US20030087814A1 - Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism - Google Patents

Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism Download PDF

Info

Publication number
US20030087814A1
US20030087814A1 US10/287,153 US28715302A US2003087814A1 US 20030087814 A1 US20030087814 A1 US 20030087814A1 US 28715302 A US28715302 A US 28715302A US 2003087814 A1 US2003087814 A1 US 2003087814A1
Authority
US
United States
Prior art keywords
inhibitor
aldehyde dehydrogenase
selegiline
disulfiram
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/287,153
Inventor
Seth Lederman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krele Pharmaceuticals Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/287,153 priority Critical patent/US20030087814A1/en
Publication of US20030087814A1 publication Critical patent/US20030087814A1/en
Assigned to KRELE PHARMACEUTICALS, INC. reassignment KRELE PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEDERMAN, SETH
Priority to US12/145,792 priority patent/US8093300B2/en
Priority to US13/340,999 priority patent/US8481599B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse

Definitions

  • the present invention relates to compositions and methods for increasing patient compliance with therapies comprising the administration of aldehyde dehydrogenase inhibitors, and for preventing, ameliorating or treating alcoholism.
  • Such compositions and methods may be used to facilitate alcohol cessation, and may comprise a combination of aldehyde dehydrogenase inhibitors and monoamine oxidase inhibitors.
  • Alcohol is a commonly abused drug. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), problematic alcohol use is divided into alcohol abuse and alcohol dependence.
  • DSM-IV Diagnostic and Statistical Manual of Mental Disorders
  • Alcohol abuse involves recurrent alcohol consumption that negatively affects one's life, whereas alcohol dependence includes alcohol abuse and additionally symptoms of tolerance and withdrawal [McRae et al., “Alcohol and Substance Abuse,” In: Advances in the Pathophysiology and Treatment of Psychiatric Disorders: Implications for Internal Medicine, 85(3):779-801 (2001); Swift, R. M., New England J. Med 340:1482-1490 (1999); Kick, S., Hospital Practice 95-106 (1999)].
  • the estimated lifetime prevalence for alcohol abuse was 9.4% and for alcohol dependence was 14.1%, with men having significantly higher rates of dependence than women [McRae et al., supra]. Alcohol abuse and dependence commonly lead to other problems such as alcohol-related violence, motor vehicle accidents, and medical consequences of chronic alcohol ingestion including death [McRae et al., supra; Swift, supra].
  • One of the pharmacotherapies that have been suggested for treating alcoholism, including facilitating alcohol cessation, is the administration of agents that inhibiting the enzyme aldehyde dehydrogenase (ALDH), an enzyme involved in the removal of acetaldehyde, a toxic metabolite of alcohol.
  • ALDH aldehyde dehydrogenase
  • ALDH inhibitors include, e.g., disulfiram, coprine, cyanamide, 1-aminocyclopropanol (ACP), daidzin, cephalosporins, antidiabetic sulfonyl ureas, metronidazole, and any of their metabolites or analogs exhibiting ALDH-inhibiting activity including, e.g., S-methyl N,N-diethyldithiocarbamate, S-methyl N,N-diethyldithiocarbamate sulfoxide, and S-methyl N,N-diethylthiocarbamate sulfoxide.
  • Patients who consume such inhibitors of ALDH experience mild to severe discomfort if they ingest alcohol.
  • the efficacy of therapies using ALDH inhibitors depends on the patient's own motivation to self-administer the ALDH inhibitors, e.g., oral forms of the inhibitors, or to receive additional therapies, e.g., DEPO forms of disulfiram. In fact, patient compliance is a significant problem with these types of therapies.
  • ALDH-I also known as ALDH-2
  • ALDH-II also known as ALDH-1
  • ALDH-II is the major enzymes responsible for the oxidation of acetaldehyde.
  • ALDH-I has a higher affinity for acetaldehyde than ALDH-II, and is thought to be the primary enzyme involved in alcohol detoxification [Keung, W. M., et al., Proc. Natl. Acad. Sci. USA 95:2198-2203 (1998)].
  • Disulfiram also known as tetraethylthioperoxydicarbonic diamide, bis-diethylthiocarbamoyl disulfide, tetraethylthiuram disulfide, CronetalTM, AbstenilTM, StopetylTM, ContrainTM, AntadixTM, AnietanolTM, ExhoranTM, ethyl thiurad, AntabuseTM, EtabuseTM, RO-sulfiram, AbstinylTM, ThiuranideTM, EsperalTM, TetradineTM, NoxalTM, TetraetiTM [Swift, supra], is a potent irreversible inhibitor of ALDH-II and inhibits ALDH-I only slightly.
  • disulfiram has been available in the United States for many decades, patients frequently have difficulty complying with disulfiram treatment therapies.
  • One reason for poor compliance is the lack of motivation for the patient to continue to take disulfiram, that is, other than self-motivation (i.e., there is no positive reinforcement for taking disulfiram).
  • Another reason is because of the discomfort that arises if the patient ingests alcohol during disulfiram therapy [McRae et al., supra; Swift, R. M., supra; Kick, S., supra].
  • disulfiram has not proven to be useful in maintaining long-term sobriety [Kick, supra].
  • Coprine N5-(hydroxycyclopropyl)-L-glutamine
  • ACP 1-aminocyclopropanol
  • U.S. Pat. No. 4,076,840 describes the synthesis and use of cyclopropyl benzamides, including coprine, for the treatment of alcoholism.
  • coprine effectively suppressed ethanol consumption, and was shown to be a more potent inhibitor of ALDH as compared to disulfiram [Sinclair et al., Adv. Exp. Med. Biol. 132:481-487 (1980); U.S. Pat. No. 4,076,840].
  • Cyanamide has been described as an alcohol-sensitizing agent that is less toxic than disulfiram [Ferguson, Canad. M.A.J. 74:793-795 (1956); Reilly, Lancet 911-912 (1976)]. Although cyanamide is unable to inhibit either ALDH-I or ALDH-II in vitro, a reactive product of cyanamide catabolism inhibits both isozymes in vivo, indicating that cyanamide inhibits ALDH via a reactive species [DeMaster et al., Biochem. Biophys. Res. Com. 107:1333-1339 (1982)]. Cyanamide has been used for treating alcoholism but has not been approved in the U.S. Citrated calcium cyanamide is marketed in other countries as TemposilTM, DipsaneTM and AbstemTM, and plain cyanamide is marketed as ColmeTM in Spain [See, U.S. Pat. No. 6,255,497].
  • Daidzin is a selective potent reversible inhibitor of ALDH-I, originally purified from an ancient Chinese herbal treatment for alcohol abuse. Its analogs include daidzein-7-O-[ ⁇ -carboxynonyl] ether (deczein), daidzein-7-O-[ ⁇ -carboxyhexyl] ether (hepzein), daidzein-7-O-[ ⁇ -carboxypentyl] ether (hexzein), daidzein, puerarin, and dicarboxymethyl-daidzein [Keung, Chemico - Bio. Int. 130-132:919-930 (2001)].
  • U.S. Pat. Nos. 5,204,369; 5,886,028; 6,121,010; and 6,255,497 describe methods for treating alcohol dependence or abuse using these compounds.
  • WO 99/21540 describes the administration of disulfiram in combination with compounds that bind to the D1 and/or D5 receptors and mimic dopamine to reduce craving for addictive substances in mammals.
  • WO 99/21540 does not suggest pharmacotherapy for ensuring patient compliance with the regimen, which is important for the success of the treatment.
  • MAOs monoamine oxidases
  • MAOs catalyze the oxidation of a variety of monoamines, including epinephrine, norepinephrine, serotonin and dopamine.
  • MAOs are iron containing enzymes that exist as two isozymes A (MAOA) and B (MAOB).
  • MAOA monoamine oxidases
  • MAOB iron containing enzymes that exist as two isozymes A
  • MAOB MAOB inhibitors
  • WO 96/35425 discusses a treatment for alcoholism using a selective MAOB inhibitor in combination with a partial agonist of the 5-TH1A receptor.
  • WO 00/71109 discusses a treatment for alcohol withdrawal symptoms using the MAOB inhibitor desmethylselegiline in combination with a second drug that treats alcohol withdrawal symptoms.
  • U.S. Pat. No. 6,239,181 describes methods for alleviating symptoms associated with alcoholic neuropathy by administering the MAOB inhibitor, selegiline.
  • none of the above references teach or suggest the use of MAOB inhibitors in therapies using ALDH inhibitors.
  • none of these references teach that MAOB inhibitors have a sustained effect on ensuring patient compliance with other therapies.
  • the present invention provides a solution for the deficiencies in traditional therapies using ALDH inhibitors to stop, prevent or reduce recidivism, thus, promoting compliance.
  • the present invention also provides unexpectedly new and better compositions and methods for treating diseases that require the self-administration of an ALDH inhibitor.
  • the present invention provides compositions and methods for preventing, treating or reducing alcoholism comprising administering a therapeutically effective amount of an ALDH inhibitor in combination with an MAOB inhibitor.
  • compositions and methods for increasing the rate of continuous abstinence, delaying resumption of abuse or dependence and/or preventing relapses in patients being treated for alcoholism are provided in one embodiment of the present invention.
  • the patient to be treated suffers from a disease requiring treatment with an ALDH inhibitor and consumes or can consume alcohol during therapy.
  • the therapy does not involve forcing the patient to intake alcohol as part of the treatment.
  • the patient to be treated is suffering from alcoholism.
  • a composition according to the latter embodiment of the invention comprises an MAOB inhibitor and an ALDH inhibitor.
  • the ALDH inhibitor may inhibit ALDH-I.
  • the ALDH inhibitor may be, e.g., disulfiram, coprine, cyanamide, 1-aminocyclopropanol (ACP), daidzin, cephalosporins, antidiabetic sulfonyl ureas, metronidazole, or any of their metabolites or analogs exhibiting ALDH-inhibiting activity including, e.g., S-methyl N,N-diethyldithiocarbamate, S-methyl N,N-diethyldithiocarbamate sulfoxide, or S-methyl N,N-diethylthiocarbamate sulfoxide.
  • the ALDH inhibitor is disulfiram or an ALDH-inhibiting metabolite thereof. According to one preferred embodiment, the amount of disulfiram or an ALDH-inhibiting
  • the MAOB inhibitor is, e.g., selegiline, pargyline, desmethylselegiline, rasagiline [R(+) N-propargyl-laminoindan], 3-N-phenylacetylamino-2,5-piperidinedione or caroxyazone.
  • the MAOB inhibitor is selegiline.
  • the amount of selegiline administered is 15 mg or less per day.
  • An MAOB inhibitor according to this invention is a compound that inhibits MAOB but causes much less or no inhibition of MAOA activity, or a compound that selectively inhibits MAOB (e.g., within a particular dosage range).
  • selective MAOB inhibitor activity the activity of an MAOB inhibitor as used according to this invention will be referred to as “selective MAOB inhibitor activity.”
  • the MAOB inhibitor is selected from the group consisting of selegiline (Jumex®, Jumexal® Carbex®, Eldepryl®, Movergan®; Aptapryl®, Anipryl®; Eldeprine®; Plurimen®), desmethylselegiline, pargyline (Eudatin®, Supirdyl®, Eutonyl®) [U.S. Pat. No.
  • a prodrug of a MAOB inhibitor is a derivatized MAOB inhibitor that is metabolized in vivo into the active inhibitory agent.
  • Prodrugs according to this invention preferably have substantially the same or better therapeutic value than the underivatized MAOB inhibitor.
  • a prodrug useful according to this invention can improve the penetration of the drug across biological membranes leading to improved drug absorption; prolong duration of the action of the drug, e.g., slow release of the parent drug from the prodrug and/or decrease first-pass metabolism of the drug; target the drug action; improve aqueous solubility and stability of the drug (e.g., intravenous preparations, eyebrows etc.); improve topical drug delivery (e.g., dermal and ocular drug delivery); improve the chemical and/or enzymatic stability of drugs (e.g., peptides); or decrease side effects due to the drug.
  • Methods for making prodrugs are readily known in the art.
  • MAOB inhibitor according to this invention or metabolite thereof, as used herein includes pharmaceutically acceptable salts of those compounds.
  • Pharmaceutically acceptable salts of MAOB inhibitors useful according to the methods of this invention are salts prepared from pharmaceutically acceptable reagents.
  • said pharmaceutically acceptable salt is a hydrochloride salt.
  • MAOB activity is decreased greater than 80% compared to MAOB enzyme activity before treatment. In a preferred embodiment, MAOB activity is decreased greater than 90% or 95% compared to MAOB activity before treatment.
  • MAOA inhibitory activity can, for example, be evaluated by measuring levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) or 5-hydroxyindoleacetic acid (5-HIAA) in the plasma of blood or in cerebral spinal fluid (CSF) by using gas chromatography-mass spectroscopy (gc-ms).
  • MHPG 3-methoxy-4-hydroxyphenylglycol
  • 5-HIAA 5-hydroxyindoleacetic acid
  • CSF cerebral spinal fluid
  • plasma MHPG levels should not be reduced lower than 45% of pretreatment levels of plasma MHPG.
  • plasma MHPG or CSF 5-HIAA levels should not be reduced more than 80% of pretreatment levels of MHPG or 5-HIAA levels, respectively.
  • ALDH inhibitors according to the invention are compounds that are capable of inhibiting the activity of one or more of the several isozymes of ALDH, e.g., ALDH-I and ALDH-II.
  • the ALDH is involved in alcohol metabolism.
  • ALDH inhibitors according to this invention include, e.g., disulfiram, coprine, cyanamide, 1-aminocyclopropanol (ACP), daidzin, cephalosporins, antidiabetic sulfonyl ureas, metronidazole, and any of their metabolites or analogs exhibiting ALDH-inhibiting activity.
  • the ALDH inhibitor is disulfiram or an ALDH-inhibiting metabolite thereof.
  • Such metabolites include, e.g., S-methyl N,N-diethyldithiocarbamate, S-methyl N,N-diethyldithiocarbamate sulfoxide, and S-methyl N,N-diethylthiocarbamate sulfoxide.
  • ADH inhibitor according to the invention or metabolite thereof, as used herein, includes pharmaceutically acceptable salts of those compounds.
  • alcohol abuse includes alcohol abuse and alcohol dependence as described below.
  • Alcohol abuse is defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Alcohol abuse as a maladaptive pattern of alcohol use that leads to clinically significant impairment or distress. Symptoms include one or more of the following occurring within a 12-month period: (1) recurrent alcohol use that results in a failure to fulfill major role obligations at work, school or home; (2) recurrent alcohol use in physically hazardous situations; (3) recurrent alcohol-related legal problems; and (4) continued alcohol use despite having persistent or recurrent social or interpersonal problems caused or exacerbated by the effects of the substance [McRae et al., supra; Swift, R. M., supra; Kick, S., supra].
  • Alcohol dependence occurs when symptoms of abuse are accompanied by three or more of the following: (1) tolerance defined by either: (a) a need for markedly increased amounts of alcohol to achieve intoxication or desired effect, or (b) markedly diminished effect with continued use of the same amount of alcohol; (2) withdrawal manifested by either: (a) characteristic withdrawal syndrome for alcohol or (b) alcohol taken to relieve or avoid withdrawal symptoms; (3) alcohol taken in larger amounts over a longer period than as intended; (4) a persistent desire or unsuccessful efforts to reduce or control drinking; (5) much time spent in activities necessary to obtain alcohol, use alcohol, or recover from its effects; (6) important social, occupational, or recreational activities being given up or reduced because of drinking; and (7) continued use despite knowledge of having a persistent or recurrent physical or psychological problem caused or exacerbated by alcohol [McRae et al., supra; Swift, R. M., supra; Kick, S., supra].
  • Alcohol abuse or dependence can also result in other symptoms including dyspepsia or epigastric pain, headache, diarrhea, difficulty in sleeping, fatigue, unexplained weight loss, apparent malnutrition, easy bruising, increased mean corpuscular volume, elevated transaminase levels (especially an aspartate transaminase level greater than of alanine transaminase), elevated y-glutamyl transferase levels, iron-deficiency anemia, hepatomegaly, jaundice, spider angiomata, ascites, and peripheral edema.
  • dyspepsia or epigastric pain headache, diarrhea, difficulty in sleeping, fatigue, unexplained weight loss, apparent malnutrition, easy bruising, increased mean corpuscular volume, elevated transaminase levels (especially an aspartate transaminase level greater than of alanine transaminase), elevated y-glutamyl transferase levels, iron-deficiency anemia, hepatom
  • Behavioral symptoms associated with alcohol abuse or dependence include absenteeism from work or school, increasing irritability, difficulties with relationships, verbal or physical abuse, and depression [McRae et al., supra; Swift, R. M., supra; Kick, S., supra].
  • Alcoholism is often diagnosed using questionnaires, known to those of ordinary skill in the art, which are structured to obtain information related to the symptoms of alcohol abuse and/or dependence as outlined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). The most commonly used screening test used for detecting alcohol abuse or dependence is the CAGE questionnaire [Kick, S., supra]. Alcoholics Anonymous describes another questionnaire.
  • a patient to be treated for, or protected against, the onset of alcoholism according to this invention can be a human, including children and adults, who are susceptible to or are suffering from alcoholism or who are being treated for alcoholism and are susceptible to experiencing relapses.
  • a patient who is having difficulty complying with, or is being induced to comply with, treatments using ALDH inhibitors or their active metabolites according to this invention can be a human, including children and adults.
  • compositions according the present invention comprise a pharmaceutically acceptable carrier together with an ALDH inhibitor and an MAOB inhibitor.
  • the ALDH inhibitor is disulfiram, or a metabolite or prodrug thereof.
  • the composition comprises 500 mg, 250 mg, 125 mg, or 60 mg of disulfiram, or metabolite or prodrug thereof.
  • the MAOB inhibitor is selegiline, or a metabolite or prodrug thereof.
  • the composition comprises 15 mg or less of selegiline, or metabolite or prodrug thereof.
  • the composition comprises 500 mg, 250 mg, 125 mg or 60 mg of disulfiram, or metabolite or prodrug thereof, and 15 mg or less of selegiline, or metabolite or prodrug thereof. In a more preferred embodiment, the composition comprises about 60 mg of disulfiram, or a metabolite or prodrug thereof, and about 2 mg of selegiline, or a metabolite or prodrug thereof.
  • the effective dosage of a composition of the invention administered to a patient is at least an amount required to minimize, reduce or eliminate one or more symptoms associated with preventing or treating alcoholism, typically one of the symptoms discussed above.
  • the magnitude of a prophylactic or therapeutic dose of the composition of the invention in the treatment of a patient will vary with the symptoms being exhibited, the severity of the patient's affliction, the desired degree of therapeutic response, the route of administration, and the concomitant therapies being administered.
  • the dose and dose frequency will also vary according to the age, weight and response of the individual patient. Generally, however, treatment for alcoholism will be ongoing, although the intensity of treatment can vary depending on the patient's condition and exposure to biochemical and environmental stimuli that can warrant a variation on the treatment. Dosages can be administered in a single or multiple dosage regimen.
  • the composition comprising 500 mg, 250 mg, 125 mg or 60 mg of disulfiram and 15 mg or less selegiline is administered twice a day, in the morning and at noon or late afternoon.
  • a composition comprising about 125 mg of disulfiram and about 5 mg of selegiline is administered twice a day, in the morning and at noon or late afternoon.
  • Selegiline can be administered twice a day, in the morning and at noon or late afternoon.
  • An initial daily non-oral dose can be at least about 0.01 mg per kg of body weight, calculated on the basis of the free secondary amine, with progressively higher doses being employed depending upon the response to therapy.
  • the final daily dose can be between about 0.05 mg/kg of body weight to about 0.15 mg/kg of body weight (all such doses being calculated in the basis of the free secondary amine).
  • the present invention when employing selegiline is not limited to a particular form of selegiline and the drug can be used either as a free base or as a pharmaceutically acceptable acid addition salt.
  • the hydrochloride salt is preferred.
  • other salts useful in the invention include those derived from organic and inorganic acids such as, without limitation, hydrobromic acid, phosphoric acid, sulfuric acid, methane sulfonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, aconitic acid, salicylic acid, thalic acid, embonic acid, enanthic acid, and the like.
  • the treating physician will know how to increase, decrease or interrupt treatment based upon the patient's response.
  • Improvement for alcoholics or potentially relapsing alcoholics can be assessed by observing increased abstinence from consuming alcohol by the patient, following the methods of this invention, as compared to patients where therapy did not comprise the co-administration of a MAOB inhibitor.
  • Improvement in compliance with self-administering ALDH inhibitors can be assessed by observing the increased duration over which patients, following the methods of this invention, take the ALDH inhibitor as compared to patients whose therapy did not comprise the co-administration of an MAOB inhibitor.
  • any suitable route of administration can be employed for providing the patient with an effective dosage of a composition of this invention.
  • oral, peroral, buccal, nasal, pulmonary, vaginal, lingual, sublingual, rectal, parenteral, transdermal, intraocular, intravenous, intraarterial, intracardial intramuscular, intraperitoneal, intracutaneous, subcutaneous, sublingual, intranasal, intramuscular, and intrathecal administration and the like can be employed as appropriate.
  • parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
  • the route of administration is the oral route.
  • compositions can be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.
  • Dosage forms can include tablets, scored tablets, coated tablets, pills, caplets, capsules (e.g., hard gelatin capsules), troches, dragees, powders, aerosols, suppositories, parenterals, dispersions, suspensions, solutions, transdermal patches and the like, including sustained release formulations well known in the art.
  • the dosage form is a scored tablet or a transdermal patch.
  • 5,192,550 incorporated herein by reference, describes a dosage form for selegiline comprising an outer wall with one or more pores, in which the wall is impermeable to selegiline but permeable to external fluids.
  • This dosage form can have applicability for oral, sublingual or buccal administration.
  • compositions of this invention can be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions.
  • carriers which are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried corn starch.
  • compositions according to this invention can be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension.
  • This suspension can be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents.
  • the sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • suitable vehicles and solvents that can be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or diglycerides.
  • Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions can also contain a long-chain alcohol diluent or dispersant such as Ph. Helv or a similar alcohol.
  • compositions of this invention can also be administered in the form of suppositories for rectal administration.
  • These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components.
  • suitable non-irritating excipient include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
  • compositions of this invention can be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and can be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
  • Patients can be regularly evaluated by physicians, e.g., once a week, to determine whether there has been an improvement in symptoms and whether the dosage of the composition of the invention needs to be adjusted.
  • the MAOB inhibitor can be included in the composition comprising the ALDH inhibitor.
  • the MAOB inhibitor can be administered simultaneously with the composition comprising the ALDH inhibitor, or at any time during the treatment of the patient with the ALDH inhibitor.
  • a therapeutically effective amount of an MAOB inhibitor is that amount at which MAOB is inhibited but MAOA exhibits slight or no reduction in activity in the patient. Slight reduction in activity preferably comprises less than about 30% reduction in activity, more preferably less than about 20% reduction in activity, and yet more preferably less than about 10% reduction in activity.
  • the dosage of selegiline is an amount equal to or less than 15 mg per day. In another embodiment, the dosage of pargyline is equal to or less than 30 mg/day.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Addiction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Compositions and methods for treating, preventing, or reducing alcoholism, in particular methods for increasing patient compliance with therapies that require the intake of an ALDH inhibitor comprising the step of administering a monoamine oxidase B inhibitor.

Description

    RELATED APPLICATIONS
  • This patent application claims the benefit of the filing date of U.S. Patent Application No. 60/338,901 filed on Nov. 5, 2001, the entire contents of which are hereby expressly incorporated by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to compositions and methods for increasing patient compliance with therapies comprising the administration of aldehyde dehydrogenase inhibitors, and for preventing, ameliorating or treating alcoholism. Such compositions and methods may be used to facilitate alcohol cessation, and may comprise a combination of aldehyde dehydrogenase inhibitors and monoamine oxidase inhibitors. [0003]
  • 2. Description of the Related Art [0004]
  • Alcohol is a commonly abused drug. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), problematic alcohol use is divided into alcohol abuse and alcohol dependence. [0005]
  • Alcohol abuse involves recurrent alcohol consumption that negatively affects one's life, whereas alcohol dependence includes alcohol abuse and additionally symptoms of tolerance and withdrawal [McRae et al., “Alcohol and Substance Abuse,” In: Advances in the Pathophysiology and Treatment of Psychiatric Disorders: Implications for Internal Medicine, 85(3):779-801 (2001); Swift, R. M., [0006] New England J. Med 340:1482-1490 (1999); Kick, S., Hospital Practice 95-106 (1999)]. In 1997, the estimated lifetime prevalence for alcohol abuse was 9.4% and for alcohol dependence was 14.1%, with men having significantly higher rates of dependence than women [McRae et al., supra]. Alcohol abuse and dependence commonly lead to other problems such as alcohol-related violence, motor vehicle accidents, and medical consequences of chronic alcohol ingestion including death [McRae et al., supra; Swift, supra].
  • One of the pharmacotherapies that have been suggested for treating alcoholism, including facilitating alcohol cessation, is the administration of agents that inhibiting the enzyme aldehyde dehydrogenase (ALDH), an enzyme involved in the removal of acetaldehyde, a toxic metabolite of alcohol. Examples of ALDH inhibitors include, e.g., disulfiram, coprine, cyanamide, 1-aminocyclopropanol (ACP), daidzin, cephalosporins, antidiabetic sulfonyl ureas, metronidazole, and any of their metabolites or analogs exhibiting ALDH-inhibiting activity including, e.g., S-methyl N,N-diethyldithiocarbamate, S-methyl N,N-diethyldithiocarbamate sulfoxide, and S-methyl N,N-diethylthiocarbamate sulfoxide. Patients who consume such inhibitors of ALDH experience mild to severe discomfort if they ingest alcohol. The efficacy of therapies using ALDH inhibitors depends on the patient's own motivation to self-administer the ALDH inhibitors, e.g., oral forms of the inhibitors, or to receive additional therapies, e.g., DEPO forms of disulfiram. In fact, patient compliance is a significant problem with these types of therapies. [0007]
  • Although multiple forms of ALDH exist. ALDH-I (also known as ALDH-2) and ALDH-II (also known as ALDH-1) are the major enzymes responsible for the oxidation of acetaldehyde. ALDH-I has a higher affinity for acetaldehyde than ALDH-II, and is thought to be the primary enzyme involved in alcohol detoxification [Keung, W. M., et al., [0008] Proc. Natl. Acad. Sci. USA 95:2198-2203 (1998)]. The discovery that 50% of the Asian population carries a mutation in ALDH-I that inactivates the enzyme, together with the low occurrence of alcohol abuse in this population supports the contention that it is this isozyme of ALDH that is primarily responsible for alcohol detoxification. Recent studies also implicate ALDH-I in the metabolism of monoamine neurotransmitters such as serotonin (5-HT) and dopamine (DA) [Keung, W. M., et al., Proc. Natl. Acad. Sci. USA 95:2198-2203 (1998)].
  • Disulfiram, also known as tetraethylthioperoxydicarbonic diamide, bis-diethylthiocarbamoyl disulfide, tetraethylthiuram disulfide, Cronetal™, Abstenil™, Stopetyl™, Contrain™, Antadix™, Anietanol™, Exhoran™, ethyl thiurad, Antabuse™, Etabuse™, RO-sulfiram, Abstinyl™, Thiuranide™, Esperal™, Tetradine™, Noxal™, Tetraeti™ [Swift, supra], is a potent irreversible inhibitor of ALDH-II and inhibits ALDH-I only slightly. Recent studies suggest that the inhibition of ALDH-I by disulfiram occurs indirectly via its metabolites, e.g., S-methyl-N,N-diethylthiocarbamate sulfoxide (DETC-MeSO) [Yourick et al., [0009] Alcohol 4:463 (1987); Yourick et al., Biochem. Pharmacol. 38:413 (1989); Hart et al., Alcohol 7:165 (1990); Madan et al., Drug Metab. Dispos. 23:1153-1162 (1995)]. Ingestion of alcohol while taking disulfiram results in the accumulation of aldehydes, which causes tachycardia, flushing, diaphoresis, dyspnea, nausea and vomiting (also known collectively as the disulfiram or disulfiram-ethanol reaction).
  • Although disulfiram has been available in the United States for many decades, patients frequently have difficulty complying with disulfiram treatment therapies. One reason for poor compliance is the lack of motivation for the patient to continue to take disulfiram, that is, other than self-motivation (i.e., there is no positive reinforcement for taking disulfiram). Another reason is because of the discomfort that arises if the patient ingests alcohol during disulfiram therapy [McRae et al., supra; Swift, R. M., supra; Kick, S., supra]. In fact, disulfiram has not proven to be useful in maintaining long-term sobriety [Kick, supra]. [0010]
  • Coprine (N5-(hydroxycyclopropyl)-L-glutamine) has been shown to inhibit ALDH via its active metabolite, 1-aminocyclopropanol (ACP). U.S. Pat. No. 4,076,840 describes the synthesis and use of cyclopropyl benzamides, including coprine, for the treatment of alcoholism. In rat studies, coprine effectively suppressed ethanol consumption, and was shown to be a more potent inhibitor of ALDH as compared to disulfiram [Sinclair et al., [0011] Adv. Exp. Med. Biol. 132:481-487 (1980); U.S. Pat. No. 4,076,840].
  • Cyanamide has been described as an alcohol-sensitizing agent that is less toxic than disulfiram [Ferguson, [0012] Canad. M.A.J. 74:793-795 (1956); Reilly, Lancet 911-912 (1976)]. Although cyanamide is unable to inhibit either ALDH-I or ALDH-II in vitro, a reactive product of cyanamide catabolism inhibits both isozymes in vivo, indicating that cyanamide inhibits ALDH via a reactive species [DeMaster et al., Biochem. Biophys. Res. Com. 107:1333-1339 (1982)]. Cyanamide has been used for treating alcoholism but has not been approved in the U.S. Citrated calcium cyanamide is marketed in other countries as Temposil™, Dipsane™ and Abstem™, and plain cyanamide is marketed as Colme™ in Spain [See, U.S. Pat. No. 6,255,497].
  • Daidzin is a selective potent reversible inhibitor of ALDH-I, originally purified from an ancient Chinese herbal treatment for alcohol abuse. Its analogs include daidzein-7-O-[ω-carboxynonyl] ether (deczein), daidzein-7-O-[ω-carboxyhexyl] ether (hepzein), daidzein-7-O-[ω-carboxypentyl] ether (hexzein), daidzein, puerarin, and dicarboxymethyl-daidzein [Keung, [0013] Chemico-Bio. Int.130-132:919-930 (2001)]. U.S. Pat. Nos. 5,204,369; 5,886,028; 6,121,010; and 6,255,497 describe methods for treating alcohol dependence or abuse using these compounds.
  • One of the major problems associated with therapies using ALDH inhibitors is ensuring patient compliance with the regimen. According to applicant's knowledge, there have been no teachings that suggest pharmacotherapies that adequately address this problem. For example, WO 99/21540 describes the administration of disulfiram in combination with compounds that bind to the D1 and/or D5 receptors and mimic dopamine to reduce craving for addictive substances in mammals. However, WO 99/21540 does not suggest pharmacotherapy for ensuring patient compliance with the regimen, which is important for the success of the treatment. [0014]
  • Another pharmacotherapy that has been suggested for treating alcoholism involves the inhibition of monoamine oxidases (MAOs). MAOs catalyze the oxidation of a variety of monoamines, including epinephrine, norepinephrine, serotonin and dopamine. MAOs are iron containing enzymes that exist as two isozymes A (MAOA) and B (MAOB). Various publications have described treatments for alcoholism using MAOB inhibitors [e.g, WO 92/21333, WO 96/37199]. WO 96/35425 discusses a treatment for alcoholism using a selective MAOB inhibitor in combination with a partial agonist of the 5-TH1A receptor. WO 00/71109 discusses a treatment for alcohol withdrawal symptoms using the MAOB inhibitor desmethylselegiline in combination with a second drug that treats alcohol withdrawal symptoms. U.S. Pat. No. 6,239,181 describes methods for alleviating symptoms associated with alcoholic neuropathy by administering the MAOB inhibitor, selegiline. However, none of the above references teach or suggest the use of MAOB inhibitors in therapies using ALDH inhibitors. Moreover, none of these references teach that MAOB inhibitors have a sustained effect on ensuring patient compliance with other therapies. [0015]
  • The present invention provides a solution for the deficiencies in traditional therapies using ALDH inhibitors to stop, prevent or reduce recidivism, thus, promoting compliance. The present invention also provides unexpectedly new and better compositions and methods for treating diseases that require the self-administration of an ALDH inhibitor. [0016]
  • SUMMARY OF THE INVENTION
  • The present invention provides compositions and methods for preventing, treating or reducing alcoholism comprising administering a therapeutically effective amount of an ALDH inhibitor in combination with an MAOB inhibitor. [0017]
  • There is provided in one embodiment of the present invention compositions and methods for increasing the rate of continuous abstinence, delaying resumption of abuse or dependence and/or preventing relapses in patients being treated for alcoholism. [0018]
  • There is further provided a method for increasing patient compliance with therapies that require self-administration of an ALDH inhibitor comprising the step of administering a therapeutically effective amount of a MAOB inhibitor. [0019]
  • According to one embodiment of the invention, the patient to be treated suffers from a disease requiring treatment with an ALDH inhibitor and consumes or can consume alcohol during therapy. The therapy does not involve forcing the patient to intake alcohol as part of the treatment. According to one preferred embodiment of this invention, the patient to be treated is suffering from alcoholism. [0020]
  • A composition according to the latter embodiment of the invention comprises an MAOB inhibitor and an ALDH inhibitor. The ALDH inhibitor may inhibit ALDH-I. The ALDH inhibitor may be, e.g., disulfiram, coprine, cyanamide, 1-aminocyclopropanol (ACP), daidzin, cephalosporins, antidiabetic sulfonyl ureas, metronidazole, or any of their metabolites or analogs exhibiting ALDH-inhibiting activity including, e.g., S-methyl N,N-diethyldithiocarbamate, S-methyl N,N-diethyldithiocarbamate sulfoxide, or S-methyl N,N-diethylthiocarbamate sulfoxide. In a more preferred embodiment, the ALDH inhibitor is disulfiram or an ALDH-inhibiting metabolite thereof. According to one preferred embodiment, the amount of disulfiram or an ALDH-inhibiting metabolite thereof administered is 500 mg per day. [0021]
  • In one embodiment, the MAOB inhibitor is, e.g., selegiline, pargyline, desmethylselegiline, rasagiline [R(+) N-propargyl-laminoindan], 3-N-phenylacetylamino-2,5-piperidinedione or caroxyazone. In a more preferred embodiment, the MAOB inhibitor is selegiline. According to one preferred embodiment, the amount of selegiline administered is 15 mg or less per day.[0022]
  • DETAILED DESCRIPTION OF THE INVENTION
  • An MAOB inhibitor according to this invention is a compound that inhibits MAOB but causes much less or no inhibition of MAOA activity, or a compound that selectively inhibits MAOB (e.g., within a particular dosage range). Hereinafter, the activity of an MAOB inhibitor as used according to this invention will be referred to as “selective MAOB inhibitor activity.”[0023]
  • In one embodiment, the MAOB inhibitor is selected from the group consisting of selegiline (Jumex®, Jumexal® Carbex®, Eldepryl®, Movergan®; Aptapryl®, Anipryl®; Eldeprine®; Plurimen®), desmethylselegiline, pargyline (Eudatin®, Supirdyl®, Eutonyl®) [U.S. Pat. No. 3,155,584], rasagiline [R(+)N-propargyl-laminoindan], 3-N-phenylacetylamino-2,5-piperidinedione, caroxyazone, AGN-1135 [WO 92/21333], MDL 72195 [WO 92/21333], J 508 [WO 92/21333], lazabemide [WO 00/45846], milacemide [WO 00/45846], IFO [WO 00/45846], mofegiline [WO 00/45846], and 5-(4-(4,4,4-trifluorobutoxy)phenyl)-3-(2-methoxyethyl)-1,3,4-oxadiazol-2(3H)-one [WO 00/45846]. In another embodiment, prodrugs or metabolites of the MAOB inhibitors are contemplated. Said metabolite should have substantially the same or better selective MAOB inhibitor activity as its unmetabolized form. [0024]
  • A prodrug of a MAOB inhibitor is a derivatized MAOB inhibitor that is metabolized in vivo into the active inhibitory agent. Prodrugs according to this invention preferably have substantially the same or better therapeutic value than the underivatized MAOB inhibitor. For example, a prodrug useful according to this invention can improve the penetration of the drug across biological membranes leading to improved drug absorption; prolong duration of the action of the drug, e.g., slow release of the parent drug from the prodrug and/or decrease first-pass metabolism of the drug; target the drug action; improve aqueous solubility and stability of the drug (e.g., intravenous preparations, eyebrows etc.); improve topical drug delivery (e.g., dermal and ocular drug delivery); improve the chemical and/or enzymatic stability of drugs (e.g., peptides); or decrease side effects due to the drug. Methods for making prodrugs are readily known in the art. [0025]
  • The term “MAOB inhibitor” according to this invention or metabolite thereof, as used herein includes pharmaceutically acceptable salts of those compounds. Pharmaceutically acceptable salts of MAOB inhibitors useful according to the methods of this invention are salts prepared from pharmaceutically acceptable reagents. In one embodiment, said pharmaceutically acceptable salt is a hydrochloride salt. [0026]
  • Methods known in the art for evaluating the activity of MAOB and MAOA can be used for selecting MAOB inhibitors according to this invention. For example, blood samples can be drawn to determine platelet MAO activity using radiolabelled benzylamine or phenylethylamine. (i.e., evaluating MAOB inhibitory activity). [Murphy, D. L., et al., [0027] Psychopharm. 62:129-132 (1979); Murphy, D. L., et al., Biochem. Med. 16:254-265 (1976); all incorporated by reference herein] In one embodiment, MAOB activity is decreased greater than 80% compared to MAOB enzyme activity before treatment. In a preferred embodiment, MAOB activity is decreased greater than 90% or 95% compared to MAOB activity before treatment.
  • MAOA inhibitory activity can, for example, be evaluated by measuring levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) or 5-hydroxyindoleacetic acid (5-HIAA) in the plasma of blood or in cerebral spinal fluid (CSF) by using gas chromatography-mass spectroscopy (gc-ms). [Murphy, D. L., et al., [0028] Clinical Pharmacology in Psychiatry, 3rd Series., Eds. Dahl, Gram, Paul, and Potter, Springer-Verlag: 1987; Major, L. F., et al., J. Neurochem. 39:229-231 (1979); Jimerson, D. C., et al., Biomed. Mass. Spectrom. 8:256-259 (1981); all incorporated by reference herein]. In one embodiment, after administration of the MAOB inhibitor, plasma MHPG levels should not be reduced lower than 45% of pretreatment levels of plasma MHPG. In a preferred embodiment, after administration of the MAOB inhibitor, plasma MHPG or CSF 5-HIAA levels should not be reduced more than 80% of pretreatment levels of MHPG or 5-HIAA levels, respectively.
  • ALDH inhibitors according to the invention are compounds that are capable of inhibiting the activity of one or more of the several isozymes of ALDH, e.g., ALDH-I and ALDH-II. According to one embodiment, the ALDH is involved in alcohol metabolism. ALDH inhibitors according to this invention include, e.g., disulfiram, coprine, cyanamide, 1-aminocyclopropanol (ACP), daidzin, cephalosporins, antidiabetic sulfonyl ureas, metronidazole, and any of their metabolites or analogs exhibiting ALDH-inhibiting activity. In another embodiment, the ALDH inhibitor is disulfiram or an ALDH-inhibiting metabolite thereof. Such metabolites include, e.g., S-methyl N,N-diethyldithiocarbamate, S-methyl N,N-diethyldithiocarbamate sulfoxide, and S-methyl N,N-diethylthiocarbamate sulfoxide. [0029]
  • The term “ALDH inhibitor” according to the invention or metabolite thereof, as used herein, includes pharmaceutically acceptable salts of those compounds. [0030]
  • The term “alcoholism” according to the invention includes alcohol abuse and alcohol dependence as described below. [0031]
  • The term “alcohol abuse” is defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Alcohol abuse as a maladaptive pattern of alcohol use that leads to clinically significant impairment or distress. Symptoms include one or more of the following occurring within a 12-month period: (1) recurrent alcohol use that results in a failure to fulfill major role obligations at work, school or home; (2) recurrent alcohol use in physically hazardous situations; (3) recurrent alcohol-related legal problems; and (4) continued alcohol use despite having persistent or recurrent social or interpersonal problems caused or exacerbated by the effects of the substance [McRae et al., supra; Swift, R. M., supra; Kick, S., supra]. [0032]
  • Alcohol dependence occurs when symptoms of abuse are accompanied by three or more of the following: (1) tolerance defined by either: (a) a need for markedly increased amounts of alcohol to achieve intoxication or desired effect, or (b) markedly diminished effect with continued use of the same amount of alcohol; (2) withdrawal manifested by either: (a) characteristic withdrawal syndrome for alcohol or (b) alcohol taken to relieve or avoid withdrawal symptoms; (3) alcohol taken in larger amounts over a longer period than as intended; (4) a persistent desire or unsuccessful efforts to reduce or control drinking; (5) much time spent in activities necessary to obtain alcohol, use alcohol, or recover from its effects; (6) important social, occupational, or recreational activities being given up or reduced because of drinking; and (7) continued use despite knowledge of having a persistent or recurrent physical or psychological problem caused or exacerbated by alcohol [McRae et al., supra; Swift, R. M., supra; Kick, S., supra]. [0033]
  • Alcohol abuse or dependence can also result in other symptoms including dyspepsia or epigastric pain, headache, diarrhea, difficulty in sleeping, fatigue, unexplained weight loss, apparent malnutrition, easy bruising, increased mean corpuscular volume, elevated transaminase levels (especially an aspartate transaminase level greater than of alanine transaminase), elevated y-glutamyl transferase levels, iron-deficiency anemia, hepatomegaly, jaundice, spider angiomata, ascites, and peripheral edema. Behavioral symptoms associated with alcohol abuse or dependence include absenteeism from work or school, increasing irritability, difficulties with relationships, verbal or physical abuse, and depression [McRae et al., supra; Swift, R. M., supra; Kick, S., supra]. [0034]
  • Alcoholism is often diagnosed using questionnaires, known to those of ordinary skill in the art, which are structured to obtain information related to the symptoms of alcohol abuse and/or dependence as outlined by the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). The most commonly used screening test used for detecting alcohol abuse or dependence is the CAGE questionnaire [Kick, S., supra]. Alcoholics Anonymous describes another questionnaire. [0035]
  • A patient to be treated for, or protected against, the onset of alcoholism according to this invention can be a human, including children and adults, who are susceptible to or are suffering from alcoholism or who are being treated for alcoholism and are susceptible to experiencing relapses. A patient who is having difficulty complying with, or is being induced to comply with, treatments using ALDH inhibitors or their active metabolites according to this invention can be a human, including children and adults. [0036]
  • Compositions according the present invention comprise a pharmaceutically acceptable carrier together with an ALDH inhibitor and an MAOB inhibitor. According to one embodiment, the ALDH inhibitor is disulfiram, or a metabolite or prodrug thereof. According to another embodiment, the composition comprises 500 mg, 250 mg, 125 mg, or 60 mg of disulfiram, or metabolite or prodrug thereof. According to yet another embodiment, the MAOB inhibitor is selegiline, or a metabolite or prodrug thereof. According to a further embodiment, the composition comprises 15 mg or less of selegiline, or metabolite or prodrug thereof. [0037]
  • In a preferred embodiment, the composition comprises 500 mg, 250 mg, 125 mg or 60 mg of disulfiram, or metabolite or prodrug thereof, and 15 mg or less of selegiline, or metabolite or prodrug thereof. In a more preferred embodiment, the composition comprises about 60 mg of disulfiram, or a metabolite or prodrug thereof, and about 2 mg of selegiline, or a metabolite or prodrug thereof. [0038]
  • The effective dosage of a composition of the invention administered to a patient is at least an amount required to minimize, reduce or eliminate one or more symptoms associated with preventing or treating alcoholism, typically one of the symptoms discussed above. The magnitude of a prophylactic or therapeutic dose of the composition of the invention in the treatment of a patient will vary with the symptoms being exhibited, the severity of the patient's affliction, the desired degree of therapeutic response, the route of administration, and the concomitant therapies being administered. The dose and dose frequency will also vary according to the age, weight and response of the individual patient. Generally, however, treatment for alcoholism will be ongoing, although the intensity of treatment can vary depending on the patient's condition and exposure to biochemical and environmental stimuli that can warrant a variation on the treatment. Dosages can be administered in a single or multiple dosage regimen. [0039]
  • According to one preferred embodiment of the invention, the composition comprising 500 mg, 250 mg, 125 mg or 60 mg of disulfiram and 15 mg or less selegiline is administered twice a day, in the morning and at noon or late afternoon. In another preferred embodiment, a composition comprising about 125 mg of disulfiram and about 5 mg of selegiline is administered twice a day, in the morning and at noon or late afternoon. [0040]
  • Selegiline can be administered twice a day, in the morning and at noon or late afternoon. An initial daily non-oral dose can be at least about 0.01 mg per kg of body weight, calculated on the basis of the free secondary amine, with progressively higher doses being employed depending upon the response to therapy. The final daily dose can be between about 0.05 mg/kg of body weight to about 0.15 mg/kg of body weight (all such doses being calculated in the basis of the free secondary amine). [0041]
  • The present invention when employing selegiline is not limited to a particular form of selegiline and the drug can be used either as a free base or as a pharmaceutically acceptable acid addition salt. In the latter case, the hydrochloride salt is preferred. However, other salts useful in the invention include those derived from organic and inorganic acids such as, without limitation, hydrobromic acid, phosphoric acid, sulfuric acid, methane sulfonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, aconitic acid, salicylic acid, thalic acid, embonic acid, enanthic acid, and the like. [0042]
  • The treating physician will know how to increase, decrease or interrupt treatment based upon the patient's response. Improvement for alcoholics or potentially relapsing alcoholics can be assessed by observing increased abstinence from consuming alcohol by the patient, following the methods of this invention, as compared to patients where therapy did not comprise the co-administration of a MAOB inhibitor. Improvement in compliance with self-administering ALDH inhibitors can be assessed by observing the increased duration over which patients, following the methods of this invention, take the ALDH inhibitor as compared to patients whose therapy did not comprise the co-administration of an MAOB inhibitor. [0043]
  • Any suitable route of administration can be employed for providing the patient with an effective dosage of a composition of this invention. For example, oral, peroral, buccal, nasal, pulmonary, vaginal, lingual, sublingual, rectal, parenteral, transdermal, intraocular, intravenous, intraarterial, intracardial intramuscular, intraperitoneal, intracutaneous, subcutaneous, sublingual, intranasal, intramuscular, and intrathecal administration and the like can be employed as appropriate. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques. According to one preferred aspect of this invention, the route of administration is the oral route. [0044]
  • The composition can be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy. Dosage forms can include tablets, scored tablets, coated tablets, pills, caplets, capsules (e.g., hard gelatin capsules), troches, dragees, powders, aerosols, suppositories, parenterals, dispersions, suspensions, solutions, transdermal patches and the like, including sustained release formulations well known in the art. In one preferred embodiment, the dosage form is a scored tablet or a transdermal patch. U.S. Pat. No. 5,192,550, incorporated herein by reference, describes a dosage form for selegiline comprising an outer wall with one or more pores, in which the wall is impermeable to selegiline but permeable to external fluids. This dosage form can have applicability for oral, sublingual or buccal administration. [0045]
  • The compositions of this invention can be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are administered orally, the active ingredient (i.e., ALDH inhibitor and/or MAOB inhibitor) is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents can be added. [0046]
  • The compositions according to this invention can be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension can be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions can also contain a long-chain alcohol diluent or dispersant such as Ph. Helv or a similar alcohol. [0047]
  • Methods for making transdermal patches including selegiline transdermal patches have been described in the art. [See e.g., U.S. Pat. Nos. 4,861,800; 4,868,218; 5,128,145; 5,190,763; and 5,242,950; and EP-A 404807, EP-A 509761, EP-A 593807, and EP-A 5509761, all of which are incorporated by reference herein.][0048]
  • Compositions of this invention can also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols. [0049]
  • The compositions of this invention can be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and can be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. [0050]
  • Patients can be regularly evaluated by physicians, e.g., once a week, to determine whether there has been an improvement in symptoms and whether the dosage of the composition of the invention needs to be adjusted. [0051]
  • According to the methods of this invention, the MAOB inhibitor can be included in the composition comprising the ALDH inhibitor. Alternatively, the MAOB inhibitor can be administered simultaneously with the composition comprising the ALDH inhibitor, or at any time during the treatment of the patient with the ALDH inhibitor. [0052]
  • The various terms described above such as “therapeutically effective amount,” are encompassed by the above-described dosage amounts and dose frequency schedule. Generally, a therapeutically effective amount of an MAOB inhibitor is that amount at which MAOB is inhibited but MAOA exhibits slight or no reduction in activity in the patient. Slight reduction in activity preferably comprises less than about 30% reduction in activity, more preferably less than about 20% reduction in activity, and yet more preferably less than about 10% reduction in activity. In one embodiment, the dosage of selegiline is an amount equal to or less than 15 mg per day. In another embodiment, the dosage of pargyline is equal to or less than 30 mg/day. [0053]
  • Throughout this specification, the word “comprise” or variations such as “comprises” or “comprising” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. [0054]
  • Statement Regarding Preferred Embodiments
  • While the invention has been described with respect to preferred embodiments, those skilled in the art will readily appreciate that various changes and/or modifications can be made to the invention without departing from the spirit or scope of the invention as defined by the appended claims. All documents cited herein are incorporated in their entirety herein. [0055]

Claims (34)

What is claimed is:
1. A composition comprising a monoamine oxidase B (MAOB) inhibitor and an aldehyde dehydrogenase (ALDH) inhibitor.
2. The composition according to claim 1, wherein the aldehyde dehydrogenase inhibitor inhibits the activity of aldehyde dehydrogenase-I.
3. The composition according to claim l, wherein the aldehyde dehydrogenase inhibitor is selected from the group consisting: of disulfiram, coprine, cyanamide, 1-aminocyclopropanol, daidzin, cephalosporin, antidiabetic sulfonyl urea, metronidazole, and metabolites or analogs thereof that exhibit aldehyde dehydrogenase-inhibiting activity.
4. The composition according to claim 1, wherein the aldehyde dehydrogenase is disulfiram or a metabolite or analog thereof that exhibits aldehyde dehydrogenase-inhibiting activity.
5. The composition according to claim 1, wherein the composition comprises an amount of disulfiram selected from the group consisting of: about 500 mg, about 250 mg, about 125 mg and about 60 mg of disulfiram.
6. The composition according to claim 1, wherein the monoamine oxidase B inhibitor is selected from the group consisting of: selegiline, pargyline, desmethylselegiline, rasagiline, 3-N-phenylacetylamino-2,5-piperidinedione and caroxyazone.
7. The composition according to of claim 1, wherein the monoamine oxidase inhibitor B is selegiline.
8. The composition according to claim 7, wherein the composition comprises an amount of selegiline selected from the group consisting of: about 15 mg or less, about 10 mg or less, about 5 mg or less, about 2.5 or less and about 1 or less mg of selegiline.
9. The composition according to claim 1, wherein the monoamine oxidase inhibitor B is selegiline and the aldehyde dehydrogenase inhibitor is disulfiram.
10. A method for preventing, treating or reducing alcoholism in a patient in need for treatment thereof comprising the step of administering a therapeutically effective amount of a composition comprising a monoamine oxidase B inhibitor and an aldehyde dehydrogenase inhibitor.
11. The method of claim 10 wherein the aldehyde dehydrogenase inhibitor inhibits aldehyde dehydrogenase-I.
12. The method according to claim 10, wherein the aldehyde dehydrogenase inhibitor is selected from the group consisting of: disulfiram, coprine, cyanamide, 1-aminocyclopropanol, daidzin, cephalosporin, antidiabetic sulfonyl urea, metronidazole, and metabolites or analogs thereof exhibiting aldehyde dehydrogenase-inhibiting activity.
13. The method according to claim 10, wherein the aldehyde dehydrogenase inhibitor is disulfiram, or a metabolite or analog thereof that exhibits aldehyde-dehydrogenase-inhibiting activity.
14. The method according to claim 13, wherein the amount of disulfiram administered to said patient per day is selected from the group consisting of about 500 mg, about 250 mg, about 125 mg and about 60 mg.
15. The method according to claim 10, wherein the monoamine oxidase B inhibitor is selected from the group consisting of: selegiline, pargyline, desmethylselegiline, rasagiline, 3-N-phenylacetylamino-2,5-piperidinedione and caroxyazone.
16. The method according to claim 10, wherein the monoamine oxidase B inhibitor is selegiline.
17. The method according to claim 16, wherein the amount of selegiline administered to said patient per day is selected from the group consisting of: 15 mg or less, 10 mg or less, 5 mg or less, 2.5 mg or less, and 1 mg or less of selegiline.
18. The method according to claim 10, wherein the monoamine oxidase inhibitor B is selegiline and the aldehyde dehydrogenase inhibitor is disulfiram.
19. The method according to claim 10, wherein the composition is administered orally, parentally or transdermally.
20. The method according to claim 19, wherein the composition is administered as a capsule, a tablet or a transdermal patch.
21. The method according to claim 10, wherein the patient is a human.
22. A method of increasing patient compliance with a therapeutic regimen comprising self-administration of an aldehyde dehydrogenase inhibitor, comprising the step of administering to the patient a therapeutically effective amount of a monoamine oxidase B inhibitor.
23. The method according to claim 22, wherein the patient suffers with alcoholism.
24. The method according to claim 22, wherein the aldehyde dehydrogenase inhibitor inhibits aldehyde dehydrogenase-I.
25. The method according to claim 22, wherein the aldehyde dehydrogenase inhibitor is selected from the group consisting of: disulfiram, coprine, cyanamide, 1-aminocyclopropanol, daidzin, cephalosporin, antidiabetic sulfonyl urea, metronidazole, and metabolites or analogs thereof exhibiting aldehyde dehydrogenase-inhibiting activity.
26. The method according to claim 22, wherein the aldehyde dehydrogenase inhibitor is disulfiram, or a metabolite or analog thereof that exhibits aldehyde-dehydrogenase-inhibiting activity.
27. The method according to claim 26, wherein the amount of disulfiram administered to said patient per day is selected from the group consisting of about 500 mg, about 250 mg, about 125 mg and about 60 mg.
28. The method according to claim 22, wherein the monoamine oxidase B inhibitor is selected from the group consisting of: selegiline, pargyline, desmethylselegiline, rasagiline, 3-N-phenylacetylamino-2,5-piperidinedione and caroxyazone.
29. The method according to claim 22, wherein the monoamine oxidase B inhibitor is selegiline.
30. The method according to claim 29, wherein the amount of selegiline administered to said patient per day is selected from the group consisting of: 15 mg or less, 10 mg or less, 5 mg or less, 2.5 mg or less, and 1 mg or less of selegiline.
31. The method according to claim 22, wherein the monoamine oxidase inhibitor B is selegiline and the aldehyde dehydrogenase inhibitor is disulfiram.
32. The method according to claim 31, wherein the composition is administered orally, parentally or transdermally.
33. The method according to claim 32, wherein the composition is administered as a capsule, a tablet or a transdermal patch.
34. The method according to claim 22, wherein the patient is a human.
US10/287,153 2001-11-05 2002-11-04 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism Abandoned US20030087814A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/287,153 US20030087814A1 (en) 2001-11-05 2002-11-04 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US12/145,792 US8093300B2 (en) 2001-11-05 2008-06-25 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US13/340,999 US8481599B2 (en) 2001-11-05 2011-12-30 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33890101P 2001-11-05 2001-11-05
US10/287,153 US20030087814A1 (en) 2001-11-05 2002-11-04 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/145,792 Division US8093300B2 (en) 2001-11-05 2008-06-25 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism

Publications (1)

Publication Number Publication Date
US20030087814A1 true US20030087814A1 (en) 2003-05-08

Family

ID=23326616

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/287,153 Abandoned US20030087814A1 (en) 2001-11-05 2002-11-04 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US12/145,792 Expired - Fee Related US8093300B2 (en) 2001-11-05 2008-06-25 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US13/340,999 Expired - Fee Related US8481599B2 (en) 2001-11-05 2011-12-30 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/145,792 Expired - Fee Related US8093300B2 (en) 2001-11-05 2008-06-25 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US13/340,999 Expired - Fee Related US8481599B2 (en) 2001-11-05 2011-12-30 Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism

Country Status (10)

Country Link
US (3) US20030087814A1 (en)
EP (1) EP1441708B1 (en)
AT (1) ATE427745T1 (en)
AU (1) AU2002354017B2 (en)
CA (1) CA2463987C (en)
DE (1) DE60231896D1 (en)
DK (1) DK1441708T3 (en)
NZ (1) NZ532583A (en)
PT (1) PT1441708E (en)
WO (1) WO2003039525A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161408A1 (en) * 2006-12-14 2008-07-03 Anton Frenkel Crystalline solid rasagiline base
US20090005441A1 (en) * 2001-11-05 2009-01-01 Krele Pharmaceuticals, Inc. Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
EP2011488A1 (en) * 2006-03-06 2009-01-07 Chongqing Pharmaceutical Research Institute Co., Ltd. Transdermal patch containing rasagiline for treatment or prophylaxis of nervous system disease and its preparation process
US20100010095A1 (en) * 2008-06-19 2010-01-14 Anton Frenkel Process for purifying rasagiline base
WO2012050594A1 (en) * 2010-09-01 2012-04-19 Tonix Pharmaceuticals, Inc. Treatment for cocaine addiction

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS56634B1 (en) * 2009-11-20 2018-03-30 Tonix Pharma Holdings Ltd Methods and compositions for treating symptoms associated with post-traumatic stress disorder using cyclobenzaprine
US20110319389A1 (en) 2010-06-24 2011-12-29 Tonix Pharmaceuticals, Inc. Methods and compositions for treating fatigue associated with disordered sleep using very low dose cyclobenzaprine
US11998516B2 (en) 2011-03-07 2024-06-04 Tonix Pharma Holdings Limited Methods and compositions for treating depression using cyclobenzaprine
ES2769879T3 (en) 2013-03-15 2020-06-29 Tonix Pharma Holdings Ltd Eutectic formulations of cyclobenzaprine hydrochloride and mannitol
CA2961822A1 (en) 2014-09-18 2016-03-24 Tonix Pharma Holdings Limited Eutectic formulations of cyclobenzaprine hydrochloride
BR112020011345A2 (en) 2017-12-11 2020-11-17 Tonix Pharma Holdings Limited cyclobenzaprine treatment for agitation, psychosis and cognitive decline in dementia and neurodegenerative conditions

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155584A (en) * 1962-12-03 1964-11-03 Abbott Lab Compositions and method of inhibiting monoamine oxidase and treating hypertension
US4076840A (en) * 1975-06-09 1978-02-28 Astra Lakemedel Aktiebolag Substituted cyclopropyl benzamides and pharmaceutical preparations and methods of use employing such compounds
US4565689A (en) * 1985-04-12 1986-01-21 Wirth Maschinen-Und Bohrgerate-Fabrik Gmbh Method for treating the effects of alcohol
US4861800A (en) * 1987-08-18 1989-08-29 Buyske Donald A Method for administering the drug deprenyl so as to minimize the danger of side effects
US4868218A (en) * 1987-08-18 1989-09-19 Buyske Donald A Method of treating depression
US5128145A (en) * 1990-06-13 1992-07-07 Alza Corporation Dosage form for Parkinson's disease, spasticity and muscle spasms
US5190763A (en) * 1990-05-07 1993-03-02 Alza Corporation Dosage form indicated for the management of abnormal posture, tremor and involuntary movement
US5192550A (en) * 1990-05-07 1993-03-09 Alza Corporation Dosage form for treating central nervous system disorders
US5204369A (en) * 1991-07-01 1993-04-20 The Endowment For Research In Human Biology Method for the inhibition of aldh-i useful in the treatment of alcohol dependence or alcohol abuse
US5242950A (en) * 1992-04-23 1993-09-07 Somerset Pharmaceuticals, Inc. Treatment of macular degeneration
US6121010A (en) * 1998-05-12 2000-09-19 The Endowment For Research In Human Biology Methods and assays useful in the treatment of alcohol dependence or alcohol abuse
US6239181B1 (en) * 1996-03-15 2001-05-29 Somerset Pharmaceuticals, Inc. Method for preventing and treating peripheral neurophathy by administering selegiline
US6255497B1 (en) * 1997-04-29 2001-07-03 The Endowment For Research In Human Biology, Inc. Method for the inhibition of ALDH-I useful in the treatment of alcohol dependence or alcohol abuse

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2567814A (en) 1948-03-26 1951-09-11 Ayerst Mckenna & Harrison Tetraethyl thiuram disulfide alcoholism treatment composition
US4678809A (en) 1985-02-01 1987-07-07 Michael Phillips Injectable fomulations of disulfiram for the treatment of alcoholism
GB8807504D0 (en) 1988-03-29 1988-05-05 Sandoz Ltd Improvements in/relating to organic compounds
US5744500A (en) 1990-01-03 1998-04-28 Teva Pharmaceutical Industries, Ltd. Use of R-enantiomer of N-propargyl-1-aminoindan, salts, and compositions thereof
WO1992005787A1 (en) * 1990-10-01 1992-04-16 Radecki Thomas E Drug therapy for alcohol abusers
HU209605B (en) 1991-04-15 1994-09-28 Chinoin Gyogyszer Es Vegyeszet Process for production of wather-free transdermal preparation
WO1992021333A2 (en) * 1991-05-24 1992-12-10 Pharmavene, Inc. Treatment of drug withdrawal symptoms and drug craving with type b monoamine oxidase inhibitors
EP0520325A1 (en) 1991-06-28 1992-12-30 F.Hoffmann-La Roche & Co. Aktiengesellschaft Use of monoamine oxidase-B-inhibitors for the prevention and treatment of withdrawal symptoms after alcohol and drug abuse
EP0593807A1 (en) 1992-10-22 1994-04-27 LTS Lohmann Therapie-Systeme GmbH & Co. KG Patch for transdermal administration of volatile pharmaceutically active ingredients of chemically basic nature and a process for preparation
DE4428444A1 (en) 1994-08-11 1996-02-15 Dresden Arzneimittel Use of selegiline for the treatment of epileptic disorders
US6319954B1 (en) 1995-01-13 2001-11-20 Somerset Pharmaceuticals, Inc. S-(+)-desmethylselegiline and its use in the therapeutic methods and pharmaceutical compositions
BR9501972A (en) * 1995-05-09 1997-08-26 Tostes Luiz Roberto Mallat Pharmaceutical composition method for treating alcohol dependence or abuse and method for treating psychiatric disorders genetically related to alcoholism
EP0907549B1 (en) * 1996-06-28 2001-08-29 Etienne Dallet Man-propelled vehicle, such as in particular a cycle
HUP0100115A2 (en) 1997-10-28 2001-06-28 Schering Corp. Method of reducing craving in mammals
FR2788982B1 (en) 1999-02-02 2002-08-02 Synthelabo PHARMACEUTICAL COMPOSITIONS CONTAINING NICOTINE AND THEIR APPLICATION IN SMOKING WITHDRAWAL
CA2463987C (en) 2001-11-05 2011-03-08 Seth Lederman Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155584A (en) * 1962-12-03 1964-11-03 Abbott Lab Compositions and method of inhibiting monoamine oxidase and treating hypertension
US4076840A (en) * 1975-06-09 1978-02-28 Astra Lakemedel Aktiebolag Substituted cyclopropyl benzamides and pharmaceutical preparations and methods of use employing such compounds
US4565689A (en) * 1985-04-12 1986-01-21 Wirth Maschinen-Und Bohrgerate-Fabrik Gmbh Method for treating the effects of alcohol
US4861800A (en) * 1987-08-18 1989-08-29 Buyske Donald A Method for administering the drug deprenyl so as to minimize the danger of side effects
US4868218A (en) * 1987-08-18 1989-09-19 Buyske Donald A Method of treating depression
US5190763A (en) * 1990-05-07 1993-03-02 Alza Corporation Dosage form indicated for the management of abnormal posture, tremor and involuntary movement
US5192550A (en) * 1990-05-07 1993-03-09 Alza Corporation Dosage form for treating central nervous system disorders
US5128145A (en) * 1990-06-13 1992-07-07 Alza Corporation Dosage form for Parkinson's disease, spasticity and muscle spasms
US5204369A (en) * 1991-07-01 1993-04-20 The Endowment For Research In Human Biology Method for the inhibition of aldh-i useful in the treatment of alcohol dependence or alcohol abuse
US5886028A (en) * 1991-07-01 1999-03-23 The Endowment For Research In Human Biology, Inc. Method for the inhibition of ALDH-I useful in the treatment of alcohol dependence or alcohol abuse
US5242950A (en) * 1992-04-23 1993-09-07 Somerset Pharmaceuticals, Inc. Treatment of macular degeneration
US6239181B1 (en) * 1996-03-15 2001-05-29 Somerset Pharmaceuticals, Inc. Method for preventing and treating peripheral neurophathy by administering selegiline
US6255497B1 (en) * 1997-04-29 2001-07-03 The Endowment For Research In Human Biology, Inc. Method for the inhibition of ALDH-I useful in the treatment of alcohol dependence or alcohol abuse
US6121010A (en) * 1998-05-12 2000-09-19 The Endowment For Research In Human Biology Methods and assays useful in the treatment of alcohol dependence or alcohol abuse

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093300B2 (en) 2001-11-05 2012-01-10 Krele Pharmaceuticals, Inc. Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US20090005441A1 (en) * 2001-11-05 2009-01-01 Krele Pharmaceuticals, Inc. Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
US8481599B2 (en) 2001-11-05 2013-07-09 Tonix Pharmaceuticals Inc. Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
EP2011488A4 (en) * 2006-03-06 2011-04-20 Chongqing Pharm Res Inst Co Transdermal patch containing rasagiline for treatment or prophylaxis of nervous system disease and its preparation process
US20090136549A1 (en) * 2006-03-06 2009-05-28 Chongqing Pharmaceutical Research Institute Co., Ltd. Transdermal patch containing rasagiline for treatment or prophylaxis of nervous system disease and its preparation process
EP2011488A1 (en) * 2006-03-06 2009-01-07 Chongqing Pharmaceutical Research Institute Co., Ltd. Transdermal patch containing rasagiline for treatment or prophylaxis of nervous system disease and its preparation process
US8614252B2 (en) 2006-12-14 2013-12-24 Teva Pharmaceutical Industries Ltd. Crystalline solid rasagiline base
US20100145101A1 (en) * 2006-12-14 2010-06-10 Teva Pharmaceutical Industries, Ltd. Crystalline solid rasagiline base
US20100144887A1 (en) * 2006-12-14 2010-06-10 Teva Pharmaceutical Industries, Ltd. Crystalline solid rasagiline base
US7750051B2 (en) * 2006-12-14 2010-07-06 Teva Pharmaceutical Industries, Ltd. Crystalline solid rasagiline base
US20080161408A1 (en) * 2006-12-14 2008-07-03 Anton Frenkel Crystalline solid rasagiline base
KR101459744B1 (en) * 2006-12-14 2014-11-20 테바 파마슈티컬 인더스트리즈 리미티드 Crystalline solid rasagiline base
US20100010095A1 (en) * 2008-06-19 2010-01-14 Anton Frenkel Process for purifying rasagiline base
US8334409B2 (en) 2008-06-19 2012-12-18 Teva Pharmaceutical Industries, Ltd. Process for purifying rasagiline base
WO2012050594A1 (en) * 2010-09-01 2012-04-19 Tonix Pharmaceuticals, Inc. Treatment for cocaine addiction
JP2013536837A (en) * 2010-09-01 2013-09-26 トニックス ファーマスーティカルズ,インコーポレイテッド Treatment of addiction to cocaine
AU2011314358B2 (en) * 2010-09-01 2016-07-07 Tonix Pharmaceuticals, Inc. Treatment for cocaine addiction
AU2016238908B2 (en) * 2010-09-01 2018-04-05 Tonix Pharmaceuticals, Inc. Treatment for cocaine addiction

Also Published As

Publication number Publication date
PT1441708E (en) 2009-06-18
CA2463987A1 (en) 2003-05-15
US20120101154A1 (en) 2012-04-26
EP1441708B1 (en) 2009-04-08
DK1441708T3 (en) 2009-07-06
ATE427745T1 (en) 2009-04-15
US8481599B2 (en) 2013-07-09
AU2002354017B2 (en) 2007-08-16
EP1441708A1 (en) 2004-08-04
US8093300B2 (en) 2012-01-10
EP1441708A4 (en) 2007-05-23
WO2003039525A1 (en) 2003-05-15
DE60231896D1 (en) 2009-05-20
CA2463987C (en) 2011-03-08
US20090005441A1 (en) 2009-01-01
NZ532583A (en) 2006-12-22

Similar Documents

Publication Publication Date Title
US8093300B2 (en) Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
AU2016238908B2 (en) Treatment for cocaine addiction
US20010012856A1 (en) Compositions and methods for the treatment of anorectal disorders
US20100267735A1 (en) Methods and compositions to enhance the efficacy of phosphodiesterase inhibitors
CA2440141A1 (en) Compounds and methods for the treatment of urogenital disorders
AU5030399A (en) Agents with an antidepressive effect
AU2002354017A1 (en) Compositions and methods for increasing compliance with therapies using aldehyde dehydrogenase inhibitors and treating alcoholism
WO2001034172A2 (en) Methods and compositions for treating reward deficiency syndrome
EP2236138A1 (en) Low dose pipamperone in treating mood and anxiety disorders
EP2236157A1 (en) Pipamperone and a second agent in treating mood and anxiety disorders
CA2338330A1 (en) Use of moclobemide for treating certain phsychiatric and medical disorders
WO1999007412A1 (en) Remedies for diseases associated with bone resorption
AU2010227094A1 (en) Compounds and methods for the treatment of urogenital disorders
ZA200104778B (en) Compositions and methods for the treatment of anorectal disorders.
AU1884102A (en) Compositions and methods for the treatment of anorectal disorders

Legal Events

Date Code Title Description
AS Assignment

Owner name: KRELE PHARMACEUTICALS, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEDERMAN, SETH;REEL/FRAME:019556/0615

Effective date: 20070712

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION