US20030109045A1 - RNA silencing suppression - Google Patents

RNA silencing suppression Download PDF

Info

Publication number
US20030109045A1
US20030109045A1 US10/223,070 US22307002A US2003109045A1 US 20030109045 A1 US20030109045 A1 US 20030109045A1 US 22307002 A US22307002 A US 22307002A US 2003109045 A1 US2003109045 A1 US 2003109045A1
Authority
US
United States
Prior art keywords
leu
ser
val
asp
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/223,070
Inventor
Richard Nelson
Xin Ding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roberts Samuels Noble Foundation Inc
Original Assignee
Roberts Samuels Noble Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roberts Samuels Noble Foundation Inc filed Critical Roberts Samuels Noble Foundation Inc
Priority to US10/223,070 priority Critical patent/US20030109045A1/en
Assigned to SAMUEL ROBERTS NOBLE FOUNDATION, THE reassignment SAMUEL ROBERTS NOBLE FOUNDATION, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DING, XIN SHUN, NELSON, RICHARD S.
Publication of US20030109045A1 publication Critical patent/US20030109045A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation

Definitions

  • the current invention relates generally to the field of molecular biology. More particularly, it concerns methods for modulating gene expression.
  • RNA silencing is a phenomenon that can affect systemic virus accumulation. It was first identified in plants wherein aberrant or overexpressed RNA sequences are targeted for destruction (reviewed in Vance and Vaucheret, 2001). The destruction of the RNA is sequence-specific and proceeds through the synthesis of small (21-25 nucleotides) RNAs of both sense and antisense conformation (Hamilton and Baulcombe 1999, Zamore et. al, 2000). RNA silencing has been shown to be a viral defense mechanism in plants (reviewed in Vance and Vaucheret, 2001; Carrington et al. 2001; Baulcombe 1999).
  • RNA silencing in the host prevents virus accumulation in systemic leaves of virus-challenged, nontransgenic plants (Al-Kaff et al., 1998; Ratcliff et al., 1997; Covey, et al. 1997).
  • Virus challenge also leads to silencing of transgenes expressing homologous viral RNA sequences in systemic tissue of transgenic plants (e.g. Al-Kaff et al., 1998).
  • RNA silencing can also target challenge virus RNA if the transgene contains viral sequences (Lindbo et al., 1993; Smith et al., 1994).
  • Plant viruses contain sequences that can suppress RNA silencing in the infected host (e.g. Voinnet et al. 1999).
  • specific viral proteins capable of suppressing RNA silencing in transgenic plants have been identified (Anandalakshmi et al., 1998; Brigneti et al., 1998; Kasschau and Carrington, 1998; Voinnet et al. 1999 and 2000). These proteins were previously shown to be necessary for the local or phloem-dependent accumulation of their encoding viruses in their respective hosts (Cronin et al., 1995; Ding et al., 1995a; Hong et al. 1997; Bonneau et al. 1998; Scholthof et al. 1995). All of the proteins are non-structural (i.e. do not form the capsid of the virus) and their functions in virus accumulation and suppression of RNA silencing are not fully understood.
  • helper component-protease (HC-Pro) from potyviruses promotes replication and accumulation of the virus, at least partially through its proteinase activity, and is necessary for aphid transmission (reviewed in Revers et al., 1999).
  • HC-Pro has been shown to inactivate pre-existing RNA silencing (Brigneti et al. 1998).
  • the decline of RNA silencing is also associated with a decrease in the accumulation of the small RNAs associated with this phenomenon (Llave et al. 2000, Mallory et al. 2001).
  • the 2b protein which is not present in the related bromoviruses, is a virulence determinant (Ding et al., 1996a).
  • the 2b gene or its protein is not necessary for virus replication or cell-to-cell spread (Ding et al., 1995a).
  • the protein does not inhibit RNA silencing in already silenced tissue, but inhibits silencing from occurring in newly developing tissue (Brigneti et al. 1998).
  • the 2b protein localizes to the nuclei of tobacco cells and this function is necessary for efficient suppression of RNA silencing (Lucy et al. 2000). Recently, it was shown that the 2b protein inhibits salicylic acid-mediated virus resistance (Ji and Ding, 2001).
  • the p25 protein encoded by Potato virus X recently was determined to block the systemic spread of the RNA silencing signal in plants (Voinnet et al. 2000). Further research is necessary to determine with what host or viral proteins these factors interact to prevent silencing from occurring.
  • ⁇ a protein of barley stripe mosaic virus 1a and 2a proteins of Brome mosaic virus and CMV, 129 and/or 186 kDa protein(s) of SHMV, and 126 and/or 183 kDa protein(s) of TMV (De Jong and Ahlquist, 1995; Deom et al., 1997; Lakshman and Gonsalves, 1985; Nelson et al., 1993; Roossinck and Palukaitis, 1990; Traynor et al., 1991; Weiland and Edwards, 1994). Although these proteins are known to affect virus accumulation, their potential to suppress RNA silencing has not been investigated.
  • the portion of the viral genome responsible for the different symptoms induced by these viruses is within the 126 kDa protein orf (Holt et al., 1990).
  • M IC masked
  • U1 strains it was determined that eight nucleotides in the 126 kDa protein orf, resulting in eight amino acid differences in the 126 kDa and 183 kDa proteins of these viruses, controlled the symptom and phloem-dependent accumulation phenotypes of the infectious transcripts (Derrick et al., 1997; Shintaku et al., 1996).
  • M IC 1,3 (FIG. 1) does not induce systemic symptoms on leaves of N. tabacum , although it accumulates in the inoculated leaves (Shintaku et al., 1996).
  • Viruses are believed to cause yield reductions in plants through their movement and accumulation in tissue distant from the initially inoculated site (Matthews, 1991). As such, it is important to understand the method by which viruses accumulate in these distant tissues (i.e. how viruses accumulate systemically). Identifying viral and host factors that control systemic virus accumulation and the location where they function will aid in designing future generations of transgenic plants which maintain yields in spite of virus challenge. In addition, understanding how viruses accumulate and move through the host will provide clues to how host macromolecules accumulate and move through plants. Therefore, there is a great need in the art for further understanding of the physiological interaction between plant viruses and plants. Lastly, there is need in the art for methods of enhancing accumulation of foreign proteins in plants being used as factories for protein production.
  • the invention provides a method of suppressing gene silencing and/or stabilizing expression of a coding sequence in a cell comprising expressing a 126 kDa protein and/or the 183 kDa protein of a Sindbis-like plant virus in the cell.
  • Sindbis-like viruses that have a methyltransferase domain upstream of a helicase domain with no intervening known protease domain, all part of one protein, are encompassed with within the definition of “Sindbis-like plant virus.”
  • the method may also comprise infecting the cell with a subgroup Sindbis plant virus encoding the 126 kDa protein and/or the 183 kDa protein, or their homologues, and allowing the 126 kDa protein and/or the 183 kDa protein, or their homologues, to be expressed.
  • a coding sequence may be introduced into the genome of the cell or a progenitor thereof by genetic transformation and also may be present in more than one copy in the cell.
  • a coding sequence may be introduced into the genome of the cell or a progenitor thereof by genetic transformation and also may be present in more than one copy in the cell.
  • expressing may comprise transforming the cell or a progenitor thereof with a nucleic acid sequence encoding the 126 kDa protein and/or the 183 kDa protein.
  • the subgroup Sindbis plant virus is selected from the group consisting of Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Carlaviruses or Vitiviruses.
  • the coding sequence may be expressed from the plant's genome and/or the virus may comprise and express the coding sequence.
  • the nucleic acid sequence encoding the 126 kDa protein and/or the 183 kDa protein may or may not be fused to the coding sequence.
  • the cell may be a plant cell.
  • the cell may also further be comprised in a plant.
  • the plant is a dicotyledonous plant. Examples of dicotyledonous plants include tobacco, tomato, potato, soybean, cotton, canola, alfalfa, sunflower, and cotton.
  • the plant is selected from the group consisting of Nicotiana tabacum and Nicotiana benthamiana .
  • the plant may also be a monocotyledonous plant. Examples of monocotyledonous plants include wheat, maize, rye, rice, oat, barley, turfgrass, sorghum, millet and sugarcane.
  • the invention provides a method of delivering a polypeptide of interest to a limited part of a plant comprising the step of infecting a plant with a Sindbis-like plant virus, wherein the virus encodes a 126 kDa protein and/or 183 kDa protein.
  • one or more mutations are at position 598-601 of the 126 kDa and/or 183 kDa protein.
  • the amino acid at position 598 is not methionine; the amino acid at position 598 is arginine; the amino acid at position 601 is not lysine; and/or the amino acid at position 601 is glutamic acid.
  • the plant is a dicotyledonous plant.
  • dicotyledonous plants include tobacco, tomato, potato, soybean, cotton, canola, alfalfa, sunflower, and cotton.
  • the plant is selected from the group consisting of Nicotiana tabacum and Nicotiana benthamiana .
  • the plant may also be a monocotyledonous plant. Examples of monocotyledonous plants include wheat, maize, rye, rice, oat, barley, turfgrass, sorghum, millet and sugarcane.
  • the subgroup Sindbisplant virus may be selected from the group consisting of Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Caralviruses and Vitiviruses.
  • FIG. 1 Genome organization of TMV showing the location of amino acid differences between M IC and M IC 1,3. Open reading frames (orfs) are indicated by bars. Nontranslated regions are denoted as lines. UAG designates the leaky amber termination codon. 126 and 183 kDa proteins function in virus replication and spread of Tobacco mosaic virus. The movement protein (MP) functions in cell-to-cell spread. The coat protein encapsidates the viral RNA and also functions in vascular-dependent accumulation. The shaded area in 126 kDa protein orf indicates the methyltransferase (MT) domain of this protein. The cross-hatched area in 126 kDa orf indicates the helicase domain of this protein.
  • MP movement protein
  • the coat protein encapsidates the viral RNA and also functions in vascular-dependent accumulation.
  • the shaded area in 126 kDa protein orf indicates the methyltransferase (MT) domain of this protein.
  • the area in 126 kDa orf between nt 1323 and 1430 indicates a region of conservation within Tobamoviruses, Bromoviridae, Tobraviruses, Ilarviruses and Hordeiviruses with no known function. Domains I and II are regions with less sequence similarity to subgroup Sindbis viruses and no known function (Shintaku et al. 1996). Numbers 1-8 indicate the position of the 8 amino acids that differ between M IC and the severe U1 strain of TMV. These amino acids are responsible for the different symptoms induced by these two strains. Sequence differences between M IC and M IC 1,3 126 and 183 kDa proteins are shown along with the amino acid location where they differ.
  • FIG. 3 Accumulation of viral RNA in inoculated and systemic tissue after inoculation with M IC 1,3.
  • a percentage of plants (20%) inoculated with M IC 1,3 were found to display systemic symptoms after time, with chlorotic areas observed in leaves interspersed with dark green areas (panel A).
  • Leaves from these systemic leaves were harvested and progeny virus sequenced using specific primers (arrows below viral genome indicate sequenced regions in panel B).
  • M IC 1,3,6 A second virus was identified in systemic tissue of another inoculated plant that also had a single substitution in this area (mutant referred to as M IC 1,3,6 or M IC 1,3,1872).
  • M IC 1,3,1872 induced symptoms identical to M IC 1,3,6*.
  • M IC 1,3 accumulation in systemic tissue is host dependent.
  • M IC 1,3 accumulates in systemic tissue of N. benthamiana (panel A), although the symptoms induced are less than those induced by the second site mutant, M IC 1,3,6* (panel B) at 16 days post inoculation.
  • M IC 1,3 is able to enter the vascular tissue and move systemically in N. tabacum cv. Xanthi. Grafting studies were conducted in which reciprocal grafts were made between N. tabacum and N. benthamiana rootstocks and scions. Accumulation of virus was determined at 8 days post inoculation via ELISA with antibodies against the CP of TMV. Inoculated leaves or shoot apices containing the youngest mature leaf and younger were harvested for analysis. Values for the grafts with N. benthamiana as the rootstock are means +/ ⁇ the standard deviation for 2 replicates. Values for the grafts with N. tabacum as the rootstock are values from individual samples from an experiment. These results indicate that M IC 1,3 could enter and move through the vascular tissue of the nonsupportive host ( N. tabacum ), but either could not exit or establish a systemic infection in the nonsupportive host.
  • FIG. 6 Delay of transgene silencing maps to the 126/183 kDa proteins of TMV as shown by inoculation with various strains and mutants of TMV.
  • Transgenic plants expressing the 126 kDa protein fused to GFP were inoculated with viruses M IC 1,3; M IC ; and M IC 1-8; (M IC 1-8 has an equivalent phenotype to the U1 strain) or mock-inoculated with buffer only (mock). Images were taken of systemic leaves, approximately 7 cm in midrib length, at various days post inoculation. At 4 and 7 days post inoculation the images were taken of the leaf surface and of a transverse section of the midrib.
  • FIG. 7A B Small RNAs. hallmarks of the presence of RNA silencing, are present in systemic leaves of plants undergoing silencing for GFP expression at 13 dpi.
  • FIG. 7A Tissue analyzed is from leaf one above those shown in FIG. 6. Identification of small RNAs was performed by northern-blot, using the 126 kDa protein orf as a probe, as described (Itaya et al., 2001). Numbers below are given in arbitrary units corresponding to relative radioactivity of equal areas of membrane corresponding to position of bands.
  • ssDNA is 25-mer oligonucleotide stained with ethidium bromide in 15% urea-PAGE.
  • FIG. 7B RNAs of molecular weight equivalent to 500-200 nucleotides stained with ethidium bromide are present in the same samples as shown in Panel 7A.
  • FIG. 8 Suppression of in trans transgene silencing maps to amino acid position 601 of the 126/183 kDa protein(s).
  • Leaves of transgenic plants expressing GFP line 16C
  • CMV Cucumber mosaic virus
  • expresser mock-infiltrated tissue
  • silenced Agrobacterium infiltrated and mock inoculated tissue.
  • Two studies were carried out. Images were taken of young developing systemic leaves at various days post inoculation. Images were obtained using a confocal system (model 1024ES, BioRad) attached to an upright microscope (Zeiss Axioshop) with a 2.5 ⁇ objective, as previously described by Cheng et al., 2000. DPI days post inoculation
  • FIG. 9 Suppression of GFP silencing is correlated with virus accumulation.
  • Composite image is of a stem of a plant above the leaf inoculated with M IC 1,3,6* and shows transient suppression of GFP silencing induced by M IC 1,3,6*.
  • Values indicate virus levels in green fluorescing leaf tissue and the distal red fluorescing leaf tissue (ng virion per mg fresh weight of tissue). Values represent means and standard deviations for 3 replicates per tissue sample. Light or green areas indicate expression while dark or red areas indicate silencing of expression.
  • FIG. 10 Model for the mechanism of TMV spread, silencing and stabilization of unfused RNA or protein.
  • the model indicates that host cytoplasmic silencing enzymes cannot enter viral replication complex (Virus Replication body), or the protein of the targeted RNA was made before destruction and therefore protected in the virus replication body. In either case the reporter protein is protected from destruction.
  • the virus replication body (Virus Replication Body) contains 126 kDa protein and other viral and host factors.
  • FIG. 11 Delay of gene silencing in transgenic N. tabacum plants expressing the 126 kDa protein:GFP fusion maps to amino acid 601 of the 126 kDa protein of TMV. Experiments were conducted using methods identical to those described to obtain results shown in FIG. 6. Images show the effect of various strains and mutants of TMV on the accumulation of GFP in the transgenic plants. When amino acid 601 was that found in the U1 sequence (i.e. as for M IC m6 or U1 viruses) silencing of the transgene was delayed compared with plants inoculated with virus where amino acid 601 was that found in the M IC sequence (i.e. as for U1m6 and M IC ).
  • M IC progeny virus from a cDNA representing the masked strain of TMV
  • M IC m6 progeny virus from transcript of a cDNA representing the masked strain of TMV with a single mutation at amino acid 601 resulting in a residue representing the U1 sequence
  • U1 virus representing the severe U1 strain of TMV
  • U1m6 progeny virus from transcript of a cDNA representing the U1 strain of TMV with a single mutation at amino acid 601 resulting in a residue representing the M IC sequence.
  • FIG. 12 Effect of ectopic expression of 126 kDa protein:GFP fusion on GFP expression in epidermal cells from infiltrated leaves of N. benthamiana plants expressing GFP directed to the endoplasmic reticulum (GFPer; plant line 16c). GFP-expressing N.
  • benthamiana leaves were infiltrated with buffer (mock), Agrobacterium tumefaciens directing expression of a GFP (GFP) with 78% identity to the transgene GFP (GFPer), a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion (fusion GFP sequence was identical to that of the free GFP expressed from the binary), or with Agrobacterium directing expression of the 126 kDa protein:GFP fusion alone.
  • plants were infiltrated with A. tumefaciens directing expression of GFPer or a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion.
  • FIG. 13 Effect of ectopic expression of 126 kDa protein:GFP fusion on GFP expression in epidermal cells from infiltrated leaves of nontransgenic N. benthamiana plants.
  • N. benthamiana leaves were infiltrated with buffer (mock), Agrobacterium tumefaciens directing expression of a GFP (GFP) with 78% identity to the transgene GFP (GFPer) described in FIG. 12, a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion (fusion GFP sequence was identical to that of the free GFP expressed from the binary), or with Agrobacterium directing expression of the 126 kDa protein:GFP fusion alone.
  • GFP GFP
  • GFPer transgene GFP
  • plants were infiltrated with A. tumefaciens directing expression of GFPer or a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion.
  • DPI days post inoculation. Light or green areas indicate expression while dark areas indicate silencing of expression.
  • the invention overcomes the limitations of the prior art by providing methods and compositions for modulating gene expression in plants.
  • the inventors have identified the 126 kDa and 183 kDa proteins of a subgroup Sindbis virus as being capable of modulating gene silencing of particular coding sequences, even when provided in the absence of other viral factors.
  • the technique may find particular use for modulating expression of one or more transgenes by decreasing gene silencing, as silencing of transgenes can frequently occur, especially when transgenes are present in more than one copy in a genome. This affect may be achieved without the need for fusions between a transgene coding sequence and the 126 kDa and/or 183 kDa protein, or alternatively, using such a fusion.
  • M IC 1,3 accumulated in inoculated leaves and entered the vascular tissue similarly to the parental masked (M IC ) strain, but failed to accumulate in systemic leaves of N. tabacum .
  • M IC 1,3 accumulated in inoculated leaves and entered the vascular tissue similarly to the parental masked (M IC ) strain, but failed to accumulate in systemic leaves of N. tabacum .
  • the lack of systemic accumulation by M IC 1,3 in N. tabacum was due to a host RNA silencing mechanism, as determined by the presence of small (approximately 25 nucleotide) RNAs and the loss of fluorescence signal from green fluorescent protein (GFP) fused to a viral protein.
  • GFP green fluorescent protein
  • TMV strains and mutants were correlated with their ability to delay silencing of a viral:nonviral fused transgene, transiently suppress silencing of a non-viral transgene encoding GFP, and stabilize accumulation of 126 kDa protein in protoplasts. Therefore, the 126/183 kDa proteins suppress silencing by protecting target RNA from degradation.
  • the 126 kDa and 183 kDa proteins could suppress silencing in the absence of other viral factors. For example, it was shown that expression of the 126 kDa protein in plants containing an unfused GFP construct exhibiting silencing in control tissues exhibited delayed silencing of GFP expression. Certain embodiments of the current invention thus concern plant transformation constructs comprising a nucleic acid sequence encoding the 126 kDa and/or 183 kDa proteins, their subgroup Sindbis homologues or mutations thereof which are not provided as fusions with other coding sequences. The 126 and 183 kDa proteins, respectively, enhance or are required for virus accumulation.
  • the 126 kDa protein contains conserved domains that by computer alignment encode methyltransferase and helicase domains surrounded by regions of unknown function and do not contain a known protease domain between them.
  • the 183 kDa protein contains these same domains plus an RNA dependent RNA polymerase domain. All plant subgroup Sindbis viruses contain these domains and by sequence comparison and position of these domains are here considered homologues of each other.
  • Such coding sequences may be provided that are operably linked to a heterologous promoter. Expression constructs are also provided comprising these sequences, as are plants and plant cells transformed with the sequences.
  • the 126 kDa protein and/or 183 kDa protein may or may not be provided as a fusion product with a coding sequence.
  • the 126 kDa protein and/or 183 kDa protein may be fused with a coding sequence imparting a desirable phenotype to a plant.
  • SEQ ID NOS:8 and 9 in fact represent a single protein, connected by a single amino acid (e.g., Alanine) by virtue of a readthrough by the virus of an internal stop codon (see SEQ ID NO:7). The same situation arises with SEQ ID NOS:23 and 24 (and SEQ ID NO:22).
  • Vectors used for plant transformation may include, for example, plasmids, cosmids, or any other suitable cloning system, as well as fragments of DNA therefrom.
  • vector or “expression vector”
  • all of the foregoing types of vectors, as well as nucleic acid sequences isolated therefrom, are included. It is contemplated that utilization of cloning systems with large insert capacities will allow introduction of large DNA sequences comprising more than one selected gene. Introduction of such sequences may be facilitated by use of bacterial or yeast artificial chromosomes (BACs or YACs, respectively), or even plant artificial chromosomes.
  • Particularly useful for transformation are expression cassettes which have been isolated from such vectors.
  • DNA segments used for transforming plant cells will, of course, generally comprise the cDNA, gene or genes which one desires to introduce into and have expressed in the host cells. These DNA segments can further include structures such as promoters, enhancers, polylinkers, or even regulatory genes as desired.
  • the DNA segment or gene chosen for cellular introduction will often encode a protein which will be expressed in the resultant recombinant cells resulting in a screenable or selectable trait and/or which will impart an improved phenotype to the resulting transgenic plant. However, this may not always be the case, and the present invention also encompasses transgenic plants incorporating non-expressed transgenes.
  • Preferred components likely to be included with vectors used in the current invention are as follows.
  • Exemplary promoters for expression of a nucleic acid sequence include plant promoter such as the CaMV 35S promoter (Odell et al., 1985), or others such as CaMV 19S (Lawton et al., 1987), nos (Ebert et al, 1987), Adh (Walker et al., 1987), sucrose synthase (Yang & Russell, 1990), a-tubulin, actin (Wang et al., 1992), cab (Sullivan et al., 1989), PEPCase (Hudspeth and Grula, 1989) or those associated with the R gene complex (Chandler et al, 1989).
  • plant promoter such as the CaMV 35S promoter (Odell et al., 1985), or others such as CaMV 19S (Lawton et al., 1987), nos (Ebert et al, 1987), Adh (Walker et al., 1987), sucrose synthase (Yang & Russell, 1990),
  • Tissue specific promoters such as root cell promoters (Conkling et al., 1990) and tissue specific enhancers (Fromm et al., 1986) are also contemplated to be particularly useful, as are inducible promoters such as ABA- and turgor-inducible promoters.
  • inducible promoters such as ABA- and turgor-inducible promoters.
  • the native promoter of a coding sequence is used.
  • the DNA sequence between the transcription initiation site and the start of the coding sequence can also influence gene expression.
  • a particular leader sequence with a transformation construct of the invention.
  • Preferred leader sequences are contemplated to include those which comprise sequences predicted to direct optimum expression of the attached gene, i.e., to include a preferred consensus leader sequence which may increase or maintain mRNA stability and prevent inappropriate initiation of translation. The choice of such sequences will be known to those of skill in the art in light of the present disclosure. Sequences that are derived from genes that are highly expressed in plants will typically be preferred.
  • vectors for use in accordance with the present invention may be constructed to include the ocs enhancer element.
  • This element was first identified as a 16 bp palindromic enhancer from the octopine synthase (ocs) gene of Agrobacterium (Ellis et al., 1987), and is present in at least 10 other promoters (Bouchez et al., 1989). It is proposed that the use of an enhancer element, such as the ocs element and particularly multiple copies of the element, will act to increase the level of transcription from adjacent promoters when applied in the context of plant transformation.
  • the native translation enhancer of a coding sequence is used (i.e. when expressed from within the virus genome).
  • tissue-specific targeting of genes in transgenic plants will typically include tissue-specific promoters and may also include other tissue-specific control elements such as enhancer sequences. Promoters which direct specific or enhanced expression in certain plant tissues will be known to those of skill in the art in light of the present disclosure.
  • rbcS promoter specific for green tissue
  • ocs, nos and mas promoters which have higher activity in roots or wounded leaf tissue
  • a truncated ( ⁇ 90 to +8) 35S promoter which directs enhanced expression in roots
  • an a-tubulin gene that also directs expression in roots.
  • Transformation constructs prepared in accordance with the invention will typically include a 3′ end DNA sequence that acts as a signal to terminate transcription and allow for the poly-adenylation of the mRNA produced by coding sequences.
  • the native terminator of a 126 kDa protein and/or the 183 kDa protein coding sequence used i.e. as expressed from the viral genome.
  • a heterologous 3′ end may enhance the expression of the gene.
  • terminators which are deemed to be useful in this context include those from the nopaline synthase gene of Agrobacterium tumefaciens (nos 3′ end) (Bevan et al., 1983), the terminator for the T7 transcript from the octopine synthase gene of Agrobacterium tumefaciens , and the 3′ end of the protease inhibitor I or II genes from potato or tomato.
  • Regulatory elements such as an Adh intron (Callis et al., 1987), sucrose synthase intron (Vasil et al., 1989) or TMV omega element (Gallie et al., 1989), may further be included where desired.
  • Sequences that are joined to the coding sequence of an expressed gene, which are removed post-translationally from the initial translation product and which facilitate the transport of the protein into or through intracellular or extracellular membranes, are termed transit (usually into vacuoles, vesicles, plastids and other intracellular organelles) and signal sequences (usually to the endoplasmic reticulum, golgi apparatus and outside of the cellular membrane).
  • transit usually into vacuoles, vesicles, plastids and other intracellular organelles
  • signal sequences usually to the endoplasmic reticulum, golgi apparatus and outside of the cellular membrane.
  • translatable mRNA in front of the gene may increase the overall stability of the mRNA transcript from the gene and thereby increase synthesis of the gene product. Since transit and signal sequences are usually post-translationally removed from the initial translation product, the use of these sequences allows for the addition of extra translated sequences that may not appear on the final polypeptide. It further is contemplated that targeting of certain proteins may be desirable in order to enhance the stability of the protein (U.S. Pat. No. 5,545,818, incorporated herein by reference in its entirety).
  • vectors may be constructed and employed in the intracellular targeting of a specific gene product within the cells of a transgenic plant or in directing a protein to the extracellular environment. This generally will be achieved by joining a DNA sequence encoding a transit or signal peptide sequence to the coding sequence of a particular gene. The resultant transit, or signal, peptide will transport the protein to a particular intracellular, or extracellular destination, respectively, and will then be post-translationally removed.
  • Marker genes are genes that impart a distinct phenotype to cells expressing the marker protein and thus allow such transformed cells to be distinguished from cells that do not have the marker. Such genes may encode either a selectable or screenable marker, depending on whether the marker confers a trait which one can “select” for by chemical means, i.e., through the use of a selective agent (e.g., a herbicide, antibiotic, or the like), or whether it is simply a trait that one can identify through observation or testing, i.e., by “screening” (e.g., the green fluorescent protein).
  • a selective agent e.g., a herbicide, antibiotic, or the like
  • screening e.g., the green fluorescent protein
  • selectable or screenable markers also are genes which encode a “secretable marker” whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which are secretable antigens that can be identified by antibody interaction, or even secretable enzymes which can be detected by their catalytic activity.
  • Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, e.g., by ELISA; small active enzymes detectable in extracellular solution (e.g., ⁇ -amylase, ⁇ -lactamase, phosphinothricin acetyltransferase); and proteins that are inserted or trapped in the cell wall (e.g., proteins that include a leader sequence such as that found in the expression unit of extensin or tobacco PR-S).
  • small, diffusible proteins detectable e.g., by ELISA
  • small active enzymes detectable in extracellular solution e.g., ⁇ -amylase, ⁇ -lactamase, phosphinothricin acetyltransferase
  • proteins that are inserted or trapped in the cell wall e.g., proteins that include a leader sequence such as that found in the expression unit of extensin or tobacco PR-S.
  • a gene that encodes a protein that becomes sequestered in the cell wall, and which protein includes a unique epitope is considered to be particularly advantageous.
  • a secreted antigen marker would ideally employ an epitope sequence that would provide low background in plant tissue, a promoter-leader sequence that would impart efficient expression and targeting across the plasma membrane, and would produce protein that is bound in the cell wall and yet accessible to antibodies.
  • a normally secreted wall protein modified to include a unique epitope would satisfy all such requirements.
  • neo Paneo (Potrykus et al, 1985), which provides kanamycin resistance and can be selected for using kanamycin, G418, paromomycin, etc.; bar, which confers bialaphos or phosphinothricin resistance; a mutant EPSP synthase protein (Hinchee et al., 1988) conferring glyphosate resistance; a nitrilase such as bxn from Klebsiella ozaenae which confers resistance to bromoxynil (Stalker et al., 1988); a mutant acetolactate synthase (ALS) which confers resistance to imidazolinone, sulfonylurea or other ALS inhibiting chemicals (European Patent Application 154,204, 1985); a methotrexate resistant DHFR (Thillet et al, 1988), a dalapon
  • selectable marker capable of being used in systems to select transformants are those that encode the enzyme phosphinothricin acetyltransferase, such as the bar gene from Streptomyces hygroscopicus or the pat gene from Streptomyces viridochromogenes .
  • the enzyme phosphinothricin acetyl transferase (PAT) inactivates the active ingredient in the herbicide bialaphos, phosphinothricin (PPT). PPT inhibits glutamine synthetase, (Murakami et al., 1986; Twell et al., 1989) causing rapid accumulation of ammonia and cell death.
  • Screenable markers that may be employed include a ⁇ -glucuronidase (GUS) or uidA gene which encodes an enzyme for which various chromogenic substrates are known; an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., 1988); a ⁇ -lactamase gene (Sutcliffe, 1978), which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a xylE gene (Zukowsky et al., 1983) which encodes a catechol dioxygenase that can convert chromogenic catechols; an ⁇ -amylase gene (Ikuta et al., 1990); a tyrosinase gene (Katz et al., 1983) which encodes an enzyme capable of oxidizing tyros
  • Another screenable marker contemplated for use in the present invention is firefly luciferase, encoded by the lux gene.
  • the presence of the lux gene in transformed cells may be detected using, for example, X-ray film, scintillation counting, fluorescent spectrophotometry, low-light video cameras, photon counting cameras or multiwell luminometry. It also is envisioned that this system may be developed for populational screening for bioluminescence, such as on tissue culture plates, or even for whole plant screening.
  • green fluorescent protein (GFP) is also contemplated as a particularly useful reporter gene (Sheen et al., 1995; Haseloffet al., 1997; Reichel et al., 1996; Tian et al., 1997; WO 97/41228). Expression of green fluorescent protein may be visualized in a cell or plant as fluorescence following illumination by particular wavelengths of light.
  • Suitable methods for transformation of plant or other cells for use with the current invention are believed to include virtually any method by which DNA can be introduced into a cell, such as by direct delivery of DNA such as by PEG-mediated transformation of protoplasts (Omirulleh et al., 1993), by desiccation/inhibition-mediated DNA uptake (Potrykus et al., 1985), by electroporation (U.S. Pat. No. 5,384,253, specifically incorporated herein by reference in its entirety), by agitation with silicon carbide fibers (Kaeppler et al., 1990; U.S. Pat. No. 5,302,523, specifically incorporated herein by reference in its entirety; and U.S. Pat. No.
  • delivery of a nucleic acid is achieved using a Sindbis-like virus.
  • a selected coding sequence that one desires to have expressed in a cell may be introduced into the genome of a Sindbis-like virus and introduced into a plant cell via infection with the virus.
  • a coding sequence may be expressed from a virus genome in a transient manner to allow protection for transgenic proteins in tissue where virus accumulates.
  • virus vectors have used to express multiple foreign genes (i.e., the protein of interest and the 126 kDa protein and or 183 kDa protein) from their genomes (Chapman et al., 1992; Hamamoto et al., 1993).
  • Transient expression may also be utilized where the gene encoding a protein of interest in transformed into a plant cell such that the plant stably carries expresses the transgene. The virus is then used ot infect the transgenic plant tissue where virus protein accumulates and interacts with the protein of interest.
  • Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast.
  • the use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described by Fraley et al., (1985), Rogers et al, (1987) and U.S. Pat. No. 5,563,055, specifically incorporated herein by reference in its entirety.
  • Agrobacterium-mediated transformation is most efficient in dicotyledonous plants and is the preferable method for transformation of dicots, including Arabidopsis, tobacco, tomato, alfalfa and potato. Indeed, while Agrobacterium-mediated transformation has been routinely used with dicotyledonous plants for a number of years, it has only recently become applicable to monocotyledonous plants. Advances in Agrobacterium-mediated transformation techniques have now made the technique applicable to nearly all monocotyledonous plants. For example, Agrobacterium-mediated transformation techniques have now been applied to rice (Hiei et al., 1997; U.S. Pat. No.
  • Modern Agrobacterium transformation vectors are capable of replication in E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate the construction of vectors capable of expressing various polypeptide coding genes.
  • the vectors described (Rogers et al., 1987) have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes.
  • Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.
  • friable tissues such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly.
  • pectolyases pectolyases
  • mechanically wounding in a controlled manner.
  • pectolyases pectolyases
  • One also may employ protoplasts for electroporation transformation of plants (Bates, 1994; Lazzeri, 1995).
  • protoplasts for electroporation transformation of plants
  • the generation of transgenic soybean plants by electroporation of cotyledon-derived protoplasts is described by Dhir and Widholm in Intl. Patent Appl. Publ. No. WO 9217598 (specifically incorporated herein by reference).
  • Other examples of species for which protoplast transformation has been described include barley (Lazerri, 1995), sorghum (Battraw et al., 1991), maize (Bhattacharjee et al, 1997), wheat (He et al., 1994) and tomato (Tsukada, 1989).
  • microprojectile bombardment U.S. Pat. No. 5,550,318; U.S. Pat. No. 5,538,880; U.S. Pat. No. 5,610,042; and PCT Application WO 94/09699; each of which is specifically incorporated herein by reference in its entirety.
  • particles may be coated with nucleic acids and delivered into cells by a propelling force.
  • Exemplary particles include those comprised of tungsten, platinum, and preferably, gold. It is contemplated that in some instances DNA precipitation onto metal particles would not be necessary for DNA delivery to a recipient cell using microprojectile bombardment. However, it is contemplated that particles may contain DNA rather than be coated with DNA. Hence, it is proposed that DNA-coated particles may increase the level of DNA delivery via particle bombardment but are not, in and of themselves, necessary.
  • cells in suspension are concentrated on filters or solid culture medium.
  • immature embryos or other target cells may be arranged on solid culture medium.
  • the cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate.
  • An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with monocot plant cells cultured in suspension. The screen disperses the particles so that they are not delivered to the recipient cells in large aggregates.
  • Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species. Examples of species for which have been transformed by microprojectile bombardment include monocot species such as maize (PCT Application WO 95/06128), barley (Ritala et al., 1994; Hensgens et al., 1993), wheat (U.S. Pat.
  • Transformation of protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., 1985; Lorz et al., 1985; Omirulleh et al., 1993; Fromm et al., 1986; Uchimiya et al., 1986; Callis et al., 1987; Marcotte et al., 1988).
  • Examples of the use of direct uptake transformation of cereal protoplasts include transformation of rice (Ghosh-Biswas et al., 1994), sorghum (Battraw and Hall, 1991), barley (Lazerri, 1995), oat (Zheng and Edwards, 1990) and maize (Omirulleh et al., 1993).
  • Tissue cultures may be used in certain transformation techniques for the preparation of cells for transformation and for the regeneration of plants therefrom. Maintenance of tissue cultures requires use of media and controlled environments. “Media” refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. The medium usually is a suspension of various categories of ingredients (salts, amino acids, growth regulators, sugars, buffers) that are required for growth of most cell types. However, each specific cell type requires a specific range of ingredient proportions for growth, and an even more specific range of formulas for optimum growth. Rate of cell growth also will vary among cultures initiated with the array of media that permit growth of that cell type.
  • Nutrient media is prepared as a liquid, but this may be solidified by adding the liquid to materials capable of providing a solid support.
  • Agar is most commonly used for this purpose.
  • Bactoagar, Hazelton agar, Gelrite, and Gelgro are specific types of solid support that are suitable for growth of plant cells in tissue culture.
  • Tissue that can be grown in a culture includes meristem cells, Type I, Type II, and Type III callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells.
  • Type I, Type II, and Type III callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, root, leaf, microspores and the like. Those cells which are capable of proliferating as callus also are recipient cells for genetic transformation.
  • Somatic cells are of various types. Embryogenic cells are one example of somatic cells which may be induced to regenerate a plant through embryo formation. Non-embryogenic cells are those which typically will not respond in such a fashion. Certain techniques may be used that enrich recipient cells within a cell population. For example, Type II callus development, followed by manual selection and culture of friable, embryogenic tissue, generally results in an enrichment of cells. Manual selection techniques which can be employed to select target cells may include, e.g., assessing cell morphology and differentiation, or may use various physical or biological means. Cryopreservation also is a possible method of selecting for recipient cells.
  • Manual selection of recipient cells e.g., by selecting embryogenic cells from the surface of a Type II callus, is one means that may be used in an attempt to enrich for particular cells prior to culturing (whether cultured on solid media or in suspension).
  • cultured cells may be grown either on solid supports or in the form of liquid suspensions. In either instance, nutrients may be provided to the cells in the form of media, and environmental conditions controlled.
  • tissue culture media comprised of various amino acids, salts, sugars, growth regulators and vitamins. Most of the media employed in the practice of the invention will have some similar components, but may differ in the composition and proportions of their ingredients depending on the particular application envisioned. For example, various cell types usually grow in more than one type of media, but will exhibit different growth rates and different morphologies, depending on the growth media. In some media, cells survive but do not divide.
  • Various types of media suitable for culture of plant cells previously have been described. Examples of these media include, but are not limited to, the N6 medium described by Chu et al. (1975) and MS media (Murashige and Skoog, 1962).
  • the next steps generally concern identifying the transformed cells for further culturing and plant regeneration.
  • identifying the transformed cells for further culturing and plant regeneration.
  • one may desire to employ a selectable or screenable marker gene with a transformation vector prepared in accordance with the invention.
  • DNA is introduced into only a small percentage of target cells in any one experiment: In order to provide an efficient system for identification of those cells receiving DNA and integrating it into their genomes one may employ a means for selecting those cells that are stably transformed.
  • One exemplary embodiment of such a method is to introduce into the host cell, a marker gene which confers resistance to some normally inhibitory agent, such as an antibiotic or herbicide.
  • antibiotics which may be used include the aminoglycoside antibiotics neomycin, kanamycin and paromomycin, or the antibiotic hygromycin. Resistance to the aminoglycoside antibiotics is conferred by aminoglycoside phosphostransferase enzymes. such as neomycin phosphotransferase II (NPT II) or NPT I, whereas resistance to hygromycin is conferred by hygromycin phosphotransferase.
  • Potentially transformed cells then are exposed to the selective agent.
  • the population of surviving cells will be those cells where, generally, the resistance-conferring gene has been integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA.
  • Bialaphos is a tripeptide antibiotic produced by Streptomyces hygroscopicus and is composed of phosphinothricin (PPT), an analogue of L-glutamic acid, and two L-alanine residues. Upon removal of the L-alanine residues by intracellular peptidases, the PPT is released and is a potent inhibitor of glutamine synthetase (GS), a pivotal enzyme involved in ammonia assimilation and nitrogen metabolism (Ogawa et al., 1973). Synthetic PPT, the active ingredient in the herbicide LibertyTM also is effective as a selection agent. Inhibition of GS in plants by PPT causes the rapid accumulation of ammonia and death of the plant cells.
  • PPT phosphinothricin
  • GS glutamine synthetase
  • Synthetic PPT the active ingredient in the herbicide LibertyTM also is effective as a selection agent. Inhibition of GS in plants by PPT causes the rapid accumulation of ammonia and
  • the organism producing bialaphos and other species of the genus Streptomyces also synthesizes an enzyme phosphinothricin acetyl transferase (PAT) which is encoded by the bar gene in Streptomyces hygroscopicus and the pat gene in Streptomyces viridochromogenes .
  • PAT phosphinothricin acetyl transferase
  • the use of the herbicide resistance gene encoding phosphinothricin acetyl transferase (PAT) is referred to in DE 3642 829 A, wherein the gene is isolated from Streptomyces viridochromogenes .
  • this enzyme acetylates the free amino group of PPT preventing auto-toxicity (Thompson et al., 1987).
  • the bar gene has been cloned (Murakami et al., 1986; Thompson et al., 1987) and expressed in transgenic tobacco, tomato, potato (De Block et al., 1987) Brassica (De Block et al., 1989) and maize (U.S. Pat. No. 5,550,318).
  • some transgenic plants which expressed the resistance gene were completely resistant to commercial formulations of PPT and bialaphos in greenhouses.
  • Glyphosate inhibits the action of the enzyme EPSPS which is active in the aromatic amino acid biosynthetic pathway. Inhibition of this enzyme leads to starvation for the amino acids phenylalanine, tyrosine, and tryptophan and secondary metabolites derived thereof.
  • U.S. Pat. No. 4,535,060 describes the isolation of EPSPS mutations which confer glyphosate resistance on the Salmonella typhimurium gene for EPSPS, aroA.
  • the EPSPS gene was cloned from Zea mays and mutations similar to those found in a glyphosate resistant aroA gene were introduced in vitro. Mutant genes encoding glyphosate resistant EPSPS enzymes are described in, for example, International Patent WO 97/4103. The best characterized mutant EPSPS gene conferring glyphosate resistance comprises amino acid changes at residues 102 and 106, although it is anticipated that other mutations will also be useful (PCT/WO97/4103).
  • transformed tissue is cultured for 0-28 days on nonselective medium and subsequently transferred to medium containing from 1-3 mg/l bialaphos or 1-3 mM glyphosate as appropriate. While ranges of 1-3 mg/l bialaphos or 1-3 mM glyphosate will typically be preferred, it is proposed that ranges of 0.1-50 mg/l bialaphos or 0.1-50 mM glyphosate will find utility.
  • the herbicide DALAPON 2,2-dichloropropionic acid
  • the enzyme 2,2-dichloropropionic acid dehalogenase inactivates the herbicidal activity of 2,2-dichloropropionic acid and therefore confers herbicidal resistance on cells or plants expressing a gene encoding the dehalogenase enzyme (Buchanan-Wollaston et al., 1992; U.S. Pat. No. 5,508,468; and U.S. Pat. No. 5,508,468; each of the disclosures of which is specifically incorporated herein by reference in its entirety).
  • anthranilate synthase which confers resistance to certain amino acid analogs, e.g., 5-methyltryptophan or 6-methyl anthranilate, may be useful as a selectable marker gene.
  • an anthranilate synthase gene as a selectable marker was described in U S. Pat. No. 5,508,468.
  • An example of a screenable marker trait is the enzyme luciferase.
  • cells expressing luciferase emit light which can be detected on photographic or x-ray film, in a luminometer (or liquid scintillation counter), by devices that enhance night vision, or by a highly light sensitive video camera, such as a photon counting camera.
  • luciferase enzyme luciferase
  • a highly light sensitive video camera such as a photon counting camera.
  • the photon counting camera is especially valuable as it allows one to identify specific cells or groups of cells which are expressing luciferase and manipulate those in real time.
  • Another screenable marker which may be used in a similar fashion is the gene coding for green fluorescent protein.
  • a selection agent such as bialaphos or glyphosate
  • selection with a growth inhibiting compound, such as bialaphos or glyphosate at concentrations below those that cause 100% inhibition followed by screening of growing tissue for expression of a screenable marker gene such as luciferase would allow one to recover transformants from cell or tissue types that are not amenable to selection alone.
  • combinations of selection and screening may enable one to identify transformants in a wider variety of cell and tissue types. This may be efficiently achieved using a gene fusion between a selectable marker gene and a screenable marker gene, for example, between an NPTII gene and a GFP gene.
  • Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay may be cultured in media that supports regeneration of plants.
  • MS and N6 media may be modified by including further substances such as growth regulators.
  • growth regulators is dicamba or 2,4-D.
  • growth regulators may be employed, including NAA, NAA+2,4-D or picloram. Media improvement in these and like ways has been found to facilitate the growth of cells at specific developmental stages.
  • Tissue may be maintained on a basic media with growth regulators until sufficient tissue is available to begin plant regeneration efforts, or following repeated rounds of manual selection, until the morphology of the tissue is suitable for regeneration, at least 2 wk, then transferred to media conducive to maturation of embryoids. Cultures are transferred every 2 wk on this medium. Shoot development will signal the time to transfer to medium lacking growth regulators.
  • the transformed cells identified by selection or screening and cultured in an appropriate medium that supports regeneration, will then be allowed to mature into plants.
  • Developing plantlets are transferred to soiless plant growth mix, and hardened, e.g., in an environmentally controlled chamber, for example, at about 85% relative humidity, 600 ppm CO 2 , and 25-250 microeinsteins m ⁇ 2 s ⁇ 1 of light.
  • Plants are preferably matured either in a growth chamber or greenhouse. Plants can be regenerated from about 6 wk to 10 months after a transformant is identified, depending on the initial tissue.
  • cells are grown on solid media in tissue culture vessels. Illustrative embodiments of such vessels are petri dishes and Plant Cons.
  • Regenerating plants are preferably grown at about 19 to 28° C. After the regenerating plants have reached the stage of shoot and root development, they may be transferred to a greenhouse for further growth and testing.
  • Seeds on transformed plants may occasionally require embryo rescue due to cessation of seed development and premature senescence of plants.
  • embryo rescue To rescue developing embryos, they are excised from surface-disinfected seeds 10-20 days post-pollination and cultured.
  • An embodiment of media used for culture at this stage comprises MS salts, 2% sucrose, and 5.5 g/l agarose.
  • embryo rescue large embryos (defined as greater than 3 mm in length) are germinated directly on an appropriate media. Embryos smaller than that may be cultured for 1 wk on media containing the above ingredients along with 10 ⁇ 5 M abscisic acid and then transferred to growth regulator-free medium for germination.
  • assays include, for example, “molecular biological” assays, such as Southern and Northern blotting and PCRTM; “biochemical” assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant.
  • Genomic DNA may be isolated from cell lines or any plant parts to determine the presence of the exogenous gene through the use of techniques well known to those skilled in the art. Note, that intact sequences will not always be present, presumably due to rearrangement or deletion of sequences in the cell.
  • the presence of DNA elements introduced through the methods of this invention may be determined, for example, by polymerase chain reaction (PCRTM). Using this technique, discreet fragments of DNA are amplified and detected by gel electrophoresis. This type of analysis permits one to determine whether a gene is present in a stable transformant, but does not prove integration of the introduced gene into the host cell genome. It is typically the case, however, that DNA has been integrated into the genome of all transformants that demonstrate the presence of the gene through PCRTM analysis.
  • PCRTM polymerase chain reaction
  • PCRTM techniques it is not typically possible using PCRTM techniques to determine whether transformants have exogenous genes introduced into different sites in the genome, i.e., whether transformants are of independent origin. It is contemplated that using PCRTM techniques it would be possible to clone fragments of the host genomic DNA adjacent to an introduced gene.
  • Positive proof of DNA integration into the host genome and the independent identities of transformants may be determined using the technique of Southern hybridization. Using this technique specific DNA sequences that were introduced into the host genome and flanking host DNA sequences can be identified. Hence the Southern hybridization pattern of a given transformant serves as an identifying characteristic of that transformant. In addition it is possible through Southern hybridization to demonstrate the presence of introduced genes in high molecular weight DNA, i.e., confirm that the introduced gene has been integrated into the host cell genome. The technique of Southern hybridization provides information that is obtained using PCRTM, e.g., the presence of a gene, but also demonstrates integration into the genome and characterizes each individual transformant.
  • Both PCRTM and Southern hybridization techniques can be used to demonstrate transmission of a transgene to progeny. In most instances the characteristic Southern hybridization pattern for a given transformant will segregate in progeny as one or more Mendelian genes (Spencer et al., 1992) indicating stable inheritance of the transgene.
  • RNA will only be expressed in particular cells or tissue types and hence it will be necessary to prepare RNA for analysis from these tissues.
  • PCRTM techniques also may be used for detection and quantitation of RNA produced from introduced genes. In this application of PCRTM it is first necessary to reverse transcribe RNA into DNA, using enzymes such as reverse transcriptase, and then through the use of conventional PCRTM techniques amplify the DNA. In most instances PCRTM techniques, while useful, will not demonstrate integrity of the RNA product. Further information about the nature of the RNA product may be obtained by Northern blotting. This technique will demonstrate the presence of an RNA species and give information about the integrity of that RNA. The presence or absence of an RNA species also can be determined using dot or slot blot Northern hybridizations. These techniques are modifications of Northern blotting and will only demonstrate the presence or absence of an RNA species.
  • Southern blotting and PCRTM may be used to detect the gene(s) in question, they do not provide information as to whether the corresponding protein is being expressed. Expression may be evaluated by specifically identifying the protein products of the introduced genes or evaluating the phenotypic changes brought about by their expression.
  • Assays for the production and identification of specific proteins may make use of physical-chemical, structural, functional, or other properties of the proteins.
  • Unique physical-chemical or structural properties allow the proteins to be separated and identified by electrophoretic procedures, such as native or denaturing gel electrophoresis or isoelectric focusing, or by chromatographic techniques such as ion exchange or gel exclusion chromatography.
  • the unique structures of individual proteins offer opportunities for use of specific antibodies to detect their presence in formats such as an ELISA assay. Combinations of approaches may be employed with even greater specificity such as western blotting in which antibodies are used to locate individual gene products that have been separated by electrophoretic techniques. Additional techniques may be employed to absolutely confirm the identity of the product of interest such as evaluation by amino acid sequencing following purification. Although these are among the most commonly employed, other procedures may be additionally used.
  • Assay procedures also may be used to identify the expression of proteins by their functionality, especially the ability of enzymes to catalyze specific chemical reactions involving specific substrates and products. These reactions may be followed by providing and quantifying the loss of substrates or the generation of products of the reactions by physical or chemical procedures. Examples are as varied as the enzyme to be analyzed and may include assays for PAT enzymatic activity by following production of radiolabeled acetylated phosphinothricin from phosphinothricin and 14 C-acetyl CoA or for anthranilate synthase activity by following loss of fluorescence of anthranilate, to name two.
  • bioassays Very frequently the expression of a gene product is determined by evaluating the phenotypic results of its expression. These assays also may take many forms including but not limited to analyzing changes in the chemical composition, morphology, or physiological properties of the plant. Chemical composition may be altered by expression of genes encoding enzymes or storage proteins which change amino acid composition and may be detected by amino acid analysis, or by enzymes which change starch quantity which may be analyzed by near infrared reflectance spectrometry. Morphological changes may include greater stature or thicker stalks. Most often changes in response of plants or plant parts to imposed treatments are evaluated under carefully controlled conditions termed bioassays.
  • transgenic plants may be made by crossing a plant having a selected DNA of the invention to a second plant lacking the construct.
  • a selected gene can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the current invention not only encompasses a plant directly transformed or regenerated from cells which have been transformed in accordance with the current invention, but also the progeny of such plants.
  • progeny denotes the offspring of any generation of a parent plant prepared in accordance with the instant invention, wherein the progeny comprises a selected DNA construct prepared in accordance with the invention.
  • Crossing a plant to provide a plant line having one or more added transgenes relative to a starting plant line, as disclosed herein, is defined as the techniques that result in a transgene of the invention being introduced into a plant line by crossing a starting line with a donor plant line that comprises a transgene of the invention. To achieve this one could, for example, perform the following steps:
  • Introgression of a DNA element into a plant genotype is defined as the result of the process of backcross conversion.
  • a plant genotype into which a DNA sequence has been introgressed may be referred to as a backcross converted genotype, line, inbred, or hybrid.
  • a plant genotype lacking the desired DNA sequence may be referred to as an unconverted genotype, line, inbred, or hybrid.
  • Expression The combination of intracellular processes, including transcription and translation undergone by a coding DNA molecule such as a structural gene to produce a polypeptide.
  • Genetic Transformation A process of introducing a DNA sequence or construct (e.g., a vector or expression cassette) into a cell or protoplast in which that exogenous DNA is incorporated into a chromosome or is capable of autonomous replication.
  • a DNA sequence or construct e.g., a vector or expression cassette
  • Heterologous A sequence which is not normally present in a given host genome in the genetic context in which the sequence is currently found In this respect, the sequence may be native to the host genome, but be rearranged with respect to other genetic sequences within the host sequence.
  • a regulatory sequence may be heterologous in that it is linked to a different coding sequence relative to the native regulatory sequence.
  • obtaining When used in conjunction with a transgenic plant cell or transgenic plant, obtaining means either transforming a non-transgenic plant cell or plant to create the transgenic plant cell or plant, or planting transgenic plant seed to produce the transgenic plant cell or plant.
  • a transgenic plant seed may be from an Ro transgenic plant or may be from a progeny of any generation thereof that inherits a given transgenic sequence from a starting transgenic parent plant.
  • Promoter A recognition site on a DNA sequence or group of DNA sequences that provides an expression control element for a structural gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene.
  • Selected DNA A DNA segment which one desires to introduce into a genome by genetic transformation.
  • Transformation construct A chimeric DNA molecule which is designed for introduction into a host genome by genetic transformation.
  • Preferred transformation constructs will comprise all of the genetic elements necessary to direct the expression of one or more exogenous genes.
  • Transformed cell A cell the DNA complement of which has been altered by the introduction of an exogenous DNA molecule into that cell.
  • Transgene A segment of DNA which has been incorporated into a host genome or is capable of autonomous replication in a host cell and is capable of causing the expression of one or more coding sequences. Exemplary transgenes will provide the host cell, or plants regenerated therefrom, with a novel phenotype relative to the corresponding non-transformed cell or plant. Transgenes may be directly introduced into a plant by genetic transformation, or may be inherited from a plant of any previous generation which was transformed with the DNA segment.
  • Transgenic plant A plant or progeny plant of any subsequent generation derived therefrom, wherein the DNA of the plant or progeny thereof contains an introduced exogenous DNA segment not naturally present in a non-transgenic plant of the same strain.
  • the transgenic plant may additionally contain sequences which are native to the plant being transformed, but wherein the “exogenous” gene has been altered in order to alter the level or pattern of expression of the gene, for example, by use of one or more heterologous regulatory or other elements.
  • Vector A DNA molecule capable of replication in a host cell and/or to which another DNA segment can be operatively linked so as to bring about replication of the attached segment.
  • a plasmid is an exemplary vector.
  • M IC 1,3 infects inoculated leaves of N. tabacum , but does not induce systemic symptoms on the host ( N. tabacum cv. Xanthi, Shintaku et al., 1996). Compared with the parental virus, M IC 1,3-encoded proteins accumulated differentially in N. tabacum or in protoplasts. In inoculated leaves of N. tabacum , there was no difference in coat protein (CP) accumulation between the two viruses through the period when systemic spread of TMV normally occurs (Table 1). When M IC 1,3 and M IC were inoculated onto N. tabacum cv.
  • CP coat protein
  • Xanthi NN a hypersensitive host for TMV, necrotic lesion appearance and lesion diameters were identical for the two viruses. This finding indicated that the accumulation of M IC 1,3-encoded movement protein (MP), essential for cell-to-cell movement of this virus, was sufficiently like the parental strain to induce normal size lesions.
  • MP M IC 1,3-encoded movement protein
  • Protoplasts isolated from mature leaves and subsequently inoculated with M IC 1,3, M IC , or U1 resulted in similar MP accumulation for all three viruses (FIG. 2).
  • the nucleic acid sequence for the 126 kDa and 183 kDa coding sequence of the U1 strain are given in SEQ ID NO:1 and SEQ ID NO:3, and the corresponding amino acid sequences are given in SEQ ID NO:2 and SEQ ID NO:4, respectively.
  • M IC 1,3-inoculated protoplasts accumulated less 126 kDa protein than M IC -inoculated protoplasts
  • the ability of M IC 1,3 to spread in inoculated leaves was similar to the parental M IC .
  • the appearance of M IC 1,3 or M IC CP was monitored in minor vein cells of inoculated N. tabacum cv. Xanthi leaves during the period when systemic symptoms would normally appear. Both viruses were able to invade any of the cell types within the vascular tissue (Table 3).
  • cDNA from the systemic leaves of the transgenic plant expressing the U1 gene for the 183 kDa protein was sequenced through all the TMV orfs (FIG. 3).
  • Virus from this tissue contained a single sequence alteration from that of the parental virus at nucleotide 1864 in the 126 kDa protein orf.
  • the altered sequence resulted in a substitution different from the U1 sequence of arginine for methionine at amino acid residue 598 in the 126 kDa protein.
  • cDNA from the systemic leaves of the nontransgenic plant were sequenced from nucleotides 997 to 1380, 1756-2123, and 2249-2427, an area containing all the codons resulting in amino acid differences between the M IC and U1 126 kDa proteins. There was a single substitution at nucleotide 1872, altering the sequence at this position of this mutant virus to that of U1. This sequence alteration resulted in an amino acid substitution of glutamic acid for lysine at position 601 in the 126 kDa protein.
  • both viruses referred to as M IC 1,3,1864 and M IC 1,3,1872, contained single nucleotide substitutions near one another and within the 126 kDa protein and 183 kDa protein 5′ coterminal orfs.
  • a single substitution at nucleotide 1872 of the M IC cDNA U1 sequence yielded a virus, M IC 6, that induced a severe systemic symptom phenotype (Shintaku et al., 1996). This virus also accumulates in systemic tissue (Derrick et al., 1997). In addition, another mutant of M IC was produced with altered sequences at positions 1,3 and 6 (M IC m1,3,6; Shintaku et al., 1996). The symptom and systemic accumulation phenotypes induced by this virus were similar to those induced by M IC 1,3,1864 and M IC 1,3,1872.
  • the M IC strain is attenuated or delayed in accumulation in the minor veins of the inoculated leaves compared with the U1 strain of TMV (Ding et al., 1995b).
  • the lack of systemic virus accumulation for M IC 1,3 is beyond the location previously identified for the M IC strain.
  • M IC 1,3 accumulated 10 fold less in the N. tabacum scion compared with M IC or M IC 1,3,1864.
  • a similar result was obtained by analyzing young leaves of N. tabacum (cv. Xanthi) through reverse transcription and PCRTM after inoculation of the lower part of the plant with M IC 1,3.
  • M IC 1,3 was either not detected or detected at very low levels in systemic tissue compared with that observed after U1-TMV inoculation. Therefore, M IC 1,3 either had difficulty exiting vascular tissue or establishing infection after exit.
  • N. tabacum cv. Xanthi expressing a 126 kDa protein:green fluorescent protein (GFP) fusion were challenged with various strains and mutants of TMV and the level of GFP expression in systemic leaves monitored through confocal microscopy as the infections progressed (FIG. 6).
  • Host-derived viral:GFP transgene expression was silenced earlier in systemic leaves of plants inoculated with M IC 1,3 or M IC than in those inoculated with a mutant of M IC where all eight amino acids differing between M IC and U1 were altered to the U1 sequence, yielding M IC 1-8, a virus that produces U1-like severe systemic symptoms.
  • amino acid 601 position 6 in FIG. 1
  • amino acid 601 position 6 in FIG. 1
  • 126 kDa protein-GFP expressing plants inoculated with M IC 6 were delayed in GFP silencing compared to M IC
  • UIm6 complementary mutant, UIm6, containing the amino acid from M IC at position 6 in the U1 background, silenced GFP fluorescence more quickly than did U1.
  • Tissue was analyzed from leaves harvested at 13 days post inoculation, when silencing was particularly apparent (FIG. 7). Tissue was harvested from leaves one above those shown in FIG. 6 and assayed for the appearance of small RNAs, indicative of active RNA silencing. Small RNAs were present in all virus challenged tissue with the quantity of small RNAs being negatively correlated with the level of GFP silencing observed (compare results in FIG. 7 with those shown in FIG. 6). These results indicated that RNA silencing was ongoing even while the protein was being protected for expression, as shown by the continued GFP expression in plants inoculated with M IC 1-8.
  • M IC 1,3 which efficiently silences GFP expression can move through the vascular tissue and establish some infection in systemic tissue (FIG. 5)
  • M IC 6 a virus that accumulates in systemic tissue at no greater levels than M IC , but greatly delays or suppresses GFP silencing compared with M IC (Derrick et al., 1997 and FIGS. 8 and 11).
  • RNAs in systemic tissue of plants infected with viruses that induce severe symptoms suggests that these viruses accumulate despite active silencing of targeted host and viral sequences.
  • the 126 kDa protein functions to stabilize its own RNA and protein (Table 2 and Derrick et al., 1997) as well as homologous transgene messages and/or their proteins.
  • the homologous protein to the 126 kDa protein encoded by Brome mosaic virus, 1a stabilizes RNA accumulation (Sullivan and Ahlquist, 1999). Stabilization of RNA and/or protein expression by these viral proteins in turn may allow infection to progress and symptoms to develop.
  • TMV TMV to accumulate depends on its ability to avoid the host proteins involved in silencing, rather than to disable the silencing system. Additional support for this model comes from the observation that the suppression of GFP silencing was transient, being dependent on the active accumulation of virus.
  • This active virus accumulation necessarily includes the accumulation of the 126 and/or 183 kDa proteins which, in the model, act to form secluded areas that trap proteins and protect them from degradation.
  • TMV produces cytoplasmic bodies associated with virus accumulation that contain large amounts of 126 kDa protein (e.g. Szecsi et al. 1999). These bodies could trap viral and nonviral RNA and protect it from degrading proteins involved in RNA silencing.
  • the 126 kDa Protein Alone can Suppress Silencing of GFP
  • GFP GFP expressed by the 126 kDa protein:GFP fusion
  • benthamiana was infiltrated and transformed with GFP that was not fused to the 126 kDa protein to determine its ability to silence itself and the GFPer transcript in the transgenic plants.
  • Tissue infiltrated with Agrobacterium containing the unfused GFP construct silenced both itself and the transgene by 5 days post infiltration, whereas tissue infiltrated with 126 kDa protein:GFP and unfused GFP delayed silencing of GFP expression in both nontransformed and transformed plants (FIGS. 12, 13; images in 126:GFP/GFP column compared with those in GFP column).
  • M IC -TMV refers to the progeny of infectious transcript produced from a cDNA clone of the M strain (Holt et al., 1990).
  • M IC 1,3, M IC 1-8, M IC m6, U1m6 and M IC 1,3,6 were produced as described (Shintaku et al., 1996).
  • M IC m1,3 M IC 1,3 and for all other mutants
  • M IC mX M IC X.
  • Nicotiana tabacum cv. Xanthi, N. tabacum cv. Xanthi NN (hypersensitive host), N. benthamiana and Capsicum annuum L. cv Marengo were used.
  • N. benthamiana line 16c transformed to express GFP from behind a 35S promoter (Brigneti et al., 1998).
  • N. tabacum cv. Xanthi transformed to express a fusion of the 126 kDa protein with the enhanced green fluorescent protein (GFP) from behind an enhanced 35S promoter is described below.
  • Antibodies against the movement protein (MP) and the coat protein (CP) were provided or produced as described (Derrick et al., 1997). Antiserum against ribulose-5-phospahet kinase (Ru5P kinase) was from USDA-ARS Western Cotton Research Lab, Phoenix, Ariz.
  • N. tabacum cv. Xanthi or Xanthi NN, C. annuum and N. benthamiana were germinated and grown as described for N. tabacum (Ding et al., 1995b), and cuttings of N. tabacum cv. Xanthi transformed to express the 126 kDa protein:GFP fusion were grown (Ding et al., 1995b).
  • In vitro transcripts of virus cDNAs were produced and inoculated according to Shinataku et al. (1996). After virus inoculation, plants were either left in a greenhouse under previously described conditions (Nelson et al., 1993) or placed in a growth chamber (Ding et al., 1995b). Virus was inoculated as described (Nelson et al., 1993). In vitro transcripts were produced and inoculated as described (Shintaku et al., 1996).
  • Necrotic lesion diameters were measured with a micrometer using a previously described experimental design (Bao et al., 1996).
  • tissue was harvested at the particular developmental stage and dpi as described above and the fresh weight was recorded. Tissue was extracted and ELISA conducted for CP accumulation as described for virus accumulation in transgenic tobacco expressing MP (Derrick et al., 1997).
  • leaf tissue was randomly sampled from virus- and mock-innoculated leaves. Tissue from N. tabacum was analyzed by double-sided labeling immunocytochemistry and light microscopy as described (Ding et al., 1996 and 1996b).
  • N. tabacum cv. Xanthi used as a source for leaf-derived protoplasts were grown and maintained as described (Derrick et al., 1997).
  • Protoplasts enriched in palisade mesophyll cells were prepared essentially as described by Kubo and Takanami (1979).
  • Virus inoculation of protoplasts was conducted as described (Derrick et al., 1997).
  • Immunoblot detection of MP accumulation in protoplasts and pulse-labeling of viral proteins were performed as described (Derrick et al., 1997).
  • the incubation medium contained 80 ⁇ g of actinomycin D per ml and radiolabelling occurred from 8-10 hr. post-inoculation (Derrick et al., 1997).
  • Progeny virus was sequenced after isolation of total RNA from systemically-infected leaves as described (Shintaku et al., 1996).
  • N. tabacum cv. Xanthi and N. benthamiana plants were grown as described (Ding et al. 1995b). Reciprocal grafts were made between species using a wedge grafting system as described (Kasshau et al. 1997). The grafted rootstock and scion were covered with a clear plastic lid to reduce transpiration demand on the recovering plants. After recovery and removal of the plastic lid all leaves on the scion, except those less than 2 cm in midrib length, were removed to remove extraneous sink tissue. The first and second leaves down from the graft union on the rootstock were challenged with virus one or two days after removal of the scion leaves. Virus infectivities were equalized previous to inoculation of the grafted plants by bioassay with a hypersensitive host ( N. tabacum cv. Xanthi NN).
  • the cDNA fragment encoding the 126 kDa protein of TMV was produced using the “WFP” construct from M IC m2 described in international patent application PCT/USO1/22390, the disclosure of which is specifically incorporated herein by reference in the entirety.
  • the fusion protein construct was moved into the intermediate plasmid, pRTL2, as described in the patent application.
  • the construct used to transform plants, referred to as the WFP construct was then spliced from pRTL2 by digestion with restriction enzymes and ligated into vector pGA482 at the HindIII sites.
  • Agrobacterium tumefaciens (LBA 4404) was then transformed with the binary vector using a modification of the method described by An et al. (1988).
  • This modification includes after freezing in liquid nitrogen and then thawing at 37° C. for 5 min, 1 ml of YEP medium added to the tube and the cells incubated for 1 h at 28° C. Kanamycin (1 ⁇ l/ml) and nfampicin (1 ⁇ g/ml) were added and the cells incubated at 28° C. for another 2 h. The cells were centrifuged and resuspended in 50 ⁇ l of YEP medium containing the antibiotics as described above. The cells were inoculated onto YEP agar plate containing 50 ⁇ g/ml kanamycin and 10 ⁇ /ml rifampicin, and incubated at 28° C. for 2-3 days. Leaf discs from N.
  • a GFP sequence (eGFP, Clontech, Palo Alto, Calif., USA) cloned between an enhanced 35S promoter and 35S terminator in the binary plasmid, pRTL2 (Carrington and Freed, 1990), (construct described in Itaya et al. 1997) and the 126 kDa protein:GFP sequence used to transform N. tabacum cv. Xanthi (see above) were used for Agrobacterium infiltration studies.
  • the binary vector containing the GFP construct was transformed into Agrobacterium tumefaciens strain LBA 4404 as described above for pRTL2 containing the 126 kDa protein:GFP fusion.
  • LBA4404 containing either binary vector was grown under selection to an OD of 0.5, allowed to sit at room temperature for 2-3 hours without shaking and then infiltrated independently or equally mixed into the adaxial side of mature leaves of N. benthamiana line 16c as described (Voinnet et al. 1998, English et al. 1997).
  • GFP expression from stem tissue was monitored using an epifluorescence SZX12 stereomicroscope (Olympus, Mehlville, N.Y.) attached to a spot RT digital camera (Diagnostic Instruments, Sterling Heights, Mich.). Images were collected on a PC (Dell).
  • Knittel et al. Plant Cell. Repts., 14(2-3):81-86, 1994.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention provides methods of suppressing gene silencing and/or stabilizing expression of a coding sequence in a cell comprising expressing a 126 kDa protein and/or the 183 kDa protein of a subgroup sindbis plant virus in the cell. The invention can thus be used to avoid the deleterious effects of gene silencing in a cell. Also provided by the invention are methods of delivering a polypeptide of interest to a limited part of a plant.

Description

  • This application claims the priority of U.S. Provisional Patent Application Serial No. 60/313,185, filed Aug. 17, 2001, the entire disclosure of which is specifically incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The current invention relates generally to the field of molecular biology. More particularly, it concerns methods for modulating gene expression. [0003]
  • 2. Description of Related Art [0004]
  • RNA silencing is a phenomenon that can affect systemic virus accumulation. It was first identified in plants wherein aberrant or overexpressed RNA sequences are targeted for destruction (reviewed in Vance and Vaucheret, 2001). The destruction of the RNA is sequence-specific and proceeds through the synthesis of small (21-25 nucleotides) RNAs of both sense and antisense conformation (Hamilton and Baulcombe 1999, Zamore et. al, 2000). RNA silencing has been shown to be a viral defense mechanism in plants (reviewed in Vance and Vaucheret, 2001; Carrington et al. 2001; Baulcombe 1999). RNA silencing in the host prevents virus accumulation in systemic leaves of virus-challenged, nontransgenic plants (Al-Kaff et al., 1998; Ratcliff et al., 1997; Covey, et al. 1997). Virus challenge also leads to silencing of transgenes expressing homologous viral RNA sequences in systemic tissue of transgenic plants (e.g. Al-Kaff et al., 1998). Previously, it has been shown that RNA silencing can also target challenge virus RNA if the transgene contains viral sequences (Lindbo et al., 1993; Smith et al., 1994). [0005]
  • Plant viruses contain sequences that can suppress RNA silencing in the infected host (e.g. Voinnet et al. 1999). In some instances, specific viral proteins capable of suppressing RNA silencing in transgenic plants have been identified (Anandalakshmi et al., 1998; Brigneti et al., 1998; Kasschau and Carrington, 1998; Voinnet et al. 1999 and 2000). These proteins were previously shown to be necessary for the local or phloem-dependent accumulation of their encoding viruses in their respective hosts (Cronin et al., 1995; Ding et al., 1995a; Hong et al. 1997; Bonneau et al. 1998; Scholthof et al. 1995). All of the proteins are non-structural (i.e. do not form the capsid of the virus) and their functions in virus accumulation and suppression of RNA silencing are not fully understood. [0006]
  • The helper component-protease (HC-Pro) from potyviruses promotes replication and accumulation of the virus, at least partially through its proteinase activity, and is necessary for aphid transmission (reviewed in Revers et al., 1999). HC-Pro has been shown to inactivate pre-existing RNA silencing (Brigneti et al. 1998). The decline of RNA silencing is also associated with a decrease in the accumulation of the small RNAs associated with this phenomenon (Llave et al. 2000, Mallory et al. 2001). The 2b protein, which is not present in the related bromoviruses, is a virulence determinant (Ding et al., 1996a). The 2b gene or its protein is not necessary for virus replication or cell-to-cell spread (Ding et al., 1995a). The protein does not inhibit RNA silencing in already silenced tissue, but inhibits silencing from occurring in newly developing tissue (Brigneti et al. 1998). The 2b protein localizes to the nuclei of tobacco cells and this function is necessary for efficient suppression of RNA silencing (Lucy et al. 2000). Recently, it was shown that the 2b protein inhibits salicylic acid-mediated virus resistance (Ji and Ding, 2001). The p25 protein encoded by Potato virus X recently was determined to block the systemic spread of the RNA silencing signal in plants (Voinnet et al. 2000). Further research is necessary to determine with what host or viral proteins these factors interact to prevent silencing from occurring. [0007]
  • The method by which other viral proteins, such as the AC2, P1 and 19 kDa proteins from African cassaya virus, Rice yellow mottle virus and Tomato bushy stunt virus, respectively, suppress silencing has not been determined (Voinnet et al. 1999). Other non-structural viral proteins or their open reading frames (orfs) have been shown to affect phloem-dependent accumulation of their respective viruses (for review see Nelson and van Bel, 1998). These include the αa protein of barley stripe mosaic virus, 1a and 2a proteins of Brome mosaic virus and CMV, 129 and/or 186 kDa protein(s) of SHMV, and 126 and/or 183 kDa protein(s) of TMV (De Jong and Ahlquist, 1995; Deom et al., 1997; Lakshman and Gonsalves, 1985; Nelson et al., 1993; Roossinck and Palukaitis, 1990; Traynor et al., 1991; Weiland and Edwards, 1994). Although these proteins are known to affect virus accumulation, their potential to suppress RNA silencing has not been investigated. [0008]
  • The basis for the different disease symptoms elicited by two strains of TMV on [0009] Nicotiana tabacum L. cv. Xanthi have been previously characterized. The attenuated “masked” strain (M, Holmes, 1934) causes a very mild chlorotic mottling of systemically-infected leaves while the severe U1 strain causes a bumpiness (i.e. rugosity), likely due to nonuniform cell expansion or division in the cells of the leaf lamina, and a well-defined light-green, dark-green mosaic on systemically-infected leaves (e.g. Shintaku et al., 1996). The portion of the viral genome responsible for the different symptoms induced by these viruses is within the 126 kDa protein orf (Holt et al., 1990). Through mutagenesis of cDNA clones of the masked (MIC) and U1 strains it was determined that eight nucleotides in the 126 kDa protein orf, resulting in eight amino acid differences in the 126 kDa and 183 kDa proteins of these viruses, controlled the symptom and phloem-dependent accumulation phenotypes of the infectious transcripts (Derrick et al., 1997; Shintaku et al., 1996). Further substitutions in specific codons and analysis of infections caused by virus containing these altered sequences led to the conclusion that the 126 kDa and/or 183 kDa protein, and not the viral RNA, is responsible for the symptom phenotypes displayed by the viruses (Bao et al., 1996). M IC1,3 (FIG. 1) does not induce systemic symptoms on leaves of N. tabacum, although it accumulates in the inoculated leaves (Shintaku et al., 1996).
  • Viruses are believed to cause yield reductions in plants through their movement and accumulation in tissue distant from the initially inoculated site (Matthews, 1991). As such, it is important to understand the method by which viruses accumulate in these distant tissues (i.e. how viruses accumulate systemically). Identifying viral and host factors that control systemic virus accumulation and the location where they function will aid in designing future generations of transgenic plants which maintain yields in spite of virus challenge. In addition, understanding how viruses accumulate and move through the host will provide clues to how host macromolecules accumulate and move through plants. Therefore, there is a great need in the art for further understanding of the physiological interaction between plant viruses and plants. Lastly, there is need in the art for methods of enhancing accumulation of foreign proteins in plants being used as factories for protein production. [0010]
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides a method of suppressing gene silencing and/or stabilizing expression of a coding sequence in a cell comprising expressing a 126 kDa protein and/or the 183 kDa protein of a Sindbis-like plant virus in the cell. For the purposes of this submission, only plant sindbis-like viruses that have a methyltransferase domain upstream of a helicase domain with no intervening known protease domain, all part of one protein, are encompassed with within the definition of “Sindbis-like plant virus.” This includes viruses in the following families or genuses as defined by Hull (2002): Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Caralviruses and Vitiviruses. These are defined as “subgroup sindbis” hereafter. [0011]
  • Thus, the method may also comprise infecting the cell with a subgroup sindbis plant virus encoding the 126 kDa protein and/or the 183 kDa protein, or their homologues, and allowing the 126 kDa protein and/or the 183 kDa protein, or their homologues, to be expressed. Such a coding sequence may be introduced into the genome of the cell or a progenitor thereof by genetic transformation and also may be present in more than one copy in the cell. In one embodiment of the invention, comprises infecting the cell with a subgroup sindbis plant virus encoding the 126 kDa protein and/or the 183 kDa protein, or their homologues, and allowing the 126 kDa protein and/or the 183 kDa protein, or their homologues, to be expressed. Such a coding sequence may be introduced into the genome of the cell or a progenitor thereof by genetic transformation and also may be present in more than one copy in the cell. [0012]
  • In the claimed method, expressing may comprise transforming the cell or a progenitor thereof with a nucleic acid sequence encoding the 126 kDa protein and/or the 183 kDa protein. In certain further embodiments of the invention, the subgroup sindbis plant virus is selected from the group consisting of Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Carlaviruses or Vitiviruses. [0013]
  • In a further embodiment of the invention, the coding sequence may be expressed from the plant's genome and/or the virus may comprise and express the coding sequence. The nucleic acid sequence encoding the 126 kDa protein and/or the 183 kDa protein may or may not be fused to the coding sequence. The cell may be a plant cell. The cell may also further be comprised in a plant. In one embodiment of the invention, the plant is a dicotyledonous plant. Examples of dicotyledonous plants include tobacco, tomato, potato, soybean, cotton, canola, alfalfa, sunflower, and cotton. In certain embodiments of the invention, the plant is selected from the group consisting of [0014] Nicotiana tabacum and Nicotiana benthamiana. The plant may also be a monocotyledonous plant. Examples of monocotyledonous plants include wheat, maize, rye, rice, oat, barley, turfgrass, sorghum, millet and sugarcane.
  • In another aspect, the invention provides a method of delivering a polypeptide of interest to a limited part of a plant comprising the step of infecting a plant with a Sindbis-like plant virus, wherein the virus encodes a 126 kDa protein and/or 183 kDa protein. In one embodiment of the invention, one or more mutations are at position 598-601 of the 126 kDa and/or 183 kDa protein. In certain embodiments of the invention, the amino acid at position 598 is not methionine; the amino acid at position 598 is arginine; the amino acid at position 601 is not lysine; and/or the amino acid at position 601 is glutamic acid. [0015]
  • In another embodiment of the invention, the plant is a dicotyledonous plant. Examples of dicotyledonous plants include tobacco, tomato, potato, soybean, cotton, canola, alfalfa, sunflower, and cotton. In certain embodiments of the invention, the plant is selected from the group consisting of [0016] Nicotiana tabacum and Nicotiana benthamiana. The plant may also be a monocotyledonous plant. Examples of monocotyledonous plants include wheat, maize, rye, rice, oat, barley, turfgrass, sorghum, millet and sugarcane. In the method, the subgroup sindbisplant virus may be selected from the group consisting of Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Caralviruses and Vitiviruses.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following drawings form part of the present specification and are included to further demonstrate certain aspects of the invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein: [0017]
  • FIG. 1 Genome organization of TMV showing the location of amino acid differences between M[0018] IC and M IC1,3. Open reading frames (orfs) are indicated by bars. Nontranslated regions are denoted as lines. UAG designates the leaky amber termination codon. 126 and 183 kDa proteins function in virus replication and spread of Tobacco mosaic virus. The movement protein (MP) functions in cell-to-cell spread. The coat protein encapsidates the viral RNA and also functions in vascular-dependent accumulation. The shaded area in 126 kDa protein orf indicates the methyltransferase (MT) domain of this protein. The cross-hatched area in 126 kDa orf indicates the helicase domain of this protein. The area in 126 kDa orf between nt 1323 and 1430 indicates a region of conservation within Tobamoviruses, Bromoviridae, Tobraviruses, Ilarviruses and Hordeiviruses with no known function. Domains I and II are regions with less sequence similarity to subgroup sindbis viruses and no known function (Shintaku et al. 1996). Numbers 1-8 indicate the position of the 8 amino acids that differ between MIC and the severe U1 strain of TMV. These amino acids are responsible for the different symptoms induced by these two strains. Sequence differences between MIC and M IC1,3 126 and 183 kDa proteins are shown along with the amino acid location where they differ.
  • FIG. 2 Immunoblot detection of viral movement protein in TMV-[0019] infected protoplasts 7 hours post-inoculation with MIC U1 or M IC1,3 (denoted 1,3 in figure). H=healthy (i.e. uninfected tissue)
  • FIG. 3 Accumulation of viral RNA in inoculated and systemic tissue after inoculation with [0020] M IC 1,3. A percentage of plants (20%) inoculated with M IC 1,3 were found to display systemic symptoms after time, with chlorotic areas observed in leaves interspersed with dark green areas (panel A). Leaves from these systemic leaves were harvested and progeny virus sequenced using specific primers (arrows below viral genome indicate sequenced regions in panel B). A single nucleotide substitution resulting in a single amino acid substitution was found to cause the altered accumulation pattern (mutant referred to as M IC1,3,6*= M IC1,3,1864 or 1,3,6*). A second virus was identified in systemic tissue of another inoculated plant that also had a single substitution in this area (mutant referred to as M IC1,3,6 or M IC 1,3,1872). M IC1,3,1872 induced symptoms identical to M IC1,3,6*.
  • FIG. 4 [0021] M IC1,3 accumulation in systemic tissue is host dependent. M IC1,3 accumulates in systemic tissue of N. benthamiana (panel A), although the symptoms induced are less than those induced by the second site mutant, M IC1,3,6* (panel B) at 16 days post inoculation.
  • FIG. 5 [0022] M IC1,3 is able to enter the vascular tissue and move systemically in N. tabacum cv. Xanthi. Grafting studies were conducted in which reciprocal grafts were made between N. tabacum and N. benthamiana rootstocks and scions. Accumulation of virus was determined at 8 days post inoculation via ELISA with antibodies against the CP of TMV. Inoculated leaves or shoot apices containing the youngest mature leaf and younger were harvested for analysis. Values for the grafts with N. benthamiana as the rootstock are means +/− the standard deviation for 2 replicates. Values for the grafts with N. tabacum as the rootstock are values from individual samples from an experiment. These results indicate that M IC1,3 could enter and move through the vascular tissue of the nonsupportive host (N. tabacum), but either could not exit or establish a systemic infection in the nonsupportive host.
  • FIG. 6 Delay of transgene silencing maps to the 126/183 kDa proteins of TMV as shown by inoculation with various strains and mutants of TMV. Transgenic plants expressing the 126 kDa protein fused to GFP were inoculated with [0023] viruses M IC1,3; MIC; and MIC1-8; (MIC1-8 has an equivalent phenotype to the U1 strain) or mock-inoculated with buffer only (mock). Images were taken of systemic leaves, approximately 7 cm in midrib length, at various days post inoculation. At 4 and 7 days post inoculation the images were taken of the leaf surface and of a transverse section of the midrib. At 13 and 18 days post inoculation images were taken of the leaf surface. Boxed images were enhanced equally to better show GFP expression. Images were obtained using a confocal system (model 1024ES, BioRad) attached to an upright microscope (Zeiss Axioskop) using previously described filters (Cheng et al. 2000). The results indicated that M IC1,3 induced silencing of vein-associated systemic tissue by 7 days post inoculation, while MIC and MIC1-8 comparatively delayed silencing for varying periods of time. In particular, it was found that GFP silencing was veincentric and that the observed delay in silencing maps to the 126 kDa and/or 183 kDa protein of TMV This suggests that MIC and MIC 1-8 are able to suppress silencing of this tissue.
  • FIG. 7A, B Small RNAs. hallmarks of the presence of RNA silencing, are present in systemic leaves of plants undergoing silencing for GFP expression at 13 dpi. FIG. 7A: Tissue analyzed is from leaf one above those shown in FIG. 6. Identification of small RNAs was performed by northern-blot, using the 126 kDa protein orf as a probe, as described (Itaya et al., 2001). Numbers below are given in arbitrary units corresponding to relative radioactivity of equal areas of membrane corresponding to position of bands. ssDNA is 25-mer oligonucleotide stained with ethidium bromide in 15% urea-PAGE. The presence of small RNAs in these systemic leaves indicates that post transcriptional gene silencing is occurring in all virus-inoculated samples. The amount of small RNAs positively correlates with virus-stabilized expression of GFP. FIG. 7B: RNAs of molecular weight equivalent to 500-200 nucleotides stained with ethidium bromide are present in the same samples as shown in Panel 7A. [0024]
  • FIG. 8 Suppression of in trans transgene silencing maps to amino acid position 601 of the 126/183 kDa protein(s). Leaves of transgenic plants expressing GFP (line 16C) were infiltrated with [0025] Agrobacterium tumefaciens expressing the same GFP gene or mock infiltrated with buffer only at the 3-5 leaf stage. Plants silenced for GFP were challenged in newly and fully silenced leaves with virus or mock inoculated (1,3,6; 1,3; 6 and 1-8= TMV mutants M IC1,3,6; M IC1,3; M IC6 and MIC1-8 (see Shintaku et al. 1996 for further description), CMV=Cucumber mosaic virus, expresser=mock-infiltrated tissue; silenced=Agrobacterium infiltrated and mock inoculated tissue. Two studies were carried out. Images were taken of young developing systemic leaves at various days post inoculation. Images were obtained using a confocal system (model 1024ES, BioRad) attached to an upright microscope (Zeiss Axioshop) with a 2.5× objective, as previously described by Cheng et al., 2000. DPI=days post inoculation
  • FIG. 9 Suppression of GFP silencing is correlated with virus accumulation. Composite image is of a stem of a plant above the leaf inoculated with [0026] M IC1,3,6* and shows transient suppression of GFP silencing induced by M IC1,3,6*. Values indicate virus levels in green fluorescing leaf tissue and the distal red fluorescing leaf tissue (ng virion per mg fresh weight of tissue). Values represent means and standard deviations for 3 replicates per tissue sample. Light or green areas indicate expression while dark or red areas indicate silencing of expression.
  • FIG. 10 Model for the mechanism of TMV spread, silencing and stabilization of unfused RNA or protein. The model indicates that host cytoplasmic silencing enzymes cannot enter viral replication complex (Virus Replication body), or the protein of the targeted RNA was made before destruction and therefore protected in the virus replication body. In either case the reporter protein is protected from destruction. Note that the virus replication body (Virus Replication Body) contains 126 kDa protein and other viral and host factors. [0027]
  • FIG. 11 Delay of gene silencing in transgenic [0028] N. tabacum plants expressing the 126 kDa protein:GFP fusion maps to amino acid 601 of the 126 kDa protein of TMV. Experiments were conducted using methods identical to those described to obtain results shown in FIG. 6. Images show the effect of various strains and mutants of TMV on the accumulation of GFP in the transgenic plants. When amino acid 601 was that found in the U1 sequence (i.e. as for MICm6 or U1 viruses) silencing of the transgene was delayed compared with plants inoculated with virus where amino acid 601 was that found in the MIC sequence (i.e. as for U1m6 and MIC). MIC=progeny virus from a cDNA representing the masked strain of TMV; MICm6=progeny virus from transcript of a cDNA representing the masked strain of TMV with a single mutation at amino acid 601 resulting in a residue representing the U1 sequence; U1=virus representing the severe U1 strain of TMV; U1m6=progeny virus from transcript of a cDNA representing the U1 strain of TMV with a single mutation at amino acid 601 resulting in a residue representing the MIC sequence.
  • FIG. 12 Effect of ectopic expression of 126 kDa protein:GFP fusion on GFP expression in epidermal cells from infiltrated leaves of [0029] N. benthamiana plants expressing GFP directed to the endoplasmic reticulum (GFPer; plant line 16c). GFP-expressing N. benthamiana leaves were infiltrated with buffer (mock), Agrobacterium tumefaciens directing expression of a GFP (GFP) with 78% identity to the transgene GFP (GFPer), a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion (fusion GFP sequence was identical to that of the free GFP expressed from the binary), or with Agrobacterium directing expression of the 126 kDa protein:GFP fusion alone. In addition, plants were infiltrated with A. tumefaciens directing expression of GFPer or a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion. The leaves were imaged at various days post infiltration using a confocal system and a 63× objective lens under conditions described for the previous confocal imaging work. Trt.=treatment. DPI=days post inoculation. Light or green areas indicate expression while dark areas indicate silencing of expression.
  • FIG. 13 Effect of ectopic expression of 126 kDa protein:GFP fusion on GFP expression in epidermal cells from infiltrated leaves of nontransgenic [0030] N. benthamiana plants. N. benthamiana leaves were infiltrated with buffer (mock), Agrobacterium tumefaciens directing expression of a GFP (GFP) with 78% identity to the transgene GFP (GFPer) described in FIG. 12, a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion (fusion GFP sequence was identical to that of the free GFP expressed from the binary), or with Agrobacterium directing expression of the 126 kDa protein:GFP fusion alone. In addition, plants were infiltrated with A. tumefaciens directing expression of GFPer or a 50%/50% mixture of this Agrobacterium with one directing expression of the 126 kDa protein:GFP fusion. The leaves were imaged at various days post infiltration using a confocal system and a 63×objective lens under conditions described for the previous confocal imaging work. Trt.=treatment. DPI=days post inoculation. Light or green areas indicate expression while dark areas indicate silencing of expression.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention overcomes the limitations of the prior art by providing methods and compositions for modulating gene expression in plants. In particular, the inventors have identified the 126 kDa and 183 kDa proteins of a subgroup sindbis virus as being capable of modulating gene silencing of particular coding sequences, even when provided in the absence of other viral factors. The technique may find particular use for modulating expression of one or more transgenes by decreasing gene silencing, as silencing of transgenes can frequently occur, especially when transgenes are present in more than one copy in a genome. This affect may be achieved without the need for fusions between a transgene coding sequence and the 126 kDa and/or 183 kDa protein, or alternatively, using such a fusion. [0031]
  • The studies of the inventors identified a mutant of the masked strain of TMV, [0032] M IC 1,3, altered in two amino acids within the 126/183 kDa sequence, that infects N. tabacum but produces no systemic symptoms. M IC1,3 accumulated in inoculated leaves and entered the vascular tissue similarly to the parental masked (MIC) strain, but failed to accumulate in systemic leaves of N. tabacum. The lack of systemic accumulation by M IC1,3 in N. tabacum was due to a host RNA silencing mechanism, as determined by the presence of small (approximately 25 nucleotide) RNAs and the loss of fluorescence signal from green fluorescent protein (GFP) fused to a viral protein. Conversely, the ability of certain TMV strains and mutants to accumulate in systemic tissue was correlated with their ability to delay silencing of a viral:nonviral fused transgene, transiently suppress silencing of a non-viral transgene encoding GFP, and stabilize accumulation of 126 kDa protein in protoplasts. Therefore, the 126/183 kDa proteins suppress silencing by protecting target RNA from degradation.
  • It was indicated by the inventors that the 126 kDa and 183 kDa proteins could suppress silencing in the absence of other viral factors. For example, it was shown that expression of the 126 kDa protein in plants containing an unfused GFP construct exhibiting silencing in control tissues exhibited delayed silencing of GFP expression. Certain embodiments of the current invention thus concern plant transformation constructs comprising a nucleic acid sequence encoding the 126 kDa and/or 183 kDa proteins, their subgroup sindbis homologues or mutations thereof which are not provided as fusions with other coding sequences. The 126 and 183 kDa proteins, respectively, enhance or are required for virus accumulation. The 126 kDa protein contains conserved domains that by computer alignment encode methyltransferase and helicase domains surrounded by regions of unknown function and do not contain a known protease domain between them. The 183 kDa protein contains these same domains plus an RNA dependent RNA polymerase domain. All plant subgroup sindbis viruses contain these domains and by sequence comparison and position of these domains are here considered homologues of each other. Such coding sequences may be provided that are operably linked to a heterologous promoter. Expression constructs are also provided comprising these sequences, as are plants and plant cells transformed with the sequences. In further embodiments of the invention, the 126 kDa protein and/or 183 kDa protein may or may not be provided as a fusion product with a coding sequence. For example, the 126 kDa protein and/or 183 kDa protein may be fused with a coding sequence imparting a desirable phenotype to a plant. [0033]
  • Various examples of viral proteins that can be utilized in accordance with the present invention are included in the attached sequence listing. Applicants point out that SEQ ID NOS:8 and 9 in fact represent a single protein, connected by a single amino acid (e.g., Alanine) by virtue of a readthrough by the virus of an internal stop codon (see SEQ ID NO:7). The same situation arises with SEQ ID NOS:23 and 24 (and SEQ ID NO:22). [0034]
  • The construction of vectors which may be employed in conjunction with plant transformation techniques using these or other sequences according to the invention will be known to those of skill of the art in light of the present disclosure (see, for example, Sambrook et al., 1989; Gelvin et al., 1990). The techniques of the current invention are thus not limited to any particular nucleic acid sequences. [0035]
  • I. Transformation Vectors [0036]
  • Vectors used for plant transformation may include, for example, plasmids, cosmids, or any other suitable cloning system, as well as fragments of DNA therefrom. Thus when the term “vector” or “expression vector” is used, all of the foregoing types of vectors, as well as nucleic acid sequences isolated therefrom, are included. It is contemplated that utilization of cloning systems with large insert capacities will allow introduction of large DNA sequences comprising more than one selected gene. Introduction of such sequences may be facilitated by use of bacterial or yeast artificial chromosomes (BACs or YACs, respectively), or even plant artificial chromosomes. Particularly useful for transformation are expression cassettes which have been isolated from such vectors. DNA segments used for transforming plant cells will, of course, generally comprise the cDNA, gene or genes which one desires to introduce into and have expressed in the host cells. These DNA segments can further include structures such as promoters, enhancers, polylinkers, or even regulatory genes as desired. The DNA segment or gene chosen for cellular introduction will often encode a protein which will be expressed in the resultant recombinant cells resulting in a screenable or selectable trait and/or which will impart an improved phenotype to the resulting transgenic plant. However, this may not always be the case, and the present invention also encompasses transgenic plants incorporating non-expressed transgenes. Preferred components likely to be included with vectors used in the current invention are as follows. [0037]
  • A. Regulatory Elements [0038]
  • Exemplary promoters for expression of a nucleic acid sequence include plant promoter such as the CaMV 35S promoter (Odell et al., 1985), or others such as CaMV 19S (Lawton et al., 1987), nos (Ebert et al, 1987), Adh (Walker et al., 1987), sucrose synthase (Yang & Russell, 1990), a-tubulin, actin (Wang et al., 1992), cab (Sullivan et al., 1989), PEPCase (Hudspeth and Grula, 1989) or those associated with the R gene complex (Chandler et al, 1989). Tissue specific promoters such as root cell promoters (Conkling et al., 1990) and tissue specific enhancers (Fromm et al., 1986) are also contemplated to be particularly useful, as are inducible promoters such as ABA- and turgor-inducible promoters. In one embodiment of the invention, the native promoter of a coding sequence is used. [0039]
  • The DNA sequence between the transcription initiation site and the start of the coding sequence, i.e., the untranslated leader sequence, can also influence gene expression. One may thus wish to employ a particular leader sequence with a transformation construct of the invention. Preferred leader sequences are contemplated to include those which comprise sequences predicted to direct optimum expression of the attached gene, i.e., to include a preferred consensus leader sequence which may increase or maintain mRNA stability and prevent inappropriate initiation of translation. The choice of such sequences will be known to those of skill in the art in light of the present disclosure. Sequences that are derived from genes that are highly expressed in plants will typically be preferred. [0040]
  • It is contemplated that vectors for use in accordance with the present invention may be constructed to include the ocs enhancer element. This element was first identified as a 16 bp palindromic enhancer from the octopine synthase (ocs) gene of Agrobacterium (Ellis et al., 1987), and is present in at least 10 other promoters (Bouchez et al., 1989). It is proposed that the use of an enhancer element, such as the ocs element and particularly multiple copies of the element, will act to increase the level of transcription from adjacent promoters when applied in the context of plant transformation. In one embodiment of the invention, the native translation enhancer of a coding sequence is used (i.e. when expressed from within the virus genome). [0041]
  • It is specifically envisioned that 126 kDa protein and/or the 183 kDa protein coding sequences may be introduced under the control of novel promoters or enhancers, etc., or homologous or tissue specific promoters or control elements. Vectors for use in tissue-specific targeting of genes in transgenic plants will typically include tissue-specific promoters and may also include other tissue-specific control elements such as enhancer sequences. Promoters which direct specific or enhanced expression in certain plant tissues will be known to those of skill in the art in light of the present disclosure. These include, for example, the rbcS promoter, specific for green tissue; the ocs, nos and mas promoters which have higher activity in roots or wounded leaf tissue; a truncated (−90 to +8) 35S promoter which directs enhanced expression in roots, and an a-tubulin gene that also directs expression in roots. [0042]
  • B. Terminators [0043]
  • Transformation constructs prepared in accordance with the invention will typically include a 3′ end DNA sequence that acts as a signal to terminate transcription and allow for the poly-adenylation of the mRNA produced by coding sequences. In one embodiment of the invention, the native terminator of a 126 kDa protein and/or the 183 kDa protein coding sequence used (i.e. as expressed from the viral genome). Alternatively, a heterologous 3′ end may enhance the expression of the gene. Examples of terminators which are deemed to be useful in this context include those from the nopaline synthase gene of [0044] Agrobacterium tumefaciens (nos 3′ end) (Bevan et al., 1983), the terminator for the T7 transcript from the octopine synthase gene of Agrobacterium tumefaciens, and the 3′ end of the protease inhibitor I or II genes from potato or tomato. Regulatory elements such as an Adh intron (Callis et al., 1987), sucrose synthase intron (Vasil et al., 1989) or TMV omega element (Gallie et al., 1989), may further be included where desired.
  • C. Transit or Signal Peptides [0045]
  • Sequences that are joined to the coding sequence of an expressed gene, which are removed post-translationally from the initial translation product and which facilitate the transport of the protein into or through intracellular or extracellular membranes, are termed transit (usually into vacuoles, vesicles, plastids and other intracellular organelles) and signal sequences (usually to the endoplasmic reticulum, golgi apparatus and outside of the cellular membrane). By facilitating the transport of the protein into compartments inside and outside the cell, these sequences may increase the accumulation of gene product protecting them from proteolytic degradation. These sequences also allow for additional mRNA sequences from highly expressed genes to be attached to the coding sequence of the genes. Since mRNA being translated by ribosomes is more stable than naked mRNA, the presence of translatable mRNA in front of the gene may increase the overall stability of the mRNA transcript from the gene and thereby increase synthesis of the gene product. Since transit and signal sequences are usually post-translationally removed from the initial translation product, the use of these sequences allows for the addition of extra translated sequences that may not appear on the final polypeptide. It further is contemplated that targeting of certain proteins may be desirable in order to enhance the stability of the protein (U.S. Pat. No. 5,545,818, incorporated herein by reference in its entirety). [0046]
  • Additionally, vectors may be constructed and employed in the intracellular targeting of a specific gene product within the cells of a transgenic plant or in directing a protein to the extracellular environment. This generally will be achieved by joining a DNA sequence encoding a transit or signal peptide sequence to the coding sequence of a particular gene. The resultant transit, or signal, peptide will transport the protein to a particular intracellular, or extracellular destination, respectively, and will then be post-translationally removed. [0047]
  • D. Marker Genes [0048]
  • By employing a selectable or screenable marker protein, one can provide or enhance the ability to identify transformants. “Marker genes” are genes that impart a distinct phenotype to cells expressing the marker protein and thus allow such transformed cells to be distinguished from cells that do not have the marker. Such genes may encode either a selectable or screenable marker, depending on whether the marker confers a trait which one can “select” for by chemical means, i.e., through the use of a selective agent (e.g., a herbicide, antibiotic, or the like), or whether it is simply a trait that one can identify through observation or testing, i.e., by “screening” (e.g., the green fluorescent protein). Of course, many examples of suitable marker proteins are known to the art and can be employed in the practice of the invention. [0049]
  • Included within the terms selectable or screenable markers also are genes which encode a “secretable marker” whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which are secretable antigens that can be identified by antibody interaction, or even secretable enzymes which can be detected by their catalytic activity. Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, e.g., by ELISA; small active enzymes detectable in extracellular solution (e.g., α-amylase, β-lactamase, phosphinothricin acetyltransferase); and proteins that are inserted or trapped in the cell wall (e.g., proteins that include a leader sequence such as that found in the expression unit of extensin or tobacco PR-S). [0050]
  • With regard to selectable secretable markers, the use of a gene that encodes a protein that becomes sequestered in the cell wall, and which protein includes a unique epitope is considered to be particularly advantageous. Such a secreted antigen marker would ideally employ an epitope sequence that would provide low background in plant tissue, a promoter-leader sequence that would impart efficient expression and targeting across the plasma membrane, and would produce protein that is bound in the cell wall and yet accessible to antibodies. A normally secreted wall protein modified to include a unique epitope would satisfy all such requirements. [0051]
  • Many selectable marker coding regions are known and could be used with the present invention including, but not limited to, neo (Potrykus et al, 1985), which provides kanamycin resistance and can be selected for using kanamycin, G418, paromomycin, etc.; bar, which confers bialaphos or phosphinothricin resistance; a mutant EPSP synthase protein (Hinchee et al., 1988) conferring glyphosate resistance; a nitrilase such as bxn from [0052] Klebsiella ozaenae which confers resistance to bromoxynil (Stalker et al., 1988); a mutant acetolactate synthase (ALS) which confers resistance to imidazolinone, sulfonylurea or other ALS inhibiting chemicals (European Patent Application 154,204, 1985); a methotrexate resistant DHFR (Thillet et al, 1988), a dalapon dehalogenase that confers resistance to the herbicide dalapon; or a mutated anthranilate synthase that confers resistance to 5-methyl tryptophan.
  • An illustrative embodiment of selectable marker capable of being used in systems to select transformants are those that encode the enzyme phosphinothricin acetyltransferase, such as the bar gene from [0053] Streptomyces hygroscopicus or the pat gene from Streptomyces viridochromogenes. The enzyme phosphinothricin acetyl transferase (PAT) inactivates the active ingredient in the herbicide bialaphos, phosphinothricin (PPT). PPT inhibits glutamine synthetase, (Murakami et al., 1986; Twell et al., 1989) causing rapid accumulation of ammonia and cell death.
  • Screenable markers that may be employed include a β-glucuronidase (GUS) or uidA gene which encodes an enzyme for which various chromogenic substrates are known; an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., 1988); a β-lactamase gene (Sutcliffe, 1978), which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a xylE gene (Zukowsky et al., 1983) which encodes a catechol dioxygenase that can convert chromogenic catechols; an α-amylase gene (Ikuta et al., 1990); a tyrosinase gene (Katz et al., 1983) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to form the easily-detectable compound melanin; a β-galactosidase gene, which encodes an enzyme for which there are chromogenic substrates; a luciferase (lux) gene (Ow et al., 1986), which allows for bioluminescence detection; an aequorin gene (Prasher et al., 1985) which may be employed in calcium-sensitive bioluminescence detection; or a gene encoding for green fluorescent protein (Sheen et al., 1995; Haseloff et al., 1997; Reichel et al., 1996; Tian et al., 1997; WO 97/41228). [0054]
  • Another screenable marker contemplated for use in the present invention is firefly luciferase, encoded by the lux gene. The presence of the lux gene in transformed cells may be detected using, for example, X-ray film, scintillation counting, fluorescent spectrophotometry, low-light video cameras, photon counting cameras or multiwell luminometry. It also is envisioned that this system may be developed for populational screening for bioluminescence, such as on tissue culture plates, or even for whole plant screening. The gene which encodes green fluorescent protein (GFP) is also contemplated as a particularly useful reporter gene (Sheen et al., 1995; Haseloffet al., 1997; Reichel et al., 1996; Tian et al., 1997; WO 97/41228). Expression of green fluorescent protein may be visualized in a cell or plant as fluorescence following illumination by particular wavelengths of light. [0055]
  • II. Methods for Genetic Transformation [0056]
  • Suitable methods for transformation of plant or other cells for use with the current invention are believed to include virtually any method by which DNA can be introduced into a cell, such as by direct delivery of DNA such as by PEG-mediated transformation of protoplasts (Omirulleh et al., 1993), by desiccation/inhibition-mediated DNA uptake (Potrykus et al., 1985), by electroporation (U.S. Pat. No. 5,384,253, specifically incorporated herein by reference in its entirety), by agitation with silicon carbide fibers (Kaeppler et al., 1990; U.S. Pat. No. 5,302,523, specifically incorporated herein by reference in its entirety; and U.S. Pat. No. 5,464,765, specifically incorporated herein by reference in its entirety), by Agrobacterium-mediated transformation (U.S. Pat. No. 5,591,616 and U.S. Pat. No. 5,563,055; both specifically incorporated herein by reference) and by acceleration of DNA coated particles (U.S. Pat. No. 5,550,318; U.S. Pat. No. 5,538,877; and U.S. Pat. No. 5,538,880; each specifically incorporated herein by reference in its entirety), etc. Through the application of techniques such as these, the cells of virtually any plant species may be stably transformed, and these cells developed into transgenic plants. [0057]
  • In certain embodiments of the invention, delivery of a nucleic acid is achieved using a Sindbis-like virus. For example, a selected coding sequence that one desires to have expressed in a cell may be introduced into the genome of a Sindbis-like virus and introduced into a plant cell via infection with the virus. In accordance with the invention, it is not necessary that the coding sequence be fused to a 126 kDa protein and/or 183 kDa protein. In this manner, a coding sequence may be expressed from a virus genome in a transient manner to allow protection for transgenic proteins in tissue where virus accumulates. This effect is well within the capabilities of the skilled artisan, as virus vectors have used to express multiple foreign genes (i.e., the protein of interest and the 126 kDa protein and or 183 kDa protein) from their genomes (Chapman et al., 1992; Hamamoto et al., 1993). Transient expression may also be utilized where the gene encoding a protein of interest in transformed into a plant cell such that the plant stably carries expresses the transgene. The virus is then used ot infect the transgenic plant tissue where virus protein accumulates and interacts with the protein of interest. [0058]
  • A. Agrobacterium-Mediated Transformation [0059]
  • Agrobacterium-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, thereby bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated plant integrating vectors to introduce DNA into plant cells is well known in the art. See, for example, the methods described by Fraley et al., (1985), Rogers et al, (1987) and U.S. Pat. No. 5,563,055, specifically incorporated herein by reference in its entirety. [0060]
  • Agrobacterium-mediated transformation is most efficient in dicotyledonous plants and is the preferable method for transformation of dicots, including Arabidopsis, tobacco, tomato, alfalfa and potato. Indeed, while Agrobacterium-mediated transformation has been routinely used with dicotyledonous plants for a number of years, it has only recently become applicable to monocotyledonous plants. Advances in Agrobacterium-mediated transformation techniques have now made the technique applicable to nearly all monocotyledonous plants. For example, Agrobacterium-mediated transformation techniques have now been applied to rice (Hiei et al., 1997; U.S. Pat. No. 5,591,616, specifically incorporated herein by reference in its entirety), wheat (McCormac et al., 1998), barley (Tingay et al., 1997; McCormac et al., 1998), alfalfa (Thomas et al., 1990) and maize (Ishidia et al., 1996). [0061]
  • Modern Agrobacterium transformation vectors are capable of replication in [0062] E. coli as well as Agrobacterium, allowing for convenient manipulations as described (Klee et al., 1985). Moreover, recent technological advances in vectors for Agrobacterium-mediated gene transfer have improved the arrangement of genes and restriction sites in the vectors to facilitate the construction of vectors capable of expressing various polypeptide coding genes. The vectors described (Rogers et al., 1987) have convenient multi-linker regions flanked by a promoter and a polyadenylation site for direct expression of inserted polypeptide coding genes and are suitable for present purposes. In addition, Agrobacterium containing both armed and disarmed Ti genes can be used for the transformations. In those plant strains where Agrobacterium-mediated transformation is efficient, it is the method of choice because of the facile and defined nature of the gene transfer.
  • B. Electroporation [0063]
  • To effect transformation by electroporation, one may employ either friable tissues, such as a suspension culture of cells or embryogenic callus or alternatively one may transform immature embryos or other organized tissue directly. In this technique, one would partially degrade the cell walls of the chosen cells by exposing them to pectin-degrading enzymes (pectolyases) or mechanically wounding in a controlled manner. Examples of some species which have been transformed by electroporation of intact cells include maize (U.S. Pat. No. 5,384,253; Rhodes et al., 1995; D'Halluin et al., 1992), wheat (Zhou et al., 1993), tomato (Hou and Lin, 1996), soybean (Christou et al., 1987) and tobacco (Lee et al., 1989). [0064]
  • One also may employ protoplasts for electroporation transformation of plants (Bates, 1994; Lazzeri, 1995). For example, the generation of transgenic soybean plants by electroporation of cotyledon-derived protoplasts is described by Dhir and Widholm in Intl. Patent Appl. Publ. No. WO 9217598 (specifically incorporated herein by reference). Other examples of species for which protoplast transformation has been described include barley (Lazerri, 1995), sorghum (Battraw et al., 1991), maize (Bhattacharjee et al, 1997), wheat (He et al., 1994) and tomato (Tsukada, 1989). [0065]
  • C. Microprojectile Bombardment [0066]
  • Another method for delivering transforming DNA segments to plant cells in accordance with the invention is microprojectile bombardment (U.S. Pat. No. 5,550,318; U.S. Pat. No. 5,538,880; U.S. Pat. No. 5,610,042; and PCT Application WO 94/09699; each of which is specifically incorporated herein by reference in its entirety). In this method, particles may be coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, platinum, and preferably, gold. It is contemplated that in some instances DNA precipitation onto metal particles would not be necessary for DNA delivery to a recipient cell using microprojectile bombardment. However, it is contemplated that particles may contain DNA rather than be coated with DNA. Hence, it is proposed that DNA-coated particles may increase the level of DNA delivery via particle bombardment but are not, in and of themselves, necessary. [0067]
  • For the bombardment, cells in suspension are concentrated on filters or solid culture medium. Alternatively, immature embryos or other target cells may be arranged on solid culture medium. The cells to be bombarded are positioned at an appropriate distance below the macroprojectile stopping plate. [0068]
  • An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System, which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with monocot plant cells cultured in suspension. The screen disperses the particles so that they are not delivered to the recipient cells in large aggregates. Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species. Examples of species for which have been transformed by microprojectile bombardment include monocot species such as maize (PCT Application WO 95/06128), barley (Ritala et al., 1994; Hensgens et al., 1993), wheat (U.S. Pat. No. 5,563,055, specifically incorporated herein by reference in its entirety), rice (Hensgens et al., 1993), oat (Torbet et al., 1995; Torbet et al., 1998), rye (Hensgens et al., 1993), sugarcane (Bower et al., 1992), and sorghum (Casa et al., 1993; Hagio et al., 1991); as well as a number of dicots including tobacco (Tomes et al., 1990; Buising and Benbow, 1994), soybean (U.S. Pat. No. 5,322,783, specifically incorporated herein by reference in its entirety), sunflower (Knittel et al. 1994), peanut (Singsit et a/, 1997), cotton (McCabe and Martinell, 1993), tomato (VanEck et al. 1995), and legumes in general (U.S. Pat. No. 5,563,055, specifically incorporated herein by reference in its entirety). [0069]
  • D. Other Transformation Methods [0070]
  • Transformation of protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments (see, e.g., Potrykus et al., 1985; Lorz et al., 1985; Omirulleh et al., 1993; Fromm et al., 1986; Uchimiya et al., 1986; Callis et al., 1987; Marcotte et al., 1988). [0071]
  • Application of these systems to different plant strains depends upon the ability to regenerate that particular plant strain from protoplasts. Illustrative methods for the regeneration of cereals from protoplasts have been described (Toriyama et al., 1986; Yamada et al., 1986; Abdullah et al., 1986; Omirulleh et al., 1993 and U.S. Pat. No. 5,508,184; each specifically incorporated herein by reference in its entirety). Examples of the use of direct uptake transformation of cereal protoplasts include transformation of rice (Ghosh-Biswas et al., 1994), sorghum (Battraw and Hall, 1991), barley (Lazerri, 1995), oat (Zheng and Edwards, 1990) and maize (Omirulleh et al., 1993). [0072]
  • To transform plant strains that cannot be successfully regenerated from protoplasts, other ways to introduce DNA into intact cells or tissues can be utilized. For example, regeneration of cereals from immature embryos or explants can be effected as described (Vasil, 1989). Also, silicon carbide fiber-mediated transformation may be used with or without protoplasting (Kaeppler, 1990; Kaeppler et al., 1992; U.S. Pat. No. 5,563,055, specifically incorporated herein by reference in its entirety). Transformation with this technique is accomplished by agitating silicon carbide fibers together with cells in a DNA solution. DNA passively enters as the cells are punctured. This technique has been used successfully with, for example, the monocot cereals maize (PCT Application WO 95/06128, specifically incorporated herein by reference in its entirety; (Thompson, 1995) and rice (Nagatani, 1997). [0073]
  • III. Tissue Cultures [0074]
  • Tissue cultures may be used in certain transformation techniques for the preparation of cells for transformation and for the regeneration of plants therefrom. Maintenance of tissue cultures requires use of media and controlled environments. “Media” refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. The medium usually is a suspension of various categories of ingredients (salts, amino acids, growth regulators, sugars, buffers) that are required for growth of most cell types. However, each specific cell type requires a specific range of ingredient proportions for growth, and an even more specific range of formulas for optimum growth. Rate of cell growth also will vary among cultures initiated with the array of media that permit growth of that cell type. [0075]
  • Nutrient media is prepared as a liquid, but this may be solidified by adding the liquid to materials capable of providing a solid support. Agar is most commonly used for this purpose. Bactoagar, Hazelton agar, Gelrite, and Gelgro are specific types of solid support that are suitable for growth of plant cells in tissue culture. [0076]
  • Some cell types will grow and divide either in liquid suspension or on solid media. As disclosed herein, plant cells will grow in suspension or on solid medium, but regeneration of plants from suspension cultures typically requires transfer from liquid to solid media at some point in development. The type and extent of differentiation of cells in culture will be affected not only by the type of media used and by the environment, for example, pH, but also by whether media is solid or liquid. [0077]
  • Tissue that can be grown in a culture includes meristem cells, Type I, Type II, and Type III callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. Type I, Type II, and Type III callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, root, leaf, microspores and the like. Those cells which are capable of proliferating as callus also are recipient cells for genetic transformation. [0078]
  • Somatic cells are of various types. Embryogenic cells are one example of somatic cells which may be induced to regenerate a plant through embryo formation. Non-embryogenic cells are those which typically will not respond in such a fashion. Certain techniques may be used that enrich recipient cells within a cell population. For example, Type II callus development, followed by manual selection and culture of friable, embryogenic tissue, generally results in an enrichment of cells. Manual selection techniques which can be employed to select target cells may include, e.g., assessing cell morphology and differentiation, or may use various physical or biological means. Cryopreservation also is a possible method of selecting for recipient cells. [0079]
  • Manual selection of recipient cells, e.g., by selecting embryogenic cells from the surface of a Type II callus, is one means that may be used in an attempt to enrich for particular cells prior to culturing (whether cultured on solid media or in suspension). [0080]
  • Where employed, cultured cells may be grown either on solid supports or in the form of liquid suspensions. In either instance, nutrients may be provided to the cells in the form of media, and environmental conditions controlled. There are many types of tissue culture media comprised of various amino acids, salts, sugars, growth regulators and vitamins. Most of the media employed in the practice of the invention will have some similar components, but may differ in the composition and proportions of their ingredients depending on the particular application envisioned. For example, various cell types usually grow in more than one type of media, but will exhibit different growth rates and different morphologies, depending on the growth media. In some media, cells survive but do not divide. Various types of media suitable for culture of plant cells previously have been described. Examples of these media include, but are not limited to, the N6 medium described by Chu et al. (1975) and MS media (Murashige and Skoog, 1962). [0081]
  • IV. Production and Characterization of Stably Transformed Plants [0082]
  • After effecting delivery of exogenous DNA to recipient cells, the next steps generally concern identifying the transformed cells for further culturing and plant regeneration. In order to improve the ability to identify transformants, one may desire to employ a selectable or screenable marker gene with a transformation vector prepared in accordance with the invention. In this case, one would then generally assay the potentially transformed cell population by exposing the cells to a selective agent or agents, or one would screen the cells for the desired marker gene trait. [0083]
  • A. Selection [0084]
  • It is believed that DNA is introduced into only a small percentage of target cells in any one experiment: In order to provide an efficient system for identification of those cells receiving DNA and integrating it into their genomes one may employ a means for selecting those cells that are stably transformed. One exemplary embodiment of such a method is to introduce into the host cell, a marker gene which confers resistance to some normally inhibitory agent, such as an antibiotic or herbicide. Examples of antibiotics which may be used include the aminoglycoside antibiotics neomycin, kanamycin and paromomycin, or the antibiotic hygromycin. Resistance to the aminoglycoside antibiotics is conferred by aminoglycoside phosphostransferase enzymes. such as neomycin phosphotransferase II (NPT II) or NPT I, whereas resistance to hygromycin is conferred by hygromycin phosphotransferase. [0085]
  • Potentially transformed cells then are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene has been integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. [0086]
  • One herbicide which constitutes a desirable selection agent is the broad spectrum herbicide bialaphos. Bialaphos is a tripeptide antibiotic produced by [0087] Streptomyces hygroscopicus and is composed of phosphinothricin (PPT), an analogue of L-glutamic acid, and two L-alanine residues. Upon removal of the L-alanine residues by intracellular peptidases, the PPT is released and is a potent inhibitor of glutamine synthetase (GS), a pivotal enzyme involved in ammonia assimilation and nitrogen metabolism (Ogawa et al., 1973). Synthetic PPT, the active ingredient in the herbicide Liberty™ also is effective as a selection agent. Inhibition of GS in plants by PPT causes the rapid accumulation of ammonia and death of the plant cells.
  • The organism producing bialaphos and other species of the genus Streptomyces also synthesizes an enzyme phosphinothricin acetyl transferase (PAT) which is encoded by the bar gene in [0088] Streptomyces hygroscopicus and the pat gene in Streptomyces viridochromogenes. The use of the herbicide resistance gene encoding phosphinothricin acetyl transferase (PAT) is referred to in DE 3642 829 A, wherein the gene is isolated from Streptomyces viridochromogenes. In the bacterial source organism, this enzyme acetylates the free amino group of PPT preventing auto-toxicity (Thompson et al., 1987). The bar gene has been cloned (Murakami et al., 1986; Thompson et al., 1987) and expressed in transgenic tobacco, tomato, potato (De Block et al., 1987) Brassica (De Block et al., 1989) and maize (U.S. Pat. No. 5,550,318). In previous reports, some transgenic plants which expressed the resistance gene were completely resistant to commercial formulations of PPT and bialaphos in greenhouses.
  • Another example of a herbicide which is useful for selection of transformed cell lines in the practice of the invention is the broad spectrum herbicide glyphosate. Glyphosate inhibits the action of the enzyme EPSPS which is active in the aromatic amino acid biosynthetic pathway. Inhibition of this enzyme leads to starvation for the amino acids phenylalanine, tyrosine, and tryptophan and secondary metabolites derived thereof. U.S. Pat. No. 4,535,060 describes the isolation of EPSPS mutations which confer glyphosate resistance on the [0089] Salmonella typhimurium gene for EPSPS, aroA. The EPSPS gene was cloned from Zea mays and mutations similar to those found in a glyphosate resistant aroA gene were introduced in vitro. Mutant genes encoding glyphosate resistant EPSPS enzymes are described in, for example, International Patent WO 97/4103. The best characterized mutant EPSPS gene conferring glyphosate resistance comprises amino acid changes at residues 102 and 106, although it is anticipated that other mutations will also be useful (PCT/WO97/4103).
  • To use the bar-bialaphos or the EPSPS-glyphosate selective system, transformed tissue is cultured for 0-28 days on nonselective medium and subsequently transferred to medium containing from 1-3 mg/l bialaphos or 1-3 mM glyphosate as appropriate. While ranges of 1-3 mg/l bialaphos or 1-3 mM glyphosate will typically be preferred, it is proposed that ranges of 0.1-50 mg/l bialaphos or 0.1-50 mM glyphosate will find utility. [0090]
  • It further is contemplated that the herbicide DALAPON, 2,2-dichloropropionic acid, may be useful for identification of transformed cells. The [0091] enzyme 2,2-dichloropropionic acid dehalogenase (deh) inactivates the herbicidal activity of 2,2-dichloropropionic acid and therefore confers herbicidal resistance on cells or plants expressing a gene encoding the dehalogenase enzyme (Buchanan-Wollaston et al., 1992; U.S. Pat. No. 5,508,468; and U.S. Pat. No. 5,508,468; each of the disclosures of which is specifically incorporated herein by reference in its entirety).
  • Alternatively, a gene encoding anthranilate synthase, which confers resistance to certain amino acid analogs, e.g., 5-methyltryptophan or 6-methyl anthranilate, may be useful as a selectable marker gene. The use of an anthranilate synthase gene as a selectable marker was described in U S. Pat. No. 5,508,468. [0092]
  • An example of a screenable marker trait is the enzyme luciferase. In the presence of the substrate luciferin, cells expressing luciferase emit light which can be detected on photographic or x-ray film, in a luminometer (or liquid scintillation counter), by devices that enhance night vision, or by a highly light sensitive video camera, such as a photon counting camera. These assays are nondestructive and transformed cells may be cultured further following identification. The photon counting camera is especially valuable as it allows one to identify specific cells or groups of cells which are expressing luciferase and manipulate those in real time. Another screenable marker which may be used in a similar fashion is the gene coding for green fluorescent protein. [0093]
  • It further is contemplated that combinations of screenable and selectable markers will be useful for identification of transformed cells. In some cell or tissue types a selection agent, such as bialaphos or glyphosate, may either not provide enough killing activity to clearly recognize transformed cells or may cause substantial nonselective inhibition of transformants and nontransformants alike, thus causing the selection technique to not be effective. It is proposed that selection with a growth inhibiting compound, such as bialaphos or glyphosate at concentrations below those that cause 100% inhibition followed by screening of growing tissue for expression of a screenable marker gene such as luciferase would allow one to recover transformants from cell or tissue types that are not amenable to selection alone. It is proposed that combinations of selection and screening may enable one to identify transformants in a wider variety of cell and tissue types. This may be efficiently achieved using a gene fusion between a selectable marker gene and a screenable marker gene, for example, between an NPTII gene and a GFP gene. [0094]
  • B. Regeneration and Seed Production [0095]
  • Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. In an exemplary embodiment, MS and N6 media may be modified by including further substances such as growth regulators. One such growth regulator is dicamba or 2,4-D. However, other growth regulators may be employed, including NAA, NAA+2,4-D or picloram. Media improvement in these and like ways has been found to facilitate the growth of cells at specific developmental stages. Tissue may be maintained on a basic media with growth regulators until sufficient tissue is available to begin plant regeneration efforts, or following repeated rounds of manual selection, until the morphology of the tissue is suitable for regeneration, at least 2 wk, then transferred to media conducive to maturation of embryoids. Cultures are transferred every 2 wk on this medium. Shoot development will signal the time to transfer to medium lacking growth regulators. [0096]
  • The transformed cells, identified by selection or screening and cultured in an appropriate medium that supports regeneration, will then be allowed to mature into plants. Developing plantlets are transferred to soiless plant growth mix, and hardened, e.g., in an environmentally controlled chamber, for example, at about 85% relative humidity, 600 ppm CO[0097] 2, and 25-250 microeinsteins m−2 s−1 of light. Plants are preferably matured either in a growth chamber or greenhouse. Plants can be regenerated from about 6 wk to 10 months after a transformant is identified, depending on the initial tissue. During regeneration, cells are grown on solid media in tissue culture vessels. Illustrative embodiments of such vessels are petri dishes and Plant Cons. Regenerating plants are preferably grown at about 19 to 28° C. After the regenerating plants have reached the stage of shoot and root development, they may be transferred to a greenhouse for further growth and testing.
  • Seeds on transformed plants may occasionally require embryo rescue due to cessation of seed development and premature senescence of plants. To rescue developing embryos, they are excised from surface-disinfected seeds 10-20 days post-pollination and cultured. An embodiment of media used for culture at this stage comprises MS salts, 2% sucrose, and 5.5 g/l agarose. In embryo rescue, large embryos (defined as greater than 3 mm in length) are germinated directly on an appropriate media. Embryos smaller than that may be cultured for 1 wk on media containing the above ingredients along with 10[0098] −5M abscisic acid and then transferred to growth regulator-free medium for germination.
  • C. Characterization [0099]
  • To confirm the presence of the exogenous DNA or “transgene(s)” in the regenerating plants, a variety of assays may be performed. Such assays include, for example, “molecular biological” assays, such as Southern and Northern blotting and PCR™; “biochemical” assays, such as detecting the presence of a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant. [0100]
  • D. DNA Integration, RNA Expression and Inheritance [0101]
  • Genomic DNA may be isolated from cell lines or any plant parts to determine the presence of the exogenous gene through the use of techniques well known to those skilled in the art. Note, that intact sequences will not always be present, presumably due to rearrangement or deletion of sequences in the cell. The presence of DNA elements introduced through the methods of this invention may be determined, for example, by polymerase chain reaction (PCR™). Using this technique, discreet fragments of DNA are amplified and detected by gel electrophoresis. This type of analysis permits one to determine whether a gene is present in a stable transformant, but does not prove integration of the introduced gene into the host cell genome. It is typically the case, however, that DNA has been integrated into the genome of all transformants that demonstrate the presence of the gene through PCR™ analysis. In addition, it is not typically possible using PCR™ techniques to determine whether transformants have exogenous genes introduced into different sites in the genome, i.e., whether transformants are of independent origin. It is contemplated that using PCR™ techniques it would be possible to clone fragments of the host genomic DNA adjacent to an introduced gene. [0102]
  • Positive proof of DNA integration into the host genome and the independent identities of transformants may be determined using the technique of Southern hybridization. Using this technique specific DNA sequences that were introduced into the host genome and flanking host DNA sequences can be identified. Hence the Southern hybridization pattern of a given transformant serves as an identifying characteristic of that transformant. In addition it is possible through Southern hybridization to demonstrate the presence of introduced genes in high molecular weight DNA, i.e., confirm that the introduced gene has been integrated into the host cell genome. The technique of Southern hybridization provides information that is obtained using PCR™, e.g., the presence of a gene, but also demonstrates integration into the genome and characterizes each individual transformant. [0103]
  • It is contemplated that using the techniques of dot or slot blot hybridization which are modifications of Southern hybridization techniques one could obtain the same information that is derived from PCR™, e.g., the presence of a gene. [0104]
  • Both PCR™ and Southern hybridization techniques can be used to demonstrate transmission of a transgene to progeny. In most instances the characteristic Southern hybridization pattern for a given transformant will segregate in progeny as one or more Mendelian genes (Spencer et al., 1992) indicating stable inheritance of the transgene. [0105]
  • Whereas DNA analysis techniques may be conducted using DNA isolated from any part of a plant, RNA will only be expressed in particular cells or tissue types and hence it will be necessary to prepare RNA for analysis from these tissues. PCR™ techniques also may be used for detection and quantitation of RNA produced from introduced genes. In this application of PCR™ it is first necessary to reverse transcribe RNA into DNA, using enzymes such as reverse transcriptase, and then through the use of conventional PCR™ techniques amplify the DNA. In most instances PCR™ techniques, while useful, will not demonstrate integrity of the RNA product. Further information about the nature of the RNA product may be obtained by Northern blotting. This technique will demonstrate the presence of an RNA species and give information about the integrity of that RNA. The presence or absence of an RNA species also can be determined using dot or slot blot Northern hybridizations. These techniques are modifications of Northern blotting and will only demonstrate the presence or absence of an RNA species. [0106]
  • E. Gene Expression [0107]
  • While Southern blotting and PCR™ may be used to detect the gene(s) in question, they do not provide information as to whether the corresponding protein is being expressed. Expression may be evaluated by specifically identifying the protein products of the introduced genes or evaluating the phenotypic changes brought about by their expression. [0108]
  • Assays for the production and identification of specific proteins may make use of physical-chemical, structural, functional, or other properties of the proteins. Unique physical-chemical or structural properties allow the proteins to be separated and identified by electrophoretic procedures, such as native or denaturing gel electrophoresis or isoelectric focusing, or by chromatographic techniques such as ion exchange or gel exclusion chromatography. The unique structures of individual proteins offer opportunities for use of specific antibodies to detect their presence in formats such as an ELISA assay. Combinations of approaches may be employed with even greater specificity such as western blotting in which antibodies are used to locate individual gene products that have been separated by electrophoretic techniques. Additional techniques may be employed to absolutely confirm the identity of the product of interest such as evaluation by amino acid sequencing following purification. Although these are among the most commonly employed, other procedures may be additionally used. [0109]
  • Assay procedures also may be used to identify the expression of proteins by their functionality, especially the ability of enzymes to catalyze specific chemical reactions involving specific substrates and products. These reactions may be followed by providing and quantifying the loss of substrates or the generation of products of the reactions by physical or chemical procedures. Examples are as varied as the enzyme to be analyzed and may include assays for PAT enzymatic activity by following production of radiolabeled acetylated phosphinothricin from phosphinothricin and [0110] 14C-acetyl CoA or for anthranilate synthase activity by following loss of fluorescence of anthranilate, to name two.
  • Very frequently the expression of a gene product is determined by evaluating the phenotypic results of its expression. These assays also may take many forms including but not limited to analyzing changes in the chemical composition, morphology, or physiological properties of the plant. Chemical composition may be altered by expression of genes encoding enzymes or storage proteins which change amino acid composition and may be detected by amino acid analysis, or by enzymes which change starch quantity which may be analyzed by near infrared reflectance spectrometry. Morphological changes may include greater stature or thicker stalks. Most often changes in response of plants or plant parts to imposed treatments are evaluated under carefully controlled conditions termed bioassays. [0111]
  • V. Breeding Plants of the Invention [0112]
  • In addition to direct transformation of a particular plant genotype with a construct prepared according to the current invention, transgenic plants may be made by crossing a plant having a selected DNA of the invention to a second plant lacking the construct. For example, a selected gene can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the current invention not only encompasses a plant directly transformed or regenerated from cells which have been transformed in accordance with the current invention, but also the progeny of such plants. As used herein the term “progeny” denotes the offspring of any generation of a parent plant prepared in accordance with the instant invention, wherein the progeny comprises a selected DNA construct prepared in accordance with the invention. “Crossing” a plant to provide a plant line having one or more added transgenes relative to a starting plant line, as disclosed herein, is defined as the techniques that result in a transgene of the invention being introduced into a plant line by crossing a starting line with a donor plant line that comprises a transgene of the invention. To achieve this one could, for example, perform the following steps: [0113]
  • (a) plant seeds of the first (starting line) and second (donor plant line that comprises a transgene of the invention) parent plants; [0114]
  • (b) grow the seeds of the first and second parent plants into plants that bear flowers; [0115]
  • (c) pollinate a flower from the first parent plant with pollen from the second parent plant; and [0116]
  • (d) harvest seeds produced on the parent plant bearing the fertilized flower. [0117]
  • Backcrossing is herein defined as the process including the steps of: [0118]
  • (a) crossing a plant of a first genotype containing a desired gene, DNA sequence or element to a plant of a second genotype lacking said desired gene, DNA sequence or element; [0119]
  • (b) selecting one or more progeny plant containing the desired gene, DNA sequence or element; [0120]
  • (c) crossing the progeny plant to a plant of the second genotype; and [0121]
  • (d) repeating steps (b) and (c) for the purpose of transferring a desired DNA sequence from a plant of a first genotype to a plant of a second genotype. [0122]
  • Introgression of a DNA element into a plant genotype is defined as the result of the process of backcross conversion. A plant genotype into which a DNA sequence has been introgressed may be referred to as a backcross converted genotype, line, inbred, or hybrid. Similarly a plant genotype lacking the desired DNA sequence may be referred to as an unconverted genotype, line, inbred, or hybrid. [0123]
  • VI. Definitions [0124]
  • Expression: The combination of intracellular processes, including transcription and translation undergone by a coding DNA molecule such as a structural gene to produce a polypeptide. [0125]
  • Genetic Transformation: A process of introducing a DNA sequence or construct (e.g., a vector or expression cassette) into a cell or protoplast in which that exogenous DNA is incorporated into a chromosome or is capable of autonomous replication. [0126]
  • Heterologous: A sequence which is not normally present in a given host genome in the genetic context in which the sequence is currently found In this respect, the sequence may be native to the host genome, but be rearranged with respect to other genetic sequences within the host sequence. For example, a regulatory sequence may be heterologous in that it is linked to a different coding sequence relative to the native regulatory sequence. [0127]
  • Obtaining: When used in conjunction with a transgenic plant cell or transgenic plant, obtaining means either transforming a non-transgenic plant cell or plant to create the transgenic plant cell or plant, or planting transgenic plant seed to produce the transgenic plant cell or plant. Such a transgenic plant seed may be from an Ro transgenic plant or may be from a progeny of any generation thereof that inherits a given transgenic sequence from a starting transgenic parent plant. [0128]
  • Promoter: A recognition site on a DNA sequence or group of DNA sequences that provides an expression control element for a structural gene and to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene. [0129]
  • Selected DNA: A DNA segment which one desires to introduce into a genome by genetic transformation. [0130]
  • Transformation construct: A chimeric DNA molecule which is designed for introduction into a host genome by genetic transformation. Preferred transformation constructs will comprise all of the genetic elements necessary to direct the expression of one or more exogenous genes. In particular embodiments of the instant invention, it may be desirable to introduce a transformation construct into a host cell in the form of an expression cassette. [0131]
  • Transformed cell: A cell the DNA complement of which has been altered by the introduction of an exogenous DNA molecule into that cell. [0132]
  • Transgene: A segment of DNA which has been incorporated into a host genome or is capable of autonomous replication in a host cell and is capable of causing the expression of one or more coding sequences. Exemplary transgenes will provide the host cell, or plants regenerated therefrom, with a novel phenotype relative to the corresponding non-transformed cell or plant. Transgenes may be directly introduced into a plant by genetic transformation, or may be inherited from a plant of any previous generation which was transformed with the DNA segment. [0133]
  • Transgenic plant: A plant or progeny plant of any subsequent generation derived therefrom, wherein the DNA of the plant or progeny thereof contains an introduced exogenous DNA segment not naturally present in a non-transgenic plant of the same strain. The transgenic plant may additionally contain sequences which are native to the plant being transformed, but wherein the “exogenous” gene has been altered in order to alter the level or pattern of expression of the gene, for example, by use of one or more heterologous regulatory or other elements. [0134]
  • Vector: A DNA molecule capable of replication in a host cell and/or to which another DNA segment can be operatively linked so as to bring about replication of the attached segment. A plasmid is an exemplary vector. [0135]
  • VII. EXAMPLES
  • The following examples are included to illustrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims. [0136]
  • Example 1 M IC1,3 Accumulation Pattern in Plant Tissue and Isolation of Mutants of M IC1,3 Capable of Systemic Disease in N. tabacum
  • [0137] M IC1,3 infects inoculated leaves of N. tabacum, but does not induce systemic symptoms on the host (N. tabacum cv. Xanthi, Shintaku et al., 1996). Compared with the parental virus, M IC1,3-encoded proteins accumulated differentially in N. tabacum or in protoplasts. In inoculated leaves of N. tabacum, there was no difference in coat protein (CP) accumulation between the two viruses through the period when systemic spread of TMV normally occurs (Table 1). When M IC1,3 and MIC were inoculated onto N. tabacum cv. Xanthi NN, a hypersensitive host for TMV, necrotic lesion appearance and lesion diameters were identical for the two viruses. This finding indicated that the accumulation of M IC1,3-encoded movement protein (MP), essential for cell-to-cell movement of this virus, was sufficiently like the parental strain to induce normal size lesions.
    TABLE 1
    Detection of viral coat protein in MICml,3 or MIC-TMV inoculated
    Xanthi tobacco leaves at 4 and 8 DPI by ELISA
    mg coat protein/g fresh leaf tissue
    fresh weight leaf tissue
    DPI MIcml,3 MIC-TMV
    4 X = 0.23 ± 0.03* X = 0.18 ± 0.02
    8 X = 0.11 ± 0.01 X = 0.13 ± 0.02
  • Protoplasts isolated from mature leaves and subsequently inoculated with [0138] M IC1,3, MIC, or U1 resulted in similar MP accumulation for all three viruses (FIG. 2). The nucleic acid sequence for the 126 kDa and 183 kDa coding sequence of the U1 strain are given in SEQ ID NO:1 and SEQ ID NO:3, and the corresponding amino acid sequences are given in SEQ ID NO:2 and SEQ ID NO:4, respectively. The accumulation of the viral 126 kDa protein, a protein containing conserved motifs for methyltransferase and helicase activities and important for modulating virus replication, decreased by 35-45% for protoplasts inoculated by M IC1,3 compared to those inoculated with MIC (Table 2).
    TABLE 2
    Relative Incorporation of 35S-Label into the Viral 126-kDa Protein in
    Protoplastsa
    MIC MICm1,3 MICml,3,6
    1.89a 1.0 2.32
  • Although [0139] M IC1,3-inoculated protoplasts accumulated less 126 kDa protein than MIC-inoculated protoplasts, the ability of M IC1,3 to spread in inoculated leaves was similar to the parental MIC. The appearance of M IC1,3 or MIC CP was monitored in minor vein cells of inoculated N. tabacum cv. Xanthi leaves during the period when systemic symptoms would normally appear. Both viruses were able to invade any of the cell types within the vascular tissue (Table 3).
    TABLE 3
    Percentage of infected cells for three cell types of typical
    class V veins in inoculated Xanthi nn leaves
    Percentage of
    cells infected
    Inoculum DPIa Number of veins* BS# VP+ C@
    Mock 4 6(2) 0 0 0
    MIC-TMV 4 18(6) 40 34 0
    MICml,3 4 8(6) 65 50 0
    Mock 8 2(2) 0 0 0
    MIC-TMV 8 10(6) 100 88 7
    MICml,3 8 8(6) 100 90 3
  • During the analysis of [0140] M IC1,3 accumulation in the N. tabacum systemic host, a percentage of plants (20%, 2 of 10 plants) displayed chlorotic systemic leaves late in infection. The symptoms were much like those displayed after inoculation with M IC1,3,6, a mutant virus produced in vitro by site-directed mutagenesis of the cDNA encoding MIC (Shintaku et al., 1996). The systemic symptoms appeared on the same percentage of plants regardless of their possessing the U1 gene for the 183 kDa protein. Tissue was harvested from systemic leaves showing chlorotic mottling for RT-PCR™ analysis. cDNA from the systemic leaves of the transgenic plant expressing the U1 gene for the 183 kDa protein was sequenced through all the TMV orfs (FIG. 3). Virus from this tissue contained a single sequence alteration from that of the parental virus at nucleotide 1864 in the 126 kDa protein orf. The altered sequence resulted in a substitution different from the U1 sequence of arginine for methionine at amino acid residue 598 in the 126 kDa protein. cDNA from the systemic leaves of the nontransgenic plant were sequenced from nucleotides 997 to 1380, 1756-2123, and 2249-2427, an area containing all the codons resulting in amino acid differences between the MIC and U1 126 kDa proteins. There was a single substitution at nucleotide 1872, altering the sequence at this position of this mutant virus to that of U1. This sequence alteration resulted in an amino acid substitution of glutamic acid for lysine at position 601 in the 126 kDa protein. Thus, both viruses, referred to as M IC 1,3,1864 and M IC 1,3,1872, contained single nucleotide substitutions near one another and within the 126 kDa protein and 183 kDa protein 5′ coterminal orfs.
  • A single substitution at nucleotide 1872 of the M[0141] IC cDNA U1 sequence yielded a virus, M IC6, that induced a severe systemic symptom phenotype (Shintaku et al., 1996). This virus also accumulates in systemic tissue (Derrick et al., 1997). In addition, another mutant of MIC was produced with altered sequences at positions 1,3 and 6 (MICm1,3,6; Shintaku et al., 1996). The symptom and systemic accumulation phenotypes induced by this virus were similar to those induced by M IC1,3,1864 and M IC1,3,1872. These combined results indicate that amino acids around position 601 within the TMV 126 kDa protein control systemic accumulation of TMV. The ability of M IC1,3 to spread throughout the inoculated leaf and vasculature indicates that the major defect in this virus is in its ability to establish an infection in systemic leaf tissue after exit from the vasculature (as evidenced in FIG. 5). This is unlike the findings for potyviruses with an altered HC-Pro sequence. HC-Pro was determined to be essential for entry into the vascular tissue as well as its exit from this tissue (Kasschau et al., 1997). For TMV, the MIC strain is attenuated or delayed in accumulation in the minor veins of the inoculated leaves compared with the U1 strain of TMV (Ding et al., 1995b). The lack of systemic virus accumulation for M IC1,3 is beyond the location previously identified for the MIC strain.
  • The positive correlation between the amount of 126 kDa protein accumulated in infected protoplasts and the ability of the viruses to accumulate systemically (Tables 2 and 3 and FIG. 5) suggested that viral activities were affected in inoculated leaves prior to entering the vascular tissue. Despite [0142] M IC1,3's lower accumulation of the 126 kDa protein in inoculated protoplasts compared to the parental strain, there was no delay of spreading to and invading the vascular tissue of the inoculated leaves.
  • Example 2 MIC1,3,1864 and MIC1,3,1872 Accumulation in Inoculated Leaves and Protoplasts and, in Comparison with M IC1,3, Their Accumulation in Systemic Tissue of N. tabacum
  • Previously, it was shown that the phenotypic equivalent of [0143] M IC1,3,1872, MICm1,3,6, accumulated CP in chlorotic lesions of inoculated leaves of N. tabacum cv. Xanthi similarly to MIC (Shintaku et al., 1996). CP also accumulated to similar levels in leaves inoculated with M IC1,3,1864, MIC, or M IC1,3. Lesion diameters induced by M IC1,3, 1864 and M IC1,3,1872 were identical to those induced by MIC and M IC1,3. Therefore, adequate amounts of MP were produced to allow cell-to-cell spread of these viruses on inoculated leaves. Accumulation of 126 kDa protein in protoplasts inoculated with M IC 1,3,1872, however, was similar to that observed for protoplasts inoculated with MIC and more than twice that observed for protoplasts inoculated with M IC1,3 (Table 2). Thus, a correlation between the ability of viruses to accumulate in systemic tissue and the level of their 126 kDa protein in infected protoplasts was observed. A similar trend was observed for other strains and mutants of TMV (Derrick et al., 1997).
  • Two hosts that allowed systemic accumulation of [0144] M IC1,3 were identified. Nicotiana benthamiana and Capsicum annuum plants were inoculated with virus and observed over time for systemic symptoms and virus accumulation. Sixteen days after inoculation, N. benthamiana plants inoculated with M IC1,3 displayed chlorotic areas on systemic leaves (FIG. 4). These symptoms were less severe than those induced by MIC or U1. C. annuum plants inoculated with M IC1,3 displayed chlorotic areas on systemic leaves 6-7 days after inoculation. As was observed for the virus-infected N. benthamiana plants, the symptoms induced by M IC1,3 on C. annuum were less severe than those induced by MIC or U1. Systemic leaves displaying symptoms from both plant species were analyzed for the presence of virus by RT-PCR™ analysis. The nucleotide region from nucleotides 997-1380, 1756-2123, and 2249-2427 was sequenced and showed that the protein was unchanged. Extracts were also inoculated onto leaves of the systemic tobacco host and no systemic symptoms were observed through 30 days post inoculation. Therefore, the ability of M IC1,3 to systemically infect N. benthamiana and C. annuum was not due to viral mutation.
  • Grafting studies determined that [0145] M IC1,3 could enter and spread through the vascular tissue of N. tabacum. Reciprocal grafts were made between N. tabacum, the nonpermissive host for M IC1,3, and N. benthamiana, the permissive host for M IC1,3, and the leaves of the rootstocks were inoculated with M IC1,3, M IC1,3,1864 or MIC. All three viruses accumulated in shoot apices of the N. benthamiana scions (FIG. 5) in a time frame similar to that observed during phloem transport (8 days post inoculation). Thus, M IC1,3 can enter the sieve elements of N. tabacum and travel to shoot apices through vascular tissue. In the reciprocal graft, M IC1,3 accumulated 10 fold less in the N. tabacum scion compared with MIC or M IC1,3,1864. A similar result was obtained by analyzing young leaves of N. tabacum (cv. Xanthi) through reverse transcription and PCR™ after inoculation of the lower part of the plant with M IC1,3. M IC1,3 was either not detected or detected at very low levels in systemic tissue compared with that observed after U1-TMV inoculation. Therefore, M IC1,3 either had difficulty exiting vascular tissue or establishing infection after exit.
  • Example 3 Systemic Accumulation is Correlated with a Delay in Transgene Silencing
  • Certain viruses accumulate in inoculated leaves but fail to accumulate in systemic tissue, eventually leading to a recovered host plant (Al-Kaff et al., 1998; Covey et al., 1997; Ratcliff et al., 1997). The inventors inoculated [0146] N. benthamiana plants with M IC1,3, MIC, U1, and M IC1,3,1864 and observed the symptom phenotype induced over time. Plants inoculated with U1 died after approximately 29 days post inoculation, but those inoculated with MIC, M IC1,3,1864, and M IC1,3 continued growing despite symptoms ranging from severe to mild. Although plants inoculated with MIC had severe symptoms in the first systemic leaves, green tissue emerged from the shoot apices that expanded normally and had little virus. Thus, the recovery phenotype displayed by N. benthamiana infected with MIC demonstrated that RNA silencing may be functioning in this host against TMV.
  • [0147] N. tabacum cv. Xanthi expressing a 126 kDa protein:green fluorescent protein (GFP) fusion were challenged with various strains and mutants of TMV and the level of GFP expression in systemic leaves monitored through confocal microscopy as the infections progressed (FIG. 6). Host-derived viral:GFP transgene expression was silenced earlier in systemic leaves of plants inoculated with M IC1,3 or MIC than in those inoculated with a mutant of MIC where all eight amino acids differing between MIC and U1 were altered to the U1 sequence, yielding MIC1-8, a virus that produces U1-like severe systemic symptoms. In initial studies, it was determined that amino acid 601 (position 6 in FIG. 1) in the 126 kDa protein was a determinant for systemic accumulation of TMV (see above and Derrick et al., 1997). This was correlated with delayed silencing of transgenes. The, 126 kDa protein-GFP expressing plants inoculated with M IC 6 were delayed in GFP silencing compared to MIC, while a complementary mutant, UIm6, containing the amino acid from MIC at position 6 in the U1 background, silenced GFP fluorescence more quickly than did U1.
  • Tissue was analyzed from leaves harvested at 13 days post inoculation, when silencing was particularly apparent (FIG. 7). Tissue was harvested from leaves one above those shown in FIG. 6 and assayed for the appearance of small RNAs, indicative of active RNA silencing. Small RNAs were present in all virus challenged tissue with the quantity of small RNAs being negatively correlated with the level of GFP silencing observed (compare results in FIG. 7 with those shown in FIG. 6). These results indicated that RNA silencing was ongoing even while the protein was being protected for expression, as shown by the continued GFP expression in plants inoculated with M[0148] IC1-8.
  • The ability of the strains and mutants of TMV to accumulate in systemic tissue was negatively correlated with the ability of the host to silence fluorescence from the 126 kDa protein:GFP fusion in transgenic [0149] N. tabacum infected with the respective viruses (Derrick et al., 1997; Shintaku et al., 1996; FIG. 6 and FIG. 7). Recently, several research groups have identified viral proteins that either suppress or prevent the silencing of transgenes (Anandalakshmi et al., 1998; Brigneti et al., 1998; Kasschau and Carrington, 1998) based on systemic virus movement (Cronin et al., 1995; Ding et al., 1995a). The 126 and/or 183 kDa proteins are grouped among these proteins on that basis (Nelson and van Bel, 1998).
  • Results indicated that the 126 kDa and/or the 183 kDa protein(s) function to suppress RNA silencing or stabilize protein expression in systemic tissue. The results show that [0150] M IC1,3 which efficiently silences GFP expression, can move through the vascular tissue and establish some infection in systemic tissue (FIG. 5) Thus, since all the viruses tested could move and accumulate systemically, it is not simply the presence of the virus that leads to delayed or suppressed gene silencing. Further evidence for this can be seen through the results with M IC6, a virus that accumulates in systemic tissue at no greater levels than MIC, but greatly delays or suppresses GFP silencing compared with MIC (Derrick et al., 1997 and FIGS. 8 and 11). These observations support the hypothesis that the sequence of the 126 kDa and/or 183 kDa proteins and not simply its (their) presence in systemic tissue is responsible for the transient stabilization of GFP in the transgenic plants.
  • Example 4 Suppression of RNA Silencing of a Nonviral Transgene Maps to the 126 kDa Protein of TMV
  • To determine if the 126 or 183 kDa proteins of TMV could suppress RNA silencing of a nonviral transgene, seed of [0151] N. benthamiana plants expressing GFP (line 16c) were obtained from Dr. David Baulcombe (Sainsbury Laboratories, Norwich, United Kingdom). These plants can be silenced for GFP expression by infiltrating young leaves with Agrobacterium tumefaciens expressing the GFP gene from a binary vector (Ruiz et al. 1998). Plants silenced for GFP expression by Agrobacterium infiltration were later challenged in newly silenced leaves with the strains and mutants of TMV described herein. The study results indicated that M IC1,3 could not suppress the silencing in systemic tissue above the inoculated leaves, while MIC1-8 and other mutants containing the amino acid residue found in the U1 strain at position 6 could suppress silencing of the GFP (FIG. 8). Thus, the ability to suppress the silencing of this nonviral sequence in N. benthamiana mapped to the same protein as was found during the delay in silencing of the viral:nonviral transgene fusion expressed in N. tabacum (compare results in FIG. 6 with those in FIG. 8).
  • Newly developing leaf tissue was observed over time in the challenged 16c plants. Virus that produced severe symptoms in [0152] N. benthamiana prevented continued leaf expansion and plant growth, making it difficult to determine the stability of the suppression in these plants. However, M IC1,3,6, which produces mild symptoms, allowed continued plant growth and transient suppression of silencing (FIG. 9).
  • Example 5 A Model for TMV Silencing and Suppression
  • From the results of this study, it is possible to propose a model explaining the accumulation patterns of the TMV strains and mutants (FIG. 10). The most attenuated virus in systemic accumulation, [0153] M IC1,3, entered the vascular tissue, spread to the shoot apex and exited this tissue. At this point, the virus, must establish an infection Interestingly, M IC1,3, the virus that induced the most rapid silencing phenotype, yielded the lowest level of small RNAs while viruses that delayed silencing induced the highest levels of small RNAs. Thus each TMV strain, regardless of its ability to accumulate to high levels in systemic tissue, could induce the RNA silencing pathway in systemic tissue. The presence of small RNAs in systemic tissue of plants infected with viruses that induce severe symptoms suggests that these viruses accumulate despite active silencing of targeted host and viral sequences. In the case of U1, M IC6 and the other viruses that establish infection in the systemic tissue, the 126 kDa protein functions to stabilize its own RNA and protein (Table 2 and Derrick et al., 1997) as well as homologous transgene messages and/or their proteins. The homologous protein to the 126 kDa protein encoded by Brome mosaic virus, 1a, stabilizes RNA accumulation (Sullivan and Ahlquist, 1999). Stabilization of RNA and/or protein expression by these viral proteins in turn may allow infection to progress and symptoms to develop. Thus, the ability of TMV to accumulate depends on its ability to avoid the host proteins involved in silencing, rather than to disable the silencing system. Additional support for this model comes from the observation that the suppression of GFP silencing was transient, being dependent on the active accumulation of virus. This active virus accumulation necessarily includes the accumulation of the 126 and/or 183 kDa proteins which, in the model, act to form secluded areas that trap proteins and protect them from degradation. It is known that TMV produces cytoplasmic bodies associated with virus accumulation that contain large amounts of 126 kDa protein (e.g. Szecsi et al. 1999). These bodies could trap viral and nonviral RNA and protect it from degrading proteins involved in RNA silencing.
  • Example 6 The 126 kDa Protein Alone can Suppress Silencing of GFP
  • To determine whether the 126 kDa protein could suppress silencing in the absence of other viral factors, constructs of the 126 kDa protein fused with GFP were agroinfiltrated into leaves [0154] of N. benthamiana 16c plants expressing GFP or N. benthamiana plants that were not transformed. Because the GFP expressed by the 126 kDa protein:GFP fusion (referred to hereafter as GFP) was not identical in sequence or subcellular location to the GFP expressed in the 16c plants (referred to hereafter as GFPer; 78% sequence identity between these GFPs) nontransgenic N. benthamiana was infiltrated and transformed with GFP that was not fused to the 126 kDa protein to determine its ability to silence itself and the GFPer transcript in the transgenic plants. Tissue infiltrated with Agrobacterium containing the unfused GFP construct silenced both itself and the transgene by 5 days post infiltration, whereas tissue infiltrated with 126 kDa protein:GFP and unfused GFP delayed silencing of GFP expression in both nontransformed and transformed plants (FIGS. 12, 13; images in 126:GFP/GFP column compared with those in GFP column). A similar delay in silencing also occurred in both transgenic and nontransgenic plants infiltrated with 126 kDa protein:GFPer compared with GFPer alone (FIGS. 12, 13; images in 126:GFP/GFPer column compared with those in GFPer column). This indicated that the 126 kDa protein, in the absence of other viral factors, delayed the loss of GFP expression either by inhibiting protein or RNA degradation.
  • Example 7 Materials and Methods
  • Virus Strains and Mutants [0155]
  • The “masked” (M) and U1 strains of TMV were obtained from previously described sources (Holt et al., 1990). M[0156] IC-TMV refers to the progeny of infectious transcript produced from a cDNA clone of the M strain (Holt et al., 1990). M IC1,3, MIC1-8, MICm6, U1m6 and M IC1,3,6 were produced as described (Shintaku et al., 1996). Throughout the text, MICm1,3= M IC 1,3 and for all other mutants MICmX=MICX.
  • Plants [0157]
  • [0158] Nicotiana tabacum cv. Xanthi, N. tabacum cv. Xanthi NN (hypersensitive host), N. benthamiana and Capsicum annuum L. cv Marengo were used. N. benthamiana line 16c transformed to express GFP from behind a 35S promoter (Brigneti et al., 1998). N. tabacum cv. Xanthi transformed to express a fusion of the 126 kDa protein with the enhanced green fluorescent protein (GFP) from behind an enhanced 35S promoter is described below.
  • Antibodies [0159]
  • Antibodies against the movement protein (MP) and the coat protein (CP) were provided or produced as described (Derrick et al., 1997). Antiserum against ribulose-5-phospahet kinase (Ru5P kinase) was from USDA-ARS Western Cotton Research Lab, Phoenix, Ariz. [0160]
  • Growth of [0161] Nicotiana tabacum and Nicotiana benthamiana and Inoculation with Virus
  • [0162] N. tabacum cv. Xanthi or Xanthi NN, C. annuum and N. benthamiana were germinated and grown as described for N. tabacum (Ding et al., 1995b), and cuttings of N. tabacum cv. Xanthi transformed to express the 126 kDa protein:GFP fusion were grown (Ding et al., 1995b). In vitro transcripts of virus cDNAs were produced and inoculated according to Shinataku et al. (1996). After virus inoculation, plants were either left in a greenhouse under previously described conditions (Nelson et al., 1993) or placed in a growth chamber (Ding et al., 1995b). Virus was inoculated as described (Nelson et al., 1993). In vitro transcripts were produced and inoculated as described (Shintaku et al., 1996).
  • Necrotic Lesion Measurements [0163]
  • Necrotic lesion diameters were measured with a micrometer using a previously described experimental design (Bao et al., 1996). [0164]
  • Immunoblots and ELISA [0165]
  • For immunoblots shown in FIG. 2, protoplasts were harvested, extracted and analyzed as described (Derrick et al., 1997) Blots were first probed with antibody against the MP and then stripped and probed with antibody against Ru5P kinase [0166]
  • For ELISA analysis, tissue was harvested at the particular developmental stage and dpi as described above and the fresh weight was recorded. Tissue was extracted and ELISA conducted for CP accumulation as described for virus accumulation in transgenic tobacco expressing MP (Derrick et al., 1997). [0167]
  • Immunocytochemistry [0168]
  • To visualize virus accumulation in vascular cells from inoculated leaves (Table 3), leaf tissue was randomly sampled from virus- and mock-innoculated leaves. Tissue from [0169] N. tabacum was analyzed by double-sided labeling immunocytochemistry and light microscopy as described (Ding et al., 1996 and 1996b).
  • Protoplast Isolation, Inoculation and Analysis [0170]
  • [0171] N. tabacum cv. Xanthi used as a source for leaf-derived protoplasts were grown and maintained as described (Derrick et al., 1997). Protoplasts enriched in palisade mesophyll cells were prepared essentially as described by Kubo and Takanami (1979). Virus inoculation of protoplasts was conducted as described (Derrick et al., 1997). Immunoblot detection of MP accumulation in protoplasts and pulse-labeling of viral proteins were performed as described (Derrick et al., 1997). For protoplasts subjected to pulse radiolabelling, the incubation medium contained 80 μg of actinomycin D per ml and radiolabelling occurred from 8-10 hr. post-inoculation (Derrick et al., 1997).
  • Isolation, Purification and Sequencing of [0172] M IC 1,3 Mutants
  • Progeny virus was sequenced after isolation of total RNA from systemically-infected leaves as described (Shintaku et al., 1996). [0173]
  • Grafting Studies [0174]
  • [0175] N. tabacum cv. Xanthi and N. benthamiana plants were grown as described (Ding et al. 1995b). Reciprocal grafts were made between species using a wedge grafting system as described (Kasshau et al. 1997). The grafted rootstock and scion were covered with a clear plastic lid to reduce transpiration demand on the recovering plants. After recovery and removal of the plastic lid all leaves on the scion, except those less than 2 cm in midrib length, were removed to remove extraneous sink tissue. The first and second leaves down from the graft union on the rootstock were challenged with virus one or two days after removal of the scion leaves. Virus infectivities were equalized previous to inoculation of the grafted plants by bioassay with a hypersensitive host (N. tabacum cv. Xanthi NN).
  • Production of Transgenic Plants Expressing the 126 kDa Protein: GFP Fusion [0176]
  • The cDNA fragment encoding the 126 kDa protein of TMV was produced using the “WFP” construct from M[0177] ICm2 described in international patent application PCT/USO1/22390, the disclosure of which is specifically incorporated herein by reference in the entirety. The fusion protein construct was moved into the intermediate plasmid, pRTL2, as described in the patent application. The construct used to transform plants, referred to as the WFP construct, was then spliced from pRTL2 by digestion with restriction enzymes and ligated into vector pGA482 at the HindIII sites. Agrobacterium tumefaciens (LBA 4404) was then transformed with the binary vector using a modification of the method described by An et al. (1988). This modification includes after freezing in liquid nitrogen and then thawing at 37° C. for 5 min, 1 ml of YEP medium added to the tube and the cells incubated for 1 h at 28° C. Kanamycin (1 μl/ml) and nfampicin (1 μg/ml) were added and the cells incubated at 28° C. for another 2 h. The cells were centrifuged and resuspended in 50 μl of YEP medium containing the antibiotics as described above. The cells were inoculated onto YEP agar plate containing 50 μg/ml kanamycin and 10 μ/ml rifampicin, and incubated at 28° C. for 2-3 days. Leaf discs from N. tabacum cv. Xanthi were transformed using Agrobacterium tumefaciens containing the 126 kDa protein:GFP fusion through standard protocols (Horsch et al. 1988). A line putatively containing the 126 kDa protein:GFP fusion (line 1-1) was screened for the presence of the insert and expression of the transgene at the RNA and protein level (see FIG. 6 for expression pattern of GFP under the confocal microscope). The line contained multiple inserts and thus was used as cuttings for all challenge studies with virus. The cuttings were developmentally matched by their plastochron indices for all studies to reduce plant to plant variability between treatments (Nelson et al. 1993).
  • Agrobacterium Infiltration [0178]
  • A GFP sequence (eGFP, Clontech, Palo Alto, Calif., USA) cloned between an enhanced 35S promoter and 35S terminator in the binary plasmid, pRTL2 (Carrington and Freed, 1990), (construct described in Itaya et al. 1997) and the 126 kDa protein:GFP sequence used to transform [0179] N. tabacum cv. Xanthi (see above) were used for Agrobacterium infiltration studies. The binary vector containing the GFP construct was transformed into Agrobacterium tumefaciens strain LBA 4404 as described above for pRTL2 containing the 126 kDa protein:GFP fusion. LBA4404 containing either binary vector was grown under selection to an OD of 0.5, allowed to sit at room temperature for 2-3 hours without shaking and then infiltrated independently or equally mixed into the adaxial side of mature leaves of N. benthamiana line 16c as described (Voinnet et al. 1998, English et al. 1997).
  • Confocal Microscopy on Plants Expressing the 126 kDa Protein: GFP Expressing Fusion or the Free GFP After Challenge with Tobacco Mosaic Virus [0180]
  • GFP expression after virus challenge was monitored using a confocal microscope under described settings (Cheng et al. 2000). [0181]
  • Epifluorescence Microscopy [0182]
  • GFP expression from stem tissue (FIG. 9) was monitored using an epifluorescence SZX12 stereomicroscope (Olympus, Mehlville, N.Y.) attached to a spot RT digital camera (Diagnostic Instruments, Sterling Heights, Mich.). Images were collected on a PC (Dell). [0183]
  • Small RNA Detection [0184]
  • Small RNAs were detected as described in Itaya et al. (2001). [0185]
  • REFERENCES
  • The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference. [0186]
  • U.S. Pat. No. 4,535,060 [0187]
  • U.S. Pat. No. 5,302,523 [0188]
  • U.S. Pat. No. 5,322,783 [0189]
  • U.S. Pat. No. 5,384,253 [0190]
  • U.S. Pat. No. 5,464,765 [0191]
  • U.S. Pat. No. 5,508,184 [0192]
  • U.S. Pat. No. 5,508,468 [0193]
  • U.S. Pat. No. 5,538,877 [0194]
  • U.S. Pat. No. 5,538,880 [0195]
  • U.S. Pat. No. 5,545,818 [0196]
  • U.S. Pat. No. 5,550,318 [0197]
  • U.S. Pat. No. 5,563,055 [0198]
  • U.S. Pat. No. 5,591,616 [0199]
  • U.S. Pat. No. 5,610,042 [0200]
  • EPA App. 154,204, 1985 [0201]
  • PCT App. WO 97/41228 [0202]
  • PCT App. WO 94/09699 [0203]
  • PCT App. WO 95/06128 [0204]
  • PCT App. WO 97/04103 [0205]
  • PCT App. WO 92/17598 [0206]
  • Abdullah et al., [0207] Biotechnology, 4:1087, 1986.
  • Al-Kaff et al., [0208] Science, 279:2113-2115, 1998.
  • An et al., [0209] In: Plant Molecular Biology Manual, Gelvin et al., (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.
  • Anandalakshmi et al., [0210] Proc. Natl. Acad. Sci. USA, 95:13079-13084, 1998.
  • Bao et al., [0211] J. Virology, 70:6378-6383, 1996.
  • Bates, [0212] Mol. Biotechnol., 2(2):135-145, 1994.
  • Battraw and Hall, [0213] Theor. App. Genet., 82(2):161-168, 1991.
  • Baulcombe, [0214] Cum. Opin. Plant Biol., 2:109-113, 1999.
  • Bevan et al., [0215] Nucleic Acids Research, 11(2):369-385, 1983.
  • Bhattacharjee; An; Gupta, [0216] J. Plant Bioch. and Biotech., 6:(2):69-73. 1997.
  • Bonneau et al., [0217] J. Virology, 244:79-86, 1998.
  • Bower et al., [0218] Plant J., 2:409-416. 1992.
  • Brigneti et al., [0219] EMBO J., 17:6739-6746,1998.
  • Buchanan-Wollaston et al., [0220] Plant Cell. Repts., 11:627-631. 1992
  • Buising and Benbow, [0221] Mol. Gen. Genet., 243(1):71-81. 1994.
  • Callis, Fromm, Walbot, [0222] Genes Dev., 1:1183-1200, 1987.
  • Carrington and Freed, [0223] J. Virology, 64,1590-1597, 1990
  • Carrington et al., [0224] J. Virology, 281:1-5, 2001.
  • Casa et al., [0225] Proc. Natl. Acad. Sci. USA, 90(23):11212-11216, 1993.
  • Chandler et al., [0226] Plant Cell., 1: 1175-1183, 1989.
  • Chapman et al., [0227] Plant Journal 2:549-557, 1992.
  • Cheng et al., [0228] Plant J. 23:349-362, 2000.
  • Christou; et al., [0229] Proc. Natl. Acad. Sci. USA, 84(12):3962-3966, 1987.
  • Chu et al., [0230] Scientia Sinica, 18:659-668, 1975.
  • Conkling et al., [0231] Plant Physiol., 93:1203-1211, 1990.
  • Covey et al., [0232] Nature, 385:781-782, 1997.
  • Cronin et al., [0233] Plant Cell., 7:549-559, 1995.
  • De Block et al., [0234] EMBO J., 6(9):2513-2518, 1987.
  • De Block et al., [0235] Plant Physiol., 91:694-701, 1989.
  • De Jong and Ahlquist, [0236] J. Virology, 69:1485-1492, 1995.
  • Dellaporta et al., [0237] In: Chromosome structure and function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988.
  • Deom et al., [0238] Protoplasma, 199:1-8, 1997.
  • Derrick et al., [0239] Mol. Plant Microbe Interact., 10:589-596, 1997.
  • D'Halluin et al., [0240] Plant Cell., 4(12):1495-1505, 1992.
  • Ding et al., [0241] BioTechniques, 20:111-115, 1996b.
  • Ding et al., [0242] EMBO J., 14:5762-5772, 1995a.
  • Ding et al., [0243] Mol. Plant Microbe Interact., 8:32-40, 1995b.
  • Ding et al., [0244] Proc. Natl. Acad. Sci. USA, 93:11155-11160, 1996.
  • Ding et al., [0245] Proc. Natl. Acad. Sci. USA, 93:7470-7474, 1996a.
  • Ebert et al., 84:5745-5749[0246] , Proc. Nat'l Acad. Sci. USA, 1987.
  • Ellis et al., [0247] EMBO J., 6(11):3203-3208, 1987.
  • English et al., [0248] Plant J., 12, 597-603, 1997.
  • Fraley et al., [0249] Bio/Technology, 3:629-635, 1985
  • Fromm et al., [0250] Nature, 319:791-793, 1986.
  • Galli et al., [0251] Plant Cell., 1:301-311, 1989.
  • Gelvin et al., [0252] In: Plant Molecular Biology Manual, 1990.
  • Ghosh-Biswas et al., [0253] J. Biotechnol., 32(1):1-10, 1994.
  • Hagio et al., [0254] Plant Cell Rep., 10(5):260-264, 1991.
  • Hamilton and Baulcombe, [0255] Science, 286:950-952, 1999.
  • Hamamoto et al., [0256] Biotechnology 11 :930-932, 1993
  • Haseloff et al., [0257] Proc. Natl. Acad. Sci. USA, 94(6):2122-2127, 1997.
  • He et al., [0258] Plant Cell. Reports, 14 (2-3): 192-196, 1994.
  • Hensgens et al., [0259] Plant Mol. Biol., 22(6):1101-1127, 1993.
  • Hiei et al., [0260] Plant. Mol. Biol., 35(1-2):205-218, 1997.
  • Hinchee et al., [0261] Bio/technol., 6:915-922, 1988.
  • Holmes, [0262] Phytopathology, 24:845-873,1934.
  • Holt et al., [0263] Mol. Plant Microbe Interact., 3:417-423, 1990.
  • Hong et al., [0264] J. Virology, 228:383-387, 1997.
  • Horsch et al., In: [0265] Plant Molecular Biology Manual. Kluwer Academic Publishers. Dordrecht, The Netherlands, 1988.
  • Hou and Lin, [0266] Plant Physiology, 111: 166, 1996.
  • Hudspeth and Grula, [0267] Plant Mol. Biol., 12:579-589, 1989.
  • Ikuta et al., [0268] Bio/technol., 8:241-242, 1990.
  • Ishidia et al., [0269] Nat. Biotechnol., 14(6):745-750, 1996.
  • Itaya et al., [0270] Mol. Plant Microbe Interact., 14(11):1332-1334, 2001.
  • Itaya et al., [0271] Plant J., 12, 1223-1230, 1997.
  • Ji and Ding, [0272] Mol. Plant-Microbe Interact., 14:715-724, 2001.
  • Kaeppler et al., [0273] Plant Cell. Repts., 9: 415-418, 1990.
  • Kaeppler et al., [0274] Theor. Appl. Genet., 84(5-6):560-566, 1992.
  • Kasschau and Carrington, [0275] Cell, 95:461-470, 1998.
  • Kasschau et al., [0276] J. Virology, 228:251-262, 1997.
  • Katz et al., [0277] J. Gen. Microbiol., 129:2703-2714, 1983.
  • Klee, Yanofsky, Nester, [0278] Bio/Technology, 3(7):637-642, 1985.
  • Knittel et al., [0279] Plant Cell. Repts., 14(2-3):81-86, 1994.
  • Kubo and Takanami, [0280] J. Gen. Virol., 42:387-398, 1979.
  • Lakshman and Gonsalves, [0281] Phytopathology, 75:758-762, 1985.
  • Lawton et al., [0282] Plant Mol. Biol., 9:315-324, 1987.
  • Lazzeri, [0283] Methods Mol. Biol., 49.95-106, 1995.
  • Lee et al., [0284] Korean J. Genet., 11(2):65-72, 1989.
  • Lindbo et al., [0285] Plant Cell., 5:1749-1759, 1993.
  • Llave et al., [0286] Proc. Natl. Acad. Sci. USA, 97:13401-13406, 2000.
  • Lorz et al., [0287] Mol. Gen. Genet., 199:178-182, 1985.
  • Lucy et al., [0288] EMBO J., 19.1672-1680, 2000.
  • Mallory et al., [0289] Plant Cell., 13:571-583, 2001.
  • Marcotte et al., [0290] Nature, 335:454, 1988.
  • Matthews, In: [0291] Plant Virology, San Diego: Academic Press, 1991.
  • McCabe and Martinell, [0292] Bio/Technology, 11(5):596-598, 1993.
  • McCormac et al., [0293] Euphytica, 99 (1) 17-25, 1998.
  • Murakami et al., [0294] Mol. Gen. Genet, 205:42-50, 1986.
  • Nagatani et al., [0295] Bio/Technology, 11(7):471-473, 1997.
  • Nelson and van Bel, [0296] Prog. Bot., 59:476-533, 1998.
  • Nelson et al., [0297] Mol. Plant Microbe Interact., 6:45-54, 1993.
  • Odell et al., [0298] Nature, 313:810-812, 1985.
  • Ogawa et al., [0299] Sci. Rep., 13:42-48, 1973.
  • Omirulleh et al., [0300] Plant Mol. Biol., 21(3):415-428, 1993.
  • Ow et al., [0301] Science, 234:856-859, 1986.
  • Palauqui and Elmayan, [0302] EMBO J., 16:4738-4745, 1997.
  • Potrykus et al., [0303] Mol. Gen. Genet., 199:183-188, 1985.
  • Prasher et al., [0304] Biochem. Biophys. Res. Commun., 126(3):1259-1268, 1985.
  • Ratcliff et al., [0305] Science, 276:1558-1560, 1997.
  • Reichel et al., [0306] Proc. Natl. Acad. Sci. USA, 93 (12) p. 5888-5893. 1996.
  • Revers et al., [0307] Mol. Plant Microbe Interact., 12:367-376, 1999.
  • Rhodes et al., [0308] Methods Mol. Biol., 55:121-131, 1995.
  • Ritala et al., [0309] Plant Mol. Biol., 24(2):317-325, 1994.
  • Rogers et al., [0310] Methods Enzymol., 153:253-277, 1987.
  • Roossinck and Palukaitis, [0311] Mol. Plant Microbe Interact., 3: 188-192, 1990.
  • Ruiz et al., [0312] Plant Cell., 10:937-946, 1998.
  • Sambrook et al., [0313] In:: Molecular Cloning-A Laboratory Manual (second edition), Cold Spring Harbour Laboratory Press, 1989.
  • Scholthof et al., [0314] J. Virology, 213:425-438, 1995
  • Sheen et al., [0315] Plant J., 8(5):777-784, 1995.
  • Shintaku et al., [0316] J. Virology, 221:218-225, 1996.
  • Singsit e al., [0317] Transgenic Res., 6(2):169-176, 1997.
  • Smith et al., [0318] Plant Cell., 6:1441-1453, 1994.
  • Spencer et al., [0319] Plant Molec. Biology, 18:201-210, 1992.
  • Stalker et al., [0320] Science, 242:419-422, 1988.
  • Sullivan and Ahlquist, [0321] J. Virology, 73:2622-2632, 1999.
  • Sullivan et al., [0322] Mol. Gen. Genet., 215(3):431-440, 1989.
  • Sutcliffe, [0323] Proc. Natl. Acad. Sci. USA, 75:3737-3741, 1978.
  • Szecsi et al., [0324] Mol. Plant Microbe Interact., 12:143-152, 1999.
  • Thillet et al., [0325] J. Biol. Chem., 263:12500-12508, 1988.
  • Thomas et al., [0326] Plant Sci., 69:189-198, 1990.
  • Thompson et al., [0327] Euphytica, 85(1-3):75-80, 1995.
  • Thompson et al., [0328] EMBO J., 6(9):2519-2523, 1987.
  • Tian, Sequin, Charest, [0329] Plant Cell. Rep., 16:267-271, 1997.
  • Tingay et al., [0330] Plant J., 11(6):1369-1376. 1997.
  • Tomes et al., [0331] Plant Mol. Biol. 14(2):261-268, 1990.
  • Torbet et al., [0332] Crop Science, 38(1):226-231, 1998.
  • Torbet et al., [0333] Plant Cell. Repts., 14(10):635-640, 1995.
  • Toriyama et al., [0334] Theor. Appl. Genet., 73:16, 1986.
  • Traynor et al., [0335] J. Virology, 65:2807-2815, 1991.
  • Tsukada et al., [0336] Plant Cell Physiol., 30(4)599-604, 1989.
  • Twell et al., [0337] Plant Physiol., 91:1270-1274, 1989.
  • Uchimiya et al., [0338] Mol. Gen. Genet., 204:204, 1986.
  • Van Eck et al., [0339] Plant Cell. Repts., 14(5):299-304, 1995.
  • Vance and Vaucheret, [0340] Science, 292:2277-2280, 2001.
  • Vasil et al., [0341] Plant Physiol., 91: 1575-1579, 1989.
  • Voinnet et al., [0342] Cell, 103:157-167, 2000.
  • Voinnet et al., [0343] Cell, 95: 177-187, 1998.
  • Voinnet et al., [0344] Proc. Natl. Acad. Sci. USA, 96.14147-14152, 1999.
  • Walker et al., [0345] Proc. Natl. Acad. Sci. USA, 84:6624-6628, 1987.
  • Wang et al., [0346] Molec. Cell. Biol., 12(8) 3399-3406, 1992.
  • Weiland and Edwards, [0347] J. Virology, 201:116-126, 1994.
  • Yamada et al., [0348] Plant Cell. Repts., 4.85, 1986
  • Yang and Russell, [0349] Proc. Natl. Acad. Sci. USA, 87:4144-4148, 1990.
  • Zamore et al., [0350] Cell, 101:25-33, 2000.
  • Zheng and Edwards, [0351] J. Gen. Virol., 71:1865-1868, 1990.
  • Zhou et al., [0352] Plant Cell, Repts., 12(11).612-616, 1993.
  • Zukowsky et al., [0353] Proc. Natl. Acad. Sci. USA, 80:1101-1105, 1983.
  • 1 24 1 9306 DNA Apple stem pitting virus CDS (34)..(6585) 1 aaattataaa ggcaacttca taatttactc gaa atg gct ctt cta tca aga aca 54 Met Ala Leu Leu Ser Arg Thr 1 5 gct gca gag gaa gta atc gca tca ttc act tct gag gaa caa tcc aga 102 Ala Ala Glu Glu Val Ile Ala Ser Phe Thr Ser Glu Glu Gln Ser Arg 10 15 20 att tca acc caa gct gtg ttg gct ttg aca aac gtg gag aag gac aaa 150 Ile Ser Thr Gln Ala Val Leu Ala Leu Thr Asn Val Glu Lys Asp Lys 25 30 35 cat gac ctt ttt aac tat gcg ttg cca gag ttg gca aag atg agg ttg 198 His Asp Leu Phe Asn Tyr Ala Leu Pro Glu Leu Ala Lys Met Arg Leu 40 45 50 55 ttc aat tct ggg atc tac ctc agc ccc cat tcc tac aga cct cat tcc 246 Phe Asn Ser Gly Ile Tyr Leu Ser Pro His Ser Tyr Arg Pro His Ser 60 65 70 cac cca gtt tgc aag act ctt gaa aat aat att ttg ttc aat att tta 294 His Pro Val Cys Lys Thr Leu Glu Asn Asn Ile Leu Phe Asn Ile Leu 75 80 85 cct agc tat tta gac aat tcc ttt tat tta gtt agt att aag aaa aat 342 Pro Ser Tyr Leu Asp Asn Ser Phe Tyr Leu Val Ser Ile Lys Lys Asn 90 95 100 aag gtc gac ttt ttg aag aga aga cat cca gat ttg caa atg gtt gaa 390 Lys Val Asp Phe Leu Lys Arg Arg His Pro Asp Leu Gln Met Val Glu 105 110 115 acc atc aat agg tac ata tca agc att gac aag acc agg tat ggt ggt 438 Thr Ile Asn Arg Tyr Ile Ser Ser Ile Asp Lys Thr Arg Tyr Gly Gly 120 125 130 135 ttc ttc cat gtt agc cct tcc aag atc agt gca aaa ttc aag tgt gac 486 Phe Phe His Val Ser Pro Ser Lys Ile Ser Ala Lys Phe Lys Cys Asp 140 145 150 cgg aga aca ggt ttt gag gat gat gct tcc tta att gat ctc att cct 534 Arg Arg Thr Gly Phe Glu Asp Asp Ala Ser Leu Ile Asp Leu Ile Pro 155 160 165 gga tgc atg gag ggt gca cgg aag aga ttt ttc ttc cat gat gag cta 582 Gly Cys Met Glu Gly Ala Arg Lys Arg Phe Phe Phe His Asp Glu Leu 170 175 180 cat tat tgg acc aag gag gct ttg ata aca ttt ttg gat cat gtg aag 630 His Tyr Trp Thr Lys Glu Ala Leu Ile Thr Phe Leu Asp His Val Lys 185 190 195 ccg gaa gtc atg ttg gcc tca ata gtc ttc cca cct gag atc ttg gct 678 Pro Glu Val Met Leu Ala Ser Ile Val Phe Pro Pro Glu Ile Leu Ala 200 205 210 215 ggg gct aag gag agc ctt aac cca tgg tgt tat aca ttc aga ata gtt 726 Gly Ala Lys Glu Ser Leu Asn Pro Trp Cys Tyr Thr Phe Arg Ile Val 220 225 230 ggg aaa gac ctt gtt ttc ttt cca gat ggt gaa cag tct gaa gct tac 774 Gly Lys Asp Leu Val Phe Phe Pro Asp Gly Glu Gln Ser Glu Ala Tyr 235 240 245 att cag cca gta gca ggt tca tat ctc ctg agg aca gga aaa atc aca 822 Ile Gln Pro Val Ala Gly Ser Tyr Leu Leu Arg Thr Gly Lys Ile Thr 250 255 260 aca cct tct ggg gac att ttc caa ctt gac ctc ctt aag agc agc ttc 870 Thr Pro Ser Gly Asp Ile Phe Gln Leu Asp Leu Leu Lys Ser Ser Phe 265 270 275 tct cac cat ttg att tca att acc aag gga gag gct ata ggc caa aaa 918 Ser His His Leu Ile Ser Ile Thr Lys Gly Glu Ala Ile Gly Gln Lys 280 285 290 295 atg cga ttc ttc aat ggc ttt gaa gct gtt gca atg aag ggt ttg aat 966 Met Arg Phe Phe Asn Gly Phe Glu Ala Val Ala Met Lys Gly Leu Asn 300 305 310 ccc ttg aga cga aag gtt gaa agt tgc tta cca atc tcc aag aac act 1014 Pro Leu Arg Arg Lys Val Glu Ser Cys Leu Pro Ile Ser Lys Asn Thr 315 320 325 att ctg aaa atc tat aga tac tta aga acc ctc aag aag cct gat ttg 1062 Ile Leu Lys Ile Tyr Arg Tyr Leu Arg Thr Leu Lys Lys Pro Asp Leu 330 335 340 caa tca gcc atg gcc aag ctc agc cag gtc tgc aaa gat cca aat ggt 1110 Gln Ser Ala Met Ala Lys Leu Ser Gln Val Cys Lys Asp Pro Asn Gly 345 350 355 tat gaa att aaa ttc ttt gaa gaa ttc tcg aag cta tgc ctt aag tgc 1158 Tyr Glu Ile Lys Phe Phe Glu Glu Phe Ser Lys Leu Cys Leu Lys Cys 360 365 370 375 gat acc ttg aac acc aac atg att ccc gat atg aag cgg atc gtg cag 1206 Asp Thr Leu Asn Thr Asn Met Ile Pro Asp Met Lys Arg Ile Val Gln 380 385 390 ggt ttt ttt ctg aag ctt ttt cca aac cca att tcc aga aat ttt aaa 1254 Gly Phe Phe Leu Lys Leu Phe Pro Asn Pro Ile Ser Arg Asn Phe Lys 395 400 405 gtg gtc cag caa ttg cat ctt gat aat ttc atc gag act tta gag gag 1302 Val Val Gln Gln Leu His Leu Asp Asn Phe Ile Glu Thr Leu Glu Glu 410 415 420 ttt aac ttc agc atc aac aca gaa agt ttg tca ttg aat tgg aag gat 1350 Phe Asn Phe Ser Ile Asn Thr Glu Ser Leu Ser Leu Asn Trp Lys Asp 425 430 435 gat ctg gaa ttt gtt aac tta acc ttt gga gac aca gac ttt aat gtt 1398 Asp Leu Glu Phe Val Asn Leu Thr Phe Gly Asp Thr Asp Phe Asn Val 440 445 450 455 gag gat tct ttt gct gag gca tgg ggc aca aag aaa gac gtt gtg aac 1446 Glu Asp Ser Phe Ala Glu Ala Trp Gly Thr Lys Lys Asp Val Val Asn 460 465 470 atc acc acc gtg cat cac tct cca tac ttg gtt agt aag ttt gag tca 1494 Ile Thr Thr Val His His Ser Pro Tyr Leu Val Ser Lys Phe Glu Ser 475 480 485 tac gat cat cag ttc cac tcc att ttg agc gtt aaa tct atc tca gca 1542 Tyr Asp His Gln Phe His Ser Ile Leu Ser Val Lys Ser Ile Ser Ala 490 495 500 ctc acc agg att gca aaa att gtt cta tct ctc tat gat cca tgt gtt 1590 Leu Thr Arg Ile Ala Lys Ile Val Leu Ser Leu Tyr Asp Pro Cys Val 505 510 515 gtt gaa gcc ttc agt gaa agt cga gtt acc aat cta gcc gtt aat gtc 1638 Val Glu Ala Phe Ser Glu Ser Arg Val Thr Asn Leu Ala Val Asn Val 520 525 530 535 atc atc gca gct aat ttg aga gca tgt ttc gcg gtc aca gat ttg tgg 1686 Ile Ile Ala Ala Asn Leu Arg Ala Cys Phe Ala Val Thr Asp Leu Trp 540 545 550 agg atc ttt gaa ggc atc tta ctt aag gag tgt aag aga gca caa gga 1734 Arg Ile Phe Glu Gly Ile Leu Leu Lys Glu Cys Lys Arg Ala Gln Gly 555 560 565 aaa atg aga aag aga ttc cat ttt gag ctt gga atc cga tgg ttt ctg 1782 Lys Met Arg Lys Arg Phe His Phe Glu Leu Gly Ile Arg Trp Phe Leu 570 575 580 ttt gtg gat gtt tca aat cag tgg ttc ctt ccc cct tgc cgt gat ggg 1830 Phe Val Asp Val Ser Asn Gln Trp Phe Leu Pro Pro Cys Arg Asp Gly 585 590 595 ctt att gca aga tct gta tca ttc gat caa ttt atc aaa ggc tgc caa 1878 Leu Ile Ala Arg Ser Val Ser Phe Asp Gln Phe Ile Lys Gly Cys Gln 600 605 610 615 cgt gac aat tca ctc cac aat ggg aga atg tcc cta cgt cag gtt tta 1926 Arg Asp Asn Ser Leu His Asn Gly Arg Met Ser Leu Arg Gln Val Leu 620 625 630 aaa ggt ccc aag ctt cag gcc ctt ttt gat gtt tca gag ttg tca ata 1974 Lys Gly Pro Lys Leu Gln Ala Leu Phe Asp Val Ser Glu Leu Ser Ile 635 640 645 atc cac aat gtc gag atg gaa aat gca cca gag gct gga tct acc ttg 2022 Ile His Asn Val Glu Met Glu Asn Ala Pro Glu Ala Gly Ser Thr Leu 650 655 660 gat gct gga atc aag ccc acc tcc agt cct ctt gaa gtt gta cct att 2070 Asp Ala Gly Ile Lys Pro Thr Ser Ser Pro Leu Glu Val Val Pro Ile 665 670 675 gag aat gct aga tgt aat ttg gca ccc tgc aaa tgc gat tta aac tgt 2118 Glu Asn Ala Arg Cys Asn Leu Ala Pro Cys Lys Cys Asp Leu Asn Cys 680 685 690 695 ttc att cag cca gca gat gtc aac tcc ctt cat ggt aat ctg gtg ttc 2166 Phe Ile Gln Pro Ala Asp Val Asn Ser Leu His Gly Asn Leu Val Phe 700 705 710 ctt gat ttc att ggg ggt tca aaa ggt cgt ggg gct agt ttt tac tcg 2214 Leu Asp Phe Ile Gly Gly Ser Lys Gly Arg Gly Ala Ser Phe Tyr Ser 715 720 725 agg gat cta aag ggg tac agt tac act gga ttc agc cat gtg tcg agg 2262 Arg Asp Leu Lys Gly Tyr Ser Tyr Thr Gly Phe Ser His Val Ser Arg 730 735 740 ggt tgg cct gcc ttt ctg gat aaa ttc tta agt gac aac aaa att ccg 2310 Gly Trp Pro Ala Phe Leu Asp Lys Phe Leu Ser Asp Asn Lys Ile Pro 745 750 755 cta aac ttc tac aac cag tgt ttg gtt cag gag tat agc act ggt cac 2358 Leu Asn Phe Tyr Asn Gln Cys Leu Val Gln Glu Tyr Ser Thr Gly His 760 765 770 775 gga ctt tcc atg cat aag gat gat gag agc att tat gac atc aat cac 2406 Gly Leu Ser Met His Lys Asp Asp Glu Ser Ile Tyr Asp Ile Asn His 780 785 790 caa gtt tta aca gtt aat tat tct ggt gat gcc att ttc tgt ata gag 2454 Gln Val Leu Thr Val Asn Tyr Ser Gly Asp Ala Ile Phe Cys Ile Glu 795 800 805 tgc ctg ggg tca ggt ttc gaa att cca tta agc gga cct caa atg ctt 2502 Cys Leu Gly Ser Gly Phe Glu Ile Pro Leu Ser Gly Pro Gln Met Leu 810 815 820 ctc atg cct ttt gga ttt caa aag gag cat aga cat ggg atc aaa tca 2550 Leu Met Pro Phe Gly Phe Gln Lys Glu His Arg His Gly Ile Lys Ser 825 830 835 cct tct aaa ggt aga atc tct ttg act ttc agg ctg act aag gag ggt 2598 Pro Ser Lys Gly Arg Ile Ser Leu Thr Phe Arg Leu Thr Lys Glu Gly 840 845 850 855 gat agc caa gtc ccg att caa gag gtt gta acc att tgt gat cat ggt 2646 Asp Ser Gln Val Pro Ile Gln Glu Val Val Thr Ile Cys Asp His Gly 860 865 870 gac tca gat gat agg gct gct cta aaa gct tta gag agg aga agt cat 2694 Asp Ser Asp Asp Arg Ala Ala Leu Lys Ala Leu Glu Arg Arg Ser His 875 880 885 cag tct gga ggg agg cca gca gtg gaa tta gag ggg cat gag agg gag 2742 Gln Ser Gly Gly Arg Pro Ala Val Glu Leu Glu Gly His Glu Arg Glu 890 895 900 aag gta aat agt gat tca agt gat agt gct cca gtt caa gag ttc cta 2790 Lys Val Asn Ser Asp Ser Ser Asp Ser Ala Pro Val Gln Glu Phe Leu 905 910 915 att caa att gat tct tca ctt ctt gag tat gct ctt aag agt ttg tcc 2838 Ile Gln Ile Asp Ser Ser Leu Leu Glu Tyr Ala Leu Lys Ser Leu Ser 920 925 930 935 ggg ctg tcc aag aac gtt gtt aac tgt gat atg tgt ttg tgc aat agc 2886 Gly Leu Ser Lys Asn Val Val Asn Cys Asp Met Cys Leu Cys Asn Ser 940 945 950 cca tgg ctc aag aat gag gaa ttg aga ttt tca gaa gct tta agg gat 2934 Pro Trp Leu Lys Asn Glu Glu Leu Arg Phe Ser Glu Ala Leu Arg Asp 955 960 965 ttg gct ttt gct cag ggt tta atc caa ctg atc gat ttt ctc tgt cta 2982 Leu Ala Phe Ala Gln Gly Leu Ile Gln Leu Ile Asp Phe Leu Cys Leu 970 975 980 aag gta ttg agg tgt gcg gaa gtg aat cgg ata ata agc gaa ctg cca 3030 Lys Val Leu Arg Cys Ala Glu Val Asn Arg Ile Ile Ser Glu Leu Pro 985 990 995 acc cac gtt ttt cca ctc aga gga act atg cat ata gtt gac ctc gat 3078 Thr His Val Phe Pro Leu Arg Gly Thr Met His Ile Val Asp Leu Asp 1000 1005 1010 1015 gat gag agc atc aga ggg gat gtt aag gaa ggt tcc ttt tcc ggc ttc 3126 Asp Glu Ser Ile Arg Gly Asp Val Lys Glu Gly Ser Phe Ser Gly Phe 1020 1025 1030 agg agg tgg aag gtc atg agt tgc tcc aca gat ctt att atg tta gcc 3174 Arg Arg Trp Lys Val Met Ser Cys Ser Thr Asp Leu Ile Met Leu Ala 1035 1040 1045 ttt ttg aag ccc aaa atg aca cta ggt ggt gag ctc cgg tct cat gaa 3222 Phe Leu Lys Pro Lys Met Thr Leu Gly Gly Glu Leu Arg Ser His Glu 1050 1055 1060 gat gaa tgt gag ttg tca gat ttg act gaa aaa ctt cat ggg tgt tcc 3270 Asp Glu Cys Glu Leu Ser Asp Leu Thr Glu Lys Leu His Gly Cys Ser 1065 1070 1075 gta att ctg agc agg aag ttc gaa cct gat ctt ttc cac tct ttt gat 3318 Val Ile Leu Ser Arg Lys Phe Glu Pro Asp Leu Phe His Ser Phe Asp 1080 1085 1090 1095 gtc gag gca gat ggg aat tgc ttt tgg cat tct gtg ggg cca ttg att 3366 Val Glu Ala Asp Gly Asn Cys Phe Trp His Ser Val Gly Pro Leu Ile 1100 1105 1110 ggt gtt gac ggt gag tat tta aag agg atc cta cat gac caa gct aaa 3414 Gly Val Asp Gly Glu Tyr Leu Lys Arg Ile Leu His Asp Gln Ala Lys 1115 1120 1125 aag gat ggg gtc aaa tgt cca aga tta agt aaa caa tta gaa ggg aac 3462 Lys Asp Gly Val Lys Cys Pro Arg Leu Ser Lys Gln Leu Glu Gly Asn 1130 1135 1140 acc tgg gct gag aga gaa gcg gtt gcc tat ttt tgc tcc cac tat ggg 3510 Thr Trp Ala Glu Arg Glu Ala Val Ala Tyr Phe Cys Ser His Tyr Gly 1145 1150 1155 ata aga ctg aat gtg ctt tac aca aga gag gaa tgc acc tgg ata ttc 3558 Ile Arg Leu Asn Val Leu Tyr Thr Arg Glu Glu Cys Thr Trp Ile Phe 1160 1165 1170 1175 aag cct cat gag gtg tta aag gct gca aca ttg att tgt cag gat aat 3606 Lys Pro His Glu Val Leu Lys Ala Ala Thr Leu Ile Cys Gln Asp Asn 1180 1185 1190 cac ttc aaa cct tgc atg cca gtg aac ggg tgt gta att agg gca att 3654 His Phe Lys Pro Cys Met Pro Val Asn Gly Cys Val Ile Arg Ala Ile 1195 1200 1205 tct tcc gca ctt aat cgc agg gaa gtt gat gtt ttg gct gta ctt ggc 3702 Ser Ser Ala Leu Asn Arg Arg Glu Val Asp Val Leu Ala Val Leu Gly 1210 1215 1220 aag cct gct cat gag gat ctc ttt gaa gaa gtt gca gaa ggt aga ggt 3750 Lys Pro Ala His Glu Asp Leu Phe Glu Glu Val Ala Glu Gly Arg Gly 1225 1230 1235 ttc agc atc ttt gac ctc acc aga tta ttc gag att ttc tca atc tgt 3798 Phe Ser Ile Phe Asp Leu Thr Arg Leu Phe Glu Ile Phe Ser Ile Cys 1240 1245 1250 1255 ggt agt gtt gac act ggt ggg gag ttg atc atg gtt aat gaa aat gga 3846 Gly Ser Val Asp Thr Gly Gly Glu Leu Ile Met Val Asn Glu Asn Gly 1260 1265 1270 aga att cct gca gaa ttc tct ttg gag aaa gag cac ttg gcc cac att 3894 Arg Ile Pro Ala Glu Phe Ser Leu Glu Lys Glu His Leu Ala His Ile 1275 1280 1285 cca acc ctc tca agg agg aaa ttc agc cca atc gtc tca gat ctg aat 3942 Pro Thr Leu Ser Arg Arg Lys Phe Ser Pro Ile Val Ser Asp Leu Asn 1290 1295 1300 aga gtc tca aat agt gcg atg cgt ttc ctg gct att aat ggg gct gaa 3990 Arg Val Ser Asn Ser Ala Met Arg Phe Leu Ala Ile Asn Gly Ala Glu 1305 1310 1315 gtt gac tat aga cct tcc att gat cgt gcc tca act ctg ctt gat agt 4038 Val Asp Tyr Arg Pro Ser Ile Asp Arg Ala Ser Thr Leu Leu Asp Ser 1320 1325 1330 1335 ttc gag att ggt gct aca ggt gtc ctt tgt cag gga att aaa gag gca 4086 Phe Glu Ile Gly Ala Thr Gly Val Leu Cys Gln Gly Ile Lys Glu Ala 1340 1345 1350 cag aaa gat tta gca tcc aaa ttg att cct gaa ttg gtc cat gag agg 4134 Gln Lys Asp Leu Ala Ser Lys Leu Ile Pro Glu Leu Val His Glu Arg 1355 1360 1365 aaa ctg ata atg att ctt gga acg ttc gga tgc gga aag agt tcc tta 4182 Lys Leu Ile Met Ile Leu Gly Thr Phe Gly Cys Gly Lys Ser Ser Leu 1370 1375 1380 ttc aag aag ttc att gag aag tcc cct gga aaa gcc ata act ttt gtc 4230 Phe Lys Lys Phe Ile Glu Lys Ser Pro Gly Lys Ala Ile Thr Phe Val 1385 1390 1395 tca cca agg agg tca ctt gct gag tcc att aat cat gat ttg gga cta 4278 Ser Pro Arg Arg Ser Leu Ala Glu Ser Ile Asn His Asp Leu Gly Leu 1400 1405 1410 1415 gcg cgt gtc ggt gga aag aag act ggg aag agt aag gat ctg aaa aat 4326 Ala Arg Val Gly Gly Lys Lys Thr Gly Lys Ser Lys Asp Leu Lys Asn 1420 1425 1430 gtg cgt gtc aaa act ttt gaa ttg ttc atc ctt cat ctt gat agc atc 4374 Val Arg Val Lys Thr Phe Glu Leu Phe Ile Leu His Leu Asp Ser Ile 1435 1440 1445 aag gag ggt cac act gtt gtg atc gat gaa att cag ctc ttt ccg cca 4422 Lys Glu Gly His Thr Val Val Ile Asp Glu Ile Gln Leu Phe Pro Pro 1450 1455 1460 ggc tat ata gat ttg ata att ctt ggg tta aag cct aat gtc aat att 4470 Gly Tyr Ile Asp Leu Ile Ile Leu Gly Leu Lys Pro Asn Val Asn Ile 1465 1470 1475 ata ata gct ggt gac cct tgt caa agt gat tat gac tgc agc tca gat 4518 Ile Ile Ala Gly Asp Pro Cys Gln Ser Asp Tyr Asp Cys Ser Ser Asp 1480 1485 1490 1495 agg cac atc ttt gct ggt agt gaa agt gat atc atg aga att ctc agc 4566 Arg His Ile Phe Ala Gly Ser Glu Ser Asp Ile Met Arg Ile Leu Ser 1500 1505 1510 ggg cga agt tac aag ttc aat atc ttg agt cag agg ttc cgg aat cca 4614 Gly Arg Ser Tyr Lys Phe Asn Ile Leu Ser Gln Arg Phe Arg Asn Pro 1515 1520 1525 gtg ttt tac ggc aga ttg cct tgc aac ctc aat aag acc cga ttg act 4662 Val Phe Tyr Gly Arg Leu Pro Cys Asn Leu Asn Lys Thr Arg Leu Thr 1530 1535 1540 cta gat gag gag gag tac act ctt tgg gac agt ata caa gag ttc tca 4710 Leu Asp Glu Glu Glu Tyr Thr Leu Trp Asp Ser Ile Gln Glu Phe Ser 1545 1550 1555 atg atg ggt cgt aag gat tgt cca gtt gtg cta gtt tca agt ttt gag 4758 Met Met Gly Arg Lys Asp Cys Pro Val Val Leu Val Ser Ser Phe Glu 1560 1565 1570 1575 gag aaa aag att gtc gca gct cat ctg ggc ctg aag atg aaa tgt atc 4806 Glu Lys Lys Ile Val Ala Ala His Leu Gly Leu Lys Met Lys Cys Ile 1580 1585 1590 acg tac ggt gaa tca act ggg tta aat ttc cag aag gga gca att tta 4854 Thr Tyr Gly Glu Ser Thr Gly Leu Asn Phe Gln Lys Gly Ala Ile Leu 1595 1600 1605 gtc aca tat gag agt gct ctt act agt gat cgg cgt tgg tgg act gcc 4902 Val Thr Tyr Glu Ser Ala Leu Thr Ser Asp Arg Arg Trp Trp Thr Ala 1610 1615 1620 ctt tca agg ttc agt cat gac att cac ttc att aat ggc atg ggc gtc 4950 Leu Ser Arg Phe Ser His Asp Ile His Phe Ile Asn Gly Met Gly Val 1625 1630 1635 acc tgg gac aat gca atc acc cac ttt gtg ggt aag cca ctt cac aag 4998 Thr Trp Asp Asn Ala Ile Thr His Phe Val Gly Lys Pro Leu His Lys 1640 1645 1650 1655 ttc ttc aca aag agg gca tgt aac gat gac att att gat cta ctt cct 5046 Phe Phe Thr Lys Arg Ala Cys Asn Asp Asp Ile Ile Asp Leu Leu Pro 1660 1665 1670 gga cgg cca gaa ctc att gaa gga ttc cag agc cag gtt ggt gct gat 5094 Gly Arg Pro Glu Leu Ile Glu Gly Phe Gln Ser Gln Val Gly Ala Asp 1675 1680 1685 gaa ggt gtc aga gaa gct aaa cta gtg ggt gat cca tgg tta aag acc 5142 Glu Gly Val Arg Glu Ala Lys Leu Val Gly Asp Pro Trp Leu Lys Thr 1690 1695 1700 aag atc ttc ctt ggg caa aat cct gac ttt gaa att gaa atc gcg gat 5190 Lys Ile Phe Leu Gly Gln Asn Pro Asp Phe Glu Ile Glu Ile Ala Asp 1705 1710 1715 gag gtt gag gcg gcc gag gat tgg ttc aag acg cac atc cca atc atg 5238 Glu Val Glu Ala Ala Glu Asp Trp Phe Lys Thr His Ile Pro Ile Met 1720 1725 1730 1735 agt ctt gag gct gtg aga gct cag tgg gtt cac aaa ttg att tct aga 5286 Ser Leu Glu Ala Val Arg Ala Gln Trp Val His Lys Leu Ile Ser Arg 1740 1745 1750 gag gat agg gag ttt cgc att ggt gac atc aca act gag cag ttc act 5334 Glu Asp Arg Glu Phe Arg Ile Gly Asp Ile Thr Thr Glu Gln Phe Thr 1755 1760 1765 gat gat cac agc aag aat cgt ggt caa gag tta act aat gcg gct gag 5382 Asp Asp His Ser Lys Asn Arg Gly Gln Glu Leu Thr Asn Ala Ala Glu 1770 1775 1780 cgc tat gaa gct ata tac ccc agg cat aag ggc act gat act gca aca 5430 Arg Tyr Glu Ala Ile Tyr Pro Arg His Lys Gly Thr Asp Thr Ala Thr 1785 1790 1795 ttt ctt atg gca gtt aag aag aga ttg agc ttc tcc tcc cct gct gca 5478 Phe Leu Met Ala Val Lys Lys Arg Leu Ser Phe Ser Ser Pro Ala Ala 1800 1805 1810 1815 gag cat gca aaa ctt cga aga gcc aaa cct ttc ggc aaa ttc ctg ctt 5526 Glu His Ala Lys Leu Arg Arg Ala Lys Pro Phe Gly Lys Phe Leu Leu 1820 1825 1830 gac acc ttt ctg aaa aga gtg cct ctg aat agc agt cat gat gaa aaa 5574 Asp Thr Phe Leu Lys Arg Val Pro Leu Asn Ser Ser His Asp Glu Lys 1835 1840 1845 atg atg cag gaa gct gtt cat gcc ttt gag gaa aag aag ttg tca aaa 5622 Met Met Gln Glu Ala Val His Ala Phe Glu Glu Lys Lys Leu Ser Lys 1850 1855 1860 agt atg gcc aca att gag aat cac tct gga agg tct tgt gaa gat tgg 5670 Ser Met Ala Thr Ile Glu Asn His Ser Gly Arg Ser Cys Glu Asp Trp 1865 1870 1875 cca gtg gat aaa gca ctc atc ttc atg aag tcc caa ctt tgc acc aaa 5718 Pro Val Asp Lys Ala Leu Ile Phe Met Lys Ser Gln Leu Cys Thr Lys 1880 1885 1890 1895 ttt gac aac agg ttc agg agt gcc aaa gct gga cag act ctt gct tgc 5766 Phe Asp Asn Arg Phe Arg Ser Ala Lys Ala Gly Gln Thr Leu Ala Cys 1900 1905 1910 ttt caa cat tca gtt ctt tgc aga ttt gca ccc tac atg aga tac att 5814 Phe Gln His Ser Val Leu Cys Arg Phe Ala Pro Tyr Met Arg Tyr Ile 1915 1920 1925 gaa tcc aag gtt aca gag gtg ctt cca aaa aat cta tac att cat tct 5862 Glu Ser Lys Val Thr Glu Val Leu Pro Lys Asn Leu Tyr Ile His Ser 1930 1935 1940 gga aag aat att gat gac cta gca gct tgg gtg act aca agt aaa ttc 5910 Gly Lys Asn Ile Asp Asp Leu Ala Ala Trp Val Thr Thr Ser Lys Phe 1945 1950 1955 aat ggt gtg tgc acc gag tct gat tat gag gca ttt gat gcc tcg caa 5958 Asn Gly Val Cys Thr Glu Ser Asp Tyr Glu Ala Phe Asp Ala Ser Gln 1960 1965 1970 1975 gat cat ttt atc ctg gct ttt gag ctt gaa gtc atg aaa ttc ttg ggt 6006 Asp His Phe Ile Leu Ala Phe Glu Leu Glu Val Met Lys Phe Leu Gly 1980 1985 1990 ttg cct tcc gac ctc att gcg gat tac acc ttc atc aaa acc cat ttg 6054 Leu Pro Ser Asp Leu Ile Ala Asp Tyr Thr Phe Ile Lys Thr His Leu 1995 2000 2005 gga tcc aaa cta gga agt ttt gcc att atg cgc ttc aca ggt gaa gca 6102 Gly Ser Lys Leu Gly Ser Phe Ala Ile Met Arg Phe Thr Gly Glu Ala 2010 2015 2020 agc acc ttc ttg ttc aat aca atg gca aat atg ctt ttc acc ttt ctc 6150 Ser Thr Phe Leu Phe Asn Thr Met Ala Asn Met Leu Phe Thr Phe Leu 2025 2030 2035 agg tat gat ctc aat ggg agg gaa gcg ata tgc ttt gcg ggt gat gac 6198 Arg Tyr Asp Leu Asn Gly Arg Glu Ala Ile Cys Phe Ala Gly Asp Asp 2040 2045 2050 2055 atg tgc gct aac tct agg ctc aag gtc aca aac agg ttc tca aat ttt 6246 Met Cys Ala Asn Ser Arg Leu Lys Val Thr Asn Arg Phe Ser Asn Phe 2060 2065 2070 ctt gat aaa att aag ctt aaa gct aag gtg caa ttc act gct acg cca 6294 Leu Asp Lys Ile Lys Leu Lys Ala Lys Val Gln Phe Thr Ala Thr Pro 2075 2080 2085 act ttc tgt gga tgg ggc ctg tgt gaa cat ggt gta ttc aaa aaa cct 6342 Thr Phe Cys Gly Trp Gly Leu Cys Glu His Gly Val Phe Lys Lys Pro 2090 2095 2100 gat ctt gtc ctg gag aga ttg caa att gct aga gaa aca agg aac ttg 6390 Asp Leu Val Leu Glu Arg Leu Gln Ile Ala Arg Glu Thr Arg Asn Leu 2105 2110 2115 gaa aat tgt att gat aac tat gct att gaa gtt tct tgc gca tac aag 6438 Glu Asn Cys Ile Asp Asn Tyr Ala Ile Glu Val Ser Cys Ala Tyr Lys 2120 2125 2130 2135 atg ggt gaa aat ctc aat ttg tac cta act ccc caa gag gtg gat gct 6486 Met Gly Glu Asn Leu Asn Leu Tyr Leu Thr Pro Gln Glu Val Asp Ala 2140 2145 2150 cat tac aat tgt gtg cgt ttc att gtg cag cat aat cat ctc tta aaa 6534 His Tyr Asn Cys Val Arg Phe Ile Val Gln His Asn His Leu Leu Lys 2155 2160 2165 tca aac att cgt gat ctt ttc aag gga gag tct ttg cct gct tca tct 6582 Ser Asn Ile Arg Asp Leu Phe Lys Gly Glu Ser Leu Pro Ala Ser Ser 2170 2175 2180 tga cttcttcaaa ttcctttcta gtttgttgct ttcaatcttg tgtgaatact 6635 ttaggggttt gttagttagc atattaggtt tggctataga gtgtcaataa tggaaactgt 6695 gcttagtttg ttgaatgaat ttggctttga gagaacagtt gaacctctaa gtgaccccat 6755 cgttgtgcat gcagttcctg gttctggaaa aaccactttg ataaagcaag ccttgattcg 6815 aaataataat attgaagctg tcacttttgg agtccctgag aaggccaaca tccacggaac 6875 atatatcaag aaggctagac aaggacaaag aggtagaggc aattacagca ttctagacga 6935 atacttgtct ggtgagtatt ctacagggtt caactgtctt ttctctgacc cttaccagaa 6995 tcacggggat tgcctaaggg ctcatttcat aggtcgctgc tcacaccgat ttggcagaca 7055 aactgttcag attctaaggg atcttggtta taatattgcc agcagcaagg aagacattgt 7115 tgagaaaaag aacatctttc agctgattga gccagaaggt gtcataattt gcctggagaa 7175 aggagttgag gactttctga agtggcacag tgttgagtac aaattcccct gtcaagttcg 7235 aggtgcaact ttcgacattg tcacgttcat tcacgaaaaa ccccttgagg agttggttgg 7295 ccctgaccta tttgttgccc ttacccgcca caggagcaag cttgttcttg tgagtaacta 7355 gcatgccttt tgctcaacct ccagattact caaagagcgt atttccaatt gctgtaggca 7415 ttgcagttgc agttgtgctg tttacattaa ctagaagtac cttgccacaa gtgggcgata 7475 atattcataa tttacctcac ggaggtaatt atcaggacgg tacaaagagg ataagctatt 7535 gcggccccag ggattctttt ccaagtagct ccttaatatc ttcgggaact cccatgatca 7595 taggcataat catatttctg atatttgcga tctatgtttc cgagaagtgg tctaggtctg 7655 gcagtcgccg ctgcagttgt tgcgtacctg gtgctcctgc ttgcacagca actgtacatg 7715 agtaactcga gccaatgtac tatagttatc actggggagt cagtttctgt tgtaggttgc 7775 gtttattctg aagcttttat agaactagtt aaaggcctta agccttatta ccacccatta 7835 ggttagggtg tagttgctta atattatata agtttgagag tgttctactg tgtgtttaaa 7895 gtttaagttt caattgcaat aggtgcgttc aatcatgact tccaatggat cccagcctca 7955 agcttccacc ccaatggttt cagcagagga gcctgcagct gcagcttcag tcccaaattc 8015 caccccaatg gtttcagcgg aaggacctgc tgctgcagtt tcagctccaa attctagtgt 8075 ggttagttca gcccctgcta gtgctccaac tgccagtgag ccagtcatct ctcaggtcca 8135 atcattagct cctatagtta gtggctttga cccaaatctt catgggcgac tgaccaatga 8195 gcaaatgcga caggcccaga atgaagctgc tatgcaaggt tatgaagagg gctcccgccg 8255 taatccgcgt ctcccatcaa gcacaactgc tcacaatgac tatgccagca tgaattccaa 8315 tccatttgaa actggcactg cctatggtgg ggcaccacgt gtgagttttg ggtcttaccc 8375 aacttttcct ggaagtggaa gtgccagcga gccaaattct cagaggattt ttcctcaaca 8435 acatggagta aaccctccag ctcacgcttc tgatcttgtg ccacatcagg ccacttcagg 8495 tggaaatact gggactccct tcactctggg caatagagcg ccaagaaatg ccacagcaaa 8555 tactggggga atgaggagac gtcttgactc tgtgggtctt aagaacatca ggtatgaacc 8615 ccaggctgga gttgtggcga gcaatcaaaa gatcagagca gttggcgttg cactcattgg 8675 aatggggatc cccgagcatc aactcacaga ggtgggagtt tatctggcta ggcattgcgc 8735 agatgttggc gcctcagaca agtctgcact gttggggact ttccctggtt ctgacatcac 8795 tctagaagag gttggaacca tgatcaagca aactgagggg tgtactttga ggcagtattg 8855 tgccttttac gcaaagcatg tctggaacct catgctgcaa actcaaagtc caccagccaa 8915 ttgggttggc aaagaattta aattcgagac aaggtatgca gcttttgact tcttctttgg 8975 agttgagagt accgcatctc ttgaaccagc tgatggccta ataaggcttc caacccaggc 9035 tgagagggta gccaatgcca cgagcaaaga gatacaaatg taccgcatcc gctccatgga 9095 aggtactcag gctgtgaact tcggtgaggt tacaggggga aagattggac ccaaacctgt 9155 tttatccatc aggaagtgat tagttaatta attctcctgc attcaatttc agtacttatg 9215 ctttttagta aagttgatcc caacctaacc ggggcggcta tgtgtgtgtt tctttcatgc 9275 tttagcttat ttttgtttta actagatttt c 9306 2 2183 PRT Apple stem pitting virus 2 Met Ala Leu Leu Ser Arg Thr Ala Ala Glu Glu Val Ile Ala Ser Phe 1 5 10 15 Thr Ser Glu Glu Gln Ser Arg Ile Ser Thr Gln Ala Val Leu Ala Leu 20 25 30 Thr Asn Val Glu Lys Asp Lys His Asp Leu Phe Asn Tyr Ala Leu Pro 35 40 45 Glu Leu Ala Lys Met Arg Leu Phe Asn Ser Gly Ile Tyr Leu Ser Pro 50 55 60 His Ser Tyr Arg Pro His Ser His Pro Val Cys Lys Thr Leu Glu Asn 65 70 75 80 Asn Ile Leu Phe Asn Ile Leu Pro Ser Tyr Leu Asp Asn Ser Phe Tyr 85 90 95 Leu Val Ser Ile Lys Lys Asn Lys Val Asp Phe Leu Lys Arg Arg His 100 105 110 Pro Asp Leu Gln Met Val Glu Thr Ile Asn Arg Tyr Ile Ser Ser Ile 115 120 125 Asp Lys Thr Arg Tyr Gly Gly Phe Phe His Val Ser Pro Ser Lys Ile 130 135 140 Ser Ala Lys Phe Lys Cys Asp Arg Arg Thr Gly Phe Glu Asp Asp Ala 145 150 155 160 Ser Leu Ile Asp Leu Ile Pro Gly Cys Met Glu Gly Ala Arg Lys Arg 165 170 175 Phe Phe Phe His Asp Glu Leu His Tyr Trp Thr Lys Glu Ala Leu Ile 180 185 190 Thr Phe Leu Asp His Val Lys Pro Glu Val Met Leu Ala Ser Ile Val 195 200 205 Phe Pro Pro Glu Ile Leu Ala Gly Ala Lys Glu Ser Leu Asn Pro Trp 210 215 220 Cys Tyr Thr Phe Arg Ile Val Gly Lys Asp Leu Val Phe Phe Pro Asp 225 230 235 240 Gly Glu Gln Ser Glu Ala Tyr Ile Gln Pro Val Ala Gly Ser Tyr Leu 245 250 255 Leu Arg Thr Gly Lys Ile Thr Thr Pro Ser Gly Asp Ile Phe Gln Leu 260 265 270 Asp Leu Leu Lys Ser Ser Phe Ser His His Leu Ile Ser Ile Thr Lys 275 280 285 Gly Glu Ala Ile Gly Gln Lys Met Arg Phe Phe Asn Gly Phe Glu Ala 290 295 300 Val Ala Met Lys Gly Leu Asn Pro Leu Arg Arg Lys Val Glu Ser Cys 305 310 315 320 Leu Pro Ile Ser Lys Asn Thr Ile Leu Lys Ile Tyr Arg Tyr Leu Arg 325 330 335 Thr Leu Lys Lys Pro Asp Leu Gln Ser Ala Met Ala Lys Leu Ser Gln 340 345 350 Val Cys Lys Asp Pro Asn Gly Tyr Glu Ile Lys Phe Phe Glu Glu Phe 355 360 365 Ser Lys Leu Cys Leu Lys Cys Asp Thr Leu Asn Thr Asn Met Ile Pro 370 375 380 Asp Met Lys Arg Ile Val Gln Gly Phe Phe Leu Lys Leu Phe Pro Asn 385 390 395 400 Pro Ile Ser Arg Asn Phe Lys Val Val Gln Gln Leu His Leu Asp Asn 405 410 415 Phe Ile Glu Thr Leu Glu Glu Phe Asn Phe Ser Ile Asn Thr Glu Ser 420 425 430 Leu Ser Leu Asn Trp Lys Asp Asp Leu Glu Phe Val Asn Leu Thr Phe 435 440 445 Gly Asp Thr Asp Phe Asn Val Glu Asp Ser Phe Ala Glu Ala Trp Gly 450 455 460 Thr Lys Lys Asp Val Val Asn Ile Thr Thr Val His His Ser Pro Tyr 465 470 475 480 Leu Val Ser Lys Phe Glu Ser Tyr Asp His Gln Phe His Ser Ile Leu 485 490 495 Ser Val Lys Ser Ile Ser Ala Leu Thr Arg Ile Ala Lys Ile Val Leu 500 505 510 Ser Leu Tyr Asp Pro Cys Val Val Glu Ala Phe Ser Glu Ser Arg Val 515 520 525 Thr Asn Leu Ala Val Asn Val Ile Ile Ala Ala Asn Leu Arg Ala Cys 530 535 540 Phe Ala Val Thr Asp Leu Trp Arg Ile Phe Glu Gly Ile Leu Leu Lys 545 550 555 560 Glu Cys Lys Arg Ala Gln Gly Lys Met Arg Lys Arg Phe His Phe Glu 565 570 575 Leu Gly Ile Arg Trp Phe Leu Phe Val Asp Val Ser Asn Gln Trp Phe 580 585 590 Leu Pro Pro Cys Arg Asp Gly Leu Ile Ala Arg Ser Val Ser Phe Asp 595 600 605 Gln Phe Ile Lys Gly Cys Gln Arg Asp Asn Ser Leu His Asn Gly Arg 610 615 620 Met Ser Leu Arg Gln Val Leu Lys Gly Pro Lys Leu Gln Ala Leu Phe 625 630 635 640 Asp Val Ser Glu Leu Ser Ile Ile His Asn Val Glu Met Glu Asn Ala 645 650 655 Pro Glu Ala Gly Ser Thr Leu Asp Ala Gly Ile Lys Pro Thr Ser Ser 660 665 670 Pro Leu Glu Val Val Pro Ile Glu Asn Ala Arg Cys Asn Leu Ala Pro 675 680 685 Cys Lys Cys Asp Leu Asn Cys Phe Ile Gln Pro Ala Asp Val Asn Ser 690 695 700 Leu His Gly Asn Leu Val Phe Leu Asp Phe Ile Gly Gly Ser Lys Gly 705 710 715 720 Arg Gly Ala Ser Phe Tyr Ser Arg Asp Leu Lys Gly Tyr Ser Tyr Thr 725 730 735 Gly Phe Ser His Val Ser Arg Gly Trp Pro Ala Phe Leu Asp Lys Phe 740 745 750 Leu Ser Asp Asn Lys Ile Pro Leu Asn Phe Tyr Asn Gln Cys Leu Val 755 760 765 Gln Glu Tyr Ser Thr Gly His Gly Leu Ser Met His Lys Asp Asp Glu 770 775 780 Ser Ile Tyr Asp Ile Asn His Gln Val Leu Thr Val Asn Tyr Ser Gly 785 790 795 800 Asp Ala Ile Phe Cys Ile Glu Cys Leu Gly Ser Gly Phe Glu Ile Pro 805 810 815 Leu Ser Gly Pro Gln Met Leu Leu Met Pro Phe Gly Phe Gln Lys Glu 820 825 830 His Arg His Gly Ile Lys Ser Pro Ser Lys Gly Arg Ile Ser Leu Thr 835 840 845 Phe Arg Leu Thr Lys Glu Gly Asp Ser Gln Val Pro Ile Gln Glu Val 850 855 860 Val Thr Ile Cys Asp His Gly Asp Ser Asp Asp Arg Ala Ala Leu Lys 865 870 875 880 Ala Leu Glu Arg Arg Ser His Gln Ser Gly Gly Arg Pro Ala Val Glu 885 890 895 Leu Glu Gly His Glu Arg Glu Lys Val Asn Ser Asp Ser Ser Asp Ser 900 905 910 Ala Pro Val Gln Glu Phe Leu Ile Gln Ile Asp Ser Ser Leu Leu Glu 915 920 925 Tyr Ala Leu Lys Ser Leu Ser Gly Leu Ser Lys Asn Val Val Asn Cys 930 935 940 Asp Met Cys Leu Cys Asn Ser Pro Trp Leu Lys Asn Glu Glu Leu Arg 945 950 955 960 Phe Ser Glu Ala Leu Arg Asp Leu Ala Phe Ala Gln Gly Leu Ile Gln 965 970 975 Leu Ile Asp Phe Leu Cys Leu Lys Val Leu Arg Cys Ala Glu Val Asn 980 985 990 Arg Ile Ile Ser Glu Leu Pro Thr His Val Phe Pro Leu Arg Gly Thr 995 1000 1005 Met His Ile Val Asp Leu Asp Asp Glu Ser Ile Arg Gly Asp Val Lys 1010 1015 1020 Glu Gly Ser Phe Ser Gly Phe Arg Arg Trp Lys Val Met Ser Cys Ser 1025 1030 1035 1040 Thr Asp Leu Ile Met Leu Ala Phe Leu Lys Pro Lys Met Thr Leu Gly 1045 1050 1055 Gly Glu Leu Arg Ser His Glu Asp Glu Cys Glu Leu Ser Asp Leu Thr 1060 1065 1070 Glu Lys Leu His Gly Cys Ser Val Ile Leu Ser Arg Lys Phe Glu Pro 1075 1080 1085 Asp Leu Phe His Ser Phe Asp Val Glu Ala Asp Gly Asn Cys Phe Trp 1090 1095 1100 His Ser Val Gly Pro Leu Ile Gly Val Asp Gly Glu Tyr Leu Lys Arg 1105 1110 1115 1120 Ile Leu His Asp Gln Ala Lys Lys Asp Gly Val Lys Cys Pro Arg Leu 1125 1130 1135 Ser Lys Gln Leu Glu Gly Asn Thr Trp Ala Glu Arg Glu Ala Val Ala 1140 1145 1150 Tyr Phe Cys Ser His Tyr Gly Ile Arg Leu Asn Val Leu Tyr Thr Arg 1155 1160 1165 Glu Glu Cys Thr Trp Ile Phe Lys Pro His Glu Val Leu Lys Ala Ala 1170 1175 1180 Thr Leu Ile Cys Gln Asp Asn His Phe Lys Pro Cys Met Pro Val Asn 1185 1190 1195 1200 Gly Cys Val Ile Arg Ala Ile Ser Ser Ala Leu Asn Arg Arg Glu Val 1205 1210 1215 Asp Val Leu Ala Val Leu Gly Lys Pro Ala His Glu Asp Leu Phe Glu 1220 1225 1230 Glu Val Ala Glu Gly Arg Gly Phe Ser Ile Phe Asp Leu Thr Arg Leu 1235 1240 1245 Phe Glu Ile Phe Ser Ile Cys Gly Ser Val Asp Thr Gly Gly Glu Leu 1250 1255 1260 Ile Met Val Asn Glu Asn Gly Arg Ile Pro Ala Glu Phe Ser Leu Glu 1265 1270 1275 1280 Lys Glu His Leu Ala His Ile Pro Thr Leu Ser Arg Arg Lys Phe Ser 1285 1290 1295 Pro Ile Val Ser Asp Leu Asn Arg Val Ser Asn Ser Ala Met Arg Phe 1300 1305 1310 Leu Ala Ile Asn Gly Ala Glu Val Asp Tyr Arg Pro Ser Ile Asp Arg 1315 1320 1325 Ala Ser Thr Leu Leu Asp Ser Phe Glu Ile Gly Ala Thr Gly Val Leu 1330 1335 1340 Cys Gln Gly Ile Lys Glu Ala Gln Lys Asp Leu Ala Ser Lys Leu Ile 1345 1350 1355 1360 Pro Glu Leu Val His Glu Arg Lys Leu Ile Met Ile Leu Gly Thr Phe 1365 1370 1375 Gly Cys Gly Lys Ser Ser Leu Phe Lys Lys Phe Ile Glu Lys Ser Pro 1380 1385 1390 Gly Lys Ala Ile Thr Phe Val Ser Pro Arg Arg Ser Leu Ala Glu Ser 1395 1400 1405 Ile Asn His Asp Leu Gly Leu Ala Arg Val Gly Gly Lys Lys Thr Gly 1410 1415 1420 Lys Ser Lys Asp Leu Lys Asn Val Arg Val Lys Thr Phe Glu Leu Phe 1425 1430 1435 1440 Ile Leu His Leu Asp Ser Ile Lys Glu Gly His Thr Val Val Ile Asp 1445 1450 1455 Glu Ile Gln Leu Phe Pro Pro Gly Tyr Ile Asp Leu Ile Ile Leu Gly 1460 1465 1470 Leu Lys Pro Asn Val Asn Ile Ile Ile Ala Gly Asp Pro Cys Gln Ser 1475 1480 1485 Asp Tyr Asp Cys Ser Ser Asp Arg His Ile Phe Ala Gly Ser Glu Ser 1490 1495 1500 Asp Ile Met Arg Ile Leu Ser Gly Arg Ser Tyr Lys Phe Asn Ile Leu 1505 1510 1515 1520 Ser Gln Arg Phe Arg Asn Pro Val Phe Tyr Gly Arg Leu Pro Cys Asn 1525 1530 1535 Leu Asn Lys Thr Arg Leu Thr Leu Asp Glu Glu Glu Tyr Thr Leu Trp 1540 1545 1550 Asp Ser Ile Gln Glu Phe Ser Met Met Gly Arg Lys Asp Cys Pro Val 1555 1560 1565 Val Leu Val Ser Ser Phe Glu Glu Lys Lys Ile Val Ala Ala His Leu 1570 1575 1580 Gly Leu Lys Met Lys Cys Ile Thr Tyr Gly Glu Ser Thr Gly Leu Asn 1585 1590 1595 1600 Phe Gln Lys Gly Ala Ile Leu Val Thr Tyr Glu Ser Ala Leu Thr Ser 1605 1610 1615 Asp Arg Arg Trp Trp Thr Ala Leu Ser Arg Phe Ser His Asp Ile His 1620 1625 1630 Phe Ile Asn Gly Met Gly Val Thr Trp Asp Asn Ala Ile Thr His Phe 1635 1640 1645 Val Gly Lys Pro Leu His Lys Phe Phe Thr Lys Arg Ala Cys Asn Asp 1650 1655 1660 Asp Ile Ile Asp Leu Leu Pro Gly Arg Pro Glu Leu Ile Glu Gly Phe 1665 1670 1675 1680 Gln Ser Gln Val Gly Ala Asp Glu Gly Val Arg Glu Ala Lys Leu Val 1685 1690 1695 Gly Asp Pro Trp Leu Lys Thr Lys Ile Phe Leu Gly Gln Asn Pro Asp 1700 1705 1710 Phe Glu Ile Glu Ile Ala Asp Glu Val Glu Ala Ala Glu Asp Trp Phe 1715 1720 1725 Lys Thr His Ile Pro Ile Met Ser Leu Glu Ala Val Arg Ala Gln Trp 1730 1735 1740 Val His Lys Leu Ile Ser Arg Glu Asp Arg Glu Phe Arg Ile Gly Asp 1745 1750 1755 1760 Ile Thr Thr Glu Gln Phe Thr Asp Asp His Ser Lys Asn Arg Gly Gln 1765 1770 1775 Glu Leu Thr Asn Ala Ala Glu Arg Tyr Glu Ala Ile Tyr Pro Arg His 1780 1785 1790 Lys Gly Thr Asp Thr Ala Thr Phe Leu Met Ala Val Lys Lys Arg Leu 1795 1800 1805 Ser Phe Ser Ser Pro Ala Ala Glu His Ala Lys Leu Arg Arg Ala Lys 1810 1815 1820 Pro Phe Gly Lys Phe Leu Leu Asp Thr Phe Leu Lys Arg Val Pro Leu 1825 1830 1835 1840 Asn Ser Ser His Asp Glu Lys Met Met Gln Glu Ala Val His Ala Phe 1845 1850 1855 Glu Glu Lys Lys Leu Ser Lys Ser Met Ala Thr Ile Glu Asn His Ser 1860 1865 1870 Gly Arg Ser Cys Glu Asp Trp Pro Val Asp Lys Ala Leu Ile Phe Met 1875 1880 1885 Lys Ser Gln Leu Cys Thr Lys Phe Asp Asn Arg Phe Arg Ser Ala Lys 1890 1895 1900 Ala Gly Gln Thr Leu Ala Cys Phe Gln His Ser Val Leu Cys Arg Phe 1905 1910 1915 1920 Ala Pro Tyr Met Arg Tyr Ile Glu Ser Lys Val Thr Glu Val Leu Pro 1925 1930 1935 Lys Asn Leu Tyr Ile His Ser Gly Lys Asn Ile Asp Asp Leu Ala Ala 1940 1945 1950 Trp Val Thr Thr Ser Lys Phe Asn Gly Val Cys Thr Glu Ser Asp Tyr 1955 1960 1965 Glu Ala Phe Asp Ala Ser Gln Asp His Phe Ile Leu Ala Phe Glu Leu 1970 1975 1980 Glu Val Met Lys Phe Leu Gly Leu Pro Ser Asp Leu Ile Ala Asp Tyr 1985 1990 1995 2000 Thr Phe Ile Lys Thr His Leu Gly Ser Lys Leu Gly Ser Phe Ala Ile 2005 2010 2015 Met Arg Phe Thr Gly Glu Ala Ser Thr Phe Leu Phe Asn Thr Met Ala 2020 2025 2030 Asn Met Leu Phe Thr Phe Leu Arg Tyr Asp Leu Asn Gly Arg Glu Ala 2035 2040 2045 Ile Cys Phe Ala Gly Asp Asp Met Cys Ala Asn Ser Arg Leu Lys Val 2050 2055 2060 Thr Asn Arg Phe Ser Asn Phe Leu Asp Lys Ile Lys Leu Lys Ala Lys 2065 2070 2075 2080 Val Gln Phe Thr Ala Thr Pro Thr Phe Cys Gly Trp Gly Leu Cys Glu 2085 2090 2095 His Gly Val Phe Lys Lys Pro Asp Leu Val Leu Glu Arg Leu Gln Ile 2100 2105 2110 Ala Arg Glu Thr Arg Asn Leu Glu Asn Cys Ile Asp Asn Tyr Ala Ile 2115 2120 2125 Glu Val Ser Cys Ala Tyr Lys Met Gly Glu Asn Leu Asn Leu Tyr Leu 2130 2135 2140 Thr Pro Gln Glu Val Asp Ala His Tyr Asn Cys Val Arg Phe Ile Val 2145 2150 2155 2160 Gln His Asn His Leu Leu Lys Ser Asn Ile Arg Asp Leu Phe Lys Gly 2165 2170 2175 Glu Ser Leu Pro Ala Ser Ser 2180 3 3234 DNA Brome mosaic virus CDS (75)..(2960) 3 gtagaccacg gaacgaggtt caatcccttg tcgaccacgg ttctgctact tgttctttgt 60 ttttcaccaa caaa atg tca agt tct atc gat ttg ctg aag ttg att gct 110 Met Ser Ser Ser Ile Asp Leu Leu Lys Leu Ile Ala 1 5 10 gag aag ggt gct gac agc cag agt gcc caa gac atc gta gac aat cag 158 Glu Lys Gly Ala Asp Ser Gln Ser Ala Gln Asp Ile Val Asp Asn Gln 15 20 25 gtt gcg caa cag tta tct gcg cag att gaa tac gcg aaa agg tct aag 206 Val Ala Gln Gln Leu Ser Ala Gln Ile Glu Tyr Ala Lys Arg Ser Lys 30 35 40 aaa atc aac gtt cgc aat aag ctc tct att gag gag gct gac gcc ttc 254 Lys Ile Asn Val Arg Asn Lys Leu Ser Ile Glu Glu Ala Asp Ala Phe 45 50 55 60 cgt gac cgt tat ggt ggt gcc ttt gac tta aat ttg act cag cag tat 302 Arg Asp Arg Tyr Gly Gly Ala Phe Asp Leu Asn Leu Thr Gln Gln Tyr 65 70 75 cat gcg ccc cat agc ctg gct ggt gct ctg cgt gta gcg gag cat tat 350 His Ala Pro His Ser Leu Ala Gly Ala Leu Arg Val Ala Glu His Tyr 80 85 90 gac tgt ctc gac agt ttt ccc cct gaa gac ccc gtt ata gat ttc gga 398 Asp Cys Leu Asp Ser Phe Pro Pro Glu Asp Pro Val Ile Asp Phe Gly 95 100 105 ggg tct tgg tgg cat cac ttt tca aga agg gat aaa agg gtg cac agt 446 Gly Ser Trp Trp His His Phe Ser Arg Arg Asp Lys Arg Val His Ser 110 115 120 tgt tgt cct gtg ttg ggt gtt aga gac gct gcc cga cat gag gag agg 494 Cys Cys Pro Val Leu Gly Val Arg Asp Ala Ala Arg His Glu Glu Arg 125 130 135 140 atg tgc cgc atg cga aaa att ttg caa gaa agc gat gat ttc gat gaa 542 Met Cys Arg Met Arg Lys Ile Leu Gln Glu Ser Asp Asp Phe Asp Glu 145 150 155 gtc ccg aac ttt tgt ctt aac cga gct caa gat tgt gat gtc caa gct 590 Val Pro Asn Phe Cys Leu Asn Arg Ala Gln Asp Cys Asp Val Gln Ala 160 165 170 gat tgg gct atc tgt atc cac ggc ggt tat gat atg ggc ttc caa ggt 638 Asp Trp Ala Ile Cys Ile His Gly Gly Tyr Asp Met Gly Phe Gln Gly 175 180 185 ctg tgt gac gcc atg cat tcg cat gga gta cgc gta cta cgt ggt acc 686 Leu Cys Asp Ala Met His Ser His Gly Val Arg Val Leu Arg Gly Thr 190 195 200 gtt atg ttc gac ggc gcc atg ttg ttt gac cgc gag ggt ttt ctt ccc 734 Val Met Phe Asp Gly Ala Met Leu Phe Asp Arg Glu Gly Phe Leu Pro 205 210 215 220 ttg ctt aaa tgt cac tgg caa cgt gac ggg tca ggc gcg gat gag gtg 782 Leu Leu Lys Cys His Trp Gln Arg Asp Gly Ser Gly Ala Asp Glu Val 225 230 235 atc aaa ttc gat ttt gaa aat gaa agc aca tta tct tac atc cac gga 830 Ile Lys Phe Asp Phe Glu Asn Glu Ser Thr Leu Ser Tyr Ile His Gly 240 245 250 tgg caa gat ttg ggc tca ttt ttc acc gag tcg gtg cat tgc atc gat 878 Trp Gln Asp Leu Gly Ser Phe Phe Thr Glu Ser Val His Cys Ile Asp 255 260 265 gga acc acc tat ctg ttg gag cgc gaa atg ctg aaa tgt aac atc atg 926 Gly Thr Thr Tyr Leu Leu Glu Arg Glu Met Leu Lys Cys Asn Ile Met 270 275 280 acc tat aag atc atc gct aca aat tta cgc tgc ccc cgg gag aca cta 974 Thr Tyr Lys Ile Ile Ala Thr Asn Leu Arg Cys Pro Arg Glu Thr Leu 285 290 295 300 cgt cac tgt gta tgg ttt gaa gac ata tct aag tac gta ggg gtc tca 1022 Arg His Cys Val Trp Phe Glu Asp Ile Ser Lys Tyr Val Gly Val Ser 305 310 315 ata cct gaa gac tgg agt ctc aat cgc tgg aaa tgt gtg cgc gtc gcc 1070 Ile Pro Glu Asp Trp Ser Leu Asn Arg Trp Lys Cys Val Arg Val Ala 320 325 330 aaa acc aca gtg aga gag gta gag gag ata gct ttc aga tgt ttc aag 1118 Lys Thr Thr Val Arg Glu Val Glu Glu Ile Ala Phe Arg Cys Phe Lys 335 340 345 gaa agt aaa gaa tgg act gag aac atg aaa gct gtc gca tct atc tta 1166 Glu Ser Lys Glu Trp Thr Glu Asn Met Lys Ala Val Ala Ser Ile Leu 350 355 360 tcc gcc aag tcg tcg act gtt att att aac ggt cag gct atc atg gct 1214 Ser Ala Lys Ser Ser Thr Val Ile Ile Asn Gly Gln Ala Ile Met Ala 365 370 375 380 ggt gag cgc tta gac att gaa gat tat cat cta gtg gcc ttt gct ttg 1262 Gly Glu Arg Leu Asp Ile Glu Asp Tyr His Leu Val Ala Phe Ala Leu 385 390 395 act ttg aat ctg tat caa aag tac gaa aag ctt acg gcc ctc cgc gat 1310 Thr Leu Asn Leu Tyr Gln Lys Tyr Glu Lys Leu Thr Ala Leu Arg Asp 400 405 410 ggg atg gaa tgg aaa ggt tgg tgc cat cac ttc aaa act agg ttt tgg 1358 Gly Met Glu Trp Lys Gly Trp Cys His His Phe Lys Thr Arg Phe Trp 415 420 425 tgg ggt gga gat tca tcc agg gcg aaa gta gga tgg ctg aga aca ttg 1406 Trp Gly Gly Asp Ser Ser Arg Ala Lys Val Gly Trp Leu Arg Thr Leu 430 435 440 gct agc aga ttt ccc cta cta cgt ctg gat tct tat gcg gac agt ttt 1454 Ala Ser Arg Phe Pro Leu Leu Arg Leu Asp Ser Tyr Ala Asp Ser Phe 445 450 455 460 aag ttt ctg act cgt ctc tca aac gtt gaa gaa ttt gag caa gat tct 1502 Lys Phe Leu Thr Arg Leu Ser Asn Val Glu Glu Phe Glu Gln Asp Ser 465 470 475 gta ccg ata tca cgt ttg aga acg ttt tgg act gaa gag gac tta ttc 1550 Val Pro Ile Ser Arg Leu Arg Thr Phe Trp Thr Glu Glu Asp Leu Phe 480 485 490 gac cgg ctg gag cat gaa gtg cag aca gcc aag acc aag cgc tcg aag 1598 Asp Arg Leu Glu His Glu Val Gln Thr Ala Lys Thr Lys Arg Ser Lys 495 500 505 aag aag gcg aaa gtc ccg cca gct gct gag ata cct cag gag gag ttt 1646 Lys Lys Ala Lys Val Pro Pro Ala Ala Glu Ile Pro Gln Glu Glu Phe 510 515 520 cat gat gcc cct gag agt tcg agc cct gag tcc gtc agt gat gac gtt 1694 His Asp Ala Pro Glu Ser Ser Ser Pro Glu Ser Val Ser Asp Asp Val 525 530 535 540 aaa ccg gtg act gat gtg gtc ccg gat gcc gag gtg tct gtt gag gta 1742 Lys Pro Val Thr Asp Val Val Pro Asp Ala Glu Val Ser Val Glu Val 545 550 555 cca acg gac cct cgt ggc ata tct aga cac gga gcc atg aag gaa ttt 1790 Pro Thr Asp Pro Arg Gly Ile Ser Arg His Gly Ala Met Lys Glu Phe 560 565 570 gtg cgt tat tgt aag aga tta cat aac aac tcc gag tct aat ctt cgt 1838 Val Arg Tyr Cys Lys Arg Leu His Asn Asn Ser Glu Ser Asn Leu Arg 575 580 585 cac cta tgg gac att tcc ggc ggt cgc gga agt gag atc gca aat aag 1886 His Leu Trp Asp Ile Ser Gly Gly Arg Gly Ser Glu Ile Ala Asn Lys 590 595 600 agc atc ttt gag acc tac cat cgc ata gac gat atg gtg aat gtc cat 1934 Ser Ile Phe Glu Thr Tyr His Arg Ile Asp Asp Met Val Asn Val His 605 610 615 620 ttg gcc aac ggt aac tgg ttg tat cct aaa aaa tac gat tac act gtt 1982 Leu Ala Asn Gly Asn Trp Leu Tyr Pro Lys Lys Tyr Asp Tyr Thr Val 625 630 635 gga tat aat gag cat ggt tta ggt ccg aag cac gca gat gaa acg tac 2030 Gly Tyr Asn Glu His Gly Leu Gly Pro Lys His Ala Asp Glu Thr Tyr 640 645 650 att gtt gat aaa aca tgt gca tgc tct aac ttg agg gac att gca gaa 2078 Ile Val Asp Lys Thr Cys Ala Cys Ser Asn Leu Arg Asp Ile Ala Glu 655 660 665 gct agc gcc aaa gtt tct gtc cct aca tgc gat att tcc atg gtt gat 2126 Ala Ser Ala Lys Val Ser Val Pro Thr Cys Asp Ile Ser Met Val Asp 670 675 680 gga gtt gcg gga tgc ggt aaa acc act gcc ata aaa gat gca ttc cgt 2174 Gly Val Ala Gly Cys Gly Lys Thr Thr Ala Ile Lys Asp Ala Phe Arg 685 690 695 700 atg gga gag gac cta att gtg acg gcg aat cgt aaa tcg gcc gag gac 2222 Met Gly Glu Asp Leu Ile Val Thr Ala Asn Arg Lys Ser Ala Glu Asp 705 710 715 gtc agg atg gct tta ttc cct gac act tat aat tcc aag gta gct ttg 2270 Val Arg Met Ala Leu Phe Pro Asp Thr Tyr Asn Ser Lys Val Ala Leu 720 725 730 gac gtt gtg cgc acc gcg gat tct gcg atc atg cac ggt gta ccg tcc 2318 Asp Val Val Arg Thr Ala Asp Ser Ala Ile Met His Gly Val Pro Ser 735 740 745 tgt cat agg ctg ctt gtt gat gag gct ggt tta cta cat tat ggt caa 2366 Cys His Arg Leu Leu Val Asp Glu Ala Gly Leu Leu His Tyr Gly Gln 750 755 760 ctc ctg gtg gtg gct gct ctg tct aaa tgt tca caa gtt ctt gcc ttt 2414 Leu Leu Val Val Ala Ala Leu Ser Lys Cys Ser Gln Val Leu Ala Phe 765 770 775 780 ggg gac aca gag cag att tcg ttc aag tct cgt gac gcg ggt ttt aaa 2462 Gly Asp Thr Glu Gln Ile Ser Phe Lys Ser Arg Asp Ala Gly Phe Lys 785 790 795 ttg ctc cac ggt aat ctg caa tat gat cgc cgt gac gtt gtt cac aag 2510 Leu Leu His Gly Asn Leu Gln Tyr Asp Arg Arg Asp Val Val His Lys 800 805 810 act tac cgg tgt ccg caa gat gtt atc gct gct gtt aat ctg ctg aag 2558 Thr Tyr Arg Cys Pro Gln Asp Val Ile Ala Ala Val Asn Leu Leu Lys 815 820 825 cgt aaa tgc ggt aat agg gac acg aag tat caa tcc tgg aca tct gag 2606 Arg Lys Cys Gly Asn Arg Asp Thr Lys Tyr Gln Ser Trp Thr Ser Glu 830 835 840 tcc aaa gtt tct aga agt ctc acg aag cgt cgt att act tct ggt ttg 2654 Ser Lys Val Ser Arg Ser Leu Thr Lys Arg Arg Ile Thr Ser Gly Leu 845 850 855 860 cag gtc act att gat ccg aac aga acg tat ctt acg atg act caa gct 2702 Gln Val Thr Ile Asp Pro Asn Arg Thr Tyr Leu Thr Met Thr Gln Ala 865 870 875 gat aaa gcg gcc ctt caa acg agg gct aag gat ttt ccc gtg agc aag 2750 Asp Lys Ala Ala Leu Gln Thr Arg Ala Lys Asp Phe Pro Val Ser Lys 880 885 890 gac tgg att gat gga cac ata aaa aca gta cac gaa gcg caa ggg atc 2798 Asp Trp Ile Asp Gly His Ile Lys Thr Val His Glu Ala Gln Gly Ile 895 900 905 tct gtt gac aac gtc act ttg gtt cgg ctt aag tcg acc aaa tgt gat 2846 Ser Val Asp Asn Val Thr Leu Val Arg Leu Lys Ser Thr Lys Cys Asp 910 915 920 ttg ttt aaa cat gag gag tac tgt ttg gtt gcc tta aca cga cac aag 2894 Leu Phe Lys His Glu Glu Tyr Cys Leu Val Ala Leu Thr Arg His Lys 925 930 935 940 aag tcc ttt gag tat tgc ttt aac ggc gag ctc gct ggt gat ttg atc 2942 Lys Ser Phe Glu Tyr Cys Phe Asn Gly Glu Leu Ala Gly Asp Leu Ile 945 950 955 ttt aat tgt gtt aag tga tgcgcttgtc tctgtgtgag acctctgctc 2990 Phe Asn Cys Val Lys 960 gaggagagcc ctgttccagg taggaacgtt gtggtctaac tcaagactag ctgaatcggt 3050 gctataaccg atagtcgtgg ttgacacgca gacctcttac aagagtgtct aggcgccttt 3110 gagagttact ctttgctctc ttcggaagaa cccttagggg ttcgtgcatg ggcttgcata 3170 gcaagtctta gaatgcgggt gtcgtacagt gttgaaaaac actgtaaatc tctaaaagag 3230 acca 3234 4 961 PRT Brome mosaic virus 4 Met Ser Ser Ser Ile Asp Leu Leu Lys Leu Ile Ala Glu Lys Gly Ala 1 5 10 15 Asp Ser Gln Ser Ala Gln Asp Ile Val Asp Asn Gln Val Ala Gln Gln 20 25 30 Leu Ser Ala Gln Ile Glu Tyr Ala Lys Arg Ser Lys Lys Ile Asn Val 35 40 45 Arg Asn Lys Leu Ser Ile Glu Glu Ala Asp Ala Phe Arg Asp Arg Tyr 50 55 60 Gly Gly Ala Phe Asp Leu Asn Leu Thr Gln Gln Tyr His Ala Pro His 65 70 75 80 Ser Leu Ala Gly Ala Leu Arg Val Ala Glu His Tyr Asp Cys Leu Asp 85 90 95 Ser Phe Pro Pro Glu Asp Pro Val Ile Asp Phe Gly Gly Ser Trp Trp 100 105 110 His His Phe Ser Arg Arg Asp Lys Arg Val His Ser Cys Cys Pro Val 115 120 125 Leu Gly Val Arg Asp Ala Ala Arg His Glu Glu Arg Met Cys Arg Met 130 135 140 Arg Lys Ile Leu Gln Glu Ser Asp Asp Phe Asp Glu Val Pro Asn Phe 145 150 155 160 Cys Leu Asn Arg Ala Gln Asp Cys Asp Val Gln Ala Asp Trp Ala Ile 165 170 175 Cys Ile His Gly Gly Tyr Asp Met Gly Phe Gln Gly Leu Cys Asp Ala 180 185 190 Met His Ser His Gly Val Arg Val Leu Arg Gly Thr Val Met Phe Asp 195 200 205 Gly Ala Met Leu Phe Asp Arg Glu Gly Phe Leu Pro Leu Leu Lys Cys 210 215 220 His Trp Gln Arg Asp Gly Ser Gly Ala Asp Glu Val Ile Lys Phe Asp 225 230 235 240 Phe Glu Asn Glu Ser Thr Leu Ser Tyr Ile His Gly Trp Gln Asp Leu 245 250 255 Gly Ser Phe Phe Thr Glu Ser Val His Cys Ile Asp Gly Thr Thr Tyr 260 265 270 Leu Leu Glu Arg Glu Met Leu Lys Cys Asn Ile Met Thr Tyr Lys Ile 275 280 285 Ile Ala Thr Asn Leu Arg Cys Pro Arg Glu Thr Leu Arg His Cys Val 290 295 300 Trp Phe Glu Asp Ile Ser Lys Tyr Val Gly Val Ser Ile Pro Glu Asp 305 310 315 320 Trp Ser Leu Asn Arg Trp Lys Cys Val Arg Val Ala Lys Thr Thr Val 325 330 335 Arg Glu Val Glu Glu Ile Ala Phe Arg Cys Phe Lys Glu Ser Lys Glu 340 345 350 Trp Thr Glu Asn Met Lys Ala Val Ala Ser Ile Leu Ser Ala Lys Ser 355 360 365 Ser Thr Val Ile Ile Asn Gly Gln Ala Ile Met Ala Gly Glu Arg Leu 370 375 380 Asp Ile Glu Asp Tyr His Leu Val Ala Phe Ala Leu Thr Leu Asn Leu 385 390 395 400 Tyr Gln Lys Tyr Glu Lys Leu Thr Ala Leu Arg Asp Gly Met Glu Trp 405 410 415 Lys Gly Trp Cys His His Phe Lys Thr Arg Phe Trp Trp Gly Gly Asp 420 425 430 Ser Ser Arg Ala Lys Val Gly Trp Leu Arg Thr Leu Ala Ser Arg Phe 435 440 445 Pro Leu Leu Arg Leu Asp Ser Tyr Ala Asp Ser Phe Lys Phe Leu Thr 450 455 460 Arg Leu Ser Asn Val Glu Glu Phe Glu Gln Asp Ser Val Pro Ile Ser 465 470 475 480 Arg Leu Arg Thr Phe Trp Thr Glu Glu Asp Leu Phe Asp Arg Leu Glu 485 490 495 His Glu Val Gln Thr Ala Lys Thr Lys Arg Ser Lys Lys Lys Ala Lys 500 505 510 Val Pro Pro Ala Ala Glu Ile Pro Gln Glu Glu Phe His Asp Ala Pro 515 520 525 Glu Ser Ser Ser Pro Glu Ser Val Ser Asp Asp Val Lys Pro Val Thr 530 535 540 Asp Val Val Pro Asp Ala Glu Val Ser Val Glu Val Pro Thr Asp Pro 545 550 555 560 Arg Gly Ile Ser Arg His Gly Ala Met Lys Glu Phe Val Arg Tyr Cys 565 570 575 Lys Arg Leu His Asn Asn Ser Glu Ser Asn Leu Arg His Leu Trp Asp 580 585 590 Ile Ser Gly Gly Arg Gly Ser Glu Ile Ala Asn Lys Ser Ile Phe Glu 595 600 605 Thr Tyr His Arg Ile Asp Asp Met Val Asn Val His Leu Ala Asn Gly 610 615 620 Asn Trp Leu Tyr Pro Lys Lys Tyr Asp Tyr Thr Val Gly Tyr Asn Glu 625 630 635 640 His Gly Leu Gly Pro Lys His Ala Asp Glu Thr Tyr Ile Val Asp Lys 645 650 655 Thr Cys Ala Cys Ser Asn Leu Arg Asp Ile Ala Glu Ala Ser Ala Lys 660 665 670 Val Ser Val Pro Thr Cys Asp Ile Ser Met Val Asp Gly Val Ala Gly 675 680 685 Cys Gly Lys Thr Thr Ala Ile Lys Asp Ala Phe Arg Met Gly Glu Asp 690 695 700 Leu Ile Val Thr Ala Asn Arg Lys Ser Ala Glu Asp Val Arg Met Ala 705 710 715 720 Leu Phe Pro Asp Thr Tyr Asn Ser Lys Val Ala Leu Asp Val Val Arg 725 730 735 Thr Ala Asp Ser Ala Ile Met His Gly Val Pro Ser Cys His Arg Leu 740 745 750 Leu Val Asp Glu Ala Gly Leu Leu His Tyr Gly Gln Leu Leu Val Val 755 760 765 Ala Ala Leu Ser Lys Cys Ser Gln Val Leu Ala Phe Gly Asp Thr Glu 770 775 780 Gln Ile Ser Phe Lys Ser Arg Asp Ala Gly Phe Lys Leu Leu His Gly 785 790 795 800 Asn Leu Gln Tyr Asp Arg Arg Asp Val Val His Lys Thr Tyr Arg Cys 805 810 815 Pro Gln Asp Val Ile Ala Ala Val Asn Leu Leu Lys Arg Lys Cys Gly 820 825 830 Asn Arg Asp Thr Lys Tyr Gln Ser Trp Thr Ser Glu Ser Lys Val Ser 835 840 845 Arg Ser Leu Thr Lys Arg Arg Ile Thr Ser Gly Leu Gln Val Thr Ile 850 855 860 Asp Pro Asn Arg Thr Tyr Leu Thr Met Thr Gln Ala Asp Lys Ala Ala 865 870 875 880 Leu Gln Thr Arg Ala Lys Asp Phe Pro Val Ser Lys Asp Trp Ile Asp 885 890 895 Gly His Ile Lys Thr Val His Glu Ala Gln Gly Ile Ser Val Asp Asn 900 905 910 Val Thr Leu Val Arg Leu Lys Ser Thr Lys Cys Asp Leu Phe Lys His 915 920 925 Glu Glu Tyr Cys Leu Val Ala Leu Thr Arg His Lys Lys Ser Phe Glu 930 935 940 Tyr Cys Phe Asn Gly Glu Leu Ala Gly Asp Leu Ile Phe Asn Cys Val 945 950 955 960 Lys 5 6746 DNA Beet necrotic yellow vein mosaic virus CDS (154)..(6483) 5 aaattcgatt cttcccattc gccatcattg aatcattact cgtgtactgg aacgcagtta 60 ggagtggctc caaagcatct tctttgaaaa tagattgcga agtgagttca cctaagacga 120 cgtcggtgtt ttacgagttt ttacataatc aac atg gca gat tcg ttc ggt ttt 174 Met Ala Asp Ser Phe Gly Phe 1 5 act cca atg gag gtt ttg ctt ttt ggt ggt gaa tcg gtt cag ttg ttg 222 Thr Pro Met Glu Val Leu Leu Phe Gly Gly Glu Ser Val Gln Leu Leu 10 15 20 act tca gac atg cct att gat gtc cag tgg ggc ttt gta tac tcc act 270 Thr Ser Asp Met Pro Ile Asp Val Gln Trp Gly Phe Val Tyr Ser Thr 25 30 35 cga tgt tat gct ctc tgg aaa gac gac ttg att cat ctc aat ccg ctg 318 Arg Cys Tyr Ala Leu Trp Lys Asp Asp Leu Ile His Leu Asn Pro Leu 40 45 50 55 ttg aaa tat tca cag cga att gca aaa cgg tgg gaa aag tta gtt tcg 366 Leu Lys Tyr Ser Gln Arg Ile Ala Lys Arg Trp Glu Lys Leu Val Ser 60 65 70 ggc ttt gtt ggc cca gta ccg ctt gat aag ttg ttg tct ttg ttg gca 414 Gly Phe Val Gly Pro Val Pro Leu Asp Lys Leu Leu Ser Leu Leu Ala 75 80 85 aaa ctt atg agg tat tgt gtt aac atg ggg gtg tct gta cag gag ata 462 Lys Leu Met Arg Tyr Cys Val Asn Met Gly Val Ser Val Gln Glu Ile 90 95 100 tat ttg tct gat gct att gtt tca tcg tct tat atg ttg cat gtg tct 510 Tyr Leu Ser Asp Ala Ile Val Ser Ser Ser Tyr Met Leu His Val Ser 105 110 115 agg agt gca ggt tgt gtg tct ttt agt tgg ttg tat gct aag ttg tcc 558 Arg Ser Ala Gly Cys Val Ser Phe Ser Trp Leu Tyr Ala Lys Leu Ser 120 125 130 135 atg ttc gct tcg tgt ggc aag ttc tgg gta ggg tct tca cat cac acg 606 Met Phe Ala Ser Cys Gly Lys Phe Trp Val Gly Ser Ser His His Thr 140 145 150 gct gct aac atg att gaa ggt tcc cgt gct gtg aat ggt ccg gat gtg 654 Ala Ala Asn Met Ile Glu Gly Ser Arg Ala Val Asn Gly Pro Asp Val 155 160 165 gct att tct gag atg gtt gaa gcc ttc cat tta gag gtg aag tca tca 702 Ala Ile Ser Glu Met Val Glu Ala Phe His Leu Glu Val Lys Ser Ser 170 175 180 ctc gtt gta act gta tct ttg act cct agg gag aaa aag att ttg gag 750 Leu Val Val Thr Val Ser Leu Thr Pro Arg Glu Lys Lys Ile Leu Glu 185 190 195 cga gag cca ggt ttt gtg ccg ttg tac aaa cag aaa agt aga gct cca 798 Arg Glu Pro Gly Phe Val Pro Leu Tyr Lys Gln Lys Ser Arg Ala Pro 200 205 210 215 cgc aat cac cca gtg ctg gct gct ctt cgt gag gtt atg agg cag gag 846 Arg Asn His Pro Val Leu Ala Ala Leu Arg Glu Val Met Arg Gln Glu 220 225 230 tat tcc gct agt tgt aat att ctt aat aca aag ttg aaa aca ctg gta 894 Tyr Ser Ala Ser Cys Asn Ile Leu Asn Thr Lys Leu Lys Thr Leu Val 235 240 245 gtt ggt gct gcc agt cgt gaa gtt aat tgt tat tcg tct aat ccg tct 942 Val Gly Ala Ala Ser Arg Glu Val Asn Cys Tyr Ser Ser Asn Pro Ser 250 255 260 gta cat tac tat ttt gct aat aaa gat agt aag gat ttg gta agg acc 990 Val His Tyr Tyr Phe Ala Asn Lys Asp Ser Lys Asp Leu Val Arg Thr 265 270 275 act ctg gag ttg ttg cat agt gct ttg gct aca aag tac cgc aat atg 1038 Thr Leu Glu Leu Leu His Ser Ala Leu Ala Thr Lys Tyr Arg Asn Met 280 285 290 295 gaa agt ggt gag cga gaa ctc atg aat aat ttg aag ggt tgt ggt tat 1086 Glu Ser Gly Glu Arg Glu Leu Met Asn Asn Leu Lys Gly Cys Gly Tyr 300 305 310 att gtc aaa agg tcg gtc gaa aac gct atc tat gag gtt gtt tcc gat 1134 Ile Val Lys Arg Ser Val Glu Asn Ala Ile Tyr Glu Val Val Ser Asp 315 320 325 aaa gat gtt gct gaa gtg tta agg tat gcg caa act gtc gct tca acg 1182 Lys Asp Val Ala Glu Val Leu Arg Tyr Ala Gln Thr Val Ala Ser Thr 330 335 340 aag aaa gag gcg aaa agg aaa cct aac act gga aag cga aaa atg gtc 1230 Lys Lys Glu Ala Lys Arg Lys Pro Asn Thr Gly Lys Arg Lys Met Val 345 350 355 atg tcg gaa gca act cgt aga aca atc gaa ctg cat gag ttg tcg cgt 1278 Met Ser Glu Ala Thr Arg Arg Thr Ile Glu Leu His Glu Leu Ser Arg 360 365 370 375 att gta gcc gaa gag aag aag att cct aac cat ttc cac ttt gat gaa 1326 Ile Val Ala Glu Glu Lys Lys Ile Pro Asn His Phe His Phe Asp Glu 380 385 390 agt gat ttt gct tct gtt ggt aat ttt act cag ttg gtt tgt gaa gat 1374 Ser Asp Phe Ala Ser Val Gly Asn Phe Thr Gln Leu Val Cys Glu Asp 395 400 405 gtt ggt tac aat ttt tct gtg gat gct tgg ttg cat ttg ttc gag gtg 1422 Val Gly Tyr Asn Phe Ser Val Asp Ala Trp Leu His Leu Phe Glu Val 410 415 420 acc ggt gcg cag act gcc gtt ggt tat atg gca ttg cct aat gaa ctt 1470 Thr Gly Ala Gln Thr Ala Val Gly Tyr Met Ala Leu Pro Asn Glu Leu 425 430 435 ttg ttt gaa cat tat cca ata tca gat tat tat gat tat tgg gag ggt 1518 Leu Phe Glu His Tyr Pro Ile Ser Asp Tyr Tyr Asp Tyr Trp Glu Gly 440 445 450 455 gtt gaa aag cat ggt tca ttg ggt ggt att act att tcc cct ttg cgg 1566 Val Glu Lys His Gly Ser Leu Gly Gly Ile Thr Ile Ser Pro Leu Arg 460 465 470 aat gga cag gtt gtt ggt atg ccg act ggg gtt ttt caa cct gtt cat 1614 Asn Gly Gln Val Val Gly Met Pro Thr Gly Val Phe Gln Pro Val His 475 480 485 ttt gac aag acg tct gct ggt tta ggt att cct ggt tca aag atg ggt 1662 Phe Asp Lys Thr Ser Ala Gly Leu Gly Ile Pro Gly Ser Lys Met Gly 490 495 500 act gct gaa cgt gtt ata tgt cac atg tca gat gga ctt gga aat ggc 1710 Thr Ala Glu Arg Val Ile Cys His Met Ser Asp Gly Leu Gly Asn Gly 505 510 515 tac aat cat gtt aaa agt gat tgg cag acg ttg ttg aaa cat cct att 1758 Tyr Asn His Val Lys Ser Asp Trp Gln Thr Leu Leu Lys His Pro Ile 520 525 530 535 ttg tct tct tca aag tat aat ttt gct gtt gaa gtg gat tta acg gga 1806 Leu Ser Ser Ser Lys Tyr Asn Phe Ala Val Glu Val Asp Leu Thr Gly 540 545 550 cgt tat ggt tgt ctt gcc acc ttt cgg tta act cgt gtg act gga gtc 1854 Arg Tyr Gly Cys Leu Ala Thr Phe Arg Leu Thr Arg Val Thr Gly Val 555 560 565 aag tat gtt gct aga act ata aaa ttg cgt cca gaa gat agg tat gtt 1902 Lys Tyr Val Ala Arg Thr Ile Lys Leu Arg Pro Glu Asp Arg Tyr Val 570 575 580 cgg gta ttg gat ttg tta cat att gtg cgt agt att agg ttg aaa ggg 1950 Arg Val Leu Asp Leu Leu His Ile Val Arg Ser Ile Arg Leu Lys Gly 585 590 595 cat gcc ggt ttg aaa gaa cct tat cag tat ttt cct gtg tat aaa cgt 1998 His Ala Gly Leu Lys Glu Pro Tyr Gln Tyr Phe Pro Val Tyr Lys Arg 600 605 610 615 gag gta gat acg acg gtg tct tac tgt ttt tct att gct gaa aaa tcg 2046 Glu Val Asp Thr Thr Val Ser Tyr Cys Phe Ser Ile Ala Glu Lys Ser 620 625 630 ttg aca gta caa aac att gct aat ttt att aga cat cac att ggt ggt 2094 Leu Thr Val Gln Asn Ile Ala Asn Phe Ile Arg His His Ile Gly Gly 635 640 645 gtt tct tta gtt aac aaa gaa tta gta tcg gcg tgg cgt ttg aat ccg 2142 Val Ser Leu Val Asn Lys Glu Leu Val Ser Ala Trp Arg Leu Asn Pro 650 655 660 caa ctt gtt cct tcg ttc gca tat gcc gtt tac ttt tat gtt gtt aat 2190 Gln Leu Val Pro Ser Phe Ala Tyr Ala Val Tyr Phe Tyr Val Val Asn 665 670 675 ttg aga ggt gag ttg gat ggg atg ttg cag aag tta atg aaa aag ggt 2238 Leu Arg Gly Glu Leu Asp Gly Met Leu Gln Lys Leu Met Lys Lys Gly 680 685 690 695 atc aca tgg gca gat agg ttg aag gct aat gtt tca gcg ttt ttg cga 2286 Ile Thr Trp Ala Asp Arg Leu Lys Ala Asn Val Ser Ala Phe Leu Arg 700 705 710 gat atg gta gat cct att agt ttt ttg tgg acg tgg tta ttt gag aga 2334 Asp Met Val Asp Pro Ile Ser Phe Leu Trp Thr Trp Leu Phe Glu Arg 715 720 725 aga tta gtc gat caa att ttt cag gat ggg act gat gtt ttt tac cag 2382 Arg Leu Val Asp Gln Ile Phe Gln Asp Gly Thr Asp Val Phe Tyr Gln 730 735 740 atg gat cgt gct tgt gtt gat gag aag gca ttg cgt ttg aac gat cac 2430 Met Asp Arg Ala Cys Val Asp Glu Lys Ala Leu Arg Leu Asn Asp His 745 750 755 att aaa att aca cga gat ttt ttg cct gct gac act tta ctt cct gaa 2478 Ile Lys Ile Thr Arg Asp Phe Leu Pro Ala Asp Thr Leu Leu Pro Glu 760 765 770 775 gga tgg tct tta gac gat tgg gaa aaa gct ccc gat agt ttg aag act 2526 Gly Trp Ser Leu Asp Asp Trp Glu Lys Ala Pro Asp Ser Leu Lys Thr 780 785 790 ctt tcg gca gct gct tcg ttg cca gta gag tgc ggg gcg gta aat tgt 2574 Leu Ser Ala Ala Ala Ser Leu Pro Val Glu Cys Gly Ala Val Asn Cys 795 800 805 gtt ggt aag tcg ttt aag agc gtg cgt act cta tta cca cca tct gtt 2622 Val Gly Lys Ser Phe Lys Ser Val Arg Thr Leu Leu Pro Pro Ser Val 810 815 820 gtt act tca cct gtt gag cag ttt ttc aaa tct ggt ggt aaa ttt aga 2670 Val Thr Ser Pro Val Glu Gln Phe Phe Lys Ser Gly Gly Lys Phe Arg 825 830 835 gat gat gcc gag ttt gca gaa ttg ttg agt gcg cac tat cgc tgg cag 2718 Asp Asp Ala Glu Phe Ala Glu Leu Leu Ser Ala His Tyr Arg Trp Gln 840 845 850 855 atg gac aat tct ttt tgt gct tgt cag gtt tgt gct gct ttg act ggt 2766 Met Asp Asn Ser Phe Cys Ala Cys Gln Val Cys Ala Ala Leu Thr Gly 860 865 870 aaa acg ggt tct caa gtt gtt gaa tgc aga tgg aaa gat gag tct atg 2814 Lys Thr Gly Ser Gln Val Val Glu Cys Arg Trp Lys Asp Glu Ser Met 875 880 885 tat aca ttt tct atg tca caa act gag gtt gat gat ttt aga aat gag 2862 Tyr Thr Phe Ser Met Ser Gln Thr Glu Val Asp Asp Phe Arg Asn Glu 890 895 900 att aag gct caa tct att gaa aag gga aat cgt ttt ggt gaa ttg cta 2910 Ile Lys Ala Gln Ser Ile Glu Lys Gly Asn Arg Phe Gly Glu Leu Leu 905 910 915 ata ggt gta cat cag aaa att cct aca caa gcc ttt gag gtt tca gtt 2958 Ile Gly Val His Gln Lys Ile Pro Thr Gln Ala Phe Glu Val Ser Val 920 925 930 935 cga ctc gaa tat gtt aaa ggt ggg cct ggt acg ggt aaa tct ttt ctt 3006 Arg Leu Glu Tyr Val Lys Gly Gly Pro Gly Thr Gly Lys Ser Phe Leu 940 945 950 ata aga tca ttg gcc gac cct att agg gat ctt gtg gtt gct ccg ttc 3054 Ile Arg Ser Leu Ala Asp Pro Ile Arg Asp Leu Val Val Ala Pro Phe 955 960 965 ata aaa ttg cgt tct gat tat cag aat caa cga gtt ggt gat gag ctt 3102 Ile Lys Leu Arg Ser Asp Tyr Gln Asn Gln Arg Val Gly Asp Glu Leu 970 975 980 ctt tct tgg gac ttt cac acg cct cac aaa gca ttg gat gtt act ggt 3150 Leu Ser Trp Asp Phe His Thr Pro His Lys Ala Leu Asp Val Thr Gly 985 990 995 aag caa att att ttt gtt gat gag ttt aca gcc tac gat tgg cgt tta 3198 Lys Gln Ile Ile Phe Val Asp Glu Phe Thr Ala Tyr Asp Trp Arg Leu 1000 1005 1010 1015 cta gct gtg ttg gct tat aga aat cat gcc cat act att tac tta gtt 3246 Leu Ala Val Leu Ala Tyr Arg Asn His Ala His Thr Ile Tyr Leu Val 1020 1025 1030 ggt gat gag cag cag act ggt att caa gag ggt cgt gga gaa gga att 3294 Gly Asp Glu Gln Gln Thr Gly Ile Gln Glu Gly Arg Gly Glu Gly Ile 1035 1040 1045 tcg ata ctt aac aaa att gat ttg tct aag gtt tct aca cat gtt cca 3342 Ser Ile Leu Asn Lys Ile Asp Leu Ser Lys Val Ser Thr His Val Pro 1050 1055 1060 atc atg aac ttt aga aat cct gtc cat gat gtt aag gta tta aat tat 3390 Ile Met Asn Phe Arg Asn Pro Val His Asp Val Lys Val Leu Asn Tyr 1065 1070 1075 ctg ttt ggg tct cgt atg gtt cct atg tct tcc gtt gaa aag gga ttt 3438 Leu Phe Gly Ser Arg Met Val Pro Met Ser Ser Val Glu Lys Gly Phe 1080 1085 1090 1095 agt ttc ggg gat att aaa gaa ttt tcg tct ttg tca aat atc cca gac 3486 Ser Phe Gly Asp Ile Lys Glu Phe Ser Ser Leu Ser Asn Ile Pro Asp 1100 1105 1110 act aaa atc att cat tat tcc gat gag act ggt gag cat atg atg cct 3534 Thr Lys Ile Ile His Tyr Ser Asp Glu Thr Gly Glu His Met Met Pro 1115 1120 1125 gat tac gtt agg gga gtg tca aaa act act gtc cgt gct aat cag ggt 3582 Asp Tyr Val Arg Gly Val Ser Lys Thr Thr Val Arg Ala Asn Gln Gly 1130 1135 1140 agt acc tac gat aat gtt gtt ttg cct gtt ttg cca tct gat ttg aaa 3630 Ser Thr Tyr Asp Asn Val Val Leu Pro Val Leu Pro Ser Asp Leu Lys 1145 1150 1155 ctg att aac tca gct gag tta aat ctg gta gct tta tct cgt cac agg 3678 Leu Ile Asn Ser Ala Glu Leu Asn Leu Val Ala Leu Ser Arg His Arg 1160 1165 1170 1175 aat aag tta acc att tta ttg gac aat gat ggt atg aat att ggt gct 3726 Asn Lys Leu Thr Ile Leu Leu Asp Asn Asp Gly Met Asn Ile Gly Ala 1180 1185 1190 gtt ttg aaa ggc atg ctt gag ggt gtg ccg gaa gaa ctc gaa aga agg 3774 Val Leu Lys Gly Met Leu Glu Gly Val Pro Glu Glu Leu Glu Arg Arg 1195 1200 1205 gat tac att gtt ggg atg tac ctt ggg tta cat tta cct att aag aaa 3822 Asp Tyr Ile Val Gly Met Tyr Leu Gly Leu His Leu Pro Ile Lys Lys 1210 1215 1220 gag ttc ttc ttt cct gag tct gag ttt gct aag tcg ttt aga tta atg 3870 Glu Phe Phe Phe Pro Glu Ser Glu Phe Ala Lys Ser Phe Arg Leu Met 1225 1230 1235 gtt gct aag tat gag gca ttc gta cct tac gat agt gat ctg cca act 3918 Val Ala Lys Tyr Glu Ala Phe Val Pro Tyr Asp Ser Asp Leu Pro Thr 1240 1245 1250 1255 ttg gtt tca caa gga gat gtc gtt gtt ttg gac ata gca cgt gtg gaa 3966 Leu Val Ser Gln Gly Asp Val Val Val Leu Asp Ile Ala Arg Val Glu 1260 1265 1270 aac gat att aat gat gcc ttt gat tgt gca gat ttc tat aat ctt gtg 4014 Asn Asp Ile Asn Asp Ala Phe Asp Cys Ala Asp Phe Tyr Asn Leu Val 1275 1280 1285 tct cgt cct aac aat tgt tta gtg gta gct att tca gaa tgt tta ggt 4062 Ser Arg Pro Asn Asn Cys Leu Val Val Ala Ile Ser Glu Cys Leu Gly 1290 1295 1300 gtg acg cta gaa aaa ttg gac aat ctt atg caa gct aac gct gtg acg 4110 Val Thr Leu Glu Lys Leu Asp Asn Leu Met Gln Ala Asn Ala Val Thr 1305 1310 1315 ctt gat aag tat cac gcg tgg ttg tct aag aag tct cca tca act tgg 4158 Leu Asp Lys Tyr His Ala Trp Leu Ser Lys Lys Ser Pro Ser Thr Trp 1320 1325 1330 1335 caa gac tgt aga atg ttt gcc gat gct ctg aag gtt tcc atg tac gtt 4206 Gln Asp Cys Arg Met Phe Ala Asp Ala Leu Lys Val Ser Met Tyr Val 1340 1345 1350 aag gtt tta tct gac aaa cct tac gat tta act tat gag gtt gat ggg 4254 Lys Val Leu Ser Asp Lys Pro Tyr Asp Leu Thr Tyr Glu Val Asp Gly 1355 1360 1365 gct ggt tcc tca gtg aca tta tat tta act ggt aag gaa agc gat ggg 4302 Ala Gly Ser Ser Val Thr Leu Tyr Leu Thr Gly Lys Glu Ser Asp Gly 1370 1375 1380 cat ttt att gct gcc cca ctt agt tcg tcg ctt tct acc aat gag aga 4350 His Phe Ile Ala Ala Pro Leu Ser Ser Ser Leu Ser Thr Asn Glu Arg 1385 1390 1395 gag tcc gga gat aat agt aag aaa ccg gct gat gat tct gac acc ttt 4398 Glu Ser Gly Asp Asn Ser Lys Lys Pro Ala Asp Asp Ser Asp Thr Phe 1400 1405 1410 1415 gat gct gct aat ttg ttt gct gac aag ggt gtt tct tcc gct gat atg 4446 Asp Ala Ala Asn Leu Phe Ala Asp Lys Gly Val Ser Ser Ala Asp Met 1420 1425 1430 gag gct ttt tgt gcc tat tta gaa aag act tta atg gca aca att atg 4494 Glu Ala Phe Cys Ala Tyr Leu Glu Lys Thr Leu Met Ala Thr Ile Met 1435 1440 1445 aag tat gat ttg agc ttg caa tcg tgg gct aat gtg gtt gat gat act 4542 Lys Tyr Asp Leu Ser Leu Gln Ser Trp Ala Asn Val Val Asp Asp Thr 1450 1455 1460 gac gat ttt tat caa atc aat att tct gag ttt cgt cag tcc acg tgt 4590 Asp Asp Phe Tyr Gln Ile Asn Ile Ser Glu Phe Arg Gln Ser Thr Cys 1465 1470 1475 ttt ggt aaa ttg ttg tca gcg ctt gaa gtt ttg aag gtt gat gtt tcg 4638 Phe Gly Lys Leu Leu Ser Ala Leu Glu Val Leu Lys Val Asp Val Ser 1480 1485 1490 1495 agg aag agg ttt ata tct gat tgg ttg tgt aaa aat ctt gag aat aaa 4686 Arg Lys Arg Phe Ile Ser Asp Trp Leu Cys Lys Asn Leu Glu Asn Lys 1500 1505 1510 caa ttc cgg tgg cgt tgg tct tct agt gtg gct tca gct agt tcg gcc 4734 Gln Phe Arg Trp Arg Trp Ser Ser Ser Val Ala Ser Ala Ser Ser Ala 1515 1520 1525 ggg tcg aat gtc gac gat gat ttt gtc aat atg gca ggg gga aag act 4782 Gly Ser Asn Val Asp Asp Asp Phe Val Asn Met Ala Gly Gly Lys Thr 1530 1535 1540 gat gct aat gct gat cct gct gat gtt ttg agg cag agt ttt atg gat 4830 Asp Ala Asn Ala Asp Pro Ala Asp Val Leu Arg Gln Ser Phe Met Asp 1545 1550 1555 tat gca tcg gaa ttt gtt cct atc ctt atc gct gaa tca cca ata ttt 4878 Tyr Ala Ser Glu Phe Val Pro Ile Leu Ile Ala Glu Ser Pro Ile Phe 1560 1565 1570 1575 atg ccg ttg gtt gag cct gaa cca ata ttg tcc aag tgt atg gtg cct 4926 Met Pro Leu Val Glu Pro Glu Pro Ile Leu Ser Lys Cys Met Val Pro 1580 1585 1590 gag ttt gac gcc ttt ttg tta ata aag gaa ttt gat ttg gac aat ggt 4974 Glu Phe Asp Ala Phe Leu Leu Ile Lys Glu Phe Asp Leu Asp Asn Gly 1595 1600 1605 gct gat gag tat caa tgc gct tat ctt aat gaa tct gtt gct aat cgt 5022 Ala Asp Glu Tyr Gln Cys Ala Tyr Leu Asn Glu Ser Val Ala Asn Arg 1610 1615 1620 att ggt gac aaa ttt gtt tcg ggt gtt tta gac act gat att ata tct 5070 Ile Gly Asp Lys Phe Val Ser Gly Val Leu Asp Thr Asp Ile Ile Ser 1625 1630 1635 cca tta aat ctg agg gga cat cct att gct gaa aat gtt aaa tat cac 5118 Pro Leu Asn Leu Arg Gly His Pro Ile Ala Glu Asn Val Lys Tyr His 1640 1645 1650 1655 agc atg tgt gtg gcc ccg gct cag ata tat ttt aag cgg aat cag tgg 5166 Ser Met Cys Val Ala Pro Ala Gln Ile Tyr Phe Lys Arg Asn Gln Trp 1660 1665 1670 caa gaa ttg cag gtt caa cag gct cgg tac tta ttt cga aaa gtg aga 5214 Gln Glu Leu Gln Val Gln Gln Ala Arg Tyr Leu Phe Arg Lys Val Arg 1675 1680 1685 aat tct cca tca tcg aca caa gat agt gtt gca cgt atg gtt gct cag 5262 Asn Ser Pro Ser Ser Thr Gln Asp Ser Val Ala Arg Met Val Ala Gln 1690 1695 1700 cta ttt gtt tct gat tgt ttg gtg cca aat gta gct gat act ttt tct 5310 Leu Phe Val Ser Asp Cys Leu Val Pro Asn Val Ala Asp Thr Phe Ser 1705 1710 1715 gct tcc aat ttg tgg cga att atg gac aaa gct atg cat gac atg gtc 5358 Ala Ser Asn Leu Trp Arg Ile Met Asp Lys Ala Met His Asp Met Val 1720 1725 1730 1735 gca aaa aat tac caa ggc caa atg gaa gag gag ttt acg cgt aat gct 5406 Ala Lys Asn Tyr Gln Gly Gln Met Glu Glu Glu Phe Thr Arg Asn Ala 1740 1745 1750 aaa cta tat cgt ttt cag ttg aag gat att gaa aaa cct ttg aag gac 5454 Lys Leu Tyr Arg Phe Gln Leu Lys Asp Ile Glu Lys Pro Leu Lys Asp 1755 1760 1765 cca gag act gat ttg gca aag gct ggt caa ggg ata ttg gca tgg tct 5502 Pro Glu Thr Asp Leu Ala Lys Ala Gly Gln Gly Ile Leu Ala Trp Ser 1770 1775 1780 aag gag gca cat gtt aag ttt atg gtt gct ttt aga gtt tta aat gat 5550 Lys Glu Ala His Val Lys Phe Met Val Ala Phe Arg Val Leu Asn Asp 1785 1790 1795 ttg tta ttg aag tca tta aac tct aat gtt gtt tac gat aac aca atg 5598 Leu Leu Leu Lys Ser Leu Asn Ser Asn Val Val Tyr Asp Asn Thr Met 1800 1805 1810 1815 tct gag acc gaa ttt gtt gga aaa ata aat gcc gcc atg aat aca gta 5646 Ser Glu Thr Glu Phe Val Gly Lys Ile Asn Ala Ala Met Asn Thr Val 1820 1825 1830 cca gat agt gct ata aac ggg gtt atc gat gct gct gct tgc gat tct 5694 Pro Asp Ser Ala Ile Asn Gly Val Ile Asp Ala Ala Ala Cys Asp Ser 1835 1840 1845 ggg caa ggg gtt ttc acc caa ttg ata gaa aga cat att tat gct gct 5742 Gly Gln Gly Val Phe Thr Gln Leu Ile Glu Arg His Ile Tyr Ala Ala 1850 1855 1860 ttg ggc att tct gac ttc ttt ttg gat tgg tat ttc tca ttt cgt gag 5790 Leu Gly Ile Ser Asp Phe Phe Leu Asp Trp Tyr Phe Ser Phe Arg Glu 1865 1870 1875 aaa tat gtt atg cag tcc aga tat gtc aga gca cat atg tct tat gtt 5838 Lys Tyr Val Met Gln Ser Arg Tyr Val Arg Ala His Met Ser Tyr Val 1880 1885 1890 1895 aag act agt gga gaa ccc ggc act ttg ctt ggt aat acc att tta atg 5886 Lys Thr Ser Gly Glu Pro Gly Thr Leu Leu Gly Asn Thr Ile Leu Met 1900 1905 1910 ggt gct atg tta aat gct atg ctt cgt ggg acc gga cca ttt tgt atg 5934 Gly Ala Met Leu Asn Ala Met Leu Arg Gly Thr Gly Pro Phe Cys Met 1915 1920 1925 gcc atg aag ggc gat gat ggt ttt aaa agg cag gct aat ttg aaa att 5982 Ala Met Lys Gly Asp Asp Gly Phe Lys Arg Gln Ala Asn Leu Lys Ile 1930 1935 1940 aac gat caa atg tta aag ttg att aaa aag gaa act gtc ttg gat ttc 6030 Asn Asp Gln Met Leu Lys Leu Ile Lys Lys Glu Thr Val Leu Asp Phe 1945 1950 1955 aaa ttg gat tta aat gtt cct atc act ttt tgt ggt tat gct tta tct 6078 Lys Leu Asp Leu Asn Val Pro Ile Thr Phe Cys Gly Tyr Ala Leu Ser 1960 1965 1970 1975 aat gga cat ttg ttt cca agt gtt tcg cgt aaa ttg acg aag ata gca 6126 Asn Gly His Leu Phe Pro Ser Val Ser Arg Lys Leu Thr Lys Ile Ala 1980 1985 1990 gca cac agg ttc cgt gag tat aag cat ttt tgt gaa tac cag gaa tct 6174 Ala His Arg Phe Arg Glu Tyr Lys His Phe Cys Glu Tyr Gln Glu Ser 1995 2000 2005 ttg cgt gat tgg att aaa aat ctt ccc aaa gac cca gct gtt tat gct 6222 Leu Arg Asp Trp Ile Lys Asn Leu Pro Lys Asp Pro Ala Val Tyr Ala 2010 2015 2020 gat ttt ttg gag tgt aac gct agc tta tct tgt cgc aat gtt gat gat 6270 Asp Phe Leu Glu Cys Asn Ala Ser Leu Ser Cys Arg Asn Val Asp Asp 2025 2030 2035 gtt caa cgt tgg ttg gat gct att atc tct gtg tct cga atc ggg cgt 6318 Val Gln Arg Trp Leu Asp Ala Ile Ile Ser Val Ser Arg Ile Gly Arg 2040 2045 2050 2055 gag caa ttt atg atg atg ttc ccg ata cgg gaa gtt ttt atg tca ttg 6366 Glu Gln Phe Met Met Met Phe Pro Ile Arg Glu Val Phe Met Ser Leu 2060 2065 2070 cca ccc gtt gag gat agt ttg ggt gaa tta tct tct acg aaa gtg gct 6414 Pro Pro Val Glu Asp Ser Leu Gly Glu Leu Ser Ser Thr Lys Val Ala 2075 2080 2085 gtg tct att ggc gac aat gtt tct aat gtt gtt aga aag gtt gct cgt 6462 Val Ser Ile Gly Asp Asn Val Ser Asn Val Val Arg Lys Val Ala Arg 2090 2095 2100 gtt gat atg aaa aag ttt taa tgtgtaatat ggtaatataa tacgttgtac 6513 Val Asp Met Lys Lys Phe 2105 2110 acttgtgagt agtataagtt ttaaaataaa taaaggccat gccacaggcc tcctatcttg 6573 atgaaggttg ttgtggtttt ctcgttactg ttttattatt gtttgagttg cttatgttgg 6633 ttcttgatta tgtggtacat aattattgaa ctaattgttt gttgggttgt aatgtactga 6693 ctgggtgtga attgtaccag tcattaaagg gtttactatc agtatattga tat 6746 6 2109 PRT Beet necrotic yellow vein mosaic virus 6 Met Ala Asp Ser Phe Gly Phe Thr Pro Met Glu Val Leu Leu Phe Gly 1 5 10 15 Gly Glu Ser Val Gln Leu Leu Thr Ser Asp Met Pro Ile Asp Val Gln 20 25 30 Trp Gly Phe Val Tyr Ser Thr Arg Cys Tyr Ala Leu Trp Lys Asp Asp 35 40 45 Leu Ile His Leu Asn Pro Leu Leu Lys Tyr Ser Gln Arg Ile Ala Lys 50 55 60 Arg Trp Glu Lys Leu Val Ser Gly Phe Val Gly Pro Val Pro Leu Asp 65 70 75 80 Lys Leu Leu Ser Leu Leu Ala Lys Leu Met Arg Tyr Cys Val Asn Met 85 90 95 Gly Val Ser Val Gln Glu Ile Tyr Leu Ser Asp Ala Ile Val Ser Ser 100 105 110 Ser Tyr Met Leu His Val Ser Arg Ser Ala Gly Cys Val Ser Phe Ser 115 120 125 Trp Leu Tyr Ala Lys Leu Ser Met Phe Ala Ser Cys Gly Lys Phe Trp 130 135 140 Val Gly Ser Ser His His Thr Ala Ala Asn Met Ile Glu Gly Ser Arg 145 150 155 160 Ala Val Asn Gly Pro Asp Val Ala Ile Ser Glu Met Val Glu Ala Phe 165 170 175 His Leu Glu Val Lys Ser Ser Leu Val Val Thr Val Ser Leu Thr Pro 180 185 190 Arg Glu Lys Lys Ile Leu Glu Arg Glu Pro Gly Phe Val Pro Leu Tyr 195 200 205 Lys Gln Lys Ser Arg Ala Pro Arg Asn His Pro Val Leu Ala Ala Leu 210 215 220 Arg Glu Val Met Arg Gln Glu Tyr Ser Ala Ser Cys Asn Ile Leu Asn 225 230 235 240 Thr Lys Leu Lys Thr Leu Val Val Gly Ala Ala Ser Arg Glu Val Asn 245 250 255 Cys Tyr Ser Ser Asn Pro Ser Val His Tyr Tyr Phe Ala Asn Lys Asp 260 265 270 Ser Lys Asp Leu Val Arg Thr Thr Leu Glu Leu Leu His Ser Ala Leu 275 280 285 Ala Thr Lys Tyr Arg Asn Met Glu Ser Gly Glu Arg Glu Leu Met Asn 290 295 300 Asn Leu Lys Gly Cys Gly Tyr Ile Val Lys Arg Ser Val Glu Asn Ala 305 310 315 320 Ile Tyr Glu Val Val Ser Asp Lys Asp Val Ala Glu Val Leu Arg Tyr 325 330 335 Ala Gln Thr Val Ala Ser Thr Lys Lys Glu Ala Lys Arg Lys Pro Asn 340 345 350 Thr Gly Lys Arg Lys Met Val Met Ser Glu Ala Thr Arg Arg Thr Ile 355 360 365 Glu Leu His Glu Leu Ser Arg Ile Val Ala Glu Glu Lys Lys Ile Pro 370 375 380 Asn His Phe His Phe Asp Glu Ser Asp Phe Ala Ser Val Gly Asn Phe 385 390 395 400 Thr Gln Leu Val Cys Glu Asp Val Gly Tyr Asn Phe Ser Val Asp Ala 405 410 415 Trp Leu His Leu Phe Glu Val Thr Gly Ala Gln Thr Ala Val Gly Tyr 420 425 430 Met Ala Leu Pro Asn Glu Leu Leu Phe Glu His Tyr Pro Ile Ser Asp 435 440 445 Tyr Tyr Asp Tyr Trp Glu Gly Val Glu Lys His Gly Ser Leu Gly Gly 450 455 460 Ile Thr Ile Ser Pro Leu Arg Asn Gly Gln Val Val Gly Met Pro Thr 465 470 475 480 Gly Val Phe Gln Pro Val His Phe Asp Lys Thr Ser Ala Gly Leu Gly 485 490 495 Ile Pro Gly Ser Lys Met Gly Thr Ala Glu Arg Val Ile Cys His Met 500 505 510 Ser Asp Gly Leu Gly Asn Gly Tyr Asn His Val Lys Ser Asp Trp Gln 515 520 525 Thr Leu Leu Lys His Pro Ile Leu Ser Ser Ser Lys Tyr Asn Phe Ala 530 535 540 Val Glu Val Asp Leu Thr Gly Arg Tyr Gly Cys Leu Ala Thr Phe Arg 545 550 555 560 Leu Thr Arg Val Thr Gly Val Lys Tyr Val Ala Arg Thr Ile Lys Leu 565 570 575 Arg Pro Glu Asp Arg Tyr Val Arg Val Leu Asp Leu Leu His Ile Val 580 585 590 Arg Ser Ile Arg Leu Lys Gly His Ala Gly Leu Lys Glu Pro Tyr Gln 595 600 605 Tyr Phe Pro Val Tyr Lys Arg Glu Val Asp Thr Thr Val Ser Tyr Cys 610 615 620 Phe Ser Ile Ala Glu Lys Ser Leu Thr Val Gln Asn Ile Ala Asn Phe 625 630 635 640 Ile Arg His His Ile Gly Gly Val Ser Leu Val Asn Lys Glu Leu Val 645 650 655 Ser Ala Trp Arg Leu Asn Pro Gln Leu Val Pro Ser Phe Ala Tyr Ala 660 665 670 Val Tyr Phe Tyr Val Val Asn Leu Arg Gly Glu Leu Asp Gly Met Leu 675 680 685 Gln Lys Leu Met Lys Lys Gly Ile Thr Trp Ala Asp Arg Leu Lys Ala 690 695 700 Asn Val Ser Ala Phe Leu Arg Asp Met Val Asp Pro Ile Ser Phe Leu 705 710 715 720 Trp Thr Trp Leu Phe Glu Arg Arg Leu Val Asp Gln Ile Phe Gln Asp 725 730 735 Gly Thr Asp Val Phe Tyr Gln Met Asp Arg Ala Cys Val Asp Glu Lys 740 745 750 Ala Leu Arg Leu Asn Asp His Ile Lys Ile Thr Arg Asp Phe Leu Pro 755 760 765 Ala Asp Thr Leu Leu Pro Glu Gly Trp Ser Leu Asp Asp Trp Glu Lys 770 775 780 Ala Pro Asp Ser Leu Lys Thr Leu Ser Ala Ala Ala Ser Leu Pro Val 785 790 795 800 Glu Cys Gly Ala Val Asn Cys Val Gly Lys Ser Phe Lys Ser Val Arg 805 810 815 Thr Leu Leu Pro Pro Ser Val Val Thr Ser Pro Val Glu Gln Phe Phe 820 825 830 Lys Ser Gly Gly Lys Phe Arg Asp Asp Ala Glu Phe Ala Glu Leu Leu 835 840 845 Ser Ala His Tyr Arg Trp Gln Met Asp Asn Ser Phe Cys Ala Cys Gln 850 855 860 Val Cys Ala Ala Leu Thr Gly Lys Thr Gly Ser Gln Val Val Glu Cys 865 870 875 880 Arg Trp Lys Asp Glu Ser Met Tyr Thr Phe Ser Met Ser Gln Thr Glu 885 890 895 Val Asp Asp Phe Arg Asn Glu Ile Lys Ala Gln Ser Ile Glu Lys Gly 900 905 910 Asn Arg Phe Gly Glu Leu Leu Ile Gly Val His Gln Lys Ile Pro Thr 915 920 925 Gln Ala Phe Glu Val Ser Val Arg Leu Glu Tyr Val Lys Gly Gly Pro 930 935 940 Gly Thr Gly Lys Ser Phe Leu Ile Arg Ser Leu Ala Asp Pro Ile Arg 945 950 955 960 Asp Leu Val Val Ala Pro Phe Ile Lys Leu Arg Ser Asp Tyr Gln Asn 965 970 975 Gln Arg Val Gly Asp Glu Leu Leu Ser Trp Asp Phe His Thr Pro His 980 985 990 Lys Ala Leu Asp Val Thr Gly Lys Gln Ile Ile Phe Val Asp Glu Phe 995 1000 1005 Thr Ala Tyr Asp Trp Arg Leu Leu Ala Val Leu Ala Tyr Arg Asn His 1010 1015 1020 Ala His Thr Ile Tyr Leu Val Gly Asp Glu Gln Gln Thr Gly Ile Gln 1025 1030 1035 1040 Glu Gly Arg Gly Glu Gly Ile Ser Ile Leu Asn Lys Ile Asp Leu Ser 1045 1050 1055 Lys Val Ser Thr His Val Pro Ile Met Asn Phe Arg Asn Pro Val His 1060 1065 1070 Asp Val Lys Val Leu Asn Tyr Leu Phe Gly Ser Arg Met Val Pro Met 1075 1080 1085 Ser Ser Val Glu Lys Gly Phe Ser Phe Gly Asp Ile Lys Glu Phe Ser 1090 1095 1100 Ser Leu Ser Asn Ile Pro Asp Thr Lys Ile Ile His Tyr Ser Asp Glu 1105 1110 1115 1120 Thr Gly Glu His Met Met Pro Asp Tyr Val Arg Gly Val Ser Lys Thr 1125 1130 1135 Thr Val Arg Ala Asn Gln Gly Ser Thr Tyr Asp Asn Val Val Leu Pro 1140 1145 1150 Val Leu Pro Ser Asp Leu Lys Leu Ile Asn Ser Ala Glu Leu Asn Leu 1155 1160 1165 Val Ala Leu Ser Arg His Arg Asn Lys Leu Thr Ile Leu Leu Asp Asn 1170 1175 1180 Asp Gly Met Asn Ile Gly Ala Val Leu Lys Gly Met Leu Glu Gly Val 1185 1190 1195 1200 Pro Glu Glu Leu Glu Arg Arg Asp Tyr Ile Val Gly Met Tyr Leu Gly 1205 1210 1215 Leu His Leu Pro Ile Lys Lys Glu Phe Phe Phe Pro Glu Ser Glu Phe 1220 1225 1230 Ala Lys Ser Phe Arg Leu Met Val Ala Lys Tyr Glu Ala Phe Val Pro 1235 1240 1245 Tyr Asp Ser Asp Leu Pro Thr Leu Val Ser Gln Gly Asp Val Val Val 1250 1255 1260 Leu Asp Ile Ala Arg Val Glu Asn Asp Ile Asn Asp Ala Phe Asp Cys 1265 1270 1275 1280 Ala Asp Phe Tyr Asn Leu Val Ser Arg Pro Asn Asn Cys Leu Val Val 1285 1290 1295 Ala Ile Ser Glu Cys Leu Gly Val Thr Leu Glu Lys Leu Asp Asn Leu 1300 1305 1310 Met Gln Ala Asn Ala Val Thr Leu Asp Lys Tyr His Ala Trp Leu Ser 1315 1320 1325 Lys Lys Ser Pro Ser Thr Trp Gln Asp Cys Arg Met Phe Ala Asp Ala 1330 1335 1340 Leu Lys Val Ser Met Tyr Val Lys Val Leu Ser Asp Lys Pro Tyr Asp 1345 1350 1355 1360 Leu Thr Tyr Glu Val Asp Gly Ala Gly Ser Ser Val Thr Leu Tyr Leu 1365 1370 1375 Thr Gly Lys Glu Ser Asp Gly His Phe Ile Ala Ala Pro Leu Ser Ser 1380 1385 1390 Ser Leu Ser Thr Asn Glu Arg Glu Ser Gly Asp Asn Ser Lys Lys Pro 1395 1400 1405 Ala Asp Asp Ser Asp Thr Phe Asp Ala Ala Asn Leu Phe Ala Asp Lys 1410 1415 1420 Gly Val Ser Ser Ala Asp Met Glu Ala Phe Cys Ala Tyr Leu Glu Lys 1425 1430 1435 1440 Thr Leu Met Ala Thr Ile Met Lys Tyr Asp Leu Ser Leu Gln Ser Trp 1445 1450 1455 Ala Asn Val Val Asp Asp Thr Asp Asp Phe Tyr Gln Ile Asn Ile Ser 1460 1465 1470 Glu Phe Arg Gln Ser Thr Cys Phe Gly Lys Leu Leu Ser Ala Leu Glu 1475 1480 1485 Val Leu Lys Val Asp Val Ser Arg Lys Arg Phe Ile Ser Asp Trp Leu 1490 1495 1500 Cys Lys Asn Leu Glu Asn Lys Gln Phe Arg Trp Arg Trp Ser Ser Ser 1505 1510 1515 1520 Val Ala Ser Ala Ser Ser Ala Gly Ser Asn Val Asp Asp Asp Phe Val 1525 1530 1535 Asn Met Ala Gly Gly Lys Thr Asp Ala Asn Ala Asp Pro Ala Asp Val 1540 1545 1550 Leu Arg Gln Ser Phe Met Asp Tyr Ala Ser Glu Phe Val Pro Ile Leu 1555 1560 1565 Ile Ala Glu Ser Pro Ile Phe Met Pro Leu Val Glu Pro Glu Pro Ile 1570 1575 1580 Leu Ser Lys Cys Met Val Pro Glu Phe Asp Ala Phe Leu Leu Ile Lys 1585 1590 1595 1600 Glu Phe Asp Leu Asp Asn Gly Ala Asp Glu Tyr Gln Cys Ala Tyr Leu 1605 1610 1615 Asn Glu Ser Val Ala Asn Arg Ile Gly Asp Lys Phe Val Ser Gly Val 1620 1625 1630 Leu Asp Thr Asp Ile Ile Ser Pro Leu Asn Leu Arg Gly His Pro Ile 1635 1640 1645 Ala Glu Asn Val Lys Tyr His Ser Met Cys Val Ala Pro Ala Gln Ile 1650 1655 1660 Tyr Phe Lys Arg Asn Gln Trp Gln Glu Leu Gln Val Gln Gln Ala Arg 1665 1670 1675 1680 Tyr Leu Phe Arg Lys Val Arg Asn Ser Pro Ser Ser Thr Gln Asp Ser 1685 1690 1695 Val Ala Arg Met Val Ala Gln Leu Phe Val Ser Asp Cys Leu Val Pro 1700 1705 1710 Asn Val Ala Asp Thr Phe Ser Ala Ser Asn Leu Trp Arg Ile Met Asp 1715 1720 1725 Lys Ala Met His Asp Met Val Ala Lys Asn Tyr Gln Gly Gln Met Glu 1730 1735 1740 Glu Glu Phe Thr Arg Asn Ala Lys Leu Tyr Arg Phe Gln Leu Lys Asp 1745 1750 1755 1760 Ile Glu Lys Pro Leu Lys Asp Pro Glu Thr Asp Leu Ala Lys Ala Gly 1765 1770 1775 Gln Gly Ile Leu Ala Trp Ser Lys Glu Ala His Val Lys Phe Met Val 1780 1785 1790 Ala Phe Arg Val Leu Asn Asp Leu Leu Leu Lys Ser Leu Asn Ser Asn 1795 1800 1805 Val Val Tyr Asp Asn Thr Met Ser Glu Thr Glu Phe Val Gly Lys Ile 1810 1815 1820 Asn Ala Ala Met Asn Thr Val Pro Asp Ser Ala Ile Asn Gly Val Ile 1825 1830 1835 1840 Asp Ala Ala Ala Cys Asp Ser Gly Gln Gly Val Phe Thr Gln Leu Ile 1845 1850 1855 Glu Arg His Ile Tyr Ala Ala Leu Gly Ile Ser Asp Phe Phe Leu Asp 1860 1865 1870 Trp Tyr Phe Ser Phe Arg Glu Lys Tyr Val Met Gln Ser Arg Tyr Val 1875 1880 1885 Arg Ala His Met Ser Tyr Val Lys Thr Ser Gly Glu Pro Gly Thr Leu 1890 1895 1900 Leu Gly Asn Thr Ile Leu Met Gly Ala Met Leu Asn Ala Met Leu Arg 1905 1910 1915 1920 Gly Thr Gly Pro Phe Cys Met Ala Met Lys Gly Asp Asp Gly Phe Lys 1925 1930 1935 Arg Gln Ala Asn Leu Lys Ile Asn Asp Gln Met Leu Lys Leu Ile Lys 1940 1945 1950 Lys Glu Thr Val Leu Asp Phe Lys Leu Asp Leu Asn Val Pro Ile Thr 1955 1960 1965 Phe Cys Gly Tyr Ala Leu Ser Asn Gly His Leu Phe Pro Ser Val Ser 1970 1975 1980 Arg Lys Leu Thr Lys Ile Ala Ala His Arg Phe Arg Glu Tyr Lys His 1985 1990 1995 2000 Phe Cys Glu Tyr Gln Glu Ser Leu Arg Asp Trp Ile Lys Asn Leu Pro 2005 2010 2015 Lys Asp Pro Ala Val Tyr Ala Asp Phe Leu Glu Cys Asn Ala Ser Leu 2020 2025 2030 Ser Cys Arg Asn Val Asp Asp Val Gln Arg Trp Leu Asp Ala Ile Ile 2035 2040 2045 Ser Val Ser Arg Ile Gly Arg Glu Gln Phe Met Met Met Phe Pro Ile 2050 2055 2060 Arg Glu Val Phe Met Ser Leu Pro Pro Val Glu Asp Ser Leu Gly Glu 2065 2070 2075 2080 Leu Ser Ser Thr Lys Val Ala Val Ser Ile Gly Asp Asn Val Ser Asn 2085 2090 2095 Val Val Arg Lys Val Ala Arg Val Asp Met Lys Lys Phe 2100 2105 7 5834 DNA Beet soil-borne virus CDS (130)..(5466) 7 gtattatttt ctcaacggtt atttaccaaa gagaagattt ctataccatt aattttgaaa 60 agtctgcttt ttagcaataa atcttttcat attactggtt tgtcttttta tttttacgaa 120 aattctacg atg gaa tct aca aac att ctg acg caa att aat cgt gat gat 171 Met Glu Ser Thr Asn Ile Leu Thr Gln Ile Asn Arg Asp Asp 1 5 10 ata att cag gcc gta tta act aca agt gcg agt agg act cag tct gct 219 Ile Ile Gln Ala Val Leu Thr Thr Ser Ala Ser Arg Thr Gln Ser Ala 15 20 25 30 tta cat gaa act ttg agt agg gtg att gat gat aat ata aag aat gct 267 Leu His Glu Thr Leu Ser Arg Val Ile Asp Asp Asn Ile Lys Asn Ala 35 40 45 ctt aaa gct aac aca aaa aag aaa aca gtt gat gtg aaa cga aac ttg 315 Leu Lys Ala Asn Thr Lys Lys Lys Thr Val Asp Val Lys Arg Asn Leu 50 55 60 tct gaa gaa cag gtt cag tat tta tgt gag ctt tat cct gaa aga aaa 363 Ser Glu Glu Gln Val Gln Tyr Leu Cys Glu Leu Tyr Pro Glu Arg Lys 65 70 75 ata att aca tct aat tct gaa cgt ggt act cat agt atg gct gcg gct 411 Ile Ile Thr Ser Asn Ser Glu Arg Gly Thr His Ser Met Ala Ala Ala 80 85 90 atg cga aaa att gaa acg gat ttg gtt ttg tca ctg ttt cct aag aat 459 Met Arg Lys Ile Glu Thr Asp Leu Val Leu Ser Leu Phe Pro Lys Asn 95 100 105 110 agc gtt ata tat gat att ggt ggt aat tgg gcg acg cac gct aag tgt 507 Ser Val Ile Tyr Asp Ile Gly Gly Asn Trp Ala Thr His Ala Lys Cys 115 120 125 aat gat gga agg aaa gtg cat tgt tgc tgt ccg ata ttg gac tat cgt 555 Asn Asp Gly Arg Lys Val His Cys Cys Cys Pro Ile Leu Asp Tyr Arg 130 135 140 gat gcg cag agg aag atg acg cgg atg tta aac ttt cat aag ttt acc 603 Asp Ala Gln Arg Lys Met Thr Arg Met Leu Asn Phe His Lys Phe Thr 145 150 155 agc gat tct tct gag ata cct cct gat atc aga gaa aaa gcg gag atg 651 Ser Asp Ser Ser Glu Ile Pro Pro Asp Ile Arg Glu Lys Ala Glu Met 160 165 170 ata gcc gag gat aac gcc att ata act gca aat gtg cgg gaa ggt gat 699 Ile Ala Glu Asp Asn Ala Ile Ile Thr Ala Asn Val Arg Glu Gly Asp 175 180 185 190 ctg aat tct tct gct ttg aac gga cgt tgg ttt tgc caa aac aag ttt 747 Leu Asn Ser Ser Ala Leu Asn Gly Arg Trp Phe Cys Gln Asn Lys Phe 195 200 205 gaa gac tgt gtt ttt gat ccg cgt gac att ttg acg ggt aag act gct 795 Glu Asp Cys Val Phe Asp Pro Arg Asp Ile Leu Thr Gly Lys Thr Ala 210 215 220 aag gat aat gta atg gtt tat gcc atg gca att cac agt att tat gat 843 Lys Asp Asn Val Met Val Tyr Ala Met Ala Ile His Ser Ile Tyr Asp 225 230 235 ata aat gtt tat gaa ttg gct acg gcg tta cag cga aaa gga ata aag 891 Ile Asn Val Tyr Glu Leu Ala Thr Ala Leu Gln Arg Lys Gly Ile Lys 240 245 250 cgg atg gta ggt act ttt ctg ttt tct gtg gac atg ttg ctc gga aga 939 Arg Met Val Gly Thr Phe Leu Phe Ser Val Asp Met Leu Leu Gly Arg 255 260 265 270 aaa agt ggt gaa ttg cca tct gtt aac ggg ttt tat aag ttg gaa ggc 987 Lys Ser Gly Glu Leu Pro Ser Val Asn Gly Phe Tyr Lys Leu Glu Gly 275 280 285 gaa tat ata aaa tac ggg ttt tac gac gat cca aat tgc ggt tac aga 1035 Glu Tyr Ile Lys Tyr Gly Phe Tyr Asp Asp Pro Asn Cys Gly Tyr Arg 290 295 300 cat aag ttt tct tcg ctc aag gct tac ttg aca aaa act ttt gtt aaa 1083 His Lys Phe Ser Ser Leu Lys Ala Tyr Leu Thr Lys Thr Phe Val Lys 305 310 315 gca gca aat ggt tcc gtg ttt tac ctg gag tta act gac tta agg ggt 1131 Ala Ala Asn Gly Ser Val Phe Tyr Leu Glu Leu Thr Asp Leu Arg Gly 320 325 330 gac gta atg tac ttt act atg aca gat gct aca gag gca cgg gct tcc 1179 Asp Val Met Tyr Phe Thr Met Thr Asp Ala Thr Glu Ala Arg Ala Ser 335 340 345 350 ggt att atg aaa gat gag tca ttt aag tgc att cca gtg gac gca aaa 1227 Gly Ile Met Lys Asp Glu Ser Phe Lys Cys Ile Pro Val Asp Ala Lys 355 360 365 aac aag gta gtt ttt cct ttg ttt gtt gtg gat gaa acc act gac aca 1275 Asn Lys Val Val Phe Pro Leu Phe Val Val Asp Glu Thr Thr Asp Thr 370 375 380 ctt atg ttt ctc gaa cgc gta tta cca aaa gat ttt gtg cat cgc gct 1323 Leu Met Phe Leu Glu Arg Val Leu Pro Lys Asp Phe Val His Arg Ala 385 390 395 att gag tat gtc aat cgt tgt aag gag aat cag tta acg gtt gaa agt 1371 Ile Glu Tyr Val Asn Arg Cys Lys Glu Asn Gln Leu Thr Val Glu Ser 400 405 410 att gtt agt tat tta tcg tct act aat aat gcc gtg ata att ggt ggg 1419 Ile Val Ser Tyr Leu Ser Ser Thr Asn Asn Ala Val Ile Ile Gly Gly 415 420 425 430 tct gcg aga aaa gtg gaa gag aag gtg gat cct tct ttg cta ccg atg 1467 Ser Ala Arg Lys Val Glu Glu Lys Val Asp Pro Ser Leu Leu Pro Met 435 440 445 atc gcc tcc act ttg tta gtt tac agt gaa atg cag agg gct aaa cag 1515 Ile Ala Ser Thr Leu Leu Val Tyr Ser Glu Met Gln Arg Ala Lys Gln 450 455 460 aag act gtt att caa aag ctg aga att cat gtg aag aat aca gtt act 1563 Lys Thr Val Ile Gln Lys Leu Arg Ile His Val Lys Asn Thr Val Thr 465 470 475 att ggt gat ttg ttg aac cac gct ttc cat aag gtg ttc ggc gcc gtt 1611 Ile Gly Asp Leu Leu Asn His Ala Phe His Lys Val Phe Gly Ala Val 480 485 490 ggt gtc ggt cag ttg gcg ctg cag agc ttt gct aga tgg tta aag ttt 1659 Gly Val Gly Gln Leu Ala Leu Gln Ser Phe Ala Arg Trp Leu Lys Phe 495 500 505 510 ttt cat ggc tca ggg gtt atc gag atg aat gac ctt ttt atg tac gta 1707 Phe His Gly Ser Gly Val Ile Glu Met Asn Asp Leu Phe Met Tyr Val 515 520 525 gag att gaa gac cgt att agg tta tgg tct aag aaa tct cga gag cac 1755 Glu Ile Glu Asp Arg Ile Arg Leu Trp Ser Lys Lys Ser Arg Glu His 530 535 540 gaa ttc ttc ctg acc ttt gat gat ctg aca gaa aaa agt cgt ttg tac 1803 Glu Phe Phe Leu Thr Phe Asp Asp Leu Thr Glu Lys Ser Arg Leu Tyr 545 550 555 gaa gag tac aac gaa gag aga cgt agg att tct gac aag atc att aag 1851 Glu Glu Tyr Asn Glu Glu Arg Arg Arg Ile Ser Asp Lys Ile Ile Lys 560 565 570 gaa aaa ggt ttg agt tct aaa gac ctt tct ttg gaa gaa gat aag gaa 1899 Glu Lys Gly Leu Ser Ser Lys Asp Leu Ser Leu Glu Glu Asp Lys Glu 575 580 585 590 aag acg gta gat gaa att ctg gcc tgg atg gag aaa tct gaa gat ttg 1947 Lys Thr Val Asp Glu Ile Leu Ala Trp Met Glu Lys Ser Glu Asp Leu 595 600 605 aag gct tcg gag ttg cgt tct aag ttg ata ggg att cga aag aat cgt 1995 Lys Ala Ser Glu Leu Arg Ser Lys Leu Ile Gly Ile Arg Lys Asn Arg 610 615 620 gca cgt gtt gat aaa cga aag ttt ggt gag gcg cat cag gta aat acg 2043 Ala Arg Val Asp Lys Arg Lys Phe Gly Glu Ala His Gln Val Asn Thr 625 630 635 gct gta ttg cag agg ttt acc gag gcg gac gac gat cac ttt tcc acg 2091 Ala Val Leu Gln Arg Phe Thr Glu Ala Asp Asp Asp His Phe Ser Thr 640 645 650 tgt gct tta aat act cca ggc aag tgg tgg gtt gat gtt ctg ggt gaa 2139 Cys Ala Leu Asn Thr Pro Gly Lys Trp Trp Val Asp Val Leu Gly Glu 655 660 665 670 ttt tta gga aaa aca tta tcg gag gtt tgt gct act aat att gtt ttt 2187 Phe Leu Gly Lys Thr Leu Ser Glu Val Cys Ala Thr Asn Ile Val Phe 675 680 685 tct gat ata gaa ccc aat gat aac act gaa ggt ttt gat act gtt gaa 2235 Ser Asp Ile Glu Pro Asn Asp Asn Thr Glu Gly Phe Asp Thr Val Glu 690 695 700 tat gct gat aga gac gat atg gct agc gat gtc gaa acg tcg att agt 2283 Tyr Ala Asp Arg Asp Asp Met Ala Ser Asp Val Glu Thr Ser Ile Ser 705 710 715 cag tgc gtt gag tcc aac gat gag tgt gtg gac gaa gat ggt tac agt 2331 Gln Cys Val Glu Ser Asn Asp Glu Cys Val Asp Glu Asp Gly Tyr Ser 720 725 730 tgc gac ggt gat tcc aaa gtc gag cat tct act tta aac agt aat tat 2379 Cys Asp Gly Asp Ser Lys Val Glu His Ser Thr Leu Asn Ser Asn Tyr 735 740 745 750 ggt gcg ttg acg cca cct cct aga gaa gag gta aaa gat tca gag gag 2427 Gly Ala Leu Thr Pro Pro Pro Arg Glu Glu Val Lys Asp Ser Glu Glu 755 760 765 ggc gtt gat gtg aca gtt gaa gac gta tct acg gat ata att gag tcg 2475 Gly Val Asp Val Thr Val Glu Asp Val Ser Thr Asp Ile Ile Glu Ser 770 775 780 cat tgt gat gga aga tgg gca ttg atg gcg gaa gat tct gat ttc gcc 2523 His Cys Asp Gly Arg Trp Ala Leu Met Ala Glu Asp Ser Asp Phe Ala 785 790 795 att gac cag aag cga tcc gag gca cta aat att atg gaa gtt gga tat 2571 Ile Asp Gln Lys Arg Ser Glu Ala Leu Asn Ile Met Glu Val Gly Tyr 800 805 810 gct aaa tta ccg tct aaa cca gat tac tta gaa agt gat gat ttt aga 2619 Ala Lys Leu Pro Ser Lys Pro Asp Tyr Leu Glu Ser Asp Asp Phe Arg 815 820 825 830 atg cgg gca aag aaa gag ttt atc tgg tac tta gaa tgt aag ttg gtt 2667 Met Arg Ala Lys Lys Glu Phe Ile Trp Tyr Leu Glu Cys Lys Leu Val 835 840 845 tca gat aag tct gcg atg act gat att gtg cga gat tat gtt tat aac 2715 Ser Asp Lys Ser Ala Met Thr Asp Ile Val Arg Asp Tyr Val Tyr Asn 850 855 860 atg tac cat aac agt ctt tgc gag ttt ccg aaa aat tct tgc ttt cta 2763 Met Tyr His Asn Ser Leu Cys Glu Phe Pro Lys Asn Ser Cys Phe Leu 865 870 875 agt tac gaa ggt gat gac aac ggt agt tgg gct tgg ggc agg aaa ccg 2811 Ser Tyr Glu Gly Asp Asp Asn Gly Ser Trp Ala Trp Gly Arg Lys Pro 880 885 890 gtt agg ttg ggc cac gct tac gct gtt cac ttt tat gcc gct gat tgg 2859 Val Arg Leu Gly His Ala Tyr Ala Val His Phe Tyr Ala Ala Asp Trp 895 900 905 910 aag act aac tgt cga ctt gta agt ttg tca tgg aac aaa gac gag gaa 2907 Lys Thr Asn Cys Arg Leu Val Ser Leu Ser Trp Asn Lys Asp Glu Glu 915 920 925 gga aat ttc gtt ggc gat aag ccc gtt att tct act aat tcc gga gtt 2955 Gly Asn Phe Val Gly Asp Lys Pro Val Ile Ser Thr Asn Ser Gly Val 930 935 940 tac atg cta tgc gat ttg aca ttt cta atg aat gaa atg atc att ttg 3003 Tyr Met Leu Cys Asp Leu Thr Phe Leu Met Asn Glu Met Ile Ile Leu 945 950 955 gaa aat ttg cag ttt tcg tta aag acc agg ttt cag aag cat att cca 3051 Glu Asn Leu Gln Phe Ser Leu Lys Thr Arg Phe Gln Lys His Ile Pro 960 965 970 cac gtt aca ctt att gat ggt gta cct ggg tgt ggt aaa tca act cat 3099 His Val Thr Leu Ile Asp Gly Val Pro Gly Cys Gly Lys Ser Thr His 975 980 985 990 att gtt aaa gaa gct aga ctg gaa aac cag tac gta ctc act atg ggt 3147 Ile Val Lys Glu Ala Arg Leu Glu Asn Gln Tyr Val Leu Thr Met Gly 995 1000 1005 cga gaa gca gct gca gag ttg cga gag cga ttt aaa act gta cgc ggt 3195 Arg Glu Ala Ala Ala Glu Leu Arg Glu Arg Phe Lys Thr Val Arg Gly 1010 1015 1020 tcg acc gaa gaa cag ttg aaa aga gtg cgg act gtt gat tct ttt ttg 3243 Ser Thr Glu Glu Gln Leu Lys Arg Val Arg Thr Val Asp Ser Phe Leu 1025 1030 1035 atg aac gat aag gac tct agg gcc aaa att ttg cat ttc gac gag gca 3291 Met Asn Asp Lys Asp Ser Arg Ala Lys Ile Leu His Phe Asp Glu Ala 1040 1045 1050 ttg atg gcg cat gct ggt atg gtt tac ttt tgt gca gat aat ttg tct 3339 Leu Met Ala His Ala Gly Met Val Tyr Phe Cys Ala Asp Asn Leu Ser 1055 1060 1065 1070 gct agg aca att att tgt caa ggt gat tct cag cag ata cca ttt att 3387 Ala Arg Thr Ile Ile Cys Gln Gly Asp Ser Gln Gln Ile Pro Phe Ile 1075 1080 1085 aac cgc gtt gaa tcc ata act ttg gaa tac gct aag ttg gaa ata act 3435 Asn Arg Val Glu Ser Ile Thr Leu Glu Tyr Ala Lys Leu Glu Ile Thr 1090 1095 1100 aac gtg gtg gag aaa aga ctt acc tat cgt tcc cct ttg gac gtt gcc 3483 Asn Val Val Glu Lys Arg Leu Thr Tyr Arg Ser Pro Leu Asp Val Ala 1105 1110 1115 tgt ttt ttg aca aga aaa aat ttt tat tgg cac ttc cac tgt tat gag 3531 Cys Phe Leu Thr Arg Lys Asn Phe Tyr Trp His Phe His Cys Tyr Glu 1120 1125 1130 cgc aaa tcc aac gga cgt tct ata agc gtt gtt ggt ccc cga gat ggc 3579 Arg Lys Ser Asn Gly Arg Ser Ile Ser Val Val Gly Pro Arg Asp Gly 1135 1140 1145 1150 atg acg tct aac tac agt att cct aag aag aaa ggt gct caa tac ctc 3627 Met Thr Ser Asn Tyr Ser Ile Pro Lys Lys Lys Gly Ala Gln Tyr Leu 1155 1160 1165 act ttt act caa agt gag aag gaa gac atg gtt cgt tac ctg ggt aag 3675 Thr Phe Thr Gln Ser Glu Lys Glu Asp Met Val Arg Tyr Leu Gly Lys 1170 1175 1180 gga cag tgg tct gta aac act gta cat gaa agt caa gga aaa act tac 3723 Gly Gln Trp Ser Val Asn Thr Val His Glu Ser Gln Gly Lys Thr Tyr 1185 1190 1195 gat gat gtt ata tta gtt agg ttg aag ccc act gat aat gaa att tat 3771 Asp Asp Val Ile Leu Val Arg Leu Lys Pro Thr Asp Asn Glu Ile Tyr 1200 1205 1210 cct ggt ggg cgg aaa tca aaa cct tac gtc gta gtt ggt act acg cgg 3819 Pro Gly Gly Arg Lys Ser Lys Pro Tyr Val Val Val Gly Thr Thr Arg 1215 1220 1225 1230 cat aga cgc agt tta gtg tac tac aca cgt gct gag gac att ctg tac 3867 His Arg Arg Ser Leu Val Tyr Tyr Thr Arg Ala Glu Asp Ile Leu Tyr 1235 1240 1245 aga gat ata act gaa atg atg agt gtg caa gaa gga aaa ttg cac aaa 3915 Arg Asp Ile Thr Glu Met Met Ser Val Gln Glu Gly Lys Leu His Lys 1250 1255 1260 cat ttg ttc acg gag agt act caa taa cgg tgt ggg tcg aag tac gag 3963 His Leu Phe Thr Glu Ser Thr Gln Arg Cys Gly Ser Lys Tyr Glu 1265 1270 1275 tcg ata acc gtt tcc gat cgt ccg gta agt gtt cct gac gtt gga gcc 4011 Ser Ile Thr Val Ser Asp Arg Pro Val Ser Val Pro Asp Val Gly Ala 1280 1285 1290 gtt gaa gat ttg cag gtt atg tat gac att gct ttt cct ggc aat tcg 4059 Val Glu Asp Leu Gln Val Met Tyr Asp Ile Ala Phe Pro Gly Asn Ser 1295 1300 1305 1310 gtt att gag acg tat ttc gac ggg tac gat gtt gct acg gga ggt tta 4107 Val Ile Glu Thr Tyr Phe Asp Gly Tyr Asp Val Ala Thr Gly Gly Leu 1315 1320 1325 gaa ata gat att gct aat ata aaa tat tat ccc aac aag caa aag cga 4155 Glu Ile Asp Ile Ala Asn Ile Lys Tyr Tyr Pro Asn Lys Gln Lys Arg 1330 1335 1340 atg tgg caa gaa gtt cgt gga ctt aca cct gct ttg cga act gct atg 4203 Met Trp Gln Glu Val Arg Gly Leu Thr Pro Ala Leu Arg Thr Ala Met 1345 1350 1355 ccg gag aaa agg cag agc ggt ttg ata gag agc gtt ctg gcg ctt aac 4251 Pro Glu Lys Arg Gln Ser Gly Leu Ile Glu Ser Val Leu Ala Leu Asn 1360 1365 1370 aag aga aat atg gct gct cct agg tta caa gaa tcg gtt aac gaa ttc 4299 Lys Arg Asn Met Ala Ala Pro Arg Leu Gln Glu Ser Val Asn Glu Phe 1375 1380 1385 1390 gag att att gaa aat gtc att tct aag gct aag gct gtt ttc ttc gat 4347 Glu Ile Ile Glu Asn Val Ile Ser Lys Ala Lys Ala Val Phe Phe Asp 1395 1400 1405 gag aaa ttc atc gat gca tct ccg atg aac tcc gta tca aat tgt caa 4395 Glu Lys Phe Ile Asp Ala Ser Pro Met Asn Ser Val Ser Asn Cys Gln 1410 1415 1420 aaa tgg tgg gat aaa cag tcg gtt acc gcg cag aaa cag atg ttg gcg 4443 Lys Trp Trp Asp Lys Gln Ser Val Thr Ala Gln Lys Gln Met Leu Ala 1425 1430 1435 gat act aga att ata tcc gaa att gac ttg tgc aca tat aac ttc atg 4491 Asp Thr Arg Ile Ile Ser Glu Ile Asp Leu Cys Thr Tyr Asn Phe Met 1440 1445 1450 att aaa aat gat gtt aag cct aag ttg gat ttg tcg cca caa tcg gaa 4539 Ile Lys Asn Asp Val Lys Pro Lys Leu Asp Leu Ser Pro Gln Ser Glu 1455 1460 1465 1470 tat tct gca tta caa aca gtt gtc tat cca gat aaa att gtt aat gct 4587 Tyr Ser Ala Leu Gln Thr Val Val Tyr Pro Asp Lys Ile Val Asn Ala 1475 1480 1485 att ttc ggt cct gtg atg aag gag ata aac gaa aga ata ttg tta gcg 4635 Ile Phe Gly Pro Val Met Lys Glu Ile Asn Glu Arg Ile Leu Leu Ala 1490 1495 1500 ttg cgg cct cat gtt gtg tat aac aca agg atg aca gcc gaa gaa cta 4683 Leu Arg Pro His Val Val Tyr Asn Thr Arg Met Thr Ala Glu Glu Leu 1505 1510 1515 gat agg tcc gtt gaa ttt ctc gac gtt cgc gaa caa tac gac gct gtt 4731 Asp Arg Ser Val Glu Phe Leu Asp Val Arg Glu Gln Tyr Asp Ala Val 1520 1525 1530 gag att gat ttt tct aaa ttt gat aaa tca aaa act tct tta cac att 4779 Glu Ile Asp Phe Ser Lys Phe Asp Lys Ser Lys Thr Ser Leu His Ile 1535 1540 1545 1550 agg gca gtg ata gaa tta tac aag att ttt ggc ctt gac gat atg tta 4827 Arg Ala Val Ile Glu Leu Tyr Lys Ile Phe Gly Leu Asp Asp Met Leu 1555 1560 1565 gct ttc tta tgg gag aag tca cag tgt cag act acg att cgt gat cgt 4875 Ala Phe Leu Trp Glu Lys Ser Gln Cys Gln Thr Thr Ile Arg Asp Arg 1570 1575 1580 cag aat gga cta att gcg cat ata ctt tat caa caa aaa tct ggt aac 4923 Gln Asn Gly Leu Ile Ala His Ile Leu Tyr Gln Gln Lys Ser Gly Asn 1585 1590 1595 tgt gat aca tat ggt tct aat act tgg tcg gct gct ctt gct ctt ttg 4971 Cys Asp Thr Tyr Gly Ser Asn Thr Trp Ser Ala Ala Leu Ala Leu Leu 1600 1605 1610 gat gcg tta cca ctt gaa cga gct aag ttc atg gta ttt ggc ggt gat 5019 Asp Ala Leu Pro Leu Glu Arg Ala Lys Phe Met Val Phe Gly Gly Asp 1615 1620 1625 1630 gat tct ctt gtg ttt ttc cca aaa aat atg aat tta gct gac cct tgt 5067 Asp Ser Leu Val Phe Phe Pro Lys Asn Met Asn Leu Ala Asp Pro Cys 1635 1640 1645 ggt agg ttg gct tct ctt tgg aat ttc gat tgt aaa ttt ttc aac ttt 5115 Gly Arg Leu Ala Ser Leu Trp Asn Phe Asp Cys Lys Phe Phe Asn Phe 1650 1655 1660 caa aac aac atg ttt tgt ggt aag ttt ctt tta aaa att gga gaa aat 5163 Gln Asn Asn Met Phe Cys Gly Lys Phe Leu Leu Lys Ile Gly Glu Asn 1665 1670 1675 tat aag ttt gct ccg gat cct ttt aaa ttg ctt aca aaa ctt ggt agg 5211 Tyr Lys Phe Ala Pro Asp Pro Phe Lys Leu Leu Thr Lys Leu Gly Arg 1680 1685 1690 aaa gat atc aaa aat gat att ttg ctt agt gaa att ttt att tct ata 5259 Lys Asp Ile Lys Asn Asp Ile Leu Leu Ser Glu Ile Phe Ile Ser Ile 1695 1700 1705 1710 agc gat aat tac cgt tct tat cat gac tac aga gtt tta gaa gct tta 5307 Ser Asp Asn Tyr Arg Ser Tyr His Asp Tyr Arg Val Leu Glu Ala Leu 1715 1720 1725 aac gtg gcg gtc gtt gaa cgt tat aaa ttg tct caa gac gtt ttg ttt 5355 Asn Val Ala Val Val Glu Arg Tyr Lys Leu Ser Gln Asp Val Leu Phe 1730 1735 1740 ggt ttg tgt gct tta aaa aaa tac ttg ttt aac ttt gat tta ttc cgc 5403 Gly Leu Cys Ala Leu Lys Lys Tyr Leu Phe Asn Phe Asp Leu Phe Arg 1745 1750 1755 aca ctt ttc tct tat aaa ggc aaa tta cac tgc act aac gtg agt aga 5451 Thr Leu Phe Ser Tyr Lys Gly Lys Leu His Cys Thr Asn Val Ser Arg 1760 1765 1770 aat ttt gat tgg taa aatttccttg gttctccgtt ttgtgagttt aagatcatta 5506 Asn Phe Asp Trp 1775 ttttgtgtaa tttggtgtgg agagatacag tctatttgta cttgtaaatg attatttgag 5566 ctgatcactc aacgtggatt tcacgataga aatcggtgtt tttcattcca cctaaatcga 5626 aatgtactac ggtagcgcga accttatcgc gcagtgtttt gaagtccact taaatagaac 5686 ttctttccac ggtctctttc gctactgaat taattataaa aacttcagta ttcgatttat 5746 gcagatgaga gtagtatctc tcgatcatca agacacgatg attctgtggg gtgcaaatcc 5806 ccccctttac ttgagggaaa tcaagccc 5834 8 1270 PRT Beet soil-borne virus 8 Met Glu Ser Thr Asn Ile Leu Thr Gln Ile Asn Arg Asp Asp Ile Ile 1 5 10 15 Gln Ala Val Leu Thr Thr Ser Ala Ser Arg Thr Gln Ser Ala Leu His 20 25 30 Glu Thr Leu Ser Arg Val Ile Asp Asp Asn Ile Lys Asn Ala Leu Lys 35 40 45 Ala Asn Thr Lys Lys Lys Thr Val Asp Val Lys Arg Asn Leu Ser Glu 50 55 60 Glu Gln Val Gln Tyr Leu Cys Glu Leu Tyr Pro Glu Arg Lys Ile Ile 65 70 75 80 Thr Ser Asn Ser Glu Arg Gly Thr His Ser Met Ala Ala Ala Met Arg 85 90 95 Lys Ile Glu Thr Asp Leu Val Leu Ser Leu Phe Pro Lys Asn Ser Val 100 105 110 Ile Tyr Asp Ile Gly Gly Asn Trp Ala Thr His Ala Lys Cys Asn Asp 115 120 125 Gly Arg Lys Val His Cys Cys Cys Pro Ile Leu Asp Tyr Arg Asp Ala 130 135 140 Gln Arg Lys Met Thr Arg Met Leu Asn Phe His Lys Phe Thr Ser Asp 145 150 155 160 Ser Ser Glu Ile Pro Pro Asp Ile Arg Glu Lys Ala Glu Met Ile Ala 165 170 175 Glu Asp Asn Ala Ile Ile Thr Ala Asn Val Arg Glu Gly Asp Leu Asn 180 185 190 Ser Ser Ala Leu Asn Gly Arg Trp Phe Cys Gln Asn Lys Phe Glu Asp 195 200 205 Cys Val Phe Asp Pro Arg Asp Ile Leu Thr Gly Lys Thr Ala Lys Asp 210 215 220 Asn Val Met Val Tyr Ala Met Ala Ile His Ser Ile Tyr Asp Ile Asn 225 230 235 240 Val Tyr Glu Leu Ala Thr Ala Leu Gln Arg Lys Gly Ile Lys Arg Met 245 250 255 Val Gly Thr Phe Leu Phe Ser Val Asp Met Leu Leu Gly Arg Lys Ser 260 265 270 Gly Glu Leu Pro Ser Val Asn Gly Phe Tyr Lys Leu Glu Gly Glu Tyr 275 280 285 Ile Lys Tyr Gly Phe Tyr Asp Asp Pro Asn Cys Gly Tyr Arg His Lys 290 295 300 Phe Ser Ser Leu Lys Ala Tyr Leu Thr Lys Thr Phe Val Lys Ala Ala 305 310 315 320 Asn Gly Ser Val Phe Tyr Leu Glu Leu Thr Asp Leu Arg Gly Asp Val 325 330 335 Met Tyr Phe Thr Met Thr Asp Ala Thr Glu Ala Arg Ala Ser Gly Ile 340 345 350 Met Lys Asp Glu Ser Phe Lys Cys Ile Pro Val Asp Ala Lys Asn Lys 355 360 365 Val Val Phe Pro Leu Phe Val Val Asp Glu Thr Thr Asp Thr Leu Met 370 375 380 Phe Leu Glu Arg Val Leu Pro Lys Asp Phe Val His Arg Ala Ile Glu 385 390 395 400 Tyr Val Asn Arg Cys Lys Glu Asn Gln Leu Thr Val Glu Ser Ile Val 405 410 415 Ser Tyr Leu Ser Ser Thr Asn Asn Ala Val Ile Ile Gly Gly Ser Ala 420 425 430 Arg Lys Val Glu Glu Lys Val Asp Pro Ser Leu Leu Pro Met Ile Ala 435 440 445 Ser Thr Leu Leu Val Tyr Ser Glu Met Gln Arg Ala Lys Gln Lys Thr 450 455 460 Val Ile Gln Lys Leu Arg Ile His Val Lys Asn Thr Val Thr Ile Gly 465 470 475 480 Asp Leu Leu Asn His Ala Phe His Lys Val Phe Gly Ala Val Gly Val 485 490 495 Gly Gln Leu Ala Leu Gln Ser Phe Ala Arg Trp Leu Lys Phe Phe His 500 505 510 Gly Ser Gly Val Ile Glu Met Asn Asp Leu Phe Met Tyr Val Glu Ile 515 520 525 Glu Asp Arg Ile Arg Leu Trp Ser Lys Lys Ser Arg Glu His Glu Phe 530 535 540 Phe Leu Thr Phe Asp Asp Leu Thr Glu Lys Ser Arg Leu Tyr Glu Glu 545 550 555 560 Tyr Asn Glu Glu Arg Arg Arg Ile Ser Asp Lys Ile Ile Lys Glu Lys 565 570 575 Gly Leu Ser Ser Lys Asp Leu Ser Leu Glu Glu Asp Lys Glu Lys Thr 580 585 590 Val Asp Glu Ile Leu Ala Trp Met Glu Lys Ser Glu Asp Leu Lys Ala 595 600 605 Ser Glu Leu Arg Ser Lys Leu Ile Gly Ile Arg Lys Asn Arg Ala Arg 610 615 620 Val Asp Lys Arg Lys Phe Gly Glu Ala His Gln Val Asn Thr Ala Val 625 630 635 640 Leu Gln Arg Phe Thr Glu Ala Asp Asp Asp His Phe Ser Thr Cys Ala 645 650 655 Leu Asn Thr Pro Gly Lys Trp Trp Val Asp Val Leu Gly Glu Phe Leu 660 665 670 Gly Lys Thr Leu Ser Glu Val Cys Ala Thr Asn Ile Val Phe Ser Asp 675 680 685 Ile Glu Pro Asn Asp Asn Thr Glu Gly Phe Asp Thr Val Glu Tyr Ala 690 695 700 Asp Arg Asp Asp Met Ala Ser Asp Val Glu Thr Ser Ile Ser Gln Cys 705 710 715 720 Val Glu Ser Asn Asp Glu Cys Val Asp Glu Asp Gly Tyr Ser Cys Asp 725 730 735 Gly Asp Ser Lys Val Glu His Ser Thr Leu Asn Ser Asn Tyr Gly Ala 740 745 750 Leu Thr Pro Pro Pro Arg Glu Glu Val Lys Asp Ser Glu Glu Gly Val 755 760 765 Asp Val Thr Val Glu Asp Val Ser Thr Asp Ile Ile Glu Ser His Cys 770 775 780 Asp Gly Arg Trp Ala Leu Met Ala Glu Asp Ser Asp Phe Ala Ile Asp 785 790 795 800 Gln Lys Arg Ser Glu Ala Leu Asn Ile Met Glu Val Gly Tyr Ala Lys 805 810 815 Leu Pro Ser Lys Pro Asp Tyr Leu Glu Ser Asp Asp Phe Arg Met Arg 820 825 830 Ala Lys Lys Glu Phe Ile Trp Tyr Leu Glu Cys Lys Leu Val Ser Asp 835 840 845 Lys Ser Ala Met Thr Asp Ile Val Arg Asp Tyr Val Tyr Asn Met Tyr 850 855 860 His Asn Ser Leu Cys Glu Phe Pro Lys Asn Ser Cys Phe Leu Ser Tyr 865 870 875 880 Glu Gly Asp Asp Asn Gly Ser Trp Ala Trp Gly Arg Lys Pro Val Arg 885 890 895 Leu Gly His Ala Tyr Ala Val His Phe Tyr Ala Ala Asp Trp Lys Thr 900 905 910 Asn Cys Arg Leu Val Ser Leu Ser Trp Asn Lys Asp Glu Glu Gly Asn 915 920 925 Phe Val Gly Asp Lys Pro Val Ile Ser Thr Asn Ser Gly Val Tyr Met 930 935 940 Leu Cys Asp Leu Thr Phe Leu Met Asn Glu Met Ile Ile Leu Glu Asn 945 950 955 960 Leu Gln Phe Ser Leu Lys Thr Arg Phe Gln Lys His Ile Pro His Val 965 970 975 Thr Leu Ile Asp Gly Val Pro Gly Cys Gly Lys Ser Thr His Ile Val 980 985 990 Lys Glu Ala Arg Leu Glu Asn Gln Tyr Val Leu Thr Met Gly Arg Glu 995 1000 1005 Ala Ala Ala Glu Leu Arg Glu Arg Phe Lys Thr Val Arg Gly Ser Thr 1010 1015 1020 Glu Glu Gln Leu Lys Arg Val Arg Thr Val Asp Ser Phe Leu Met Asn 1025 1030 1035 1040 Asp Lys Asp Ser Arg Ala Lys Ile Leu His Phe Asp Glu Ala Leu Met 1045 1050 1055 Ala His Ala Gly Met Val Tyr Phe Cys Ala Asp Asn Leu Ser Ala Arg 1060 1065 1070 Thr Ile Ile Cys Gln Gly Asp Ser Gln Gln Ile Pro Phe Ile Asn Arg 1075 1080 1085 Val Glu Ser Ile Thr Leu Glu Tyr Ala Lys Leu Glu Ile Thr Asn Val 1090 1095 1100 Val Glu Lys Arg Leu Thr Tyr Arg Ser Pro Leu Asp Val Ala Cys Phe 1105 1110 1115 1120 Leu Thr Arg Lys Asn Phe Tyr Trp His Phe His Cys Tyr Glu Arg Lys 1125 1130 1135 Ser Asn Gly Arg Ser Ile Ser Val Val Gly Pro Arg Asp Gly Met Thr 1140 1145 1150 Ser Asn Tyr Ser Ile Pro Lys Lys Lys Gly Ala Gln Tyr Leu Thr Phe 1155 1160 1165 Thr Gln Ser Glu Lys Glu Asp Met Val Arg Tyr Leu Gly Lys Gly Gln 1170 1175 1180 Trp Ser Val Asn Thr Val His Glu Ser Gln Gly Lys Thr Tyr Asp Asp 1185 1190 1195 1200 Val Ile Leu Val Arg Leu Lys Pro Thr Asp Asn Glu Ile Tyr Pro Gly 1205 1210 1215 Gly Arg Lys Ser Lys Pro Tyr Val Val Val Gly Thr Thr Arg His Arg 1220 1225 1230 Arg Ser Leu Val Tyr Tyr Thr Arg Ala Glu Asp Ile Leu Tyr Arg Asp 1235 1240 1245 Ile Thr Glu Met Met Ser Val Gln Glu Gly Lys Leu His Lys His Leu 1250 1255 1260 Phe Thr Glu Ser Thr Gln 1265 1270 9 507 PRT Beet soil-borne virus 9 Arg Cys Gly Ser Lys Tyr Glu Ser Ile Thr Val Ser Asp Arg Pro Val 1 5 10 15 Ser Val Pro Asp Val Gly Ala Val Glu Asp Leu Gln Val Met Tyr Asp 20 25 30 Ile Ala Phe Pro Gly Asn Ser Val Ile Glu Thr Tyr Phe Asp Gly Tyr 35 40 45 Asp Val Ala Thr Gly Gly Leu Glu Ile Asp Ile Ala Asn Ile Lys Tyr 50 55 60 Tyr Pro Asn Lys Gln Lys Arg Met Trp Gln Glu Val Arg Gly Leu Thr 65 70 75 80 Pro Ala Leu Arg Thr Ala Met Pro Glu Lys Arg Gln Ser Gly Leu Ile 85 90 95 Glu Ser Val Leu Ala Leu Asn Lys Arg Asn Met Ala Ala Pro Arg Leu 100 105 110 Gln Glu Ser Val Asn Glu Phe Glu Ile Ile Glu Asn Val Ile Ser Lys 115 120 125 Ala Lys Ala Val Phe Phe Asp Glu Lys Phe Ile Asp Ala Ser Pro Met 130 135 140 Asn Ser Val Ser Asn Cys Gln Lys Trp Trp Asp Lys Gln Ser Val Thr 145 150 155 160 Ala Gln Lys Gln Met Leu Ala Asp Thr Arg Ile Ile Ser Glu Ile Asp 165 170 175 Leu Cys Thr Tyr Asn Phe Met Ile Lys Asn Asp Val Lys Pro Lys Leu 180 185 190 Asp Leu Ser Pro Gln Ser Glu Tyr Ser Ala Leu Gln Thr Val Val Tyr 195 200 205 Pro Asp Lys Ile Val Asn Ala Ile Phe Gly Pro Val Met Lys Glu Ile 210 215 220 Asn Glu Arg Ile Leu Leu Ala Leu Arg Pro His Val Val Tyr Asn Thr 225 230 235 240 Arg Met Thr Ala Glu Glu Leu Asp Arg Ser Val Glu Phe Leu Asp Val 245 250 255 Arg Glu Gln Tyr Asp Ala Val Glu Ile Asp Phe Ser Lys Phe Asp Lys 260 265 270 Ser Lys Thr Ser Leu His Ile Arg Ala Val Ile Glu Leu Tyr Lys Ile 275 280 285 Phe Gly Leu Asp Asp Met Leu Ala Phe Leu Trp Glu Lys Ser Gln Cys 290 295 300 Gln Thr Thr Ile Arg Asp Arg Gln Asn Gly Leu Ile Ala His Ile Leu 305 310 315 320 Tyr Gln Gln Lys Ser Gly Asn Cys Asp Thr Tyr Gly Ser Asn Thr Trp 325 330 335 Ser Ala Ala Leu Ala Leu Leu Asp Ala Leu Pro Leu Glu Arg Ala Lys 340 345 350 Phe Met Val Phe Gly Gly Asp Asp Ser Leu Val Phe Phe Pro Lys Asn 355 360 365 Met Asn Leu Ala Asp Pro Cys Gly Arg Leu Ala Ser Leu Trp Asn Phe 370 375 380 Asp Cys Lys Phe Phe Asn Phe Gln Asn Asn Met Phe Cys Gly Lys Phe 385 390 395 400 Leu Leu Lys Ile Gly Glu Asn Tyr Lys Phe Ala Pro Asp Pro Phe Lys 405 410 415 Leu Leu Thr Lys Leu Gly Arg Lys Asp Ile Lys Asn Asp Ile Leu Leu 420 425 430 Ser Glu Ile Phe Ile Ser Ile Ser Asp Asn Tyr Arg Ser Tyr His Asp 435 440 445 Tyr Arg Val Leu Glu Ala Leu Asn Val Ala Val Val Glu Arg Tyr Lys 450 455 460 Leu Ser Gln Asp Val Leu Phe Gly Leu Cys Ala Leu Lys Lys Tyr Leu 465 470 475 480 Phe Asn Phe Asp Leu Phe Arg Thr Leu Phe Ser Tyr Lys Gly Lys Leu 485 490 495 His Cys Thr Asn Val Ser Arg Asn Phe Asp Trp 500 505 10 3768 DNA Barley stripe mosaic virus CDS (92)..(3511) 10 gtatgtaagt tgcctttggg tgtaaaattt cttgcatgca cataatcgta atcgattctt 60 cttgatctct aaacaacact ttcccgttag c atg gct agc gat gag att gtc 112 Met Ala Ser Asp Glu Ile Val 1 5 cgc aat ctg atc tcc cgt gag gag gtg atg ggt aat ttg att agc aca 160 Arg Asn Leu Ile Ser Arg Glu Glu Val Met Gly Asn Leu Ile Ser Thr 10 15 20 gct tct agc tca gta agg tca ccc tta cat gac gta ctg tgc tcg cac 208 Ala Ser Ser Ser Val Arg Ser Pro Leu His Asp Val Leu Cys Ser His 25 30 35 gta agg acc atc gtc gat tcc gtg gat aag aaa gcg gtc agt cgc aag 256 Val Arg Thr Ile Val Asp Ser Val Asp Lys Lys Ala Val Ser Arg Lys 40 45 50 55 cat gaa gat gta cgg cgc aac atc tcc tct gag gaa ttg cag atg ttg 304 His Glu Asp Val Arg Arg Asn Ile Ser Ser Glu Glu Leu Gln Met Leu 60 65 70 ata aat gca tat cct gaa tat gcc gtt tca tcc tca gct tgt gaa tct 352 Ile Asn Ala Tyr Pro Glu Tyr Ala Val Ser Ser Ser Ala Cys Glu Ser 75 80 85 ggt act cat agc atg gcg gct tgt ttt cga ttt ctg gag aca gaa tat 400 Gly Thr His Ser Met Ala Ala Cys Phe Arg Phe Leu Glu Thr Glu Tyr 90 95 100 ctc tta gat atg gtt cca atg aaa gag act ttt gtt tat gac att ggt 448 Leu Leu Asp Met Val Pro Met Lys Glu Thr Phe Val Tyr Asp Ile Gly 105 110 115 ggc aac tgg ttt tct cat atg aag ttt cgt gct gat aga gaa att cat 496 Gly Asn Trp Phe Ser His Met Lys Phe Arg Ala Asp Arg Glu Ile His 120 125 130 135 tgt tgc tgt ccg atc tta tct atg aga gat tct gaa aga ctg gaa aca 544 Cys Cys Cys Pro Ile Leu Ser Met Arg Asp Ser Glu Arg Leu Glu Thr 140 145 150 cgc atg atg gca atg caa aaa tat atg cgt gga tcg aaa gac aaa ccg 592 Arg Met Met Ala Met Gln Lys Tyr Met Arg Gly Ser Lys Asp Lys Pro 155 160 165 tta cgc ttg tta agc cgt tat caa aat atc ctg cgt gaa caa gcg gcg 640 Leu Arg Leu Leu Ser Arg Tyr Gln Asn Ile Leu Arg Glu Gln Ala Ala 170 175 180 aga aca act gcc ttt atg gca ggt gag gtg aat gcg ggt gtt ctc gat 688 Arg Thr Thr Ala Phe Met Ala Gly Glu Val Asn Ala Gly Val Leu Asp 185 190 195 gga gat gtg ttt tgt gag aac act ttt caa gac tgt gtg aga cga gtg 736 Gly Asp Val Phe Cys Glu Asn Thr Phe Gln Asp Cys Val Arg Arg Val 200 205 210 215 ccc gaa ggt ttt ttg aag aca gct ata gca gtt cat agc atc tac gat 784 Pro Glu Gly Phe Leu Lys Thr Ala Ile Ala Val His Ser Ile Tyr Asp 220 225 230 atc aaa gtg gag gaa ttt gcg tct gca ttg aaa aga aaa ggt ata aca 832 Ile Lys Val Glu Glu Phe Ala Ser Ala Leu Lys Arg Lys Gly Ile Thr 235 240 245 cag gct tat ggg tgt ttc ctg ttt cct cct gct gta ttg ata ggt cag 880 Gln Ala Tyr Gly Cys Phe Leu Phe Pro Pro Ala Val Leu Ile Gly Gln 250 255 260 aag gaa ggc att tta cct tcc gtg gac ggt cat tac ttg gtg gag aat 928 Lys Glu Gly Ile Leu Pro Ser Val Asp Gly His Tyr Leu Val Glu Asn 265 270 275 ggc agg att aag ttc ttc ttt gcg aat gat ccg aat gcc ggt tac tct 976 Gly Arg Ile Lys Phe Phe Phe Ala Asn Asp Pro Asn Ala Gly Tyr Ser 280 285 290 295 cat gac ctt aag gat tat ctg aag tat gtg gaa aag acc tat gtg gat 1024 His Asp Leu Lys Asp Tyr Leu Lys Tyr Val Glu Lys Thr Tyr Val Asp 300 305 310 ata gag gat gga gtg ttt gct att gag ctg atg caa atg cga ggt gat 1072 Ile Glu Asp Gly Val Phe Ala Ile Glu Leu Met Gln Met Arg Gly Asp 315 320 325 acc atg ttc ttt aag atc acg gat gtc acc gca gca atg tat cat atg 1120 Thr Met Phe Phe Lys Ile Thr Asp Val Thr Ala Ala Met Tyr His Met 330 335 340 aaa tac aga ggt atg aaa cgc gat gaa aca ttc aaa tgc att ccg ttg 1168 Lys Tyr Arg Gly Met Lys Arg Asp Glu Thr Phe Lys Cys Ile Pro Leu 345 350 355 cta aag aat tca tct gtt gtc gta cct cta ttt tcg tgg gac aac cgt 1216 Leu Lys Asn Ser Ser Val Val Val Pro Leu Phe Ser Trp Asp Asn Arg 360 365 370 375 tct tta aag atc aca agt ggt tta cta cca cga act ttg gtc gag cag 1264 Ser Leu Lys Ile Thr Ser Gly Leu Leu Pro Arg Thr Leu Val Glu Gln 380 385 390 ggt gcg gct ttt att atg aaa aac aag gag aag gac ttg aac gtt gct 1312 Gly Ala Ala Phe Ile Met Lys Asn Lys Glu Lys Asp Leu Asn Val Ala 395 400 405 gtg ttg aag aac tat ctt tcc gct gtg aac aac tca tac att ttc aac 1360 Val Leu Lys Asn Tyr Leu Ser Ala Val Asn Asn Ser Tyr Ile Phe Asn 410 415 420 gga tcc cag gtt aga gat ggc gtg aaa att gcc ccg gat tta atc tcc 1408 Gly Ser Gln Val Arg Asp Gly Val Lys Ile Ala Pro Asp Leu Ile Ser 425 430 435 aag ttg gca gtg act ctg tac ctg aga gaa aaa gtc tat cga caa aga 1456 Lys Leu Ala Val Thr Leu Tyr Leu Arg Glu Lys Val Tyr Arg Gln Arg 440 445 450 455 gaa aat tca atc ata agt tat ttc gag caa gaa atg ctt cac gat ccc 1504 Glu Asn Ser Ile Ile Ser Tyr Phe Glu Gln Glu Met Leu His Asp Pro 460 465 470 aac ttg aaa gcc atg ttt gga gac ttt ctg tgg ttt gtt cca aat act 1552 Asn Leu Lys Ala Met Phe Gly Asp Phe Leu Trp Phe Val Pro Asn Thr 475 480 485 ctc tcg agt gtc tgg aag aac atg cga aaa tca ctg atg gaa tgg ttt 1600 Leu Ser Ser Val Trp Lys Asn Met Arg Lys Ser Leu Met Glu Trp Phe 490 495 500 ggc tac gca gaa ttt gac ttg act act ttt gat att tgc gat ccc gtt 1648 Gly Tyr Ala Glu Phe Asp Leu Thr Thr Phe Asp Ile Cys Asp Pro Val 505 510 515 ctc tat gta gag ata gtg gat cgg tat aag atc att caa aaa ggg cga 1696 Leu Tyr Val Glu Ile Val Asp Arg Tyr Lys Ile Ile Gln Lys Gly Arg 520 525 530 535 att cca ctt ggt gag ttc ttt gat tgt cat gaa gaa tgc gag aat tac 1744 Ile Pro Leu Gly Glu Phe Phe Asp Cys His Glu Glu Cys Glu Asn Tyr 540 545 550 gaa ctg cgt gag aag gag aaa aac gac cta gcg gtg aaa atg gcc cag 1792 Glu Leu Arg Glu Lys Glu Lys Asn Asp Leu Ala Val Lys Met Ala Gln 555 560 565 aag gta aca ggg acg gtg acc gaa tgc gag aag gac ctg gga cct ctt 1840 Lys Val Thr Gly Thr Val Thr Glu Cys Glu Lys Asp Leu Gly Pro Leu 570 575 580 gtt caa ccg ata aaa gag ata ttg gtt caa ctt gtg atg ccc aat ttg 1888 Val Gln Pro Ile Lys Glu Ile Leu Val Gln Leu Val Met Pro Asn Leu 585 590 595 gtc aga gcg ctg tgt aga cct cgt agc cca acg tct cct ttg gac tta 1936 Val Arg Ala Leu Cys Arg Pro Arg Ser Pro Thr Ser Pro Leu Asp Leu 600 605 610 615 aaa agt atc cca ggg tca act cca tca cac tca agt tca gat tct gaa 1984 Lys Ser Ile Pro Gly Ser Thr Pro Ser His Ser Ser Ser Asp Ser Glu 620 625 630 cac tct atg act gaa gaa gcg agc tgc acc att gcg ggt agc gta cca 2032 His Ser Met Thr Glu Glu Ala Ser Cys Thr Ile Ala Gly Ser Val Pro 635 640 645 aca tgg gaa att gcg act agg aaa gat cta acc ttt cag cga att gat 2080 Thr Trp Glu Ile Ala Thr Arg Lys Asp Leu Thr Phe Gln Arg Ile Asp 650 655 660 gaa gat atg tct cga cga act ggt atg cct cca aga cca aaa gta act 2128 Glu Asp Met Ser Arg Arg Thr Gly Met Pro Pro Arg Pro Lys Val Thr 665 670 675 tct agt tac aac atg aat gcc aga gct gag ttt ctc tac tat caa ctg 2176 Ser Ser Tyr Asn Met Asn Ala Arg Ala Glu Phe Leu Tyr Tyr Gln Leu 680 685 690 695 tgt agc gtg att tgt gaa agg gct cag att ttg agt gtc atc gaa gac 2224 Cys Ser Val Ile Cys Glu Arg Ala Gln Ile Leu Ser Val Ile Glu Asp 700 705 710 ttt cgt cag aat ttg ata ttc tca gat aaa gtg gcc gtt cca ttg aac 2272 Phe Arg Gln Asn Leu Ile Phe Ser Asp Lys Val Ala Val Pro Leu Asn 715 720 725 gct aga ttc tac agt ttt cag tca ttg aga ccc gga tgg gtg ttc aaa 2320 Ala Arg Phe Tyr Ser Phe Gln Ser Leu Arg Pro Gly Trp Val Phe Lys 730 735 740 act cca tcg cat agt gaa gta ggc cac agt tat gca gta cat ttt gac 2368 Thr Pro Ser His Ser Glu Val Gly His Ser Tyr Ala Val His Phe Asp 745 750 755 ttc aag aca att gga acc gat ttg gaa gag agc cta gct ttt tgc cga 2416 Phe Lys Thr Ile Gly Thr Asp Leu Glu Glu Ser Leu Ala Phe Cys Arg 760 765 770 775 atg gta ccg att tca tgg gat aaa agc ggc aaa tac atc gcg aca act 2464 Met Val Pro Ile Ser Trp Asp Lys Ser Gly Lys Tyr Ile Ala Thr Thr 780 785 790 cct cat ttt ccc gag aga cat ggt tac tac gtg att tgt gac aac act 2512 Pro His Phe Pro Glu Arg His Gly Tyr Tyr Val Ile Cys Asp Asn Thr 795 800 805 aaa ttg tgt aac aat tgg ctt att tac aat aag tta gtt gac gtc tac 2560 Lys Leu Cys Asn Asn Trp Leu Ile Tyr Asn Lys Leu Val Asp Val Tyr 810 815 820 gca cta gtg gct gat aga cct ctg aga ttc gag ttg att gac gga gtt 2608 Ala Leu Val Ala Asp Arg Pro Leu Arg Phe Glu Leu Ile Asp Gly Val 825 830 835 cct ggc tgc gga aag tca acc atg att tta aac agc tgt gat att cga 2656 Pro Gly Cys Gly Lys Ser Thr Met Ile Leu Asn Ser Cys Asp Ile Arg 840 845 850 855 cgc gaa gtt gtt gtt ggt gaa gga cgg aat gca act gat gac tta agg 2704 Arg Glu Val Val Val Gly Glu Gly Arg Asn Ala Thr Asp Asp Leu Arg 860 865 870 gag agg ttc aag cgt aag aaa aat ttg aat agt aag act gct aat cac 2752 Glu Arg Phe Lys Arg Lys Lys Asn Leu Asn Ser Lys Thr Ala Asn His 875 880 885 aga gtt cga acg ctt gac agc tta tta ctt gct gaa gga cct tgt gta 2800 Arg Val Arg Thr Leu Asp Ser Leu Leu Leu Ala Glu Gly Pro Cys Val 890 895 900 ccg caa gct gat agg ttt cat ttt gat gaa gct cta aaa gtt cat tac 2848 Pro Gln Ala Asp Arg Phe His Phe Asp Glu Ala Leu Lys Val His Tyr 905 910 915 ggc gcc ata atg ttc tgt gct gat aag ctt ggt gcc tca gaa att ctc 2896 Gly Ala Ile Met Phe Cys Ala Asp Lys Leu Gly Ala Ser Glu Ile Leu 920 925 930 935 gct cag gga gat agg gct caa ttg cca atg atc tgt cgt gta gaa ggt 2944 Ala Gln Gly Asp Arg Ala Gln Leu Pro Met Ile Cys Arg Val Glu Gly 940 945 950 att gaa ctt caa ttt caa tct cct gat tac acg aag acg atc ata aat 2992 Ile Glu Leu Gln Phe Gln Ser Pro Asp Tyr Thr Lys Thr Ile Ile Asn 955 960 965 cct aag cta cgg tca tac cgt atc cct gga gat gtt gcc ttc tat ttg 3040 Pro Lys Leu Arg Ser Tyr Arg Ile Pro Gly Asp Val Ala Phe Tyr Leu 970 975 980 agt gct aag gaa ttt tac aaa gtt aaa gga ata cct caa aag gtt ata 3088 Ser Ala Lys Glu Phe Tyr Lys Val Lys Gly Ile Pro Gln Lys Val Ile 985 990 995 act tct aac agt gtg aaa cgt tcc ttg tac gct aga ggc gaa acg act 3136 Thr Ser Asn Ser Val Lys Arg Ser Leu Tyr Ala Arg Gly Glu Thr Thr 1000 1005 1010 1015 ccg gaa aga ttc gtg agt ttg ctt gat gtt ccg gtg aga aaa gac acc 3184 Pro Glu Arg Phe Val Ser Leu Leu Asp Val Pro Val Arg Lys Asp Thr 1020 1025 1030 cac tat cta acc ttc tta caa gct gag aag gaa agt ttg atg agt cat 3232 His Tyr Leu Thr Phe Leu Gln Ala Glu Lys Glu Ser Leu Met Ser His 1035 1040 1045 ttg att cca aag ggt gtg aag aaa gag tct att tca acg att cat gag 3280 Leu Ile Pro Lys Gly Val Lys Lys Glu Ser Ile Ser Thr Ile His Glu 1050 1055 1060 gcg cag ggt ggt acc tat gaa aat gtg att ctg gtc cgt ttg caa cgg 3328 Ala Gln Gly Gly Thr Tyr Glu Asn Val Ile Leu Val Arg Leu Gln Arg 1065 1070 1075 acg ccc aat gaa att tat ccg ggt gga cct agg tcc gcc cct tac att 3376 Thr Pro Asn Glu Ile Tyr Pro Gly Gly Pro Arg Ser Ala Pro Tyr Ile 1080 1085 1090 1095 gtg gtt ggg act tca agg cat aca aaa act ttc act tat tgt agt gtt 3424 Val Val Gly Thr Ser Arg His Thr Lys Thr Phe Thr Tyr Cys Ser Val 1100 1105 1110 acg gac gat aag ttg ctt tta gat atc gcc gac gtc ggt ggt att gca 3472 Thr Asp Asp Lys Leu Leu Leu Asp Ile Ala Asp Val Gly Gly Ile Ala 1115 1120 1125 cat aca cct att cgt act ttt gaa tct cat ata gtt taa aaaaaaaaaa 3521 His Thr Pro Ile Arg Thr Phe Glu Ser His Ile Val 1130 1135 1140 aaaaaaaaat gtttgatcag atcattcaaa tctgatggtg cccatcaacc atatgatggg 3581 agtgtttgca agtccactat aatcgaactt gaaaacgatg cctgaattgg aaaccatgaa 3641 tcttaacgga ttctggagag aaaatttagg aattggtatg taagctacaa cttccggtag 3701 ctgcgtcaca ctttaagagt gtgcatactg agccgaagct cagcttcggt cccccaaggg 3761 aagacca 3768 11 1139 PRT Barley stripe mosaic virus 11 Met Ala Ser Asp Glu Ile Val Arg Asn Leu Ile Ser Arg Glu Glu Val 1 5 10 15 Met Gly Asn Leu Ile Ser Thr Ala Ser Ser Ser Val Arg Ser Pro Leu 20 25 30 His Asp Val Leu Cys Ser His Val Arg Thr Ile Val Asp Ser Val Asp 35 40 45 Lys Lys Ala Val Ser Arg Lys His Glu Asp Val Arg Arg Asn Ile Ser 50 55 60 Ser Glu Glu Leu Gln Met Leu Ile Asn Ala Tyr Pro Glu Tyr Ala Val 65 70 75 80 Ser Ser Ser Ala Cys Glu Ser Gly Thr His Ser Met Ala Ala Cys Phe 85 90 95 Arg Phe Leu Glu Thr Glu Tyr Leu Leu Asp Met Val Pro Met Lys Glu 100 105 110 Thr Phe Val Tyr Asp Ile Gly Gly Asn Trp Phe Ser His Met Lys Phe 115 120 125 Arg Ala Asp Arg Glu Ile His Cys Cys Cys Pro Ile Leu Ser Met Arg 130 135 140 Asp Ser Glu Arg Leu Glu Thr Arg Met Met Ala Met Gln Lys Tyr Met 145 150 155 160 Arg Gly Ser Lys Asp Lys Pro Leu Arg Leu Leu Ser Arg Tyr Gln Asn 165 170 175 Ile Leu Arg Glu Gln Ala Ala Arg Thr Thr Ala Phe Met Ala Gly Glu 180 185 190 Val Asn Ala Gly Val Leu Asp Gly Asp Val Phe Cys Glu Asn Thr Phe 195 200 205 Gln Asp Cys Val Arg Arg Val Pro Glu Gly Phe Leu Lys Thr Ala Ile 210 215 220 Ala Val His Ser Ile Tyr Asp Ile Lys Val Glu Glu Phe Ala Ser Ala 225 230 235 240 Leu Lys Arg Lys Gly Ile Thr Gln Ala Tyr Gly Cys Phe Leu Phe Pro 245 250 255 Pro Ala Val Leu Ile Gly Gln Lys Glu Gly Ile Leu Pro Ser Val Asp 260 265 270 Gly His Tyr Leu Val Glu Asn Gly Arg Ile Lys Phe Phe Phe Ala Asn 275 280 285 Asp Pro Asn Ala Gly Tyr Ser His Asp Leu Lys Asp Tyr Leu Lys Tyr 290 295 300 Val Glu Lys Thr Tyr Val Asp Ile Glu Asp Gly Val Phe Ala Ile Glu 305 310 315 320 Leu Met Gln Met Arg Gly Asp Thr Met Phe Phe Lys Ile Thr Asp Val 325 330 335 Thr Ala Ala Met Tyr His Met Lys Tyr Arg Gly Met Lys Arg Asp Glu 340 345 350 Thr Phe Lys Cys Ile Pro Leu Leu Lys Asn Ser Ser Val Val Val Pro 355 360 365 Leu Phe Ser Trp Asp Asn Arg Ser Leu Lys Ile Thr Ser Gly Leu Leu 370 375 380 Pro Arg Thr Leu Val Glu Gln Gly Ala Ala Phe Ile Met Lys Asn Lys 385 390 395 400 Glu Lys Asp Leu Asn Val Ala Val Leu Lys Asn Tyr Leu Ser Ala Val 405 410 415 Asn Asn Ser Tyr Ile Phe Asn Gly Ser Gln Val Arg Asp Gly Val Lys 420 425 430 Ile Ala Pro Asp Leu Ile Ser Lys Leu Ala Val Thr Leu Tyr Leu Arg 435 440 445 Glu Lys Val Tyr Arg Gln Arg Glu Asn Ser Ile Ile Ser Tyr Phe Glu 450 455 460 Gln Glu Met Leu His Asp Pro Asn Leu Lys Ala Met Phe Gly Asp Phe 465 470 475 480 Leu Trp Phe Val Pro Asn Thr Leu Ser Ser Val Trp Lys Asn Met Arg 485 490 495 Lys Ser Leu Met Glu Trp Phe Gly Tyr Ala Glu Phe Asp Leu Thr Thr 500 505 510 Phe Asp Ile Cys Asp Pro Val Leu Tyr Val Glu Ile Val Asp Arg Tyr 515 520 525 Lys Ile Ile Gln Lys Gly Arg Ile Pro Leu Gly Glu Phe Phe Asp Cys 530 535 540 His Glu Glu Cys Glu Asn Tyr Glu Leu Arg Glu Lys Glu Lys Asn Asp 545 550 555 560 Leu Ala Val Lys Met Ala Gln Lys Val Thr Gly Thr Val Thr Glu Cys 565 570 575 Glu Lys Asp Leu Gly Pro Leu Val Gln Pro Ile Lys Glu Ile Leu Val 580 585 590 Gln Leu Val Met Pro Asn Leu Val Arg Ala Leu Cys Arg Pro Arg Ser 595 600 605 Pro Thr Ser Pro Leu Asp Leu Lys Ser Ile Pro Gly Ser Thr Pro Ser 610 615 620 His Ser Ser Ser Asp Ser Glu His Ser Met Thr Glu Glu Ala Ser Cys 625 630 635 640 Thr Ile Ala Gly Ser Val Pro Thr Trp Glu Ile Ala Thr Arg Lys Asp 645 650 655 Leu Thr Phe Gln Arg Ile Asp Glu Asp Met Ser Arg Arg Thr Gly Met 660 665 670 Pro Pro Arg Pro Lys Val Thr Ser Ser Tyr Asn Met Asn Ala Arg Ala 675 680 685 Glu Phe Leu Tyr Tyr Gln Leu Cys Ser Val Ile Cys Glu Arg Ala Gln 690 695 700 Ile Leu Ser Val Ile Glu Asp Phe Arg Gln Asn Leu Ile Phe Ser Asp 705 710 715 720 Lys Val Ala Val Pro Leu Asn Ala Arg Phe Tyr Ser Phe Gln Ser Leu 725 730 735 Arg Pro Gly Trp Val Phe Lys Thr Pro Ser His Ser Glu Val Gly His 740 745 750 Ser Tyr Ala Val His Phe Asp Phe Lys Thr Ile Gly Thr Asp Leu Glu 755 760 765 Glu Ser Leu Ala Phe Cys Arg Met Val Pro Ile Ser Trp Asp Lys Ser 770 775 780 Gly Lys Tyr Ile Ala Thr Thr Pro His Phe Pro Glu Arg His Gly Tyr 785 790 795 800 Tyr Val Ile Cys Asp Asn Thr Lys Leu Cys Asn Asn Trp Leu Ile Tyr 805 810 815 Asn Lys Leu Val Asp Val Tyr Ala Leu Val Ala Asp Arg Pro Leu Arg 820 825 830 Phe Glu Leu Ile Asp Gly Val Pro Gly Cys Gly Lys Ser Thr Met Ile 835 840 845 Leu Asn Ser Cys Asp Ile Arg Arg Glu Val Val Val Gly Glu Gly Arg 850 855 860 Asn Ala Thr Asp Asp Leu Arg Glu Arg Phe Lys Arg Lys Lys Asn Leu 865 870 875 880 Asn Ser Lys Thr Ala Asn His Arg Val Arg Thr Leu Asp Ser Leu Leu 885 890 895 Leu Ala Glu Gly Pro Cys Val Pro Gln Ala Asp Arg Phe His Phe Asp 900 905 910 Glu Ala Leu Lys Val His Tyr Gly Ala Ile Met Phe Cys Ala Asp Lys 915 920 925 Leu Gly Ala Ser Glu Ile Leu Ala Gln Gly Asp Arg Ala Gln Leu Pro 930 935 940 Met Ile Cys Arg Val Glu Gly Ile Glu Leu Gln Phe Gln Ser Pro Asp 945 950 955 960 Tyr Thr Lys Thr Ile Ile Asn Pro Lys Leu Arg Ser Tyr Arg Ile Pro 965 970 975 Gly Asp Val Ala Phe Tyr Leu Ser Ala Lys Glu Phe Tyr Lys Val Lys 980 985 990 Gly Ile Pro Gln Lys Val Ile Thr Ser Asn Ser Val Lys Arg Ser Leu 995 1000 1005 Tyr Ala Arg Gly Glu Thr Thr Pro Glu Arg Phe Val Ser Leu Leu Asp 1010 1015 1020 Val Pro Val Arg Lys Asp Thr His Tyr Leu Thr Phe Leu Gln Ala Glu 1025 1030 1035 1040 Lys Glu Ser Leu Met Ser His Leu Ile Pro Lys Gly Val Lys Lys Glu 1045 1050 1055 Ser Ile Ser Thr Ile His Glu Ala Gln Gly Gly Thr Tyr Glu Asn Val 1060 1065 1070 Ile Leu Val Arg Leu Gln Arg Thr Pro Asn Glu Ile Tyr Pro Gly Gly 1075 1080 1085 Pro Arg Ser Ala Pro Tyr Ile Val Val Gly Thr Ser Arg His Thr Lys 1090 1095 1100 Thr Phe Thr Tyr Cys Ser Val Thr Asp Asp Lys Leu Leu Leu Asp Ile 1105 1110 1115 1120 Ala Asp Val Gly Gly Ile Ala His Thr Pro Ile Arg Thr Phe Glu Ser 1125 1130 1135 His Ile Val 12 5220 DNA Grapevine virus A CDS (87)..(5210) 12 gaatatttaa cttgattccc atcgattata agtgaacaaa cgttgccagc acccacgctc 60 tgcaaagcac ctgctaattc actacc atg tcg ata tca gta tcc tcc caa cgt 113 Met Ser Ile Ser Val Ser Ser Gln Arg 1 5 gtc gca gtc tcc aac ctg tac acg aat gga tct gag gag tca gtt aaa 161 Val Ala Val Ser Asn Leu Tyr Thr Asn Gly Ser Glu Glu Ser Val Lys 10 15 20 25 gct att aag gag ttg aaa agc aaa cgg tta ttg gaa acc gaa acc agg 209 Ala Ile Lys Glu Leu Lys Ser Lys Arg Leu Leu Glu Thr Glu Thr Arg 30 35 40 cta gat gga cta ttt gat tac tac att cca gat acc tta aga gaa att 257 Leu Asp Gly Leu Phe Asp Tyr Tyr Ile Pro Asp Thr Leu Arg Glu Ile 45 50 55 ctt aca ggc tat ggt atg gag ttc agt gtc cac tct ttc caa gga cat 305 Leu Thr Gly Tyr Gly Met Glu Phe Ser Val His Ser Phe Gln Gly His 60 65 70 gct cac ccc gta agt aag atg ata gaa aac cac atg ttg tat aga gta 353 Ala His Pro Val Ser Lys Met Ile Glu Asn His Met Leu Tyr Arg Val 75 80 85 gca cca aat tac ttt tct agt aat aca ttg gta gtt agt tgt aaa gag 401 Ala Pro Asn Tyr Phe Ser Ser Asn Thr Leu Val Val Ser Cys Lys Glu 90 95 100 105 agc aag ata aag cgc cta cgt ctg aag aat gca aac aat agg aat ttg 449 Ser Lys Ile Lys Arg Leu Arg Leu Lys Asn Ala Asn Asn Arg Asn Leu 110 115 120 aac ttc aca cag tac aat aga ttg gtg cat gca aac cat cac cac aga 497 Asn Phe Thr Gln Tyr Asn Arg Leu Val His Ala Asn His His His Arg 125 130 135 tac gaa aac gca ttc aga gaa ctc gac gtt ggg aat ttg aca aat ctc 545 Tyr Glu Asn Ala Phe Arg Glu Leu Asp Val Gly Asn Leu Thr Asn Leu 140 145 150 ata aac aag gaa gat cag agt gaa tgc ata ttc ata cat gat gag gtt 593 Ile Asn Lys Glu Asp Gln Ser Glu Cys Ile Phe Ile His Asp Glu Val 155 160 165 caa tac tgg agt cta gac gag atg caa agg ttc tta ggt agt ctc tcc 641 Gln Tyr Trp Ser Leu Asp Glu Met Gln Arg Phe Leu Gly Ser Leu Ser 170 175 180 185 aaa gtc gat aga gta gtg tat agt atc ata tac cca tca gag gtc gag 689 Lys Val Asp Arg Val Val Tyr Ser Ile Ile Tyr Pro Ser Glu Val Glu 190 195 200 gct gga tat tca caa agc cta ttt cca gag gcg tac act ttt gac ctc 737 Ala Gly Tyr Ser Gln Ser Leu Phe Pro Glu Ala Tyr Thr Phe Asp Leu 205 210 215 aaa gac agg aga tta gta tgg tac ccg gac ggg aag gct gaa gga gcc 785 Lys Asp Arg Arg Leu Val Trp Tyr Pro Asp Gly Lys Ala Glu Gly Ala 220 225 230 tat acg cag cct gtg aac cct tgg ctg ctc aga tgc tca aaa acg gag 833 Tyr Thr Gln Pro Val Asn Pro Trp Leu Leu Arg Cys Ser Lys Thr Glu 235 240 245 gat tcg aag ggg cga tca tgg acg atc aca aag ctc caa acc atc gga 881 Asp Ser Lys Gly Arg Ser Trp Thr Ile Thr Lys Leu Gln Thr Ile Gly 250 255 260 265 gct cat cac ctc ttt agt gca ata aag ggc agc tac ttg acg gag gaa 929 Ala His His Leu Phe Ser Ala Ile Lys Gly Ser Tyr Leu Thr Glu Glu 270 275 280 tcg tac aag tac gat aac ttc acg atc ata aac cct aac gat gtt ctg 977 Ser Tyr Lys Tyr Asp Asn Phe Thr Ile Ile Asn Pro Asn Asp Val Leu 285 290 295 aag gga aag aga ggc ggg aaa cca ctc tat cta cgg gcc cgc atg atc 1025 Lys Gly Lys Arg Gly Gly Lys Pro Leu Tyr Leu Arg Ala Arg Met Ile 300 305 310 aag cca aca ctt ctg tac ctc ttg gct ctg aag aaa agc gac tcc aac 1073 Lys Pro Thr Leu Leu Tyr Leu Leu Ala Leu Lys Lys Ser Asp Ser Asn 315 320 325 tcc gca gtc gca aag cta agg atg ctg agc agc cgg gag gag aac atg 1121 Ser Ala Val Ala Lys Leu Arg Met Leu Ser Ser Arg Glu Glu Asn Met 330 335 340 345 gac gag gcc cta ttt gtg gca caa ctc gca aag cag ata aag gac acg 1169 Asp Glu Ala Leu Phe Val Ala Gln Leu Ala Lys Gln Ile Lys Asp Thr 350 355 360 gct ctg tat gac aag atg ggg aac cct aac ctg agg agt ata ctg tct 1217 Ala Leu Tyr Asp Lys Met Gly Asn Pro Asn Leu Arg Ser Ile Leu Ser 365 370 375 gaa tcc ttc tat gat atc gca gga agc ctc ttt act cgc tta ttc aat 1265 Glu Ser Phe Tyr Asp Ile Ala Gly Ser Leu Phe Thr Arg Leu Phe Asn 380 385 390 cgc ccc gag tat gat gcg agg tgc ctg gag aaa ttc ata agg agc tgt 1313 Arg Pro Glu Tyr Asp Ala Arg Cys Leu Glu Lys Phe Ile Arg Ser Cys 395 400 405 gaa acg aca gag ata cat gtg gaa cgg aga tac atg gaa ggc ata aga 1361 Glu Thr Thr Glu Ile His Val Glu Arg Arg Tyr Met Glu Gly Ile Arg 410 415 420 425 aga ggg gcc tca ttc aag gtt caa aat gtc atg gac tgg gtc gag gac 1409 Arg Gly Ala Ser Phe Lys Val Gln Asn Val Met Asp Trp Val Glu Asp 430 435 440 gac agc gcc aac gcg ctc agt gag gtg aac ttc ctc gac atc agc tgg 1457 Asp Ser Ala Asn Ala Leu Ser Glu Val Asn Phe Leu Asp Ile Ser Trp 445 450 455 aac gat aga gtg tca gag ccc tat ggc atc gaa tgc att cac gga gaa 1505 Asn Asp Arg Val Ser Glu Pro Tyr Gly Ile Glu Cys Ile His Gly Glu 460 465 470 ggg agt agg ata agg gtc cca cta tcc aga ata ctc agg gcc cac gaa 1553 Gly Ser Arg Ile Arg Val Pro Leu Ser Arg Ile Leu Arg Ala His Glu 475 480 485 ttg att gca ggg gtc caa aca gat gtg gaa atc aac ttc ccg cgg tat 1601 Leu Ile Ala Gly Val Gln Thr Asp Val Glu Ile Asn Phe Pro Arg Tyr 490 495 500 505 gtg tgc tcc tct aga gcc ctc ata cac ttc agg cag tac ctc atc aag 1649 Val Cys Ser Ser Arg Ala Leu Ile His Phe Arg Gln Tyr Leu Ile Lys 510 515 520 ctt ggg agg ttc agt ttc atg gag agc agg gcc atc aag gac atc gaa 1697 Leu Gly Arg Phe Ser Phe Met Glu Ser Arg Ala Ile Lys Asp Ile Glu 525 530 535 gac ata caa gca gga ctc gaa gag ggg gtg atc aca gag gaa gaa gcg 1745 Asp Ile Gln Ala Gly Leu Glu Glu Gly Val Ile Thr Glu Glu Glu Ala 540 545 550 gaa ctg cgc tta tta ccc acc aca aag ccg aag atc aca gaa atc cac 1793 Glu Leu Arg Leu Leu Pro Thr Thr Lys Pro Lys Ile Thr Glu Ile His 555 560 565 atg gat gat gac acg cca gga acc agt ggc gag agt gat gtg gag aag 1841 Met Asp Asp Asp Thr Pro Gly Thr Ser Gly Glu Ser Asp Val Glu Lys 570 575 580 585 ttc aaa agt gtg agg agc ctg tgt cgt gag gaa atc tac tcc gag aaa 1889 Phe Lys Ser Val Arg Ser Leu Cys Arg Glu Glu Ile Tyr Ser Glu Lys 590 595 600 ctg aaa ggg cgc gag gtg gcg ttc tat agc agg cac agc aag gag tac 1937 Leu Lys Gly Arg Glu Val Ala Phe Tyr Ser Arg His Ser Lys Glu Tyr 605 610 615 aaa tac aat ggg ggc tcc cat cgt tcc ctc ggt tgg gat gag gct cta 1985 Lys Tyr Asn Gly Gly Ser His Arg Ser Leu Gly Trp Asp Glu Ala Leu 620 625 630 aat gag ctc aca cag gaa ctg ggc cta gat gat agc tac gat cat tgt 2033 Asn Glu Leu Thr Gln Glu Leu Gly Leu Asp Asp Ser Tyr Asp His Cys 635 640 645 ctg atc caa aga tac acg gca ggg ggc agt ata gga ttc cac gca gat 2081 Leu Ile Gln Arg Tyr Thr Ala Gly Gly Ser Ile Gly Phe His Ala Asp 650 655 660 665 gat gaa cca tgc tac cta cca ggg ggt tcc gtc gtg acc gtc aat tta 2129 Asp Glu Pro Cys Tyr Leu Pro Gly Gly Ser Val Val Thr Val Asn Leu 670 675 680 cac ggc gac gct act ttt gag gtg aaa gag aat caa tcc ggg aag atc 2177 His Gly Asp Ala Thr Phe Glu Val Lys Glu Asn Gln Ser Gly Lys Ile 685 690 695 gag aag aag gag cta cac gac ggg gat gtg tac gtg atg ggt cca gga 2225 Glu Lys Lys Glu Leu His Asp Gly Asp Val Tyr Val Met Gly Pro Gly 700 705 710 atg caa caa act cac aag cac aga gtt acc tct cac acg gat ggc cgc 2273 Met Gln Gln Thr His Lys His Arg Val Thr Ser His Thr Asp Gly Arg 715 720 725 tgc agc atc acc ctt cgg aac aaa acg gta gat tat gaa gcc aga aag 2321 Cys Ser Ile Thr Leu Arg Asn Lys Thr Val Asp Tyr Glu Ala Arg Lys 730 735 740 745 ggc gac gag gat tct gag tat gag gag gac aaa gct gaa ctg gat gaa 2369 Gly Asp Glu Asp Ser Glu Tyr Glu Glu Asp Lys Ala Glu Leu Asp Glu 750 755 760 ggc att gac tac cta cag aaa aat caa ggc aac atg tgc tcc ctc aaa 2417 Gly Ile Asp Tyr Leu Gln Lys Asn Gln Gly Asn Met Cys Ser Leu Lys 765 770 775 gct ttc gct gac cac atg cag ttg agc acc cca agc gtc ata gcc ata 2465 Ala Phe Ala Asp His Met Gln Leu Ser Thr Pro Ser Val Ile Ala Ile 780 785 790 gtc aac ggg gca tcg cca caa acc ctg agg gaa ata gag gat ggc ggg 2513 Val Asn Gly Ala Ser Pro Gln Thr Leu Arg Glu Ile Glu Asp Gly Gly 795 800 805 tac agt ctg gct aca cta gtc aac ctc tca aag gca ctc gat ttt cca 2561 Tyr Ser Leu Ala Thr Leu Val Asn Leu Ser Lys Ala Leu Asp Phe Pro 810 815 820 825 ata gct ata cac ggc gag agg ggg tac gct gag aca cca ggg tct tac 2609 Ile Ala Ile His Gly Glu Arg Gly Tyr Ala Glu Thr Pro Gly Ser Tyr 830 835 840 agg cgt ctg cac ctg aag atc aca tca ggg cac gtg gag cct ttc gag 2657 Arg Arg Leu His Leu Lys Ile Thr Ser Gly His Val Glu Pro Phe Glu 845 850 855 ggc gtg aca agc aaa ggg ggc ttt agg gag gcc atg ctg ctt ggt gac 2705 Gly Val Thr Ser Lys Gly Gly Phe Arg Glu Ala Met Leu Leu Gly Asp 860 865 870 ggc gtc gga gtc ggg cat ttc agg gtg gac aaa gcc aag gcc gac cgt 2753 Gly Val Gly Val Gly His Phe Arg Val Asp Lys Ala Lys Ala Asp Arg 875 880 885 ctg gct caa agt ttc tac aat gga aac acg ggg gtt ctg ctc ggc aag 2801 Leu Ala Gln Ser Phe Tyr Asn Gly Asn Thr Gly Val Leu Leu Gly Lys 890 895 900 905 tac aat aaa ggc aag atg cat acg ggc gag ata gag gag cca aaa gag 2849 Tyr Asn Lys Gly Lys Met His Thr Gly Glu Ile Glu Glu Pro Lys Glu 910 915 920 gtt cta acg gcc ttt gga ttt gca gga tca ggg aaa agt cac tgg tgc 2897 Val Leu Thr Ala Phe Gly Phe Ala Gly Ser Gly Lys Ser His Trp Cys 925 930 935 caa acc ata ctt aaa cac tgt tcc gtg gag aaa gtg ctt gtg att agc 2945 Gln Thr Ile Leu Lys His Cys Ser Val Glu Lys Val Leu Val Ile Ser 940 945 950 cca agg aaa gtg ctc aga gat gat tgg gta gca aaa ata tcc aag aag 2993 Pro Arg Lys Val Leu Arg Asp Asp Trp Val Ala Lys Ile Ser Lys Lys 955 960 965 cat aga gtg gta act ttc gag gtg gca ttc atg gac gac tac ggc tgc 3041 His Arg Val Val Thr Phe Glu Val Ala Phe Met Asp Asp Tyr Gly Cys 970 975 980 985 aaa gat atc gtg ata gac gag atc ggt ctt cta cca cct ggg tac ata 3089 Lys Asp Ile Val Ile Asp Glu Ile Gly Leu Leu Pro Pro Gly Tyr Ile 990 995 1000 gac ctt gtg ata gcc gca cat cag cca cgc acc ctg gtg ctc ctg gga 3137 Asp Leu Val Ile Ala Ala His Gln Pro Arg Thr Leu Val Leu Leu Gly 1005 1010 1015 gat cct ctt caa agc acc tac cac agt aaa cgt gac aat gtg gtc ctg 3185 Asp Pro Leu Gln Ser Thr Tyr His Ser Lys Arg Asp Asn Val Val Leu 1020 1025 1030 gag gct agt caa gag gat gtc ttc aat cgg gtg aga ggg aaa cta cca 3233 Glu Ala Ser Gln Glu Asp Val Phe Asn Arg Val Arg Gly Lys Leu Pro 1035 1040 1045 tac tta tgc tac tca cat agg tta ccc aga aac tgc aag ctg ttc gaa 3281 Tyr Leu Cys Tyr Ser His Arg Leu Pro Arg Asn Cys Lys Leu Phe Glu 1050 1055 1060 1065 ata gaa tgc atg ggg gcc gag agc gag aag agg gtg gtg tac cgc tct 3329 Ile Glu Cys Met Gly Ala Glu Ser Glu Lys Arg Val Val Tyr Arg Ser 1070 1075 1080 aac agg ctg aaa gat gag ccc acc ata tgc gcc acc aga gca atg aag 3377 Asn Arg Leu Lys Asp Glu Pro Thr Ile Cys Ala Thr Arg Ala Met Lys 1085 1090 1095 gaa gag aag ggg tcc ggg tgg tac acc gtc agt gag acg caa ggt ctg 3425 Glu Glu Lys Gly Ser Gly Trp Tyr Thr Val Ser Glu Thr Gln Gly Leu 1100 1105 1110 agc ttc aaa tca tgc ctc att tat ctg gac gag cac tgg gca aag aaa 3473 Ser Phe Lys Ser Cys Leu Ile Tyr Leu Asp Glu His Trp Ala Lys Lys 1115 1120 1125 gaa gat gag gac gtg atg gtg gcc tta acc cgc tcc aga ggc gaa atc 3521 Glu Asp Glu Asp Val Met Val Ala Leu Thr Arg Ser Arg Gly Glu Ile 1130 1135 1140 1145 ggc ata cat gta acc cct gct ctg aag aag aaa ctg atc acc aat gct 3569 Gly Ile His Val Thr Pro Ala Leu Lys Lys Lys Leu Ile Thr Asn Ala 1150 1155 1160 aaa agc aca ctg ctg aag aaa gta ctc aag ggc gaa acc tac aga aga 3617 Lys Ser Thr Leu Leu Lys Lys Val Leu Lys Gly Glu Thr Tyr Arg Arg 1165 1170 1175 tcg gag ata gtg gca atg gtc cga aag cac ata cca gag acc aca gtg 3665 Ser Glu Ile Val Ala Met Val Arg Lys His Ile Pro Glu Thr Thr Val 1180 1185 1190 ctg ttt gag gaa agc aga ctg gcc gag acg gtg gac tac gag gct agg 3713 Leu Phe Glu Glu Ser Arg Leu Ala Glu Thr Val Asp Tyr Glu Ala Arg 1195 1200 1205 ctg gct ggc gac ccc tac ctt aaa tcc ctt ctg gcc ctg tac gac gag 3761 Leu Ala Gly Asp Pro Tyr Leu Lys Ser Leu Leu Ala Leu Tyr Asp Glu 1210 1215 1220 1225 ata gag atg gag gac ata gag ata gag gag ccg gtg aca ctc gag ccc 3809 Ile Glu Met Glu Asp Ile Glu Ile Glu Glu Pro Val Thr Leu Glu Pro 1230 1235 1240 acc aag acc cat tta gcc ctg agc aca aag atg aac gag ctt gca cca 3857 Thr Lys Thr His Leu Ala Leu Ser Thr Lys Met Asn Glu Leu Ala Pro 1245 1250 1255 ttt gac ctc aaa gca aaa gag cac cgg gag caa cac aca gag gca ggg 3905 Phe Asp Leu Lys Ala Lys Glu His Arg Glu Gln His Thr Glu Ala Gly 1260 1265 1270 cgg acc gaa cag ata gac gag aat ggg tac cag gga gaa gtg ggt gac 3953 Arg Thr Glu Gln Ile Asp Glu Asn Gly Tyr Gln Gly Glu Val Gly Asp 1275 1280 1285 ccc atg acc cac aag gcg ttg tac ctg agg cat aca tct gat gat aca 4001 Pro Met Thr His Lys Ala Leu Tyr Leu Arg His Thr Ser Asp Asp Thr 1290 1295 1300 1305 gct acc ttc atg atg tca gtc aaa aag agg ttg cgc ttc aga aac tat 4049 Ala Thr Phe Met Met Ser Val Lys Lys Arg Leu Arg Phe Arg Asn Tyr 1310 1315 1320 gaa gcc aac aga agg aag tac aag act tgc cac ggt ata ggg cac caa 4097 Glu Ala Asn Arg Arg Lys Tyr Lys Thr Cys His Gly Ile Gly His Gln 1325 1330 1335 atg ttc tcg gtg ttc aag gac aca tac cag ctc aaa gag att gac tca 4145 Met Phe Ser Val Phe Lys Asp Thr Tyr Gln Leu Lys Glu Ile Asp Ser 1340 1345 1350 ctg ccc gaa ctg gaa agg tgc gaa atg gag ttc atg aag aag agg ata 4193 Leu Pro Glu Leu Glu Arg Cys Glu Met Glu Phe Met Lys Lys Arg Ile 1355 1360 1365 gag aag agc acc ggg ctt atc gaa aag cat gcc gga agg agt gac cca 4241 Glu Lys Ser Thr Gly Leu Ile Glu Lys His Ala Gly Arg Ser Asp Pro 1370 1375 1380 1385 gac tgg ccg agc aat tac ctc aaa ata ttc cta aag cag cag acc tgc 4289 Asp Trp Pro Ser Asn Tyr Leu Lys Ile Phe Leu Lys Gln Gln Thr Cys 1390 1395 1400 aca aaa atg gaa aag agg ggg gtg gat gct aag gcg gga caa acc atc 4337 Thr Lys Met Glu Lys Arg Gly Val Asp Ala Lys Ala Gly Gln Thr Ile 1405 1410 1415 gcc tgt ttc gct cat tcg gtg ctg tgt aga ttc ggg ccc att ctg cgt 4385 Ala Cys Phe Ala His Ser Val Leu Cys Arg Phe Gly Pro Ile Leu Arg 1420 1425 1430 caa act gag aaa gcg cta cgg gag ctc ctg ccc gag aag ctc atg ata 4433 Gln Thr Glu Lys Ala Leu Arg Glu Leu Leu Pro Glu Lys Leu Met Ile 1435 1440 1445 tac tct cag aaa aag tac atg gac ttg gat aaa tgg gct aag acg tgg 4481 Tyr Ser Gln Lys Lys Tyr Met Asp Leu Asp Lys Trp Ala Lys Thr Trp 1450 1455 1460 1465 gta gag agc atg atg ggg acg gac tcc gac tac gag gca ttc gac aga 4529 Val Glu Ser Met Met Gly Thr Asp Ser Asp Tyr Glu Ala Phe Asp Arg 1470 1475 1480 tca caa gac gag aaa gtg ctg gac ttg gag gtg gag gtc ttg cgc ttc 4577 Ser Gln Asp Glu Lys Val Leu Asp Leu Glu Val Glu Val Leu Arg Phe 1485 1490 1495 ttt cta tgg ccc gaa gat tta atc agg gag tac gag gag ctt aag ctg 4625 Phe Leu Trp Pro Glu Asp Leu Ile Arg Glu Tyr Glu Glu Leu Lys Leu 1500 1505 1510 atg atg gga tgt gca tta ggc gac ctg gcg gtg atg agg ttc tcc ggg 4673 Met Met Gly Cys Ala Leu Gly Asp Leu Ala Val Met Arg Phe Ser Gly 1515 1520 1525 gaa ttc ggc acc ttc ttc ttc aac acc gtg tgc aac atg gtg ttt agt 4721 Glu Phe Gly Thr Phe Phe Phe Asn Thr Val Cys Asn Met Val Phe Ser 1530 1535 1540 1545 tgt atg cgt tac cac ata gac agg aat acc ccg atg tgc ttt gcg ggg 4769 Cys Met Arg Tyr His Ile Asp Arg Asn Thr Pro Met Cys Phe Ala Gly 1550 1555 1560 gat gat atg tat tcg cca ggc att ctg aga gtg aag aag gat tac gaa 4817 Asp Asp Met Tyr Ser Pro Gly Ile Leu Arg Val Lys Lys Asp Tyr Glu 1565 1570 1575 gcc act ctc gac cag ttg aca ctt aaa gcc aaa gtc cat ata tct gag 4865 Ala Thr Leu Asp Gln Leu Thr Leu Lys Ala Lys Val His Ile Ser Glu 1580 1585 1590 gaa ccc ctc ttc tgt ggg tgg agg atg agc cca ttc gga ata atc aag 4913 Glu Pro Leu Phe Cys Gly Trp Arg Met Ser Pro Phe Gly Ile Ile Lys 1595 1600 1605 gag cca aat ctc ata ctc gac agg tgg aag ata gcg ctg agg agc ggg 4961 Glu Pro Asn Leu Ile Leu Asp Arg Trp Lys Ile Ala Leu Arg Ser Gly 1610 1615 1620 1625 aat cta tca cta tgt ttg gtg aac tat gcg atc gag gca agc ttt ggg 5009 Asn Leu Ser Leu Cys Leu Val Asn Tyr Ala Ile Glu Ala Ser Phe Gly 1630 1635 1640 tac agg tta agt gag cac ctg tat gat gtg aat att gat gtt gat gca 5057 Tyr Arg Leu Ser Glu His Leu Tyr Asp Val Asn Ile Asp Val Asp Ala 1645 1650 1655 cag caa gag ctc gtg agg gaa ata gtg atc aaa aag cac ttg cta cca 5105 Gln Gln Glu Leu Val Arg Glu Ile Val Ile Lys Lys His Leu Leu Pro 1660 1665 1670 aag aag ata tct gat ctt ttc agc gaa gac gag tgc gaa cgt cac agc 5153 Lys Lys Ile Ser Asp Leu Phe Ser Glu Asp Glu Cys Glu Arg His Ser 1675 1680 1685 gac ggg gat gaa gat ttc tta agc aat gac gtc gcg aga ttg tac agg 5201 Asp Gly Asp Glu Asp Phe Leu Ser Asn Asp Val Ala Arg Leu Tyr Arg 1690 1695 1700 1705 att gag tga atttctagga 5220 Ile Glu 13 1707 PRT Grapevine virus A 13 Met Ser Ile Ser Val Ser Ser Gln Arg Val Ala Val Ser Asn Leu Tyr 1 5 10 15 Thr Asn Gly Ser Glu Glu Ser Val Lys Ala Ile Lys Glu Leu Lys Ser 20 25 30 Lys Arg Leu Leu Glu Thr Glu Thr Arg Leu Asp Gly Leu Phe Asp Tyr 35 40 45 Tyr Ile Pro Asp Thr Leu Arg Glu Ile Leu Thr Gly Tyr Gly Met Glu 50 55 60 Phe Ser Val His Ser Phe Gln Gly His Ala His Pro Val Ser Lys Met 65 70 75 80 Ile Glu Asn His Met Leu Tyr Arg Val Ala Pro Asn Tyr Phe Ser Ser 85 90 95 Asn Thr Leu Val Val Ser Cys Lys Glu Ser Lys Ile Lys Arg Leu Arg 100 105 110 Leu Lys Asn Ala Asn Asn Arg Asn Leu Asn Phe Thr Gln Tyr Asn Arg 115 120 125 Leu Val His Ala Asn His His His Arg Tyr Glu Asn Ala Phe Arg Glu 130 135 140 Leu Asp Val Gly Asn Leu Thr Asn Leu Ile Asn Lys Glu Asp Gln Ser 145 150 155 160 Glu Cys Ile Phe Ile His Asp Glu Val Gln Tyr Trp Ser Leu Asp Glu 165 170 175 Met Gln Arg Phe Leu Gly Ser Leu Ser Lys Val Asp Arg Val Val Tyr 180 185 190 Ser Ile Ile Tyr Pro Ser Glu Val Glu Ala Gly Tyr Ser Gln Ser Leu 195 200 205 Phe Pro Glu Ala Tyr Thr Phe Asp Leu Lys Asp Arg Arg Leu Val Trp 210 215 220 Tyr Pro Asp Gly Lys Ala Glu Gly Ala Tyr Thr Gln Pro Val Asn Pro 225 230 235 240 Trp Leu Leu Arg Cys Ser Lys Thr Glu Asp Ser Lys Gly Arg Ser Trp 245 250 255 Thr Ile Thr Lys Leu Gln Thr Ile Gly Ala His His Leu Phe Ser Ala 260 265 270 Ile Lys Gly Ser Tyr Leu Thr Glu Glu Ser Tyr Lys Tyr Asp Asn Phe 275 280 285 Thr Ile Ile Asn Pro Asn Asp Val Leu Lys Gly Lys Arg Gly Gly Lys 290 295 300 Pro Leu Tyr Leu Arg Ala Arg Met Ile Lys Pro Thr Leu Leu Tyr Leu 305 310 315 320 Leu Ala Leu Lys Lys Ser Asp Ser Asn Ser Ala Val Ala Lys Leu Arg 325 330 335 Met Leu Ser Ser Arg Glu Glu Asn Met Asp Glu Ala Leu Phe Val Ala 340 345 350 Gln Leu Ala Lys Gln Ile Lys Asp Thr Ala Leu Tyr Asp Lys Met Gly 355 360 365 Asn Pro Asn Leu Arg Ser Ile Leu Ser Glu Ser Phe Tyr Asp Ile Ala 370 375 380 Gly Ser Leu Phe Thr Arg Leu Phe Asn Arg Pro Glu Tyr Asp Ala Arg 385 390 395 400 Cys Leu Glu Lys Phe Ile Arg Ser Cys Glu Thr Thr Glu Ile His Val 405 410 415 Glu Arg Arg Tyr Met Glu Gly Ile Arg Arg Gly Ala Ser Phe Lys Val 420 425 430 Gln Asn Val Met Asp Trp Val Glu Asp Asp Ser Ala Asn Ala Leu Ser 435 440 445 Glu Val Asn Phe Leu Asp Ile Ser Trp Asn Asp Arg Val Ser Glu Pro 450 455 460 Tyr Gly Ile Glu Cys Ile His Gly Glu Gly Ser Arg Ile Arg Val Pro 465 470 475 480 Leu Ser Arg Ile Leu Arg Ala His Glu Leu Ile Ala Gly Val Gln Thr 485 490 495 Asp Val Glu Ile Asn Phe Pro Arg Tyr Val Cys Ser Ser Arg Ala Leu 500 505 510 Ile His Phe Arg Gln Tyr Leu Ile Lys Leu Gly Arg Phe Ser Phe Met 515 520 525 Glu Ser Arg Ala Ile Lys Asp Ile Glu Asp Ile Gln Ala Gly Leu Glu 530 535 540 Glu Gly Val Ile Thr Glu Glu Glu Ala Glu Leu Arg Leu Leu Pro Thr 545 550 555 560 Thr Lys Pro Lys Ile Thr Glu Ile His Met Asp Asp Asp Thr Pro Gly 565 570 575 Thr Ser Gly Glu Ser Asp Val Glu Lys Phe Lys Ser Val Arg Ser Leu 580 585 590 Cys Arg Glu Glu Ile Tyr Ser Glu Lys Leu Lys Gly Arg Glu Val Ala 595 600 605 Phe Tyr Ser Arg His Ser Lys Glu Tyr Lys Tyr Asn Gly Gly Ser His 610 615 620 Arg Ser Leu Gly Trp Asp Glu Ala Leu Asn Glu Leu Thr Gln Glu Leu 625 630 635 640 Gly Leu Asp Asp Ser Tyr Asp His Cys Leu Ile Gln Arg Tyr Thr Ala 645 650 655 Gly Gly Ser Ile Gly Phe His Ala Asp Asp Glu Pro Cys Tyr Leu Pro 660 665 670 Gly Gly Ser Val Val Thr Val Asn Leu His Gly Asp Ala Thr Phe Glu 675 680 685 Val Lys Glu Asn Gln Ser Gly Lys Ile Glu Lys Lys Glu Leu His Asp 690 695 700 Gly Asp Val Tyr Val Met Gly Pro Gly Met Gln Gln Thr His Lys His 705 710 715 720 Arg Val Thr Ser His Thr Asp Gly Arg Cys Ser Ile Thr Leu Arg Asn 725 730 735 Lys Thr Val Asp Tyr Glu Ala Arg Lys Gly Asp Glu Asp Ser Glu Tyr 740 745 750 Glu Glu Asp Lys Ala Glu Leu Asp Glu Gly Ile Asp Tyr Leu Gln Lys 755 760 765 Asn Gln Gly Asn Met Cys Ser Leu Lys Ala Phe Ala Asp His Met Gln 770 775 780 Leu Ser Thr Pro Ser Val Ile Ala Ile Val Asn Gly Ala Ser Pro Gln 785 790 795 800 Thr Leu Arg Glu Ile Glu Asp Gly Gly Tyr Ser Leu Ala Thr Leu Val 805 810 815 Asn Leu Ser Lys Ala Leu Asp Phe Pro Ile Ala Ile His Gly Glu Arg 820 825 830 Gly Tyr Ala Glu Thr Pro Gly Ser Tyr Arg Arg Leu His Leu Lys Ile 835 840 845 Thr Ser Gly His Val Glu Pro Phe Glu Gly Val Thr Ser Lys Gly Gly 850 855 860 Phe Arg Glu Ala Met Leu Leu Gly Asp Gly Val Gly Val Gly His Phe 865 870 875 880 Arg Val Asp Lys Ala Lys Ala Asp Arg Leu Ala Gln Ser Phe Tyr Asn 885 890 895 Gly Asn Thr Gly Val Leu Leu Gly Lys Tyr Asn Lys Gly Lys Met His 900 905 910 Thr Gly Glu Ile Glu Glu Pro Lys Glu Val Leu Thr Ala Phe Gly Phe 915 920 925 Ala Gly Ser Gly Lys Ser His Trp Cys Gln Thr Ile Leu Lys His Cys 930 935 940 Ser Val Glu Lys Val Leu Val Ile Ser Pro Arg Lys Val Leu Arg Asp 945 950 955 960 Asp Trp Val Ala Lys Ile Ser Lys Lys His Arg Val Val Thr Phe Glu 965 970 975 Val Ala Phe Met Asp Asp Tyr Gly Cys Lys Asp Ile Val Ile Asp Glu 980 985 990 Ile Gly Leu Leu Pro Pro Gly Tyr Ile Asp Leu Val Ile Ala Ala His 995 1000 1005 Gln Pro Arg Thr Leu Val Leu Leu Gly Asp Pro Leu Gln Ser Thr Tyr 1010 1015 1020 His Ser Lys Arg Asp Asn Val Val Leu Glu Ala Ser Gln Glu Asp Val 1025 1030 1035 1040 Phe Asn Arg Val Arg Gly Lys Leu Pro Tyr Leu Cys Tyr Ser His Arg 1045 1050 1055 Leu Pro Arg Asn Cys Lys Leu Phe Glu Ile Glu Cys Met Gly Ala Glu 1060 1065 1070 Ser Glu Lys Arg Val Val Tyr Arg Ser Asn Arg Leu Lys Asp Glu Pro 1075 1080 1085 Thr Ile Cys Ala Thr Arg Ala Met Lys Glu Glu Lys Gly Ser Gly Trp 1090 1095 1100 Tyr Thr Val Ser Glu Thr Gln Gly Leu Ser Phe Lys Ser Cys Leu Ile 1105 1110 1115 1120 Tyr Leu Asp Glu His Trp Ala Lys Lys Glu Asp Glu Asp Val Met Val 1125 1130 1135 Ala Leu Thr Arg Ser Arg Gly Glu Ile Gly Ile His Val Thr Pro Ala 1140 1145 1150 Leu Lys Lys Lys Leu Ile Thr Asn Ala Lys Ser Thr Leu Leu Lys Lys 1155 1160 1165 Val Leu Lys Gly Glu Thr Tyr Arg Arg Ser Glu Ile Val Ala Met Val 1170 1175 1180 Arg Lys His Ile Pro Glu Thr Thr Val Leu Phe Glu Glu Ser Arg Leu 1185 1190 1195 1200 Ala Glu Thr Val Asp Tyr Glu Ala Arg Leu Ala Gly Asp Pro Tyr Leu 1205 1210 1215 Lys Ser Leu Leu Ala Leu Tyr Asp Glu Ile Glu Met Glu Asp Ile Glu 1220 1225 1230 Ile Glu Glu Pro Val Thr Leu Glu Pro Thr Lys Thr His Leu Ala Leu 1235 1240 1245 Ser Thr Lys Met Asn Glu Leu Ala Pro Phe Asp Leu Lys Ala Lys Glu 1250 1255 1260 His Arg Glu Gln His Thr Glu Ala Gly Arg Thr Glu Gln Ile Asp Glu 1265 1270 1275 1280 Asn Gly Tyr Gln Gly Glu Val Gly Asp Pro Met Thr His Lys Ala Leu 1285 1290 1295 Tyr Leu Arg His Thr Ser Asp Asp Thr Ala Thr Phe Met Met Ser Val 1300 1305 1310 Lys Lys Arg Leu Arg Phe Arg Asn Tyr Glu Ala Asn Arg Arg Lys Tyr 1315 1320 1325 Lys Thr Cys His Gly Ile Gly His Gln Met Phe Ser Val Phe Lys Asp 1330 1335 1340 Thr Tyr Gln Leu Lys Glu Ile Asp Ser Leu Pro Glu Leu Glu Arg Cys 1345 1350 1355 1360 Glu Met Glu Phe Met Lys Lys Arg Ile Glu Lys Ser Thr Gly Leu Ile 1365 1370 1375 Glu Lys His Ala Gly Arg Ser Asp Pro Asp Trp Pro Ser Asn Tyr Leu 1380 1385 1390 Lys Ile Phe Leu Lys Gln Gln Thr Cys Thr Lys Met Glu Lys Arg Gly 1395 1400 1405 Val Asp Ala Lys Ala Gly Gln Thr Ile Ala Cys Phe Ala His Ser Val 1410 1415 1420 Leu Cys Arg Phe Gly Pro Ile Leu Arg Gln Thr Glu Lys Ala Leu Arg 1425 1430 1435 1440 Glu Leu Leu Pro Glu Lys Leu Met Ile Tyr Ser Gln Lys Lys Tyr Met 1445 1450 1455 Asp Leu Asp Lys Trp Ala Lys Thr Trp Val Glu Ser Met Met Gly Thr 1460 1465 1470 Asp Ser Asp Tyr Glu Ala Phe Asp Arg Ser Gln Asp Glu Lys Val Leu 1475 1480 1485 Asp Leu Glu Val Glu Val Leu Arg Phe Phe Leu Trp Pro Glu Asp Leu 1490 1495 1500 Ile Arg Glu Tyr Glu Glu Leu Lys Leu Met Met Gly Cys Ala Leu Gly 1505 1510 1515 1520 Asp Leu Ala Val Met Arg Phe Ser Gly Glu Phe Gly Thr Phe Phe Phe 1525 1530 1535 Asn Thr Val Cys Asn Met Val Phe Ser Cys Met Arg Tyr His Ile Asp 1540 1545 1550 Arg Asn Thr Pro Met Cys Phe Ala Gly Asp Asp Met Tyr Ser Pro Gly 1555 1560 1565 Ile Leu Arg Val Lys Lys Asp Tyr Glu Ala Thr Leu Asp Gln Leu Thr 1570 1575 1580 Leu Lys Ala Lys Val His Ile Ser Glu Glu Pro Leu Phe Cys Gly Trp 1585 1590 1595 1600 Arg Met Ser Pro Phe Gly Ile Ile Lys Glu Pro Asn Leu Ile Leu Asp 1605 1610 1615 Arg Trp Lys Ile Ala Leu Arg Ser Gly Asn Leu Ser Leu Cys Leu Val 1620 1625 1630 Asn Tyr Ala Ile Glu Ala Ser Phe Gly Tyr Arg Leu Ser Glu His Leu 1635 1640 1645 Tyr Asp Val Asn Ile Asp Val Asp Ala Gln Gln Glu Leu Val Arg Glu 1650 1655 1660 Ile Val Ile Lys Lys His Leu Leu Pro Lys Lys Ile Ser Asp Leu Phe 1665 1670 1675 1680 Ser Glu Asp Glu Cys Glu Arg His Ser Asp Gly Asp Glu Asp Phe Leu 1685 1690 1695 Ser Asn Asp Val Ala Arg Leu Tyr Arg Ile Glu 1700 1705 14 5991 DNA Potato virus M CDS (76)..(5982) modified_base (1)..(2) n = a, c, g, or T/U 14 nntaaacaaa catacaatat ctggacttac actacaatat actaccagga aatactatat 60 tcggtctaag tcagc atg gca gtc aca tac aga acg cca atg gaa gat att 111 Met Ala Val Thr Tyr Arg Thr Pro Met Glu Asp Ile 1 5 10 gtt aat tgc ttc gag cca gca act cag gct gtg ata gct aat agc gct 159 Val Asn Cys Phe Glu Pro Ala Thr Gln Ala Val Ile Ala Asn Ser Ala 15 20 25 gct aca ctg tac aag aac ttc gag gag caa cac tgc caa tac ttc aat 207 Ala Thr Leu Tyr Lys Asn Phe Glu Glu Gln His Cys Gln Tyr Phe Asn 30 35 40 tac tac ctt tct ccc ttg gcg aaa agg aaa ttg agc atg gca ggc ata 255 Tyr Tyr Leu Ser Pro Leu Ala Lys Arg Lys Leu Ser Met Ala Gly Ile 45 50 55 60 tac ttg agt ccg tac tcg gca gtc gtg cat tcg cat ccg gtt tgt aag 303 Tyr Leu Ser Pro Tyr Ser Ala Val Val His Ser His Pro Val Cys Lys 65 70 75 acg ctg gaa aat tac ata ttg tat agt gtt tta cct tcg tac ata aat 351 Thr Leu Glu Asn Tyr Ile Leu Tyr Ser Val Leu Pro Ser Tyr Ile Asn 80 85 90 tct agc ttt tac ttt gta ggt att aag gag aga aaa ctg cag ctg ttg 399 Ser Ser Phe Tyr Phe Val Gly Ile Lys Glu Arg Lys Leu Gln Leu Leu 95 100 105 aaa tca aaa tgc aaa aat ttg gac agt gtg cag gtg gtg aat aga tac 447 Lys Ser Lys Cys Lys Asn Leu Asp Ser Val Gln Val Val Asn Arg Tyr 110 115 120 gtg acc agt gca gac aga atg agg tac aca aat gat ttc gtg cca tat 495 Val Thr Ser Ala Asp Arg Met Arg Tyr Thr Asn Asp Phe Val Pro Tyr 125 130 135 140 ggc tca tac gag cat gaa tgc ctg gtg cac aaa gga gtt ggt ctg gac 543 Gly Ser Tyr Glu His Glu Cys Leu Val His Lys Gly Val Gly Leu Asp 145 150 155 aac gaa gcg ctc aga gga cta gta ggt cca cta agg cgt cac aaa gca 591 Asn Glu Ala Leu Arg Gly Leu Val Gly Pro Leu Arg Arg His Lys Ala 160 165 170 aaa aac cta ttt ttc cat gat gag ttg cat tac tgg agt agt aag gtg 639 Lys Asn Leu Phe Phe His Asp Glu Leu His Tyr Trp Ser Ser Lys Val 175 180 185 ctt att gat ttc tta gat gtc atg cgt cca gat aag cta ctt ggt act 687 Leu Ile Asp Phe Leu Asp Val Met Arg Pro Asp Lys Leu Leu Gly Thr 190 195 200 gtt gtg tac ccc cca gaa tta cta ttc aag cca aca cgt agc ttg aat 735 Val Val Tyr Pro Pro Glu Leu Leu Phe Lys Pro Thr Arg Ser Leu Asn 205 210 215 220 gag tgg tgc tac act tat gat ata gtg ggg gac aca ctg atg ttt ttc 783 Glu Trp Cys Tyr Thr Tyr Asp Ile Val Gly Asp Thr Leu Met Phe Phe 225 230 235 cct gat ggc gtg cag agc gag ggc tat cag cag cca tta aag ggt ggt 831 Pro Asp Gly Val Gln Ser Glu Gly Tyr Gln Gln Pro Leu Lys Gly Gly 240 245 250 tac cta ctg ggg gca agg agt ttg aaa ttg ccg gac ggt aca gtg tac 879 Tyr Leu Leu Gly Ala Arg Ser Leu Lys Leu Pro Asp Gly Thr Val Tyr 255 260 265 atg gtt gat gtg ctg tgc agt aaa ttt ccc cac cat ttg att tcg ata 927 Met Val Asp Val Leu Cys Ser Lys Phe Pro His His Leu Ile Ser Ile 270 275 280 aca aaa ggt gaa gcg gca gcg ccg acg cat cgt gcg ttc ggc cca ttt 975 Thr Lys Gly Glu Ala Ala Ala Pro Thr His Arg Ala Phe Gly Pro Phe 285 290 295 300 gag gcg gtt gca tcg gaa gct ttg aaa gcg acc ctt agt cct gat tac 1023 Glu Ala Val Ala Ser Glu Ala Leu Lys Ala Thr Leu Ser Pro Asp Tyr 305 310 315 ccg tgt gct ttc ccc gtt agc tat gag gtg gtt aac aag att tac agg 1071 Pro Cys Ala Phe Pro Val Ser Tyr Glu Val Val Asn Lys Ile Tyr Arg 320 325 330 tac tta cgt aca ctg aaa aaa ccc gat gag cag tcc gcc ata gca aag 1119 Tyr Leu Arg Thr Leu Lys Lys Pro Asp Glu Gln Ser Ala Ile Ala Lys 335 340 345 cta agc caa ata att gct gag ccg tcc ggg agg gaa att gat ttc gtg 1167 Leu Ser Gln Ile Ile Ala Glu Pro Ser Gly Arg Glu Ile Asp Phe Val 350 355 360 gag tgc ttc gcg cgg ctg gtg att cac aat tct agc atg tgc gcc aca 1215 Glu Cys Phe Ala Arg Leu Val Ile His Asn Ser Ser Met Cys Ala Thr 365 370 375 380 atc atg cca gag caa ctg aaa gaa ttc atg ggg aac tgg ctc gga aag 1263 Ile Met Pro Glu Gln Leu Lys Glu Phe Met Gly Asn Trp Leu Gly Lys 385 390 395 atg cct tct gtg ctg gca cgc cgc ttt agt agt gtt aga gct gtg tgt 1311 Met Pro Ser Val Leu Ala Arg Arg Phe Ser Ser Val Arg Ala Val Cys 400 405 410 gtg aac aaa ttc atc cgg ggt cta aaa ccg tac agc ttc acc ctg cgc 1359 Val Asn Lys Phe Ile Arg Gly Leu Lys Pro Tyr Ser Phe Thr Leu Arg 415 420 425 ttg aat gag ata acc tgg tgg aac att tgg gaa aac agt tac gcc tgg 1407 Leu Asn Glu Ile Thr Trp Trp Asn Ile Trp Glu Asn Ser Tyr Ala Trp 430 435 440 ttc ttt gat aca gat gct gag gtc gac gta cca gaa aaa ttg gac tcg 1455 Phe Phe Asp Thr Asp Ala Glu Val Asp Val Pro Glu Lys Leu Asp Ser 445 450 455 460 cta ttc atg gga gaa ggt gct ggc ctt gtt gca cat atc acc tct agg 1503 Leu Phe Met Gly Glu Gly Ala Gly Leu Val Ala His Ile Thr Ser Arg 465 470 475 ccc tat gta ggg aca gtc ccg tta gca gac cgg gag tgg aat gcc ctg 1551 Pro Tyr Val Gly Thr Val Pro Leu Ala Asp Arg Glu Trp Asn Ala Leu 480 485 490 ttg tgc atg gac tcg cag aag ttg ttg cac gca atg agg cgc atg ttc 1599 Leu Cys Met Asp Ser Gln Lys Leu Leu His Ala Met Arg Arg Met Phe 495 500 505 atg aga ggc gct tgg ggg gcg cac atg tgc gtc att tcc agg gaa ttt 1647 Met Arg Gly Ala Trp Gly Ala His Met Cys Val Ile Ser Arg Glu Phe 510 515 520 ttg ctc aaa tat gtg gag gca agg ttg aaa tca agc tgt tta att gca 1695 Leu Leu Lys Tyr Val Glu Ala Arg Leu Lys Ser Ser Cys Leu Ile Ala 525 530 535 540 aag gcc cgg aga agg ggt caa cac aaa gag aag ctt gag gca tgg gaa 1743 Lys Ala Arg Arg Arg Gly Gln His Lys Glu Lys Leu Glu Ala Trp Glu 545 550 555 gtc ctg ggg ttg aag agc tca gat gca ctg ttt agg gcc atg acg tac 1791 Val Leu Gly Leu Lys Ser Ser Asp Ala Leu Phe Arg Ala Met Thr Tyr 560 565 570 ctg tgc aac gcg aga ttg gag ccc atg ttc tct gag tca ggc ctg aga 1839 Leu Cys Asn Ala Arg Leu Glu Pro Met Phe Ser Glu Ser Gly Leu Arg 575 580 585 ttt ttc tta acg cgc gga agg aat aat ctg tac ggc ctc acc aat tat 1887 Phe Phe Leu Thr Arg Gly Arg Asn Asn Leu Tyr Gly Leu Thr Asn Tyr 590 595 600 aca gag gga aag cgt gca gta act ggg gtg cag aac cta tgg agc aat 1935 Thr Glu Gly Lys Arg Ala Val Thr Gly Val Gln Asn Leu Trp Ser Asn 605 610 615 620 gtg gtg cat gag gtg agt acc aag cgg cac aaa ggc atg ata agg cta 1983 Val Val His Glu Val Ser Thr Lys Arg His Lys Gly Met Ile Arg Leu 625 630 635 gag aag gcc cga gtt aca gag cag ccc aga agt gag ttc gca agt tgc 2031 Glu Lys Ala Arg Val Thr Glu Gln Pro Arg Ser Glu Phe Ala Ser Cys 640 645 650 gtg tta gag ccc gag gta tgg cgc gat gtg gaa gct gcg ctc gat atc 2079 Val Leu Glu Pro Glu Val Trp Arg Asp Val Glu Ala Ala Leu Asp Ile 655 660 665 gaa ttg ggc gaa gtt gct tgt gct tgc aac gca cga ttc gtg caa ggg 2127 Glu Leu Gly Glu Val Ala Cys Ala Cys Asn Ala Arg Phe Val Gln Gly 670 675 680 gtg gta ctg agc aac cag gca ggt ctt aat gtc cgt gag caa gtt gca 2175 Val Val Leu Ser Asn Gln Ala Gly Leu Asn Val Arg Glu Gln Val Ala 685 690 695 700 ggt gct tct gtg ggg ctg tac acg aaa gat aga agc aac ttg aag tgg 2223 Gly Ala Ser Val Gly Leu Tyr Thr Lys Asp Arg Ser Asn Leu Lys Trp 705 710 715 ggt aac agt gag ctg ctt agc aat ggt tgg gga agg agc ttg agc gtc 2271 Gly Asn Ser Glu Leu Leu Ser Asn Gly Trp Gly Arg Ser Leu Ser Val 720 725 730 tgg atg gag att aac tcc gtg agc caa aaa ttt gat gtc gcc gtg cgt 2319 Trp Met Glu Ile Asn Ser Val Ser Gln Lys Phe Asp Val Ala Val Arg 735 740 745 ttg agt tac agc aag gag act caa atg aat gtg ctg ctg ccg agc ctt 2367 Leu Ser Tyr Ser Lys Glu Thr Gln Met Asn Val Leu Leu Pro Ser Leu 750 755 760 gat gga ata gaa cgg ggc gcg ggc gca act gtg gtt aat ctg cgg aag 2415 Asp Gly Ile Glu Arg Gly Ala Gly Ala Thr Val Val Asn Leu Arg Lys 765 770 775 780 tgt ggt gca ttc atc gta agg tgc gct cga ggg tgg aga ctg gcg ctg 2463 Cys Gly Ala Phe Ile Val Arg Cys Ala Arg Gly Trp Arg Leu Ala Leu 785 790 795 gcg tgg atg gac cac att tgt ttg gag gtg atg gcc aac gtt gca tac 2511 Ala Trp Met Asp His Ile Cys Leu Glu Val Met Ala Asn Val Ala Tyr 800 805 810 ggt cat gaa tgc tat atg agg tct tgg ggc aca atg gat gtt gtg gtc 2559 Gly His Glu Cys Tyr Met Arg Ser Trp Gly Thr Met Asp Val Val Val 815 820 825 ttc ctg aaa agg gcc act gtt tct gag cag gta act ttt gag agt gca 2607 Phe Leu Lys Arg Ala Thr Val Ser Glu Gln Val Thr Phe Glu Ser Ala 830 835 840 cag gag gtg ggc ccc att gag ggt aag agt gat tcg ggg gca cca gga 2655 Gln Glu Val Gly Pro Ile Glu Gly Lys Ser Asp Ser Gly Ala Pro Gly 845 850 855 860 gtt gga gtg aac ctc gac ttg ggt ggg gtc gtt ggc agc gag tac ccc 2703 Val Gly Val Asn Leu Asp Leu Gly Gly Val Val Gly Ser Glu Tyr Pro 865 870 875 gcc aat ggt gct gag cga tat aag cgg gtg tct ggg ccc ggt gat ggt 2751 Ala Asn Gly Ala Glu Arg Tyr Lys Arg Val Ser Gly Pro Gly Asp Gly 880 885 890 tgc tgt tgc tgg cac agt ttt gca tac cta gtt ggc atg cac cac atg 2799 Cys Cys Cys Trp His Ser Phe Ala Tyr Leu Val Gly Met His His Met 895 900 905 gag ttg aag cga ttg tgc act tct cat gtt ttt gaa aat gcc gca ctc 2847 Glu Leu Lys Arg Leu Cys Thr Ser His Val Phe Glu Asn Ala Ala Leu 910 915 920 aat gtt gag ctg gag cag tgc aag gca tct ggc gca ttc gtc act cat 2895 Asn Val Glu Leu Glu Gln Cys Lys Ala Ser Gly Ala Phe Val Thr His 925 930 935 940 gcc gcc ata ctg gca aca gct ttg aga ctc aga gct gaa att aga gtg 2943 Ala Ala Ile Leu Ala Thr Ala Leu Arg Leu Arg Ala Glu Ile Arg Val 945 950 955 cac aac gct ggc aca ggt aga gtt cat cgt ttt gct ccc aag cag aag 2991 His Asn Ala Gly Thr Gly Arg Val His Arg Phe Ala Pro Lys Gln Lys 960 965 970 aac atg gca ctt gat ttg tgg ctc gag tcg gag cac tat gaa cca cag 3039 Asn Met Ala Leu Asp Leu Trp Leu Glu Ser Glu His Tyr Glu Pro Gln 975 980 985 gta ctt cgc aat ggt tgt gta att gaa tcc gtg gca caa gca ctg ggc 3087 Val Leu Arg Asn Gly Cys Val Ile Glu Ser Val Ala Gln Ala Leu Gly 990 995 1000 acg cgg aat gcc gat atc ctg gct gtt gta gaa gag cgg tgc tgt gag 3135 Thr Arg Asn Ala Asp Ile Leu Ala Val Val Glu Glu Arg Cys Cys Glu 1005 1010 1015 1020 gag gtt gtt gaa agc gtg caa gct ggt ctt ggt cta aat ctg cat cat 3183 Glu Val Val Glu Ser Val Gln Ala Gly Leu Gly Leu Asn Leu His His 1025 1030 1035 gtg gag att gtg ctg caa tgt ttc gac att gta ggg cat tgc aac tta 3231 Val Glu Ile Val Leu Gln Cys Phe Asp Ile Val Gly His Cys Asn Leu 1040 1045 1050 ggg gat aag gaa atc acg ctt aat gct ggt ggt aag atg ccc ttc tgc 3279 Gly Asp Lys Glu Ile Thr Leu Asn Ala Gly Gly Lys Met Pro Phe Cys 1055 1060 1065 ttc gat atc tct gat gaa cac atg agt ttt tgc gga cgg cgc aaa gac 3327 Phe Asp Ile Ser Asp Glu His Met Ser Phe Cys Gly Arg Arg Lys Asp 1070 1075 1080 ccc atc tgc aag tta gta agt ggt gca tta cac ggc aaa atg ttt gcc 3375 Pro Ile Cys Lys Leu Val Ser Gly Ala Leu His Gly Lys Met Phe Ala 1085 1090 1095 1100 gaa tct gcg ttg cta gat ctg gag aac tgc ggc tta aaa ata gac ttc 3423 Glu Ser Ala Leu Leu Asp Leu Glu Asn Cys Gly Leu Lys Ile Asp Phe 1105 1110 1115 gaa cca aat tgg aat cgc gca gga atg ctc gca gat agc atg tat caa 3471 Glu Pro Asn Trp Asn Arg Ala Gly Met Leu Ala Asp Ser Met Tyr Gln 1120 1125 1130 gga gcc aca gga gtt ttg ggt tct gca ctc ttc aat aat aag aga aat 3519 Gly Ala Thr Gly Val Leu Gly Ser Ala Leu Phe Asn Asn Lys Arg Asn 1135 1140 1145 atg cgt gag aaa ttt gtg cgt aat gta tct ttg agc ttg cat gcg ata 3567 Met Arg Glu Lys Phe Val Arg Asn Val Ser Leu Ser Leu His Ala Ile 1150 1155 1160 gtg gga acc ttt ggc tct ggg aag agt acg ctg ttc aaa aac cta ctg 3615 Val Gly Thr Phe Gly Ser Gly Lys Ser Thr Leu Phe Lys Asn Leu Leu 1165 1170 1175 1180 aag tat ggt gca ggc aaa tcg ctg gat ttt gtg tca ccg agg cgt gcg 3663 Lys Tyr Gly Ala Gly Lys Ser Leu Asp Phe Val Ser Pro Arg Arg Ala 1185 1190 1195 ttg gcc gaa gac ttc aag cgt aca gtt ggg atg aac gag cgt ggc ggg 3711 Leu Ala Glu Asp Phe Lys Arg Thr Val Gly Met Asn Glu Arg Gly Gly 1200 1205 1210 aga gca aaa gca ggg caa gag aac tgg aga gtt acc acg ttg gag aca 3759 Arg Ala Lys Ala Gly Gln Glu Asn Trp Arg Val Thr Thr Leu Glu Thr 1215 1220 1225 ttc tta gca aga gtg gaa ttt cta aca gag ggc cag gtg gtt att ttg 3807 Phe Leu Ala Arg Val Glu Phe Leu Thr Glu Gly Gln Val Val Ile Leu 1230 1235 1240 gac gag atg cag ctg tat cca cct ggg tac ttt gac cta gtt gtg agt 3855 Asp Glu Met Gln Leu Tyr Pro Pro Gly Tyr Phe Asp Leu Val Val Ser 1245 1250 1255 1260 atg ctt aaa gtg gat gtg aga ctt ttc ctc gtg ggc gat cct gca caa 3903 Met Leu Lys Val Asp Val Arg Leu Phe Leu Val Gly Asp Pro Ala Gln 1265 1270 1275 agc gac tac gac agc gag aag gat aga ttg gtg ctg gga gct atg gag 3951 Ser Asp Tyr Asp Ser Glu Lys Asp Arg Leu Val Leu Gly Ala Met Glu 1280 1285 1290 gag aac atg agc gtc gtg ctt ggg gca cgc gag tac aat tac aaa gtg 3999 Glu Asn Met Ser Val Val Leu Gly Ala Arg Glu Tyr Asn Tyr Lys Val 1295 1300 1305 cgg agt cat cgg ttt ttg aat tgc aat ttc ata ggg aga ctt cca tgt 4047 Arg Ser His Arg Phe Leu Asn Cys Asn Phe Ile Gly Arg Leu Pro Cys 1310 1315 1320 gaa ata aat aaa gat gat tgc acg att gat gag cct cac att atg cgc 4095 Glu Ile Asn Lys Asp Asp Cys Thr Ile Asp Glu Pro His Ile Met Arg 1325 1330 1335 1340 atg cac ctt gaa aat ctt ctg gac gtg gca gaa gag tat aaa tct gtg 4143 Met His Leu Glu Asn Leu Leu Asp Val Ala Glu Glu Tyr Lys Ser Val 1345 1350 1355 gtg ctc gta agc tct ttt gat gag aaa atg gta gtg tgc gcg cat ctc 4191 Val Leu Val Ser Ser Phe Asp Glu Lys Met Val Val Cys Ala His Leu 1360 1365 1370 cca gag gcg aag gtg ctc act ttt gga gag agc act gga tta aca ttc 4239 Pro Glu Ala Lys Val Leu Thr Phe Gly Glu Ser Thr Gly Leu Thr Phe 1375 1380 1385 atg cat ggc aca att tac atc tcc gcg gtg tca gag agg act aat gag 4287 Met His Gly Thr Ile Tyr Ile Ser Ala Val Ser Glu Arg Thr Asn Glu 1390 1395 1400 cga aga tgg ata acg gct ctc cgt cga ttt cgc ttc aat ttg tgt ttt 4335 Arg Arg Trp Ile Thr Ala Leu Arg Arg Phe Arg Phe Asn Leu Cys Phe 1405 1410 1415 1420 gtg aat tgc agc ggg atg gat tat cag caa ttg gca ggg aga tac aaa 4383 Val Asn Cys Ser Gly Met Asp Tyr Gln Gln Leu Ala Gly Arg Tyr Lys 1425 1430 1435 ggt cga gtg cgg tcc aaa ttc ctg tgc aag act gct att cct gac gat 4431 Gly Arg Val Arg Ser Lys Phe Leu Cys Lys Thr Ala Ile Pro Asp Asp 1440 1445 1450 cta aat agc atg ctg ccc ggc caa gca ctc ttt aag agt gag tac ccg 4479 Leu Asn Ser Met Leu Pro Gly Gln Ala Leu Phe Lys Ser Glu Tyr Pro 1455 1460 1465 cga ttg att ggt aaa gat gag ggt gtc aga gaa gag aag ctt gca ggc 4527 Arg Leu Ile Gly Lys Asp Glu Gly Val Arg Glu Glu Lys Leu Ala Gly 1470 1475 1480 gat cca tgg ctc aaa aca atg att aat cta tat caa gca ccg gag gtg 4575 Asp Pro Trp Leu Lys Thr Met Ile Asn Leu Tyr Gln Ala Pro Glu Val 1485 1490 1495 1500 gaa att gca gaa gag cct gag gtg gtg atg cag gag gaa tgg ttt cgc 4623 Glu Ile Ala Glu Glu Pro Glu Val Val Met Gln Glu Glu Trp Phe Arg 1505 1510 1515 aca cat ttg ccg cgt gat gag ttg gag agc gtt aga gcg caa tgg gtt 4671 Thr His Leu Pro Arg Asp Glu Leu Glu Ser Val Arg Ala Gln Trp Val 1520 1525 1530 cac aag ata tta gcc aag gag tac aga gag gtg cgc atg gga gat atg 4719 His Lys Ile Leu Ala Lys Glu Tyr Arg Glu Val Arg Met Gly Asp Met 1535 1540 1545 gtg tca gag caa ttc act cac gat cac acc aaa caa ctg ggt gcg aag 4767 Val Ser Glu Gln Phe Thr His Asp His Thr Lys Gln Leu Gly Ala Lys 1550 1555 1560 caa ctc aca aat gca gct gag aga ttc gag acc ata tac ccc agg cat 4815 Gln Leu Thr Asn Ala Ala Glu Arg Phe Glu Thr Ile Tyr Pro Arg His 1565 1570 1575 1580 aga gct agt gac acc gtc act ttt cta atg gcc gtg aag aaa aga ttg 4863 Arg Ala Ser Asp Thr Val Thr Phe Leu Met Ala Val Lys Lys Arg Leu 1585 1590 1595 agc ttc tct aac cct ggg aag gaa aag gga aac ttg ttc cat gca gcc 4911 Ser Phe Ser Asn Pro Gly Lys Glu Lys Gly Asn Leu Phe His Ala Ala 1600 1605 1610 agc tat ggt aaa gca ttg cta tca gaa ttc ctc aag cgt gtg ccg cta 4959 Ser Tyr Gly Lys Ala Leu Leu Ser Glu Phe Leu Lys Arg Val Pro Leu 1615 1620 1625 aag ccg aac cac aat gtg cgg ttt atg gag gaa gca ctg tgg aac ttc 5007 Lys Pro Asn His Asn Val Arg Phe Met Glu Glu Ala Leu Trp Asn Phe 1630 1635 1640 gaa gag aag aag ctg agc aaa agt gct gcc aca att gag aat cac tct 5055 Glu Glu Lys Lys Leu Ser Lys Ser Ala Ala Thr Ile Glu Asn His Ser 1645 1650 1655 1660 gga cgc tca tgc cgg gat tgg cct aca gat gtg gcc cag att ttc tca 5103 Gly Arg Ser Cys Arg Asp Trp Pro Thr Asp Val Ala Gln Ile Phe Ser 1665 1670 1675 aaa agt cag ttg tgc acc aaa ttc gac aat agg ttc agg gtt gct aaa 5151 Lys Ser Gln Leu Cys Thr Lys Phe Asp Asn Arg Phe Arg Val Ala Lys 1680 1685 1690 gca gcg cag agc atc gtg tgt ttt caa cat gcg gtc ttg tgt cgt ttt 5199 Ala Ala Gln Ser Ile Val Cys Phe Gln His Ala Val Leu Cys Arg Phe 1695 1700 1705 gcg ccc tac atg cga tac att gag atg aaa gtg cac gag gtg ctg ccg 5247 Ala Pro Tyr Met Arg Tyr Ile Glu Met Lys Val His Glu Val Leu Pro 1710 1715 1720 aag aat tac tac atc cac tca gga aag ggt ttg gag gag ctg gat gcg 5295 Lys Asn Tyr Tyr Ile His Ser Gly Lys Gly Leu Glu Glu Leu Asp Ala 1725 1730 1735 1740 tgg gtc aag aaa ggg aag ttt gac cgg att tgc acg gag tct gat tat 5343 Trp Val Lys Lys Gly Lys Phe Asp Arg Ile Cys Thr Glu Ser Asp Tyr 1745 1750 1755 gag gca ttc gat gcg tca caa gat gaa ttt atc atg gct ttc gag ctg 5391 Glu Ala Phe Asp Ala Ser Gln Asp Glu Phe Ile Met Ala Phe Glu Leu 1760 1765 1770 gaa ttg atg aag tac tta agg tta cca agt gat cta atc gag gat tac 5439 Glu Leu Met Lys Tyr Leu Arg Leu Pro Ser Asp Leu Ile Glu Asp Tyr 1775 1780 1785 aag ttc atc aag act agc cta gga tct aaa ttg ggc aat ttt gct ata 5487 Lys Phe Ile Lys Thr Ser Leu Gly Ser Lys Leu Gly Asn Phe Ala Ile 1790 1795 1800 atg cgc ttc tcc ggg gag gca agc act ttt ctg ttt aac aca ctg gcc 5535 Met Arg Phe Ser Gly Glu Ala Ser Thr Phe Leu Phe Asn Thr Leu Ala 1805 1810 1815 1820 aat atg ttg ttc acc ttt atg agg tac aac ata cgg ggt gat gaa ttc 5583 Asn Met Leu Phe Thr Phe Met Arg Tyr Asn Ile Arg Gly Asp Glu Phe 1825 1830 1835 ata tgc ttt gct ggg gat gat atg tgc gcg tcg cga aga ttg caa ccc 5631 Ile Cys Phe Ala Gly Asp Asp Met Cys Ala Ser Arg Arg Leu Gln Pro 1840 1845 1850 aca aag aag ttt gct cac ttc cta gac aag ctt aaa ctg aaa gcg aag 5679 Thr Lys Lys Phe Ala His Phe Leu Asp Lys Leu Lys Leu Lys Ala Lys 1855 1860 1865 gtg caa ttc gtg caa ttc gtg aat aaa cca act ttt tgc ggt tgg cac 5727 Val Gln Phe Val Gln Phe Val Asn Lys Pro Thr Phe Cys Gly Trp His 1870 1875 1880 ctg tgt ccc gat ggt ata tat aaa aag ccg caa ctt gtg cta gag aga 5775 Leu Cys Pro Asp Gly Ile Tyr Lys Lys Pro Gln Leu Val Leu Glu Arg 1885 1890 1895 1900 atg tgc atc gcg aaa gag atg aac aac ctg agc aat tgc att gat aat 5823 Met Cys Ile Ala Lys Glu Met Asn Asn Leu Ser Asn Cys Ile Asp Asn 1905 1910 1915 tac gcc att gag gtg gcg tac gca tat aag ttg ggg gag aag gct gtg 5871 Tyr Ala Ile Glu Val Ala Tyr Ala Tyr Lys Leu Gly Glu Lys Ala Val 1920 1925 1930 aat aga atg gat gag gag gaa gtc gcg gcg ttc tac aac tgc gtg aga 5919 Asn Arg Met Asp Glu Glu Glu Val Ala Ala Phe Tyr Asn Cys Val Arg 1935 1940 1945 atc ata gtg cga aac aaa cac ctc att cgc tct gat gtg aaa caa gta 5967 Ile Ile Val Arg Asn Lys His Leu Ile Arg Ser Asp Val Lys Gln Val 1950 1955 1960 ttt gaa gtg ctt taa tgtagctta 5991 Phe Glu Val Leu 1965 15 1968 PRT Potato virus M 15 Met Ala Val Thr Tyr Arg Thr Pro Met Glu Asp Ile Val Asn Cys Phe 1 5 10 15 Glu Pro Ala Thr Gln Ala Val Ile Ala Asn Ser Ala Ala Thr Leu Tyr 20 25 30 Lys Asn Phe Glu Glu Gln His Cys Gln Tyr Phe Asn Tyr Tyr Leu Ser 35 40 45 Pro Leu Ala Lys Arg Lys Leu Ser Met Ala Gly Ile Tyr Leu Ser Pro 50 55 60 Tyr Ser Ala Val Val His Ser His Pro Val Cys Lys Thr Leu Glu Asn 65 70 75 80 Tyr Ile Leu Tyr Ser Val Leu Pro Ser Tyr Ile Asn Ser Ser Phe Tyr 85 90 95 Phe Val Gly Ile Lys Glu Arg Lys Leu Gln Leu Leu Lys Ser Lys Cys 100 105 110 Lys Asn Leu Asp Ser Val Gln Val Val Asn Arg Tyr Val Thr Ser Ala 115 120 125 Asp Arg Met Arg Tyr Thr Asn Asp Phe Val Pro Tyr Gly Ser Tyr Glu 130 135 140 His Glu Cys Leu Val His Lys Gly Val Gly Leu Asp Asn Glu Ala Leu 145 150 155 160 Arg Gly Leu Val Gly Pro Leu Arg Arg His Lys Ala Lys Asn Leu Phe 165 170 175 Phe His Asp Glu Leu His Tyr Trp Ser Ser Lys Val Leu Ile Asp Phe 180 185 190 Leu Asp Val Met Arg Pro Asp Lys Leu Leu Gly Thr Val Val Tyr Pro 195 200 205 Pro Glu Leu Leu Phe Lys Pro Thr Arg Ser Leu Asn Glu Trp Cys Tyr 210 215 220 Thr Tyr Asp Ile Val Gly Asp Thr Leu Met Phe Phe Pro Asp Gly Val 225 230 235 240 Gln Ser Glu Gly Tyr Gln Gln Pro Leu Lys Gly Gly Tyr Leu Leu Gly 245 250 255 Ala Arg Ser Leu Lys Leu Pro Asp Gly Thr Val Tyr Met Val Asp Val 260 265 270 Leu Cys Ser Lys Phe Pro His His Leu Ile Ser Ile Thr Lys Gly Glu 275 280 285 Ala Ala Ala Pro Thr His Arg Ala Phe Gly Pro Phe Glu Ala Val Ala 290 295 300 Ser Glu Ala Leu Lys Ala Thr Leu Ser Pro Asp Tyr Pro Cys Ala Phe 305 310 315 320 Pro Val Ser Tyr Glu Val Val Asn Lys Ile Tyr Arg Tyr Leu Arg Thr 325 330 335 Leu Lys Lys Pro Asp Glu Gln Ser Ala Ile Ala Lys Leu Ser Gln Ile 340 345 350 Ile Ala Glu Pro Ser Gly Arg Glu Ile Asp Phe Val Glu Cys Phe Ala 355 360 365 Arg Leu Val Ile His Asn Ser Ser Met Cys Ala Thr Ile Met Pro Glu 370 375 380 Gln Leu Lys Glu Phe Met Gly Asn Trp Leu Gly Lys Met Pro Ser Val 385 390 395 400 Leu Ala Arg Arg Phe Ser Ser Val Arg Ala Val Cys Val Asn Lys Phe 405 410 415 Ile Arg Gly Leu Lys Pro Tyr Ser Phe Thr Leu Arg Leu Asn Glu Ile 420 425 430 Thr Trp Trp Asn Ile Trp Glu Asn Ser Tyr Ala Trp Phe Phe Asp Thr 435 440 445 Asp Ala Glu Val Asp Val Pro Glu Lys Leu Asp Ser Leu Phe Met Gly 450 455 460 Glu Gly Ala Gly Leu Val Ala His Ile Thr Ser Arg Pro Tyr Val Gly 465 470 475 480 Thr Val Pro Leu Ala Asp Arg Glu Trp Asn Ala Leu Leu Cys Met Asp 485 490 495 Ser Gln Lys Leu Leu His Ala Met Arg Arg Met Phe Met Arg Gly Ala 500 505 510 Trp Gly Ala His Met Cys Val Ile Ser Arg Glu Phe Leu Leu Lys Tyr 515 520 525 Val Glu Ala Arg Leu Lys Ser Ser Cys Leu Ile Ala Lys Ala Arg Arg 530 535 540 Arg Gly Gln His Lys Glu Lys Leu Glu Ala Trp Glu Val Leu Gly Leu 545 550 555 560 Lys Ser Ser Asp Ala Leu Phe Arg Ala Met Thr Tyr Leu Cys Asn Ala 565 570 575 Arg Leu Glu Pro Met Phe Ser Glu Ser Gly Leu Arg Phe Phe Leu Thr 580 585 590 Arg Gly Arg Asn Asn Leu Tyr Gly Leu Thr Asn Tyr Thr Glu Gly Lys 595 600 605 Arg Ala Val Thr Gly Val Gln Asn Leu Trp Ser Asn Val Val His Glu 610 615 620 Val Ser Thr Lys Arg His Lys Gly Met Ile Arg Leu Glu Lys Ala Arg 625 630 635 640 Val Thr Glu Gln Pro Arg Ser Glu Phe Ala Ser Cys Val Leu Glu Pro 645 650 655 Glu Val Trp Arg Asp Val Glu Ala Ala Leu Asp Ile Glu Leu Gly Glu 660 665 670 Val Ala Cys Ala Cys Asn Ala Arg Phe Val Gln Gly Val Val Leu Ser 675 680 685 Asn Gln Ala Gly Leu Asn Val Arg Glu Gln Val Ala Gly Ala Ser Val 690 695 700 Gly Leu Tyr Thr Lys Asp Arg Ser Asn Leu Lys Trp Gly Asn Ser Glu 705 710 715 720 Leu Leu Ser Asn Gly Trp Gly Arg Ser Leu Ser Val Trp Met Glu Ile 725 730 735 Asn Ser Val Ser Gln Lys Phe Asp Val Ala Val Arg Leu Ser Tyr Ser 740 745 750 Lys Glu Thr Gln Met Asn Val Leu Leu Pro Ser Leu Asp Gly Ile Glu 755 760 765 Arg Gly Ala Gly Ala Thr Val Val Asn Leu Arg Lys Cys Gly Ala Phe 770 775 780 Ile Val Arg Cys Ala Arg Gly Trp Arg Leu Ala Leu Ala Trp Met Asp 785 790 795 800 His Ile Cys Leu Glu Val Met Ala Asn Val Ala Tyr Gly His Glu Cys 805 810 815 Tyr Met Arg Ser Trp Gly Thr Met Asp Val Val Val Phe Leu Lys Arg 820 825 830 Ala Thr Val Ser Glu Gln Val Thr Phe Glu Ser Ala Gln Glu Val Gly 835 840 845 Pro Ile Glu Gly Lys Ser Asp Ser Gly Ala Pro Gly Val Gly Val Asn 850 855 860 Leu Asp Leu Gly Gly Val Val Gly Ser Glu Tyr Pro Ala Asn Gly Ala 865 870 875 880 Glu Arg Tyr Lys Arg Val Ser Gly Pro Gly Asp Gly Cys Cys Cys Trp 885 890 895 His Ser Phe Ala Tyr Leu Val Gly Met His His Met Glu Leu Lys Arg 900 905 910 Leu Cys Thr Ser His Val Phe Glu Asn Ala Ala Leu Asn Val Glu Leu 915 920 925 Glu Gln Cys Lys Ala Ser Gly Ala Phe Val Thr His Ala Ala Ile Leu 930 935 940 Ala Thr Ala Leu Arg Leu Arg Ala Glu Ile Arg Val His Asn Ala Gly 945 950 955 960 Thr Gly Arg Val His Arg Phe Ala Pro Lys Gln Lys Asn Met Ala Leu 965 970 975 Asp Leu Trp Leu Glu Ser Glu His Tyr Glu Pro Gln Val Leu Arg Asn 980 985 990 Gly Cys Val Ile Glu Ser Val Ala Gln Ala Leu Gly Thr Arg Asn Ala 995 1000 1005 Asp Ile Leu Ala Val Val Glu Glu Arg Cys Cys Glu Glu Val Val Glu 1010 1015 1020 Ser Val Gln Ala Gly Leu Gly Leu Asn Leu His His Val Glu Ile Val 1025 1030 1035 1040 Leu Gln Cys Phe Asp Ile Val Gly His Cys Asn Leu Gly Asp Lys Glu 1045 1050 1055 Ile Thr Leu Asn Ala Gly Gly Lys Met Pro Phe Cys Phe Asp Ile Ser 1060 1065 1070 Asp Glu His Met Ser Phe Cys Gly Arg Arg Lys Asp Pro Ile Cys Lys 1075 1080 1085 Leu Val Ser Gly Ala Leu His Gly Lys Met Phe Ala Glu Ser Ala Leu 1090 1095 1100 Leu Asp Leu Glu Asn Cys Gly Leu Lys Ile Asp Phe Glu Pro Asn Trp 1105 1110 1115 1120 Asn Arg Ala Gly Met Leu Ala Asp Ser Met Tyr Gln Gly Ala Thr Gly 1125 1130 1135 Val Leu Gly Ser Ala Leu Phe Asn Asn Lys Arg Asn Met Arg Glu Lys 1140 1145 1150 Phe Val Arg Asn Val Ser Leu Ser Leu His Ala Ile Val Gly Thr Phe 1155 1160 1165 Gly Ser Gly Lys Ser Thr Leu Phe Lys Asn Leu Leu Lys Tyr Gly Ala 1170 1175 1180 Gly Lys Ser Leu Asp Phe Val Ser Pro Arg Arg Ala Leu Ala Glu Asp 1185 1190 1195 1200 Phe Lys Arg Thr Val Gly Met Asn Glu Arg Gly Gly Arg Ala Lys Ala 1205 1210 1215 Gly Gln Glu Asn Trp Arg Val Thr Thr Leu Glu Thr Phe Leu Ala Arg 1220 1225 1230 Val Glu Phe Leu Thr Glu Gly Gln Val Val Ile Leu Asp Glu Met Gln 1235 1240 1245 Leu Tyr Pro Pro Gly Tyr Phe Asp Leu Val Val Ser Met Leu Lys Val 1250 1255 1260 Asp Val Arg Leu Phe Leu Val Gly Asp Pro Ala Gln Ser Asp Tyr Asp 1265 1270 1275 1280 Ser Glu Lys Asp Arg Leu Val Leu Gly Ala Met Glu Glu Asn Met Ser 1285 1290 1295 Val Val Leu Gly Ala Arg Glu Tyr Asn Tyr Lys Val Arg Ser His Arg 1300 1305 1310 Phe Leu Asn Cys Asn Phe Ile Gly Arg Leu Pro Cys Glu Ile Asn Lys 1315 1320 1325 Asp Asp Cys Thr Ile Asp Glu Pro His Ile Met Arg Met His Leu Glu 1330 1335 1340 Asn Leu Leu Asp Val Ala Glu Glu Tyr Lys Ser Val Val Leu Val Ser 1345 1350 1355 1360 Ser Phe Asp Glu Lys Met Val Val Cys Ala His Leu Pro Glu Ala Lys 1365 1370 1375 Val Leu Thr Phe Gly Glu Ser Thr Gly Leu Thr Phe Met His Gly Thr 1380 1385 1390 Ile Tyr Ile Ser Ala Val Ser Glu Arg Thr Asn Glu Arg Arg Trp Ile 1395 1400 1405 Thr Ala Leu Arg Arg Phe Arg Phe Asn Leu Cys Phe Val Asn Cys Ser 1410 1415 1420 Gly Met Asp Tyr Gln Gln Leu Ala Gly Arg Tyr Lys Gly Arg Val Arg 1425 1430 1435 1440 Ser Lys Phe Leu Cys Lys Thr Ala Ile Pro Asp Asp Leu Asn Ser Met 1445 1450 1455 Leu Pro Gly Gln Ala Leu Phe Lys Ser Glu Tyr Pro Arg Leu Ile Gly 1460 1465 1470 Lys Asp Glu Gly Val Arg Glu Glu Lys Leu Ala Gly Asp Pro Trp Leu 1475 1480 1485 Lys Thr Met Ile Asn Leu Tyr Gln Ala Pro Glu Val Glu Ile Ala Glu 1490 1495 1500 Glu Pro Glu Val Val Met Gln Glu Glu Trp Phe Arg Thr His Leu Pro 1505 1510 1515 1520 Arg Asp Glu Leu Glu Ser Val Arg Ala Gln Trp Val His Lys Ile Leu 1525 1530 1535 Ala Lys Glu Tyr Arg Glu Val Arg Met Gly Asp Met Val Ser Glu Gln 1540 1545 1550 Phe Thr His Asp His Thr Lys Gln Leu Gly Ala Lys Gln Leu Thr Asn 1555 1560 1565 Ala Ala Glu Arg Phe Glu Thr Ile Tyr Pro Arg His Arg Ala Ser Asp 1570 1575 1580 Thr Val Thr Phe Leu Met Ala Val Lys Lys Arg Leu Ser Phe Ser Asn 1585 1590 1595 1600 Pro Gly Lys Glu Lys Gly Asn Leu Phe His Ala Ala Ser Tyr Gly Lys 1605 1610 1615 Ala Leu Leu Ser Glu Phe Leu Lys Arg Val Pro Leu Lys Pro Asn His 1620 1625 1630 Asn Val Arg Phe Met Glu Glu Ala Leu Trp Asn Phe Glu Glu Lys Lys 1635 1640 1645 Leu Ser Lys Ser Ala Ala Thr Ile Glu Asn His Ser Gly Arg Ser Cys 1650 1655 1660 Arg Asp Trp Pro Thr Asp Val Ala Gln Ile Phe Ser Lys Ser Gln Leu 1665 1670 1675 1680 Cys Thr Lys Phe Asp Asn Arg Phe Arg Val Ala Lys Ala Ala Gln Ser 1685 1690 1695 Ile Val Cys Phe Gln His Ala Val Leu Cys Arg Phe Ala Pro Tyr Met 1700 1705 1710 Arg Tyr Ile Glu Met Lys Val His Glu Val Leu Pro Lys Asn Tyr Tyr 1715 1720 1725 Ile His Ser Gly Lys Gly Leu Glu Glu Leu Asp Ala Trp Val Lys Lys 1730 1735 1740 Gly Lys Phe Asp Arg Ile Cys Thr Glu Ser Asp Tyr Glu Ala Phe Asp 1745 1750 1755 1760 Ala Ser Gln Asp Glu Phe Ile Met Ala Phe Glu Leu Glu Leu Met Lys 1765 1770 1775 Tyr Leu Arg Leu Pro Ser Asp Leu Ile Glu Asp Tyr Lys Phe Ile Lys 1780 1785 1790 Thr Ser Leu Gly Ser Lys Leu Gly Asn Phe Ala Ile Met Arg Phe Ser 1795 1800 1805 Gly Glu Ala Ser Thr Phe Leu Phe Asn Thr Leu Ala Asn Met Leu Phe 1810 1815 1820 Thr Phe Met Arg Tyr Asn Ile Arg Gly Asp Glu Phe Ile Cys Phe Ala 1825 1830 1835 1840 Gly Asp Asp Met Cys Ala Ser Arg Arg Leu Gln Pro Thr Lys Lys Phe 1845 1850 1855 Ala His Phe Leu Asp Lys Leu Lys Leu Lys Ala Lys Val Gln Phe Val 1860 1865 1870 Gln Phe Val Asn Lys Pro Thr Phe Cys Gly Trp His Leu Cys Pro Asp 1875 1880 1885 Gly Ile Tyr Lys Lys Pro Gln Leu Val Leu Glu Arg Met Cys Ile Ala 1890 1895 1900 Lys Glu Met Asn Asn Leu Ser Asn Cys Ile Asp Asn Tyr Ala Ile Glu 1905 1910 1915 1920 Val Ala Tyr Ala Tyr Lys Leu Gly Glu Lys Ala Val Asn Arg Met Asp 1925 1930 1935 Glu Glu Glu Val Ala Ala Phe Tyr Asn Cys Val Arg Ile Ile Val Arg 1940 1945 1950 Asn Lys His Leu Ile Arg Ser Asp Val Lys Gln Val Phe Glu Val Leu 1955 1960 1965 16 6435 DNA Potato virus X CDS (85)..(4455) 16 gaaaactaaa ccatacacca acaacacaac caaacccacc acgcccaatt gttacacacc 60 cgcttggaaa agtaagtcta acaa atg gcc aaa gtg cgc gag gtt tac caa 111 Met Ala Lys Val Arg Glu Val Tyr Gln 1 5 tcc ttt aca gac tcc acc aca aaa act ctc atc caa gat gag gct tat 159 Ser Phe Thr Asp Ser Thr Thr Lys Thr Leu Ile Gln Asp Glu Ala Tyr 10 15 20 25 aga aat att cgt ccc atc atg gaa aaa cat aaa cta gct aac ccg tac 207 Arg Asn Ile Arg Pro Ile Met Glu Lys His Lys Leu Ala Asn Pro Tyr 30 35 40 gct caa acg gtt gaa gcg gct aat gat cta gag ggg ttc ggc ata gcc 255 Ala Gln Thr Val Glu Ala Ala Asn Asp Leu Glu Gly Phe Gly Ile Ala 45 50 55 acc aat ccc tat agc att gaa ttg cat aca cat gca gcc gct aag acc 303 Thr Asn Pro Tyr Ser Ile Glu Leu His Thr His Ala Ala Ala Lys Thr 60 65 70 ata gag aac aaa ctt cta gag gtg ctt ggt tcc atc cta cca caa gaa 351 Ile Glu Asn Lys Leu Leu Glu Val Leu Gly Ser Ile Leu Pro Gln Glu 75 80 85 cct gtt aca ttt atg ttc ctt aaa ccc agg aag cta aac tac atg aga 399 Pro Val Thr Phe Met Phe Leu Lys Pro Arg Lys Leu Asn Tyr Met Arg 90 95 100 105 aga aac ccg cgg atc aag gac att ttc cac aat gtt gcc att gaa ccg 447 Arg Asn Pro Arg Ile Lys Asp Ile Phe His Asn Val Ala Ile Glu Pro 110 115 120 aga gat gta gca agg tac ccc aag gaa aca ata att gac aaa ctc aca 495 Arg Asp Val Ala Arg Tyr Pro Lys Glu Thr Ile Ile Asp Lys Leu Thr 125 130 135 gag atc aca acg gac aca gca tac atc ggt gac act ctg cac ttc ttg 543 Glu Ile Thr Thr Asp Thr Ala Tyr Ile Gly Asp Thr Leu His Phe Leu 140 145 150 gat ccg agc tac ata gtg gag aca ttc caa aac tgc cca aaa ttg caa 591 Asp Pro Ser Tyr Ile Val Glu Thr Phe Gln Asn Cys Pro Lys Leu Gln 155 160 165 aca ttg tat gca acc tta gtt ctc ccc gtt gag gcc gcc ttc aaa atg 639 Thr Leu Tyr Ala Thr Leu Val Leu Pro Val Glu Ala Ala Phe Lys Met 170 175 180 185 gaa agc act cac ccg aat ata tac agc ctt aaa tac ttc gga gat ggt 687 Glu Ser Thr His Pro Asn Ile Tyr Ser Leu Lys Tyr Phe Gly Asp Gly 190 195 200 ttc cag tat ata cca ggc aac cat ggt ggt gga gca tac cat cat gaa 735 Phe Gln Tyr Ile Pro Gly Asn His Gly Gly Gly Ala Tyr His His Glu 205 210 215 ttt tct cat tta caa tgg ctc aaa gtg gga aag atc aag tgg agg gac 783 Phe Ser His Leu Gln Trp Leu Lys Val Gly Lys Ile Lys Trp Arg Asp 220 225 230 ccc aag gat agc ttt ctc ggg cat ctc aat tac acg act gag cag gtt 831 Pro Lys Asp Ser Phe Leu Gly His Leu Asn Tyr Thr Thr Glu Gln Val 235 240 245 gag atg cac aca gtg aca gta cag ttg cag gaa tcg ttc gcg gca aac 879 Glu Met His Thr Val Thr Val Gln Leu Gln Glu Ser Phe Ala Ala Asn 250 255 260 265 cac ttg tac tgc atc agg aga gga gac tta ctc aca ccg gag gta cgc 927 His Leu Tyr Cys Ile Arg Arg Gly Asp Leu Leu Thr Pro Glu Val Arg 270 275 280 act ttc ggc caa cct gac agg tat gtg att cca cca cag atc ttt ctt 975 Thr Phe Gly Gln Pro Asp Arg Tyr Val Ile Pro Pro Gln Ile Phe Leu 285 290 295 ccg aaa gtt cac aac tgc aag aag ccg att ctt aag aaa act atg atg 1023 Pro Lys Val His Asn Cys Lys Lys Pro Ile Leu Lys Lys Thr Met Met 300 305 310 cag ctc ttc ttg tat gtt agg aca gtc aag gtc gca aaa aat tgt gac 1071 Gln Leu Phe Leu Tyr Val Arg Thr Val Lys Val Ala Lys Asn Cys Asp 315 320 325 att ttt gcc aaa gtc aga caa tta att aaa tca tct gac ttg gac aaa 1119 Ile Phe Ala Lys Val Arg Gln Leu Ile Lys Ser Ser Asp Leu Asp Lys 330 335 340 345 tat tct gct gtg gaa ctg gtt tac tta gta agc tat atg gag ttc ctt 1167 Tyr Ser Ala Val Glu Leu Val Tyr Leu Val Ser Tyr Met Glu Phe Leu 350 355 360 gcc gat tta caa gcc acc acc tgc ttc tca gac aca ctt tct ggt ggc 1215 Ala Asp Leu Gln Ala Thr Thr Cys Phe Ser Asp Thr Leu Ser Gly Gly 365 370 375 ttg cta aca aag acc ctt gca ccg gtg agg gct tgg ata caa gag aaa 1263 Leu Leu Thr Lys Thr Leu Ala Pro Val Arg Ala Trp Ile Gln Glu Lys 380 385 390 aag atg caa cta ttt ggt ctt gag gac tac gcg aag tta gtc aaa gca 1311 Lys Met Gln Leu Phe Gly Leu Glu Asp Tyr Ala Lys Leu Val Lys Ala 395 400 405 gtt gat ttc cac cca gtg gat ttt tct ttc aag gtg gaa act tgg gac 1359 Val Asp Phe His Pro Val Asp Phe Ser Phe Lys Val Glu Thr Trp Asp 410 415 420 425 ttc aga ttc cac cca ttg caa gcg tgg aaa gcc ttc cga cca agg gaa 1407 Phe Arg Phe His Pro Leu Gln Ala Trp Lys Ala Phe Arg Pro Arg Glu 430 435 440 gtg tcg gac gta gag gaa atg gaa aat ttg ttc tct gat ggg gac ctg 1455 Val Ser Asp Val Glu Glu Met Glu Asn Leu Phe Ser Asp Gly Asp Leu 445 450 455 ctc gat tgc ttc acg aga atg cca gct tat gca gta aac gca gag gaa 1503 Leu Asp Cys Phe Thr Arg Met Pro Ala Tyr Ala Val Asn Ala Glu Glu 460 465 470 gat ttg gct gca atc agg aaa acg ccg gag atg gat gcc ggt caa gaa 1551 Asp Leu Ala Ala Ile Arg Lys Thr Pro Glu Met Asp Ala Gly Gln Glu 475 480 485 gtt aag gaa cct gca gga gac aga aat caa tac tca aac cct gca gaa 1599 Val Lys Glu Pro Ala Gly Asp Arg Asn Gln Tyr Ser Asn Pro Ala Glu 490 495 500 505 act ttc ctc agc aag ctc cac agg aaa cac agt agg gag gtg aaa cat 1647 Thr Phe Leu Ser Lys Leu His Arg Lys His Ser Arg Glu Val Lys His 510 515 520 cag gcc gca aag aaa gct aaa cgc cta gcc gaa atc cag gag tcc atg 1695 Gln Ala Ala Lys Lys Ala Lys Arg Leu Ala Glu Ile Gln Glu Ser Met 525 530 535 aga gct gaa ggt gag gcc gaa tca aat gag atg agc ggg ggc atg ggg 1743 Arg Ala Glu Gly Glu Ala Glu Ser Asn Glu Met Ser Gly Gly Met Gly 540 545 550 gca ata ccc agt aac gcc gaa ctt ccc agc aca agt ggt gcc aga caa 1791 Ala Ile Pro Ser Asn Ala Glu Leu Pro Ser Thr Ser Gly Ala Arg Gln 555 560 565 gaa ctc aca ctc cca acc act aag cct gtt cct gca agg tgg gaa gat 1839 Glu Leu Thr Leu Pro Thr Thr Lys Pro Val Pro Ala Arg Trp Glu Asp 570 575 580 585 gcc tca ttc aca gac tct agt gtg gaa gag gag cag gtg aaa ctc cct 1887 Ala Ser Phe Thr Asp Ser Ser Val Glu Glu Glu Gln Val Lys Leu Pro 590 595 600 gga aaa gaa gcc gtt gag aca gca acg caa caa gtc atc gaa gga ctc 1935 Gly Lys Glu Ala Val Glu Thr Ala Thr Gln Gln Val Ile Glu Gly Leu 605 610 615 cct tgg aaa cac tgg att cct caa cta aat gct gtt gga ttc aag gcg 1983 Pro Trp Lys His Trp Ile Pro Gln Leu Asn Ala Val Gly Phe Lys Ala 620 625 630 ctg gag att cag agg gat cga agt gga aca atg atc atg ccc atc aca 2031 Leu Glu Ile Gln Arg Asp Arg Ser Gly Thr Met Ile Met Pro Ile Thr 635 640 645 gaa atg gtc tcc ggg ttg gaa aaa gag gat ttc ccg gaa gga act cca 2079 Glu Met Val Ser Gly Leu Glu Lys Glu Asp Phe Pro Glu Gly Thr Pro 650 655 660 665 aaa gag ttg gca cga gaa ttg ctc gct atg aac aga agc cct gcc acc 2127 Lys Glu Leu Ala Arg Glu Leu Leu Ala Met Asn Arg Ser Pro Ala Thr 670 675 680 atc cct ttg gac ctg ctt aga gcc aga gac tac ggc agt gat gtg aaa 2175 Ile Pro Leu Asp Leu Leu Arg Ala Arg Asp Tyr Gly Ser Asp Val Lys 685 690 695 aac aag aga att ggt gcc atc aca aag aca caa gca gca agt tgg ggc 2223 Asn Lys Arg Ile Gly Ala Ile Thr Lys Thr Gln Ala Ala Ser Trp Gly 700 705 710 gag tac cta aca gga aag ata gaa agc ctg act gag agg aaa gtt gcg 2271 Glu Tyr Leu Thr Gly Lys Ile Glu Ser Leu Thr Glu Arg Lys Val Ala 715 720 725 gcc tgc gtc att cat gga gct gga ggc tca ggg aaa agt cat gcc atc 2319 Ala Cys Val Ile His Gly Ala Gly Gly Ser Gly Lys Ser His Ala Ile 730 735 740 745 cag aag gca ttg aga gaa att ggc aag ggc tca gac atc act gtc gtc 2367 Gln Lys Ala Leu Arg Glu Ile Gly Lys Gly Ser Asp Ile Thr Val Val 750 755 760 ctg ccg acc aat gaa ctg cga cta gat tgg agt aag aaa gtg cct aac 2415 Leu Pro Thr Asn Glu Leu Arg Leu Asp Trp Ser Lys Lys Val Pro Asn 765 770 775 act gaa cca tat atg ttc aaa acc tat gaa aag gcg tta att ggg gga 2463 Thr Glu Pro Tyr Met Phe Lys Thr Tyr Glu Lys Ala Leu Ile Gly Gly 780 785 790 act ggc agt ata gtc atc ttt gac gat tac tca aaa ctt cct ccc ggt 2511 Thr Gly Ser Ile Val Ile Phe Asp Asp Tyr Ser Lys Leu Pro Pro Gly 795 800 805 tac atc gaa gcc tta atc tgt ttc tac tct aaa atc aag cta gtc att 2559 Tyr Ile Glu Ala Leu Ile Cys Phe Tyr Ser Lys Ile Lys Leu Val Ile 810 815 820 825 cta aca gga gat agc aga cag agc gtc tat cac gaa act gct gaa gac 2607 Leu Thr Gly Asp Ser Arg Gln Ser Val Tyr His Glu Thr Ala Glu Asp 830 835 840 gcc tcc atc agg cat ttg gga ccg gcg aca gag tac ttc tca aaa tac 2655 Ala Ser Ile Arg His Leu Gly Pro Ala Thr Glu Tyr Phe Ser Lys Tyr 845 850 855 tgc aga tac tat ctc aat gct aca cac cgc aat aag aag gac ctt gca 2703 Cys Arg Tyr Tyr Leu Asn Ala Thr His Arg Asn Lys Lys Asp Leu Ala 860 865 870 aac atg ctt ggt gtc tac agt gag aga acg gga gtc acc gaa atc agc 2751 Asn Met Leu Gly Val Tyr Ser Glu Arg Thr Gly Val Thr Glu Ile Ser 875 880 885 atg agc gcc gag ttc tta gaa gga atc cca act tta gta ccc tcg gat 2799 Met Ser Ala Glu Phe Leu Glu Gly Ile Pro Thr Leu Val Pro Ser Asp 890 895 900 905 gag aag aga agg ctg tac atg ggc act ggg agg aat gac aca ttc aca 2847 Glu Lys Arg Arg Leu Tyr Met Gly Thr Gly Arg Asn Asp Thr Phe Thr 910 915 920 tac gct gga tgt cag ggg cta act aag ccg aaa gta caa ata gtg ttg 2895 Tyr Ala Gly Cys Gln Gly Leu Thr Lys Pro Lys Val Gln Ile Val Leu 925 930 935 gac cac aac acc caa gtg tgt agc gcg aat gtg atg tac acg gca ctt 2943 Asp His Asn Thr Gln Val Cys Ser Ala Asn Val Met Tyr Thr Ala Leu 940 945 950 tct aga gcc acc gac agg att cac ttc gtg aac aca agt gca aac tct 2991 Ser Arg Ala Thr Asp Arg Ile His Phe Val Asn Thr Ser Ala Asn Ser 955 960 965 tcg gcc ttc tgg gaa aag tta gac agc acc cct tat ctc aag act ttc 3039 Ser Ala Phe Trp Glu Lys Leu Asp Ser Thr Pro Tyr Leu Lys Thr Phe 970 975 980 985 cta tca gtg gtg aga gaa caa gcg ctc aag gag tac gag ccg gca gag 3087 Leu Ser Val Val Arg Glu Gln Ala Leu Lys Glu Tyr Glu Pro Ala Glu 990 995 1000 gca gag cca att cga gag cct gag ccc cag aca cac atg tgt gtc gag 3135 Ala Glu Pro Ile Arg Glu Pro Glu Pro Gln Thr His Met Cys Val Glu 1005 1010 1015 aat gag gag tcc gtg cta gag gag tac aaa gag gaa ctc ttg gaa aag 3183 Asn Glu Glu Ser Val Leu Glu Glu Tyr Lys Glu Glu Leu Leu Glu Lys 1020 1025 1030 ttc gac aga gag atc cac tct gaa tcc cat ggt cat tcg aac tgt gtc 3231 Phe Asp Arg Glu Ile His Ser Glu Ser His Gly His Ser Asn Cys Val 1035 1040 1045 caa act gaa gac aca acc att cag ttg ttt tcg cat caa caa gca aaa 3279 Gln Thr Glu Asp Thr Thr Ile Gln Leu Phe Ser His Gln Gln Ala Lys 1050 1055 1060 1065 gat gag acc ctc ctc tgg gca act ata gat gcg cgg ctc aag acc agc 3327 Asp Glu Thr Leu Leu Trp Ala Thr Ile Asp Ala Arg Leu Lys Thr Ser 1070 1075 1080 aat caa gaa aca aac ttc cga gaa ttc ttg agc aag aag gac att ggg 3375 Asn Gln Glu Thr Asn Phe Arg Glu Phe Leu Ser Lys Lys Asp Ile Gly 1085 1090 1095 gac gtt ctg ttt ttg aac tac caa aaa gct atg ggt ttg ccc aaa gag 3423 Asp Val Leu Phe Leu Asn Tyr Gln Lys Ala Met Gly Leu Pro Lys Glu 1100 1105 1110 cgt att ccc ttc tca caa gag gtc tgg gaa gct tgt gcc cac gaa gta 3471 Arg Ile Pro Phe Ser Gln Glu Val Trp Glu Ala Cys Ala His Glu Val 1115 1120 1125 cag agc aag tac ctc agt aag tca aag tgc aac tta atc aat ggg act 3519 Gln Ser Lys Tyr Leu Ser Lys Ser Lys Cys Asn Leu Ile Asn Gly Thr 1130 1135 1140 1145 gtg aga cag agt cca gac ttt gac gaa aac aaa att atg gta ttc ctc 3567 Val Arg Gln Ser Pro Asp Phe Asp Glu Asn Lys Ile Met Val Phe Leu 1150 1155 1160 aag tcg cag tgg gtc aca aag gtg gaa aag cta ggt cta ccc aaa att 3615 Lys Ser Gln Trp Val Thr Lys Val Glu Lys Leu Gly Leu Pro Lys Ile 1165 1170 1175 aag cca ggt caa acc ata gca gct ttt tat cag cag act gtg atg ctt 3663 Lys Pro Gly Gln Thr Ile Ala Ala Phe Tyr Gln Gln Thr Val Met Leu 1180 1185 1190 ttt gga act atg gcc agg tac atg cga tgg ttc aga cag gct ttc cag 3711 Phe Gly Thr Met Ala Arg Tyr Met Arg Trp Phe Arg Gln Ala Phe Gln 1195 1200 1205 cca aaa gaa gtc ttc ata aac tgt gag act acg cca gag gac atg tct 3759 Pro Lys Glu Val Phe Ile Asn Cys Glu Thr Thr Pro Glu Asp Met Ser 1210 1215 1220 1225 gca tgg gcc ttg aac aac tgg aac ttc agc aga cct agc ttg gct aat 3807 Ala Trp Ala Leu Asn Asn Trp Asn Phe Ser Arg Pro Ser Leu Ala Asn 1230 1235 1240 gac tat aca gct ttc gac cag tct cag gat gga gct atg ctg caa ttt 3855 Asp Tyr Thr Ala Phe Asp Gln Ser Gln Asp Gly Ala Met Leu Gln Phe 1245 1250 1255 gag gtg ctc aag gcc aag cac cac tgc ata cca gag gaa atc atc caa 3903 Glu Val Leu Lys Ala Lys His His Cys Ile Pro Glu Glu Ile Ile Gln 1260 1265 1270 gca tac ata gac att aag acc aat gca cac att ttc cta ggc aca ttg 3951 Ala Tyr Ile Asp Ile Lys Thr Asn Ala His Ile Phe Leu Gly Thr Leu 1275 1280 1285 tca att atg cgc ctg act ggt gaa ggt ccc act ttt gat gca aac act 3999 Ser Ile Met Arg Leu Thr Gly Glu Gly Pro Thr Phe Asp Ala Asn Thr 1290 1295 1300 1305 gag tgt aac ata gcg tac acc cat aca aag ttc gac atc cca gcc gga 4047 Glu Cys Asn Ile Ala Tyr Thr His Thr Lys Phe Asp Ile Pro Ala Gly 1310 1315 1320 act gcc caa gtg tat gca gga gat gac tca gca ctg gat tgc gtt cca 4095 Thr Ala Gln Val Tyr Ala Gly Asp Asp Ser Ala Leu Asp Cys Val Pro 1325 1330 1335 gag gtg aag cat agt ttc cac agg ctt gaa gac aaa tta ctc ctc aag 4143 Glu Val Lys His Ser Phe His Arg Leu Glu Asp Lys Leu Leu Leu Lys 1340 1345 1350 tca aag ccc gta atc aca caa caa aag aaa ggc agt tgg cct gaa ttt 4191 Ser Lys Pro Val Ile Thr Gln Gln Lys Lys Gly Ser Trp Pro Glu Phe 1355 1360 1365 tgt ggt tgg ctg att aca cca aaa ggg gta atg aaa gac cca att aag 4239 Cys Gly Trp Leu Ile Thr Pro Lys Gly Val Met Lys Asp Pro Ile Lys 1370 1375 1380 1385 ctc cat gtt agc tta aaa ttg gcc gaa gct aag ggt gaa ctc aag aaa 4287 Leu His Val Ser Leu Lys Leu Ala Glu Ala Lys Gly Glu Leu Lys Lys 1390 1395 1400 tgt caa gat tcc tat gaa att gat ctg agt tat gct tat gac cac aag 4335 Cys Gln Asp Ser Tyr Glu Ile Asp Leu Ser Tyr Ala Tyr Asp His Lys 1405 1410 1415 gac tct ctg cat gac ttg ttc gat gag aaa cag tgt cag gca cat aca 4383 Asp Ser Leu His Asp Leu Phe Asp Glu Lys Gln Cys Gln Ala His Thr 1420 1425 1430 ctc act tgc agg aca cta atc aag tca ggg aga ggc act gtc tca ctt 4431 Leu Thr Cys Arg Thr Leu Ile Lys Ser Gly Arg Gly Thr Val Ser Leu 1435 1440 1445 ccc cgc ctc agg aac ttt ctt taa ccgttaagtt accttagaga tttgaataag 4485 Pro Arg Leu Arg Asn Phe Leu 1450 1455 atggatattc tcatcattag tttgaaaagt ttaggttatt ctaggactca taaatcttta 4545 gattcaggac ctttggtagt acatgcagta gccggagccg gtaagtccac agccctaagg 4605 aagttgatcc tcagacaccc aacattcact gtgcatacac tcggtgtccc tgacaaggtg 4665 agcatcagaa ctagaggcat acagaagcca ggacctattc ctgagggcaa tttcgcaatc 4725 ctcgatgagt atactttgga caacaccaca aggaactcat accaggcact ttttgctgac 4785 ccttatcagg cacctgagtt tagcctagag ccccacttct acttggaaac ctcatttcga 4845 gttccgagga aagtggcaga tttgatagca ggctgtggct tcgatttcga gaccaactca 4905 caggaagaag ggcacttaga gatcactggc atatttaaag ggcccctact tgggaaggtg 4965 atagccattg acgaggagtc cgagacaaca ctgtccaaac atggtgttga gtttgttaag 5025 ccctgccaag tgactggact tgagttcaaa gtagtcactg ttgtgtctgc cgcaccaata 5085 gaggaaattg gccagtccac agctttctac aacgccatca ccaggtcaaa gggactgaca 5145 tatgtccgcg cagggacata gactcaccgc tccggtcaat tctgaaaaag tgtacatagt 5205 attaggtcta tcatttgctt tagtttcaat tacctttctg ctttctagaa atagtttacc 5265 ccacgtaggt gataacattc acagtttacc acacggagga gcttacagag acggcaccaa 5325 agcaatcttg tacaactcac caaatctagg gtcacgagtg agtctacaca acggaaagaa 5385 cgcagcattt gctgccgttt tactactgac tttactgatc tatggaagca aatacatatc 5445 tcaacgcaat catacttgtg cttgtggtaa caatcatagc agtcattagt acttccttag 5505 tgaggactga accttgtgtc atcaagatta ctggagaatc aatcacagtg ttggcttgca 5565 aattagatgc agaaaccatc agagccattg ccgatctcaa gccactctcc gttgaacggt 5625 taagtttcca ttgatactcg aaagatgtca gcaccagcta gcacaacaca ggccacaggg 5685 tcaactacct caactaccac aaaaactgca ggcgcaactc ctgccacagc ttcaggactg 5745 ttcaccatcc cggatgggga tttctttagt acagcccgtg ctgtagtagc cagcgatgcc 5805 gttgcgacga atgaggacct cagcgagatt gaggctgtct ggaaggacat gaaggtgccc 5865 acagacacta tggcacaggc tgcttgggac ttagtcagac actgtgctga tgtgggctca 5925 tctgctcaaa cagaaatgat agatacgggt ccctactcca acggcatcag cagagccaga 5985 ctggcagcag caatcaaaga ggtgtgcaca cttaggcaat tttgcatgaa gtatgcccca 6045 gtggtatgga actggatgct gactaacaac agtccacctg ctaactggca agcgcaaggt 6105 ttcaagcctg agcacaaatt cgctgcattc gacttcttca atggagtcac caacccagct 6165 gccatcatgc ccaaagaggg gctcattcgg ccaccgtctg aagctgaaat gaatgctgcc 6225 caaactgctg cctttgtgaa gattacaaag gccagggcac aatccaacga ctttgccagc 6285 ctagatgcag ctgtcactcg aggtcgtatc actggaacaa caaccgctga ggctgttgtc 6345 actctaccac caccataact acgtctacat aaccgacgcc taccccagtt tcatagtatt 6405 ttctggtttg attgtatgaa taatataaat 6435 17 1456 PRT Potato virus X 17 Met Ala Lys Val Arg Glu Val Tyr Gln Ser Phe Thr Asp Ser Thr Thr 1 5 10 15 Lys Thr Leu Ile Gln Asp Glu Ala Tyr Arg Asn Ile Arg Pro Ile Met 20 25 30 Glu Lys His Lys Leu Ala Asn Pro Tyr Ala Gln Thr Val Glu Ala Ala 35 40 45 Asn Asp Leu Glu Gly Phe Gly Ile Ala Thr Asn Pro Tyr Ser Ile Glu 50 55 60 Leu His Thr His Ala Ala Ala Lys Thr Ile Glu Asn Lys Leu Leu Glu 65 70 75 80 Val Leu Gly Ser Ile Leu Pro Gln Glu Pro Val Thr Phe Met Phe Leu 85 90 95 Lys Pro Arg Lys Leu Asn Tyr Met Arg Arg Asn Pro Arg Ile Lys Asp 100 105 110 Ile Phe His Asn Val Ala Ile Glu Pro Arg Asp Val Ala Arg Tyr Pro 115 120 125 Lys Glu Thr Ile Ile Asp Lys Leu Thr Glu Ile Thr Thr Asp Thr Ala 130 135 140 Tyr Ile Gly Asp Thr Leu His Phe Leu Asp Pro Ser Tyr Ile Val Glu 145 150 155 160 Thr Phe Gln Asn Cys Pro Lys Leu Gln Thr Leu Tyr Ala Thr Leu Val 165 170 175 Leu Pro Val Glu Ala Ala Phe Lys Met Glu Ser Thr His Pro Asn Ile 180 185 190 Tyr Ser Leu Lys Tyr Phe Gly Asp Gly Phe Gln Tyr Ile Pro Gly Asn 195 200 205 His Gly Gly Gly Ala Tyr His His Glu Phe Ser His Leu Gln Trp Leu 210 215 220 Lys Val Gly Lys Ile Lys Trp Arg Asp Pro Lys Asp Ser Phe Leu Gly 225 230 235 240 His Leu Asn Tyr Thr Thr Glu Gln Val Glu Met His Thr Val Thr Val 245 250 255 Gln Leu Gln Glu Ser Phe Ala Ala Asn His Leu Tyr Cys Ile Arg Arg 260 265 270 Gly Asp Leu Leu Thr Pro Glu Val Arg Thr Phe Gly Gln Pro Asp Arg 275 280 285 Tyr Val Ile Pro Pro Gln Ile Phe Leu Pro Lys Val His Asn Cys Lys 290 295 300 Lys Pro Ile Leu Lys Lys Thr Met Met Gln Leu Phe Leu Tyr Val Arg 305 310 315 320 Thr Val Lys Val Ala Lys Asn Cys Asp Ile Phe Ala Lys Val Arg Gln 325 330 335 Leu Ile Lys Ser Ser Asp Leu Asp Lys Tyr Ser Ala Val Glu Leu Val 340 345 350 Tyr Leu Val Ser Tyr Met Glu Phe Leu Ala Asp Leu Gln Ala Thr Thr 355 360 365 Cys Phe Ser Asp Thr Leu Ser Gly Gly Leu Leu Thr Lys Thr Leu Ala 370 375 380 Pro Val Arg Ala Trp Ile Gln Glu Lys Lys Met Gln Leu Phe Gly Leu 385 390 395 400 Glu Asp Tyr Ala Lys Leu Val Lys Ala Val Asp Phe His Pro Val Asp 405 410 415 Phe Ser Phe Lys Val Glu Thr Trp Asp Phe Arg Phe His Pro Leu Gln 420 425 430 Ala Trp Lys Ala Phe Arg Pro Arg Glu Val Ser Asp Val Glu Glu Met 435 440 445 Glu Asn Leu Phe Ser Asp Gly Asp Leu Leu Asp Cys Phe Thr Arg Met 450 455 460 Pro Ala Tyr Ala Val Asn Ala Glu Glu Asp Leu Ala Ala Ile Arg Lys 465 470 475 480 Thr Pro Glu Met Asp Ala Gly Gln Glu Val Lys Glu Pro Ala Gly Asp 485 490 495 Arg Asn Gln Tyr Ser Asn Pro Ala Glu Thr Phe Leu Ser Lys Leu His 500 505 510 Arg Lys His Ser Arg Glu Val Lys His Gln Ala Ala Lys Lys Ala Lys 515 520 525 Arg Leu Ala Glu Ile Gln Glu Ser Met Arg Ala Glu Gly Glu Ala Glu 530 535 540 Ser Asn Glu Met Ser Gly Gly Met Gly Ala Ile Pro Ser Asn Ala Glu 545 550 555 560 Leu Pro Ser Thr Ser Gly Ala Arg Gln Glu Leu Thr Leu Pro Thr Thr 565 570 575 Lys Pro Val Pro Ala Arg Trp Glu Asp Ala Ser Phe Thr Asp Ser Ser 580 585 590 Val Glu Glu Glu Gln Val Lys Leu Pro Gly Lys Glu Ala Val Glu Thr 595 600 605 Ala Thr Gln Gln Val Ile Glu Gly Leu Pro Trp Lys His Trp Ile Pro 610 615 620 Gln Leu Asn Ala Val Gly Phe Lys Ala Leu Glu Ile Gln Arg Asp Arg 625 630 635 640 Ser Gly Thr Met Ile Met Pro Ile Thr Glu Met Val Ser Gly Leu Glu 645 650 655 Lys Glu Asp Phe Pro Glu Gly Thr Pro Lys Glu Leu Ala Arg Glu Leu 660 665 670 Leu Ala Met Asn Arg Ser Pro Ala Thr Ile Pro Leu Asp Leu Leu Arg 675 680 685 Ala Arg Asp Tyr Gly Ser Asp Val Lys Asn Lys Arg Ile Gly Ala Ile 690 695 700 Thr Lys Thr Gln Ala Ala Ser Trp Gly Glu Tyr Leu Thr Gly Lys Ile 705 710 715 720 Glu Ser Leu Thr Glu Arg Lys Val Ala Ala Cys Val Ile His Gly Ala 725 730 735 Gly Gly Ser Gly Lys Ser His Ala Ile Gln Lys Ala Leu Arg Glu Ile 740 745 750 Gly Lys Gly Ser Asp Ile Thr Val Val Leu Pro Thr Asn Glu Leu Arg 755 760 765 Leu Asp Trp Ser Lys Lys Val Pro Asn Thr Glu Pro Tyr Met Phe Lys 770 775 780 Thr Tyr Glu Lys Ala Leu Ile Gly Gly Thr Gly Ser Ile Val Ile Phe 785 790 795 800 Asp Asp Tyr Ser Lys Leu Pro Pro Gly Tyr Ile Glu Ala Leu Ile Cys 805 810 815 Phe Tyr Ser Lys Ile Lys Leu Val Ile Leu Thr Gly Asp Ser Arg Gln 820 825 830 Ser Val Tyr His Glu Thr Ala Glu Asp Ala Ser Ile Arg His Leu Gly 835 840 845 Pro Ala Thr Glu Tyr Phe Ser Lys Tyr Cys Arg Tyr Tyr Leu Asn Ala 850 855 860 Thr His Arg Asn Lys Lys Asp Leu Ala Asn Met Leu Gly Val Tyr Ser 865 870 875 880 Glu Arg Thr Gly Val Thr Glu Ile Ser Met Ser Ala Glu Phe Leu Glu 885 890 895 Gly Ile Pro Thr Leu Val Pro Ser Asp Glu Lys Arg Arg Leu Tyr Met 900 905 910 Gly Thr Gly Arg Asn Asp Thr Phe Thr Tyr Ala Gly Cys Gln Gly Leu 915 920 925 Thr Lys Pro Lys Val Gln Ile Val Leu Asp His Asn Thr Gln Val Cys 930 935 940 Ser Ala Asn Val Met Tyr Thr Ala Leu Ser Arg Ala Thr Asp Arg Ile 945 950 955 960 His Phe Val Asn Thr Ser Ala Asn Ser Ser Ala Phe Trp Glu Lys Leu 965 970 975 Asp Ser Thr Pro Tyr Leu Lys Thr Phe Leu Ser Val Val Arg Glu Gln 980 985 990 Ala Leu Lys Glu Tyr Glu Pro Ala Glu Ala Glu Pro Ile Arg Glu Pro 995 1000 1005 Glu Pro Gln Thr His Met Cys Val Glu Asn Glu Glu Ser Val Leu Glu 1010 1015 1020 Glu Tyr Lys Glu Glu Leu Leu Glu Lys Phe Asp Arg Glu Ile His Ser 1025 1030 1035 1040 Glu Ser His Gly His Ser Asn Cys Val Gln Thr Glu Asp Thr Thr Ile 1045 1050 1055 Gln Leu Phe Ser His Gln Gln Ala Lys Asp Glu Thr Leu Leu Trp Ala 1060 1065 1070 Thr Ile Asp Ala Arg Leu Lys Thr Ser Asn Gln Glu Thr Asn Phe Arg 1075 1080 1085 Glu Phe Leu Ser Lys Lys Asp Ile Gly Asp Val Leu Phe Leu Asn Tyr 1090 1095 1100 Gln Lys Ala Met Gly Leu Pro Lys Glu Arg Ile Pro Phe Ser Gln Glu 1105 1110 1115 1120 Val Trp Glu Ala Cys Ala His Glu Val Gln Ser Lys Tyr Leu Ser Lys 1125 1130 1135 Ser Lys Cys Asn Leu Ile Asn Gly Thr Val Arg Gln Ser Pro Asp Phe 1140 1145 1150 Asp Glu Asn Lys Ile Met Val Phe Leu Lys Ser Gln Trp Val Thr Lys 1155 1160 1165 Val Glu Lys Leu Gly Leu Pro Lys Ile Lys Pro Gly Gln Thr Ile Ala 1170 1175 1180 Ala Phe Tyr Gln Gln Thr Val Met Leu Phe Gly Thr Met Ala Arg Tyr 1185 1190 1195 1200 Met Arg Trp Phe Arg Gln Ala Phe Gln Pro Lys Glu Val Phe Ile Asn 1205 1210 1215 Cys Glu Thr Thr Pro Glu Asp Met Ser Ala Trp Ala Leu Asn Asn Trp 1220 1225 1230 Asn Phe Ser Arg Pro Ser Leu Ala Asn Asp Tyr Thr Ala Phe Asp Gln 1235 1240 1245 Ser Gln Asp Gly Ala Met Leu Gln Phe Glu Val Leu Lys Ala Lys His 1250 1255 1260 His Cys Ile Pro Glu Glu Ile Ile Gln Ala Tyr Ile Asp Ile Lys Thr 1265 1270 1275 1280 Asn Ala His Ile Phe Leu Gly Thr Leu Ser Ile Met Arg Leu Thr Gly 1285 1290 1295 Glu Gly Pro Thr Phe Asp Ala Asn Thr Glu Cys Asn Ile Ala Tyr Thr 1300 1305 1310 His Thr Lys Phe Asp Ile Pro Ala Gly Thr Ala Gln Val Tyr Ala Gly 1315 1320 1325 Asp Asp Ser Ala Leu Asp Cys Val Pro Glu Val Lys His Ser Phe His 1330 1335 1340 Arg Leu Glu Asp Lys Leu Leu Leu Lys Ser Lys Pro Val Ile Thr Gln 1345 1350 1355 1360 Gln Lys Lys Gly Ser Trp Pro Glu Phe Cys Gly Trp Leu Ile Thr Pro 1365 1370 1375 Lys Gly Val Met Lys Asp Pro Ile Lys Leu His Val Ser Leu Lys Leu 1380 1385 1390 Ala Glu Ala Lys Gly Glu Leu Lys Lys Cys Gln Asp Ser Tyr Glu Ile 1395 1400 1405 Asp Leu Ser Tyr Ala Tyr Asp His Lys Asp Ser Leu His Asp Leu Phe 1410 1415 1420 Asp Glu Lys Gln Cys Gln Ala His Thr Leu Thr Cys Arg Thr Leu Ile 1425 1430 1435 1440 Lys Ser Gly Arg Gly Thr Val Ser Leu Pro Arg Leu Arg Asn Phe Leu 1445 1450 1455 18 5449 DNA Raspberry bushy dwarf virus CDS (104)..(5188) 18 atatttggtg tctggctgtt taagcgataa gaatctgctg gtctgacatc tatctcttgg 60 gtatccttat tgactacggg gattgtttac ttgagatatt ctt atg gag tgc tta 115 Met Glu Cys Leu 1 gat ttc tcc aag ctg tgg ttt tct acg gcc gct ggt ctc cag caa cgg 163 Asp Phe Ser Lys Leu Trp Phe Ser Thr Ala Ala Gly Leu Gln Gln Arg 5 10 15 20 tgc tat tat gac tgt gtt gcg tgg gaa tgc cta ggt gat gat gat cta 211 Cys Tyr Tyr Asp Cys Val Ala Trp Glu Cys Leu Gly Asp Asp Asp Leu 25 30 35 cag atc ttc att tct ggc ctg aac cgc ctc ata gag tcc gtt gct gtt 259 Gln Ile Phe Ile Ser Gly Leu Asn Arg Leu Ile Glu Ser Val Ala Val 40 45 50 tct tgt acc ggc gac gaa gat ttg gac ttc gtc gtg gac tca tgt aat 307 Ser Cys Thr Gly Asp Glu Asp Leu Asp Phe Val Val Asp Ser Cys Asn 55 60 65 gag ttc gtt acg ggg aga gac ttg aag tct ttc ttc gct gct gac ctc 355 Glu Phe Val Thr Gly Arg Asp Leu Lys Ser Phe Phe Ala Ala Asp Leu 70 75 80 cct gtt aga gag gtc agt tct gtg gga tgt ata tct cac ttt att cca 403 Pro Val Arg Glu Val Ser Ser Val Gly Cys Ile Ser His Phe Ile Pro 85 90 95 100 ggt tcg gtt tct gga ctg aat gtc tcg gac ttg ctg gat aac cag ttg 451 Gly Ser Val Ser Gly Leu Asn Val Ser Asp Leu Leu Asp Asn Gln Leu 105 110 115 tat ggt tgt tct gta ttt tcc tcc gat ttc gaa tcg aag ctg agg gat 499 Tyr Gly Cys Ser Val Phe Ser Ser Asp Phe Glu Ser Lys Leu Arg Asp 120 125 130 ata cgg gat gcg gcc ctt tct gat gcc gcg tcg ggt gtt tcg caa cta 547 Ile Arg Asp Ala Ala Leu Ser Asp Ala Ala Ser Gly Val Ser Gln Leu 135 140 145 gtt agt tgc cat ttt gaa aaa gat gtt aga cac ctc ttg gcg gag aat 595 Val Ser Cys His Phe Glu Lys Asp Val Arg His Leu Leu Ala Glu Asn 150 155 160 gct aat tcc gtc aag atc cct gta cct cag aaa ctc agt gat gac gat 643 Ala Asn Ser Val Lys Ile Pro Val Pro Gln Lys Leu Ser Asp Asp Asp 165 170 175 180 atg agg att tta agg gat cac ttt cct cgt tat gag ttg aag ttc act 691 Met Arg Ile Leu Arg Asp His Phe Pro Arg Tyr Glu Leu Lys Phe Thr 185 190 195 cag aac gtg gac ggc ccg cac aat atg gcc gcc gct cat agg ttg ttg 739 Gln Asn Val Asp Gly Pro His Asn Met Ala Ala Ala His Arg Leu Leu 200 205 210 gag act cat gat ttg ttg tcc aac ttc ccc gcg gat gca cct atc tta 787 Glu Thr His Asp Leu Leu Ser Asn Phe Pro Ala Asp Ala Pro Ile Leu 215 220 225 gat ata ggt ggc aat tgg ttt tct cat ttc cgt tat ggg agg tcc aat 835 Asp Ile Gly Gly Asn Trp Phe Ser His Phe Arg Tyr Gly Arg Ser Asn 230 235 240 gtt cat agt tgt tgc cct atg cta gat tta agg gac aat gaa cga cat 883 Val His Ser Cys Cys Pro Met Leu Asp Leu Arg Asp Asn Glu Arg His 245 250 255 260 act cat cgt tta acg atg act gag agt cta atg tcc agc ttg cgc cat 931 Thr His Arg Leu Thr Met Thr Glu Ser Leu Met Ser Ser Leu Arg His 265 270 275 cgc tat gct ggt aca att gat ctc gat ccc gac gct cac ctt tca agg 979 Arg Tyr Ala Gly Thr Ile Asp Leu Asp Pro Asp Ala His Leu Ser Arg 280 285 290 aag gtg tct gac tct atg aaa gag ttt tat aag cgc tgg gct gta cac 1027 Lys Val Ser Asp Ser Met Lys Glu Phe Tyr Lys Arg Trp Ala Val His 295 300 305 cct aaa gat tta att agg ttg tac gcc ggc ata cgt gac ggc aac tca 1075 Pro Lys Asp Leu Ile Arg Leu Tyr Ala Gly Ile Arg Asp Gly Asn Ser 310 315 320 tcg ctc tat tgt cac cat aaa ttt ggt gtg tca tgg aac gat gtt tta 1123 Ser Leu Tyr Cys His His Lys Phe Gly Val Ser Trp Asn Asp Val Leu 325 330 335 340 tgg gag tcg gag agg aat aac tgc ctc act gtc ccg gag cct gag tgc 1171 Trp Glu Ser Glu Arg Asn Asn Cys Leu Thr Val Pro Glu Pro Glu Cys 345 350 355 cct ttt aaa gct aag tat gct ata atg gtg cat tcc ggt tat gac cta 1219 Pro Phe Lys Ala Lys Tyr Ala Ile Met Val His Ser Gly Tyr Asp Leu 360 365 370 cct cta aag gaa ctt att gga ggc atg gta caa cat ggc gtg gtc gag 1267 Pro Leu Lys Glu Leu Ile Gly Gly Met Val Gln His Gly Val Val Glu 375 380 385 ttg cat ggg act atg att gct gat cct gct atg tta gtc gct aca agt 1315 Leu His Gly Thr Met Ile Ala Asp Pro Ala Met Leu Val Ala Thr Ser 390 395 400 ggc tat atc cct gca ctg cgt tgt aac tgg gaa aaa tcc aaa ggt caa 1363 Gly Tyr Ile Pro Ala Leu Arg Cys Asn Trp Glu Lys Ser Lys Gly Gln 405 410 415 420 att tgg ttt tct ttc cga gat gac agc acg atg ggt tac agg cat gac 1411 Ile Trp Phe Ser Phe Arg Asp Asp Ser Thr Met Gly Tyr Arg His Asp 425 430 435 tgg gag gtg tac tct aag tat ttg act tcc aca gtc gtc tct tgc Trp Glu Val Tyr Ser Lys Tyr Leu Thr Ser Thr Val Val Ser Cys Gly 440 445 450 aag cac ttt tac gtg atg gaa aga gac aag tac aga cac ggt gtg tta 1507 Lys His Phe Tyr Val Met Glu Arg Asp Lys Tyr Arg His Gly Val Leu 455 460 465 ttt tat agc ata att aag tgt tct gga tcc ctt cgt aaa ggg gat cac 1555 Phe Tyr Ser Ile Ile Lys Cys Ser Gly Ser Leu Arg Lys Gly Asp His 470 475 480 act ttt ttt cat aat gcc tgg ttt cac gaa atg tac gat aag tac att 1603 Thr Phe Phe His Asn Ala Trp Phe His Glu Met Tyr Asp Lys Tyr Ile 485 490 495 500 atg aaa gtc ccc ttg gta aag gta aag gac tta acc ggt gat gaa ggt 1651 Met Lys Val Pro Leu Val Lys Val Lys Asp Leu Thr Gly Asp Glu Gly 505 510 515 tcc gtc gag tgt tct tgg cgt gaa gtt gtg atg tct agg aaa ctt gtg 1699 Ser Val Glu Cys Ser Trp Arg Glu Val Val Met Ser Arg Lys Leu Val 520 525 530 gat agg gtc att gag gtt tgc ctt agg ggt gta aaa ccc att aac ttt 1747 Asp Arg Val Ile Glu Val Cys Leu Arg Gly Val Lys Pro Ile Asn Phe 535 540 545 gga aac tgc gac gac gct gtt cac atg gac aat ctc cgg atc atc cag 1795 Gly Asn Cys Asp Asp Ala Val His Met Asp Asn Leu Arg Ile Ile Gln 550 555 560 aac cat ctg ctg agt cat tcg caa aca ctg gtt tta aat ggt agt acc 1843 Asn His Leu Leu Ser His Ser Gln Thr Leu Val Leu Asn Gly Ser Thr 565 570 575 580 att att agg gag gag gcg ata cct ttt aag gat ttc tct cct gta tcc 1891 Ile Ile Arg Glu Glu Ala Ile Pro Phe Lys Asp Phe Ser Pro Val Ser 585 590 595 gtg acc ata tat ttt gaa ata ttg ttg acg aga tac aag gaa tcc cta 1939 Val Thr Ile Tyr Phe Glu Ile Leu Leu Thr Arg Tyr Lys Glu Ser Leu 600 605 610 tct ttg gcc tgg ttt cat gct ggt ctg ggt ccc gac ttt aag ttg ggc 1987 Ser Leu Ala Trp Phe His Ala Gly Leu Gly Pro Asp Phe Lys Leu Gly 615 620 625 tct tgg gta tcc tct tta aag agg gtg ttc tac cgg att cta ggt ttc 2035 Ser Trp Val Ser Ser Leu Lys Arg Val Phe Tyr Arg Ile Leu Gly Phe 630 635 640 ccg gct aat ctt cta aag tac gtt tta aac gca ctt ttt aga tgc cgt 2083 Pro Ala Asn Leu Leu Lys Tyr Val Leu Asn Ala Leu Phe Arg Cys Arg 645 650 655 660 gac aag gtt tca gac atg gag ttt gtg aaa ccc gct gtc gaa aaa ttg 2131 Asp Lys Val Ser Asp Met Glu Phe Val Lys Pro Ala Val Glu Lys Leu 665 670 675 aca gtg tta gag aat acc tat ata ggg aaa tct cta atg ggc gat tgt 2179 Thr Val Leu Glu Asn Thr Tyr Ile Gly Lys Ser Leu Met Gly Asp Cys 680 685 690 cct act cta aaa gag tat gat gat tcg gcc ttc ttc aat ata ttg gag 2227 Pro Thr Leu Lys Glu Tyr Asp Asp Ser Ala Phe Phe Asn Ile Leu Glu 695 700 705 aat gtg ggc aat gag ttg ttt aac aac tct agt acc gat tcc gga aaa 2275 Asn Val Gly Asn Glu Leu Phe Asn Asn Ser Ser Thr Asp Ser Gly Lys 710 715 720 ccg gaa aca ccc gaa gtg acc atg acc ggt aat ccc aat gca gta ata 2323 Pro Glu Thr Pro Glu Val Thr Met Thr Gly Asn Pro Asn Ala Val Ile 725 730 735 740 gct gag gct atc agc tac tgt cga gct gag gtc gat aga att ggg aag 2371 Ala Glu Ala Ile Ser Tyr Cys Arg Ala Glu Val Asp Arg Ile Gly Lys 745 750 755 aag tgt gag aga att ctc cat gct tac cag gcc act ggg aat tgc ggc 2419 Lys Cys Glu Arg Ile Leu His Ala Tyr Gln Ala Thr Gly Asn Cys Gly 760 765 770 ggg tac cta aac gat act gac aat gta ggt gtg ttc gat aag atg acg 2467 Gly Tyr Leu Asn Asp Thr Asp Asn Val Gly Val Phe Asp Lys Met Thr 775 780 785 tcc tgg gta caa aaa ccc aag gag ttc gat cac gaa ttt gga tgg gat 2515 Ser Trp Val Gln Lys Pro Lys Glu Phe Asp His Glu Phe Gly Trp Asp 790 795 800 ggc tcc tcc ttt att aaa ttg tct tgg ttt ggg aaa ata ccg gac ttt 2563 Gly Ser Ser Phe Ile Lys Leu Ser Trp Phe Gly Lys Ile Pro Asp Phe 805 810 815 820 gta gga agg tat tta gta gtg act gac ggg aca cgt gta acg aca aat 2611 Val Gly Arg Tyr Leu Val Val Thr Asp Gly Thr Arg Val Thr Thr Asn 825 830 835 ttg aaa ttt tct cgt cag tat gct act att cca gca acc gta aca ccc 2659 Leu Lys Phe Ser Arg Gln Tyr Ala Thr Ile Pro Ala Thr Val Thr Pro 840 845 850 acc att aaa ttg gtt gat ggt gtt act gga tgc ggg aaa acg act gag 2707 Thr Ile Lys Leu Val Asp Gly Val Thr Gly Cys Gly Lys Thr Thr Glu 855 860 865 atc gtt agg cgt tat cgt cct ggg att tta atc cta agt gta tgt aag 2755 Ile Val Arg Arg Tyr Arg Pro Gly Ile Leu Ile Leu Ser Val Cys Lys 870 875 880 gct aac gtg gat gag att aga aga aaa tta gcg gcc gtg gac tcg aag 2803 Ala Asn Val Asp Glu Ile Arg Arg Lys Leu Ala Ala Val Asp Ser Lys 885 890 895 900 ttc att aga acc gtt gat tct tat ctt ctc agc ccg agt gtg acc gga 2851 Phe Ile Arg Thr Val Asp Ser Tyr Leu Leu Ser Pro Ser Val Thr Gly 905 910 915 agc tgt gat gaa ctc ttc ata gat gag tat ggt ctc tcg cat ccg ggc 2899 Ser Cys Asp Glu Leu Phe Ile Asp Glu Tyr Gly Leu Ser His Pro Gly 920 925 930 att ctg tta ctg gct atc cat att agc gga atc cga aag gtc act ctc 2947 Ile Leu Leu Leu Ala Ile His Ile Ser Gly Ile Arg Lys Val Thr Leu 935 940 945 ttt ggt gac tct gaa cag att cct ttt tgc aat cgc ctt gct gat ttt 2995 Phe Gly Asp Ser Glu Gln Ile Pro Phe Cys Asn Arg Leu Ala Asp Phe 950 955 960 cct cta aaa tac aac tcc gtt gaa gac gtg gga ttg aac ttt gac agg 3043 Pro Leu Lys Tyr Asn Ser Val Glu Asp Val Gly Leu Asn Phe Asp Arg 965 970 975 980 gaa atc agg tcc act act tat aga tgc cct cag gac atc act ttg tct 3091 Glu Ile Arg Ser Thr Thr Tyr Arg Cys Pro Gln Asp Ile Thr Leu Ser 985 990 995 tta cag aaa atg tat aag aca aaa ccg ata aaa acg gta tcg act gtt 3139 Leu Gln Lys Met Tyr Lys Thr Lys Pro Ile Lys Thr Val Ser Thr Val 1000 1005 1010 gaa agt tcg ata acc atc aaa cca ata aag agc gaa ttt gaa att cct 3187 Glu Ser Ser Ile Thr Ile Lys Pro Ile Lys Ser Glu Phe Glu Ile Pro 1015 1020 1025 cta ccc aat gcg ttt gat ggt cct gtg ttg tac ata tgc atg act aag 3235 Leu Pro Asn Ala Phe Asp Gly Pro Val Leu Tyr Ile Cys Met Thr Lys 1030 1035 1040 cat gat gaa agc ctt tta aag ttg cgt tgg gcc aaa gag aac att tct 3283 His Asp Glu Ser Leu Leu Lys Leu Arg Trp Ala Lys Glu Asn Ile Ser 1045 1050 1055 1060 agc gaa gtt cga acg gtg cac gca gct caa ggt ttg agt tat aag aac 3331 Ser Glu Val Arg Thr Val His Ala Ala Gln Gly Leu Ser Tyr Lys Asn 1065 1070 1075 gtc gtg tat ttc agg tta act cgt act gat aac gat ttg tat acc aag 3379 Val Val Tyr Phe Arg Leu Thr Arg Thr Asp Asn Asp Leu Tyr Thr Lys 1080 1085 1090 aga aaa cta cca tat cat ttg gtg gca att tct agg cat act gat aaa 3427 Arg Lys Leu Pro Tyr His Leu Val Ala Ile Ser Arg His Thr Asp Lys 1095 1100 1105 atc gtt tac tgt act acg aaa cct gaa gac tca tct gat ttt tct cta 3475 Ile Val Tyr Cys Thr Thr Lys Pro Glu Asp Ser Ser Asp Phe Ser Leu 1110 1115 1120 tct gct cta aaa aat acc atc aaa acc tct cgg gat tta acc cag gag 3523 Ser Ala Leu Lys Asn Thr Ile Lys Thr Ser Arg Asp Leu Thr Gln Glu 1125 1130 1135 1140 gct agt ggt tca gag agc tct tat gct gtt gtc ttc gaa tca aat tcg 3571 Ala Ser Gly Ser Glu Ser Ser Tyr Ala Val Val Phe Glu Ser Asn Ser 1145 1150 1155 gag gta acc gca acc aaa cct gag gtt tgt gaa aat gtt aga aaa gca 3619 Glu Val Thr Ala Thr Lys Pro Glu Val Cys Glu Asn Val Arg Lys Ala 1160 1165 1170 gct gag atg aat ttt ccc gtt tcc tct gac gct tta tat cag aag gaa 3667 Ala Glu Met Asn Phe Pro Val Ser Ser Asp Ala Leu Tyr Gln Lys Glu 1175 1180 1185 gtg ccc att tat ggt gca ata ccc gac ccg aag gga aaa gca agt tac 3715 Val Pro Ile Tyr Gly Ala Ile Pro Asp Pro Lys Gly Lys Ala Ser Tyr 1190 1195 1200 aat ccg ggt agt gtt atc agg gcc ata gaa gaa ttg acc cca ggt aac 3763 Asn Pro Gly Ser Val Ile Arg Ala Ile Glu Glu Leu Thr Pro Gly Asn 1205 1210 1215 1220 acc agc ata gat act gat gct ttg gac gaa cta gtt gaa gtt ggt cct 3811 Thr Ser Ile Asp Thr Asp Ala Leu Asp Glu Leu Val Glu Val Gly Pro 1225 1230 1235 atg agt tta caa gtt ggt agt ata aga tgg gat gtc tct aag ata tca 3859 Met Ser Leu Gln Val Gly Ser Ile Arg Trp Asp Val Ser Lys Ile Ser 1240 1245 1250 cct cgc ttg ttt act aac aac aaa ttc gca gtt ccg cac cta ccg act 3907 Pro Arg Leu Phe Thr Asn Asn Lys Phe Ala Val Pro His Leu Pro Thr 1255 1260 1265 gga gcc ttg tta agg cgt aac acg agc agt cgt cag gtt gga ttg gct 3955 Gly Ala Leu Leu Arg Arg Asn Thr Ser Ser Arg Gln Val Gly Leu Ala 1270 1275 1280 ata gaa aag cga aac gct aat gtc atg aat agc caa aaa tat ttt gat 4003 Ile Glu Lys Arg Asn Ala Asn Val Met Asn Ser Gln Lys Tyr Phe Asp 1285 1290 1295 1300 ctg gaa aat tta gct aat aag gcg gta gag aga ttt ttc gat ttc ttt 4051 Leu Glu Asn Leu Ala Asn Lys Ala Val Glu Arg Phe Phe Asp Phe Phe 1305 1310 1315 ata gat atg gag aaa ttc tca aaa ctg cca act gga gtc tta ggc tcg 4099 Ile Asp Met Glu Lys Phe Ser Lys Leu Pro Thr Gly Val Leu Gly Ser 1320 1325 1330 agt gct gaa cag ata caa acg tac cag aat aaa act ggt aat aag gtg 4147 Ser Ala Glu Gln Ile Gln Thr Tyr Gln Asn Lys Thr Gly Asn Lys Val 1335 1340 1345 acg gac cca gtc tgt gtt gcc tta tcc cca att caa aaa tac aaa cat 4195 Thr Asp Pro Val Cys Val Ala Leu Ser Pro Ile Gln Lys Tyr Lys His 1350 1355 1360 atg att aag agg gat gtc aaa ttc aat ttg act gat ggt gct caa agt 4243 Met Ile Lys Arg Asp Val Lys Phe Asn Leu Thr Asp Gly Ala Gln Ser 1365 1370 1375 1380 gag tat act aaa gct gcc acc att act tat cat caa cca gag ata act 4291 Glu Tyr Thr Lys Ala Ala Thr Ile Thr Tyr His Gln Pro Glu Ile Thr 1385 1390 1395 cag gtt gct act gcc att ttt ggt cag ttt aaa act aga ctg ttg gct 4339 Gln Val Ala Thr Ala Ile Phe Gly Gln Phe Lys Thr Arg Leu Leu Ala 1400 1405 1410 tgt aga aat aag ttc tta aat ata cct ctt gaa cat gat aat gat ttg 4387 Cys Arg Asn Lys Phe Leu Asn Ile Pro Leu Glu His Asp Asn Asp Leu 1415 1420 1425 agc gga tat tta acc aaa tat cat ttg ggg agt gaa aat aac act ttc 4435 Ser Gly Tyr Leu Thr Lys Tyr His Leu Gly Ser Glu Asn Asn Thr Phe 1430 1435 1440 act gaa att gac ttt tct aaa ttc gat aaa agt caa ggg gaa atc cat 4483 Thr Glu Ile Asp Phe Ser Lys Phe Asp Lys Ser Gln Gly Glu Ile His 1445 1450 1455 1460 caa ctc att cag gat tta atc ctg ata aag ttc ggt tgt gat ccc gag 4531 Gln Leu Ile Gln Asp Leu Ile Leu Ile Lys Phe Gly Cys Asp Pro Glu 1465 1470 1475 ttt gta gcc tta tgg tct acc gcc cac aga agt tct tct att ttc gat 4579 Phe Val Ala Leu Trp Ser Thr Ala His Arg Ser Ser Ser Ile Phe Asp 1480 1485 1490 caa aac gtt gga att ggt ttt aaa act gat ttc caa aga aga acg ggc 4627 Gln Asn Val Gly Ile Gly Phe Lys Thr Asp Phe Gln Arg Arg Thr Gly 1495 1500 1505 gat gct ttt act ttt ctg gga aac tct ttg gta act gcc gcc atg ctg 4675 Asp Ala Phe Thr Phe Leu Gly Asn Ser Leu Val Thr Ala Ala Met Leu 1510 1515 1520 gcg ttt gtc atc agt gac cca gat agg gag aag att agg tac atg ttg 4723 Ala Phe Val Ile Ser Asp Pro Asp Arg Glu Lys Ile Arg Tyr Met Leu 1525 1530 1535 1540 gtg ggt ggg gac gat tct ttg atc tgc tcc tac ggt cca ata caa gta 4771 Val Gly Gly Asp Asp Ser Leu Ile Cys Ser Tyr Gly Pro Ile Gln Val 1545 1550 1555 cct ttg gaa cca ttg ggt gac ata ttt aat atg tct tgc aag ttg gta 4819 Pro Leu Glu Pro Leu Gly Asp Ile Phe Asn Met Ser Cys Lys Leu Val 1560 1565 1570 caa cca gct tgt cct tat ttc gcg tct cgc tac ttg att agg aga ggt 4867 Gln Pro Ala Cys Pro Tyr Phe Ala Ser Arg Tyr Leu Ile Arg Arg Gly 1575 1580 1585 gac gaa att ttg tgt gtt ccc gac ccc tac aaa ctt ttg gtg aag ttg 4915 Asp Glu Ile Leu Cys Val Pro Asp Pro Tyr Lys Leu Leu Val Lys Leu 1590 1595 1600 ggg agg aaa gac gtc ccg gac aat caa gca tca tta tgc gag ata cgt 4963 Gly Arg Lys Asp Val Pro Asp Asn Gln Ala Ser Leu Cys Glu Ile Arg 1605 1610 1615 1620 acc gga ttg gca gat agt gcc aaa tat atc ttt gat gat att gtg aaa 5011 Thr Gly Leu Ala Asp Ser Ala Lys Tyr Ile Phe Asp Asp Ile Val Lys 1625 1630 1635 cag aag ttg gct att ctt gta cag gtg cgc tat aat aaa gct gca cct 5059 Gln Lys Leu Ala Ile Leu Val Gln Val Arg Tyr Asn Lys Ala Ala Pro 1640 1645 1650 agt tta tat gat gcc ctt tgc act gtg cat tgg gca tta tct tct aat 5107 Ser Leu Tyr Asp Ala Leu Cys Thr Val His Trp Ala Leu Ser Ser Asn 1655 1660 1665 acc aat ttc tcg aag ttt tac act gtt act aac act tcc aat gaa gtg 5155 Thr Asn Phe Ser Lys Phe Tyr Thr Val Thr Asn Thr Ser Asn Glu Val 1670 1675 1680 cga agg aac aga aga ggt gtt aag att act taa taccatttta attctgcagc 5208 Arg Arg Asn Arg Arg Gly Val Lys Ile Thr 1685 1690 1695 attttctttt gaccggctta gtaataagtc tttgcctgtc tcttttcaat gctgttattg 5268 gttttaaaac caaaaagtat ctaaatcttg aagatttaaa gataaatctt gaaaaggaac 5328 ttttcaagca caaagtcttg aatgagtctc tctcaaggag acaaggtttc ttaagcctag 5388 ctcactaggc ttaactccca atttgggagt tgtccttacg gacgtttgct gagcaaaccc 5448 c 5449 19 1694 PRT Raspberry bushy dwarf virus 19 Met Glu Cys Leu Asp Phe Ser Lys Leu Trp Phe Ser Thr Ala Ala Gly 1 5 10 15 Leu Gln Gln Arg Cys Tyr Tyr Asp Cys Val Ala Trp Glu Cys Leu Gly 20 25 30 Asp Asp Asp Leu Gln Ile Phe Ile Ser Gly Leu Asn Arg Leu Ile Glu 35 40 45 Ser Val Ala Val Ser Cys Thr Gly Asp Glu Asp Leu Asp Phe Val Val 50 55 60 Asp Ser Cys Asn Glu Phe Val Thr Gly Arg Asp Leu Lys Ser Phe Phe 65 70 75 80 Ala Ala Asp Leu Pro Val Arg Glu Val Ser Ser Val Gly Cys Ile Ser 85 90 95 His Phe Ile Pro Gly Ser Val Ser Gly Leu Asn Val Ser Asp Leu Leu 100 105 110 Asp Asn Gln Leu Tyr Gly Cys Ser Val Phe Ser Ser Asp Phe Glu Ser 115 120 125 Lys Leu Arg Asp Ile Arg Asp Ala Ala Leu Ser Asp Ala Ala Ser Gly 130 135 140 Val Ser Gln Leu Val Ser Cys His Phe Glu Lys Asp Val Arg His Leu 145 150 155 160 Leu Ala Glu Asn Ala Asn Ser Val Lys Ile Pro Val Pro Gln Lys Leu 165 170 175 Ser Asp Asp Asp Met Arg Ile Leu Arg Asp His Phe Pro Arg Tyr Glu 180 185 190 Leu Lys Phe Thr Gln Asn Val Asp Gly Pro His Asn Met Ala Ala Ala 195 200 205 His Arg Leu Leu Glu Thr His Asp Leu Leu Ser Asn Phe Pro Ala Asp 210 215 220 Ala Pro Ile Leu Asp Ile Gly Gly Asn Trp Phe Ser His Phe Arg Tyr 225 230 235 240 Gly Arg Ser Asn Val His Ser Cys Cys Pro Met Leu Asp Leu Arg Asp 245 250 255 Asn Glu Arg His Thr His Arg Leu Thr Met Thr Glu Ser Leu Met Ser 260 265 270 Ser Leu Arg His Arg Tyr Ala Gly Thr Ile Asp Leu Asp Pro Asp Ala 275 280 285 His Leu Ser Arg Lys Val Ser Asp Ser Met Lys Glu Phe Tyr Lys Arg 290 295 300 Trp Ala Val His Pro Lys Asp Leu Ile Arg Leu Tyr Ala Gly Ile Arg 305 310 315 320 Asp Gly Asn Ser Ser Leu Tyr Cys His His Lys Phe Gly Val Ser Trp 325 330 335 Asn Asp Val Leu Trp Glu Ser Glu Arg Asn Asn Cys Leu Thr Val Pro 340 345 350 Glu Pro Glu Cys Pro Phe Lys Ala Lys Tyr Ala Ile Met Val His Ser 355 360 365 Gly Tyr Asp Leu Pro Leu Lys Glu Leu Ile Gly Gly Met Val Gln His 370 375 380 Gly Val Val Glu Leu His Gly Thr Met Ile Ala Asp Pro Ala Met Leu 385 390 395 400 Val Ala Thr Ser Gly Tyr Ile Pro Ala Leu Arg Cys Asn Trp Glu Lys 405 410 415 Ser Lys Gly Gln Ile Trp Phe Ser Phe Arg Asp Asp Ser Thr Met Gly 420 425 430 Tyr Arg His Asp Trp Glu Val Tyr Ser Lys Tyr Leu Thr Ser Thr Val 435 440 445 Val Ser Cys Gly Lys His Phe Tyr Val Met Glu Arg Asp Lys Tyr Arg 450 455 460 His Gly Val Leu Phe Tyr Ser Ile Ile Lys Cys Ser Gly Ser Leu Arg 465 470 475 480 Lys Gly Asp His Thr Phe Phe His Asn Ala Trp Phe His Glu Met Tyr 485 490 495 Asp Lys Tyr Ile Met Lys Val Pro Leu Val Lys Val Lys Asp Leu Thr 500 505 510 Gly Asp Glu Gly Ser Val Glu Cys Ser Trp Arg Glu Val Val Met Ser 515 520 525 Arg Lys Leu Val Asp Arg Val Ile Glu Val Cys Leu Arg Gly Val Lys 530 535 540 Pro Ile Asn Phe Gly Asn Cys Asp Asp Ala Val His Met Asp Asn Leu 545 550 555 560 Arg Ile Ile Gln Asn His Leu Leu Ser His Ser Gln Thr Leu Val Leu 565 570 575 Asn Gly Ser Thr Ile Ile Arg Glu Glu Ala Ile Pro Phe Lys Asp Phe 580 585 590 Ser Pro Val Ser Val Thr Ile Tyr Phe Glu Ile Leu Leu Thr Arg Tyr 595 600 605 Lys Glu Ser Leu Ser Leu Ala Trp Phe His Ala Gly Leu Gly Pro Asp 610 615 620 Phe Lys Leu Gly Ser Trp Val Ser Ser Leu Lys Arg Val Phe Tyr Arg 625 630 635 640 Ile Leu Gly Phe Pro Ala Asn Leu Leu Lys Tyr Val Leu Asn Ala Leu 645 650 655 Phe Arg Cys Arg Asp Lys Val Ser Asp Met Glu Phe Val Lys Pro Ala 660 665 670 Val Glu Lys Leu Thr Val Leu Glu Asn Thr Tyr Ile Gly Lys Ser Leu 675 680 685 Met Gly Asp Cys Pro Thr Leu Lys Glu Tyr Asp Asp Ser Ala Phe Phe 690 695 700 Asn Ile Leu Glu Asn Val Gly Asn Glu Leu Phe Asn Asn Ser Ser Thr 705 710 715 720 Asp Ser Gly Lys Pro Glu Thr Pro Glu Val Thr Met Thr Gly Asn Pro 725 730 735 Asn Ala Val Ile Ala Glu Ala Ile Ser Tyr Cys Arg Ala Glu Val Asp 740 745 750 Arg Ile Gly Lys Lys Cys Glu Arg Ile Leu His Ala Tyr Gln Ala Thr 755 760 765 Gly Asn Cys Gly Gly Tyr Leu Asn Asp Thr Asp Asn Val Gly Val Phe 770 775 780 Asp Lys Met Thr Ser Trp Val Gln Lys Pro Lys Glu Phe Asp His Glu 785 790 795 800 Phe Gly Trp Asp Gly Ser Ser Phe Ile Lys Leu Ser Trp Phe Gly Lys 805 810 815 Ile Pro Asp Phe Val Gly Arg Tyr Leu Val Val Thr Asp Gly Thr Arg 820 825 830 Val Thr Thr Asn Leu Lys Phe Ser Arg Gln Tyr Ala Thr Ile Pro Ala 835 840 845 Thr Val Thr Pro Thr Ile Lys Leu Val Asp Gly Val Thr Gly Cys Gly 850 855 860 Lys Thr Thr Glu Ile Val Arg Arg Tyr Arg Pro Gly Ile Leu Ile Leu 865 870 875 880 Ser Val Cys Lys Ala Asn Val Asp Glu Ile Arg Arg Lys Leu Ala Ala 885 890 895 Val Asp Ser Lys Phe Ile Arg Thr Val Asp Ser Tyr Leu Leu Ser Pro 900 905 910 Ser Val Thr Gly Ser Cys Asp Glu Leu Phe Ile Asp Glu Tyr Gly Leu 915 920 925 Ser His Pro Gly Ile Leu Leu Leu Ala Ile His Ile Ser Gly Ile Arg 930 935 940 Lys Val Thr Leu Phe Gly Asp Ser Glu Gln Ile Pro Phe Cys Asn Arg 945 950 955 960 Leu Ala Asp Phe Pro Leu Lys Tyr Asn Ser Val Glu Asp Val Gly Leu 965 970 975 Asn Phe Asp Arg Glu Ile Arg Ser Thr Thr Tyr Arg Cys Pro Gln Asp 980 985 990 Ile Thr Leu Ser Leu Gln Lys Met Tyr Lys Thr Lys Pro Ile Lys Thr 995 1000 1005 Val Ser Thr Val Glu Ser Ser Ile Thr Ile Lys Pro Ile Lys Ser Glu 1010 1015 1020 Phe Glu Ile Pro Leu Pro Asn Ala Phe Asp Gly Pro Val Leu Tyr Ile 1025 1030 1035 1040 Cys Met Thr Lys His Asp Glu Ser Leu Leu Lys Leu Arg Trp Ala Lys 1045 1050 1055 Glu Asn Ile Ser Ser Glu Val Arg Thr Val His Ala Ala Gln Gly Leu 1060 1065 1070 Ser Tyr Lys Asn Val Val Tyr Phe Arg Leu Thr Arg Thr Asp Asn Asp 1075 1080 1085 Leu Tyr Thr Lys Arg Lys Leu Pro Tyr His Leu Val Ala Ile Ser Arg 1090 1095 1100 His Thr Asp Lys Ile Val Tyr Cys Thr Thr Lys Pro Glu Asp Ser Ser 1105 1110 1115 1120 Asp Phe Ser Leu Ser Ala Leu Lys Asn Thr Ile Lys Thr Ser Arg Asp 1125 1130 1135 Leu Thr Gln Glu Ala Ser Gly Ser Glu Ser Ser Tyr Ala Val Val Phe 1140 1145 1150 Glu Ser Asn Ser Glu Val Thr Ala Thr Lys Pro Glu Val Cys Glu Asn 1155 1160 1165 Val Arg Lys Ala Ala Glu Met Asn Phe Pro Val Ser Ser Asp Ala Leu 1170 1175 1180 Tyr Gln Lys Glu Val Pro Ile Tyr Gly Ala Ile Pro Asp Pro Lys Gly 1185 1190 1195 1200 Lys Ala Ser Tyr Asn Pro Gly Ser Val Ile Arg Ala Ile Glu Glu Leu 1205 1210 1215 Thr Pro Gly Asn Thr Ser Ile Asp Thr Asp Ala Leu Asp Glu Leu Val 1220 1225 1230 Glu Val Gly Pro Met Ser Leu Gln Val Gly Ser Ile Arg Trp Asp Val 1235 1240 1245 Ser Lys Ile Ser Pro Arg Leu Phe Thr Asn Asn Lys Phe Ala Val Pro 1250 1255 1260 His Leu Pro Thr Gly Ala Leu Leu Arg Arg Asn Thr Ser Ser Arg Gln 1265 1270 1275 1280 Val Gly Leu Ala Ile Glu Lys Arg Asn Ala Asn Val Met Asn Ser Gln 1285 1290 1295 Lys Tyr Phe Asp Leu Glu Asn Leu Ala Asn Lys Ala Val Glu Arg Phe 1300 1305 1310 Phe Asp Phe Phe Ile Asp Met Glu Lys Phe Ser Lys Leu Pro Thr Gly 1315 1320 1325 Val Leu Gly Ser Ser Ala Glu Gln Ile Gln Thr Tyr Gln Asn Lys Thr 1330 1335 1340 Gly Asn Lys Val Thr Asp Pro Val Cys Val Ala Leu Ser Pro Ile Gln 1345 1350 1355 1360 Lys Tyr Lys His Met Ile Lys Arg Asp Val Lys Phe Asn Leu Thr Asp 1365 1370 1375 Gly Ala Gln Ser Glu Tyr Thr Lys Ala Ala Thr Ile Thr Tyr His Gln 1380 1385 1390 Pro Glu Ile Thr Gln Val Ala Thr Ala Ile Phe Gly Gln Phe Lys Thr 1395 1400 1405 Arg Leu Leu Ala Cys Arg Asn Lys Phe Leu Asn Ile Pro Leu Glu His 1410 1415 1420 Asp Asn Asp Leu Ser Gly Tyr Leu Thr Lys Tyr His Leu Gly Ser Glu 1425 1430 1435 1440 Asn Asn Thr Phe Thr Glu Ile Asp Phe Ser Lys Phe Asp Lys Ser Gln 1445 1450 1455 Gly Glu Ile His Gln Leu Ile Gln Asp Leu Ile Leu Ile Lys Phe Gly 1460 1465 1470 Cys Asp Pro Glu Phe Val Ala Leu Trp Ser Thr Ala His Arg Ser Ser 1475 1480 1485 Ser Ile Phe Asp Gln Asn Val Gly Ile Gly Phe Lys Thr Asp Phe Gln 1490 1495 1500 Arg Arg Thr Gly Asp Ala Phe Thr Phe Leu Gly Asn Ser Leu Val Thr 1505 1510 1515 1520 Ala Ala Met Leu Ala Phe Val Ile Ser Asp Pro Asp Arg Glu Lys Ile 1525 1530 1535 Arg Tyr Met Leu Val Gly Gly Asp Asp Ser Leu Ile Cys Ser Tyr Gly 1540 1545 1550 Pro Ile Gln Val Pro Leu Glu Pro Leu Gly Asp Ile Phe Asn Met Ser 1555 1560 1565 Cys Lys Leu Val Gln Pro Ala Cys Pro Tyr Phe Ala Ser Arg Tyr Leu 1570 1575 1580 Ile Arg Arg Gly Asp Glu Ile Leu Cys Val Pro Asp Pro Tyr Lys Leu 1585 1590 1595 1600 Leu Val Lys Leu Gly Arg Lys Asp Val Pro Asp Asn Gln Ala Ser Leu 1605 1610 1615 Cys Glu Ile Arg Thr Gly Leu Ala Asp Ser Ala Lys Tyr Ile Phe Asp 1620 1625 1630 Asp Ile Val Lys Gln Lys Leu Ala Ile Leu Val Gln Val Arg Tyr Asn 1635 1640 1645 Lys Ala Ala Pro Ser Leu Tyr Asp Ala Leu Cys Thr Val His Trp Ala 1650 1655 1660 Leu Ser Ser Asn Thr Asn Phe Ser Lys Phe Tyr Thr Val Thr Asn Thr 1665 1670 1675 1680 Ser Asn Glu Val Arg Arg Asn Arg Arg Gly Val Lys Ile Thr 1685 1690 20 5280 DNA Shallot virus X CDS (99)..(5255) 20 gactcaacca aaacaacaca caaccacaca aaacgcacaa acttgacttg agtctgataa 60 ggaaactcag caaagccctg tacacccatc aagcaagt atg act gct gtg caa aaa 116 Met Thr Ala Val Gln Lys 1 5 ctt ttt gac caa att agc gac ccg aac acg aaa gct ggc tac tcc aat 164 Leu Phe Asp Gln Ile Ser Asp Pro Asn Thr Lys Ala Gly Tyr Ser Asn 10 15 20 gct tgc ttt gaa gcg gcg caa cgg cgt cca aag aaa gct atg gct ata 212 Ala Cys Phe Glu Ala Ala Gln Arg Arg Pro Lys Lys Ala Met Ala Ile 25 30 35 gcc cct ttc tcc gtc acc acc cca gaa gct ctc acg ctt gag cgc ttc 260 Ala Pro Phe Ser Val Thr Thr Pro Glu Ala Leu Thr Leu Glu Arg Phe 40 45 50 ggc atc acc acc tcc cct ttc gcc acc act tca cac aca cat gct gcc 308 Gly Ile Thr Thr Ser Pro Phe Ala Thr Thr Ser His Thr His Ala Ala 55 60 65 70 gac aaa ata att gag aat gac tgc ctc aca att att ggc cac tat cta 356 Asp Lys Ile Ile Glu Asn Asp Cys Leu Thr Ile Ile Gly His Tyr Leu 75 80 85 ccc aaa cga gag gca gtg act ctt atc caa ctc aaa cgc agc aaa att 404 Pro Lys Arg Glu Ala Val Thr Leu Ile Gln Leu Lys Arg Ser Lys Ile 90 95 100 cat ctt ctg ggc agg caa ccc agt caa gac aat ttc caa aat tat tgc 452 His Leu Leu Gly Arg Gln Pro Ser Gln Asp Asn Phe Gln Asn Tyr Cys 105 110 115 cac gag cca aag gac gta ctt agg tac ggg atc acc cac cca aac tct 500 His Glu Pro Lys Asp Val Leu Arg Tyr Gly Ile Thr His Pro Asn Ser 120 125 130 tgc cca gtc gtt aac aca gaa tac gct gtt ctg gcg gat acc tta cac 548 Cys Pro Val Val Asn Thr Glu Tyr Ala Val Leu Ala Asp Thr Leu His 135 140 145 150 ttt atg tcc cct aga cag ctg tac cac tta ttc agc aga aat cca aag 596 Phe Met Ser Pro Arg Gln Leu Tyr His Leu Phe Ser Arg Asn Pro Lys 155 160 165 cta gag cgc ctc ttt gcc acg cta gta cta cca att gaa gct cag cac 644 Leu Glu Arg Leu Phe Ala Thr Leu Val Leu Pro Ile Glu Ala Gln His 170 175 180 agg cta ccg agc tta ttt cct gat gtg tac aga ctg gaa tat tat aaa 692 Arg Leu Pro Ser Leu Phe Pro Asp Val Tyr Arg Leu Glu Tyr Tyr Lys 185 190 195 gac cat ttt gct tat atg ccc gga ggt cac ggt ggc ggt gct tac gta 740 Asp His Phe Ala Tyr Met Pro Gly Gly His Gly Gly Gly Ala Tyr Val 200 205 210 cat tct tac ggc act ctc aaa tgg cta gac acg gct caa gtg ggc ccc 788 His Ser Tyr Gly Thr Leu Lys Trp Leu Asp Thr Ala Gln Val Gly Pro 215 220 225 230 gta gat tac act aaa tct tca atc acc aac cca tgg ccc ata acc gac 836 Val Asp Tyr Thr Lys Ser Ser Ile Thr Asn Pro Trp Pro Ile Thr Asp 235 240 245 tat ctt agc ata gag aag att gaa acc aaa gca gcg cac cat ata atg 884 Tyr Leu Ser Ile Glu Lys Ile Glu Thr Lys Ala Ala His His Ile Met 250 255 260 ttc ata cag cgc aca cgg gct cag gtt gat tgg cca ctg ccg ccc ata 932 Phe Ile Gln Arg Thr Arg Ala Gln Val Asp Trp Pro Leu Pro Pro Ile 265 270 275 tgg gtc tac cac gcc tca gaa tac gtc aaa tta ccc ctc ata ttc tac 980 Trp Val Tyr His Ala Ser Glu Tyr Val Lys Leu Pro Leu Ile Phe Tyr 280 285 290 ccc cca gag gcc aat gta cag aag acg tac ccc cac acc ctc atc aag 1028 Pro Pro Glu Ala Asn Val Gln Lys Thr Tyr Pro His Thr Leu Ile Lys 295 300 305 310 aga atg caa ctg tat tgc ttc tca gtc aaa gcc gta tca cta aga gac 1076 Arg Met Gln Leu Tyr Cys Phe Ser Val Lys Ala Val Ser Leu Arg Asp 315 320 325 atc ttt gct aag ctt cgg caa gtc att gag aca caa gaa ctt gtt cgc 1124 Ile Phe Ala Lys Leu Arg Gln Val Ile Glu Thr Gln Glu Leu Val Arg 330 335 340 tac tcc atg gca gac ctc atc agg cta gcc aac tac ttc ctg ttc atc 1172 Tyr Ser Met Ala Asp Leu Ile Arg Leu Ala Asn Tyr Phe Leu Phe Ile 345 350 355 acg ggt atg aat caa gtc agc gac tac gaa tct cca ctg ctc gag aat 1220 Thr Gly Met Asn Gln Val Ser Asp Tyr Glu Ser Pro Leu Leu Glu Asn 360 365 370 tta ttc ggg aaa atg tgt gct tca atc cgc atg aga ctc aga act ttc 1268 Leu Phe Gly Lys Met Cys Ala Ser Ile Arg Met Arg Leu Arg Thr Phe 375 380 385 390 ttc caa aac ctg ctt ggc aaa aca tct tac gct gcc ctg ctc acg gtg 1316 Phe Gln Asn Leu Leu Gly Lys Thr Ser Tyr Ala Ala Leu Leu Thr Val 395 400 405 acg gat gtc att ccg gtc cac ttc act acc cag ccc aaa cgc aga gag 1364 Thr Asp Val Ile Pro Val His Phe Thr Thr Gln Pro Lys Arg Arg Glu 410 415 420 gct gtc ggc gag cta tgg ttt cag gag ccc aaa tgg agc gta agc acg 1412 Ala Val Gly Glu Leu Trp Phe Gln Glu Pro Lys Trp Ser Val Ser Thr 425 430 435 atg acc caa ccc cgc aaa gaa cat cac cgt ctc cag atg acc tgg acc 1460 Met Thr Gln Pro Arg Lys Glu His His Arg Leu Gln Met Thr Trp Thr 440 445 450 ttg cta gcg tgg ttt cac caa ctt gag agt tcg ggc tcc atg tca gaa 1508 Leu Leu Ala Trp Phe His Gln Leu Glu Ser Ser Gly Ser Met Ser Glu 455 460 465 470 ccc tgt aat aat tcc gag tcc acg cca cag cgc aca gca acc agc caa 1556 Pro Cys Asn Asn Ser Glu Ser Thr Pro Gln Arg Thr Ala Thr Ser Gln 475 480 485 cag aaa gcg gcc aag tta acg acc tca cag aaa cac aac agg cgg acg 1604 Gln Lys Ala Ala Lys Leu Thr Thr Ser Gln Lys His Asn Arg Arg Thr 490 495 500 gac caa acg acg atg aac cca caa tac cct ccg ctg atg ttg acg att 1652 Asp Gln Thr Thr Met Asn Pro Gln Tyr Pro Pro Leu Met Leu Thr Ile 505 510 515 gcg ccg atg atg cct cga cat tct ctg atg aag aag acg att gcg act 1700 Ala Pro Met Met Pro Arg His Ser Leu Met Lys Lys Thr Ile Ala Thr 520 525 530 cca tgc cgg acg ctc gaa gag att tca gat ctt gac tta gat gat ttt 1748 Pro Cys Arg Thr Leu Glu Glu Ile Ser Asp Leu Asp Leu Asp Asp Phe 535 540 545 550 gat gac ctg cct aac gaa gct tca aac gaa ccg ccg agc gct aat gag 1796 Asp Asp Leu Pro Asn Glu Ala Ser Asn Glu Pro Pro Ser Ala Asn Glu 555 560 565 caa tcc ccg gac aat cat gct gaa aca acc acg aga gga gtg ttt cct 1844 Gln Ser Pro Asp Asn His Ala Glu Thr Thr Thr Arg Gly Val Phe Pro 570 575 580 tgc gag tgc ggc acc gaa atc aca gtt aac tcc ttt ggt cga gcg ata 1892 Cys Glu Cys Gly Thr Glu Ile Thr Val Asn Ser Phe Gly Arg Ala Ile 585 590 595 gaa gtt gca ggc gta aat ctg acc gac cac atg aaa ggc agg ctc gct 1940 Glu Val Ala Gly Val Asn Leu Thr Asp His Met Lys Gly Arg Leu Ala 600 605 610 gcc ttc tac tca cgg gat ggc caa ggc tac tct tac act ggc tac tcg 1988 Ala Phe Tyr Ser Arg Asp Gly Gln Gly Tyr Ser Tyr Thr Gly Tyr Ser 615 620 625 630 cac aaa tcg caa ggc tgg tta gag ggt ctt gac aag ctg atc gaa gca 2036 His Lys Ser Gln Gly Trp Leu Glu Gly Leu Asp Lys Leu Ile Glu Ala 635 640 645 tgc ggt gaa aaa cct acc acc tac aac cag tgc ctg gta cag aaa tac 2084 Cys Gly Glu Lys Pro Thr Thr Tyr Asn Gln Cys Leu Val Gln Lys Tyr 650 655 660 gag caa ggc tca aga ata ggt ttc cat agt gac gag caa gct ata tac 2132 Glu Gln Gly Ser Arg Ile Gly Phe His Ser Asp Glu Gln Ala Ile Tyr 665 670 675 cca aaa ggc aat aaa atc ctc acc gtg aac gca gcc ggc tcc gga aca 2180 Pro Lys Gly Asn Lys Ile Leu Thr Val Asn Ala Ala Gly Ser Gly Thr 680 685 690 ttt ggc att aag tgt gca aaa gga gaa acc acc ctg aat ctc gag gat 2228 Phe Gly Ile Lys Cys Ala Lys Gly Glu Thr Thr Leu Asn Leu Glu Asp 695 700 705 710 ggt gac tat ttc caa atg cca agc ggt ttc cag gaa act cac aag cat 2276 Gly Asp Tyr Phe Gln Met Pro Ser Gly Phe Gln Glu Thr His Lys His 715 720 725 aac gtc gtg gca gtt aca cct cgc tta tcc ttc act ttc aga tcg acc 2324 Asn Val Val Ala Val Thr Pro Arg Leu Ser Phe Thr Phe Arg Ser Thr 730 735 740 gtc gtg aat agc caa aag aaa ccc gca gaa cct gag aag ctg aat caa 2372 Val Val Asn Ser Gln Lys Lys Pro Ala Glu Pro Glu Lys Leu Asn Gln 745 750 755 aac aat gcg tgt cca aaa ccc tca gat cca tca aac gca tcg ggc aag 2420 Asn Asn Ala Cys Pro Lys Pro Ser Asp Pro Ser Asn Ala Ser Gly Lys 760 765 770 cag cac aag aaa acc cac cct gcc aag ggc aac gag aag tct tct tca 2468 Gln His Lys Lys Thr His Pro Ala Lys Gly Asn Glu Lys Ser Ser Ser 775 780 785 790 cca aac ctc gaa ccc ctg gac gca cct acc gtt gag att ctc aag ctc 2516 Pro Asn Leu Glu Pro Leu Asp Ala Pro Thr Val Glu Ile Leu Lys Leu 795 800 805 cac ggc ttc act gcc ctc act ccc caa cat gac ggc aca tgc caa att 2564 His Gly Phe Thr Ala Leu Thr Pro Gln His Asp Gly Thr Cys Gln Ile 810 815 820 cgc cct gtt tat ttc aac aaa gac att cac ttg agg cga aaa gca gtt 2612 Arg Pro Val Tyr Phe Asn Lys Asp Ile His Leu Arg Arg Lys Ala Val 825 830 835 aag act gac atg tcc cca cca gcc agg cca ttc ttt gac tta gct aca 2660 Lys Thr Asp Met Ser Pro Pro Ala Arg Pro Phe Phe Asp Leu Ala Thr 840 845 850 tct ctc cac cga ggc att tat acg cac aaa atc gac aac cgt aga gct 2708 Ser Leu His Arg Gly Ile Tyr Thr His Lys Ile Asp Asn Arg Arg Ala 855 860 865 870 acg gcg tac atg tct gac gtc aag aat aac ctc act ggc tta gtc ctc 2756 Thr Ala Tyr Met Ser Asp Val Lys Asn Asn Leu Thr Gly Leu Val Leu 875 880 885 cct aaa ttg gac cgt gac ttg ctg agt tct tgg gta gcg ctt gct gag 2804 Pro Lys Leu Asp Arg Asp Leu Leu Ser Ser Trp Val Ala Leu Ala Glu 890 895 900 act acc aca cgc gaa gtt gcc gtc cta gcc att cat gga gca gga gga 2852 Thr Thr Thr Arg Glu Val Ala Val Leu Ala Ile His Gly Ala Gly Gly 905 910 915 gct ggt aag agt cga gct cta cag gaa ctg ctg aga tct tcc cca gaa 2900 Ala Gly Lys Ser Arg Ala Leu Gln Glu Leu Leu Arg Ser Ser Pro Glu 920 925 930 cta gcc gac agc atc aat atc gtg gta cca act ata aac ctc gct aac 2948 Leu Ala Asp Ser Ile Asn Ile Val Val Pro Thr Ile Asn Leu Ala Asn 935 940 945 950 gac tgg aaa gcc aag tta cca caa atg gac cct cgt aga gtc atg acc 2996 Asp Trp Lys Ala Lys Leu Pro Gln Met Asp Pro Arg Arg Val Met Thr 955 960 965 ttc caa aaa gct tgt gag aga gag tgc aaa tca gtg acg att ttt gac 3044 Phe Gln Lys Ala Cys Glu Arg Glu Cys Lys Ser Val Thr Ile Phe Asp 970 975 980 gat tac ggc aaa ctt cct gca gga ttt gtg gac gcg tac ctt gct atc 3092 Asp Tyr Gly Lys Leu Pro Ala Gly Phe Val Asp Ala Tyr Leu Ala Ile 985 990 995 aag gtg aac gtc gag ctg gcg ata ctg act gga gat caa cgc caa tcc 3140 Lys Val Asn Val Glu Leu Ala Ile Leu Thr Gly Asp Gln Arg Gln Ser 1000 1005 1010 acc cat cat caa gag cgt gaa tct caa ata tcg tca ctt caa agt aac 3188 Thr His His Gln Glu Arg Glu Ser Gln Ile Ser Ser Leu Gln Ser Asn 1015 1020 1025 1030 atc gcc cag ttt tca aag tac gca gat tat tac ctc aat gcc act cat 3236 Ile Ala Gln Phe Ser Lys Tyr Ala Asp Tyr Tyr Leu Asn Ala Thr His 1035 1040 1045 agg cag ccc agg cga ctc gct aac cct atc aaa gta cac gct gag cgg 3284 Arg Gln Pro Arg Arg Leu Ala Asn Pro Ile Lys Val His Ala Glu Arg 1050 1055 1060 caa ttg ggg ggg gcc gtg ctc aaa gcc aac att gtg cca gat ctg gcc 3332 Gln Leu Gly Gly Ala Val Leu Lys Ala Asn Ile Val Pro Asp Leu Ala 1065 1070 1075 atg gta ctc gtg cct gca ttc cgc agc cag tca ctt ttg acg gac tta 3380 Met Val Leu Val Pro Ala Phe Arg Ser Gln Ser Leu Leu Thr Asp Leu 1080 1085 1090 ggc cga cac gcc atg act tac gcc ggc tgt cag ggg ctc aca ctt aat 3428 Gly Arg His Ala Met Thr Tyr Ala Gly Cys Gln Gly Leu Thr Leu Asn 1095 1100 1105 1110 cac ttg acg atc atc cta gac aag gac acc cct tta tgc tct gac gag 3476 His Leu Thr Ile Ile Leu Asp Lys Asp Thr Pro Leu Cys Ser Asp Glu 1115 1120 1125 gtg ctc tac acg gca ttt tcc cgt gcc tcc gag tcc ata acc ttt gtg 3524 Val Leu Tyr Thr Ala Phe Ser Arg Ala Ser Glu Ser Ile Thr Phe Val 1130 1135 1140 aac acc cac tct gat aac cct gct ttc ctg gcc aaa ctt gat gcc acc 3572 Asn Thr His Ser Asp Asn Pro Ala Phe Leu Ala Lys Leu Asp Ala Thr 1145 1150 1155 cca tac ctc aag act ctg ata tca tgg gtt agg gag gat gag gaa gct 3620 Pro Tyr Leu Lys Thr Leu Ile Ser Trp Val Arg Glu Asp Glu Glu Ala 1160 1165 1170 ggc gcc gat tgt ccc gct act gaa ccc ctc gtt aaa gat gtg ccc act 3668 Gly Ala Asp Cys Pro Ala Thr Glu Pro Leu Val Lys Asp Val Pro Thr 1175 1180 1185 1190 aag aca cat ata ccc gta gcc aat gac aag gtg caa ctc gag ggg aag 3716 Lys Thr His Ile Pro Val Ala Asn Asp Lys Val Gln Leu Glu Gly Lys 1195 1200 1205 atc gag gcc atg gag gac aag gac acc cga gag cta tgg tca gga gaa 3764 Ile Glu Ala Met Glu Asp Lys Asp Thr Arg Glu Leu Trp Ser Gly Glu 1210 1215 1220 gaa aag acc aat ctg atg caa act cag gac ccg gtt gtg cag ctc ttc 3812 Glu Lys Thr Asn Leu Met Gln Thr Gln Asp Pro Val Val Gln Leu Phe 1225 1230 1235 cca cac caa caa gca aag gac gaa gct ctg ttc aaa ata aca att ggt 3860 Pro His Gln Gln Ala Lys Asp Glu Ala Leu Phe Lys Ile Thr Ile Gly 1240 1245 1250 gag cgc att cgt atg gca acg cct gag caa aac gct aag cag cta cga 3908 Glu Arg Ile Arg Met Ala Thr Pro Glu Gln Asn Ala Lys Gln Leu Arg 1255 1260 1265 1270 cac aca ctc aat gcc ggc gat cta ctc ttt gag gcg tac gca cag ttc 3956 His Thr Leu Asn Ala Gly Asp Leu Leu Phe Glu Ala Tyr Ala Gln Phe 1275 1280 1285 atg aaa gtg ccc aag gaa acg cag ccc ttt gac aaa cgt tta tgg act 4004 Met Lys Val Pro Lys Glu Thr Gln Pro Phe Asp Lys Arg Leu Trp Thr 1290 1295 1300 cat tgc cgt caa cta gct ctg cgc act tac ctc tcg aaa cct aca tct 4052 His Cys Arg Gln Leu Ala Leu Arg Thr Tyr Leu Ser Lys Pro Thr Ser 1305 1310 1315 aac ctt caa caa ggg gcc aga cag gac cct gat ttc cca gac aat gcc 4100 Asn Leu Gln Gln Gly Ala Arg Gln Asp Pro Asp Phe Pro Asp Asn Ala 1320 1325 1330 atc gcc cta ttt aac aaa tcg caa tgg gtc aag aaa ctt gag aaa gtt 4148 Ile Ala Leu Phe Asn Lys Ser Gln Trp Val Lys Lys Leu Glu Lys Val 1335 1340 1345 1350 ggc gct cgg ttc aaa gct gga caa acg ata tca gct ttt aaa cag gaa 4196 Gly Ala Arg Phe Lys Ala Gly Gln Thr Ile Ser Ala Phe Lys Gln Glu 1355 1360 1365 gtg gta ctt cta aca acg acc atg gca ctt tac ctc aga aag aaa cga 4244 Val Val Leu Leu Thr Thr Thr Met Ala Leu Tyr Leu Arg Lys Lys Arg 1370 1375 1380 gag caa cac cag ccc gac aac gtt ttt att atg tgt gaa aga acc cct 4292 Glu Gln His Gln Pro Asp Asn Val Phe Ile Met Cys Glu Arg Thr Pro 1385 1390 1395 gaa caa ttc aac gct ttt gta atg act aag tgg gac ttt gac cga ccc 4340 Glu Gln Phe Asn Ala Phe Val Met Thr Lys Trp Asp Phe Asp Arg Pro 1400 1405 1410 aac tac act tcg gac tac aca caa tat gac caa tct caa gac gcc gct 4388 Asn Tyr Thr Ser Asp Tyr Thr Gln Tyr Asp Gln Ser Gln Asp Ala Ala 1415 1420 1425 1430 ttc ctt aac ttc gaa ata agg aaa gcg cga cat tta ggt gtg ccc gaa 4436 Phe Leu Asn Phe Glu Ile Arg Lys Ala Arg His Leu Gly Val Pro Glu 1435 1440 1445 gat gtc ctc tct ttc tac aag ttc att aag act cat gcg aag acc ttc 4484 Asp Val Leu Ser Phe Tyr Lys Phe Ile Lys Thr His Ala Lys Thr Phe 1450 1455 1460 ttg ggc aac ttg gcc att atg cgt ctc agc gcc gaa ggg ccc aca ttt 4532 Leu Gly Asn Leu Ala Ile Met Arg Leu Ser Ala Glu Gly Pro Thr Phe 1465 1470 1475 gac gcc aac aca gag tgc aat att gca tat gac gcc ctc aga ttc agg 4580 Asp Ala Asn Thr Glu Cys Asn Ile Ala Tyr Asp Ala Leu Arg Phe Arg 1480 1485 1490 ctt gga gac gac gtt agg gcc tcg tac gcc ggt gac gac ctg gta aga 4628 Leu Gly Asp Asp Val Arg Ala Ser Tyr Ala Gly Asp Asp Leu Val Arg 1495 1500 1505 1510 gac aaa gca tgc gaa gaa cgc gcc ggc tgg gtt tat tct gag agt tta 4676 Asp Lys Ala Cys Glu Glu Arg Ala Gly Trp Val Tyr Ser Glu Ser Leu 1515 1520 1525 ttc agt ctc aaa gct aaa cca ctc gtc aca aac aaa cct gac ttc tgc 4724 Phe Ser Leu Lys Ala Lys Pro Leu Val Thr Asn Lys Pro Asp Phe Cys 1530 1535 1540 ggc tgg cga ctc acc aga cat ggc att gtc aaa tcg ccc atc caa ctc 4772 Gly Trp Arg Leu Thr Arg His Gly Ile Val Lys Ser Pro Ile Gln Leu 1545 1550 1555 tac caa tcg ttg caa ctg gca ctc aga ctt gga aaa att gac gag gtt 4820 Tyr Gln Ser Leu Gln Leu Ala Leu Arg Leu Gly Lys Ile Asp Glu Val 1560 1565 1570 aag cga agc tat gct atc gac tat ctg ttt gcc tac cgc ctg ggc gac 4868 Lys Arg Ser Tyr Ala Ile Asp Tyr Leu Phe Ala Tyr Arg Leu Gly Asp 1575 1580 1585 1590 aaa ata tac gac atc ttc gac gaa gac gaa cta gaa aaa cat cag ttg 4916 Lys Ile Tyr Asp Ile Phe Asp Glu Asp Glu Leu Glu Lys His Gln Leu 1595 1600 1605 gtg act cgg acc ctc atc aag aaa ggt atg caa cct cct gag tcg ggc 4964 Val Thr Arg Thr Leu Ile Lys Lys Gly Met Gln Pro Pro Glu Ser Gly 1610 1615 1620 aac cac ctt cca att ttc cac att aca tct gat cga ttg att aga gat 5012 Asn His Leu Pro Ile Phe His Ile Thr Ser Asp Arg Leu Ile Arg Asp 1625 1630 1635 cca gac gca gtg aaa gtc cag tca tac gag tgc gac agg atc cta ctg 5060 Pro Asp Ala Val Lys Val Gln Ser Tyr Glu Cys Asp Arg Ile Leu Leu 1640 1645 1650 aag cag cca cac atc att gat gat tat ata cct gct ggc act caa ccc 5108 Lys Gln Pro His Ile Ile Asp Asp Tyr Ile Pro Ala Gly Thr Gln Pro 1655 1660 1665 1670 cgt aat acg gaa cac cca gct tct gca gat cgt cga gac atg acc aga 5156 Arg Asn Thr Glu His Pro Ala Ser Ala Asp Arg Arg Asp Met Thr Arg 1675 1680 1685 gcg tgc aat cta tcg gct gaa aaa ctt gcc ttt ggg gga aac aca atc 5204 Ala Cys Asn Leu Ser Ala Glu Lys Leu Ala Phe Gly Gly Asn Thr Ile 1690 1695 1700 aac cac tta ttt cga aca tct tgg gaa ggt cgt tcc cct ctc tcg aac 5252 Asn His Leu Phe Arg Thr Ser Trp Glu Gly Arg Ser Pro Leu Ser Asn 1705 1710 1715 taa ctgttcaacc actaattaac taacc 5280 21 1718 PRT Shallot virus X 21 Met Thr Ala Val Gln Lys Leu Phe Asp Gln Ile Ser Asp Pro Asn Thr 1 5 10 15 Lys Ala Gly Tyr Ser Asn Ala Cys Phe Glu Ala Ala Gln Arg Arg Pro 20 25 30 Lys Lys Ala Met Ala Ile Ala Pro Phe Ser Val Thr Thr Pro Glu Ala 35 40 45 Leu Thr Leu Glu Arg Phe Gly Ile Thr Thr Ser Pro Phe Ala Thr Thr 50 55 60 Ser His Thr His Ala Ala Asp Lys Ile Ile Glu Asn Asp Cys Leu Thr 65 70 75 80 Ile Ile Gly His Tyr Leu Pro Lys Arg Glu Ala Val Thr Leu Ile Gln 85 90 95 Leu Lys Arg Ser Lys Ile His Leu Leu Gly Arg Gln Pro Ser Gln Asp 100 105 110 Asn Phe Gln Asn Tyr Cys His Glu Pro Lys Asp Val Leu Arg Tyr Gly 115 120 125 Ile Thr His Pro Asn Ser Cys Pro Val Val Asn Thr Glu Tyr Ala Val 130 135 140 Leu Ala Asp Thr Leu His Phe Met Ser Pro Arg Gln Leu Tyr His Leu 145 150 155 160 Phe Ser Arg Asn Pro Lys Leu Glu Arg Leu Phe Ala Thr Leu Val Leu 165 170 175 Pro Ile Glu Ala Gln His Arg Leu Pro Ser Leu Phe Pro Asp Val Tyr 180 185 190 Arg Leu Glu Tyr Tyr Lys Asp His Phe Ala Tyr Met Pro Gly Gly His 195 200 205 Gly Gly Gly Ala Tyr Val His Ser Tyr Gly Thr Leu Lys Trp Leu Asp 210 215 220 Thr Ala Gln Val Gly Pro Val Asp Tyr Thr Lys Ser Ser Ile Thr Asn 225 230 235 240 Pro Trp Pro Ile Thr Asp Tyr Leu Ser Ile Glu Lys Ile Glu Thr Lys 245 250 255 Ala Ala His His Ile Met Phe Ile Gln Arg Thr Arg Ala Gln Val Asp 260 265 270 Trp Pro Leu Pro Pro Ile Trp Val Tyr His Ala Ser Glu Tyr Val Lys 275 280 285 Leu Pro Leu Ile Phe Tyr Pro Pro Glu Ala Asn Val Gln Lys Thr Tyr 290 295 300 Pro His Thr Leu Ile Lys Arg Met Gln Leu Tyr Cys Phe Ser Val Lys 305 310 315 320 Ala Val Ser Leu Arg Asp Ile Phe Ala Lys Leu Arg Gln Val Ile Glu 325 330 335 Thr Gln Glu Leu Val Arg Tyr Ser Met Ala Asp Leu Ile Arg Leu Ala 340 345 350 Asn Tyr Phe Leu Phe Ile Thr Gly Met Asn Gln Val Ser Asp Tyr Glu 355 360 365 Ser Pro Leu Leu Glu Asn Leu Phe Gly Lys Met Cys Ala Ser Ile Arg 370 375 380 Met Arg Leu Arg Thr Phe Phe Gln Asn Leu Leu Gly Lys Thr Ser Tyr 385 390 395 400 Ala Ala Leu Leu Thr Val Thr Asp Val Ile Pro Val His Phe Thr Thr 405 410 415 Gln Pro Lys Arg Arg Glu Ala Val Gly Glu Leu Trp Phe Gln Glu Pro 420 425 430 Lys Trp Ser Val Ser Thr Met Thr Gln Pro Arg Lys Glu His His Arg 435 440 445 Leu Gln Met Thr Trp Thr Leu Leu Ala Trp Phe His Gln Leu Glu Ser 450 455 460 Ser Gly Ser Met Ser Glu Pro Cys Asn Asn Ser Glu Ser Thr Pro Gln 465 470 475 480 Arg Thr Ala Thr Ser Gln Gln Lys Ala Ala Lys Leu Thr Thr Ser Gln 485 490 495 Lys His Asn Arg Arg Thr Asp Gln Thr Thr Met Asn Pro Gln Tyr Pro 500 505 510 Pro Leu Met Leu Thr Ile Ala Pro Met Met Pro Arg His Ser Leu Met 515 520 525 Lys Lys Thr Ile Ala Thr Pro Cys Arg Thr Leu Glu Glu Ile Ser Asp 530 535 540 Leu Asp Leu Asp Asp Phe Asp Asp Leu Pro Asn Glu Ala Ser Asn Glu 545 550 555 560 Pro Pro Ser Ala Asn Glu Gln Ser Pro Asp Asn His Ala Glu Thr Thr 565 570 575 Thr Arg Gly Val Phe Pro Cys Glu Cys Gly Thr Glu Ile Thr Val Asn 580 585 590 Ser Phe Gly Arg Ala Ile Glu Val Ala Gly Val Asn Leu Thr Asp His 595 600 605 Met Lys Gly Arg Leu Ala Ala Phe Tyr Ser Arg Asp Gly Gln Gly Tyr 610 615 620 Ser Tyr Thr Gly Tyr Ser His Lys Ser Gln Gly Trp Leu Glu Gly Leu 625 630 635 640 Asp Lys Leu Ile Glu Ala Cys Gly Glu Lys Pro Thr Thr Tyr Asn Gln 645 650 655 Cys Leu Val Gln Lys Tyr Glu Gln Gly Ser Arg Ile Gly Phe His Ser 660 665 670 Asp Glu Gln Ala Ile Tyr Pro Lys Gly Asn Lys Ile Leu Thr Val Asn 675 680 685 Ala Ala Gly Ser Gly Thr Phe Gly Ile Lys Cys Ala Lys Gly Glu Thr 690 695 700 Thr Leu Asn Leu Glu Asp Gly Asp Tyr Phe Gln Met Pro Ser Gly Phe 705 710 715 720 Gln Glu Thr His Lys His Asn Val Val Ala Val Thr Pro Arg Leu Ser 725 730 735 Phe Thr Phe Arg Ser Thr Val Val Asn Ser Gln Lys Lys Pro Ala Glu 740 745 750 Pro Glu Lys Leu Asn Gln Asn Asn Ala Cys Pro Lys Pro Ser Asp Pro 755 760 765 Ser Asn Ala Ser Gly Lys Gln His Lys Lys Thr His Pro Ala Lys Gly 770 775 780 Asn Glu Lys Ser Ser Ser Pro Asn Leu Glu Pro Leu Asp Ala Pro Thr 785 790 795 800 Val Glu Ile Leu Lys Leu His Gly Phe Thr Ala Leu Thr Pro Gln His 805 810 815 Asp Gly Thr Cys Gln Ile Arg Pro Val Tyr Phe Asn Lys Asp Ile His 820 825 830 Leu Arg Arg Lys Ala Val Lys Thr Asp Met Ser Pro Pro Ala Arg Pro 835 840 845 Phe Phe Asp Leu Ala Thr Ser Leu His Arg Gly Ile Tyr Thr His Lys 850 855 860 Ile Asp Asn Arg Arg Ala Thr Ala Tyr Met Ser Asp Val Lys Asn Asn 865 870 875 880 Leu Thr Gly Leu Val Leu Pro Lys Leu Asp Arg Asp Leu Leu Ser Ser 885 890 895 Trp Val Ala Leu Ala Glu Thr Thr Thr Arg Glu Val Ala Val Leu Ala 900 905 910 Ile His Gly Ala Gly Gly Ala Gly Lys Ser Arg Ala Leu Gln Glu Leu 915 920 925 Leu Arg Ser Ser Pro Glu Leu Ala Asp Ser Ile Asn Ile Val Val Pro 930 935 940 Thr Ile Asn Leu Ala Asn Asp Trp Lys Ala Lys Leu Pro Gln Met Asp 945 950 955 960 Pro Arg Arg Val Met Thr Phe Gln Lys Ala Cys Glu Arg Glu Cys Lys 965 970 975 Ser Val Thr Ile Phe Asp Asp Tyr Gly Lys Leu Pro Ala Gly Phe Val 980 985 990 Asp Ala Tyr Leu Ala Ile Lys Val Asn Val Glu Leu Ala Ile Leu Thr 995 1000 1005 Gly Asp Gln Arg Gln Ser Thr His His Gln Glu Arg Glu Ser Gln Ile 1010 1015 1020 Ser Ser Leu Gln Ser Asn Ile Ala Gln Phe Ser Lys Tyr Ala Asp Tyr 1025 1030 1035 1040 Tyr Leu Asn Ala Thr His Arg Gln Pro Arg Arg Leu Ala Asn Pro Ile 1045 1050 1055 Lys Val His Ala Glu Arg Gln Leu Gly Gly Ala Val Leu Lys Ala Asn 1060 1065 1070 Ile Val Pro Asp Leu Ala Met Val Leu Val Pro Ala Phe Arg Ser Gln 1075 1080 1085 Ser Leu Leu Thr Asp Leu Gly Arg His Ala Met Thr Tyr Ala Gly Cys 1090 1095 1100 Gln Gly Leu Thr Leu Asn His Leu Thr Ile Ile Leu Asp Lys Asp Thr 1105 1110 1115 1120 Pro Leu Cys Ser Asp Glu Val Leu Tyr Thr Ala Phe Ser Arg Ala Ser 1125 1130 1135 Glu Ser Ile Thr Phe Val Asn Thr His Ser Asp Asn Pro Ala Phe Leu 1140 1145 1150 Ala Lys Leu Asp Ala Thr Pro Tyr Leu Lys Thr Leu Ile Ser Trp Val 1155 1160 1165 Arg Glu Asp Glu Glu Ala Gly Ala Asp Cys Pro Ala Thr Glu Pro Leu 1170 1175 1180 Val Lys Asp Val Pro Thr Lys Thr His Ile Pro Val Ala Asn Asp Lys 1185 1190 1195 1200 Val Gln Leu Glu Gly Lys Ile Glu Ala Met Glu Asp Lys Asp Thr Arg 1205 1210 1215 Glu Leu Trp Ser Gly Glu Glu Lys Thr Asn Leu Met Gln Thr Gln Asp 1220 1225 1230 Pro Val Val Gln Leu Phe Pro His Gln Gln Ala Lys Asp Glu Ala Leu 1235 1240 1245 Phe Lys Ile Thr Ile Gly Glu Arg Ile Arg Met Ala Thr Pro Glu Gln 1250 1255 1260 Asn Ala Lys Gln Leu Arg His Thr Leu Asn Ala Gly Asp Leu Leu Phe 1265 1270 1275 1280 Glu Ala Tyr Ala Gln Phe Met Lys Val Pro Lys Glu Thr Gln Pro Phe 1285 1290 1295 Asp Lys Arg Leu Trp Thr His Cys Arg Gln Leu Ala Leu Arg Thr Tyr 1300 1305 1310 Leu Ser Lys Pro Thr Ser Asn Leu Gln Gln Gly Ala Arg Gln Asp Pro 1315 1320 1325 Asp Phe Pro Asp Asn Ala Ile Ala Leu Phe Asn Lys Ser Gln Trp Val 1330 1335 1340 Lys Lys Leu Glu Lys Val Gly Ala Arg Phe Lys Ala Gly Gln Thr Ile 1345 1350 1355 1360 Ser Ala Phe Lys Gln Glu Val Val Leu Leu Thr Thr Thr Met Ala Leu 1365 1370 1375 Tyr Leu Arg Lys Lys Arg Glu Gln His Gln Pro Asp Asn Val Phe Ile 1380 1385 1390 Met Cys Glu Arg Thr Pro Glu Gln Phe Asn Ala Phe Val Met Thr Lys 1395 1400 1405 Trp Asp Phe Asp Arg Pro Asn Tyr Thr Ser Asp Tyr Thr Gln Tyr Asp 1410 1415 1420 Gln Ser Gln Asp Ala Ala Phe Leu Asn Phe Glu Ile Arg Lys Ala Arg 1425 1430 1435 1440 His Leu Gly Val Pro Glu Asp Val Leu Ser Phe Tyr Lys Phe Ile Lys 1445 1450 1455 Thr His Ala Lys Thr Phe Leu Gly Asn Leu Ala Ile Met Arg Leu Ser 1460 1465 1470 Ala Glu Gly Pro Thr Phe Asp Ala Asn Thr Glu Cys Asn Ile Ala Tyr 1475 1480 1485 Asp Ala Leu Arg Phe Arg Leu Gly Asp Asp Val Arg Ala Ser Tyr Ala 1490 1495 1500 Gly Asp Asp Leu Val Arg Asp Lys Ala Cys Glu Glu Arg Ala Gly Trp 1505 1510 1515 1520 Val Tyr Ser Glu Ser Leu Phe Ser Leu Lys Ala Lys Pro Leu Val Thr 1525 1530 1535 Asn Lys Pro Asp Phe Cys Gly Trp Arg Leu Thr Arg His Gly Ile Val 1540 1545 1550 Lys Ser Pro Ile Gln Leu Tyr Gln Ser Leu Gln Leu Ala Leu Arg Leu 1555 1560 1565 Gly Lys Ile Asp Glu Val Lys Arg Ser Tyr Ala Ile Asp Tyr Leu Phe 1570 1575 1580 Ala Tyr Arg Leu Gly Asp Lys Ile Tyr Asp Ile Phe Asp Glu Asp Glu 1585 1590 1595 1600 Leu Glu Lys His Gln Leu Val Thr Arg Thr Leu Ile Lys Lys Gly Met 1605 1610 1615 Gln Pro Pro Glu Ser Gly Asn His Leu Pro Ile Phe His Ile Thr Ser 1620 1625 1630 Asp Arg Leu Ile Arg Asp Pro Asp Ala Val Lys Val Gln Ser Tyr Glu 1635 1640 1645 Cys Asp Arg Ile Leu Leu Lys Gln Pro His Ile Ile Asp Asp Tyr Ile 1650 1655 1660 Pro Ala Gly Thr Gln Pro Arg Asn Thr Glu His Pro Ala Ser Ala Asp 1665 1670 1675 1680 Arg Arg Asp Met Thr Arg Ala Cys Asn Leu Ser Ala Glu Lys Leu Ala 1685 1690 1695 Phe Gly Gly Asn Thr Ile Asn His Leu Phe Arg Thr Ser Trp Glu Gly 1700 1705 1710 Arg Ser Pro Leu Ser Asn 1715 22 6791 DNA Tobacco rattle virus CDS (203)..(5326) 22 ataaaacatt tcaatccttt gaacgcggta gaacgtgcta attggatttt ggtgagaacg 60 cggtagaacg tacttatcac ctacagtttt attttgtttt tctttttggt ttaatctatc 120 cagcttagta ccgagtgggg gaaagtgact ggtgtgccta aaaccttttc tttgatactt 180 tgtaaaaata catacagata ca atg gcg aac ggt aac ttc aag ttg tct caa 232 Met Ala Asn Gly Asn Phe Lys Leu Ser Gln 1 5 10 ttg ctc aat gtg gac gag atg tct gct gag cag agg agt cat ttc ttt 280 Leu Leu Asn Val Asp Glu Met Ser Ala Glu Gln Arg Ser His Phe Phe 15 20 25 gac ttg atg ctg act aaa cct gat tgt gag atc ggg caa atg atg caa 328 Asp Leu Met Leu Thr Lys Pro Asp Cys Glu Ile Gly Gln Met Met Gln 30 35 40 aga gtt gtt gtt gat aaa gtc gat gac atg att aga gaa aga aag act 376 Arg Val Val Val Asp Lys Val Asp Asp Met Ile Arg Glu Arg Lys Thr 45 50 55 aaa gat cca gtg att gtt cat gaa gtt ctt tct cag aag gaa cag aac 424 Lys Asp Pro Val Ile Val His Glu Val Leu Ser Gln Lys Glu Gln Asn 60 65 70 aag tta atg gaa att tat cct gaa ttc aat atc gtg ttt aaa gac gac 472 Lys Leu Met Glu Ile Tyr Pro Glu Phe Asn Ile Val Phe Lys Asp Asp 75 80 85 90 aaa aac atg gtt cat ggg ttt gcg gct gct gag cga aaa cta caa gct 520 Lys Asn Met Val His Gly Phe Ala Ala Ala Glu Arg Lys Leu Gln Ala 95 100 105 tta ttg ctt tta gat aga gtt cct gct ctg caa gag gtg gat gac atc 568 Leu Leu Leu Leu Asp Arg Val Pro Ala Leu Gln Glu Val Asp Asp Ile 110 115 120 ggt ggt caa tgg tcg ttt tgg gta act aga ggt gag aaa agg att cat 616 Gly Gly Gln Trp Ser Phe Trp Val Thr Arg Gly Glu Lys Arg Ile His 125 130 135 tcc tgt tgt cca aat cta gat att cgg gat gat cag aga gaa att tct 664 Ser Cys Cys Pro Asn Leu Asp Ile Arg Asp Asp Gln Arg Glu Ile Ser 140 145 150 cga cag ata ttt ctt act gct att ggt gat caa gct aga agt ggt aag 712 Arg Gln Ile Phe Leu Thr Ala Ile Gly Asp Gln Ala Arg Ser Gly Lys 155 160 165 170 aga cag atg tcg gag aat gag ctg tgg atg tat gac caa ttt cgt aaa 760 Arg Gln Met Ser Glu Asn Glu Leu Trp Met Tyr Asp Gln Phe Arg Lys 175 180 185 aat att gct gcg cct aac gcg gtt agg tgc aat aat aca tat cac ggt 808 Asn Ile Ala Ala Pro Asn Ala Val Arg Cys Asn Asn Thr Tyr His Gly 190 195 200 tgt aca tgt agg ggt ttt tct gat ggt aag aag aaa ggc gcg cag tat 856 Cys Thr Cys Arg Gly Phe Ser Asp Gly Lys Lys Lys Gly Ala Gln Tyr 205 210 215 gcg ata gct ctt cac agc ctg tat gac ttc aag ttg aaa gac ttg atg 904 Ala Ile Ala Leu His Ser Leu Tyr Asp Phe Lys Leu Lys Asp Leu Met 220 225 230 gct act atg gtt gag aag aaa act aaa gtg ggt cat gct gct atg ctt 952 Ala Thr Met Val Glu Lys Lys Thr Lys Val Gly His Ala Ala Met Leu 235 240 245 250 ttt gct cct gaa agt atg tta gtg gac gaa ggt cca tta cct tct gtt 1000 Phe Ala Pro Glu Ser Met Leu Val Asp Glu Gly Pro Leu Pro Ser Val 255 260 265 gac ggt tac tac atg aag aag aac ggg aag atc tat ttc ggt ttt gag 1048 Asp Gly Tyr Tyr Met Lys Lys Asn Gly Lys Ile Tyr Phe Gly Phe Glu 270 275 280 aaa gat cct tcc ttt tct tac att cat gac tgg gaa gag tac aag aag 1096 Lys Asp Pro Ser Phe Ser Tyr Ile His Asp Trp Glu Glu Tyr Lys Lys 285 290 295 tat cta ctg ggg aag cca gtg agt tac caa ggg aat gtg ttc tac ttc 1144 Tyr Leu Leu Gly Lys Pro Val Ser Tyr Gln Gly Asn Val Phe Tyr Phe 300 305 310 gaa ccg tgg cag gtg aga gga gac acg atg ctt ttt tcg atc tac agg 1192 Glu Pro Trp Gln Val Arg Gly Asp Thr Met Leu Phe Ser Ile Tyr Arg 315 320 325 330 ata gct gga gtt ccg agg agg tct cta tca tcg caa gag tac tac cga 1240 Ile Ala Gly Val Pro Arg Arg Ser Leu Ser Ser Gln Glu Tyr Tyr Arg 335 340 345 aga ata tat atc agt aga tgg gaa aac atg gtt gtt gtc cca att ttc 1288 Arg Ile Tyr Ile Ser Arg Trp Glu Asn Met Val Val Val Pro Ile Phe 350 355 360 gat ctg gtc gaa tca acg cga gag ttg gtc aag aaa gac ctg ttt gta 1336 Asp Leu Val Glu Ser Thr Arg Glu Leu Val Lys Lys Asp Leu Phe Val 365 370 375 gag aaa caa ttc atg gac aag tgt ttg gat tac ata gct agg tta tct 1384 Glu Lys Gln Phe Met Asp Lys Cys Leu Asp Tyr Ile Ala Arg Leu Ser 380 385 390 gac cag cag ctg acc ata agc aat gtt aaa tca tat ttg agt tca aat 1432 Asp Gln Gln Leu Thr Ile Ser Asn Val Lys Ser Tyr Leu Ser Ser Asn 395 400 405 410 aat tgg gtc tta ttc ata aac ggg gcg gcc gtg aag aac aag caa agt 1480 Asn Trp Val Leu Phe Ile Asn Gly Ala Ala Val Lys Asn Lys Gln Ser 415 420 425 gta gat tct cga gat tta cag ttg ttg gct caa act ttg cta gtg aag 1528 Val Asp Ser Arg Asp Leu Gln Leu Leu Ala Gln Thr Leu Leu Val Lys 430 435 440 gaa caa gtg gcg aga cct gtc atg agg gag ttg cgt gaa gca att ctg 1576 Glu Gln Val Ala Arg Pro Val Met Arg Glu Leu Arg Glu Ala Ile Leu 445 450 455 act gag acg aaa cct atc acg tca ttg act gat gtg ctg ggt tta ata 1624 Thr Glu Thr Lys Pro Ile Thr Ser Leu Thr Asp Val Leu Gly Leu Ile 460 465 470 tca aga aaa atg tgg aag cag ttt gct aac aag atc gca gtc ggc gga 1672 Ser Arg Lys Met Trp Lys Gln Phe Ala Asn Lys Ile Ala Val Gly Gly 475 480 485 490 ttc gtt ggc atg gtt ggt act cta att gga ttc tat cca aag aag gta 1720 Phe Val Gly Met Val Gly Thr Leu Ile Gly Phe Tyr Pro Lys Lys Val 495 500 505 cta acc tgg gcg aag gac aca cca aat ggt cca gaa cta tgt tac gag 1768 Leu Thr Trp Ala Lys Asp Thr Pro Asn Gly Pro Glu Leu Cys Tyr Glu 510 515 520 aac tcg cac aaa acc aag gtg ata gta ttt ctg agt gtt gtg tat gcc 1816 Asn Ser His Lys Thr Lys Val Ile Val Phe Leu Ser Val Val Tyr Ala 525 530 535 att gga gga atc acg ctt atg cgt cga gac atc cga gat gga ctg gtg 1864 Ile Gly Gly Ile Thr Leu Met Arg Arg Asp Ile Arg Asp Gly Leu Val 540 545 550 aaa aaa cta tgt gat atg ttt gat atc aaa cgg ggg gcc cat gtc tta 1912 Lys Lys Leu Cys Asp Met Phe Asp Ile Lys Arg Gly Ala His Val Leu 555 560 565 570 gac gtt gag aat ccg tgc cgc tat tat gat atc aac gat ttc ttt agc 1960 Asp Val Glu Asn Pro Cys Arg Tyr Tyr Asp Ile Asn Asp Phe Phe Ser 575 580 585 agt ctg tat tcg gca tct gag tcc ggt gag acc gtt tta cca gat tta 2008 Ser Leu Tyr Ser Ala Ser Glu Ser Gly Glu Thr Val Leu Pro Asp Leu 590 595 600 tcc gag gta aaa gcc aag tct gat aag tta ttg cag cag aag aaa gaa 2056 Ser Glu Val Lys Ala Lys Ser Asp Lys Leu Leu Gln Gln Lys Lys Glu 605 610 615 atc gct gac gag ttt cta agt gca aaa ttc tct aac tat tct ggc agt 2104 Ile Ala Asp Glu Phe Leu Ser Ala Lys Phe Ser Asn Tyr Ser Gly Ser 620 625 630 tcg gtg aga act tct cca cca tcg gtg gtc ggt tca tct cga agc gga 2152 Ser Val Arg Thr Ser Pro Pro Ser Val Val Gly Ser Ser Arg Ser Gly 635 640 645 650 ctg ggt ctg ttg ttg gaa gac agt aac gtg ctg acc caa gct aga gtt 2200 Leu Gly Leu Leu Leu Glu Asp Ser Asn Val Leu Thr Gln Ala Arg Val 655 660 665 gga gtt tca aga aag gta gcc gat gag gag atc atg gag cag ttt ctg 2248 Gly Val Ser Arg Lys Val Ala Asp Glu Glu Ile Met Glu Gln Phe Leu 670 675 680 agt ggt ctt att gac act gaa gca gaa att gac gag gtt gtt cca gcc 2296 Ser Gly Leu Ile Asp Thr Glu Ala Glu Ile Asp Glu Val Val Pro Ala 685 690 695 ttt tca gct gaa tgt gaa aga ggg gaa aca agc ggt aca aag gtg ttg 2344 Phe Ser Ala Glu Cys Glu Arg Gly Glu Thr Ser Gly Thr Lys Val Leu 700 705 710 tgt aac ctt tta acg cca cca gga ttt gag aac gtg ttg cca gct gtc 2392 Cys Asn Leu Leu Thr Pro Pro Gly Phe Glu Asn Val Leu Pro Ala Val 715 720 725 730 aaa cct ttg gtc agc aaa gga aaa acg gtc aaa cgt gtc gat tac ttc 2440 Lys Pro Leu Val Ser Lys Gly Lys Thr Val Lys Arg Val Asp Tyr Phe 735 740 745 caa gtg atg gga ggt gag aga tta cca aaa agg ccg gtt gtc agt gga 2488 Gln Val Met Gly Gly Glu Arg Leu Pro Lys Arg Pro Val Val Ser Gly 750 755 760 gac gat tct gtg gac gct aga aga gag ttt ctg tac tac tta gat gcg 2536 Asp Asp Ser Val Asp Ala Arg Arg Glu Phe Leu Tyr Tyr Leu Asp Ala 765 770 775 gag aga gtc gct caa aat gat gaa att atg tct ctg tat cgt gac tat 2584 Glu Arg Val Ala Gln Asn Asp Glu Ile Met Ser Leu Tyr Arg Asp Tyr 780 785 790 tcg aga gga gtt att cga act gga ggt cag aat tac ccg cac gga ctg 2632 Ser Arg Gly Val Ile Arg Thr Gly Gly Gln Asn Tyr Pro His Gly Leu 795 800 805 810 gga gtg tgg gat gtg gag atg aag aac tgg tgc ata cgt cca gtg gtc 2680 Gly Val Trp Asp Val Glu Met Lys Asn Trp Cys Ile Arg Pro Val Val 815 820 825 act gaa cat gct tat gtg tcc aac cca gac aaa cgt atg gat gat tgg 2728 Thr Glu His Ala Tyr Val Ser Asn Pro Asp Lys Arg Met Asp Asp Trp 830 835 840 tcg gga tac tta gaa gtg gct gtt tgg gaa cga ggt atg ttg gtc aac 2776 Ser Gly Tyr Leu Glu Val Ala Val Trp Glu Arg Gly Met Leu Val Asn 845 850 855 gac ttc gcg gtc gaa agg atg agt gat tat gtc ata gtt tgc gat cag 2824 Asp Phe Ala Val Glu Arg Met Ser Asp Tyr Val Ile Val Cys Asp Gln 860 865 870 acg tat ctt tgc aat aac agg ttg atc ttg gac aat tta agt gcc ctg 2872 Thr Tyr Leu Cys Asn Asn Arg Leu Ile Leu Asp Asn Leu Ser Ala Leu 875 880 885 890 gat cta gga cca gtt aac tgt tct ttt gaa tta gtt gac ggt gta cct 2920 Asp Leu Gly Pro Val Asn Cys Ser Phe Glu Leu Val Asp Gly Val Pro 895 900 905 ggt tgt ggt aag tcg aca atg att gtc aac tca gct aat cct tgt gtc 2968 Gly Cys Gly Lys Ser Thr Met Ile Val Asn Ser Ala Asn Pro Cys Val 910 915 920 gat gtg gtt ctc tct act ggg aga gca gca acc gac gac ttg atc gag 3016 Asp Val Val Leu Ser Thr Gly Arg Ala Ala Thr Asp Asp Leu Ile Glu 925 930 935 aga ttc gcg agc aaa ggt ttt cca tgc aaa ttg aaa agg aga gtg aag 3064 Arg Phe Ala Ser Lys Gly Phe Pro Cys Lys Leu Lys Arg Arg Val Lys 940 945 950 acg gtt gat tct ttt ttg atg cat tgt gtt gat ggt tct tta acc gga 3112 Thr Val Asp Ser Phe Leu Met His Cys Val Asp Gly Ser Leu Thr Gly 955 960 965 970 gac gtg ttg cat ttc gat gaa gct ctc atg gcc cat gct ggt atg gtg 3160 Asp Val Leu His Phe Asp Glu Ala Leu Met Ala His Ala Gly Met Val 975 980 985 tac ttt tgc gct cag ata gct ggt gct aaa cga tgt atc tgt caa gga 3208 Tyr Phe Cys Ala Gln Ile Ala Gly Ala Lys Arg Cys Ile Cys Gln Gly 990 995 1000 gat cag aat caa att tct ttc aag cct agg gta tct caa gtt gat ttg 3256 Asp Gln Asn Gln Ile Ser Phe Lys Pro Arg Val Ser Gln Val Asp Leu 1005 1010 1015 agg ttt tct agt ctg gtc gga aag ttt gac att gtt aca gaa aaa aga 3304 Arg Phe Ser Ser Leu Val Gly Lys Phe Asp Ile Val Thr Glu Lys Arg 1020 1025 1030 gaa act tac aga agt cca gca gat gtg gct gcc gta ttg aac aag tac 3352 Glu Thr Tyr Arg Ser Pro Ala Asp Val Ala Ala Val Leu Asn Lys Tyr 1035 1040 1045 1050 tat act gga gat gtc aga aca cat aac gcg act gct aat tcg atg acg 3400 Tyr Thr Gly Asp Val Arg Thr His Asn Ala Thr Ala Asn Ser Met Thr 1055 1060 1065 gtg agg aag att gtg tct aaa gaa cag gtt tct ttg aag cct ggt gct 3448 Val Arg Lys Ile Val Ser Lys Glu Gln Val Ser Leu Lys Pro Gly Ala 1070 1075 1080 cag tac ata act ttc ctt cag tct gag aag aag gag ttg gta aat ttg 3496 Gln Tyr Ile Thr Phe Leu Gln Ser Glu Lys Lys Glu Leu Val Asn Leu 1085 1090 1095 ttg gca ttg agg aaa gtg gca gct aaa gtg agt aca gta cac gag tcg 3544 Leu Ala Leu Arg Lys Val Ala Ala Lys Val Ser Thr Val His Glu Ser 1100 1105 1110 caa gga gag aca ttc aaa gat gta gtc cta gtc agg acg aaa cct acg 3592 Gln Gly Glu Thr Phe Lys Asp Val Val Leu Val Arg Thr Lys Pro Thr 1115 1120 1125 1130 gat gac tca atc gct aga ggt cgg gag tac tta atc gtg gcg ttg tcg 3640 Asp Asp Ser Ile Ala Arg Gly Arg Glu Tyr Leu Ile Val Ala Leu Ser 1135 1140 1145 cgt cac aca caa tca ctt gtg tat gaa act gtg aaa gag gac gat gta 3688 Arg His Thr Gln Ser Leu Val Tyr Glu Thr Val Lys Glu Asp Asp Val 1150 1155 1160 agc aaa gag atc agg gaa agt gcc gcg ctt acg aag gcg gct ttg gca 3736 Ser Lys Glu Ile Arg Glu Ser Ala Ala Leu Thr Lys Ala Ala Leu Ala 1165 1170 1175 aga ttt ttt gtt act gag acc gtc tta tga cgg ttt cgg tct agg ttt 3784 Arg Phe Phe Val Thr Glu Thr Val Leu Arg Phe Arg Ser Arg Phe 1180 1185 1190 gat gtt ttt aga cat cat gaa ggg cct tgc gcc gtt cca gat tca ggt 3832 Asp Val Phe Arg His His Glu Gly Pro Cys Ala Val Pro Asp Ser Gly 1195 1200 1205 1210 acg att acg gac ttg gag atg tgg tac gac gct ttg ttt ccg gga aat 3880 Thr Ile Thr Asp Leu Glu Met Trp Tyr Asp Ala Leu Phe Pro Gly Asn 1215 1220 1225 tcg tta aga gac tca agc cta gac ggg tat ttg gtg gca acg act gat 3928 Ser Leu Arg Asp Ser Ser Leu Asp Gly Tyr Leu Val Ala Thr Thr Asp 1230 1235 1240 tgc aat ttg cga tta gac aat gtt acg atc aaa agt gga aac tgg aaa 3976 Cys Asn Leu Arg Leu Asp Asn Val Thr Ile Lys Ser Gly Asn Trp Lys 1245 1250 1255 gac aag ttt gct gaa aaa gaa acg ttt ctg aaa ccg gtt att cgt act 4024 Asp Lys Phe Ala Glu Lys Glu Thr Phe Leu Lys Pro Val Ile Arg Thr 1260 1265 1270 gct atg cct gac aaa agg aag act act cag ttg gag agt ttg tta gcg 4072 Ala Met Pro Asp Lys Arg Lys Thr Thr Gln Leu Glu Ser Leu Leu Ala 1275 1280 1285 1290 ttg cag aaa agg aac caa gcg gca ccc gat cta caa gaa aat gtg cac 4120 Leu Gln Lys Arg Asn Gln Ala Ala Pro Asp Leu Gln Glu Asn Val His 1295 1300 1305 gca aca gtt cta atc gaa gag acg atg aag aag ttg aaa tct gtt gtc 4168 Ala Thr Val Leu Ile Glu Glu Thr Met Lys Lys Leu Lys Ser Val Val 1310 1315 1320 tac gat gtg gga aaa att cgg gct gat cct att gtc aat aga gct caa 4216 Tyr Asp Val Gly Lys Ile Arg Ala Asp Pro Ile Val Asn Arg Ala Gln 1325 1330 1335 atg gag aga tgg tgg aga aat caa agc aca gcg gta cag gct aag gta 4264 Met Glu Arg Trp Trp Arg Asn Gln Ser Thr Ala Val Gln Ala Lys Val 1340 1345 1350 gta gca gat gtg aga gag tta cat gaa ata gac tat tcg tct tac atg 4312 Val Ala Asp Val Arg Glu Leu His Glu Ile Asp Tyr Ser Ser Tyr Met 1355 1360 1365 1370 ttt atg atc aaa tct gac gtg aaa cct aag act gat tta aca ccg caa 4360 Phe Met Ile Lys Ser Asp Val Lys Pro Lys Thr Asp Leu Thr Pro Gln 1375 1380 1385 ttt gaa tac tcc gct cta cag act gtt gtg tat cac gag aag ttg atc 4408 Phe Glu Tyr Ser Ala Leu Gln Thr Val Val Tyr His Glu Lys Leu Ile 1390 1395 1400 aac tcg ttg ttc ggt cca att ttc aaa gaa att aat gaa cgc aag ttg 4456 Asn Ser Leu Phe Gly Pro Ile Phe Lys Glu Ile Asn Glu Arg Lys Leu 1405 1410 1415 gat gct atg caa cca cat ttt gtg ttc aac acg aga atg aca tcg agt 4504 Asp Ala Met Gln Pro His Phe Val Phe Asn Thr Arg Met Thr Ser Ser 1420 1425 1430 gat tta aac gat cga gtg aag ttc tta aat acg gaa gcg gct tac gac 4552 Asp Leu Asn Asp Arg Val Lys Phe Leu Asn Thr Glu Ala Ala Tyr Asp 1435 1440 1445 1450 ttt gtt gag ata gac atg tct aaa ttc gac aag tcg gca aat cgc ttc 4600 Phe Val Glu Ile Asp Met Ser Lys Phe Asp Lys Ser Ala Asn Arg Phe 1455 1460 1465 cat tta caa ctg cag ctg gag att tac agg tta ttt ggg cta gat gag 4648 His Leu Gln Leu Gln Leu Glu Ile Tyr Arg Leu Phe Gly Leu Asp Glu 1470 1475 1480 tgg gcg gcc ttc ctt tgg gag gtg tcg cac act caa act act gtg aga 4696 Trp Ala Ala Phe Leu Trp Glu Val Ser His Thr Gln Thr Thr Val Arg 1485 1490 1495 gat att caa aat ggt atg atg gcg cat att tgg tac caa caa aag agt 4744 Asp Ile Gln Asn Gly Met Met Ala His Ile Trp Tyr Gln Gln Lys Ser 1500 1505 1510 gga gat gct gat act tat aat gca aat tca gat aga aca ctg tgt gca 4792 Gly Asp Ala Asp Thr Tyr Asn Ala Asn Ser Asp Arg Thr Leu Cys Ala 1515 1520 1525 1530 ctc ttg tct gaa tta cca ttg gag aaa gca gtc atg gtt aca tat gga 4840 Leu Leu Ser Glu Leu Pro Leu Glu Lys Ala Val Met Val Thr Tyr Gly 1535 1540 1545 gga gat gac tca ctg att gcg ttt cct aga gga acg cag ttt gtt gat 4888 Gly Asp Asp Ser Leu Ile Ala Phe Pro Arg Gly Thr Gln Phe Val Asp 1550 1555 1560 ccg tgt cca aag ttg gct act aag tgg aat ttc gag tgc aag att ttt 4936 Pro Cys Pro Lys Leu Ala Thr Lys Trp Asn Phe Glu Cys Lys Ile Phe 1565 1570 1575 aag tac gat gtc cca atg ttt tgt ggg aag ttc ttg ctt aag acg tca 4984 Lys Tyr Asp Val Pro Met Phe Cys Gly Lys Phe Leu Leu Lys Thr Ser 1580 1585 1590 tcg tgt tac gag ttc gtg cca gat ccg gta aaa gtt ctg acg aag ttg 5032 Ser Cys Tyr Glu Phe Val Pro Asp Pro Val Lys Val Leu Thr Lys Leu 1595 1600 1605 1610 ggg aaa aag agt ata aag gat gtg caa cat tta gcc gag atc tac atc 5080 Gly Lys Lys Ser Ile Lys Asp Val Gln His Leu Ala Glu Ile Tyr Ile 1615 1620 1625 tcg ctg aat gat tcc aat aga gct ctt ggg aac tac atg gtg gta tcc 5128 Ser Leu Asn Asp Ser Asn Arg Ala Leu Gly Asn Tyr Met Val Val Ser 1630 1635 1640 aaa ctg tcc gag tct gtt tca gac cgg tat ttg tac aaa ggt gat tct 5176 Lys Leu Ser Glu Ser Val Ser Asp Arg Tyr Leu Tyr Lys Gly Asp Ser 1645 1650 1655 gtt cat gcg ctt tgt gcg cta tgg aag cat att aag agt ttt aca gct 5224 Val His Ala Leu Cys Ala Leu Trp Lys His Ile Lys Ser Phe Thr Ala 1660 1665 1670 ctg tgt aca tta ttc cga gac gaa aac gat aag gaa ttg aac ccg gct 5272 Leu Cys Thr Leu Phe Arg Asp Glu Asn Asp Lys Glu Leu Asn Pro Ala 1675 1680 1685 1690 aag gtt gat tgg aag aag gca cag aga gct gtg tca aac ttt tac gac 5320 Lys Val Asp Trp Lys Lys Ala Gln Arg Ala Val Ser Asn Phe Tyr Asp 1695 1700 1705 tgg taa tatggaagac aagtcattgg tcaccttgaa gaagaagact ttcgaagtct 5376 Trp caaaattctc aaatctaggg gccattgaat tgtttgtgga cggtaggagg aagagaccga 5436 agtattttca cagaagaaga gaaactgtcc taaatcatgt tggtgggaag aagagtgaac 5496 acaagttaga cgtttttgac caaagggatt acaaaatgat taaatcttac gcgtttctaa 5556 agatagtagg tgtacaacta gttgtaacat cacatctacc tgcagatacg cctgggttca 5616 ttcaaatcga tctgttggat tcgagactta ctgagaaaag aaagagagga aagactattc 5676 agagattcaa agctcgagct tgcgataact gttcagttgc gcagtacaag gttgaataca 5736 gtatttccac acaggagaac gtacttgatg tctggaaggt gggttgtatt tctgagggcg 5796 ttccggtctg tgacggtaca taccctttca gtatcgaagt gtcgctaata tgggttgcta 5856 ctgattcgac taggcgcctc aatgtggaag aactgaacag ttcggattac attgaaggcg 5916 attttaccga tcaagaggtt ttcggtgagt tcatgtcttt gaaacaagtg gagatgaaga 5976 cgattgaggc gaagtacgat ggtccttaca gaccagctac tactagacct aagtcattat 6036 tgtcaagtga agatgttaag agagcgtcta ataagaaaaa ctcgtcttaa tgcataaaga 6096 aatttattgt caatatgacg tgtgtactca agggttgtgt gaatgaagtc actgttcttg 6156 gtcacgagac gtgtagtatc ggtcatgcta acaaattgcg aaagcaagtt gctgacatgg 6216 ttggtgtcac acgtaggtgt gcggaaaata attgtggatg gtttgtctgt gttgttatca 6276 atgattttac ttttgatgtg tataattgtt gtggccgtag tcaccttgaa aagtgtcgta 6336 aacgtgttga aacaagaaat cgagaaattt ggaaacaaat tcgacgaaat caagctgaaa 6396 acatgtctgc gacagctaaa aagtctcata attcgaagac ctctaagaag aaattcaaag 6456 aggacagaga atttgggaca ccaaaaagat ttttaagaga tgatgttcct ttcgggattg 6516 atcgtttgtt tgctttttga ttttatttta tattgttatc tgtttctgtg tatagactgt 6576 ttgagattgg cgcttggccg actcattgtc ttaccatagg ggaacggact ttgtttgtgt 6636 tgttatttta tttgtatttt attaaaattc tcaatgatct gaaaaggcct cgaggctaag 6696 agattattgg ggggtgagta agtactttta aagtgatgat ggttacaaag gcaaaagggg 6756 taaaacccct cgcctacgta agcgttatta cgccc 6791 23 1187 PRT Tobacco rattle virus 23 Met Ala Asn Gly Asn Phe Lys Leu Ser Gln Leu Leu Asn Val Asp Glu 1 5 10 15 Met Ser Ala Glu Gln Arg Ser His Phe Phe Asp Leu Met Leu Thr Lys 20 25 30 Pro Asp Cys Glu Ile Gly Gln Met Met Gln Arg Val Val Val Asp Lys 35 40 45 Val Asp Asp Met Ile Arg Glu Arg Lys Thr Lys Asp Pro Val Ile Val 50 55 60 His Glu Val Leu Ser Gln Lys Glu Gln Asn Lys Leu Met Glu Ile Tyr 65 70 75 80 Pro Glu Phe Asn Ile Val Phe Lys Asp Asp Lys Asn Met Val His Gly 85 90 95 Phe Ala Ala Ala Glu Arg Lys Leu Gln Ala Leu Leu Leu Leu Asp Arg 100 105 110 Val Pro Ala Leu Gln Glu Val Asp Asp Ile Gly Gly Gln Trp Ser Phe 115 120 125 Trp Val Thr Arg Gly Glu Lys Arg Ile His Ser Cys Cys Pro Asn Leu 130 135 140 Asp Ile Arg Asp Asp Gln Arg Glu Ile Ser Arg Gln Ile Phe Leu Thr 145 150 155 160 Ala Ile Gly Asp Gln Ala Arg Ser Gly Lys Arg Gln Met Ser Glu Asn 165 170 175 Glu Leu Trp Met Tyr Asp Gln Phe Arg Lys Asn Ile Ala Ala Pro Asn 180 185 190 Ala Val Arg Cys Asn Asn Thr Tyr His Gly Cys Thr Cys Arg Gly Phe 195 200 205 Ser Asp Gly Lys Lys Lys Gly Ala Gln Tyr Ala Ile Ala Leu His Ser 210 215 220 Leu Tyr Asp Phe Lys Leu Lys Asp Leu Met Ala Thr Met Val Glu Lys 225 230 235 240 Lys Thr Lys Val Gly His Ala Ala Met Leu Phe Ala Pro Glu Ser Met 245 250 255 Leu Val Asp Glu Gly Pro Leu Pro Ser Val Asp Gly Tyr Tyr Met Lys 260 265 270 Lys Asn Gly Lys Ile Tyr Phe Gly Phe Glu Lys Asp Pro Ser Phe Ser 275 280 285 Tyr Ile His Asp Trp Glu Glu Tyr Lys Lys Tyr Leu Leu Gly Lys Pro 290 295 300 Val Ser Tyr Gln Gly Asn Val Phe Tyr Phe Glu Pro Trp Gln Val Arg 305 310 315 320 Gly Asp Thr Met Leu Phe Ser Ile Tyr Arg Ile Ala Gly Val Pro Arg 325 330 335 Arg Ser Leu Ser Ser Gln Glu Tyr Tyr Arg Arg Ile Tyr Ile Ser Arg 340 345 350 Trp Glu Asn Met Val Val Val Pro Ile Phe Asp Leu Val Glu Ser Thr 355 360 365 Arg Glu Leu Val Lys Lys Asp Leu Phe Val Glu Lys Gln Phe Met Asp 370 375 380 Lys Cys Leu Asp Tyr Ile Ala Arg Leu Ser Asp Gln Gln Leu Thr Ile 385 390 395 400 Ser Asn Val Lys Ser Tyr Leu Ser Ser Asn Asn Trp Val Leu Phe Ile 405 410 415 Asn Gly Ala Ala Val Lys Asn Lys Gln Ser Val Asp Ser Arg Asp Leu 420 425 430 Gln Leu Leu Ala Gln Thr Leu Leu Val Lys Glu Gln Val Ala Arg Pro 435 440 445 Val Met Arg Glu Leu Arg Glu Ala Ile Leu Thr Glu Thr Lys Pro Ile 450 455 460 Thr Ser Leu Thr Asp Val Leu Gly Leu Ile Ser Arg Lys Met Trp Lys 465 470 475 480 Gln Phe Ala Asn Lys Ile Ala Val Gly Gly Phe Val Gly Met Val Gly 485 490 495 Thr Leu Ile Gly Phe Tyr Pro Lys Lys Val Leu Thr Trp Ala Lys Asp 500 505 510 Thr Pro Asn Gly Pro Glu Leu Cys Tyr Glu Asn Ser His Lys Thr Lys 515 520 525 Val Ile Val Phe Leu Ser Val Val Tyr Ala Ile Gly Gly Ile Thr Leu 530 535 540 Met Arg Arg Asp Ile Arg Asp Gly Leu Val Lys Lys Leu Cys Asp Met 545 550 555 560 Phe Asp Ile Lys Arg Gly Ala His Val Leu Asp Val Glu Asn Pro Cys 565 570 575 Arg Tyr Tyr Asp Ile Asn Asp Phe Phe Ser Ser Leu Tyr Ser Ala Ser 580 585 590 Glu Ser Gly Glu Thr Val Leu Pro Asp Leu Ser Glu Val Lys Ala Lys 595 600 605 Ser Asp Lys Leu Leu Gln Gln Lys Lys Glu Ile Ala Asp Glu Phe Leu 610 615 620 Ser Ala Lys Phe Ser Asn Tyr Ser Gly Ser Ser Val Arg Thr Ser Pro 625 630 635 640 Pro Ser Val Val Gly Ser Ser Arg Ser Gly Leu Gly Leu Leu Leu Glu 645 650 655 Asp Ser Asn Val Leu Thr Gln Ala Arg Val Gly Val Ser Arg Lys Val 660 665 670 Ala Asp Glu Glu Ile Met Glu Gln Phe Leu Ser Gly Leu Ile Asp Thr 675 680 685 Glu Ala Glu Ile Asp Glu Val Val Pro Ala Phe Ser Ala Glu Cys Glu 690 695 700 Arg Gly Glu Thr Ser Gly Thr Lys Val Leu Cys Asn Leu Leu Thr Pro 705 710 715 720 Pro Gly Phe Glu Asn Val Leu Pro Ala Val Lys Pro Leu Val Ser Lys 725 730 735 Gly Lys Thr Val Lys Arg Val Asp Tyr Phe Gln Val Met Gly Gly Glu 740 745 750 Arg Leu Pro Lys Arg Pro Val Val Ser Gly Asp Asp Ser Val Asp Ala 755 760 765 Arg Arg Glu Phe Leu Tyr Tyr Leu Asp Ala Glu Arg Val Ala Gln Asn 770 775 780 Asp Glu Ile Met Ser Leu Tyr Arg Asp Tyr Ser Arg Gly Val Ile Arg 785 790 795 800 Thr Gly Gly Gln Asn Tyr Pro His Gly Leu Gly Val Trp Asp Val Glu 805 810 815 Met Lys Asn Trp Cys Ile Arg Pro Val Val Thr Glu His Ala Tyr Val 820 825 830 Ser Asn Pro Asp Lys Arg Met Asp Asp Trp Ser Gly Tyr Leu Glu Val 835 840 845 Ala Val Trp Glu Arg Gly Met Leu Val Asn Asp Phe Ala Val Glu Arg 850 855 860 Met Ser Asp Tyr Val Ile Val Cys Asp Gln Thr Tyr Leu Cys Asn Asn 865 870 875 880 Arg Leu Ile Leu Asp Asn Leu Ser Ala Leu Asp Leu Gly Pro Val Asn 885 890 895 Cys Ser Phe Glu Leu Val Asp Gly Val Pro Gly Cys Gly Lys Ser Thr 900 905 910 Met Ile Val Asn Ser Ala Asn Pro Cys Val Asp Val Val Leu Ser Thr 915 920 925 Gly Arg Ala Ala Thr Asp Asp Leu Ile Glu Arg Phe Ala Ser Lys Gly 930 935 940 Phe Pro Cys Lys Leu Lys Arg Arg Val Lys Thr Val Asp Ser Phe Leu 945 950 955 960 Met His Cys Val Asp Gly Ser Leu Thr Gly Asp Val Leu His Phe Asp 965 970 975 Glu Ala Leu Met Ala His Ala Gly Met Val Tyr Phe Cys Ala Gln Ile 980 985 990 Ala Gly Ala Lys Arg Cys Ile Cys Gln Gly Asp Gln Asn Gln Ile Ser 995 1000 1005 Phe Lys Pro Arg Val Ser Gln Val Asp Leu Arg Phe Ser Ser Leu Val 1010 1015 1020 Gly Lys Phe Asp Ile Val Thr Glu Lys Arg Glu Thr Tyr Arg Ser Pro 1025 1030 1035 1040 Ala Asp Val Ala Ala Val Leu Asn Lys Tyr Tyr Thr Gly Asp Val Arg 1045 1050 1055 Thr His Asn Ala Thr Ala Asn Ser Met Thr Val Arg Lys Ile Val Ser 1060 1065 1070 Lys Glu Gln Val Ser Leu Lys Pro Gly Ala Gln Tyr Ile Thr Phe Leu 1075 1080 1085 Gln Ser Glu Lys Lys Glu Leu Val Asn Leu Leu Ala Leu Arg Lys Val 1090 1095 1100 Ala Ala Lys Val Ser Thr Val His Glu Ser Gln Gly Glu Thr Phe Lys 1105 1110 1115 1120 Asp Val Val Leu Val Arg Thr Lys Pro Thr Asp Asp Ser Ile Ala Arg 1125 1130 1135 Gly Arg Glu Tyr Leu Ile Val Ala Leu Ser Arg His Thr Gln Ser Leu 1140 1145 1150 Val Tyr Glu Thr Val Lys Glu Asp Asp Val Ser Lys Glu Ile Arg Glu 1155 1160 1165 Ser Ala Ala Leu Thr Lys Ala Ala Leu Ala Arg Phe Phe Val Thr Glu 1170 1175 1180 Thr Val Leu 1185 24 519 PRT Tobacco rattle virus 24 Arg Phe Arg Ser Arg Phe Asp Val Phe Arg His His Glu Gly Pro Cys 1 5 10 15 Ala Val Pro Asp Ser Gly Thr Ile Thr Asp Leu Glu Met Trp Tyr Asp 20 25 30 Ala Leu Phe Pro Gly Asn Ser Leu Arg Asp Ser Ser Leu Asp Gly Tyr 35 40 45 Leu Val Ala Thr Thr Asp Cys Asn Leu Arg Leu Asp Asn Val Thr Ile 50 55 60 Lys Ser Gly Asn Trp Lys Asp Lys Phe Ala Glu Lys Glu Thr Phe Leu 65 70 75 80 Lys Pro Val Ile Arg Thr Ala Met Pro Asp Lys Arg Lys Thr Thr Gln 85 90 95 Leu Glu Ser Leu Leu Ala Leu Gln Lys Arg Asn Gln Ala Ala Pro Asp 100 105 110 Leu Gln Glu Asn Val His Ala Thr Val Leu Ile Glu Glu Thr Met Lys 115 120 125 Lys Leu Lys Ser Val Val Tyr Asp Val Gly Lys Ile Arg Ala Asp Pro 130 135 140 Ile Val Asn Arg Ala Gln Met Glu Arg Trp Trp Arg Asn Gln Ser Thr 145 150 155 160 Ala Val Gln Ala Lys Val Val Ala Asp Val Arg Glu Leu His Glu Ile 165 170 175 Asp Tyr Ser Ser Tyr Met Phe Met Ile Lys Ser Asp Val Lys Pro Lys 180 185 190 Thr Asp Leu Thr Pro Gln Phe Glu Tyr Ser Ala Leu Gln Thr Val Val 195 200 205 Tyr His Glu Lys Leu Ile Asn Ser Leu Phe Gly Pro Ile Phe Lys Glu 210 215 220 Ile Asn Glu Arg Lys Leu Asp Ala Met Gln Pro His Phe Val Phe Asn 225 230 235 240 Thr Arg Met Thr Ser Ser Asp Leu Asn Asp Arg Val Lys Phe Leu Asn 245 250 255 Thr Glu Ala Ala Tyr Asp Phe Val Glu Ile Asp Met Ser Lys Phe Asp 260 265 270 Lys Ser Ala Asn Arg Phe His Leu Gln Leu Gln Leu Glu Ile Tyr Arg 275 280 285 Leu Phe Gly Leu Asp Glu Trp Ala Ala Phe Leu Trp Glu Val Ser His 290 295 300 Thr Gln Thr Thr Val Arg Asp Ile Gln Asn Gly Met Met Ala His Ile 305 310 315 320 Trp Tyr Gln Gln Lys Ser Gly Asp Ala Asp Thr Tyr Asn Ala Asn Ser 325 330 335 Asp Arg Thr Leu Cys Ala Leu Leu Ser Glu Leu Pro Leu Glu Lys Ala 340 345 350 Val Met Val Thr Tyr Gly Gly Asp Asp Ser Leu Ile Ala Phe Pro Arg 355 360 365 Gly Thr Gln Phe Val Asp Pro Cys Pro Lys Leu Ala Thr Lys Trp Asn 370 375 380 Phe Glu Cys Lys Ile Phe Lys Tyr Asp Val Pro Met Phe Cys Gly Lys 385 390 395 400 Phe Leu Leu Lys Thr Ser Ser Cys Tyr Glu Phe Val Pro Asp Pro Val 405 410 415 Lys Val Leu Thr Lys Leu Gly Lys Lys Ser Ile Lys Asp Val Gln His 420 425 430 Leu Ala Glu Ile Tyr Ile Ser Leu Asn Asp Ser Asn Arg Ala Leu Gly 435 440 445 Asn Tyr Met Val Val Ser Lys Leu Ser Glu Ser Val Ser Asp Arg Tyr 450 455 460 Leu Tyr Lys Gly Asp Ser Val His Ala Leu Cys Ala Leu Trp Lys His 465 470 475 480 Ile Lys Ser Phe Thr Ala Leu Cys Thr Leu Phe Arg Asp Glu Asn Asp 485 490 495 Lys Glu Leu Asn Pro Ala Lys Val Asp Trp Lys Lys Ala Gln Arg Ala 500 505 510 Val Ser Asn Phe Tyr Asp Trp 515

Claims (31)

What is claimed is:
1. A method of suppressing gene silencing and/or stabilizing expression of a coding sequence in a cell comprising expressing a 126 kDa protein and/or the 183 kDa protein of a subgroup sindbis plant virus in said cell.
2. The method of claim 1, comprising expressing said 126 kDa protein in said cell.
3. The method of claim 1, comprising expressing said 183 kDa protein in said cell.
4. The method of claim 1, wherein expressing comprises infecting said cell with a subgroup sindbis plant virus encoding said 126 kDa protein and/or the 183 kDa protein or homologue and allowing said 126 kDa protein and/or the 183 kDa protein or homologue to be expressed.
5. The method of claim 1, wherein said coding sequence was introduced into the genome of said cell or a progenitor thereof by genetic transformation.
6. The method of claim 5, wherein said coding sequence is present in more than one copy in said cell.
7. The method of claim 1, wherein expressing comprises transforming said cell or a progenitor thereof with a nucleic acid sequence encoding said 126 kDa protein and/or said 183 kDa protein.
8. The method of claim 1, wherein the cell is a plant cell.
9. The method of claim 8, wherein the plant cell is comprised in a plant.
10. The method of claim 9, wherein the plant is a dicotyledonous plant.
11. The method of claim 10, wherein the dicotyledonous plant is selected from the group consisting of Nicotiana spp., tomato, potato, soybean, cotton, canola, alfalfa, sunflower, and cotton.
12. The method of claim 11, wherein said plant is selected from the group consisting of Nicotiana tabacum and Nicotiana benthamiana.
13. The method of claim 9, wherein the plant is a monocotyledonous plant.
14. The method of claim 13, wherein the monocotyledonous plant is selected from the group consisting of wheat, maize, rye, rice, oat, barley, turfgrass, sorghum, millet and sugarcane.
15. The method of claim 4, wherein said subgroup sindbis plant virus is selected from the group consisting of Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Carlaviruses or Vitiviruses.
16. The method of claim 1, wherein said coding sequence is expressed from the plant's genome.
17. The method of claim 4, wherein said virus comprises said coding sequence.
18. The method of claim 1, wherein said nucleic acid sequence encoding said 126 kDa protein and/or said 183 kDa protein is not fused to said coding sequence.
19. A method of delivering a polypeptide of interest to a limited part of a plant comprising the step of infecting a plant with a subgroup sindbis plant virus, wherein said virus encodes a homologue of the 126 kDa and/or 183 kDa protein and wherein said virus encodes said polypeptide.
20. The method of claim 19, wherein the virus encodes the 126 kDa protein.
21. The method of claim 19, wherein the virus encodes the 183 kDa protein.
22. The method of claim 19, wherein one or more mutations are at position 598 or 601 of MIC sequence.
24. The method of claim 23, wherein the amino acid at position 598 is arginine and amino acid at position 601 is lysine.
26. The method of claim 25, wherein the amino acid at position 601 is glutamic acid and amino acid at position 598 is methionine.
27. The method of claim 19, wherein the plant is a dicotyledonous plant.
28. The method of claim 27, wherein the dicotyledonous plant is selected from the group consisting of Nicotiana spp., tomato, potato, soybean, cotton, canola, alfalfa, sunflower, and cotton.
29. The method of claim 28, wherein said plant is selected from the group consisting of Nicotiana tabacum and Nicotiana benthamiana.
30. The method of claim 19, wherein the plant is a monocotyledonous plant.
31. The method of claim 30, wherein the monocotyledonous plant is selected from the group consisting of wheat, maize, rye, rice, oat, barley, turfgrass, sorghum, millet and sugarcane.
33. The method of claim 27, wherein said plant is selected from the group consisting of Nicotiana tabacum and Nicotiana benthamiana.
34. The method of claim 19, wherein said subgroup sindbis plant virus is selected from the group consisting of Tobamoviruses, Tobraviruses, Hordeiviruses, Bromoviridae, Benyviruses, Idaeoviruses, Potexviruses, Allexiviruses, Foveaviruses, Pomoviruses, Carlaviruses or Vitiviruses.
US10/223,070 2001-08-17 2002-08-16 RNA silencing suppression Abandoned US20030109045A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/223,070 US20030109045A1 (en) 2001-08-17 2002-08-16 RNA silencing suppression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31318501P 2001-08-17 2001-08-17
US10/223,070 US20030109045A1 (en) 2001-08-17 2002-08-16 RNA silencing suppression

Publications (1)

Publication Number Publication Date
US20030109045A1 true US20030109045A1 (en) 2003-06-12

Family

ID=23214711

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/223,070 Abandoned US20030109045A1 (en) 2001-08-17 2002-08-16 RNA silencing suppression

Country Status (3)

Country Link
US (1) US20030109045A1 (en)
AU (1) AU2002313769A1 (en)
WO (1) WO2003016490A2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2792922B1 (en) * 1999-04-28 2001-06-01 Vetrotex France Sa MANUFACTURING METHOD WITH DETECTION OF BROKEN YARN

Also Published As

Publication number Publication date
WO2003016490A2 (en) 2003-02-27
AU2002313769A1 (en) 2003-03-03
WO2003016490A3 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
Becker et al. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue
US7256322B2 (en) Wuschel (WUS) Gene Homologs
US8993845B2 (en) Microprojectile bombardment transformation of Brassica
JP2003527080A (en) Herbicide-tolerant plants
US7572953B2 (en) Plants with delayed flowering
WO2019090017A1 (en) Genes and gene combinations for enhanced crops
WO2008102337A1 (en) Virus tolerant plants and methods of producing same
US10829779B2 (en) Use of elongator genes to improve plant disease resistance
US20110173717A1 (en) BPMV-based viral constructs useful for VIGS and expression of heterologous proteins in legumes
US6015942A (en) Transgenic plants exhibiting heterologous virus resistance
US7317141B2 (en) Transcriptional activators involved in abiotic stress tolerance
US20140182011A1 (en) Methods Using Acyl-Coenzyme A-Binding Proteins to Enchance Drought Tolerance in Genetically Modified Plants
US7932434B2 (en) Late blight resistance gene from wild potato
WO2001014561A1 (en) Nor gene compositions and methods for use thereof
Pugliesi et al. Genetic transformation by Agrobacterium tumefaciens in the interspecific hybrid Helianthus annuus× Helianthus tuberosus
US8053638B2 (en) Method for agrobacterium-mediated transformation of plants
WO2007028979A1 (en) Plant transformation
US20030109045A1 (en) RNA silencing suppression
EA002180B1 (en) Dna molecules of intergenic regions of banana bunchy top virus, method of expressing a non-bbtv gene in a plant cell using said dna molecules and transformed vegetal cell line, comprising dna molecules
US20220235364A1 (en) Modified plants comprising a polynucleotide comprising a non-cognate promoter operably linked to a coding sequence that encodes a transcription factor
US20090138988A1 (en) Modification of plant disease resistance
WO1999054490A2 (en) Plant-derived resistance gene
Van Schaik et al. Towards genetic transformation in the monocot Alstroemeria L.
US7256323B1 (en) RPSk-1 gene family, nucleotide sequences and uses thereof
JP2002540773A (en) Insect virus vectors and uses thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMUEL ROBERTS NOBLE FOUNDATION, THE, OKLAHOMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NELSON, RICHARD S.;DING, XIN SHUN;REEL/FRAME:013445/0679

Effective date: 20020910

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION