US20030072718A1 - Methods and compositions for the dry powder formulation of interferons - Google Patents

Methods and compositions for the dry powder formulation of interferons Download PDF

Info

Publication number
US20030072718A1
US20030072718A1 US10/245,704 US24570402A US2003072718A1 US 20030072718 A1 US20030072718 A1 US 20030072718A1 US 24570402 A US24570402 A US 24570402A US 2003072718 A1 US2003072718 A1 US 2003072718A1
Authority
US
United States
Prior art keywords
composition
interferon
dry powder
spray
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/245,704
Inventor
Robert Platz
Shigenobu Kimura
Yu-Jchiro Satoh
Linda Foster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Pharma AG
Original Assignee
Nektar Therapeutics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22929067&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030072718(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nektar Therapeutics filed Critical Nektar Therapeutics
Priority to US10/245,704 priority Critical patent/US20030072718A1/en
Assigned to NEKTAR THERAPEUTICS reassignment NEKTAR THERAPEUTICS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INHALE THERAPEUTIC SYSTEMS, INC.
Publication of US20030072718A1 publication Critical patent/US20030072718A1/en
Assigned to NOVARTIS PHARMA AG reassignment NOVARTIS PHARMA AG ASSIGNMENT OF PATENT RIGHTS Assignors: NEKTAR THERAPEUTICS
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/215IFN-beta
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates generally to methods and compositions for the dry powder formulation of cytokines, especially interferons. More particularly, the present invention relates to the spray drying of interferons (IFNs) to produce dry powder formulations of high potency.
  • IFNs interferons
  • Interferons are cytokines useful in the treatment of a variety of human diseases ranging from cancer to immune system enhancement. Interferons are commonly formulated as isotonic aqueous solutions for parenteral administration. Recently, clinicians have sought alternative routes of administration for interferons more suitable to long term use by patients. Particularly, aerosol formulations of interferons have been produced for pulmonary delivery as described in WO 91/16038. The formulation is dispersed by volatilization of a liquid propellent. The patent teaches adding a surfactant or the like to improve the dispersibility of a human interferon from a freon delivery system.
  • An object of the present invention is to provide an interferon-containing composition suitable for long-term pulmonary administration to a patient in need thereof.
  • Another object of this invention is to provide an interferon-containing powdered composition that is administered by inhalation in a manner that is free of a liquid propellant such as a FREON or carbon dioxide.
  • Another object of this invention is to provide an interferon-containing powdered composition that can be easily manufactured by a method that maintains a high percentage of interferon activity.
  • Still another object of this invention is to provide an interferon-containing composition that exhibits a high level of stability of the interferon over time.
  • One aspect of this invention is an interferon-based dry powder composition for pulmonary delivery, said composition comprising a therapeutically effective amount of interferon in combination with a pharmaceutically acceptable carrier.
  • Another aspect of this invention is a unit dosage form for pulmonary delivery of interferon, which dosage form comprises a unit receptacle containing the interferon-based dry powder composition of this invention.
  • a third aspect of this invention is a method of treating a disease state responsive to treatment by interferon, which method comprises administering a physiologically effective amount of the interferon-based dry powder composition to the pulmonary region of the lung or a subject in need thereof.
  • Still another aspect of this invention is a method for aerosolizing the interferon-based dry powder composition that comprise dispersing an amount of the dry powder composition in a gas stream to form an aerosol and capturing the aerosol in a chamber having a mouthpiece for subsequent inhalation by a patient.
  • Still another aspect of this invention is a method for preparing the interferon-based dry powder composition that comprises spray-drying an aqueous mixture of the interferon and the carrier under conditions to provide a respirable dry powder.
  • the present invention is based at least in part on the higher potency and improved flow characteristics of interferon-based dry powder compositions produced by spray drying according to the present invention.
  • Higher potency means that the resulting interferon-based composition has a higher percentage of physiologically active interferon than compositions prepared by other methods.
  • the compositions of the invention are readily aerosolized and rapidly absorbed through the lungs of a host when delivered by a dry powder inhaler.
  • interferon is meant to include the family of naturally-occurring or recombinantly prepared small proteins and glycoproteins (sometimes referred to as cytokines) with molecular weight between approximately 15,000 and 27,000 daltons and having interferon-like activity. Generally, such activity is exerted by binding to specific membrane receptors on a cell surface. Once bound, interferons initiate a complex series of intracellular events that vary among the various interferons. Interferons are useful in the treatment of a variety of human conditions varying from cancer to immune system suppression. Naturally occurring interferons are produced and secreted by cells in response to viral infections and to synthetic and biological inducers.
  • interferons are modified versions of the naturally occurring material and are prepared using recombinant DNA technology. Interferon is sometimes abbreviated as “IFN” and shall be so abbreviated in this application. Examples of interferons include, e.g.
  • IFN-alpha-2A recombinant Roferon® A-Roche Laboratories
  • IFN-alpha-2B recombinant Intron® A-Shering
  • IFN-alpha-N3 human leukocyte derived Alferon® N-Purdue Frederick
  • IFN-gamma-1B Actimmune®-Genentech
  • IFN-beta recombinant Betaseron®-Chiron, Berlex
  • IFN-beta naturally occurring Feron®-Toray, Japan
  • U.S. Pat. No. 4,503,035 issued Mar. 5, 1985 to Pestka and Rubinstein gives examples of human leukocyte IFNs.
  • IFN-beta is preferred, particularly naturally occurring IFN-beta.
  • the term “powder” means a composition that consists of finely dispersed solid particles that are free flowing and capable of being readily dispersed in an inhalation device and subsequently inhaled by a subject so that the particles reach the lungs to permit penetration into the alveoli.
  • the powder is said to be “respirable.”
  • the average particle size is less than about 10 microns ( ⁇ m) in diameter with a relatively uniform spheroidal shape distribution. More preferably the diameter is less than about 7.5 ⁇ m and most preferably less than about 5.0 ⁇ m.
  • the particle size distribution is between about 0.1 ⁇ m and about 5 ⁇ m in diameter, particularly about 2 ⁇ m to about 5 ⁇ m.
  • dry means that the composition has a moisture content such that the particles are readily dispersable in an inhalation device to form an aerosol.
  • This moisture content is generally below about 10% by weight (%w) water, usually below about 5% w ard preferably less than about 3% w.
  • terapéuticaally effective amount is the amount present in the composition that is needed to provide the desired level of interferon in the subject to be treated to give the anticipated physiological response. This amount is determined for each interferon on a case-by-case basis. Guidelines are given hereafter.
  • physiologically effective amount is that amount delivered to a subject to give the desired palliative or curative effect. This amount is specific for each interferon and its ultimate approved dosage level. Guidelines are given hereafter.
  • pharmaceutically acceptable carrier means that the carrier can be taken into the lungs with no significant adverse toxicological effects on the lungs.
  • One aspect of this invention is an interferon-based dry powder composition for pulmonary delivery, the composition comprising a therapeutically effective amount of interferon in combination with a pharmaceutically acceptable carrier.
  • the compositions of this invention have a higher IFN potency and greater dispersibility than other interferon compositions known in the art.
  • IFN In the dry state IFN is an amorphous form.
  • the IFNs suitable for use in the composition of this invention include the various IFN alphas, IFN betas and IFN gammas encompassed by the broad definition of IFN.
  • the IFN alphas and IFN betas are preferred, with IFN beta being particularly preferred.
  • the composition is particularly valuable for naturally occurring IFN beta, for example that available through Toray Industries, Inc. in Japan.
  • a therapeutically effective amount of IFN will vary in the composition depending on the biological activity of the IFN employed and the amount needed in a unit dosage form. Because IFN is so highly active it must be manufactured in a unit basis in a manner that allows for ready manipulation by the formulator and by the consumer. This generally means that a unit dosage will be between about 0.5 mg and 15 mg of total material in the dry powder composition, preferably between about 2 mg and 10 mg. Generally, the amount of IFN in the composition will vary from about 0.05%w to about 5.0% w. Most preferably the composition will be about 0.2% to about 2.0% w IFN.
  • the amount of the pharmaceutically acceptable carrier is that amount needed to provide the necessary stability, dispersibility, consistency and bulking characteristics to ensure a uniform pulmonary delivery of the composition to a subject in need thereof. Numerically the amount may be from about 95.0% w to about 99.95% w, depending on the activity of the IFN being employed. Preferably about 98% w to about 99.8% w will be used.
  • the carrier may be one or a combination of two or more pharmaceutical excipients, but will generally be substantially free of any “penetration enhancers.”
  • “Penetration enhancers” are surface active compounds which promote penetration of a drug through a mucosal membrane or lining and are proposed for use in intranasal, intrarectal, and intravaginal drug formulations.
  • Exemplary penetration enhancers include bile salts, e.g., taurocholate, glycocholate, and deoxycholate; fusidates, e.g., taurodehydrofusidate; and biocompatible detergents, e.g., Tweens, Laureth-9, and the like.
  • penetration enhancers in formulations for the lungs, however, is generally undesirable because of the epithelial blood barrier in the lung can be adversely affected by such surface active compounds.
  • the dry powder compositions of the present invention are readily absorbed in the lungs without the need to employ penetration enhancers.
  • the types of pharmaceutical excipients that are useful as carriers in this invention include stabilizers such as human serum albumin (HSA), bulking agents such as carbohydrates, amino acids and polypeptides; pH adjusters or buffers; salts such as sodium chloride; and the like. These carriers may be in a crystalline or amorphous form or may be a mixture of the two.
  • HSA human serum albumin
  • bulking agents such as carbohydrates, amino acids and polypeptides
  • pH adjusters or buffers such as sodium chloride
  • salts such as sodium chloride
  • HSA is particularly valuable as a carrier in that it provides excellent stabilization of IFN in solution.
  • Bulking agents that are particularly valuable include compatible carbohydrates, polypeptides, amino acids or combinations thereof.
  • Suitable carbohydrates include monosaccharides such as galactose, D-mannose, sorbose, and the like; disaccharides, such as lactose, trehalose, and the like; cyclodextrins, such as 2-hydroxypropyl- ⁇ -cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; alditols, such as mannitol, xylitol, and the like.
  • a preferred group of carbohydrates includes lactose, threhalose, raffinose maltodextrins, and mannitol.
  • Suitable polypeptides include aspartame.
  • Amino acids include alanine and glycine, with glycine being preferred.
  • Additives which are minor components of the composition of this invention, may be included for conformational stability during spray drying and for improving dispersibility of the powder.
  • additives include hydrophobic amino acids such tryptophan, tyrosine, lucine, phenylalanine, and the like.
  • Suitable pH adjusters or buffers include organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, and the like; sodium citrate is preferred.
  • Another aspect of this invention is a unit dosage form for pulmonary delivery of interferon, which dosage form comprises a unit dosage receptacle containing an interferon-based dry powder composition, which composition comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier.
  • the composition of this invention (as discussed hereinbefore) is placed within a suitable dosage receptacle in an amount sufficient to provide a subject with IFN for a unit dosage treatment.
  • the dosage receptacle is one that fits within a suitable inhalation device to allow for the aerosolization of the interferon-based dry powder composition by dispersion into a gas stream to form an aerosol and then capturing the aerosol so produced in a chamber having a mouthpiece attached for subsequent inhalation by a subject in need of treatment.
  • Such a dosage receptacle includes any container enclosing the composition known in the art such as gelatin or plastic capsules with a removable portion that allows a stream of gas (e.g., air) to be directed into the container to disperse the dry powder composition.
  • a stream of gas e.g., air
  • Such containers are exemplified by those shown in U.S. Pat. Nos. 4,227,522 issued Oct. 14, 1980; U.S. Pat. No. 4,192,309 issued Mar. 11, 1980; and U.S. Pat. No. 4,105,027 issued Aug. 8, 1978.
  • Suitable containers also include those used in conjunction with Glaxo's Ventolin Rotohaler brand powder inhaler or Fison's Spinhaler brand powder inhaler.
  • Another suitable unit-dose container which provides a superior moisture barrier is formed from an aluminum foil plastic laminate.
  • the IFN-beta powder is filled by weight or by volume into the depression in the formable foil and hermetically sealed with a covering foil-plastic laminate.
  • Such a container for use with a powder inhalation device is described in U.S. Pat. No. 4,778,054 and is used with Glaxo's Diskhaler® (U.S. Pat. Nos. 4,627,432; 4,811,731; and 5,035,237). All of these references are incorporated herein by reference.
  • Another aspect of this invention is a method of treating a condition responsive to treatment by interferon, which method comprises pulmonarily administering to a subject in need thereof a physiologically effective amount of an interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier.
  • Conditions that may be treated by the composition of this invention include those conditions that are responsive generally to treatment with IFN.
  • IFN alpha is used to treat hepatitis B and C, Hairy Cell Leukemia, chronic hepatitis Non A, Non B/C and Kaposi's Sarcoma
  • IFN beta is used to treat multiple sclerosis, brain tumor, skin cancer and hepatitis B and C
  • IFN gamma is used to treat chronic granulomatous disease.
  • the physiologically effective amount needed to treat a particular condition or disease state will depend on the individual, the condition, length of treatment, the regularity of treatment, the type of IFN, and other factors, but can be determined by one of ordinary skill in the medicinal arts.
  • the dosage may range from 0.25 ⁇ 10 6 IU to 50 ⁇ 10 6 IU per person per day depending on the prescribing doctor's diagnosis.
  • an induction dosage of IFN alpha recombinant (Roferon®A-Roche Laboratories) for treatment of hairy cell leukemia may be 3 ⁇ 10 6 IU daily for 16-24 weeks with a maintenance dose of 3 ⁇ 10 6 IU three times per week.
  • Other dosage regimes may be determined through clinical trials and reference to the Physicians Desk Reference® for 1994 as supplemented.
  • the effective absorption by a host of dry powder interferon according to the present invention results from a rapid dissolution in the ultra-thin ( ⁇ 0.1 fm) fluid layer of the alveolar lining of the lung.
  • the particles of the present invention thus have a mean size which is from 10 to 50 times larger than the lung fluid layer, making it unexpected that the particles are dissolved and the interferon systemically absorbed in a rapid manner for either local lung or systemic treatment.
  • the aerosolized interferon-based dry powders of this invention are particularly useful in place of parenteral delivery.
  • the methods and compositions of the present invention will be particularly valuable in chronic treatment protocols where a patient can self-medicate.
  • the patient can achieve a desired dosage by inhaling an appropriate amount of interferon, as just described.
  • the efficiency of systemic interferon delivery via the method as just described will typically be in the range from about 15% to 50%, with individual dosages (on a per inhalation basis), typically being in the range from about 3 million IU to about 50 million IU during a single respiratory administration.
  • the desired dosage may be effected by the patient taking from 1 breath to 5 breaths.
  • Still another aspect of this invention is a method for aerosolizing an interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier, which method comprises dispersing an amount of the dry powder composition in a gas stream to form an aerosol and capturing the aerosol in a chamber having a mouthpiece for subsequent inhalation by patient.
  • Still another aspect of this invention is a method for preparing an interferon-based dry powder composition of this invention that comprises spray-drying an aqueous mixture of the interferon and a pharmaceutically acceptable carrier having an interferon-stabilizing pH under conditions to provide a respirable dry powder composition.
  • Spray drying is a process in which a homogeneous aqueous mixture of IFN and the carrier is introduced via a nozzle (e.g., a two fluid nozzle), spinning disc or an equivalent device into a hot gas stream to atomize the solution to form fine droplets.
  • the aqueous mixture may be a solution, suspension, slurry, or the like, but needs to be homogeneous to ensure uniform distribution of the components in the mixture and ultimately the powdered composition.
  • the aqueous mixture is a solution.
  • the solvent generally water, rapidly evaporates from the droplets producing a fine dry powder having particles 1 to 5 ⁇ m in diameter.
  • the protein is not degraded when it is exposed to the hot drying gas, and the interferon powders can be prepared having sufficient purity for pharmaceutical use.
  • An acceptable purity is defined as less than 5% degradation products and contaminates, preferably less than 3% and most preferably less than 1%.
  • the spray drying is done under conditions that result in substantially amorphous powder of homogeneous constitution having a particle size that is respirable, a low moisture content and flow characteristics that allow for ready aerosoiization.
  • the particle size of the resulting powder is such that more than about 98% of the mass is in particles having a diameter of about 10 ⁇ m or less with about 90% of the mass being in particles having a diameter less than 5 ⁇ m.
  • about 95% (preferably more than 95%) of the mass will have particles with a diameter of less than 10 ⁇ m with about 80% (preferably more than 80%) of the mass of the particles having a diameter of less than 5 ⁇ m.
  • interferon dry powders of higher potency and improved flow characteristics are prepared by spray drying, where, bulk interferon, preferably IFN-beta but suitably other forms of interferon, is prepared in solution to have a concentration from 0.0005% by weight to 0.02% by weight, usually from 0.001% to 0.005%.
  • the solutions may contain a stabilizer to maintain the chemical stability of the IFN-beta in solution such as HSA in a concentration from 0.01% to 1.0% by weight and preferably 0.05% to 0.25% by weight and may contain other material such as a salt or preservative that is present as a result of the preparation of bulk IFN.
  • the solutions may then be sprayed dried in conventional spray drying equipment from commercial suppliers, such as Buchi, Niro, Yamato Chemical Co., Okawara Kakoki Co., and the like, resulting in a substantially amorphous particulate product.
  • spraying methods as rotary atomization, pressure atomization and two-fluid atomization can be used.
  • the devices used in these processes include “Pulvis Mini-Spray GA-32” and “Pulvis Spray Drier DL-41”, manufactured by Yamato Chemical Co., or “Spray Drier CL-8,” “Spray Drier L-8,” “Spray Drier FL-12,” “Spray Drier FL-16” or “Spray Drier FL-20,” manufactured by Okawara Kakoki Co., can be used for the method of spraying using rotary-disk atomizer.
  • nozzle types “1A,” “1,” “2A,” “2,” “3” and the like, manufactured by Yamato Chemical Co. can be used for the above-mentioned spray-drier, manufactured by the same company.
  • disks type “MC-50,” “MC-65” or “MC-85,” manufactured by Okawara Kakoki Co. can be used as rotary disks of the spray-drier atomizer, manufactured by the same company.
  • the temperature of the inlet of the gas used to dry the sprayed materials such that it does not cause heat deactivation of the sprayed material.
  • the range of temperatures may vary between about 50° C. to about 200° C., preferable between about 50° C. and 100° C.
  • the temperature of the outlet gas used to dry the sprayed material may vary between about 0° C. and about 150°, preferably between 0° C. and 90° C., and even more preferably between 0° C. and 60° C.
  • inlet and outlet temperatures above about 55° C. can be used is surprising in view of the fact that IFN starts deactivating at that temperature, with nearly complete deactivation occurring at about 70° C.
  • high potency IFN powder can be prepared such that the number of inhalations required to deliver even high dosages of IFN can be substantially reduced, often to only a single inhalation.
  • Interferon dry powders suitable for use in the present invention are substantially amorphous, essentially lacking any crystalline structure. Dry powder interferons are prepared by spray drying under conditions which result in a substantially amorphous powder having a particle size within the above-stated range.
  • bulk interferon preferably IFN- ⁇ but suitably other forms of interferon
  • a physiologically-acceptable aqueous solution typically containing sodium chloride, optionally with a buffer, having a pH in the range from about 2 to 9.
  • the interferon is dissolved at a concentration from 0.01% by weight to 1% by weight, usually from 0.1% to 0.2%.
  • the solutions may then be spray dried in conventional spray drying equipment from commercial suppliers, such as Buchi, Niro Yamato, Okawara Kakoki and the like, resulting in a substantially amorphous particulate product.
  • the interferon dry powders of the present invention may optionally be combined with pharmaceutical carriers or excipients which are suitable for respiratory and pulmonary administration.
  • Such carriers may serve simply as bulking agents when it is desired to reduce the interferon concentration in the powder which is being delivered to a patient, but may also serve to enhance the stability of the interferon compositions and to improve the dispersibility of the powder within a powder dispersion device in order to provide more efficient and reproducible delivery of the interferon and to improve handling characteristics of the interferon such as flowability and consistency to facilitate manufacturing and powder filling.
  • Such carrier materials may be combined with the interferon prior to spray drying, i.e., by adding the carrier material to the purified bulk solution. In that way, the carrier particles will be formed simultaneously with the IFN particles to produce a homogeneous powder.
  • the carriers may be separately prepared in a dry powder form and combined with the dry powder interferon by blending.
  • the powder carriers will usually be crystalline (to avoid water absorption), but might in some cases be amorphous or mixtures of crystalline and amorphous.
  • the size of the carrier particles may be selected to improve the flowability of the IFN powder, typically being in the range from 25 ⁇ m to 100 ⁇ m.
  • a preferred carrier material is crystalline lactose having a size in the above-stated range.
  • This example sets forth a method of preparing a composition of this invention.
  • the resulting aqueous mixture is fed to a Buchi Laboratory Spray Dryer under the following conditions to give a composition of this invention: Temperature of the aqueous mixture 4° C.-10° C. Inlet temperature 115° C.-125° C. Feed rate 6 mL/min Outlet temperature 60° C.-70° C.
  • the outlet temperature is maintained at about 70° C. for about 15 minutes by slowly decreasing the inlet temperature.
  • This provides a secondary drying to give an IFN-based dry powder composition having a water content of less than 3% as measured by a coulombic Karl Fischer method.
  • the composition (% w based on total solids) is constituted as follows: 1.9% w IFN-beta 98.1% w Carrier (75.8% HSA, 22.3 NaCl)
  • This example sets forth a method of preparing a composition of this invention wherein the carrier includes a bulking agent, i.e., mannitol.
  • a bulking agent i.e., mannitol.
  • Mannitol is dissolved in natural human IFN-beta described in Example i.
  • the concentration of mannitol was 5.75 mg/mL.
  • the resulting aqueous mixture is fed to a Buchi Laboratory Spray Dryer under the following conditions: Temperature of the aqueous mixture 4° C.-10° C. Inlet temperature 115° C.-125° C. Feed rate 5 mL/min Outlet temperature 60° C.-70° C. Secondary drying—15 minutes at 70° C.
  • This example sets forth a method for preparing a composition of this invention wherein no bulking agent is present in the composition.
  • the spray pressure was 1 kg/cm 2
  • the flow capacity of the hot air was 0.40 to 0.42 m 3 /min
  • the rate of solution transmission was 4.3 ml/min.
  • the dry powder which was collected into a chamber using a cyclone, was recovered, and the interferon (IFN) activity was measured.
  • the interferon activity was measured using an enzyme immunoassay (EIA) involving an anti-human interferon ⁇ antibody (S. Yamazaki et al., Immunoassay, 10, 57(1989)).
  • the activity of the dry powder was measured by dissolving the dry powder using distilled water and comparing its interferon activity, corresponding to the light absorption at 280 nm, with the interferon activity prior to the spray-drying process. The results are shown in Table 1. The measurements were repeated three times, and the average values were used for the comparison. The error in the relative activity in the table is a standard error ( ⁇ SE). TABLE 1 Natural human interferon ⁇ activity before and after spray-drying Relative activity (IU/A 280 unit) Remaining activity (%) Before spray-drying 4.11 ⁇ 0.11 100 After spray-drying 3.14 ⁇ 0.04 74.8
  • the natural human interferon ⁇ showed an interferon activity which was 74.8% of its activity prior to the spray-drying process, indicating that it can be spray-dried while maintaining its activity.
  • the dry powder obtained by the process of this invention was subjected to platinum coating and the shape of its grains was examined using a field emission scan electron microscope (model S-8000, manufactured by Hitachi Co.). Approximately 90% of the grains examined were grains with relatively smooth and large dents and protrusions in the grain surface, and with a grain diameter of approximately 10 ⁇ m. In addition, the resulting powder exhibited a moisture content of 5.6 wt % using the Karl Fischer method (coulometric titration Moisturemeter CA-06, manufactured by Mitsubishi Kasei Co.).
  • This example sets forth a method for preparing an IFN/HSA/mannitol composition.
  • the natural human interferon ⁇ maintained 81.0% of its activity compared with its activity prior to the spray-drying process.
  • these results are surprising because a similar aqueous solution of the same quantity of natural human interferon ⁇ , HSA and mannitol started to deactivate at approximately 55° C., with almost complete deactivation occurring at 70° C.
  • Example V While the IFN-based powder from Example IV and V are dispersible, the powder obtained from Example V was more readily dispersed than the powder obtained in Example IV.
  • the grain shape was examined by subjecting the powder to platinum coating and using a field emission scan electron microscope (model S-8000, manufactured by Hitachi Co.), the grains were found to have a size similar to those of Example IV but a shape more IS rounded compares with the powder particles obtained in Example IV.
  • the distribution of the grain diameter of the powder vas measured by dispersing it in ethanol anhydride and using a granulation analyzer (Microtrac FRA, manufactured by Nikkiso Co.), it was found that approximately 90% of the grains were distributed within the range of 1.6 to 9.3 ⁇ m. The moisture content was 0.74% wt, as measured by the Karl Fischer method of Example IV.

Abstract

According to the present invention, methods and compositions are provided for spray-dried, interferon-based dry powder compositions, particularly interferon-beta. The compositions are useful for treating conditions in humans that are responsive to treatment with interferons. In particular, the methods of the present invention rely on spray drying to produce stable, high-potency dry powder formulations of interferons, including but not limited to IFN-beta. Surprisingly, it has been found that IFN can be prepared in high potency, dry powder formulations by spray drying. Such dry powder formulations find particular utility in the pulmonary delivery of IFN.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation-in-part of co-pending U.S. Patent Application 08/246,034, filed May 18, 1994.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates generally to methods and compositions for the dry powder formulation of cytokines, especially interferons. More particularly, the present invention relates to the spray drying of interferons (IFNs) to produce dry powder formulations of high potency. [0003]
  • 2. Description of the Background Art [0004]
  • Interferons are cytokines useful in the treatment of a variety of human diseases ranging from cancer to immune system enhancement. Interferons are commonly formulated as isotonic aqueous solutions for parenteral administration. Recently, clinicians have sought alternative routes of administration for interferons more suitable to long term use by patients. Particularly, aerosol formulations of interferons have been produced for pulmonary delivery as described in WO 91/16038. The formulation is dispersed by volatilization of a liquid propellent. The patent teaches adding a surfactant or the like to improve the dispersibility of a human interferon from a freon delivery system. [0005]
  • Methods and compositions for the preparation of solid polypeptide microparticles as a pharmaceutical aerosol formulation are disclosed in WO 91/16038 wherein IFN-beta was prepared in dry powder form by lyophilizing an aqueous solution of IFN and jet milling following lyophilization. The purification of proteins of molecular weight in excess of 12,000, including human IFN is disclosed in U.S. Pat. No. 4,503,035. Low pH pharmaceutical compositions of recombinant IFN-beta are disclosed in WO 89/05158. [0006]
  • Because interferons are fairly expensive compounds, it is highly desirable to have formulations of high potency with improved flow characteristics that can be used with high efficiency in dry powder inhalers to produce reproducible doses for pulmonary delivery. [0007]
  • An object of the present invention is to provide an interferon-containing composition suitable for long-term pulmonary administration to a patient in need thereof. Another object of this invention is to provide an interferon-containing powdered composition that is administered by inhalation in a manner that is free of a liquid propellant such as a FREON or carbon dioxide. [0008]
  • Another object of this invention is to provide an interferon-containing powdered composition that can be easily manufactured by a method that maintains a high percentage of interferon activity. [0009]
  • Still another object of this invention is to provide an interferon-containing composition that exhibits a high level of stability of the interferon over time. [0010]
  • Other objects may be apparent to one of ordinary skill upon reviewing the following specification and claims. [0011]
  • SUMMARY OF THE INVENTION
  • One aspect of this invention is an interferon-based dry powder composition for pulmonary delivery, said composition comprising a therapeutically effective amount of interferon in combination with a pharmaceutically acceptable carrier. [0012]
  • Another aspect of this invention is a unit dosage form for pulmonary delivery of interferon, which dosage form comprises a unit receptacle containing the interferon-based dry powder composition of this invention. [0013]
  • A third aspect of this invention is a method of treating a disease state responsive to treatment by interferon, which method comprises administering a physiologically effective amount of the interferon-based dry powder composition to the pulmonary region of the lung or a subject in need thereof. [0014]
  • Still another aspect of this invention is a method for aerosolizing the interferon-based dry powder composition that comprise dispersing an amount of the dry powder composition in a gas stream to form an aerosol and capturing the aerosol in a chamber having a mouthpiece for subsequent inhalation by a patient. [0015]
  • Still another aspect of this invention is a method for preparing the interferon-based dry powder composition that comprises spray-drying an aqueous mixture of the interferon and the carrier under conditions to provide a respirable dry powder. [0016]
  • DESCRIPTION OF SPECIFIC EMBODIMENTS
  • The present invention is based at least in part on the higher potency and improved flow characteristics of interferon-based dry powder compositions produced by spray drying according to the present invention. Higher potency means that the resulting interferon-based composition has a higher percentage of physiologically active interferon than compositions prepared by other methods. The compositions of the invention are readily aerosolized and rapidly absorbed through the lungs of a host when delivered by a dry powder inhaler. [0017]
  • Definitions
  • In interpreting the claims to the various aspects of this invention, there are several important definitions that should be considered. [0018]
  • The term “interferon” is meant to include the family of naturally-occurring or recombinantly prepared small proteins and glycoproteins (sometimes referred to as cytokines) with molecular weight between approximately 15,000 and 27,000 daltons and having interferon-like activity. Generally, such activity is exerted by binding to specific membrane receptors on a cell surface. Once bound, interferons initiate a complex series of intracellular events that vary among the various interferons. Interferons are useful in the treatment of a variety of human conditions varying from cancer to immune system suppression. Naturally occurring interferons are produced and secreted by cells in response to viral infections and to synthetic and biological inducers. Some interferons are modified versions of the naturally occurring material and are prepared using recombinant DNA technology. Interferon is sometimes abbreviated as “IFN” and shall be so abbreviated in this application. Examples of interferons include, e.g. IFN-alpha-2A recombinant (Roferon® A-Roche Laboratories), IFN-alpha-2B recombinant (Intron® A-Shering), IFN-alpha-N3 human leukocyte derived (Alferon® N-Purdue Frederick), IFN-gamma-1B (Actimmune®-Genentech), IFN-beta recombinant (Betaseron®-Chiron, Berlex), IFN-beta naturally occurring (Feron®-Toray, Japan), and the like. U.S. Pat. No. 4,503,035 issued Mar. 5, 1985 to Pestka and Rubinstein gives examples of human leukocyte IFNs. For purposes of this invention IFN-beta is preferred, particularly naturally occurring IFN-beta. [0019]
  • The term “powder” means a composition that consists of finely dispersed solid particles that are free flowing and capable of being readily dispersed in an inhalation device and subsequently inhaled by a subject so that the particles reach the lungs to permit penetration into the alveoli. Thus, the powder is said to be “respirable.” Preferably the average particle size is less than about 10 microns (μm) in diameter with a relatively uniform spheroidal shape distribution. More preferably the diameter is less than about 7.5 μm and most preferably less than about 5.0 μm. Usually the particle size distribution is between about 0.1 μm and about 5 μm in diameter, particularly about 2 μm to about 5 μm. [0020]
  • The term “dry” means that the composition has a moisture content such that the particles are readily dispersable in an inhalation device to form an aerosol. This moisture content is generally below about 10% by weight (%w) water, usually below about 5% w ard preferably less than about 3% w. [0021]
  • The term “therapeutically effective amount” is the amount present in the composition that is needed to provide the desired level of interferon in the subject to be treated to give the anticipated physiological response. This amount is determined for each interferon on a case-by-case basis. Guidelines are given hereafter. [0022]
  • The term “physiologically effective amount” is that amount delivered to a subject to give the desired palliative or curative effect. This amount is specific for each interferon and its ultimate approved dosage level. Guidelines are given hereafter. [0023]
  • The term “pharmaceutically acceptable” carrier means that the carrier can be taken into the lungs with no significant adverse toxicological effects on the lungs. [0024]
  • COMPOSITIONS OF THE INVENTION
  • One aspect of this invention is an interferon-based dry powder composition for pulmonary delivery, the composition comprising a therapeutically effective amount of interferon in combination with a pharmaceutically acceptable carrier. [0025]
  • In general, the compositions of this invention have a higher IFN potency and greater dispersibility than other interferon compositions known in the art. In the dry state IFN is an amorphous form. The IFNs suitable for use in the composition of this invention include the various IFN alphas, IFN betas and IFN gammas encompassed by the broad definition of IFN. The IFN alphas and IFN betas are preferred, with IFN beta being particularly preferred. The composition is particularly valuable for naturally occurring IFN beta, for example that available through Toray Industries, Inc. in Japan. [0026]
  • A therapeutically effective amount of IFN will vary in the composition depending on the biological activity of the IFN employed and the amount needed in a unit dosage form. Because IFN is so highly active it must be manufactured in a unit basis in a manner that allows for ready manipulation by the formulator and by the consumer. This generally means that a unit dosage will be between about 0.5 mg and 15 mg of total material in the dry powder composition, preferably between about 2 mg and 10 mg. Generally, the amount of IFN in the composition will vary from about 0.05%w to about 5.0% w. Most preferably the composition will be about 0.2% to about 2.0% w IFN. [0027]
  • The amount of the pharmaceutically acceptable carrier is that amount needed to provide the necessary stability, dispersibility, consistency and bulking characteristics to ensure a uniform pulmonary delivery of the composition to a subject in need thereof. Numerically the amount may be from about 95.0% w to about 99.95% w, depending on the activity of the IFN being employed. Preferably about 98% w to about 99.8% w will be used. [0028]
  • The carrier may be one or a combination of two or more pharmaceutical excipients, but will generally be substantially free of any “penetration enhancers.” “Penetration enhancers” are surface active compounds which promote penetration of a drug through a mucosal membrane or lining and are proposed for use in intranasal, intrarectal, and intravaginal drug formulations. Exemplary penetration enhancers include bile salts, e.g., taurocholate, glycocholate, and deoxycholate; fusidates, e.g., taurodehydrofusidate; and biocompatible detergents, e.g., Tweens, Laureth-9, and the like. The use of penetration enhancers in formulations for the lungs, however, is generally undesirable because of the epithelial blood barrier in the lung can be adversely affected by such surface active compounds. The dry powder compositions of the present invention are readily absorbed in the lungs without the need to employ penetration enhancers. [0029]
  • The types of pharmaceutical excipients that are useful as carriers in this invention include stabilizers such as human serum albumin (HSA), bulking agents such as carbohydrates, amino acids and polypeptides; pH adjusters or buffers; salts such as sodium chloride; and the like. These carriers may be in a crystalline or amorphous form or may be a mixture of the two. [0030]
  • It has been found that HSA is particularly valuable as a carrier in that it provides excellent stabilization of IFN in solution. [0031]
  • Bulking agents that are particularly valuable include compatible carbohydrates, polypeptides, amino acids or combinations thereof. Suitable carbohydrates include monosaccharides such as galactose, D-mannose, sorbose, and the like; disaccharides, such as lactose, trehalose, and the like; cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin; and polysaccharides, such as raffinose, maltodextrins, dextrans, and the like; alditols, such as mannitol, xylitol, and the like. A preferred group of carbohydrates includes lactose, threhalose, raffinose maltodextrins, and mannitol. Suitable polypeptides include aspartame. Amino acids include alanine and glycine, with glycine being preferred. [0032]
  • Additives, which are minor components of the composition of this invention, may be included for conformational stability during spray drying and for improving dispersibility of the powder. These additives include hydrophobic amino acids such tryptophan, tyrosine, lucine, phenylalanine, and the like. [0033]
  • Suitable pH adjusters or buffers include organic salts prepared from organic acids and bases, such as sodium citrate, sodium ascorbate, and the like; sodium citrate is preferred. [0034]
  • The unit dosage form, method of treatment, and process of preparation of this invention are described hereafter. [0035]
  • Unit Dosage Form [0036]
  • Another aspect of this invention is a unit dosage form for pulmonary delivery of interferon, which dosage form comprises a unit dosage receptacle containing an interferon-based dry powder composition, which composition comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier. [0037]
  • In this aspect of the invention, the composition of this invention (as discussed hereinbefore) is placed within a suitable dosage receptacle in an amount sufficient to provide a subject with IFN for a unit dosage treatment. The dosage receptacle is one that fits within a suitable inhalation device to allow for the aerosolization of the interferon-based dry powder composition by dispersion into a gas stream to form an aerosol and then capturing the aerosol so produced in a chamber having a mouthpiece attached for subsequent inhalation by a subject in need of treatment. Such a dosage receptacle includes any container enclosing the composition known in the art such as gelatin or plastic capsules with a removable portion that allows a stream of gas (e.g., air) to be directed into the container to disperse the dry powder composition. Such containers are exemplified by those shown in U.S. Pat. Nos. 4,227,522 issued Oct. 14, 1980; U.S. Pat. No. 4,192,309 issued Mar. 11, 1980; and U.S. Pat. No. 4,105,027 issued Aug. 8, 1978. Suitable containers also include those used in conjunction with Glaxo's Ventolin Rotohaler brand powder inhaler or Fison's Spinhaler brand powder inhaler. Another suitable unit-dose container which provides a superior moisture barrier is formed from an aluminum foil plastic laminate. The IFN-beta powder is filled by weight or by volume into the depression in the formable foil and hermetically sealed with a covering foil-plastic laminate. Such a container for use with a powder inhalation device is described in U.S. Pat. No. 4,778,054 and is used with Glaxo's Diskhaler® (U.S. Pat. Nos. 4,627,432; 4,811,731; and 5,035,237). All of these references are incorporated herein by reference. [0038]
  • Method of Treating a Disease State [0039]
  • Another aspect of this invention is a method of treating a condition responsive to treatment by interferon, which method comprises pulmonarily administering to a subject in need thereof a physiologically effective amount of an interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier. [0040]
  • Conditions that may be treated by the composition of this invention include those conditions that are responsive generally to treatment with IFN. For example, IFN alpha is used to treat hepatitis B and C, Hairy Cell Leukemia, chronic hepatitis Non A, Non B/C and Kaposi's Sarcoma; IFN beta is used to treat multiple sclerosis, brain tumor, skin cancer and hepatitis B and C; and IFN gamma is used to treat chronic granulomatous disease. [0041]
  • The physiologically effective amount needed to treat a particular condition or disease state will depend on the individual, the condition, length of treatment, the regularity of treatment, the type of IFN, and other factors, but can be determined by one of ordinary skill in the medicinal arts. The dosage may range from 0.25×10[0042] 6 IU to 50×106 IU per person per day depending on the prescribing doctor's diagnosis. For example an induction dosage of IFN alpha recombinant (Roferon®A-Roche Laboratories) for treatment of hairy cell leukemia may be 3×106 IU daily for 16-24 weeks with a maintenance dose of 3×106 IU three times per week. Other dosage regimes may be determined through clinical trials and reference to the Physicians Desk Reference® for 1994 as supplemented.
  • It is presently believed that the effective absorption by a host of dry powder interferon according to the present invention results from a rapid dissolution in the ultra-thin (<0.1 fm) fluid layer of the alveolar lining of the lung. The particles of the present invention thus have a mean size which is from 10 to 50 times larger than the lung fluid layer, making it unexpected that the particles are dissolved and the interferon systemically absorbed in a rapid manner for either local lung or systemic treatment. An understanding of the precise mechanism, however, is not necessary for practicing the present invention as described herein. [0043]
  • The aerosolized interferon-based dry powders of this invention are particularly useful in place of parenteral delivery. Thus, the methods and compositions of the present invention will be particularly valuable in chronic treatment protocols where a patient can self-medicate. The patient can achieve a desired dosage by inhaling an appropriate amount of interferon, as just described. The efficiency of systemic interferon delivery via the method as just described will typically be in the range from about 15% to 50%, with individual dosages (on a per inhalation basis), typically being in the range from about 3 million IU to about 50 million IU during a single respiratory administration. Thus, the desired dosage may be effected by the patient taking from 1 breath to 5 breaths. [0044]
  • Method for Aerosolizing the Powder [0045]
  • Still another aspect of this invention is a method for aerosolizing an interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier, which method comprises dispersing an amount of the dry powder composition in a gas stream to form an aerosol and capturing the aerosol in a chamber having a mouthpiece for subsequent inhalation by patient. [0046]
  • A further detailed description of this method is found in pending U.S. patent applications Ser. Nos. 07/910,048 and 08/207,472, both of which are incorporated herein by reference. [0047]
  • Preparing the Compositions [0048]
  • Still another aspect of this invention is a method for preparing an interferon-based dry powder composition of this invention that comprises spray-drying an aqueous mixture of the interferon and a pharmaceutically acceptable carrier having an interferon-stabilizing pH under conditions to provide a respirable dry powder composition. [0049]
  • Spray drying is a process in which a homogeneous aqueous mixture of IFN and the carrier is introduced via a nozzle (e.g., a two fluid nozzle), spinning disc or an equivalent device into a hot gas stream to atomize the solution to form fine droplets. The aqueous mixture may be a solution, suspension, slurry, or the like, but needs to be homogeneous to ensure uniform distribution of the components in the mixture and ultimately the powdered composition. Preferably the aqueous mixture is a solution. The solvent, generally water, rapidly evaporates from the droplets producing a fine dry powder having particles 1 to 5 μm in diameter. Surprisingly, the protein is not degraded when it is exposed to the hot drying gas, and the interferon powders can be prepared having sufficient purity for pharmaceutical use. An acceptable purity is defined as less than 5% degradation products and contaminates, preferably less than 3% and most preferably less than 1%. [0050]
  • The spray drying is done under conditions that result in substantially amorphous powder of homogeneous constitution having a particle size that is respirable, a low moisture content and flow characteristics that allow for ready aerosoiization. Preferably the particle size of the resulting powder is such that more than about 98% of the mass is in particles having a diameter of about 10 μm or less with about 90% of the mass being in particles having a diameter less than 5 μm. Alternatively, about 95% (preferably more than 95%) of the mass will have particles with a diameter of less than 10 μm with about 80% (preferably more than 80%) of the mass of the particles having a diameter of less than 5 μm. [0051]
  • According to the methods of the present invention, interferon dry powders of higher potency and improved flow characteristics are prepared by spray drying, where, bulk interferon, preferably IFN-beta but suitably other forms of interferon, is prepared in solution to have a concentration from 0.0005% by weight to 0.02% by weight, usually from 0.001% to 0.005%. The solutions may contain a stabilizer to maintain the chemical stability of the IFN-beta in solution such as HSA in a concentration from 0.01% to 1.0% by weight and preferably 0.05% to 0.25% by weight and may contain other material such as a salt or preservative that is present as a result of the preparation of bulk IFN. The solutions may then be sprayed dried in conventional spray drying equipment from commercial suppliers, such as Buchi, Niro, Yamato Chemical Co., Okawara Kakoki Co., and the like, resulting in a substantially amorphous particulate product. [0052]
  • For the spraying process, such spraying methods as rotary atomization, pressure atomization and two-fluid atomization can be used. Examples of the devices used in these processes include “Pulvis Mini-Spray GA-32” and “Pulvis Spray Drier DL-41”, manufactured by Yamato Chemical Co., or “Spray Drier CL-8,” “Spray Drier L-8,” “Spray Drier FL-12,” “Spray Drier FL-16” or “Spray Drier FL-20,” manufactured by Okawara Kakoki Co., can be used for the method of spraying using rotary-disk atomizer. [0053]
  • While no special restrictions are placed on the nozzle of the atomizer used in the process of spraying, it is recommended to use a nozzle which can produce a spray-dry composition with a grain diameter suitable for nasal, pharyngeal or pulmonary administration. For example, nozzle types “1A,” “1,” “2A,” “2,” “3” and the like, manufactured by Yamato Chemical Co., can be used for the above-mentioned spray-drier, manufactured by the same company. In addition, disks type “MC-50,” “MC-65” or “MC-85,” manufactured by Okawara Kakoki Co., can be used as rotary disks of the spray-drier atomizer, manufactured by the same company. [0054]
  • While no particular restrictions are placed on the gas used to dry the sprayed material, it is recommended to use air, nitrogen gas or an inert gas. The temperature of the inlet of the gas used to dry the sprayed materials such that it does not cause heat deactivation of the sprayed material. The range of temperatures may vary between about 50° C. to about 200° C., preferable between about 50° C. and 100° C. The temperature of the outlet gas used to dry the sprayed material, may vary between about 0° C. and about 150°, preferably between 0° C. and 90° C., and even more preferably between 0° C. and 60° C. The fact that inlet and outlet temperatures above about 55° C. can be used is surprising in view of the fact that IFN starts deactivating at that temperature, with nearly complete deactivation occurring at about 70° C. [0055]
  • By minimizing the amount of stabilizer in the solution, high potency IFN powder can be prepared such that the number of inhalations required to deliver even high dosages of IFN can be substantially reduced, often to only a single inhalation. [0056]
  • Interferon dry powders suitable for use in the present invention are substantially amorphous, essentially lacking any crystalline structure. Dry powder interferons are prepared by spray drying under conditions which result in a substantially amorphous powder having a particle size within the above-stated range. According to the method of the present invention, bulk interferon, preferably IFN-β but suitably other forms of interferon, is first dissolved in a physiologically-acceptable aqueous solution typically containing sodium chloride, optionally with a buffer, having a pH in the range from about 2 to 9. The interferon is dissolved at a concentration from 0.01% by weight to 1% by weight, usually from 0.1% to 0.2%. The solutions may then be spray dried in conventional spray drying equipment from commercial suppliers, such as Buchi, Niro Yamato, Okawara Kakoki and the like, resulting in a substantially amorphous particulate product. [0057]
  • The interferon dry powders of the present invention may optionally be combined with pharmaceutical carriers or excipients which are suitable for respiratory and pulmonary administration. Such carriers may serve simply as bulking agents when it is desired to reduce the interferon concentration in the powder which is being delivered to a patient, but may also serve to enhance the stability of the interferon compositions and to improve the dispersibility of the powder within a powder dispersion device in order to provide more efficient and reproducible delivery of the interferon and to improve handling characteristics of the interferon such as flowability and consistency to facilitate manufacturing and powder filling. [0058]
  • Such carrier materials may be combined with the interferon prior to spray drying, i.e., by adding the carrier material to the purified bulk solution. In that way, the carrier particles will be formed simultaneously with the IFN particles to produce a homogeneous powder. Alternatively, the carriers may be separately prepared in a dry powder form and combined with the dry powder interferon by blending. The powder carriers will usually be crystalline (to avoid water absorption), but might in some cases be amorphous or mixtures of crystalline and amorphous. The size of the carrier particles may be selected to improve the flowability of the IFN powder, typically being in the range from 25 μm to 100 μm. A preferred carrier material is crystalline lactose having a size in the above-stated range.[0059]
  • EXPERIMENTAL
  • Example I [0060]
  • This example sets forth a method of preparing a composition of this invention. [0061]
  • Approximately 50 mL of 10 mM sodium chloride solution of natural human IFN-beta comprising approximately 2 mg/ml HSA was prepared. [0062]
  • The resulting aqueous mixture is fed to a Buchi Laboratory Spray Dryer under the following conditions to give a composition of this invention: [0063]
    Temperature of the aqueous mixture  4° C.-10° C.
    Inlet temperature 115° C.-125° C.
    Feed rate 6 mL/min
    Outlet temperature 60° C.-70° C.
  • Once the aqueous mixture is consumed, the outlet temperature is maintained at about 70° C. for about 15 minutes by slowly decreasing the inlet temperature. This provides a secondary drying to give an IFN-based dry powder composition having a water content of less than 3% as measured by a coulombic Karl Fischer method. In this case the composition (% w based on total solids) is constituted as follows: [0064]
     1.9% w IFN-beta
    98.1% w Carrier (75.8% HSA, 22.3 NaCl)
  • Example II
  • By following the procedure of Example I, but increasing the outlet temperature to 75° C.-80° C. during the secondary drying stage, one obtains a composition of this invention having less than 1% w water. [0065]
  • Example III
  • This example sets forth a method of preparing a composition of this invention wherein the carrier includes a bulking agent, i.e., mannitol. [0066]
  • Mannitol is dissolved in natural human IFN-beta described in Example i. The concentration of mannitol was 5.75 mg/mL. [0067]
  • The resulting aqueous mixture is fed to a Buchi Laboratory Spray Dryer under the following conditions: [0068]
    Temperature of the aqueous mixture  4° C.-10° C.
    Inlet temperature 115° C.-125° C.
    Feed rate 5 mL/min
    Outlet temperature 60° C.-70° C.
    Secondary drying—15 minutes at 70° C.
  • Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims. [0069]
  • Example IV
  • This example sets forth a method for preparing a composition of this invention wherein no bulking agent is present in the composition. [0070]
  • Approximately 100 ml of 10 mM sodium chloride solution of natural human interferon (obtained by culturing human normal diploid fibroblasts) (approximately 7×10[0071] 4 IU/ml) comprising approximately 2 mg/ml human serum albumin (HSA) were prepared, and spray-dried using the commercial spray-drier “Pulvis Mini-Spray GA-32,” manufactured by Yamato Chemical Co. The spray nozzle used was a 1A nozzle (φ0.4 mm) and the inlet temperature and the outlet temperature of the drying gas were 100° C. and 60° C., respectively. In addition, the spray pressure was 1 kg/cm2, the flow capacity of the hot air was 0.40 to 0.42 m3/min and the rate of solution transmission was 4.3 ml/min. After approximately 20 min. of spray-drying, the dry powder, which was collected into a chamber using a cyclone, was recovered, and the interferon (IFN) activity was measured. The interferon activity was measured using an enzyme immunoassay (EIA) involving an anti-human interferon β antibody (S. Yamazaki et al., Immunoassay, 10, 57(1989)). The activity of the dry powder was measured by dissolving the dry powder using distilled water and comparing its interferon activity, corresponding to the light absorption at 280 nm, with the interferon activity prior to the spray-drying process. The results are shown in Table 1. The measurements were repeated three times, and the average values were used for the comparison. The error in the relative activity in the table is a standard error (±SE).
    TABLE 1
    Natural human interferon β activity before and after spray-drying
    Relative
    activity (IU/A 280 unit) Remaining activity (%)
    Before spray-drying 4.11 ± 0.11 100  
    After spray-drying 3.14 ± 0.04  74.8
  • After the spray-drying process, the natural human interferon β showed an interferon activity which was 74.8% of its activity prior to the spray-drying process, indicating that it can be spray-dried while maintaining its activity. These results are surprising because a similar natural human interferon β solution comprising a similar quantity of HSA will start deactivating at approximately 55° C., with complete deactivation occuring at 70° C. [0072]
  • The dry powder obtained by the process of this invention was subjected to platinum coating and the shape of its grains was examined using a field emission scan electron microscope (model S-8000, manufactured by Hitachi Co.). Approximately 90% of the grains examined were grains with relatively smooth and large dents and protrusions in the grain surface, and with a grain diameter of approximately 10 μm. In addition, the resulting powder exhibited a moisture content of 5.6 wt % using the Karl Fischer method (coulometric titration Moisturemeter CA-06, manufactured by Mitsubishi Kasei Co.). [0073]
  • Example V
  • This example sets forth a method for preparing an IFN/HSA/mannitol composition. [0074]
  • Approximately 100 ml of 10 mM sodium chloride solution of natural human interferon comprising 150 mg/ml mannitol and approximately 2 mg/ml human serum albumin (HSA) were prepared. The proportion of the mannitol to the total solutes in this solution composition was approximately 90 wt %. [0075]
  • The above solution was spray-dried using the same method and the same conditions as in Example IV, and the interferon activity of the dry powder obtained was measured using the same method as in Example IV. The results are shown in Table 2. [0076]
    TABLE 2
    Natural human interferon β activity before and after spray-drying
    Relative
    activity (IU/A 280 unit) Remaining activity (%)
    Before spray-drying 5.59 ± 0.51 100  
    After spray-drying 4.53 ± 0.13  81.0
  • After the spray-drying process, the natural human interferon β maintained 81.0% of its activity compared with its activity prior to the spray-drying process. As in Example IV, these results are surprising because a similar aqueous solution of the same quantity of natural human interferon β, HSA and mannitol started to deactivate at approximately 55° C., with almost complete deactivation occurring at 70° C. [0077]
  • While the IFN-based powder from Example IV and V are dispersible, the powder obtained from Example V was more readily dispersed than the powder obtained in Example IV. When the grain shape was examined by subjecting the powder to platinum coating and using a field emission scan electron microscope (model S-8000, manufactured by Hitachi Co.), the grains were found to have a size similar to those of Example IV but a shape more IS rounded compares with the powder particles obtained in Example IV. In addition, when the distribution of the grain diameter of the powder vas measured by dispersing it in ethanol anhydride and using a granulation analyzer (Microtrac FRA, manufactured by Nikkiso Co.), it was found that approximately 90% of the grains were distributed within the range of 1.6 to 9.3 μm. The moisture content was 0.74% wt, as measured by the Karl Fischer method of Example IV. [0078]
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. [0079]
  • The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims. [0080]

Claims (26)

The subject matter claimed is:
1. A spray-dried, interferon-based dry powder composition for pulmonary delivery, said composition comprising a therapeutically effective amount of interferon in combination with a pharmaceutically acceptable carrier.
2. The composition of claim 1, wherein the composition is substantially free from penetration enhancers.
3. The composition of claim 2, wherein the carrier comprises human serum albumin.
4. The composition of claim 3, wherein the carrier further comprises a carbohydrate bulking agent.
5. The composition of claim 4, wherein the carrier is mannitol.
6. The composition of claim 4, wherein the carrier is raffinose.
7. The composition of claim 1, wherein about 95% of the mass of the dry powder composition has a particle size of less than 10 μm.
8. The composition of claim 7, wherein about 80% of the mass of the dry powder composition has a particle size of less than 5 μm.
9. The composition of claim 1, wherein the interferon is naturally occurring.
10. The composition of claim 1, wherein the interferon is interferon beta.
11. A unit dosage form for pulmonary delivery of interferon, which dosage form comprises a unit dosage receptacle containing a spray-dried, interferon-based dry powder composition, which composition comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier.
12. The unit dosage form of claim 11, wherein the carrier comprises human serum albumin or human serum albumin and a carbohydrate bulking agent, the composition is substantially free from penetration enhancers and about 95% of the mass of the dry powder composition has a particle size of less than about 10 μm.
13. A method of treating a disease state responsive to treatment by interferon, which method comprises pulmonarily administering to a subject in need thereof a physiologically effective amount of a spray-dried, interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier.
14. The method of claim 13, wherein the carrier comprises HSA and a carbohydrate bulking agent, the composition is substantially free from penetration enhancers and about 95% of the mass of the dry powder composition has a particle size of less than about 10 μm.
15. A method for aerosolizing a spray-dried, interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon in combination with a pharmaceutically acceptable carrier, which method comprises:
dispersing an amount of the dry powder composition in a gas stream to form an aerosol and
capturing the aerosol in a chamber suitable for subsequent inhalation by a patient.
16. The method of claim 15, wherein the carrier comprises HSA and a carbohydrate bulking agent, the composition is substantially free from penetration enhancers and about 95% of the mass of the dry powder composition has a particle size of less than about 10 μm.
17. A method for preparing a spray-dried, interferon-based dry powder composition that comprises a therapeutically effective amount of an interferon and a pharmaceutically acceptable carrier, which method comprises spray-drying an aqueous mixture of the interferon and the carrier under conditions to provide a respirable dry powder.
18. The method of claim 17 wherein the composition is substantially free from penetration enhancers.
19. The method of claim 18, wherein the carrier comprises HSA.
20. The method of claim 19, wherein the carrier further comprises a carbohydrate bulking agent.
21. The method of claim 20, wherein the bulking agent is mannitol.
22. The method of claim 20, wherein the bulking agent is raffinose.
23. The method of claim 17, wherein 95% of the mass of the spray-dry composition has a particle size less than 10 μm.
24. A spray-dried, interferon-based dry powder composition for pulmonary delivery, said composition comprising a therapeutically effective amount of naturally occurring interferon-beta in combination with a pharmaceutically acceptable carrier that comprises human serum albumin or human serum albumin and a carbohydrate bulking agent, wherein the composition is substantially free from penetration enhancers and about 95% of the mass of the dry powder composition has a particle size of less than 10 μm.
25. The composition of claim 24, wherein the bulking agent is mannitol.
26. The composition of claim 24, wherein the bulking agent is raffinose.
US10/245,704 1994-05-18 2002-09-18 Methods and compositions for the dry powder formulation of interferons Abandoned US20030072718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/245,704 US20030072718A1 (en) 1994-05-18 2002-09-18 Methods and compositions for the dry powder formulation of interferons

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US24603494A 1994-05-18 1994-05-18
US08/737,724 US6231851B1 (en) 1994-05-18 1995-05-15 Methods and compositions for the dry powder formulation of interferons
US09/444,116 US6123936A (en) 1994-05-18 1999-11-22 Methods and compositions for the dry powder formulation of interferons
US09/506,426 US6479049B1 (en) 1994-05-18 2000-02-17 Methods and compositions for the dry powder formulation of interferons
US10/245,704 US20030072718A1 (en) 1994-05-18 2002-09-18 Methods and compositions for the dry powder formulation of interferons

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/506,426 Continuation US6479049B1 (en) 1994-05-18 2000-02-17 Methods and compositions for the dry powder formulation of interferons

Publications (1)

Publication Number Publication Date
US20030072718A1 true US20030072718A1 (en) 2003-04-17

Family

ID=22929067

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/737,724 Expired - Fee Related US6231851B1 (en) 1992-07-08 1995-05-15 Methods and compositions for the dry powder formulation of interferons
US09/444,116 Expired - Fee Related US6123936A (en) 1994-05-18 1999-11-22 Methods and compositions for the dry powder formulation of interferons
US09/506,426 Expired - Fee Related US6479049B1 (en) 1994-05-18 2000-02-17 Methods and compositions for the dry powder formulation of interferons
US10/245,704 Abandoned US20030072718A1 (en) 1994-05-18 2002-09-18 Methods and compositions for the dry powder formulation of interferons

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/737,724 Expired - Fee Related US6231851B1 (en) 1992-07-08 1995-05-15 Methods and compositions for the dry powder formulation of interferons
US09/444,116 Expired - Fee Related US6123936A (en) 1994-05-18 1999-11-22 Methods and compositions for the dry powder formulation of interferons
US09/506,426 Expired - Fee Related US6479049B1 (en) 1994-05-18 2000-02-17 Methods and compositions for the dry powder formulation of interferons

Country Status (13)

Country Link
US (4) US6231851B1 (en)
EP (1) EP0759939B1 (en)
JP (1) JPH10500672A (en)
KR (1) KR100384353B1 (en)
CN (1) CN1073119C (en)
AT (1) ATE299892T1 (en)
AU (1) AU696387B2 (en)
CA (1) CA2190502A1 (en)
DE (1) DE69534318T2 (en)
ES (1) ES2245780T3 (en)
MX (1) MX9605717A (en)
NZ (1) NZ285664A (en)
WO (1) WO1995031479A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086877A1 (en) * 1992-07-08 2003-05-08 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030113273A1 (en) * 1996-06-17 2003-06-19 Patton John S. Methods and compositions for pulmonary delivery of insulin
US20030171282A1 (en) * 1992-09-29 2003-09-11 Patton John S. Pulmonary delivery of active fragments of parathyroid hormone
US20040096400A1 (en) * 1994-03-07 2004-05-20 Patton John S. Methods and compositions for the pulmonary delivery insulin
US20040170568A1 (en) * 1997-09-29 2004-09-02 Weers Jeffry G. Stabilized preparations for use in metered dose inhalers
WO2005087253A2 (en) * 2004-03-12 2005-09-22 University Of Southampton Interferon-beta for anti-virus therapy for respiratory diseases
US20050276759A1 (en) * 1994-12-02 2005-12-15 Roser Bruce J Solid dose delivery vehicle and methods of making same
US8246934B2 (en) 1997-09-29 2012-08-21 Novartis Ag Respiratory dispersion for metered dose inhalers comprising perforated microstructures
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US8709484B2 (en) 2000-05-10 2014-04-29 Novartis Ag Phospholipid-based powders for drug delivery
US8715623B2 (en) 2001-12-19 2014-05-06 Novartis Ag Pulmonary delivery of aminoglycoside
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
WO2014184352A1 (en) 2013-05-17 2014-11-20 Ablynx Nv Stable formulations of immunoglobulin single variable domains and uses thereof
EP3011953A1 (en) 2008-10-29 2016-04-27 Ablynx N.V. Stabilised formulations of single domain antigen binding molecules
WO2017147248A1 (en) 2016-02-24 2017-08-31 Visterra, Inc. Formulations of antibody molecules to influenza virus
WO2022106976A1 (en) 2020-11-18 2022-05-27 Pfizer Inc. Stable pharmaceutical formulations of soluble fgfr3 decoys

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582728B1 (en) * 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
DE69534318T2 (en) * 1994-05-18 2006-04-20 Nektar Therapeutics, San Carlos METHODS AND COMPOSITIONS FOR THE DRY PLANT FROM INTERFERONS
US6586006B2 (en) 1994-08-04 2003-07-01 Elan Drug Delivery Limited Solid delivery systems for controlled release of molecules incorporated therein and methods of making same
US5955108A (en) * 1994-12-16 1999-09-21 Quadrant Healthcare (Uk) Limited Cross-linked microparticles and their use as therapeutic vehicles
US6258341B1 (en) 1995-04-14 2001-07-10 Inhale Therapeutic Systems, Inc. Stable glassy state powder formulations
CA2218074C (en) * 1995-04-14 2002-10-08 Mohammed Eljamal Powdered pharmaceutical formulations having improved dispersibility
US6309671B1 (en) 1995-04-14 2001-10-30 Inhale Therapeutic Systems Stable glassy state powder formulations
DE19539574A1 (en) 1995-10-25 1997-04-30 Boehringer Mannheim Gmbh Preparations and processes for stabilizing biological materials by means of drying processes without freezing
DE19544167A1 (en) * 1995-11-17 1997-05-22 Schering Ag Use of interferon-ß for the treatment of bronchial carcinoma in radiation therapy
TW403653B (en) * 1995-12-25 2000-09-01 Otsuka Pharma Co Ltd Dry compositions
GB9607035D0 (en) * 1996-04-03 1996-06-05 Andaris Ltd Spray-dried microparticles as therapeutic vehicles
EP0914096B1 (en) * 1996-05-17 2003-08-13 Elan Drug Delivery Limited Microparticles and their use in wound therapy
US20030035778A1 (en) * 1997-07-14 2003-02-20 Robert Platz Methods and compositions for the dry powder formulation of interferon
BR9811793A (en) 1997-07-18 2000-09-26 Infimed Inc Biodegradable macromers for the controlled release of biologically active substances.
US6565885B1 (en) 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
JP4574007B2 (en) * 1998-04-28 2010-11-04 メルク・セローノ・ソシエテ・アノニム Polyol-IFN-beta complex
US6284282B1 (en) 1998-04-29 2001-09-04 Genentech, Inc. Method of spray freeze drying proteins for pharmaceutical administration
US6956021B1 (en) * 1998-08-25 2005-10-18 Advanced Inhalation Research, Inc. Stable spray-dried protein formulations
US6234167B1 (en) 1998-10-14 2001-05-22 Chrysalis Technologies, Incorporated Aerosol generator and methods of making and using an aerosol generator
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
WO2001013891A2 (en) * 1999-08-25 2001-03-01 Advanced Inhalation Research, Inc. Modulation of release from dry powder formulations
US6749835B1 (en) 1999-08-25 2004-06-15 Advanced Inhalation Research, Inc. Formulation for spray-drying large porous particles
US7678364B2 (en) 1999-08-25 2010-03-16 Alkermes, Inc. Particles for inhalation having sustained release properties
US7252840B1 (en) 1999-08-25 2007-08-07 Advanced Inhalation Research, Inc. Use of simple amino acids to form porous particles
US6586008B1 (en) * 1999-08-25 2003-07-01 Advanced Inhalation Research, Inc. Use of simple amino acids to form porous particles during spray drying
US20010036481A1 (en) * 1999-08-25 2001-11-01 Advanced Inhalation Research, Inc. Modulation of release from dry powder formulations
DE60044070D1 (en) 1999-10-29 2010-05-06 Novartis Ag Dry powder compositions with improved dispersity
ATE358171T1 (en) * 1999-12-24 2007-04-15 Otsuka Pharma Co Ltd DRY COMPOSITION CONTAINING HYDROPHOBIC AMINO ACIDS
MY136453A (en) * 2000-04-27 2008-10-31 Philip Morris Usa Inc "improved method and apparatus for generating an aerosol"
US6613308B2 (en) * 2000-09-19 2003-09-02 Advanced Inhalation Research, Inc. Pulmonary delivery in treating disorders of the central nervous system
AU2440802A (en) * 2000-10-18 2002-04-29 Massachusetts Inst Technology Methods and products related to pulmonary delivery of polysaccharides
US7544354B2 (en) 2000-10-27 2009-06-09 Novartis Vaccines And Diagnostics Methods of protein purification and recovery
US6994847B2 (en) 2000-11-07 2006-02-07 Chiron Corporation Stabilized interferon compositions
ATE355849T1 (en) * 2000-12-21 2007-03-15 Nektar Therapeutics STORAGE-Stable POWDER COMPOSITIONS WITH INTERLEUKIN-4 RECEPTOR
US6501052B2 (en) 2000-12-22 2002-12-31 Chrysalis Technologies Incorporated Aerosol generator having multiple heating zones and methods of use thereof
US7077130B2 (en) * 2000-12-22 2006-07-18 Chrysalis Technologies Incorporated Disposable inhaler system
US6799572B2 (en) * 2000-12-22 2004-10-05 Chrysalis Technologies Incorporated Disposable aerosol generator system and methods for administering the aerosol
US6701921B2 (en) * 2000-12-22 2004-03-09 Chrysalis Technologies Incorporated Aerosol generator having heater in multilayered composite and method of use thereof
JP2004516304A (en) * 2000-12-22 2004-06-03 アスペン・エアロジエルズ・インコーポレーテツド Airgel powder containing therapeutic agent
US6491233B2 (en) 2000-12-22 2002-12-10 Chrysalis Technologies Incorporated Vapor driven aerosol generator and method of use thereof
US6681998B2 (en) 2000-12-22 2004-01-27 Chrysalis Technologies Incorporated Aerosol generator having inductive heater and method of use thereof
US20020141946A1 (en) * 2000-12-29 2002-10-03 Advanced Inhalation Research, Inc. Particles for inhalation having rapid release properties
EP2080771A3 (en) 2001-02-27 2010-01-06 Maxygen Aps New interferon beta-like molecules
US6887462B2 (en) 2001-04-09 2005-05-03 Chiron Corporation HSA-free formulations of interferon-beta
EG24184A (en) 2001-06-15 2008-10-08 Otsuka Pharma Co Ltd Dry powder inhalation system for transpulmonary
GB0208742D0 (en) 2002-04-17 2002-05-29 Bradford Particle Design Ltd Particulate materials
US6568390B2 (en) 2001-09-21 2003-05-27 Chrysalis Technologies Incorporated Dual capillary fluid vaporizing device
US6640050B2 (en) 2001-09-21 2003-10-28 Chrysalis Technologies Incorporated Fluid vaporizing device having controlled temperature profile heater/capillary tube
US7118915B2 (en) * 2001-09-27 2006-10-10 Pieris Proteolab Ag Muteins of apolipoprotein D
WO2003029462A1 (en) * 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
WO2003035095A1 (en) * 2001-10-19 2003-05-01 Maxim Pharmaceuticals, Inc. Use of histamine to treat liver disease
TW200300696A (en) 2001-11-01 2003-06-16 Inhale Therapeutic Syst Spray drying methods and related compositions
WO2003043574A2 (en) 2001-11-19 2003-05-30 Becton, Dickinson And Company Pharmaceutical compositions in particulate form
JP4368198B2 (en) * 2001-11-20 2009-11-18 アルカーメス,インコーポレイテッド Improved particulate composition for pulmonary delivery
US20030129250A1 (en) * 2001-11-20 2003-07-10 Advanced Inhalation Research Inc. Particulate compositions for improving solubility of poorly soluble agents
US6804458B2 (en) 2001-12-06 2004-10-12 Chrysalis Technologies Incorporated Aerosol generator having heater arranged to vaporize fluid in fluid passage between bonded layers of laminate
US6681769B2 (en) 2001-12-06 2004-01-27 Crysalis Technologies Incorporated Aerosol generator having a multiple path heater arrangement and method of use thereof
US6701922B2 (en) 2001-12-20 2004-03-09 Chrysalis Technologies Incorporated Mouthpiece entrainment airflow control for aerosol generators
US20060188451A1 (en) * 2001-12-21 2006-08-24 Aspen Aerogels, Inc. Aerogel based pharmaceutical formulations
JP4681231B2 (en) 2002-03-20 2011-05-11 マンカインド コーポレイション Inhaler
AU2003225182B2 (en) * 2002-04-25 2009-02-26 Momenta Pharmaceuticals, Inc. Methods and products for mucosal delivery
US9339459B2 (en) 2003-04-24 2016-05-17 Nektar Therapeutics Particulate materials
CA2494155C (en) * 2002-08-22 2011-05-03 Nutrition 21, Inc. Arginine silicate inositol complex and use thereof
AU2003285776A1 (en) * 2002-12-13 2004-07-09 Otsuka Pharmaceutical Co., Ltd. FREEZE-DRIED INTERFERON-Gamma COMPOSITION FOR TRANSPULMONARY ADMINISTRATION AND INHALATION SYSTEM THEREFOR
US20040121003A1 (en) * 2002-12-19 2004-06-24 Acusphere, Inc. Methods for making pharmaceutical formulations comprising deagglomerated microparticles
ITMI20022748A1 (en) * 2002-12-23 2004-06-24 Eurand Int STABILIZED SOLID DISPERSIONS OF DRUG IN AN ORGANIC CAREER AND PROCEDURE FOR THEIR PREPARATION.
WO2004060343A1 (en) * 2002-12-31 2004-07-22 Nektar Therapeutics Antibody-containing particles and compositions
CA2526222A1 (en) * 2003-05-16 2004-12-02 Arriva Pharmaceuticals, Inc. Treatment of respiratory disease associated with matrix metalloprotease inhibitors
US20050037047A1 (en) * 2003-08-11 2005-02-17 Young-Ho Song Medical devices comprising spray dried microparticles
CA2540699A1 (en) * 2003-10-01 2005-04-14 Momenta Pharmaceuticals, Inc. Polysaccharides for pulmonary delivery of active agents
WO2005060960A2 (en) * 2003-12-11 2005-07-07 Maxim Pharmaceuticals, Inc. Use of histamine to treat bone disease
CA2562585A1 (en) 2004-04-23 2005-11-10 Cydex, Inc. Dpi formulation containing sulfoalkyl ether cyclodextrin
US7727962B2 (en) 2004-05-10 2010-06-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Powder comprising new compositions of oligosaccharides and methods for their preparation
US7611709B2 (en) 2004-05-10 2009-11-03 Boehringer Ingelheim Pharma Gmbh And Co. Kg 1,4 O-linked saccharose derivatives for stabilization of antibodies or antibody derivatives
US7723306B2 (en) 2004-05-10 2010-05-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Spray-dried powder comprising at least one 1,4 O-linked saccharose-derivative and methods for their preparation
WO2005123113A2 (en) * 2004-06-14 2005-12-29 Intermune, Inc. Interferon compositions and methods of use thereof
RU2389477C2 (en) 2004-06-18 2010-05-20 Новартис Ваксинз Энд Дайагностикс Инк. Methods of treating endobronchial diseases
JP2008503586A (en) 2004-06-21 2008-02-07 ネクター セラピューティクス Compositions, methods and systems comprising amphotericin B
US8513204B2 (en) 2004-06-21 2013-08-20 Novartis Ag Compositions comprising amphotericin B, mehods and systems
EP1786784B1 (en) 2004-08-20 2010-10-27 MannKind Corporation Catalysis of diketopiperazine synthesis
DK2322180T3 (en) 2004-08-23 2015-06-15 Mannkind Corp Diketopiperazinsalte for drug delivery
WO2006079121A2 (en) * 2005-01-19 2006-07-27 Avigenics, Inc. Methods of treating disease with glycosylated interferon
WO2007019554A2 (en) * 2005-08-08 2007-02-15 Momenta Pharmaceuticals, Inc. Polysaccharides for delivery of active agents
KR101643478B1 (en) 2005-09-14 2016-07-27 맨카인드 코포레이션 Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents
US8105571B2 (en) 2005-09-20 2012-01-31 New York University Method of treating pulmonary disease with interferons
US7629331B2 (en) 2005-10-26 2009-12-08 Cydex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions and methods of preparation thereof
MX360812B (en) * 2006-02-22 2018-11-16 Mannkind Corp A method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent.
DE102006014714B3 (en) * 2006-03-30 2007-05-16 Draegerwerk Ag Electrochemical sensor for gas detection has aromatic or alphatic acid carbonic acids in alkali electrolyte solution
DE102006030164A1 (en) * 2006-06-29 2008-01-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Inhalative powders
JP2010508069A (en) 2006-10-25 2010-03-18 ノバルティス アーゲー Powder disperser, method of manufacturing and using the device, component used in the device and other devices
PL2425820T3 (en) 2007-02-11 2015-08-31 Map Pharmaceuticals Inc Method of therapeutic administration of dhe to enable rapid relief of migraine while minimizing side effect profile
WO2008107908A1 (en) * 2007-03-05 2008-09-12 Cadila Healthcare Limited Compositions comprising peg- interferon alpha conjugates and raffinose as cryoprotectant
US8268354B2 (en) 2007-11-07 2012-09-18 Aridis Pharmaceuticals Sonic low pressure spray drying
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
KR101655053B1 (en) 2008-06-13 2016-09-07 맨카인드 코포레이션 A dry powder inhaler and system for drug delivery
ES2904623T3 (en) 2008-06-20 2022-04-05 Mannkind Corp Interactive device to establish a real-time profile of inhalation efforts
TWI532497B (en) 2008-08-11 2016-05-11 曼凱公司 Use of ultrarapid acting insulin
JP2012509922A (en) * 2008-11-27 2012-04-26 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング New powdered crystalline inhalant
PT2379511E (en) 2008-12-29 2015-02-27 Mannkind Corp Substituted diketopiperazine analogs for use as drug delivery agents
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
DK2405963T3 (en) 2009-03-11 2013-12-16 Mannkind Corp DEVICE, SYSTEM AND PROCEDURE FOR MEASURING RESISTANCE IN AN INHALATOR
EP3552602A1 (en) 2009-03-18 2019-10-16 Incarda Therapeutics, Inc. Unit doses, aerosols, kits, and methods for treating heart conditions by pulmonary administration
KR101875969B1 (en) 2009-06-12 2018-07-06 맨카인드 코포레이션 Diketopiperazine microparticles with defined specific surface areas
US9016147B2 (en) 2009-11-03 2015-04-28 Mannkind Corporation Apparatus and method for simulating inhalation efforts
DK2990798T3 (en) 2009-12-07 2019-12-02 Pieris Pharmaceuticals Gmbh MUTEINS OF HUMAN LIPOCALIN 2 (LCN2, HNGAL) WITH AFFINITY FOR A SPECIFIC TARGET
PL2528617T3 (en) 2010-01-28 2016-09-30 Interleukin-2 or interferon-alpha for use in treating nicotine or food addiction
EP2582421A1 (en) 2010-06-21 2013-04-24 MannKind Corporation Dry powder drug delivery system and methods
ES2645769T3 (en) 2011-01-05 2017-12-07 Hospira, Inc. Vancomycin spray drying
CA2767773C (en) * 2011-02-11 2015-11-24 Grain Processing Corporation Composition comprising a salt and a crystallization interrupter
AU2012236150B2 (en) 2011-04-01 2016-03-31 Mannkind Corporation Blister package for pharmaceutical cartridges
US9572774B2 (en) 2011-05-19 2017-02-21 Savara Inc. Dry powder vancomycin compositions and associated methods
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
CA2852536A1 (en) 2011-10-24 2013-05-02 Mannkind Corporation Methods and compositions for treating pain
RU2635482C2 (en) 2011-12-30 2017-11-13 Грайфолз, С.А. Alpha-1 proteinase inhibitor for delay of beginning or progress of pulmonary exacerbations
CN102727467B (en) * 2012-07-07 2014-03-12 北京三元基因工程有限公司 Dry powder inhalant of interferon alpha
CN102727469B (en) * 2012-07-07 2013-12-11 北京三元基因工程有限公司 Dry powder inhalant of interferon alpha
CN102727468B (en) * 2012-07-07 2014-03-12 北京三元基因工程有限公司 Dry powder inhaler of interferon alpha
CN102716105B (en) * 2012-07-07 2014-04-16 北京三元基因工程有限公司 Dry powder inhalant of interferon Alpha
JP6312262B2 (en) 2012-07-12 2018-04-18 マンカインド コーポレイション Dry powder drug delivery system
EP2911690A1 (en) 2012-10-26 2015-09-02 MannKind Corporation Inhalable influenza vaccine compositions and methods
US10526384B2 (en) 2012-11-19 2020-01-07 Pieris Pharmaceuticals Gmbh Interleukin-17A-specific and interleukin-23-specific binding polypeptides and uses thereof
KR102391750B1 (en) 2013-03-15 2022-04-28 맨카인드 코포레이션 Microcrystalline diketopiperazine compositions and methods
CN104043104B (en) 2013-03-15 2018-07-10 浙江创新生物有限公司 The spray dried powder and its industrialized process for preparing of hydrochloric vancomycin
CN104116712B (en) * 2013-04-23 2017-06-20 北京大学 A kind of hollow property nanometer aggregated particle of interferon albumin for pulmonary administration
CN105451716A (en) 2013-07-18 2016-03-30 曼金德公司 Heat-stable dry powder pharmaceutical compositions and methods
CA2920488C (en) 2013-08-05 2022-04-26 Mannkind Corporation Insufflation apparatus and methods
CA2936611A1 (en) 2014-01-13 2015-07-16 Pieris Pharmaceuticals Gmbh Multi-specific polypeptide useful for localized tumor immunomodulation
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
SG11201609274SA (en) 2014-05-22 2016-12-29 Pieris Pharmaceuticals Gmbh Novel specific-binding polypeptides and uses thereof
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
US20170333359A1 (en) * 2014-10-20 2017-11-23 Rx Analytic, Inc A drug-containing micro particle
CN107207574A (en) 2015-01-28 2017-09-26 皮里斯制药有限公司 The specific novel protein of angiogenesis
US11191735B2 (en) 2015-03-13 2021-12-07 Nutrition 21, Llc Arginine silicate for periodontal disease
WO2016169571A1 (en) * 2015-04-20 2016-10-27 Ghaleb Haider Abbas Pharmaceutical product for treatment & prophylaxis of viral/ microbial infection
WO2016177762A1 (en) 2015-05-04 2016-11-10 Pieris Pharmaceuticals Gmbh Proteins specific for cd137
WO2016177802A1 (en) 2015-05-04 2016-11-10 Pieris Pharmaceuticals Gmbh Anti-cancer fusion polypeptide
MX2017014730A (en) 2015-05-18 2018-06-28 Pieris Pharmaceuticals Gmbh Muteins of human lipocalin 2 with affinity for glypican-3 (gpc3).
LT3298030T (en) 2015-05-18 2023-02-27 Pieris Pharmaceuticals Gmbh Anti-cancer fusion polypeptide
US20170135969A1 (en) 2015-11-12 2017-05-18 Jds Therapeutics, Llc Topical arginine-silicate-inositol for wound healing
BR112018010887A2 (en) 2015-11-30 2018-11-21 Pieris Australia Pty Ltd fusion polypeptide
TW201725212A (en) 2015-12-10 2017-07-16 第一三共股份有限公司 Novel proteins specific for calcitonin gene-related peptide
US10010294B2 (en) 2016-02-01 2018-07-03 Incarda Therapeutics, Inc. Combining electronic monitoring with inhaled pharmacological therapy to manage cardiac arrhythmias including atrial fibrillation
WO2018045244A1 (en) 2016-09-01 2018-03-08 Jds Therapeutics, Llc Magnesium biotinate compositions and methods of use
CA3060702A1 (en) 2017-05-10 2018-11-15 Incarda Therapeutics, Inc. Unit doses, aerosols, kits, and methods for treating heart conditions by pulmonary administration
US10744087B2 (en) 2018-03-22 2020-08-18 Incarda Therapeutics, Inc. Method to slow ventricular rate
CA3118583A1 (en) 2018-11-02 2020-05-07 Nutrition 21, Llc Compositions containing inositol-stabilized arginine silicate complexes and inositol for improving cognitive function in video gamers
US11020384B2 (en) 2019-08-01 2021-06-01 Incarda Therapeutics, Inc. Antiarrhythmic formulation
AU2020407071A1 (en) 2019-12-16 2022-07-07 Nutrition 21, Llc Methods of production of arginine-silicate complexes
EP4203928A1 (en) * 2020-08-26 2023-07-05 Cila Therapeutic Inc. Inhalable therapeutic agents
EP4304582A1 (en) 2021-03-12 2024-01-17 Alvarius Pharmaceuticals Ltd. Compositions and methods for treating addictions comprising 5-meo-dmt

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1855591A (en) * 1926-02-03 1932-04-26 Wallerstein Co Inc Invertase preparation and method of making the same
US3362405A (en) * 1964-04-06 1968-01-09 Hamilton O. Hazel Method and apparatus for admixing gas with solid particles
US3555717A (en) * 1968-10-24 1971-01-19 Victor Comptometer Corp Artificial fishing lure
US3557717A (en) * 1968-05-17 1971-01-26 Gen Mills Inc Process for making candy floss
US3632357A (en) * 1969-07-29 1972-01-04 Standard Brands Inc Method of producing hard candy
US3655442A (en) * 1969-08-27 1972-04-11 California & Hawaiian Sugar Method of making sugar and sugar products
US3937668A (en) * 1970-07-15 1976-02-10 Ilse Zolle Method for incorporating substances into protein microspheres
US3948263A (en) * 1974-08-14 1976-04-06 Minnesota Mining And Manufacturing Company Ballistic animal implant
US3956330A (en) * 1973-06-27 1976-05-11 American Cyanamid Company N,N-diethyl-4-methyl-1-pi-perazinecarboxamide pamoate
US4192309A (en) * 1978-09-05 1980-03-11 Syntex Puerto Rico, Inc. Inhalation device with capsule opener
US4244949A (en) * 1978-04-06 1981-01-13 The Population Council, Inc. Manufacture of long term contraceptive implant
US4253468A (en) * 1978-08-14 1981-03-03 Steven Lehmbeck Nebulizer attachment
US4327077A (en) * 1981-05-29 1982-04-27 Life Savers, Inc. Compressed chewable antacid tablet and method for forming same
US4327076A (en) * 1980-11-17 1982-04-27 Life Savers, Inc. Compressed chewable antacid tablet and method for forming same
US4326524A (en) * 1980-09-30 1982-04-27 Minnesota Mining And Manufacturing Company Solid dose ballistic projectile
US4371557A (en) * 1981-01-21 1983-02-01 General Foods Corporation Maintenance of protein quality in foods containing reducing sugars
US4503035A (en) * 1978-11-24 1985-03-05 Hoffmann-La Roche Inc. Protein purification process and product
US4588744A (en) * 1978-09-19 1986-05-13 Mchugh John E Method of forming an aqueous solution of 3-3-Bis(p-hydroxyphenyl)-phthalide
US4590206A (en) * 1981-07-24 1986-05-20 Fisons Plc Inhalation pharmaceuticals
US4591522A (en) * 1985-01-04 1986-05-27 W. R. Grace & Co. Liquid photopolymers curable to fire-retardant, hydrolysis resistant compositions
US4659696A (en) * 1982-04-30 1987-04-21 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its nasal or vaginal use
US4727064A (en) * 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4739754A (en) * 1986-05-06 1988-04-26 Shaner William T Suction resistant inhalator
US4812444A (en) * 1985-12-26 1989-03-14 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Dehydration of hydrous matter using anhydrous glycosylfructose
US4811731A (en) * 1985-07-30 1989-03-14 Glaxo Group Limited Devices for administering medicaments to patients
US4814436A (en) * 1985-12-16 1989-03-21 Ss Pharmaceutical Co., Ltd. Derivative of α, α-trehalose and a process for preparing the same
US4819629A (en) * 1986-10-28 1989-04-11 Siemens Aktiengesellschaft Method and apparatus for delivering aerosol to the airways and/or lungs of a patient
US4824938A (en) * 1984-06-06 1989-04-25 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Water-soluble dry solid containing proteinaceous bioactive substance
US4830858A (en) * 1985-02-11 1989-05-16 E. R. Squibb & Sons, Inc. Spray-drying method for preparing liposomes and products produced thereby
US4891319A (en) * 1985-07-09 1990-01-02 Quadrant Bioresources Limited Protection of proteins and the like
US4895719A (en) * 1985-05-22 1990-01-23 Liposome Technology, Inc. Method and apparatus for administering dehydrated liposomes by inhalation
US4906463A (en) * 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
US4907583A (en) * 1986-03-07 1990-03-13 Aktiebolaget Draco Device in powder inhalators
US4908214A (en) * 1987-07-23 1990-03-13 Synthelabo Pharmaceutical tablet for the treatment of uraemia
US4984158A (en) * 1988-10-14 1991-01-08 Hillsman Dean Metered dose inhaler biofeedback training and evaluation system
US4988683A (en) * 1987-03-04 1991-01-29 Jerome Corbiere New pharmaceutical compositions for the buccal tract and process for their preparation
US5006343A (en) * 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
US5011678A (en) * 1989-02-01 1991-04-30 California Biotechnology Inc. Composition and method for administration of pharmaceutically active substances
US5013557A (en) * 1989-10-03 1991-05-07 Warner-Lambert Company Taste masking compositions comprising spray dried microcapsules containing sucralfate and methods for preparing same
US5017372A (en) * 1986-04-14 1991-05-21 Medicis Corporation Method of producing antibody-fortified dry whey
US5089181A (en) * 1987-02-24 1992-02-18 Vestar, Inc. Method of dehydrating vesicle preparations for long term storage
US5098893A (en) * 1989-02-16 1992-03-24 Pafra Limited Storage of materials
US5112596A (en) * 1990-04-23 1992-05-12 Alkermes, Inc. Method for increasing blood-brain barrier permeability by administering a bradykinin agonist of blood-brain barrier permeability
US5112598A (en) * 1988-05-04 1992-05-12 Hermes Fabrik Pharmazeutischer Preparate Franz Gradinger Gmbh & Co. Kg Vitamin a aerosol-inhalate preparations
US5113855A (en) * 1990-02-14 1992-05-19 Newhouse Michael T Powder inhaler
US5182097A (en) * 1991-02-14 1993-01-26 Virginia Commonwealth University Formulations for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content
US5200399A (en) * 1990-09-14 1993-04-06 Boyce Thompson Institute For Plant Research, Inc. Method of protecting biological materials from destructive reactions in the dry state
US5202333A (en) * 1989-11-28 1993-04-13 Syntex (U.S.A.) Inc. Tricyclic 5-HT3 receptor antagonists
US5204108A (en) * 1987-10-10 1993-04-20 Danbiosyst Uk Ltd. Transmucosal formulations of low molecular weight peptide drugs
US5284656A (en) * 1991-03-15 1994-02-08 Amgen Inc. Pulmonary administration of granulocyte colony stimulating factor
US5306506A (en) * 1990-07-11 1994-04-26 Eurand International S.P.A. Pharmaceutical composition for rapid suspension in water
US5309900A (en) * 1991-03-21 1994-05-10 Paul Ritzau Pari-Werk Gmbh Atomizer particularly for use in devices for inhalation therapy
US5312335A (en) * 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5312909A (en) * 1990-03-28 1994-05-17 Gist Brocades, N.V. Recombinant DNA encoding neutral trehalase
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US5384133A (en) * 1986-08-11 1995-01-24 Innovata Biomed Limited Pharmaceutical formulations comprising microcapsules
US5387431A (en) * 1991-10-25 1995-02-07 Fuisz Technologies Ltd. Saccharide-based matrix
US5403861A (en) * 1991-02-08 1995-04-04 Cambridge Neuroscience, Inc. Substituted guanidines and derivatives thereof as modulators of neurotransmitter release and novel methodology for identifying neurotransmitter release blockers
US5404871A (en) * 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
US5482927A (en) * 1991-02-20 1996-01-09 Massachusetts Institute Of Technology Controlled released microparticulate delivery system for proteins
US5512547A (en) * 1994-10-13 1996-04-30 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
US5518709A (en) * 1991-04-10 1996-05-21 Andaris Limited Preparation of diagnostic agents
US5591453A (en) * 1994-07-27 1997-01-07 The Trustees Of The University Of Pennsylvania Incorporation of biologically active molecules into bioactive glasses
US5607915A (en) * 1992-09-29 1997-03-04 Inhale Therapeutic Systems Pulmonary delivery of active fragments of parathyroid hormone
US5611344A (en) * 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
US5618786A (en) * 1987-04-30 1997-04-08 Cooper Laboratories, Inc. Aerosolization of protein therapeutic agent
US5621094A (en) * 1990-05-14 1997-04-15 Quadrant Holdings Cambridge Limited Method of preserving agarose gel structure during dehydration by adding a non-reducing glycoside of a straight-chain sugar alcohol
US5631225A (en) * 1994-10-13 1997-05-20 Novo Nordisk A/S Pharmaceutical formulation
US5705482A (en) * 1995-01-13 1998-01-06 Novo Nordisk A/S Pharmaceutical formulation
US5707644A (en) * 1989-11-04 1998-01-13 Danbiosyst Uk Limited Small particle compositions for intranasal drug delivery
US5728574A (en) * 1993-07-19 1998-03-17 Zeneca Limited Viability of bacterial dried cells
US5733555A (en) * 1994-05-10 1998-03-31 American Home Products Corporation Modified live BRSV vaccine
US5891873A (en) * 1994-04-13 1999-04-06 Quadrant Holdings Cambridge Limited Use of maillard reaction inhibitors for the treatment of amyloidosis-based disease
US6013638A (en) * 1991-10-02 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Adenovirus comprising deletions on the E1A, E1B and E3 regions for transfer of genes to the lung
US6019968A (en) * 1995-04-14 2000-02-01 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6060069A (en) * 1991-05-20 2000-05-09 Dura Pharmaceuticals, Inc. Pulmonary delivery of pharmaceuticals
US6187344B1 (en) * 1995-04-14 2001-02-13 Inhale Therapeutic Systems Powdered pharmaceutical formulations having improved dispersibility
US6190859B1 (en) * 1995-04-17 2001-02-20 The United States Of America As Represented By The Secretary Of The Army Method and kit for detection of dengue virus
US6231851B1 (en) * 1994-05-18 2001-05-15 Inhale Therapeutic Systems Methods and compositions for the dry powder formulation of interferons
US6365190B1 (en) * 1996-12-31 2002-04-02 Inhale Therapeutic Systems, Inc. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US6372258B1 (en) * 1992-07-08 2002-04-16 Inhale Therapeutic Systems Methods of spray-drying a drug and a hydrophobic amino acid
US6503411B1 (en) * 1995-04-28 2003-01-07 Inhale Therapeutic Systems, Inc. Stable compositions
US6509006B1 (en) * 1992-07-08 2003-01-21 Inhale Therapeutic Systems, Inc. Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
US6514496B1 (en) * 1995-04-14 2003-02-04 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
US6518239B1 (en) * 1999-10-29 2003-02-11 Inhale Therapeutic Systems, Inc. Dry powder compositions having improved dispersivity
US20030035778A1 (en) * 1997-07-14 2003-02-20 Robert Platz Methods and compositions for the dry powder formulation of interferon
US20030086877A1 (en) * 1992-07-08 2003-05-08 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030092666A1 (en) * 1993-04-07 2003-05-15 Mohammed Eljamal Compositions and methods for nucleic acid delivery to the lung
US6565871B2 (en) * 1994-12-02 2003-05-20 Elan Drug Delivery Ltd. Solid dose delivery vehicle and methods of making same
US6569406B2 (en) * 2000-08-07 2003-05-27 Nektar Therapeutics Inhaleable spray dried 4-helix bundle protein powders having minimized aggregation
US6681767B1 (en) * 1991-07-02 2004-01-27 Nektar Therapeutics Method and device for delivering aerosolized medicaments
US6685967B1 (en) * 1994-03-07 2004-02-03 Nektar Therapeutics Methods and compositions for pulmonary delivery of insulin

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163313A (en) * 1983-03-09 1984-09-14 Teijin Ltd Peptide hormone composition for nasal administration
US4847079A (en) * 1985-07-29 1989-07-11 Schering Corporation Biologically stable interferon compositions comprising thimerosal
US5004605A (en) 1987-12-10 1991-04-02 Cetus Corporation Low pH pharmaceutical compositions of recombinant β-interferon
US4906476A (en) * 1988-12-14 1990-03-06 Liposome Technology, Inc. Novel liposome composition for sustained release of steroidal drugs in lungs
JPH05963A (en) * 1990-04-13 1993-01-08 Toray Ind Inc Polypeptide composition
WO1991016882A1 (en) 1990-05-08 1991-11-14 Liposome Technology, Inc. Direct spray-dried drug/lipid powder composition
DE69230613T2 (en) * 1991-07-02 2000-12-28 Inhale Inc METHOD AND DEVICE FOR DISPENSING MEDICINES IN AEROSOL FORM
ATE146359T1 (en) 1992-01-21 1997-01-15 Stanford Res Inst Int IMPROVED METHOD FOR PRODUCING MICRONIZED POLYPEPTIDE DRUGS
US5354934A (en) 1993-02-04 1994-10-11 Amgen Inc. Pulmonary administration of erythropoietin

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1855591A (en) * 1926-02-03 1932-04-26 Wallerstein Co Inc Invertase preparation and method of making the same
US3362405A (en) * 1964-04-06 1968-01-09 Hamilton O. Hazel Method and apparatus for admixing gas with solid particles
US3557717A (en) * 1968-05-17 1971-01-26 Gen Mills Inc Process for making candy floss
US3555717A (en) * 1968-10-24 1971-01-19 Victor Comptometer Corp Artificial fishing lure
US3632357A (en) * 1969-07-29 1972-01-04 Standard Brands Inc Method of producing hard candy
US3655442A (en) * 1969-08-27 1972-04-11 California & Hawaiian Sugar Method of making sugar and sugar products
US3937668A (en) * 1970-07-15 1976-02-10 Ilse Zolle Method for incorporating substances into protein microspheres
US3956330A (en) * 1973-06-27 1976-05-11 American Cyanamid Company N,N-diethyl-4-methyl-1-pi-perazinecarboxamide pamoate
US3948263A (en) * 1974-08-14 1976-04-06 Minnesota Mining And Manufacturing Company Ballistic animal implant
US4244949A (en) * 1978-04-06 1981-01-13 The Population Council, Inc. Manufacture of long term contraceptive implant
US4253468A (en) * 1978-08-14 1981-03-03 Steven Lehmbeck Nebulizer attachment
US4192309A (en) * 1978-09-05 1980-03-11 Syntex Puerto Rico, Inc. Inhalation device with capsule opener
US4588744A (en) * 1978-09-19 1986-05-13 Mchugh John E Method of forming an aqueous solution of 3-3-Bis(p-hydroxyphenyl)-phthalide
US4503035A (en) * 1978-11-24 1985-03-05 Hoffmann-La Roche Inc. Protein purification process and product
US4503035B1 (en) * 1978-11-24 1996-03-19 Hoffmann La Roche Protein purification process and product
US4326524A (en) * 1980-09-30 1982-04-27 Minnesota Mining And Manufacturing Company Solid dose ballistic projectile
US4327076A (en) * 1980-11-17 1982-04-27 Life Savers, Inc. Compressed chewable antacid tablet and method for forming same
US4371557A (en) * 1981-01-21 1983-02-01 General Foods Corporation Maintenance of protein quality in foods containing reducing sugars
US4327077A (en) * 1981-05-29 1982-04-27 Life Savers, Inc. Compressed chewable antacid tablet and method for forming same
US4590206A (en) * 1981-07-24 1986-05-20 Fisons Plc Inhalation pharmaceuticals
US4659696A (en) * 1982-04-30 1987-04-21 Takeda Chemical Industries, Ltd. Pharmaceutical composition and its nasal or vaginal use
US4727064A (en) * 1984-04-25 1988-02-23 The United States Of America As Represented By The Department Of Health And Human Services Pharmaceutical preparations containing cyclodextrin derivatives
US4824938A (en) * 1984-06-06 1989-04-25 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Water-soluble dry solid containing proteinaceous bioactive substance
US4591522A (en) * 1985-01-04 1986-05-27 W. R. Grace & Co. Liquid photopolymers curable to fire-retardant, hydrolysis resistant compositions
US4830858A (en) * 1985-02-11 1989-05-16 E. R. Squibb & Sons, Inc. Spray-drying method for preparing liposomes and products produced thereby
US4895719A (en) * 1985-05-22 1990-01-23 Liposome Technology, Inc. Method and apparatus for administering dehydrated liposomes by inhalation
US4891319A (en) * 1985-07-09 1990-01-02 Quadrant Bioresources Limited Protection of proteins and the like
US4811731A (en) * 1985-07-30 1989-03-14 Glaxo Group Limited Devices for administering medicaments to patients
US4814436A (en) * 1985-12-16 1989-03-21 Ss Pharmaceutical Co., Ltd. Derivative of α, α-trehalose and a process for preparing the same
US4812444A (en) * 1985-12-26 1989-03-14 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Dehydration of hydrous matter using anhydrous glycosylfructose
US4907583A (en) * 1986-03-07 1990-03-13 Aktiebolaget Draco Device in powder inhalators
US5017372A (en) * 1986-04-14 1991-05-21 Medicis Corporation Method of producing antibody-fortified dry whey
US4739754A (en) * 1986-05-06 1988-04-26 Shaner William T Suction resistant inhalator
US5384133A (en) * 1986-08-11 1995-01-24 Innovata Biomed Limited Pharmaceutical formulations comprising microcapsules
US4819629A (en) * 1986-10-28 1989-04-11 Siemens Aktiengesellschaft Method and apparatus for delivering aerosol to the airways and/or lungs of a patient
US4906463A (en) * 1986-12-22 1990-03-06 Cygnus Research Corporation Transdermal drug-delivery composition
US5089181A (en) * 1987-02-24 1992-02-18 Vestar, Inc. Method of dehydrating vesicle preparations for long term storage
US4988683A (en) * 1987-03-04 1991-01-29 Jerome Corbiere New pharmaceutical compositions for the buccal tract and process for their preparation
US5618786A (en) * 1987-04-30 1997-04-08 Cooper Laboratories, Inc. Aerosolization of protein therapeutic agent
US4908214A (en) * 1987-07-23 1990-03-13 Synthelabo Pharmaceutical tablet for the treatment of uraemia
US5204108A (en) * 1987-10-10 1993-04-20 Danbiosyst Uk Ltd. Transmucosal formulations of low molecular weight peptide drugs
US5112598A (en) * 1988-05-04 1992-05-12 Hermes Fabrik Pharmazeutischer Preparate Franz Gradinger Gmbh & Co. Kg Vitamin a aerosol-inhalate preparations
US4984158A (en) * 1988-10-14 1991-01-08 Hillsman Dean Metered dose inhaler biofeedback training and evaluation system
US5006343A (en) * 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
US5011678A (en) * 1989-02-01 1991-04-30 California Biotechnology Inc. Composition and method for administration of pharmaceutically active substances
US5098893A (en) * 1989-02-16 1992-03-24 Pafra Limited Storage of materials
US5013557A (en) * 1989-10-03 1991-05-07 Warner-Lambert Company Taste masking compositions comprising spray dried microcapsules containing sucralfate and methods for preparing same
US5707644A (en) * 1989-11-04 1998-01-13 Danbiosyst Uk Limited Small particle compositions for intranasal drug delivery
US5312335A (en) * 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5202333A (en) * 1989-11-28 1993-04-13 Syntex (U.S.A.) Inc. Tricyclic 5-HT3 receptor antagonists
US5113855A (en) * 1990-02-14 1992-05-19 Newhouse Michael T Powder inhaler
US5312909A (en) * 1990-03-28 1994-05-17 Gist Brocades, N.V. Recombinant DNA encoding neutral trehalase
US5112596A (en) * 1990-04-23 1992-05-12 Alkermes, Inc. Method for increasing blood-brain barrier permeability by administering a bradykinin agonist of blood-brain barrier permeability
US5621094A (en) * 1990-05-14 1997-04-15 Quadrant Holdings Cambridge Limited Method of preserving agarose gel structure during dehydration by adding a non-reducing glycoside of a straight-chain sugar alcohol
US5306506A (en) * 1990-07-11 1994-04-26 Eurand International S.P.A. Pharmaceutical composition for rapid suspension in water
US5290765A (en) * 1990-09-14 1994-03-01 Boyce Thompson Institute For Plant Research, Inc. Method of protecting biological materials from destructive reactions in the dry state
US5200399A (en) * 1990-09-14 1993-04-06 Boyce Thompson Institute For Plant Research, Inc. Method of protecting biological materials from destructive reactions in the dry state
US5403861A (en) * 1991-02-08 1995-04-04 Cambridge Neuroscience, Inc. Substituted guanidines and derivatives thereof as modulators of neurotransmitter release and novel methodology for identifying neurotransmitter release blockers
US5182097A (en) * 1991-02-14 1993-01-26 Virginia Commonwealth University Formulations for delivery of drugs by metered dose inhalers with reduced or no chlorofluorocarbon content
US5482927A (en) * 1991-02-20 1996-01-09 Massachusetts Institute Of Technology Controlled released microparticulate delivery system for proteins
US5404871A (en) * 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
US5284656A (en) * 1991-03-15 1994-02-08 Amgen Inc. Pulmonary administration of granulocyte colony stimulating factor
US5309900A (en) * 1991-03-21 1994-05-10 Paul Ritzau Pari-Werk Gmbh Atomizer particularly for use in devices for inhalation therapy
US5518709A (en) * 1991-04-10 1996-05-21 Andaris Limited Preparation of diagnostic agents
US6060069A (en) * 1991-05-20 2000-05-09 Dura Pharmaceuticals, Inc. Pulmonary delivery of pharmaceuticals
US6681767B1 (en) * 1991-07-02 2004-01-27 Nektar Therapeutics Method and device for delivering aerosolized medicaments
US6013638A (en) * 1991-10-02 2000-01-11 The United States Of America As Represented By The Department Of Health And Human Services Adenovirus comprising deletions on the E1A, E1B and E3 regions for transfer of genes to the lung
US5387431A (en) * 1991-10-25 1995-02-07 Fuisz Technologies Ltd. Saccharide-based matrix
US6673335B1 (en) * 1992-07-08 2004-01-06 Nektar Therapeutics Compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030086877A1 (en) * 1992-07-08 2003-05-08 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US6509006B1 (en) * 1992-07-08 2003-01-21 Inhale Therapeutic Systems, Inc. Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
US6372258B1 (en) * 1992-07-08 2002-04-16 Inhale Therapeutic Systems Methods of spray-drying a drug and a hydrophobic amino acid
US5607915A (en) * 1992-09-29 1997-03-04 Inhale Therapeutic Systems Pulmonary delivery of active fragments of parathyroid hormone
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US20030092666A1 (en) * 1993-04-07 2003-05-15 Mohammed Eljamal Compositions and methods for nucleic acid delivery to the lung
US5728574A (en) * 1993-07-19 1998-03-17 Zeneca Limited Viability of bacterial dried cells
US6051256A (en) * 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6685967B1 (en) * 1994-03-07 2004-02-03 Nektar Therapeutics Methods and compositions for pulmonary delivery of insulin
US5891873A (en) * 1994-04-13 1999-04-06 Quadrant Holdings Cambridge Limited Use of maillard reaction inhibitors for the treatment of amyloidosis-based disease
US6034080A (en) * 1994-04-13 2000-03-07 Quadrant Holdings Cambridge Limited Use of Maillard reaction inhibitors for the treatment of amyloidosis-based disease
US5733555A (en) * 1994-05-10 1998-03-31 American Home Products Corporation Modified live BRSV vaccine
US6231851B1 (en) * 1994-05-18 2001-05-15 Inhale Therapeutic Systems Methods and compositions for the dry powder formulation of interferons
US5591453A (en) * 1994-07-27 1997-01-07 The Trustees Of The University Of Pennsylvania Incorporation of biologically active molecules into bioactive glasses
US5631225A (en) * 1994-10-13 1997-05-20 Novo Nordisk A/S Pharmaceutical formulation
US5512547A (en) * 1994-10-13 1996-04-30 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
US6565871B2 (en) * 1994-12-02 2003-05-20 Elan Drug Delivery Ltd. Solid dose delivery vehicle and methods of making same
US20040052825A1 (en) * 1994-12-02 2004-03-18 Roser Bruce J. Solid dose delivery vehicle and methods of making same
US5705482A (en) * 1995-01-13 1998-01-06 Novo Nordisk A/S Pharmaceutical formulation
US6187344B1 (en) * 1995-04-14 2001-02-13 Inhale Therapeutic Systems Powdered pharmaceutical formulations having improved dispersibility
US20030068279A1 (en) * 1995-04-14 2003-04-10 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US6514496B1 (en) * 1995-04-14 2003-02-04 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
US6019968A (en) * 1995-04-14 2000-02-01 Inhale Therapeutic Systems, Inc. Dispersible antibody compositions and methods for their preparation and use
US6358530B1 (en) * 1995-04-14 2002-03-19 Inhale Therapeutic Systems, Inc. Powdered pharmaceutical formulations having improved dispersibility
US6190859B1 (en) * 1995-04-17 2001-02-20 The United States Of America As Represented By The Secretary Of The Army Method and kit for detection of dengue virus
US6503411B1 (en) * 1995-04-28 2003-01-07 Inhale Therapeutic Systems, Inc. Stable compositions
US5611344A (en) * 1996-03-05 1997-03-18 Acusphere, Inc. Microencapsulated fluorinated gases for use as imaging agents
US6365190B1 (en) * 1996-12-31 2002-04-02 Inhale Therapeutic Systems, Inc. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US20030035778A1 (en) * 1997-07-14 2003-02-20 Robert Platz Methods and compositions for the dry powder formulation of interferon
US6518239B1 (en) * 1999-10-29 2003-02-11 Inhale Therapeutic Systems, Inc. Dry powder compositions having improved dispersivity
US6569406B2 (en) * 2000-08-07 2003-05-27 Nektar Therapeutics Inhaleable spray dried 4-helix bundle protein powders having minimized aggregation

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086877A1 (en) * 1992-07-08 2003-05-08 Platz Robert M. Devices, compositions and methods for the pulmonary delivery of aerosolized medicaments
US20080075782A1 (en) * 1992-09-29 2008-03-27 Patton John S Pulmonary delivery of active fragments parathyroid hormone
US20030171282A1 (en) * 1992-09-29 2003-09-11 Patton John S. Pulmonary delivery of active fragments of parathyroid hormone
US20040096400A1 (en) * 1994-03-07 2004-05-20 Patton John S. Methods and compositions for the pulmonary delivery insulin
US20090203576A1 (en) * 1994-03-07 2009-08-13 Patton John S Methods and compositons for pulmonary delivery of insulin
US7780991B2 (en) 1994-12-02 2010-08-24 Quadrant Drug Delivery Limited Solid dose delivery vehicle and methods of making same
US7744925B2 (en) 1994-12-02 2010-06-29 Quadrant Drug Delivery Limited Solid dose delivery vehicle and methods of making same
US20050276759A1 (en) * 1994-12-02 2005-12-15 Roser Bruce J Solid dose delivery vehicle and methods of making same
US20050276846A1 (en) * 1994-12-02 2005-12-15 Roser Bruce J Solid dose delivery vehicle and methods of making same
US20050276845A1 (en) * 1994-12-02 2005-12-15 Roser Bruce J Solid dose delivery vehicle and methods of making same
US7785631B2 (en) 1994-12-02 2010-08-31 Quadrant Drug Delivery Limited Solid dose delivery vehicle and methods of making same
US20030113273A1 (en) * 1996-06-17 2003-06-19 Patton John S. Methods and compositions for pulmonary delivery of insulin
US9554993B2 (en) 1997-09-29 2017-01-31 Novartis Ag Pulmonary delivery particles comprising an active agent
US8246934B2 (en) 1997-09-29 2012-08-21 Novartis Ag Respiratory dispersion for metered dose inhalers comprising perforated microstructures
US20040170568A1 (en) * 1997-09-29 2004-09-02 Weers Jeffry G. Stabilized preparations for use in metered dose inhalers
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US8709484B2 (en) 2000-05-10 2014-04-29 Novartis Ag Phospholipid-based powders for drug delivery
US9439862B2 (en) 2000-05-10 2016-09-13 Novartis Ag Phospholipid-based powders for drug delivery
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside
US8715623B2 (en) 2001-12-19 2014-05-06 Novartis Ag Pulmonary delivery of aminoglycoside
WO2005087253A3 (en) * 2004-03-12 2005-11-24 Univ Southampton Interferon-beta for anti-virus therapy for respiratory diseases
US20090257980A1 (en) * 2004-03-12 2009-10-15 Donna Elizabeth Davies Anti-virus therapy for respiratory diseases
US8273342B2 (en) 2004-03-12 2012-09-25 University Of Southampton Anti-virus therapy for respiratory diseases
US9089535B2 (en) 2004-03-12 2015-07-28 Imperial Innovations Limited Anti-virus therapy for respiratory diseases
WO2005087253A2 (en) * 2004-03-12 2005-09-22 University Of Southampton Interferon-beta for anti-virus therapy for respiratory diseases
US7569216B2 (en) 2004-03-12 2009-08-04 University Of Southampton Anti-virus therapy for respiratory diseases
US20070134763A1 (en) * 2004-03-12 2007-06-14 University Of Southampton Highfield Anti-virus therapy for respiratory diseases
EP3011953A1 (en) 2008-10-29 2016-04-27 Ablynx N.V. Stabilised formulations of single domain antigen binding molecules
EP4104821A1 (en) 2008-10-29 2022-12-21 Ablynx N.V. Formulations of single domain antigen binding molecules
WO2014184352A1 (en) 2013-05-17 2014-11-20 Ablynx Nv Stable formulations of immunoglobulin single variable domains and uses thereof
EP3511018A1 (en) 2013-05-17 2019-07-17 Ablynx NV Stable formulations of immunoglobulin single variable domains and uses thereof
WO2017147248A1 (en) 2016-02-24 2017-08-31 Visterra, Inc. Formulations of antibody molecules to influenza virus
WO2022106976A1 (en) 2020-11-18 2022-05-27 Pfizer Inc. Stable pharmaceutical formulations of soluble fgfr3 decoys

Also Published As

Publication number Publication date
KR100384353B1 (en) 2003-10-04
CN1073119C (en) 2001-10-17
EP0759939A4 (en) 1998-05-27
EP0759939A1 (en) 1997-03-05
CN1151168A (en) 1997-06-04
US6231851B1 (en) 2001-05-15
US6123936A (en) 2000-09-26
AU2514295A (en) 1995-12-05
KR970703366A (en) 1997-07-03
NZ285664A (en) 1998-07-28
MX9605717A (en) 1998-05-31
DE69534318T2 (en) 2006-04-20
CA2190502A1 (en) 1995-11-23
ES2245780T3 (en) 2006-01-16
DE69534318D1 (en) 2005-08-25
EP0759939B1 (en) 2005-07-20
WO1995031479A1 (en) 1995-11-23
ATE299892T1 (en) 2005-08-15
AU696387B2 (en) 1998-09-10
US6479049B1 (en) 2002-11-12
JPH10500672A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
US6479049B1 (en) Methods and compositions for the dry powder formulation of interferons
EP0825885B1 (en) Pulmonary delivery of aerosolized medicaments
US6509006B1 (en) Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
US6673335B1 (en) Compositions and methods for the pulmonary delivery of aerosolized medicaments
US20030035778A1 (en) Methods and compositions for the dry powder formulation of interferon
NZ281112A (en) Powdered insulin delivered as an aerosol
JPH05963A (en) Polypeptide composition
AU740760B2 (en) Pulmonary delivery of aerosolized medicaments

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEKTAR THERAPEUTICS, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:INHALE THERAPEUTIC SYSTEMS, INC.;REEL/FRAME:013525/0753

Effective date: 20030113

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NOVARTIS PHARMA AG, SWITZERLAND

Free format text: ASSIGNMENT OF PATENT RIGHTS;ASSIGNOR:NEKTAR THERAPEUTICS;REEL/FRAME:022071/0001

Effective date: 20081231

Owner name: NOVARTIS PHARMA AG,SWITZERLAND

Free format text: ASSIGNMENT OF PATENT RIGHTS;ASSIGNOR:NEKTAR THERAPEUTICS;REEL/FRAME:022071/0001

Effective date: 20081231