
  • EXAMPLE
  • Emulsion polymerization of vinyl acetate, ethylene, and N-methylol acrylamide was carried out in presence of various surfactant systems in a one-gallon stirred, stainless steel reaction vessel equipped with a jacket. In Run 1, reaction vessel was charged initially with 883.5 g of deionized water, 126.75 g of Disponil FES 32 IS, 25.625 g of Tergitol 15-S-20, 0.91 g of sodium citrate, 3.5 g of 50% aqueous citric acid, 2.3 g of 5% aqueous ferric ammonium sulfate and 312.0 g of vinyl acetate. While stirring, 240.0 g of ethylene was introduced below the surface of the liquid in the reaction vessel in order that the interpolymers would have a vinyl acetate:ethylene ratio of about 80:20. The reaction vessel was heated to 50° C. Upon equilibration, the following four aqueous solutions were intermittently added to the reaction vessel over the course of the reaction (on a delay basis); 15% sodium formaldehyde sulfoxylate (SFS), 3.0% t-butylhydroperoxide (t-bhp), 1246.0 g of vinyl acetate and 324.0 g of a 30% aqueous solution of N-methylol acrylamide (NMA). After three hours, the vinyl acetate delay was terminated, after four hours the NMA delay was complete and the other two delays continued for another 30 minutes. The reaction was terminated by cooling. [0027]
  • Using the same emulsion recipe as Run 1, several surfactant packages were examined. The viscosity, emulsion stability, accelerated sedimentation, and peel were measured. [0028]
  • Viscosity was measured using a Brookfield Viscometer, Model LVT, spindle #3 @ 60 rpm and 77° F. (25° C.), at about 24 hours after preparation to allow for cooling and the finishing of any residual-free monomer. [0029]
  • Emulsion stability was measured by measuring the viscosity at 4 intervals: after forming the polymer emulsion; after 3 days in a 120° F. oven; after 1 week in a 120° F. oven; and after 2 weeks in a 120° F. oven. [0030]
  • Accelerated sedimentation was measured by taking a sample of the polymer emulsion product and diluting it in half with water, spinning it in a centrifuge for five minutes at a predetermined setting, e.g., 2800 rpm±100, and measuring the amount of precipitate forced to the bottom of the tube. When a one-gallon reactor is used, an accelerated sedimentation higher than 1% is considered unsatisfactory. However in a plant-size operation, up to about 3% is acceptable. [0031]
  • Peel was measured using a modified release and adhesion tester. A 2-inch×6-inch×{fraction (1/32)}-inch stainless steel plate was attached to a movable heated (350° F.; 177° C.) inclined (45°) metal platform and allowed to equilibrate to the temperature of the platform (2 minutes.) Approximately 0.42 g of the polymer emulsion was applied to a 1½-inch×6-inch piece of bleached, mercerized cotton poplin. The jaws of a Testing Machine, Inc. gram tensile measuring apparatus were attached to a long end of the cotton poplin. The coated side of the coated cotton poplin was then pressed onto the heated stainless steel plate with a 3-pound lab roller by rolling the lab roller back and forth over the substrate for 10 seconds. After 30 seconds, the stainless steel plate was moved away from the tensile measuring device (to which the substrate was attached) at a rate of 12 inches/minute (30.48 cm/minute). The amount of force needed to remove the cotton from the stainless steel plate was recorded and compared to AIRFLEX® 105 vinyl acetate-ethylene (VAE) polymer emulsion control. The results are reported as peel (% of control) in the table below: [0032]
    TABLE
    Ratio of Accelerated
    Anionic Nonionic Anionic to % Viscosity, Sedimentation, Peel Value
    Run surfactant surfactant Nonionic Solids cps % (% control)
    1 Disponil Tergitol 1.86 52.9 660 1.0 100
    FES 32 IS 15-S-20
    2 B-330S Tergitol 1.86 53.2 532 4.0 47
    15-S-20
    3 Rhodapex Tergitol 1.86 53.2 632 2.5 73
    ES 15-S-20
    4 FES 993 Tergitol 1.86 53.1 160 8.0 57
    15-S-20
    5 Steol 4N Tergitol 1.86 53.1 348 2.0 48
    15-S-20
    6 Texapon Tergitol 1.86 53.2 152 6.0 75
    NSO 15-S-20
    7 Disponil Disponil 1.86 53.3 600 3.0 175
    FES 32 IS 3065
    8 Disponil Disponil 1.86 53.3 490 4.0 200
    FES 32 IS 1080
    9 Disponil TD-3 1.86 53.0 318 2.0 110
    FES 32 IS
    10 DOSS Tergitol 1.86 57.0 86 1.0 135
    15-S-20
    11 DOSS Tergitol 1 53.4 372 0.5 100
    15-S-20
    12 DOSS Tergitol 3 53.1 54 1.0 35
    15-S-20
    13 DOSS Tergitol 0.33 53.3 116 0.5 130
    15-S-20
    14 DOSS Tergitol 0.67 60.3 474 1.5 105
    15-S-20
    15 Tergitol Tergitol 2 55.8 600 10 68
    15-S-3 15-S-20
    sulfate
    16 DOSS Tergitol 0.67 60.5 228 3.5 90
    15-S-3
    17 EST-30 Makon 2 54.2 810 1.5 67
    TD-3
  • The polymeric binder of Run 1 showed a peel value of 100% of the AIRFLEX 105 VAE emulsion control and had excellent viscosity as well as a good value for accelerated sedimentation. Other representative examples of the binders of this invention (Runs 2-9) also gave good peel values, however accelerated sedimentation is higher than desired. Although good adhesion and no off-gassing was observed using the binders of Runs 10, 11, 12, 13, and 14, in which DOSS was the anionic surfactant, the binder was too thin, could not be effectively thickened with hydroxyethyl cellulosic thickeners, and showed excessive foaming. The stability of the binder in Run 15 was unacceptable. Off-gassing was observed using the binder of Run 16, making it unacceptable as a binder for a crepe process. [0033]

Claims (35)

What is claimed is:
1. An alkylphenol ethoxylate-free polymer emulsion formed by polymerizing one or more ethylenically unsaturated monomers and optionally one or more crosslinking monomers, under emulsion polymerization conditions, in the presence of a combination of an anionic surfactant and a nonionic surfactant, wherein said anionic surfactant is a sodium laureth sulfate having 1 to 12 moles of ethylene oxide, said nonionic surfactant is a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide, said primary or secondary alcohol containing 7 to 18 carbons.
2. The polymer emulsion of claim 1 wherein the one or more ethylenically unsaturated monomers is selected from the group consisting of a vinyl ester, ethylene, styrene, butadiene, a C1-8 alkyl ester of acrylic acid, a C1-8 alkyl ester of methacrylic acid, a diacrylate, an unsaturated carboxylic acid, acrylonitrile, and a vinyl ester of C2-10 alcohols.
3. The polymer emulsion of claim 1 wherein the one or more ethylenically unsaturated monomers is selected from the group consisting of vinyl acetate, ethylene, styrene, butadiene, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, and acrylonitrile.
4. The polymer emulsion of claim 1 wherein one or more crosslinking monomers are selected from the group consisting of a N-(C1-4) alkylol (meth)acrylamide, i-butoxy methylacrylamide, acrylamidoglycolic acid, acrylamidobutyraldehyde, a dialkyl acetal of acrylamidobutyraldehyde, said alkyl having 1 to 4 carbons, and acrylamide in combination with one or more of the aforementioned crosslinking monomers.
5. An alkylphenol ethoxylate-free polymer emulsion formed by polymerizing vinyl acetate, ethylene, and one or more crosslinking monomers, under emulsion polymerization conditions, in the presence of a combination of an anionic surfactant and a nonionic surfactant, wherein said anionic surfactant is a sodium laureth sulfate having 1 to 12 moles of ethylene oxide, said nonionic surfactant is a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide, said primary or secondary alcohol containing 7 to 18 carbons.
6. The polymer emulsion of claim 5 wherein the one or more crosslinking monomers are selected from the group consisting of a N-(C1-4) alkylol (meth)acrylamide, i-butoxy methylacrylamide, acrylamidoglycolic acid, acrylamidobutyraldehyde, a dialkyl acetal of acrylamidobutyraldehyde, said alkyl having 1 to 4 carbons, and acrylamide in combination with one or more of the aforementioned crosslinking monomers.
7. The polymer emulsion of claim 5 wherein the one or more crosslinking monomers is N-methylol acrylamide.
8. The polymer emulsion of claim 5 comprising 50 to 90 wt % vinyl acetate, 5 to 49 wt % ethylene, and 1 to 10 wt % of N-methylol acrylamide, based on the total weight of monomers, and the weight ratio of anionic to nonionic surfactant ranges from 4:1 to 5:1.
9. The polymer emulsion of claim 8 comprising 70 to 85 wt % vinyl acetate, 10 to 30 wt % ethylene, and 3 to 8 wt % of N-methylol acrylamide, based on the total weight of monomers.
10. The polymer emulsion of claim 8 wherein said anionic surfactant is a sodium laureth sulfate containing 2 to 5 moles of ethylene oxide and said nonionic surfactant is a secondary alcohol ethoxylate having 12 to 20 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 9 to 20 moles of ethylene oxide.
11. The polymer emulsion of claim 8 wherein said anionic surfactant is a sodium laureth sulfate containing 4 moles of ethylene oxide and said nonionic surfactant is a secondary alcohol ethoxylate having 20 moles of ethylene oxide.
12. The polymer emulsion of claim 8 wherein said nonionic surfactant is tridecanol ethoxylate containing 9 to 20 moles of ethylene oxide.
13. The polymer emulsion of claim 8 wherein the weight ratio of anionic surfactant to nonionic surfactant ranges from 65:35.
14. A method of making an alkylphenol ethoxylate-free aqueous polymer emulsion which comprises reacting one or more ethylenically unsaturated monomers and optionally one or more crosslinking monomers, under emulsion polymerization conditions, in the presence of a combination of an anionic surfactant and a nonionic surfactant, wherein said anionic surfactant is a sodium laureth sulfate having 1 to 12 moles of ethylene oxide, said nonionic surfactant is a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide, said primary or secondary alcohol containing 7 to 18 carbons.
15. The method of claim 14 wherein the one or more ethylenically unsaturated monomers is selected from the group consisting of a vinyl ester, ethylene, styrene, butadiene, a C1-8 alkyl ester of acrylic, a C1-8 alkyl ester of methacrylic acid, a diacrylate, an unsaturated carboxylic acid, acrylonitrile, and a vinyl ester of C2-10 alcohols.
16. The method of claim 14 wherein the one or more ethylenically unsaturated monomers is selected from the group consisting of vinyl acetate, ethylene, styrene, butadiene, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, and acrylonitrile.
17. The method of claim 14 wherein the one or more crosslinking monomers is selected from the group consisting of a N-(C1-4) alkylol (meth)acrylamide, i-butoxy methylacrylamide, acrylamidoglycolic acid, acrylamidobutyraldehyde, a dialkyl acetal of acrylamidobutyraldehyde, said alkyl having 1 to 4 carbons, and acrylamide in combination with one or more of the aforementioned crosslinking monomers.
18. A method of making an alkylphenol ethoxylate-free aqueous polymer emulsion which comprises reacting vinyl, acetate, ethylene, and one or more crosslinking monomers, under emulsion polymerization conditions, in the presence of a combination of an anionic surfactant and a nonionic surfactant, wherein said anionic surfactant is a sodium laureth sulfate having 1 to 12 moles of ethylene oxide, said nonionic surfactant is a secondary alcohol ethoxylate containing 7 to 30 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 3 to 30 moles of ethylene oxide, said primary or secondary alcohol containing 7 to 18 carbons.
19. The method of claim 18 wherein the one or more crosslinking monomers is selected from the group consisting of a N-(C1-4) alkylol (meth)acrylamide, i-butoxy methylacrylamide, acrylamidoglycolic acid, acrylamidobutyraldehyde, a dialkyl acetal of acrylamidobutyraldehyde, said alkyl having 1 to 4 carbons, and acrylamide in combination with one or more of the aforementioned crosslinking monomers.
20. The method of claim 19 wherein the self-crosslinking monomer is N-methylol acrylamide.
21. The method of claim 20 wherein the alkylphenol ethoxylate-free aqueous polymer emulsion comprises 50 to 90 wt % vinyl acetate, 5 to 49 wt % ethylene, and 1 to 10 wt % of N-methylol acrylamide, based on the total weight of monomers, and the weight ratio of anionic to nonionic surfactant ranges from 4:1 to 5:1.
22. The method of claim 21 wherein the alkylphenol ethoxylate-free aqueous polymer emulsion comprises 70 to 85 wt % vinyl acetate, 10 to 30 wt % ethylene, and 3 to 8 wt % of N-methylol acrylamide, based on the total weight of monomers.
23. The method of claim 21 wherein said anionic surfactant is a sodium laureth sulfate containing 2 to 5 moles of ethylene oxide and said nonionic surfactant is a secondary alcohol ethoxylate having 12 to 20 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 9 to 20 moles of ethylene oxide.
24. The method of claim 21 wherein said anionic surfactant is a sodium laureth sulfate containing 4 moles of ethylene oxide and said nonionic surfactant is a secondary alcohol ethoxylate having 20 moles of ethylene oxide.
25. The method of claim 21 wherein said nonionic surfactant is tridecanol ethoxylate containing 9 to 20 moles of ethylene oxide.
26. The method of claim 21 wherein the weight ratio of anionic surfactant to nonionic surfactant is 65:35.
27. A method of forming a bonded and creped type web which comprises; applying a polymer emulsion of claim 5 to said nonwoven web to form a coated nonwoven web, and subsequently creping said coated nonwoven web in a crepe process.
28. The method of claim 27 wherein the crepe process is a double recrepe process.
29. The method of claim 28 wherein the crosslinking monomer is N-methylol acrylamide.
30. The method of claim 28 wherein the polymer emulsion comprises 50 to 90 wt % vinyl acetate, 5 to 49 wt % ethylene, and 1 to 10 wt % of N-methylol acrylamide, based on the total weight of monomers.
31. The method of claim 28 wherein the polymer emulsion comprises 70 to 85 wt % vinyl acetate, 10 to 30 wt % ethylene, and 3 to 8 wt % of N-methylol acrylamide, based on the total weight of monomers.
32. The method of claim 28 wherein said anionic surfactant is a sodium laureth sulfate containing 2 to 5 moles of ethylene oxide and said nonionic surfactant is a secondary alcohol ethoxylate having 12 to 20 moles of ethylene oxide or an ethoxylated branched primary alcohol containing 9 to 20 moles of ethylene oxide.
33. The method of claim 28 wherein said anionic surfactant is a sodium laureth sulfate containing 4 moles of ethylene oxide and said nonionic surfactant is a secondary alcohol ethoxylate having 20 moles of ethylene oxide.
34. The method of claim 28 wherein said nonionic surfactant is tridecanol ethoxylate containing 9 to 20 moles of ethylene oxide.
35. The method of claim 28 wherein the weight ratio of anionic surfactant to nonionic surfactant is 65:35.
US10/024,939 2001-12-19 2001-12-19 Alkylphenol ethoxylate-free surfactant package for polymer emulsions Abandoned US20030114561A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/024,939 US20030114561A1 (en) 2001-12-19 2001-12-19 Alkylphenol ethoxylate-free surfactant package for polymer emulsions
US10/752,248 US6908524B2 (en) 2001-12-19 2004-01-06 Alkylphenol ethoxylate-free surfactant package for polymer emulsions
US11/153,577 US6974520B2 (en) 2001-12-19 2005-06-15 Alkylphenol ethoxylate-free surfactant package for polymer emulsions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/024,939 US20030114561A1 (en) 2001-12-19 2001-12-19 Alkylphenol ethoxylate-free surfactant package for polymer emulsions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/752,248 Division US6908524B2 (en) 2001-12-19 2004-01-06 Alkylphenol ethoxylate-free surfactant package for polymer emulsions

Publications (1)

Publication Number Publication Date
US20030114561A1 true US20030114561A1 (en) 2003-06-19

Family

ID=21823136

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/024,939 Abandoned US20030114561A1 (en) 2001-12-19 2001-12-19 Alkylphenol ethoxylate-free surfactant package for polymer emulsions
US10/752,248 Expired - Lifetime US6908524B2 (en) 2001-12-19 2004-01-06 Alkylphenol ethoxylate-free surfactant package for polymer emulsions
US11/153,577 Expired - Lifetime US6974520B2 (en) 2001-12-19 2005-06-15 Alkylphenol ethoxylate-free surfactant package for polymer emulsions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/752,248 Expired - Lifetime US6908524B2 (en) 2001-12-19 2004-01-06 Alkylphenol ethoxylate-free surfactant package for polymer emulsions
US11/153,577 Expired - Lifetime US6974520B2 (en) 2001-12-19 2005-06-15 Alkylphenol ethoxylate-free surfactant package for polymer emulsions

Country Status (1)

Country Link
US (3) US20030114561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027907A1 (en) * 2016-08-12 2018-02-15 Dow Global Technologies Llc Surfactant composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358027B2 (en) * 2002-03-04 2008-04-15 International Business Machines Corporation Copolymer for use in chemical amplification resists
US8728339B2 (en) 2010-06-30 2014-05-20 Dow Global Technologies Llc Branched secondary alcohol alkoxylate surfactants for textile processing
DE102010038788A1 (en) * 2010-08-02 2012-02-02 Wacker Chemie Ag Process for the preparation of vinyl acetate-ethylene copolymers by emulsion polymerization
US8916012B2 (en) * 2010-12-28 2014-12-23 Kimberly-Clark Worldwide, Inc. Method of making substrates comprising frothed benefit agents
US20120234490A1 (en) * 2011-03-18 2012-09-20 Wacker Chemical Corporation High Solids Pigmented Latex Compositions
US9156920B2 (en) 2012-09-26 2015-10-13 Wacker Chemical Corporation Process for the preparation of an aqueous emulsifier-stabilized vinyl acetate-ethylene copolymer dispersion with fine particle size
US10233296B2 (en) 2013-05-30 2019-03-19 Kimberly-Clark Worldwide, Inc. Method of forming creped thin film-like structures from frothed chemistry
EP3122791B1 (en) 2014-03-27 2018-05-02 Wacker Chemical Corporation Binder for paper coating compositions
US10968569B2 (en) 2016-04-28 2021-04-06 Wacker Chemie Ag Polyvinyl alcohol stabilized acetate ethylene copolymer dispersions as adhesives for creped webs
US10526480B2 (en) * 2016-11-15 2020-01-07 Hercules Llc Ultra-high solids emulsion and application

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714099A (en) * 1970-09-03 1973-01-30 Union Oil Co Self-crosslinking vinyl acetate-ethylene latexes
US3879257A (en) * 1973-04-30 1975-04-22 Scott Paper Co Absorbent unitary laminate-like fibrous webs and method for producing them
US3903342A (en) * 1973-04-30 1975-09-02 Scott Paper Co Soft, absorbent, unitary, laminate-like fibrous web with delaminating strength and method for producing it
US4057669A (en) * 1975-03-13 1977-11-08 Scott Paper Company Method of manufacturing a dry-formed, adhesively bonded, nonwoven fibrous sheet and the sheet formed thereby
US4326669A (en) * 1978-06-09 1982-04-27 Koppers Company, Inc. Laminated wooden railroad crossite having exposed end-grain forming part of the load bearing surface
DE2915887A1 (en) * 1979-04-19 1980-11-06 Wacker Chemie Gmbh COPOLYMERISATE BASED ON ACRYL ESTERS, VINYL ACETATE AND AETHYLENE
DE3674079D1 (en) * 1985-06-04 1990-10-18 Sumitomo Chemical Co BINDER COPOLYMER COMPOSITION AND TREATED PAPERS.
JPH0655982B2 (en) 1985-11-25 1994-07-27 住友化学工業株式会社 Method for producing highly foamable binder composition
US4745025A (en) * 1986-02-19 1988-05-17 Air Products And Chemicals, Inc. Nonwoven products bonded with binder emulsions of vinyl acetate/ethylene copolymers having improved solvent resistance
US5180772A (en) * 1989-02-28 1993-01-19 Air Products And Chemicals, Inc. Nonwoven binders of vinyl acetate/ethylene/self-crosslinking monomer and tetramethylol glycoluril having improved shelf life
US5109063A (en) * 1990-12-10 1992-04-28 Air Products And Chemicals, Inc Vinyl acetate/ethylene/NMA copolymer emulsion for nonwoven binder applications
JPH0655982A (en) 1992-08-07 1994-03-01 Ikeda Bussan Co Ltd Interior material with decorative member
US5776306A (en) * 1995-06-07 1998-07-07 Kimberly-Clark Worldwide, Inc. Recreped absorbent paper product and method for making
US5674590A (en) * 1995-06-07 1997-10-07 Kimberly-Clark Tissue Company High water absorbent double-recreped fibrous webs
US6159815A (en) * 1996-09-27 2000-12-12 Siemens Aktiengesellschaft Method of producing a MOS transistor
US5989682A (en) * 1997-04-25 1999-11-23 Kimberly-Clark Worldwide, Inc. Scrim-like paper wiping product and method for making the same
US6096152A (en) * 1997-04-30 2000-08-01 Kimberly-Clark Worldwide, Inc. Creped tissue product having a low friction surface and improved wet strength
US6129815A (en) * 1997-06-03 2000-10-10 Kimberly-Clark Worldwide, Inc. Absorbent towel/wiper with reinforced surface and method for producing same
US6197878B1 (en) * 1997-08-28 2001-03-06 Eastman Chemical Company Diol latex compositions and modified condensation polymers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027907A1 (en) * 2016-08-12 2018-02-15 Dow Global Technologies Llc Surfactant composition
CN109562338A (en) * 2016-08-12 2019-04-02 陶氏环球技术有限责任公司 Surface activator composition
US11795244B2 (en) 2016-08-12 2023-10-24 Dow Global Technologies Llc Surfactant composition

Also Published As

Publication number Publication date
US6974520B2 (en) 2005-12-13
US20040143046A1 (en) 2004-07-22
US6908524B2 (en) 2005-06-21
US20050217788A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US6974520B2 (en) Alkylphenol ethoxylate-free surfactant package for polymer emulsions
FI88928C (en) PAO FINDELAD VATTENDISPERSION BASERAT PAPPERSLIM
US7582699B2 (en) Binder for high wet-strength substrates
US8088252B2 (en) Salt-sensitive cationic polymeric binders for nonwoven webs and method of making the same
US10968569B2 (en) Polyvinyl alcohol stabilized acetate ethylene copolymer dispersions as adhesives for creped webs
US8012285B2 (en) Polymeric binders having specific peel and cure properties and useful in making creped webs
EP1589139B1 (en) Nonwovens with binders of high wet/dry tensile strength ratio
EP1879961B1 (en) Salt-sensitive binder compositions with n-alkyl acrylamide and articles incorporating same
JP3643550B2 (en) Reduced formaldehyde nonwoven binder containing polymerized units of N-methylolacrylamide
US7320831B2 (en) Salt-sensitive vinyl acetate binder compositions and fibrous article incorporating same
US8273414B2 (en) Phosphate-containing binders for nonwoven goods
US6824635B2 (en) Polymeric binders having specific peel and cure properties and useful in making creped webs
EP1443079B1 (en) Incorporation of a self-crosslinking polymer into a nonwoven binder for use in improving the wet strength of pre-moistened wipes
CA2510892C (en) Binder for high wet-strength substrates
MX2008009681A (en) Salt-sensitive binders for nonwoven webs and method of making same

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIR PRODUCTS POLYMERS, L.P., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOLDSTEIN, JOEL ERWIN;PANGRAZI, RONALD JOSEPH;REEL/FRAME:012411/0373

Effective date: 20011219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION