US20030056446A1 - Transportable building with higher roof - Google Patents

Transportable building with higher roof Download PDF

Info

Publication number
US20030056446A1
US20030056446A1 US09/965,625 US96562501A US2003056446A1 US 20030056446 A1 US20030056446 A1 US 20030056446A1 US 96562501 A US96562501 A US 96562501A US 2003056446 A1 US2003056446 A1 US 2003056446A1
Authority
US
United States
Prior art keywords
roof
module
building
sub
transportable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/965,625
Inventor
Donald Napier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENTUCKY NAPIER HOMES Pty Ltd
Original Assignee
KENTUCKY NAPIER HOMES Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENTUCKY NAPIER HOMES Pty Ltd filed Critical KENTUCKY NAPIER HOMES Pty Ltd
Priority to US09/965,625 priority Critical patent/US20030056446A1/en
Assigned to KENTUCKY NAPIER HOMES PTY LTD reassignment KENTUCKY NAPIER HOMES PTY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAPIER, DONALD STEWART
Publication of US20030056446A1 publication Critical patent/US20030056446A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34838Elements not integrated in a skeleton the supporting structure consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/344Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts
    • E04B1/3442Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts folding out from a core cell
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/20Roofs consisting of self-supporting slabs, e.g. able to be loaded
    • E04B7/24Roofs consisting of self-supporting slabs, e.g. able to be loaded the slabs being collapsible or retractable, e.g. for transport

Definitions

  • This invention relates generally to transportable buildings, and in one aspect is especially applicable to the provision of transportable buildings with pitched or gabled roofs.
  • a house is provided in transportable half-modules with sloping roofs which are brought together on-site to form a house with a conventional pitched roof.
  • a transportable house is a very satisfactory means of providing a house in a more remote or difficult location where building expenses on site may be higher than elsewhere. This approach differs from those in which buildings are erected from components or opened eg folded out from wholly collapsed assemblies.
  • a principal constraint in the design of transportable houses is the strict dimensional limit set by road transport authorities.
  • One difficulty lies in providing a transportable module with a pitched roof within the dimensional limit without compromising the ceiling height of the module. Due to these height restrictions, transportable buildings have had to be designed with limited ceiling heights and/or low pitched roofs, often leaving little or no room for heating/cooling duct work within the roof space. Further, some public buildings such as schools have minimum specifications for the ceiling height of the buildings so that it is difficult to meet the external height restriction and the internal ceiling minimum within a practical configuration of transportable building module.
  • a further problem in providing larger public buildings such as school rooms in transportable form is the large size and mass of the beam and rafter structures required to span the wide roof space.
  • the invention accordingly provides a transportable building module including structure defining a floor sub-frame and at least one wall structure about a room space, the building module further including at least one roof sub-module, wherein said at least one roof sub-module is hingedly mounted to said wall structure for pivotal movement between an extended position and a retracted transport position, in which retracted transport position the height of the building module is less than when said roof sub-module is in said extended position.
  • the roof sub-module In its extended position, the roof sub-module is preferably disposed to define all or part of a pitched roof for the building.
  • the roof sub-module includes one or more gable end-wall assemblies that pivot down, outside a wall of the building module, with the roof sub-module as it is lowered, eg. until the roof sub-module rests on the wall.
  • the roof sub-module including the gable end-wall(s) acts as a single rigid beam structure.
  • the building module may include internal walls having fold-down upper segments to allow the roof sub-modules to move to the transport condition.
  • the invention further provides a transportable building including two or more of said building modules arranged to be linked side-by-side to form the building, each of the building modules being transported separately to a site at which the building is or to be erected.
  • the roof sub-module may define a cathedral ceiling. In another, it may include an enclosed roof cavity.
  • this roof cavity is adapted to contain or contains services, eg. wiring and plumbing.
  • the roof cavity is adapted to provide a ventilation path for the building.
  • There may be one or more ventilation fans to exhaust air to the building exterior from the roof cavity. The fans may be at one or both ends of the roof cavity.
  • the roof sub-module advantageously includes a series of rafters spaced to define a sloping roofline, and, if provided, the roof cavity.
  • the roof sub-module includes a plurality of rafters hingedly mounted to the wall structure by respective hinge pins.
  • each of the hinge pins passes through a rafter and a wall frame stud, pole or other upright.
  • the building module further includes a verandah or porch sub-roof segment hingedly mounted to the wall structure, or more preferably to the roof sub-module, for pivotal movement between a retracted position substantially adjacent the wall structure, and an extended position projecting laterally outwardly from the roof sub-module.
  • the roof sub-frame may partially counterbalance the roof sub-module about the latter's hinge axis.
  • the invention still further provides, in a second aspect, a method of erecting a building including at least partially constructing the building at a first site as an assembly of building modules according to the first aspect of the invention, separating the modules and transporting them separately to a second site, locating the modules and reforming said assembly at the second site, and pivoting the roof sub-modules of the building modules to their extended positions and fastening them at those positions.
  • the invention provides a transportable building, preferably single storey, including one or more main modules defining a floor sub-frame, one or more wall structures and a roof sub-frame about a first space, and one or more roof modules each separable from but cooperable with said one or more main modules for attachment to said roof sub-frame of said one or more main modules to define an upper roof space above said first space, wherein said roof sub-frame defines a support to receive the or each said roof module by craning the roof module(s) into position on said support.
  • the or each said roof module is independent of the main module in its transport condition.
  • the roof module is disposed to define a pitched roof for the building.
  • each such main module having been transported separately to the erection site.
  • the roof module advantageously rests substantially symmetrically on the respective main modules to provide a roof ridge for the building.
  • said roof space is adapted to contain or contains services, eg. wiring and plumbing.
  • said roof cavity is adapted to provide a ventilation path for the building.
  • the fans may be at one or both ends of the roof cavity.
  • the roof module advantageously includes a series of rafters spaced to define a sloping roofline and the roof cavity.
  • the main module may include a roof sub-frame that is partially gabled or pitched in its transport condition so as to partly define a sloping roofline.
  • a series of rafters may extend upwardly and inwardly of the wall sub-frames so as to form a truncated gable.
  • the roof module is then attached to the truncated gable so as to form a substantially contiguous roofline.
  • This manner of construction permits a higher pitched roof and variously profiled rooflines.
  • a roof ridge defined by the roof module extends transverse to the sloping rooflines of the main module(s).
  • the roof module may be constructed as a load-bearing span beam assembly.
  • the invention still further provides in a fourth aspect, a method of erecting a building according to the third aspect of the invention including at least partially constructing the building at a first site, separating the modules, and transporting the main modules and the roof module to a second site, locating the main module at the second site, and craning the roof module onto the main module to form a building having a pitched roof.
  • the invention provides a building having a roof that defines a longitudinally extending ridge, and a roof module constructed as a load-bearing beam assembly arranged to extend across an interior space of the building in a direction transversely of said longitudinally extending ridge.
  • frame and “sub-frame” herein are broadly employed and may refer, eg, to a frame of timber or metal beams and/or other components, or to a panel structure, or to a slab frame eg a tilt slab, or to any structure serving as a supporting frame or core.
  • FIG. 1 is a diagrammatic side elevation of a four-module transportable building according to a first embodiment of the first aspect of the invention, in which the left hand module, as viewed, has its roof sub-module extended and the right hand module has its roof sub-module in its retracted transport condition;
  • FIG. 2 is a view of two building modules separated and placed on respective truck trays for transport, one module having its roof sub-module already in its retracted transport condition;
  • FIG. 3 is an internal fragmentary view illustrating the use of jacks to lower the roof sub-module for transport
  • FIG. 4 is a diagrammatic transverse cross-section showing the pair of building modules of FIG. 2 erected as an assembled building
  • FIG. 5 is an enlarged fragmentary three-dimensional schematic view of a preferred arrangement for hingedly mounting the roof sub-modules
  • FIG. 6 depicts the complementary construction of internal walls for embodiments of the first aspect of the invention
  • FIG. 7 is a diagrammatic side elevation of another embodiment highlighting the single beam structure of the roof sub-module in the first aspect of the invention.
  • FIGS. 8 and 9 are a simple diagrammatic cross-sectional view through a segment of a transportable house with a removable roof module provided according to an embodiment of the third aspect of the invention, showing the configuration respectively during construction and after erection on site;
  • FIG. 10 is a simple diagrammatic three-dimensional view of an embodiment of a building embodying the invention.
  • FIG. 11 depicts an alternative arrangement of the third aspect of the invention in which the roof module is a span beam assembly
  • FIG. 12 illustrates, in a front and side elevation, a variation of the arrangement of FIG. 11 in which the ridge of the roof module extends transversely of the roofline.
  • FIG. 1 illustrates, in cross-section, a segment of a partially erected single storey transportable building, for example a schoolroom, according to one embodiment of the first aspect of the invention, formed by a pair of four modules 10 , 12 and a pair of similar rear modules (not visible).
  • Each of the four main modules 10 , 12 includes a floor sub-frame 13 fitted with panel flooring and a wall structure 16 about a room space 15 (FIG. 4), and a hingedly mounted roof sub-module 20 .
  • Wall structure 16 includes appropriate external cladding such as weatherboards.
  • FIG. 2 shows a two-module building after the modules 10 , 12 have been separated and placed on truck trays 40 ready for transport.
  • each roof sub-module 20 is a self-contained unit comprised of several spaced rafters 24 , a ridge beam 55 , in this case in the form of a truss, linking the upper-ends of the rafters, an internal ceiling lining 25 , and external cladding 26 such as corrugated steel sheets.
  • the ceiling lining 25 is fixed atop the rafters 24
  • the external roofing is secured to longitudinally extending hidden battens fixed to the rafters but disposed above lining 25 .
  • Each of the roof sub-modules 20 is hingedly mounted to the wall structure 16 of its module utilising respective hinge pins 35 (FIGS. 4 and 5) to directly pivot respective rafters of the roof sub-module to poles, wall studs, or other uprights 30 of the wall structure.
  • This is particularly illustrated in FIG. 5, where the uprights 30 , which are depicted as well-spaced rectangular-section (eg. box tubular section) steel poles, project above the wall top plate 32 to receive hinge pins 35 , while the rafters in turn overhang the top plate.
  • a suitable hinge pin 35 is a steel bolt of appropriate length and strength.
  • FIG. 3 depicts how strategically disposed jacks such as 100 can be utilised to lower the roof sub-module under full control. Alternatively, a crane might be used where appropriate.
  • the roof sub-module 20 can be pivoted upwardly, e.g. by extending jacks 100 , again to its fully extended position (the right module in FIG. 2) to form the pitched roof.
  • the two complementary roof sub-modules with opposite slopes can be fastened together in their raised position, either by bolting together their respective ridge beams 55 , linking the upper ends of the rafters of each module, to form a solid ridge beam 45 , or by means of transverse collar ties 47 (FIG. 4).
  • Appropriate ridge capping 50 can be secured in place to complete sealing of the roof.
  • the roof sub-module includes a gable end-wall 62 (FIG. 5) comprising sheeting or planks 64 bracing a triangular ladder beam frame 63 .
  • This frame comprises an end rafter 63 a , a bottom plate 50 and vertical ties 52 .
  • This gable end-wall, attached to the roof sub-module pivots or drops down outside the end wall 17 of the building module as the roof sub-module is lowered, until ridge beam 55 rests on the end wall of the house.
  • the end-wall thereby supports the roof sub-module, and must therefore be adequately braced and of adequate strength to support the roof sub-module.
  • the gable end-wall also adds weather protection during transport.
  • Internal walls 110 can be provided by the complementary construction illustrated in FIG. 6: to accommodate the lowering of roof module 20 , a drop-down upper section 112 of wall 110 is hingedly mounted at 114 so it can be folded down out of the way. Once in final position, the hinges 114 can be removed, and a picture rail positioned to overlay the join.
  • the roof sub-module acts as a single rigid beam structure bridging walls (external or internal) on which this rigid beam rests.
  • This single rigid beam structure is highlighted diagrammatically in FIG. 7.
  • the provision of the gable end-wall assembly 62 on the roof sub-module avoids any need to build the end-wall on site after the roof sub-module has been raised into position.
  • Module 10 ′ includes a hinge-up verandah or porch roof 70 (FIGS. 4 and 5) of the kind disclosed in Australian patent 539799.
  • This verandah or porch roof would typically have multiple spaced sub-rafters 72 directly hinged by hinge pins, eg. bolts, 74 to the outer overhanging ends of matching roof rafters 24 .
  • This verandah or porch roof is pivotable between a retracted position against the outside face of the side wall (FIG. 2, at left) and a raised position (FIGS. 4 and 5) which can be maintained with respective verandah posts 76 installed on site.
  • a benefit of this verandah or porch roof is that it effectively provides a weight counterbalance for the roof sub-module 20 about the pivot axis of hinge pins 35 : this may permit roof sub-module 20 to be raised and lowered by two or three workers without the need of a crane or jacks.
  • An advantage of the direct pivoting attachment of the main roof rafters to the side wall is that this arrangement strengthens the roof sub-module when lifting and creates a truss effect. Without this, it would be necessary to make the swing-up roof sub-module a lot heavier, increasing costs and creating a difficulty in lifting without a crane.
  • roof sub-module 20 may alternatively define a roof cavity, which may be used to contain services for the building such as wiring and plumbing. Ventilation fans may also be provided within the roof cavity to exhaust hot air from the roof cavity to the building exterior. In such an embodiment, ventilation openings (not shown) are provided in the ceiling to allow rising hot air from the building interior to enter the roof cavity from where it is exhausted to the exterior of the building.
  • modules 10 , 12 ; 10 ′, 12 ′ with roof sub-module 20 lowered does not exceed the dimensional limits prescribed for buildings during transport, yet when constructed the building is capable of meeting the minimum ceiling height requirement of public buildings and provides an aesthetically pleasing building with a substantial pitch.
  • the increased height of the end wail of the building provides additional advantages such as providing extra wall space for blackboards in schoolrooms, for example.
  • multiple cooperable sets of modules 10 , 12 ; 10 ′, 12 ′ with roof sub-modules 20 may be provided and joined longitudinally to extend the length of the building. Even for a given length of modules more than one roof sub-module per building module may be necessary or preferred.
  • FIG. 8 illustrates, in cross-section, a segment of a single storey transportable building, for example a schoolroom, according to an embodiment of the third aspect of the invention, formed by a pair of main modules 210 , 212 and roof module 220 .
  • Each of the main modules 210 , 212 includes a floor sub-frame 213 fitted with panel flooring, and a wall structure 216 .
  • Wall structure 216 includes appropriate external cladding such as weatherboards.
  • Each of the main modules 210 , 212 further includes a roof sub-frame 214 , 215 comprising longitudinally extending supporting beams 218 , 219 and a series of spaced inclined rafters 238 , 239 .
  • Each of the roof rafters 238 , 239 is supported by wall structure 216 and beam 218 , 219 , and forms a truncated gable for the building when main modules 210 , 212 are linked side-by-side.
  • Rafters 238 , 239 support roofing panels 295 .
  • roof sub-frames 214 , 215 serve to receive one or more roof modules 220 .
  • the normal practice is to construct most of the house including a roof and internal walls and fittings, at a base yard, and to then transport the house, in separate modules 210 , 212 and 220 , for re-erection on a pre-prepared foundation at a client's allotment.
  • Roof module 220 includes a frame unit 222 having a series of transverse ceiling joists 224 and upwardly extending sloping rafters 226 that meet to form ridge 228 . Central collar ties 229 are also provided. Longitudinal beams (not shown) may be provided as required. In this embodiment, roof module 220 is located on, supported by and fastened to longitudinally extending load supporting beams 218 , 219 .
  • Supporting beams 218 , 219 are preferably connected to each end wall of the building.
  • the supporting beams 218 , 219 may be further associated with underlying additional pillars or internal walls (not shown).
  • Roof module 220 may take any suitable shape but is preferably generally symmetrical and, as depicted in FIG. 9, forms a continuous roof-line when attached to the roof sub-frames 214 , 215 .
  • the exterior of roof module 220 is comprised of further roof cladding 297 suitable for the purpose, for example panels of glass or a galvanised or colour bond steel.
  • Roof module 220 further includes ridge cap 221 .
  • the lower ends 223 , 225 of the roof cladding of roof module 220 preferably overlap the upper ends of each of the outer roof panels 295 , when the building is constructed. This overlap preferably substantially seals the connection between roof module 220 and roof sub-frames 214 , 215 and provides protection against the weather.
  • the connection between roof module 220 and roof rafters 244 , 246 may also be sealed with a suitable sealant.
  • Roof module 220 is generally used to contain services for the building such as wiring and plumbing. Ventilation fans 270 may also be provided within the roof cavity to exhaust hot air from the roof cavity to the building exterior.
  • Ventilation fans 270 may also be provided within the roof cavity to exhaust hot air from the roof cavity to the building exterior.
  • ventilation openings are provided in the ceiling held by joists 224 to allow rising hot air from the main modules 210 , 212 , to enter the roof cavity where it is exhausted to the exterior of the building. These ventilation openings may be spaced such that during transport of the roof module 220 by truck, the wheels of the truck can pass partially through the openings, further reducing the height of the module 220 during transport.
  • the house is first constructed at a base site to ensure each of the modules is correctly sized.
  • the house is then dismantled and transported by truck in three modules 210 , 212 , 220 and re-erected at the client's allotment on a suitable foundation, for example an array of stumps 299 .
  • Main modules 210 , 212 are first located on stumps 299 and secured together before roof module 220 is lifted by crane 294 to be received by roof sub-frames 214 , 215 and fastened thereto.
  • main modules 210 , 212 and the width of main modules 210 , 212 and roof module 220 is such that the modules do not exceed the dimensional limits prescribed for buildings during transport and when constructed the building meets the minimum ceiling height requirement of public buildings and provides an aesthetically pleasing building with a substantial pitch.
  • the increased height of the end wall of the building provides additional advantages such as providing extra wall space for blackboards in schoolrooms, for example.
  • several cooperable sets of main modules and roof modules may be provided and joined longitudinally to extend the length of the building. Even for a given length of modules 210 , 212 , more than one roof module may be necessary or preferred.
  • FIG. 11 depicts an alternative arrangement of the third aspect of the invention in which the roof module is a span beam assembly 220 ′.
  • An alternative is shown in FIG. 12, in which the ridge of the roof module extends transversely of the roofline.
  • the side frames 250 of beam 220 ′ are braced by longitudinally extending panels 255 of timber or metal ply.
  • Beam 220 ′ can vary in depth and is capable of spanning, e.g., 14 metres. It is thereby possible, using very lightweight material, to build an open hall, say 14 m ⁇ 10 m.
  • transversely aligned beam roof module 220 ′′ has translucent end panels or windows 260 to enhance the light level in the hall interior. The cavity created is also useful for enclosed duct work or other services.
  • FIG. 12 The construction of FIG. 12 is generally useful for larger open buildings, whether transportable or conventionally built in situ. With the large span required, an upper level module conventionally requires either a very large truss or a portal frame, both expensive options. Transversely aligned roof module 220 ′′ provides a novel alternative, and at the same time provides a bracing beam assembly for a building having a large open space within.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

A transportable building module including structure defining a floor sub-frame (13) and at least one wall structure (16) about a room space. The building module further includes at least one roof sub-module (20). This roof sub-module is hingedly mounted to the wall structure for pivotal movement between an extended position and a retracted transport position, in which retracted transport position the height of the building module is less than when the roof sub-module is in its extended position. In separate aspects, there are disclosed a transportable building with a separate roof module, and a building with a transversely arranged roof module beam.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to transportable buildings, and in one aspect is especially applicable to the provision of transportable buildings with pitched or gabled roofs. [0001]
  • BACKGROUND OF THE INVENTION
  • It is known to pre-construct houses or other buildings at a base yard and then to transport the buildings by road, either whole or in two or more modules, to a client's allotment. According to one approach, a house is provided in transportable half-modules with sloping roofs which are brought together on-site to form a house with a conventional pitched roof. A transportable house is a very satisfactory means of providing a house in a more remote or difficult location where building expenses on site may be higher than elsewhere. This approach differs from those in which buildings are erected from components or opened eg folded out from wholly collapsed assemblies. [0002]
  • A principal constraint in the design of transportable houses is the strict dimensional limit set by road transport authorities. One difficulty lies in providing a transportable module with a pitched roof within the dimensional limit without compromising the ceiling height of the module. Due to these height restrictions, transportable buildings have had to be designed with limited ceiling heights and/or low pitched roofs, often leaving little or no room for heating/cooling duct work within the roof space. Further, some public buildings such as schools have minimum specifications for the ceiling height of the buildings so that it is difficult to meet the external height restriction and the internal ceiling minimum within a practical configuration of transportable building module. [0003]
  • A further problem in providing larger public buildings such as school rooms in transportable form is the large size and mass of the beam and rafter structures required to span the wide roof space. [0004]
  • The structure disclosed in UK patent publication 2257170 allows for a higher pitched roof by having the upper portion of the roof trusses in a pivotably collapsible form. Australian patent application 10702/92 discloses a transportable house with separable lower and upper storey modules. [0005]
  • It is an object of the invention, at least in one or more embodiments, to provide for a transportable building in which a pitched roof of substantial inclination, or similar, can be provided without offending against a prescribed dimensional limit for road transport. [0006]
  • It is a further object of the invention, at least in one or more embodiments, to ameliorate the requirement to provide large and heavy span sections in transportable public buildings and the like. [0007]
  • SUMMARY OF THE INVENTION
  • In a first aspect, the invention accordingly provides a transportable building module including structure defining a floor sub-frame and at least one wall structure about a room space, the building module further including at least one roof sub-module, wherein said at least one roof sub-module is hingedly mounted to said wall structure for pivotal movement between an extended position and a retracted transport position, in which retracted transport position the height of the building module is less than when said roof sub-module is in said extended position. [0008]
  • In its extended position, the roof sub-module is preferably disposed to define all or part of a pitched roof for the building. Advantageously, the roof sub-module includes one or more gable end-wall assemblies that pivot down, outside a wall of the building module, with the roof sub-module as it is lowered, eg. until the roof sub-module rests on the wall. Preferably, the roof sub-module including the gable end-wall(s) acts as a single rigid beam structure. [0009]
  • The building module may include internal walls having fold-down upper segments to allow the roof sub-modules to move to the transport condition. [0010]
  • Preferably, the invention further provides a transportable building including two or more of said building modules arranged to be linked side-by-side to form the building, each of the building modules being transported separately to a site at which the building is or to be erected. [0011]
  • In one embodiment, the roof sub-module may define a cathedral ceiling. In another, it may include an enclosed roof cavity. Advantageously, this roof cavity is adapted to contain or contains services, eg. wiring and plumbing. Advantageously, the roof cavity is adapted to provide a ventilation path for the building. There may be one or more ventilation fans to exhaust air to the building exterior from the roof cavity. The fans may be at one or both ends of the roof cavity. [0012]
  • The roof sub-module advantageously includes a series of rafters spaced to define a sloping roofline, and, if provided, the roof cavity. [0013]
  • Preferably the roof sub-module includes a plurality of rafters hingedly mounted to the wall structure by respective hinge pins. Advantageously each of the hinge pins passes through a rafter and a wall frame stud, pole or other upright. [0014]
  • Advantageously, the building module further includes a verandah or porch sub-roof segment hingedly mounted to the wall structure, or more preferably to the roof sub-module, for pivotal movement between a retracted position substantially adjacent the wall structure, and an extended position projecting laterally outwardly from the roof sub-module. In the latter position, the roof sub-frame may partially counterbalance the roof sub-module about the latter's hinge axis. [0015]
  • The invention still further provides, in a second aspect, a method of erecting a building including at least partially constructing the building at a first site as an assembly of building modules according to the first aspect of the invention, separating the modules and transporting them separately to a second site, locating the modules and reforming said assembly at the second site, and pivoting the roof sub-modules of the building modules to their extended positions and fastening them at those positions. [0016]
  • In a third aspect, the invention provides a transportable building, preferably single storey, including one or more main modules defining a floor sub-frame, one or more wall structures and a roof sub-frame about a first space, and one or more roof modules each separable from but cooperable with said one or more main modules for attachment to said roof sub-frame of said one or more main modules to define an upper roof space above said first space, wherein said roof sub-frame defines a support to receive the or each said roof module by craning the roof module(s) into position on said support. [0017]
  • Preferably, the or each said roof module is independent of the main module in its transport condition. In use, the roof module is disposed to define a pitched roof for the building. [0018]
  • Preferably, there are two or more of said main modules arranged to be linked side-by-side to form the building, each such main module having been transported separately to the erection site. The roof module advantageously rests substantially symmetrically on the respective main modules to provide a roof ridge for the building. [0019]
  • Advantageously, said roof space is adapted to contain or contains services, eg. wiring and plumbing. [0020]
  • Advantageously, said roof cavity is adapted to provide a ventilation path for the building. There may be one or more ventilation fans to exhaust air to the building exterior from the roof cavity. The fans may be at one or both ends of the roof cavity. [0021]
  • The roof module advantageously includes a series of rafters spaced to define a sloping roofline and the roof cavity. [0022]
  • The main module may include a roof sub-frame that is partially gabled or pitched in its transport condition so as to partly define a sloping roofline. In this manner, a series of rafters may extend upwardly and inwardly of the wall sub-frames so as to form a truncated gable. The roof module is then attached to the truncated gable so as to form a substantially contiguous roofline. This manner of construction permits a higher pitched roof and variously profiled rooflines. In an alternative embodiment, a roof ridge defined by the roof module extends transverse to the sloping rooflines of the main module(s). [0023]
  • The roof module may be constructed as a load-bearing span beam assembly. [0024]
  • The invention still further provides in a fourth aspect, a method of erecting a building according to the third aspect of the invention including at least partially constructing the building at a first site, separating the modules, and transporting the main modules and the roof module to a second site, locating the main module at the second site, and craning the roof module onto the main module to form a building having a pitched roof. [0025]
  • In a further aspect, the invention provides a building having a roof that defines a longitudinally extending ridge, and a roof module constructed as a load-bearing beam assembly arranged to extend across an interior space of the building in a direction transversely of said longitudinally extending ridge. [0026]
  • The terms “frame” and “sub-frame” herein are broadly employed and may refer, eg, to a frame of timber or metal beams and/or other components, or to a panel structure, or to a slab frame eg a tilt slab, or to any structure serving as a supporting frame or core.[0027]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be further described, by way of example only, with reference to the accompanying drawings, in which: [0028]
  • FIG. 1 is a diagrammatic side elevation of a four-module transportable building according to a first embodiment of the first aspect of the invention, in which the left hand module, as viewed, has its roof sub-module extended and the right hand module has its roof sub-module in its retracted transport condition; [0029]
  • FIG. 2 is a view of two building modules separated and placed on respective truck trays for transport, one module having its roof sub-module already in its retracted transport condition; [0030]
  • FIG. 3 is an internal fragmentary view illustrating the use of jacks to lower the roof sub-module for transport; [0031]
  • FIG. 4 is a diagrammatic transverse cross-section showing the pair of building modules of FIG. 2 erected as an assembled building; [0032]
  • FIG. 5 is an enlarged fragmentary three-dimensional schematic view of a preferred arrangement for hingedly mounting the roof sub-modules; [0033]
  • FIG. 6 depicts the complementary construction of internal walls for embodiments of the first aspect of the invention; [0034]
  • FIG. 7 is a diagrammatic side elevation of another embodiment highlighting the single beam structure of the roof sub-module in the first aspect of the invention; [0035]
  • FIGS. 8 and 9 are a simple diagrammatic cross-sectional view through a segment of a transportable house with a removable roof module provided according to an embodiment of the third aspect of the invention, showing the configuration respectively during construction and after erection on site; [0036]
  • FIG. 10 is a simple diagrammatic three-dimensional view of an embodiment of a building embodying the invention; [0037]
  • FIG. 11 depicts an alternative arrangement of the third aspect of the invention in which the roof module is a span beam assembly; and [0038]
  • FIG. 12 illustrates, in a front and side elevation, a variation of the arrangement of FIG. 11 in which the ridge of the roof module extends transversely of the roofline.[0039]
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 illustrates, in cross-section, a segment of a partially erected single storey transportable building, for example a schoolroom, according to one embodiment of the first aspect of the invention, formed by a pair of four [0040] modules 10, 12 and a pair of similar rear modules (not visible). Each of the four main modules 10, 12 includes a floor sub-frame 13 fitted with panel flooring and a wall structure 16 about a room space 15 (FIG. 4), and a hingedly mounted roof sub-module 20. Wall structure 16 includes appropriate external cladding such as weatherboards.
  • The normal practice is to construct most of the house, including internal walls and fittings, at a base yard, and to then transport the house, in [0041] separate modules 10′, 12′, for re-erection and reassembly on a pre-prepared foundation, for example an array of stumps 90, at a client's allotment. FIG. 2 shows a two-module building after the modules 10, 12 have been separated and placed on truck trays 40 ready for transport.
  • With reference in part to FIG. 4, each [0042] roof sub-module 20 is a self-contained unit comprised of several spaced rafters 24, a ridge beam 55, in this case in the form of a truss, linking the upper-ends of the rafters, an internal ceiling lining 25, and external cladding 26 such as corrugated steel sheets. In the particular embodiment illustrated, to provide a cathedral ceiling effect, the ceiling lining 25 is fixed atop the rafters 24, and the external roofing is secured to longitudinally extending hidden battens fixed to the rafters but disposed above lining 25.
  • Each of the [0043] roof sub-modules 20 is hingedly mounted to the wall structure 16 of its module utilising respective hinge pins 35 (FIGS. 4 and 5) to directly pivot respective rafters of the roof sub-module to poles, wall studs, or other uprights 30 of the wall structure. This is particularly illustrated in FIG. 5, where the uprights 30, which are depicted as well-spaced rectangular-section (eg. box tubular section) steel poles, project above the wall top plate 32 to receive hinge pins 35, while the rafters in turn overhang the top plate. A suitable hinge pin 35 is a steel bolt of appropriate length and strength.
  • The hinged mounting of the [0044] roof sub-module 20 allows it to be pivoted downwardly to a retracted transport position (the left module in FIG. 2) in which the rafters lie substantially horizontally and the overall height of the module is substantially reduced. In this transport position, the module 20 can be transported on a tray truck 40 with minimal height clearance. FIG. 3 depicts how strategically disposed jacks such as 100 can be utilised to lower the roof sub-module under full control. Alternatively, a crane might be used where appropriate.
  • At the erection site, the [0045] roof sub-module 20 can be pivoted upwardly, e.g. by extending jacks 100, again to its fully extended position (the right module in FIG. 2) to form the pitched roof. With two modules brought to a complementary position opposite each other, the two complementary roof sub-modules with opposite slopes can be fastened together in their raised position, either by bolting together their respective ridge beams 55, linking the upper ends of the rafters of each module, to form a solid ridge beam 45, or by means of transverse collar ties 47 (FIG. 4). Appropriate ridge capping 50 can be secured in place to complete sealing of the roof.
  • Where one end of the [0046] building module 10, 12 is to substantially coincide with an end of the building, the roof sub-module includes a gable end-wall 62 (FIG. 5) comprising sheeting or planks 64 bracing a triangular ladder beam frame 63. This frame comprises an end rafter 63 a, a bottom plate 50 and vertical ties 52. This gable end-wall, attached to the roof sub-module, pivots or drops down outside the end wall 17 of the building module as the roof sub-module is lowered, until ridge beam 55 rests on the end wall of the house. The end-wall thereby supports the roof sub-module, and must therefore be adequately braced and of adequate strength to support the roof sub-module. The gable end-wall also adds weather protection during transport.
  • [0047] Internal walls 110 can be provided by the complementary construction illustrated in FIG. 6: to accommodate the lowering of roof module 20, a drop-down upper section 112 of wall 110 is hingedly mounted at 114 so it can be folded down out of the way. Once in final position, the hinges 114 can be removed, and a picture rail positioned to overlay the join.
  • It will be seen that the roof sub-module, including especially gable end-wall(s) [0048] 62 and ridge truss beam 55, acts as a single rigid beam structure bridging walls (external or internal) on which this rigid beam rests. This single rigid beam structure is highlighted diagrammatically in FIG. 7. Moreover, the provision of the gable end-wall assembly 62 on the roof sub-module avoids any need to build the end-wall on site after the roof sub-module has been raised into position.
  • It will of course also be understood that, were it desired that the building had an enclosed roof cavity rather than a cathedral ceiling, the respective intermediate rafters could also be part of half-trusses. [0049]
  • [0050] Module 10′ includes a hinge-up verandah or porch roof 70 (FIGS. 4 and 5) of the kind disclosed in Australian patent 539799. This verandah or porch roof would typically have multiple spaced sub-rafters 72 directly hinged by hinge pins, eg. bolts, 74 to the outer overhanging ends of matching roof rafters 24. This verandah or porch roof is pivotable between a retracted position against the outside face of the side wall (FIG. 2, at left) and a raised position (FIGS. 4 and 5) which can be maintained with respective verandah posts 76 installed on site. A benefit of this verandah or porch roof is that it effectively provides a weight counterbalance for the roof sub-module 20 about the pivot axis of hinge pins 35: this may permit roof sub-module 20 to be raised and lowered by two or three workers without the need of a crane or jacks.
  • An advantage of the direct pivoting attachment of the main roof rafters to the side wall is that this arrangement strengthens the roof sub-module when lifting and creates a truss effect. Without this, it would be necessary to make the swing-up roof sub-module a lot heavier, increasing costs and creating a difficulty in lifting without a crane. [0051]
  • Instead of the open construction illustrated in FIGS. 2 and 5, roof sub-module [0052] 20 may alternatively define a roof cavity, which may be used to contain services for the building such as wiring and plumbing. Ventilation fans may also be provided within the roof cavity to exhaust hot air from the roof cavity to the building exterior. In such an embodiment, ventilation openings (not shown) are provided in the ceiling to allow rising hot air from the building interior to enter the roof cavity from where it is exhausted to the exterior of the building.
  • It will be appreciated that the height of [0053] modules 10, 12; 10′, 12′ with roof sub-module 20 lowered does not exceed the dimensional limits prescribed for buildings during transport, yet when constructed the building is capable of meeting the minimum ceiling height requirement of public buildings and provides an aesthetically pleasing building with a substantial pitch. The increased height of the end wail of the building provides additional advantages such as providing extra wall space for blackboards in schoolrooms, for example. It will further be appreciated that multiple cooperable sets of modules 10, 12; 10′, 12′ with roof sub-modules 20 may be provided and joined longitudinally to extend the length of the building. Even for a given length of modules more than one roof sub-module per building module may be necessary or preferred.
  • In the event that it is desired to remove the building from its erection site—which may arise for example with a building being used as a temporary school building—the modules are able to be separated, and the roof sub-modules pivoted down again to facilitate transport to a new site. [0054]
  • FIG. 8 illustrates, in cross-section, a segment of a single storey transportable building, for example a schoolroom, according to an embodiment of the third aspect of the invention, formed by a pair of [0055] main modules 210, 212 and roof module 220. Each of the main modules 210, 212 includes a floor sub-frame 213 fitted with panel flooring, and a wall structure 216. Wall structure 216 includes appropriate external cladding such as weatherboards.
  • Each of the [0056] main modules 210, 212 further includes a roof sub-frame 214, 215 comprising longitudinally extending supporting beams 218, 219 and a series of spaced inclined rafters 238, 239. Each of the roof rafters 238, 239 is supported by wall structure 216 and beam 218, 219, and forms a truncated gable for the building when main modules 210, 212 are linked side-by-side. Rafters 238, 239 support roofing panels 295. As described below, roof sub-frames 214, 215 serve to receive one or more roof modules 220. As before, the normal practice is to construct most of the house including a roof and internal walls and fittings, at a base yard, and to then transport the house, in separate modules 210, 212 and 220, for re-erection on a pre-prepared foundation at a client's allotment.
  • [0057] Roof module 220 includes a frame unit 222 having a series of transverse ceiling joists 224 and upwardly extending sloping rafters 226 that meet to form ridge 228. Central collar ties 229 are also provided. Longitudinal beams (not shown) may be provided as required. In this embodiment, roof module 220 is located on, supported by and fastened to longitudinally extending load supporting beams 218, 219.
  • Supporting [0058] beams 218, 219 are preferably connected to each end wall of the building. The supporting beams 218, 219 may be further associated with underlying additional pillars or internal walls (not shown).
  • [0059] Roof module 220 may take any suitable shape but is preferably generally symmetrical and, as depicted in FIG. 9, forms a continuous roof-line when attached to the roof sub-frames 214, 215. The exterior of roof module 220 is comprised of further roof cladding 297 suitable for the purpose, for example panels of glass or a galvanised or colour bond steel. Roof module 220 further includes ridge cap 221. The lower ends 223, 225 of the roof cladding of roof module 220 preferably overlap the upper ends of each of the outer roof panels 295, when the building is constructed. This overlap preferably substantially seals the connection between roof module 220 and roof sub-frames 214, 215 and provides protection against the weather. The connection between roof module 220 and roof rafters 244, 246 may also be sealed with a suitable sealant.
  • [0060] Roof module 220 is generally used to contain services for the building such as wiring and plumbing. Ventilation fans 270 may also be provided within the roof cavity to exhaust hot air from the roof cavity to the building exterior. In this embodiment, ventilation openings (not shown) are provided in the ceiling held by joists 224 to allow rising hot air from the main modules 210, 212, to enter the roof cavity where it is exhausted to the exterior of the building. These ventilation openings may be spaced such that during transport of the roof module 220 by truck, the wheels of the truck can pass partially through the openings, further reducing the height of the module 220 during transport.
  • As before, the house is first constructed at a base site to ensure each of the modules is correctly sized. The house is then dismantled and transported by truck in three [0061] modules 210, 212, 220 and re-erected at the client's allotment on a suitable foundation, for example an array of stumps 299. Main modules 210, 212 are first located on stumps 299 and secured together before roof module 220 is lifted by crane 294 to be received by roof sub-frames 214, 215 and fastened thereto.
  • It will be appreciated that the height of [0062] main modules 210, 212 and the width of main modules 210, 212 and roof module 220 is such that the modules do not exceed the dimensional limits prescribed for buildings during transport and when constructed the building meets the minimum ceiling height requirement of public buildings and provides an aesthetically pleasing building with a substantial pitch. The increased height of the end wall of the building provides additional advantages such as providing extra wall space for blackboards in schoolrooms, for example. It will further be appreciated that several cooperable sets of main modules and roof modules may be provided and joined longitudinally to extend the length of the building. Even for a given length of modules 210, 212, more than one roof module may be necessary or preferred.
  • FIG. 11 depicts an alternative arrangement of the third aspect of the invention in which the roof module is a [0063] span beam assembly 220′. An alternative is shown in FIG. 12, in which the ridge of the roof module extends transversely of the roofline. In these arrangements, the side frames 250 of beam 220′ are braced by longitudinally extending panels 255 of timber or metal ply. Beam 220′ can vary in depth and is capable of spanning, e.g., 14 metres. It is thereby possible, using very lightweight material, to build an open hall, say 14 m×10 m. In the arrangement of FIG. 12, transversely aligned beam roof module 220″ has translucent end panels or windows 260 to enhance the light level in the hall interior. The cavity created is also useful for enclosed duct work or other services.
  • The construction of FIG. 12 is generally useful for larger open buildings, whether transportable or conventionally built in situ. With the large span required, an upper level module conventionally requires either a very large truss or a portal frame, both expensive options. Transversely aligned [0064] roof module 220″ provides a novel alternative, and at the same time provides a bracing beam assembly for a building having a large open space within.

Claims (30)

The claims defining the invention are as follows:
1 A transportable building module including structure defining a floor sub-frame and at least one wall structure about a room space, the building module further including at least one roof sub-module, wherein said at least one roof sub-module is hingedly mounted to said wall structure for pivotal movement between an extended position and a retracted transport position, in which retracted transport position the height of the building module is less than when said roof sub-module is in said extended position.
2 A transportable building module according to claim 1, wherein said roof sub-module is disposed to define all or part of a pitched roof for the building.
3 A transportable building module according to claim 1 or 2, wherein said roof sub-module includes one or more gable end-wall assemblies that pivot down, outside a wall of the building module, with the roof sub-module as it is lowered.
4 A transportable building module according to claim 3, wherein said roof sub-module including the gable end-wall(s) acts as a single rigid beam structure.
5 A transportable building module according to any preceding claim further including internal walls having fold-down upper segments to allow the roof sub-module to move to the transport condition.
6 A transportable building module according to any preceding claim, wherein said roof sub-module defines a cathedral ceiling.
7 A transportable building module according to any preceding claim, wherein said roof sub-module includes an enclosed roof cavity.
8 A transportable building module according to claim 7, wherein said roof cavity is adapted to provide a ventilation path for the building.
9 A transportable building module according to claim 8, further including one or more ventilation fans to exhaust air to the building exterior from the roof cavity.
10 A transportable building module according to any preceding claim, wherein said roof sub-module includes a series of rafters spaced to define a sloping roofline, and, if provided, the roof cavity.
11 A transportable building module according to any preceding claim, wherein said roof sub-module includes a plurality of rafters hingedly mounted to the wall structure by respective hinge pins.
12 A transportable building module according to any preceding claim, further including a verandah or porch sub-roof segment hingedly mounted to the wall structure or roof sub-module for pivotal movement between a retracted position substantially adjacent the wall structure, and an extended position projecting laterally outwardly from the roof sub-module.
13 A transportable building module according to claim 12, wherein in said extended position said roof sub-frame partially counterbalances the roof sub-module about the latter's hinge axis.
14 A transportable building including two or more of building modules according to any preceding claim, arranged to be linked side-by-side to form the building, each of the building modules being transported separately to a site at which the building is or is to be erected.
15 A method of erecting a building including at least partially constructing the building at a first site as an assembly of building modules according to the any one of claims 1 to 13, separating the modules and transporting them separately to a second site, locating the modules and reforming said assembly at the second site, and pivoting the roof sub-modules of the building modules to their extended positions and fastening them at those positions.
16 A transportable building including one or more main modules defining a floor sub-frame, one or more wall structures and a roof sub-frame about a first space, and one or more roof modules each separable from but cooperable with said one or more main modules for attachment to said roof sub-frame of said one or more main modules to define an upper roof space above said first space, wherein said roof sub-frame defines a support to receive the or each said roof module by craning the roof module(s) into position on said support.
17 A transportable building according to claim 16 which is a single storey building.
18 A transportable building according to claim 16 or 17, wherein the or each said roof module is independent of the main module in its transport condition.
19 A transportable building according to claim 16, 17 or 18, wherein said roof module is disposed to define a pitched roof for the building.
20 A transportable building according to any one of claims 16 to 19, comprising two or more of said main modules arranged to be linked side-by-side to form the building, each such main module having been transported separately to the erection site.
21 A transportable building according to claim 20, wherein said roof module rests substantially symmetrically on the respective main modules to provide a roof ridge for the building.
22 A transportable building according to any one of claims 16 to 21, wherein said roof space is adapted to contain or contains services.
23 A transportable building according to any one of claims 16 to 22, wherein said roof cavity is adapted to provide a ventilation path for the building.
24 A transportable building according to claim 23, further including one or more ventilation fans to exhaust air to the building exterior from the roof cavity.
25 A transportable building according to any one of claims 16 to 24, wherein said roof module includes a series of rafters spaced to define a sloping roofline and the roof cavity.
26 A transportable building according to any one of claims 16 to 25, wherein said main module includes a roof sub-frame that is partially gabled or pitched in its transport condition so as to partly define a sloping roofline.
27 A transportable building according to any one of claims 16 to 26, wherein the roof module is constructed as a load-bearing span beam assembly.
28 A transportable building according to claim 27 wherein said roof module extends transversely to the main roof line of the building.
29 A method of erecting a building according to any one of claims 16 to 28, including at least partially constructing the building at a first site, separating the modules, and transporting the main modules and the roof module to a second site, locating the main module at the second site, and craning the roof module onto the main module to form a building having a pitched roof.
30 A building having a roof that defines a longitudinally extending ridge, and a roof module constructed as a load-bearing beam assembly arranged to extend across an interior space of the building in a direction transversely of said longitudinally extending ridge.
US09/965,625 2001-09-26 2001-09-26 Transportable building with higher roof Abandoned US20030056446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/965,625 US20030056446A1 (en) 2001-09-26 2001-09-26 Transportable building with higher roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/965,625 US20030056446A1 (en) 2001-09-26 2001-09-26 Transportable building with higher roof

Publications (1)

Publication Number Publication Date
US20030056446A1 true US20030056446A1 (en) 2003-03-27

Family

ID=25510236

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/965,625 Abandoned US20030056446A1 (en) 2001-09-26 2001-09-26 Transportable building with higher roof

Country Status (1)

Country Link
US (1) US20030056446A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050120639A1 (en) * 2003-12-03 2005-06-09 Hubert Bucher Expandable container
US20050235579A1 (en) * 2004-04-26 2005-10-27 Hosey Vincent J Retractable roof assembly
US20050252099A1 (en) * 2004-04-05 2005-11-17 Jenkins William O Self-contained modular home
US20060225369A1 (en) * 2002-05-29 2006-10-12 Napier Donald S Transportable building
WO2008019480A1 (en) * 2006-08-16 2008-02-21 Alena Vetesnik Structural panel for the construction of modular buildings
US20080041013A1 (en) * 2006-08-16 2008-02-21 Alena Vetesnik Structural panel and modular building formed using the panel
US20080134588A1 (en) * 2006-11-03 2008-06-12 All State Homes Pty Ltd Roof assembly for a transportable building construction
US20090229194A1 (en) * 2008-03-11 2009-09-17 Advanced Shielding Technologies Europe S.I. Portable modular data center
US20110005144A1 (en) * 2008-01-15 2011-01-13 Design And Value Management Services Pty Ltd Process for providing emergency housing for a plurality of displaced people
US20110041418A1 (en) * 2009-08-21 2011-02-24 Meserini Rick M Prefabricated temporary house addition
US20190078318A1 (en) * 2017-09-14 2019-03-14 Expandwell Homes Inc. Transportable Expanding Shelter With Upwardly Pivoting Roof
WO2019114836A1 (en) * 2017-12-15 2019-06-20 深圳光峰科技股份有限公司 Removable and reconfigurable room system and unmanned room structure thereof
CN110016989A (en) * 2019-04-25 2019-07-16 刘世红 A kind of loft and double slope lofts of spatially-variable
KR102117188B1 (en) * 2019-01-04 2020-05-29 김현호 Double layer type removing house
KR102175100B1 (en) * 2019-05-17 2020-11-06 주식회사 그린큐브 Vertical foldable House
US20220396947A1 (en) * 2021-03-30 2022-12-15 John D. Moore Compactible and foldable Drop shop building
US20230148153A1 (en) * 2021-11-09 2023-05-11 Excel Realty Investors 100 LLC Modular Garage and System for Transport

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631460B2 (en) * 2002-05-29 2009-12-15 Prebuilt Pty Ltd's Transportable building
US20060225369A1 (en) * 2002-05-29 2006-10-12 Napier Donald S Transportable building
US20100064600A1 (en) * 2002-05-29 2010-03-18 Prebuilt Pty Ltd's Transportable building
US20100064601A1 (en) * 2002-05-29 2010-03-18 Prebuilt Pty Ltd's Transportable building
US8117670B2 (en) 2003-12-03 2012-02-21 Eads Deutschland Gmbh Variable volume container unit hoisting device for lowering and raising a telescopical expansion element
US7921608B2 (en) 2003-12-03 2011-04-12 Eads Deutschland Gmbh Variable volume container unit hoisting device for lowering and raising a telescopical expansion element with upper and lower elements that cooperate with guide elements and a plurality of lower stops
US20100050540A1 (en) * 2003-12-03 2010-03-04 Eads Deutschland Gmbh Variable Volume Container Unit Hoisting Device for Lowering and Raising a Telescopable Expansion Element
US20050120639A1 (en) * 2003-12-03 2005-06-09 Hubert Bucher Expandable container
US20100050539A1 (en) * 2003-12-03 2010-03-04 Eads Deutschland Gmbh Variable Volume Container Unit Hoisting Device for Lowering and Raising a Telescopable Expansion Element
US7658037B2 (en) * 2003-12-03 2010-02-09 Eads Deutschland Gmbh Variable volume container unit hoisting device for lowering and raising a telescopable expansion element
US7418803B2 (en) * 2004-04-05 2008-09-02 Jenkins William O Self-contained modular home
US20050252099A1 (en) * 2004-04-05 2005-11-17 Jenkins William O Self-contained modular home
US7469506B2 (en) * 2004-04-26 2008-12-30 Hosey Vincent J Retractable roof assembly
US20050235579A1 (en) * 2004-04-26 2005-10-27 Hosey Vincent J Retractable roof assembly
WO2008019480A1 (en) * 2006-08-16 2008-02-21 Alena Vetesnik Structural panel for the construction of modular buildings
US20080041013A1 (en) * 2006-08-16 2008-02-21 Alena Vetesnik Structural panel and modular building formed using the panel
US20080134588A1 (en) * 2006-11-03 2008-06-12 All State Homes Pty Ltd Roof assembly for a transportable building construction
US8869465B2 (en) * 2008-01-15 2014-10-28 Design And Value Management Services Pty Ltd. Process for providing emergency housing for a plurality of displaced people
US20110005144A1 (en) * 2008-01-15 2011-01-13 Design And Value Management Services Pty Ltd Process for providing emergency housing for a plurality of displaced people
US20090229194A1 (en) * 2008-03-11 2009-09-17 Advanced Shielding Technologies Europe S.I. Portable modular data center
US8919049B2 (en) * 2009-08-21 2014-12-30 Rick M. Meserini Prefabricated temporary house addition
US20110041418A1 (en) * 2009-08-21 2011-02-24 Meserini Rick M Prefabricated temporary house addition
US20190078318A1 (en) * 2017-09-14 2019-03-14 Expandwell Homes Inc. Transportable Expanding Shelter With Upwardly Pivoting Roof
WO2019114836A1 (en) * 2017-12-15 2019-06-20 深圳光峰科技股份有限公司 Removable and reconfigurable room system and unmanned room structure thereof
US11047145B2 (en) 2017-12-15 2021-06-29 Appotronics Corporation Limited Reconfigurable mobile shelter system and related management method
KR102117188B1 (en) * 2019-01-04 2020-05-29 김현호 Double layer type removing house
CN110016989A (en) * 2019-04-25 2019-07-16 刘世红 A kind of loft and double slope lofts of spatially-variable
KR102175100B1 (en) * 2019-05-17 2020-11-06 주식회사 그린큐브 Vertical foldable House
US20220396947A1 (en) * 2021-03-30 2022-12-15 John D. Moore Compactible and foldable Drop shop building
US20230148153A1 (en) * 2021-11-09 2023-05-11 Excel Realty Investors 100 LLC Modular Garage and System for Transport

Similar Documents

Publication Publication Date Title
US5950373A (en) Transportable structure kit
US20030056446A1 (en) Transportable building with higher roof
US5950374A (en) Prefabricated building systems
US20100218436A1 (en) Transportable building module with two structures
US4335558A (en) Prefabricated polygonal building
US3771269A (en) Prefabricated building and roof panel for same
US20140331572A1 (en) Modular system with solar roof
EA000156B1 (en) Modular building framework
JPS5848698B2 (en) Kenchikuyouhonegumishikikouzo
US4171600A (en) Process for constructing modular building and resulting product
JP2843016B2 (en) Folding stair unit box and building using it
AU767231B2 (en) Transportable building with higher roof
AU2004200422A1 (en) Transportable building with higher roof
EP0800603B1 (en) System roof
US20040040255A1 (en) Building method and structure
WO2010015042A2 (en) Modular building construction system
AU719296B2 (en) A transportable structure kit
EP0358339A2 (en) Building structure
JP2002021247A (en) Roof truss of gable structure and method for constructing the same
EP0015766A1 (en) Roofing structures
JPS61179937A (en) Half like building and its construction
JP2003336312A (en) Building
JP2510321B2 (en) Method for manufacturing attic roof unit
AU688461B2 (en) Transportable building module with extendible frame unit
JPH1030300A (en) Roof truss structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: KENTUCKY NAPIER HOMES PTY LTD, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAPIER, DONALD STEWART;REEL/FRAME:012408/0338

Effective date: 20010925

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION