US20030054346A1 - Methods for evaluating oligonucleotide probe sequences - Google Patents

Methods for evaluating oligonucleotide probe sequences Download PDF

Info

Publication number
US20030054346A1
US20030054346A1 US09/784,674 US78467401A US2003054346A1 US 20030054346 A1 US20030054346 A1 US 20030054346A1 US 78467401 A US78467401 A US 78467401A US 2003054346 A1 US2003054346 A1 US 2003054346A1
Authority
US
United States
Prior art keywords
oligonucleotides
oligonucleotide
nucleotide sequence
subset
target nucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/784,674
Inventor
Karen Shannon
Paul Wolber
Glenda Delenstarr
Peter Webb
Robert Kincaid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Priority to US09/784,674 priority Critical patent/US20030054346A1/en
Assigned to AGILENT TECHNOLOGIES, INC. reassignment AGILENT TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD COMPANY, A DELAWARE CORPORATION
Publication of US20030054346A1 publication Critical patent/US20030054346A1/en
Priority to US10/877,231 priority patent/US20050027461A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/20Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Abstract

Methods are disclosed for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides is identified. The unique oligonucleotides are chosen to sample the entire length of a nucleotide sequence that is hybridizable with the target nucleotide sequence. At least one parameter that is independently predictive of the ability of each of the oligonucleotides of the set to hybridize to the target nucleotide sequence is determined and evaluated for each of the above oligonucleotides. A subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified based on the evaluation of the parameter. Oligonucleotides in the subset are identified that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. The method may be carried out with the aid of a computer.

Description

    APPENDIX
  • This patent application includes an appendix (the “Appendix”), which contains the source code for the software used in carrying out the examples in accordance with the present invention. [0001]
  • A portion of the present disclosure contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. [0002]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • Significant morbidity and mortality are associated with infectious diseases and genetically inherited disorders. More rapid and accurate diagnostic methods are required for better monitoring and treatment of these conditions. Molecular methods using DNA probes, nucleic acid hybridization and in vitro amplification techniques are promising methods offering advantages to conventional methods used for patient diagnoses. [0004]
  • Nucleic acid hybridization has been employed for investigating the identity and establishing the presence of nucleic acids. Hybridization is based on complementary base pairing. When complementary single stranded nucleic acids are incubated together, the complementary base sequences pair to form double-stranded hybrid molecules. The ability of single stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid (RNA) to form a hydrogen bonded structure with a complementary nucleic acid sequence has been employed as an analytical tool in molecular biology research. The availability of radioactive nucleoside triphosphates of high specific activity and the development of methods for their incorporation into DNA and RNA has made it possible to identify, isolate, and characterize various nucleic acid sequences of biological interest. Nucleic acid hybridization has great potential in diagnosing disease states associated with unique nucleic acid sequences. These unique nucleic acid sequences may result from genetic or environmental change in DNA by insertions, deletions, point mutations, or by acquiring foreign DNA or RNA by means of infection by bacteria, molds, fungi, and viruses. The application of nucleic acid hybridization as a diagnostic tool in clinical medicine is limited due to the cost and effort associated with the development of sufficiently sensitive and specific methods for detecting potentially low concentrations of disease-related DNA or RNA present in the complex mixture of nucleic acid sequences found in patient samples. [0005]
  • One method for detecting specific nucleic acid sequences generally involves immobilization of the target nucleic acid on a solid support such as nitrocellulose paper, cellulose paper, diazotized paper, or a nylon membrane. After the target nucleic acid is fixed on the support, the support is contacted with a suitably labeled probe nucleic acid for about two to forty-eight hours. After the above time period, the solid support is washed several times at a controlled temperature to remove unhybridized probe. The support is then dried and the hybridized material is detected by autoradiography or by spectrometric methods. When very low concentrations must be detected, the above method is slow and labor intensive, and nonisotopic labels that are less readily detected than radiolabels are frequently not suitable. [0006]
  • A method for the enzymatic amplification of specific segments of DNA known as the polymerase chain reaction (PCR) method has been described. This in vitro amplification procedure is based on repeated cycles of denaturation, oligonucleotide primer annealing, and primer extension by thermophilic polymerase, resulting in the exponential increase in copies of the region flanked by the primers. The PCR primers, which anneal to opposite strands of the DNA, are positioned so that the polymerase catalyzed extension product of one primer can serve as a template strand for the other, leading to the accumulation of a discrete fragment whose length is defined by the distance between the 5′ ends of the oligonucleotide primers. [0007]
  • Other methods for amplifying nucleic acids have also been developed. These methods include single primer amplification, ligase chain reaction (LCR), transcription-mediated amplification methods including 3SR and NASBA, and the Q-beta-replicase method. Regardless of the amplification used, the amplified product must be detected. [0008]
  • One method for detecting nucleic acids is to employ nucleic acid probes that have sequences complementary to sequences in the target nucleic acid. A nucleic acid probe may be, or may be capable of being, labeled with a reporter group or may be, or may be capable of becoming, bound to a support. Detection of signal depends upon the nature of the label or reporter group. Usually, the probe is comprised of natural nucleotides such as ribonucleotides and deoxyribonucleotides and their derivatives although unnatural nucleotide mimetics such as peptide nucleic acids and oligomeric nucleoside phosphonates are also used. Commonly, binding of the probes to the target is detected by means of a label incorporated into the probe. Alternatively, the probe may be unlabeled and the target nucleic acid labeled. Binding can be detected by separating the bound probe or target from the free probe or target and detecting the label. In one approach, a sandwich is formed comprised of one probe, which may be labeled, the target and a probe that is or can become bound to a surface. Alternatively, binding can be detected by a change in the signal-producing properties of the label upon binding, such as a change in the emission efficiency of a fluorescent or chemiluminescent label. This permits detection to be carried out without a separation step. Finally, binding can be detected by labeling the target, allowing the target to hybridize to a surface-bound probe, washing away the unbound target and detecting the labeled target that remains. [0009]
  • Direct detection of labeled target hybridized to surface-bound probes is particularly advantageous if the surface contains a mosaic of different probes that are individually localized to discrete, known areas of the surface. Such ordered arrays containing a large number of oligonucleotide probes have been developed as tools for high throughput analyses of genotype and gene expression. Oligonucleotides synthesized on a solid support recognize uniquely complementary nucleic acids by hybridization, and arrays can be designed to define specific target sequences, analyze gene expression patterns or identify specific allelic variations. One difficulty in the design of oligonucleotide arrays is that oligonucleotides targeted to different regions of the same gene can show large differences in hybridization efficiency, presumably due, at least in part, to the interplay between the secondary structures of the oligonucleotides and their targets and the stability of the final probe/target hybridization product. A method for predicting which oligonucleotides will show detectable hybridization would substantially decrease the number of iterations required for optimal array design and would be particularly useful when the total number of oligonucleotide probes on the array is limited. A method to predict oligonucleotide hybridization efficiency would also streamline the empirical approaches currently used to select potential antisense therapeutics, which are designed to modulate gene expression in vivo by hybridizing to specific messenger RNA (mRNA) molecules and inhibiting their translation into proteins. [0010]
  • While it is well known that the structure of the target nucleic acid affects the affinity of oligonucleotide hybridization, current methods for predicting target structures from the primary sequence fail to predict target regions accessible for oligonucleotide binding. Consequently, selection of oligonucleotides for antisense reagents or oligonucleotide probe arrays has been largely empirical. As most of the target sequence is sequestered by intramolecular base pairing and not accessible for oligonucleotide binding, the process of identifying good oligonucleotides has required large numbers of low efficiency experiments. [0011]
  • The design and implementation of algorithms that effectively predict the ability of oligonucleotides to rapidly and avidly bind to complementary nucleotide sequences has been an important problem in molecular biology since the invention of facile methods for chemical DNA synthesis. The subsequent inventions of the polymerase chain reaction (PCR), antisense inhibition of gene expression and oligonucleotide array methods for performing massively parallel hybridization experiments have made the need for effective predictive algorithms even more critical. [0012]
  • Previous attempts to solve the nucleic acid probe design problem include PCR primer design software applications (e.g., OLIGO®), neural networks, PCR primer design applications that search for sequences that possess minimal ability to cross-hybridize with other targets present in a sample (e.g., HYBsimulator™), and approaches that attempt to predict the efficiency of antisense sequence suppression of mRNA translation from a combination of predicted nucleic acid duplex melting temperature and predicted target strand structure. The methods that predict effective oligonucleotide primers for performing PCR from DNA templates work well for that application where relatively stringent conditions are employed. This is because PCR experimental design greatly simplifies the prediction problem: hybridization is performed at high temperature, at relatively low ionic strength and in the presence of a large molar excess of oligonucleotide. Under these conditions, the oligonucleotide and target secondary structures are relatively unimportant. [0013]
  • Unfortunately, these conditions do not apply to oligonucleotide arrays, which are usually hybridized under relatively non-denaturing conditions, or to antisense suppression of gene expression, which takes place in vivo. Oligonucleotide arrays can contain hundreds of thousands of different sequences and conditions are chosen to allow the oligonucleotide with the lowest melting temperature to hybridize efficiently. These “lowest common denominator” conditions are usually relatively non-denaturing and secondary structure constraints become significant. Accordingly, the above applications require new predictive methods that are capable of estimating the effects of oligonucleotide and target structure on hybridization efficiency. For these reasons, current algorithms for designing PCR primer oligonucleotides fail badly when applied to the problems of oligonucleotide array or antisense oligonucleotide design. [0014]
  • To date, the most effective approach for identifying oligonucleotides with good hybridization efficiency has been an empirical one. Such an approach involves the synthesis of large numbers of oligonucleotide probes for a given target nucleotide sequence. Arrays are formed that include the above oligonucleotide probes. Hybridization experiments are carried out to determine which of the oligonucleotide probes exhibit good hybridization efficiencies. Examples of such an approach are found in D. Lockhart, et al., [0015] Nature Biotech., infra, L. Wodicka, et al., Nature Biotechnology, infra., and N. Milner et al. Nature Biotech, infra. One major drawback to this approach is the vast number of oligonucleotides that must be synthesized in order to achieve a satisfactory result. Typically, about 2%-5% of the test probes synthesized yield acceptable signal levels.
  • The use of neural networks for oligonucleotide design has also been investigated. Neural networks are easily taught with real data; they therefore afford a general approach to many problems. However, their performance is limited by the “senses” that they are given. An analogy works best here: the human brain is an astoundingly capable neural network, but a blind person cannot be taught to reliably distinguish colors by smell. In addition, a large amount of data is required to adequately teach a neural network to perform its job well. A comprehensive database for either oligonucleotide array design or antisense suppression of gene expression has not been made available. For these reasons, the performance reported to-date of neural network solutions against the probe design problem is mediocre. [0016]
  • Finally, approaches that have attempted to use target nucleic acid folding calculations to predict experimental results inferred to depend upon hybridization efficiency (e.g. antisense suppression of mRNA translation) have so far only demonstrated that the predictions of current nucleic acid folding calculations correlate poorly with observed behavior. The probable reason for this is that the structures predicted by such programs for long sequences are poor predictors of chemical reality; the results of experiments that attempt to confirm the predictions of such calculations support this assessment. Recent improvements to this approach which use predicted RNA structure topology as a predictor of relative RNA/RNA association kinetics have been more successful at forecasting the results of antisense experiments. However, these methods are not computationally efficient, and have so far only been shown to work for targets less than 100 bases long. Such methods are therefore not yet capable of predicting the behavior of full-length mRNA targets, which are typically between 1,000 and 2,000 bases in length. [0017]
  • 2. Description of the Related Art [0018]
  • U.S. Pat. No. 5,512,438 (Ecker) discloses the inhibition of RNA expression by forming a pseudo-half knot RNA at the target's RNA secondary structure using antisense oligonucleotides. [0019]
  • Cook, et al., in U.S. Pat. No. 5,670,633 discuss sugar-modified oligonucleotides that detect and modulate gene expression. [0020]
  • Antisense oligonucleotide inhibition of the RAS gene is disclosed in U.S. Pat. No. 5,582,986 (Monia, et al.). [0021]
  • U.S. Pat. No. 5,593,834 (Lane, et al.) discusses a method of preparing DNA sequences with known ligand binding characteristics. [0022]
  • Mitsuhashi, et al., in U.S. Pat. No. 5,556,749 discusses a computerized method for designing optimal DNA probes and an oligonucleotide probe design station. [0023]
  • U.S. Pat. No. 5,081,584 (Omichinski, et al.) discloses a computer-assisted design of anti-peptides based on the amino acid sequence of a target peptide. [0024]
  • A PCR primer design application that searches for sequences that possess minimal ability to cross-hybridize with other targets present in a sample is available as HYBsimulator™, version 2.0, AGCT, Inc., 2102 Business Center Drive, Suite 170, Irvine, Calif. 92715 (714) 833-9983. [0025]
  • A PCR primer design software application is available as OLIGO®, version 5.0, National Biosciences, Inc., 3650 Annapolis Lane North, #140, Plymouth, Minn. 55447 (800) 747-4362. [0026]
  • D. J. Lockhart, et al., [0027] Nature Biotech. 14:1675-1684 (1996) describe a neural network approach to the selection of efficient surface-bound oligonucleotide probes.
  • M. Mitsuhashi, et al., [0028] Nature, 367:759-761 (1994) disclose a method for designing specific oligonucleotide probes and primers by modeling the potential cross-hybridization of candidate probes to non-target sequences known to be present in samples.
  • R. A. Stull, et al., [0029] Nuc. Acids Res., 20:3501-3508 (1992) describe a method of predicting the efficacy of antisense oligonucleotides, using predicted target secondary structure and predicted oligonucleotide/target binding free energy as input parameters.
  • N. Milner, et al., [0030] Nature Biotechnology, 15:537-541 (1997) compare observed patterns of probe hybridization to those expected from the predicted secondary structure of the nucleic acid target.
  • L. Wodicka, et al., [0031] Nature Biotechnology, 15:1359-1367 (1997) describe simple rules for avoiding inefficient and non-specific probes during design and synthesis of oligonucleotides arrays.
  • J. SantaLucia Jr., et al., [0032] Biochemistry, 35:3555 (1996) disclose parameters and methods for the calculation of thermodynamic properties of DNA/DNA homoduplexes.
  • N. Sugimoto, et al., [0033] Biochemistry, 34:11211 (1995) disclose parameters and methods for the calculation of thermodynamic properties of DNA/RNA heteroduplexes.
  • J. A. Jaeger, et al., [0034] Proc. Nati. Acad. Sci. USA, 86:7706 (1989) disclose methods for estimation of the free energy of the most stable intramolecular structure of a single-stranded polynucleotide, by means of a dynamic programming algorithm.
  • S. F. Altschul, et al., [0035] Nature Genetics, 6:119-129 (1994) disclose methods for calculating the complexity and information content of amino acid and nucleic acid sequences.
  • T. A. Weber and E. Helfand, [0036] J. Chem. Phys., 71, 4760 (1979) describe approaches for the modeling of polymer structures by molecular dynamics simulations.
  • V. Patzel and G. Sczakiel, [0037] Nature Biotech.,.16, 64-68 (1998) disclose methods for estimating rate constants for association of antisense RNA molecules with mRNA targets by examination of predicted antisense RNA secondary structures.
  • Light-generated oligonucleotide arrays for rapid DNA sequence analysis is described by A. C. Pease, et al., [0038] Proc. Nat. Acad. Sci. USA (1994) 91:5022-5026.
  • Mitsuhashi discusses basic requirements for designing optimal oligonucleotide probe sequences in [0039] J. Clinical Laboratory Analysis (1996) 10:277-284.
  • Rychlik, et al., discloses a computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA in [0040] Nucleic Acids Research (1989) 17(21):8543-8551.
  • A strategy for designing specific antisense oligonucleotide sequences is described by Mitsuhashi in [0041] J. Gastroenterol. (1997) 32:282-287.
  • Mitsuhashi discusses basic requirements for designing optimal PCR primers in [0042] J. Clinical Laboratory Analysis (1996) 10:285-293.
  • Hyndman, et al., disclose software to determine optimal oligonucleotide sequences based on hybridization simulation data in [0043] BioTechniques (1996) 20(6):1090-1094.
  • Eberhardt discloses a shell program for the design of PCR primers using genetics computer group (GCG) software (7.1) on VAX/VSM™ systems in [0044] BioTechniques (1992) 13(6):914-917.
  • Chen, et al., disclose a computer program for calculating the melting temperature of degenerate oligonucleotides used in PCR or hybridization in [0045] BioTechniques (1997) 22(6): 1158-1160.
  • Partial thermodynamic parameters for prediction stability and washing behavior of DNA duplexes immobilized on gel matrix is described by Kunitsyn, et al., in J. Biomolecular Structure & Dynamics, ISSN 0739-1102 (1996) 14(1):239-244. [0046]
  • SUMMARY OF THE INVENTION
  • One embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined set of unique oligonucleotide sequences is identified. The unique oligonucleotide sequences are chosen to sample the entire length of a nucleotide sequence that is hybridizable with the target nucleotide sequence. At least one parameter that is predictive of the ability of each of the oligonucleotides specified by the set of sequences to hybridize to the target nucleotide sequence is determined and evaluated for each of the above oligonucleotide sequences. A subset of oligonucleotide sequences within the predetermined set of unique oligonucleotide sequences is identified based on the examination of the parameter values. Finally, oligonucleotide sequences in the subset are identified that are clustered along one or more regions of the nucleotide sequence that is hybridizable to the target nucleotide sequence. The oligonucleotide probes corresponding to the identified sequences find use in polynucleotide assays particularly where the assays involve oligonucleotide arrays. For a discussion of oligonucleotide arrays, see, e.g., U.S. Pat. No. 5,700,637 (E. Southern) and U.S. Pat. No. 5,667,667 (E. Southern), the relevant disclosures of which are incorporated herein by reference. [0047]
  • Another embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence. A set of overlapping oligonucleotide sequences is identified based on a nucleotide sequence that is complementary to the target nucleotide sequence. At least two parameters that are independently predictive of the ability of each of the oligonucleotides specified by the oligonucleotide sequences to hybridize to the target nucleotide sequence are determined and evaluated for each of the oligonucleotide sequences. Independence is assured by requiring that the parameters be poorly correlated with respect to one another. A subset of oligonucleotide sequences within the set of oligonucleotide sequences is identified based on the examination of the parameter values. Finally, oligonucleotide sequences in the subset are identified that are clustered along one or more regions of the nucleotide sequence that is complementary to the target nucleotide sequence. [0048]
  • Another embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence. A set of overlapping oligonucleotide sequences is obtained based on a nucleotide sequence of length L, complementary to the target nucleotide sequence. The oligonucleotide sequences of the set of overlapping oligonucleotide sequences are of identical length N and spaced one nucleotide apart. The set comprises L−[0049] N+1 oligonucleotide sequences. Parameters are determined for each of the oligonucleotide sequences of the set of overlapping oligonucleotide sequences. One parameter is the predicted melting temperature of the duplex of each of the oligonucleotides specified by the oligonucleotide sequences and the target nucleotide sequence, corrected for salt concentration. The other parameter is the predicted free energy of the most stable intramolecular structure of each of the oligonucleotides specified by the oligonucleotide sequences at the temperature of hybridization of the oligonucleotide with the target nucleotide sequence. A subset of oligonucleotide sequences within the set of oligonucleotide sequences is selected based on an examination of the parameter values by establishing cut-off values for each of the parameters. Oligonucleotide sequences in the subset that are clustered along one or more regions of the complementary nucleotide sequence are ranked based on the sizes of the clusters of oligonucleotide sequences. Finally, a subset of the clustered oligonucleotide sequences is selected that statistically samples the clusters of oligonucleotide sequences. The selected sampled subset is used to specify the synthesis of oligonucleotides for experimental evaluation.
  • Another aspect of the present invention is a computer based method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides within a nucleotide sequence that is hybridizable with the target nucleotide sequence is identified under computer control. The oligonucleotides are chosen to sample the entire length of the nucleotide sequence. A value is determined and evaluated under computer control for each of the oligonucleotides for at least one parameter that is independently predictive of the ability of each of the oligonucleotides to hybridize to the target nucleotide sequence. The parameter values are stored. A subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified by examination of the stored parameter values under computer control. Then, oligonucleotides in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence are identified under computer control. [0050]
  • Another aspect of the present invention is a computer system for conducting a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. The system comprises (a) input means for introducing a target nucleotide sequence into the computer system, (b) means for determining a number of unique oligonucleotide sequences that are within a nucleotide sequence that is hybridizable with the target nucleotide sequence where the oligonucleotide sequences are chosen to sample the entire length of the nucleotide sequence, (c) memory means for storing the oligonucleotide sequences, (d) means for controlling the computer system to carry out for each of the oligonucleotide sequences a determination and evaluation of a value for at least one parameter that is independently predictive of the ability of each of the oligonucleotide sequences to hybridize to the target nucleotide sequence, (e) means for storing the parameter values, (f) means for controlling the computer to carry out an identification from the stored parameter values a subset of oligonucleotide sequences within the number of unique oligonucleotide sequences based on the examination of the parameter, (g) means for storing the subset of oligonucleotides, (h) means for controlling the computer to carry out an identification of oligonucleotide sequences in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence, (i) means for storing the oligonucleotide sequences in the subset, and (j) means for outputting data relating to the oligonucleotide sequences in the subset.[0051]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a general flow chart depicting the method of the present invention. [0052]
  • FIG. 2 is a flow chart depicting a preferred embodiment of a method in accordance with the present invention. [0053]
  • FIG. 3 is a contour plot of normalized hybridization intensity from multiple experiments, as a function of the free energy of the most stable probe intramolecular structure (ΔG[0054] MFOLD) and the difference between the predicted RNA/DNA heteroduplex melting temperature (Tm) and the temperature of hybridization (Thyb).
  • FIG. 4 shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to a portion of the rabbit β-globin gene (radiolabeled antisense RNA target). [0055]
  • FIG. 5 shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the HIV PRT gene (fluorescein-labeled sense RNA target). [0056]
  • FIG. 6 shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the G3PDH gene (fluorescein-labeled antisense RNA target). [0057]
  • FIG. 7 shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the p53 gene (fluorescein-labeled antisense RNA target). [0058]
  • FIG. 8 shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the HIV PRTs gene (using data from the GeneChip™ data).[0059]
  • DEFINITIONS
  • Before proceeding further with a description of the specific embodiments of the present invention, a number of terms will be defined. [0060]
  • Nucleic Acids: [0061]
  • Polynucleotide—a compound or composition that is a polymeric nucleotide or nucleic acid polymer. The polynucleotide may be a natural compound or a synthetic compound. In the context of an assay, the polynucleotide is often referred to as a polynucleotide analyte. The polynucleotide can have from about 20 to 5,000,000 or more nucleotides. The larger polynucleotides are generally found in the natural state. In an isolated state the polynucleotide can have about 30 to 50,000 or more nucleotides, usually about 100 to 20,000 nucleotides, more frequently 500 to 10,000 nucleotides. It is thus obvious that isolation of a polynucleotide from the natural state often results in fragmentation. The polynucleotides include nucleic acids, and fragments thereof, from any source in purified or unpurified form including DNA (dsDNA and ssDNA) and RNA, including tRNA, mRNA, rRNA, mitochondrial DNA and RNA, chloroplast DNA and RNA, DNA/RNA hybrids, or mixtures thereof, genes, chromosomes, plasmids, the genomes of biological material such as microorganisms, e.g., bacteria, yeasts, viruses, viroids, molds, fungi, plants, animals, humans, and the like. The polynucleotide can be only a minor fraction of a complex mixture such as a biological sample. Also included are genes, such as hemoglobin gene for sickle-cell anemia, cystic fibrosis gene, oncogenes, cDNA, and the like. [0062]
  • The polynucleotide can be obtained from various biological materials by procedures well known in the art. The polynucleotide, where appropriate, may be cleaved to obtain a fragment that contains a target nucleotide sequence, for example, by shearing or by treatment with a restriction endonuclease or other site specific chemical cleavage method. [0063]
  • For purposes of this invention, the polynucleotide, or a cleaved fragment obtained from the polynucleotide, will usually be at least partially denatured or single stranded or treated to render it denatured or single stranded. Such treatments are well known in the art and include, for instance, heat or alkali treatment, or enzymatic digestion of one strand. For example, dsDNA can be heated at 90-100° C. for a period of about 1 to 10 minutes to produce denatured material. [0064]
  • Target nucleotide sequence—a sequence of nucleotides to be identified, usually existing within a portion or all of a polynucleotide, usually a polynucleotide analyte. The identity of the target nucleotide sequence generally is known to an extent sufficient to allow preparation of various sequences hybridizable with the target nucleotide sequence and of oligonucleotides, such as probes and primers, and other molecules necessary for conducting methods in accordance with the present invention, an amplification of the target polynucleotide, and so forth. [0065]
  • The target sequence usually contains from about 30 to 5,000 or more nucleotides, preferably 50 to 1,000 nucleotides. The target nucleotide sequence is generally a fraction of a larger molecule or it may be substantially the entire molecule such as a polynucleotide as described above. The minimum number of nucleotides in the target nucleotide sequence is selected to assure that the presence of a target polynucleotide in a sample is a specific indicator of the presence of polynucleotide in a sample. The maximum number of nucleotides in the target nucleotide sequence is normally governed by several factors: the length of the polynucleotide from which it is derived, the tendency of such polynucleotide to be broken by shearing or other processes during isolation, the efficiency of any procedures required to prepare the sample for analysis (e.g. transcription of a DNA template into RNA) and the efficiency of detection and/or amplification of the target nucleotide sequence, where appropriate. [0066]
  • Oligonucleotide—a polynucleotide, usually single stranded, usually a synthetic polynucleotide but may be a naturally occurring polynucleotide. The oligonucleotide(s) are usually comprised of a sequence of at least 5 nucleotides, preferably, 10 to 100 nucleotides, more preferably, 20 to 50 nucleotides, and usually 10 to 30 nucleotides, more preferably, 20 to 30 nucleotides, and desirably about 25 nucleotides in length. [0067]
  • Various techniques can be employed for preparing an oligonucleotide. Such oligonucleotides can be obtained by biological synthesis or by chemical synthesis. For short sequences (up to about 100 nucleotides), chemical synthesis will frequently be more economical as compared to the biological synthesis. In addition to economy, chemical synthesis provides a convenient way of incorporating low molecular weight compounds and/or modified bases during a specific synthesis steps. Furthermore, chemical synthesis is very flexible in the choice of length and region of the target polynucleotide binding sequence. The oligonucleotide can be synthesized by standard methods such as those used in commercial automated nucleic acid synthesizers. Chemical synthesis of DNA on a suitably modified glass or resin can result in DNA covalently attached to the surface. This may offer advantages in washing and sample handling. For longer sequences standard replication methods employed in molecular biology can be used such as the use of M13 for single stranded DNA as described by J. Messing (1983) [0068] Methods Enzymol, 101:20-78.
  • Other methods of oligonucleotide synthesis include phosphotriester and phosphodiester methods (Narang, et al. (1979) [0069] Meth. Enzymol 68:90) and synthesis on a support (Beaucage, et al. (1981) Tetrahedron Letters 22:1859-1862) as well as phosphoramidite techniques (Caruthers, M. H., et al., “Methods in Enzymology,” Vol. 154, pp. 287-314 (1988)) and others described in “Synthesis and Applications of DNA and RNA,” S. A. Narang, editor, Academic Press, New York, 1987, and the references contained therein. The chemical synthesis via a photolithographic method of spatially addressable arrays of oligonucleotides bound to glass surfaces is described by A. C. Pease, et al., Proc. Nat. Acad. Sci. USA (1994) 91:5022-5026.
  • Oligonucleotide probe—an oligonucleotide employed to bind to a portion of a polynucleotide such as another oligonucleotide or a target nucleotide sequence. The design and preparation of the oligonucleotide probes are generally dependent upon the sensitivity and specificity required, the sequence of the target polynucleotide and, in certain cases, the biological significance of certain portions of the target polynucleotide sequence. [0070]
  • Oligonucleotide primer(s)—an oligonucleotide that is usually employed in a chain extension on a polynucleotide template such as in, for example, an amplification of a nucleic acid. The oligonucleotide primer is usually a synthetic nucleotide that is single stranded, containing a sequence at its 3′-end that is capable of hybridizing with a defined sequence of the target polynucleotide. Normally, an oligonucleotide primer has at least 80%, preferably 90%, more preferably 95%, most preferably 100%, complementarity to a defined sequence or primer binding site. The number of nucleotides in the hybridizable sequence of an oligonucleotide primer should be such that stringency conditions used to hybridize the oligonucleotide primer will prevent excessive random non-specific hybridization. Usually, the number of nucleotides in the oligonucleotide primer will be at least as great as the defined sequence of the target polynucleotide, namely, at least ten nucleotides, preferably at least 15 nucleotides, and generally from about 10 to 200, preferably 20 to 50, nucleotides. [0071]
  • In general, in primer extension, amplification primers hybridize to, and are extended along (chain extended), at least the target nucleotide sequence within the target polynucleotide and, thus, the target sequence acts as a template. The extended primers are chain “extension products.” The target sequence usually lies between two defined sequences but need not. In general, the primers hybridize with the defined sequences or with at least a portion of such target polynucleotide, usually at least a ten-nucleotide segment at the 3′-end thereof and preferably at least 15, frequently a 20 to 50 nucleotide segment thereof. [0072]
  • Nucleoside triphosphates—nucleosides having a 5′-triphosphate substituent. The nucleosides are pentose sugar derivatives of nitrogenous bases of either purine or pyrimidine derivation, covalently bonded to the 1′-carbon of the pentose sugar, which is usually a deoxyribose or a ribose. The purine bases include adenine (A), guanine (G), inosine (I), and derivatives and analogs thereof. The pyrimidine bases include cytosine (C), thymine (T), uracil (U), and derivatives and analogs thereof. Nucleoside triphosphates include deoxyribonucleoside triphosphates such as the four common deoxyribonucleoside triphosphates dATP, dCTP, dGTP and dTTP and ribonucleoside triphosphates such as the four common triphosphates rATP, rCTP, rGTP and rUTP. [0073]
  • The term “nucleoside triphosphates” also includes derivatives and analogs thereof, which are exemplified by those derivatives that are recognized and polymerized in a similar manner to the underivatized nucleoside triphosphates. [0074]
  • Nucleotide—a base-sugar-phosphate combination that is the monomeric unit of nucleic acid polymers, i.e., DNA and RNA. The term “nucleotide” as used herein includes modified nucleotides as defined below. [0075]
  • DNA—deoxyribonucleic acid. [0076]
  • RNA—ribonucleic acid. [0077]
  • Modified nucleotide—a unit in a nucleic acid polymer that contains a modified base, sugar or phosphate group. The modified nucleotide can be produced by a chemical modification of the nucleotide either as part of the nucleic acid polymer or prior to the incorporation of the modified nucleotide into the nucleic acid polymer. For example, the methods mentioned above for the synthesis of an oligonucleotide may be employed. In another approach a modified nucleotide can be produced by incorporating a modified nucleoside triphosphate into the polymer chain during an amplification reaction. Examples of modified nucleotides, by way of illustration and not limitation, include dideoxynucleotides, derivatives or analogs that are biotinylated, amine modified, alkylated, fluorophore-labeled, and the like and also include phosphorothioate, phosphite, ring atom modified derivatives, and so forth. [0078]
  • Nucleoside—is a base-sugar combination or a nucleotide lacking a phosphate moiety. [0079]
  • Nucleotide polymerase—a catalyst, usually an enzyme, for forming an extension of a polynucleotide along a DNA or RNA template where the extension is complementary thereto. The nucleotide polymerase is a template dependent polynucleotide polymerase and utilizes nucleoside triphosphates as building blocks for extending the 3′-end of a polynucleotide to provide a sequence complementary with the polynucleotide template. Usually, the catalysts are enzymes, such as DNA polymerases, for example, prokaryotic DNA polymerase (I, II, or III), T4 DNA polymerase, T7 DNA polymerase, Klenow fragment, reverse transcriptase, Vent DNA polymerase, Pfu DNA polymerase, Taq DNA polymerase, and the like, or RNA polymerases, such as T3 and T7 RNA polymerases. Polymerase enzymes may be derived from any source such as cells, bacteria such as [0080] E. coli, plants, animals, virus, thermophilic bacteria, and so forth.
  • Amplification of nucleic acids or polynucleotides—any method that results in the formation of one or more copies of a nucleic acid or polynucleotide molecule (exponential amplification) or in the formation of one or more copies of only the complement of a nucleic acid or polynucleotide molecule (linear amplification). [0081]
  • Hybridization (hybridizing) and binding—in the context of nucleotide sequences these terms are used interchangeably herein. The ability of two nucleotide sequences to hybridize with each other is based on the degree of complementarity of the two nucleotide sequences, which in turn is based on the fraction of matched complementary nucleotide pairs. The more nucleotides in a given sequence that are complementary to another sequence, the more stringent the conditions can be for hybridization and the more specific will be the binding of the two sequences. Increased stringency is achieved by elevating the temperature, increasing the ratio of co-solvents, lowering the salt concentration, and the like. [0082]
  • Hybridization efficiency—the productivity of a hybridization reaction, measured as either the absolute or relative yield of oligonucleotide probe/polynucleotide target duplex formed under a given set of conditions in a given amount of time. [0083]
  • Homologous or substantially identical polynucleotides—In general, two polynucleotide sequences that are identical or can each hybridize to the same polynucleotide sequence are homologous. The two sequences are homologous or substantially identical where the sequences each have at least 90%, preferably 100%, of the same or analogous base sequence where thymine (T) and 30 uracil (U) are considered the same. Thus, the ribonucleotides A, U, C and G are taken as analogous to the deoxynucleotides dA, dT, dC, and dG, respectively. Homologous sequences can both be DNA or one can be DNA and the other RNA. [0084]
  • Complementary—Two sequences are complementary when the sequence of one can bind to the sequence of the other in an anti-parallel sense wherein the 3′-end of each sequence binds to the 5′-end of the other sequence and each A, T(U), G, and C of one sequence is then aligned with a T(U), A, C, and G, respectively, of the other sequence. RNA sequences can also include complementary G/U or U/G basepairs. [0085]
  • Member of a specific binding pair (“sbp member”)—one of two different molecules, having an area on the surface or in a cavity that specifically binds to and is thereby defined as complementary with a particular spatial and polar organization of the other molecule. The members of the specific binding pair are referred to as cognates or as ligand and receptor (antiligand). These may be members of an immunological pair such as antigen-antibody, or may be operator-repressor, nuclease-nucleotide, biotin-avidin, hormones-hormone receptors, nucleic acid duplexes, IgG-protein A, DNA-DNA, DNA-RNA, and the like. [0086]
  • Ligand—any compound for which a receptor naturally exists or can be prepared. [0087]
  • Receptor (“antiligand”)—any compound or composition capable of recognizing a particular spatial and polar organization of a molecule, e.g., epitopic or determinant site. Illustrative receptors include naturally occurring receptors, e.g., thyroxine binding globulin, antibodies, enzymes, Fab fragments, lectins, nucleic acids, repressors, protection enzymes, protein A, complement component C1q, DNA binding proteins or ligands and the like. [0088]
  • Oligonucleotide Properties: [0089]
  • Potential of an oligonucleotide to hybridize—the combination of duplex formation rate and duplex dissociation rate that determines the amount of duplex nucleic acid hybrid that will form under a given set of experimental conditions in a given amount of time. [0090]
  • Parameter—a factor that provides information about the hybridization of an oligonucleotide with a target nucleotide sequence. Generally, the factor is one that is predictive of the ability of an oligonucleotide to hybridize with a target nucleotide sequence. Such factors include composition factors, thermodynamic factors, chemosynthetic efficiencies, kinetic factors, and the like. [0091]
  • Parameter predictive of the ability to hybridize—a parameter calculated from a set of oligonucleotide sequences wherein the parameter positively correlates with observed hybridization efficiencies of those sequences. The parameter is, therefore, predictive of the ability of those sequences to hybridize. “Positive correlation” can be rigorously defined in statistical terms. The correlation coefficient ρ[0092] x,y of two experimentally measured discreet quantities x and y (N values in each set) is defined as ρ x , y = C o v a r i a n c e ( x , y ) V a r i a n c e ( x ) V a r i a n c e ( y ) ,
    Figure US20030054346A1-20030320-M00001
  • where the Covariance (x,y) is defined by [0093] C o v a r i a n c e ( x , y ) = 1 N j = 1 N ( x j - μ x ) ( y j - μ y ) .
    Figure US20030054346A1-20030320-M00002
  • The quantities μ[0094] x and μy are the averages of the quantities x and y, while the variances are simply the squares of the standard deviations (defined below). The correlation coefficient is a dimensionless (unitless) quantity between −1 and 1. A correlation coefficient of 1 or −1 indicates that x and y have a linear relationship with a positive or negative slope, respectively. A correlation coefficient of zero indicates no relationship; for example, two sets of random numbers will yield a correlation coefficient near zero. Intermediate correlation coefficients indicate intermediate degrees of relatedness between two sets of numbers. The correlation coefficient is a good statistical measure of the degree to which one set of numbers predicts a second set of numbers.
  • Composition factor—a numerical factor based solely on the composition or sequence of an oligonucleotide without involving additional parameters, such as experimentally measured nearest-neighbor thermodynamic parameters. For instance, the fraction (G+C), given by the formula [0095] f G C = n G + n C n G + n C + n A + n T o r U ,
    Figure US20030054346A1-20030320-M00003
  • where n[0096] G, nC, nA and nT or U are the numbers of G, C, A and T (or U) bases in an oligonucleotide, is an example of a composition factor. Examples of composition factors, by way of illustration and not limitation, are mole fraction (G+C), percent (G+C), sequence complexity, sequence information content, frequency of occurrence of specific oligonucleotide sequences in a sequence database and so forth.
  • Thermodynamic factor—numerical factors that predict the behavior of an oligonucleotide in some process that has reached equilibrium. For instance, the free energy of duplex formation between an oligonucleotide and its complement is a thermodynamic factor. Thermodynamic factors for systems that can be subdivided into constituent parts are often estimated by summing contributions from the constituent parts. Such an approach is used to calculate the thermodynamic properties of oligonucleotides. [0097]
  • Examples of thermodynamic factors, by way of illustration and not limitation, are predicted duplex melting temperature, predicted enthalpy of duplex formation, predicted entropy of duplex formation, free energy of duplex formation, predicted melting temperature of the most stable intramolecular structure of the oligonucleotide or its complement, predicted enthalpy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted entropy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted free energy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted melting temperature of the most stable hairpin structure of the oligonucleotide or its complement, predicted enthalpy of the most stable hairpin structure of the oligonucleotide or its complement, predicted entropy of the most stable hairpin structure of the oligonucleotide or its complement, predicted free energy of the most stable hairpin structure of the oligonucleotide or its complement, thermodynamic partition function for intramolecular structure of the oligonucleotide or its complement and the like. [0098]
  • Chemosynthetic efficiency—oligonucleotides and nucleotide sequences may both be made by sequential polymerization of the constituent nucleotides. However, the individual addition steps are not perfect; they instead proceed with some fractional efficiency that is less than unity. This may vary as a function of position in the sequence. Therefore, what is really produced is a family of molecules that consists of the desired molecule plus many truncated sequences. These “failure sequences” affect the observed efficiency of hybridization between an oligonucleotide and its complementary target. Examples of chemosynthetic efficiency factors, by way of illustration and not limitation, are coupling efficiencies, overall efficiencies of the synthesis of a target nucleotide sequence or an oligonucleotide probe, and so forth. [0099]
  • Kinetic factor—numerical factors that predict the rate at which an oligonucleotide hybridizes to its complementary sequence or the rate at which the hybridized sequence dissociates from its complement are called kinetic factors. Examples of kinetic factors are steric factors calculated via molecular modeling or measured experimentally, rate constants calculated via molecular dynamics simulations, associative rate constants, dissociative rate constants, enthalpies of activation, entropies of activation, free energies of activation, and the like. [0100]
  • Predicted duplex melting temperature—the temperature at which an oligonucleotide mixed with a hybridizable nucleotide sequence is predicted to form a duplex structure (double-helix hybrid) with 50% of the hybridizable sequence. At higher temperatures, the amount of duplex is less than 50%; at lower temperatures, the amount of duplex is greater than 50%. The melting temperature T[0101] m (°C.) is calculated from the enthalpy (ΔH), entropy (ΔS) and C, the concentration of the most abundant duplex component (for hybridization arrays, the soluble hybridization target), using the equation T m = Δ H Δ S + R l n C - 273.15 ,
    Figure US20030054346A1-20030320-M00004
  • where R is the gas constant, 1.987 cal/(mole-°K.). For longer sequences (>100 nucleotides), T[0102] m can also be estimated from the mole fraction (G+C), χG+C, using the equation
  • T m=81.5+41.0 χG+C.
  • Melting temperature corrected for salt concentration—polynucleotide duplex melting temperatures are calculated with the assumption that the concentration of sodium ion, Na[0103] +, is 1 M. Melting temperatures T′m calculated for duplexes formed at different salt concentrations are corrected via the semi-empirical equation
  • T′ m([Na +])=T m+16.6 log([Na +]).
  • Predicted enthalpy, entropy and free energy of duplex formation—the enthalpy (ΔH), entropy and free energy (ΔG) are thermodynamic state functions, related by the equation[0104]
  • ΔG=ΔH−T ΔS,
  • where T is the temperature in °K. In practice, the enthalpy and entropy are predicted via a thermodynamic model of duplex formation (the “nearest neighbor” model which is explained in more detail below), and used to calculate the free energy and melting temperature. [0105]
  • Predicted free energy of the most stable intramolecular structure of an oligonucleotide or its complement—single-stranded DNA and RNA molecules that contain self-complementary sequences can form intramolecular secondary structures. For instance, the [0106] oligonucleotide
    5′-ACTGGCAATCACAATTGCCAGTAA-3′ (SEQ ID NO:1)
  • can base pair with itself, to form the [0107] structure
    5′-ACTGGCAATCA (SEQ ID NO: 1)
       ||||||||| C
    3′-AATGACCGTTAA
  • where a vertical line indicates Watson-Crick base pair formation. Many such structures are possible for a given sequence; two are of particular interest. The first is the lowest energy “hairpin” structure (formed by folding a sequence back on itself with a connecting loop at least 3 nucleotides long). The second is the lowest energy structure that can be formed by including more complex topologies, such as “bulge loops” (unpaired duplexes between two regions of base-paired duplex) and cloverleaf structures, where 3 base-paired stretches meet at a triple-junction. A good example of a complex secondary structure is the structure of a tRNA molecule, an example of which, namely, yeast tRNA[0108] Ala is shown below.
  • For either type of structure, a value of the free energy of that structure can be calculated, relative to the unpaired strand, by means of a thermodynamic model similar to that used to calculate the free energy of a base-paired duplex structure. Again, the free energy ΔG is calculated from the enthalpy ΔH and the entropy ΔS at a given absolute temperature T via the equation[0109]
  • ΔG=ΔH−T ΔS.
  • However, in this case there is the added difficulty that the lowest energy structure must be found. For a simple hairpin structure, this optimization can be performed via a relatively simple search algorithm. For more complex structures (such as a cloverleaf) a dynamic programming algorithm, such as that implemented in the program MFOLD, must be used. [0110]
  • Yeast tRNA[0111] Ala—The RNA sequence includes many non-standard ribonucleotides, such as D (5,6 dihydrouridine), m1G (1-methylguanosine), m2G (N2-dimethylguanosine), ψ(pseudouridine), I (inosine), m1 (1-methylinosine) and T (ribothymidine). Dots (•) mark (non-standard) G=U base pairs. The structure is taken from A. L. Lehninger, et al., Principles of Biochemistry, 2nd Ed. (Worth Publishers, New York, N.Y., 1993).
                    3′ (SEQ ID NO:2)
                   /
                  A
                  C
               5′  C
                 \ A
                pG-C
                G-C
                G·U
                C-G
                G-C
                U U
                G-C      UU
      DG       U    AGGCC  A
    C  AUGCGm1G     |||||    G
        ·|||        UCCGG  C
    G  AGCGC        C     Tψ
     GD     m2G     D
               C-GAG
               U-A
               C-G
               C-G
               C-G
              U   ψ
             U    m1I
              I   C
                G
  • Coupling efficiencies—chemosynthetic efficiencies are called coupling efficiencies when the synthetic scheme involves successive attachment of different monomers to a growing oligomer; a good example is oligonucleotide synthesis via phosphoramidite coupling chemistry. [0112]
  • Algorithmic Operations: [0113]
  • Evaluating a parameter—determination of the numerical value of a numerical descriptor of a property of an oligonucleotide sequence by means of a formula, algorithm or look-up table. [0114]
  • Filter—a mathematical rule or formula that divides a set of numbers into two subsets. Generally, one subset is retained for further analysis while the other is discarded. If the division into two subsets is achieved by testing the numbers against a simple inequality, then the filter is referred to as a “cut-off”. In the context of the current invention, an example by way of illustration and not limitation is the statement “The predicted self structure free energy must be greater than or equal to −0.4 kcal/mole,” which can be used as a filter for oligonucleotide sequences; this particular filter is also an example of a cut-off. [0115]
  • Filter set—A set of rules or formulae that successively winnow a set of numbers by identifying and discarding subsets that do not meet specific criteria. In the context of the current invention, an example by way of illustration and not limitation is the compound statement “the predicted self structure free energy must be greater than or equal to −0.4 kcal/mole and the predicted RNA/DNA heteroduplex melting temperature must lie between 60° C. and 85° C.,” which can be used as a filter set for oligonucleotide sequences. [0116]
  • Examining a parameter—comparing the numerical value of a parameter to some cutoff-value or filter. [0117]
  • Statistical sampling of a cluster—extraction of a subset of oligonucleotides from a cluster of oligonucleotides based upon some statistical measure, such as rank by oligonucleotide starting position in the sequence complementary to the target sequence. [0118]
  • First quartile, median and third quartile—If a set of numbers is ranked by value, then the value that divides the lower ¼ from the upper ¾ of the set is the first quartile, the value that divides the set in half is the median and the value that divides the lower ¾ from the upper ¼ of the set is the third quartile. [0119]
  • Poorly correlated—If it is not possible to perform a “good” prediction, as defined via statistics, of one set of numbers from another set of numbers using a simple linear model, then the two sets of numbers are said to be poorly correlated. [0120]
  • Computer program—a written set of instructions that symbolically instructs an appropriately configured computer to execute an algorithm that will yield desired outputs from some set of inputs. The instructions may be written in one or several standard programming languages, such as C, C++, Visual BASIC, FORTRAN or the like. Alternatively, the instructions may be written by imposing a template onto a general-purpose numerical analysis program, such as a spreadsheet. [0121]
  • Experimental System Components: [0122]
  • Small organic molecule—a compound of molecular weight less than 1500, preferably 100 to 1000, more preferably 300 to 600 such as biotin, fluorescein, rhodamine and other dyes, tetracycline and other protein binding molecules, and haptens, etc. The small organic molecule can provide a means for attachment of a nucleotide sequence to a label or to a support. [0123]
  • Support or surface—a porous or non-porous water insoluble material. The surface can have any one of a number of shapes, such as strip, plate, disk, rod, particle, including bead, and the like. The support can be hydrophilic or capable of being rendered hydrophilic and includes inorganic powders such as glass, silica, magnesium sulfate, and alumina; natural polymeric materials, particularly cellulosic materials and materials derived from cellulose, such as fiber containing papers, e.g., filter paper, chromatographic paper, etc.; synthetic or modified naturally occurring polymers, such as nitrocellulose, cellulose acetate, poly (vinyl chloride), polyacrylamide, cross linked dextran, agarose, polyacrylate, polyethylene, polypropylene, poly(4-methylbutene), polystyrene, polymethacrylate, poly(ethylene terephthalate), nylon, poly(vinyl butyrate), etc.; either used by themselves or in conjunction with other materials; glass available as Bioglass, ceramics, metals, and the like. Natural or synthetic assemblies such as liposomes, phospholipid vesicles, and cells can also be employed. [0124]
  • Binding of oligonucleotides to a support or surface may be accomplished by well-known techniques, commonly available in the literature. See, for example, A. C. Pease, et al., [0125] Proc. Nat. Acad. Sci. USA, 91:5022-5026 (1994).
  • Label—a member of a signal producing system. Usually the label is part of a target nucleotide sequence or an oligonucleotide probe, either being conjugated thereto or otherwise bound thereto or associated therewith. The label is capable of being detected directly or indirectly. Labels include (i) reporter molecules that can be detected directly by virtue of generating a signal, (ii) specific binding pair members that may be detected indirectly by subsequent binding to a cognate that contains a reporter molecule, (iii) oligonucleotide primers that can provide a template for amplification or ligation or (iv) a specific polynucleotide sequence or recognition sequence that can act as a ligand such as for a repressor protein, wherein in the latter two instances the oligonucleotide primer or repressor protein will have, or be capable of having, a reporter molecule. In general, any reporter molecule that is detectable can be used. [0126]
  • The reporter molecule can be isotopic or nonisotopic, usually non-isotopic, and can be a catalyst, such as an enzyme, a polynucleotide coding for a catalyst, promoter, dye, fluorescent molecule, chemiluminescent molecule, coenzyme, enzyme substrate, radioactive group, a small organic molecule, amplifiable polynucleotide sequence, a particle such as latex or carbon particle, metal sol, crystallite, liposome, cell, etc., which may or may not be further labeled with a dye, catalyst or other detectable group, and the like. The reporter molecule can be a fluorescent group such as fluorescein, a chemiluminescent group such as luminol, a terbium chelator such as N-(hydroxyethyl) ethylenediaminetriacetic acid that is capable of detection by delayed fluorescence, and the like. [0127]
  • The label is a member of a signal producing system and can generate a detectable signal either alone or together with other members of the signal producing system. As mentioned above, a reporter molecule can be bound directly to a nucleotide sequence or can become bound thereto by being bound to an sbp member complementary to an sbp member that is bound to a nucleotide sequence. Examples of particular labels or reporter molecules and their detection can be found in U.S. Pat. No. 5,508,178 issued Apr. 16, 1996, at column 11, line 66, to column 14, line 33, the relevant disclosure of which is incorporated herein by reference. When a reporter molecule is not conjugated to a nucleotide sequence, the reporter molecule may be bound to an sbp member complementary to an sbp member that is bound to or part of a nucleotide sequence. [0128]
  • Signal Producing System—the signal producing system may have one or more components, at least one component being the label. The signal producing system generates a signal that relates to the presence or amount of a target polynucleotide in a medium. The signal producing system includes all of the reagents required to produce a measurable signal. Other components of the signal producing system may be included in a developer solution and can include substrates, enhancers, activators, chemiluminescent compounds, cofactors, inhibitors, scavengers, metal ions, specific binding substances required for binding of signal generating substances, and the like. Other components of the signal producing system may be coenzymes, substances that react with enzymic products, other enzymes and catalysts, and the like. The signal producing system provides a signal detectable by external means, by use of electromagnetic radiation, desirably by visual examination. Signal-producing systems that may be employed in the present invention are those described more fully in U.S. Pat. No. 5,508,178, the relevant disclosure of which is incorporated herein by reference. [0129]
  • Ancillary Materials—Various ancillary materials will frequently be employed in the methods and assays utilizing oligonucleotide probes designed in accordance with the present invention. For example, buffers and salts will normally be present in an assay medium, as well as stabilizers for the assay medium and the assay components. Frequently, in addition to these additives, proteins may be included, such as albumins, organic solvents such as formamide, quaternary ammonium salts, polycations such as spermine, surfactants, particularly non-ionic surfactants, binding enhancers, e.g., polyalkylene glycols, or the like. [0130]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention is directed to methods or algorithms for predicting oligonucleotides specific for a nucleic acid target where the oligonucleotides exhibit a high potential for hybridization. The algorithm uses parameters of the oligonucleotide and the oligonucleotide/target nucleotide sequence duplex, which can be readily predicted from the primary sequences of the target polynucleotide and candidate oligonucleotides. In the methods of the present invention, oligonucleotides are filtered based on one or more of these parameters, then further filtered based on the sizes of clusters of oligonucleotides along the input polynucleotide sequence. The methods or algorithms of the present invention may be carried out using either relatively simple user-written subroutines or publicly available stand-alone software applications (e.g., dynamic programming algorithm for calculating self-structure free energies of oligonucleotides). The parameter calculations may be orchestrated and the filtering algorithms may be implemented using any of a number of commercially available computer programs as a framework such as, e.g., Microsoft® Excel spreadsheet, Microsoft® Access relational database and the like. The basic steps involved in the present methods involve parsing a sequence that is complementary to a target nucleotide sequence into a set of overlapping oligonucleotide sequences, evaluating one or more parameters for each of the oligonucleotide sequences, said parameter or parameters being predictive of probe hybridization to the target nucleotide sequence, filtering the oligonucleotide sequences based on the values for each parameter, filtering the oligonucleotide sequences based on the length of contiguous sequence elements and ranking the contiguous sequence elements based on their length. We have found that oligonucleotides in the longest contiguous sequence elements generally show the highest hybridization efficiencies. [0131]
  • The present methods are based on our recognition that oligonucleotides showing high hybridization efficiencies tend to form clusters. It is believed that this clustering reflects local regions of the target nucleotide sequence that are unstructured and accessible for oligonucleotide binding. Oligonucleotides that are contiguous along a region of the input nucleic acid sequence are identified. These oligonucleotides are sorted based on the length of the contiguous sequence elements. The sorting approach used in the present invention apparently serves as a surrogate for the calculation of local secondary structure of the target nucleotide sequence. This is supported by our observation that treatments intended to eliminate long-range nucleic acid structure (e.g., random fragmentation) do not eliminate the differences in hybridization yields across oligonucleotide probe arrays. This implies that major determinants of efficient hybridization are local regions of the target sequence. The identification of contiguous sequence elements is a simple and efficient method for recognizing clusters of such determinants and, thus, for identifying oligonucleotide probes that exhibit high hybridization efficiency for a target nucleotide sequence. [0132]
  • As mentioned above one embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides is identified. The length of the oligonucleotides may be the same or different. The oligonucleotides are unique in that no two of the oligonucleotides are identical. The unique oligonucleotides are chosen to sample the entire length of a nucleotide sequence that is hybridizable with the target nucleotide sequence. The actual number of oligonucleotides is generally determined by the length of the nucleotide sequence and the desired result. The number of oligonucleotides should be sufficient to achieve a consensus behavior. In other words, the oligonucleotide sequences should be sufficiently numerous that several possible probes overlap or fall within a given region that is expected to yield acceptable hybridization efficiency. Since the location of these regions is not known before hand, the best strategy is to equally space the probe sequences along the sequence that is hybridizable to the target sequence. Since regions of acceptable hybridization efficiency are generally on the order of 20 nucleotides in length, a practical strategy is to space the starting nucleotides of the oligonucleotide sequences no more than five basepairs apart. If computation time needed to calculate the predictive parameters is not an issue, then the best strategy is to space the starting nucleotides one nucleotide apart. An important feature of the present invention is to determine oligonucleotides that are clustered along a region of the nucleotide sequence. The individual predictions made for individual oligonucleotide sequences are not very good. However, we have found that the predictions that are experimentally observed tend to form contiguous clusters, while the spurious predictions tend to be solitary. Thus, the number of oligonucleotides should be sufficient to achieve the desired clustering. [0133]
  • Preferably, a set of overlapping sequences is chosen. To this end, the subsequences are chosen so that there is overlap of at least one nucleotide from one oligonucleotide to the next. More preferably, the overlap is two or more nucleotides. Most preferably, the oligonucleotides are spaced one nucleotide apart and the predetermined number is L-[0134] N+1 oligonucleotides where L is the length of the nucleotide sequence and N is the length of the oligonucleotides. In the latter situation, the unique oligonucleotides are of identical length N. Thus, a set of overlapping oligonucleotides is a set of oligonucleotides that are subsequences derived from some master sequence by subdividing that sequence in such a way that each subsequence contains either the start or end of at least one other subsequence in the set.
  • An example of the above for purposes of illustration and not limitation is presented by the sequence ATGGACTTAGCATTCG (SEQ ID NO:3), from which the following set of overlapping oligonucleotides can be identified: [0135]
    ATGGACTTAGCA (SEQ ID NO:4)
     TGGACTTAGCAT (SEQ ID NO:5)
      GGACTTAGCATT (SEQ ID NO:6)
       GACTTAGCATTC (SEQ ID NO:7)
        ACTTAGCATTCG (SEQ ID NO:8)
  • In this example the overlapping oligonucleotides are spaced one nucleotide apart. In other words, there is overlap of all but one nucleotide from one oligonucleotide to the next. In the example above, the original nucleotide sequence is 16 nucleotides long (L=16). The length of each of the overlapping oligonucleotides is 12 nucleotides long (N=12) and there are L−N+1=5 oligonucleotides. [0136]
  • The length of the oligonucleotides may be the same or different and may vary depending on the length of the nucleotide sequence. The length of the oligonucleotides is determined by a practical compromise between the limits of current chemistries for oligonucleotide synthesis and the need for longer oligonucleotides, which exhibit greater binding affinity for the target sequence and are more likely to occur only once in complicated mixtures of polynucleotide targets. Usually, the length of the oligonucleotides is from about 10 to 50 nucleotides, more usually, from about 25 to 35 nucleotides. [0137]
  • In the next step of the method at least one parameter that is independently predictive of the ability of each of the oligonucleotides of the set to hybridize to the target nucleotide sequence is determined and evaluated for each of the above oligonucleotides. Examples of such a parameter, by way of illustration and not limitation, is a parameter selected from the group consisting of composition factors, thermodynamic factors, chemosynthetic efficiencies, kinetic factors and mathematical combinations of these quantities. [0138]
  • The determination of a parameter may be carried out by known methods. For example, melting temperature of the oligonucleotide/target duplex may be determined using the nearest neighbor method and parameters appropriate for the nucleotide acids involved. For DNA/DNA parameters, see J. SantaLucia Jr., et al., (1996) [0139] Biochemistry, 35:3555. For RNA/DNA parameters, see N. Sugimoto, et al., (1995) Biochemistry, 34:11211. Briefly, these methods are based on the observation that the thermodynamics of a nucleic acid duplex can be modeled as the sum of a term arising from the entire duplex and a set of terms arising from overlapping pairs of nucleotides (“nearest neighbor” model). For a discussion of the nearest neighbor see J. SantaLucia Jr., et al., (1996) Biochemistry, supra, and N. Sugimoto, et al., (1995) Biochemistry, supra. For example, the enthalpy ΔH of the duplex formed by the sequence
    ATGGACTTAGCA (SEQ ID NO:4)
  • and its perfect complement can be approximated by the equation[0140]
  • ΔH≈H unit +H AT +H TG +H GG +H GA +H AC +H CT +H TT +H TA +H AG +H GC +H CA.
  • In the above equation, the term H[0141] init is the initiation enthalpy for the entire duplex, while the terms HAT, . . . , HCA are the so-called “nearest neighbor” enthalpies. Similar equations can be written for the entropy, for the corresponding quantities for RNA homoduplexes, or for DNA/RNA heteroduplexes. The free energy can then be calculated from the enthalpy, entropy and absolute temperature, as described previously.
  • Predicted free energy of the most stable intramolecular structure of an oligonucleotide (ΔG[0142] MFOLD) may be determined using the nucleic acid folding algorithm MFOLD and parameters appropriate for the oligonucleotide, e.g., DNA or RNA. For MFOLD, see J. A. Jaeger, et al., (1989), supra. For DNA folding parameters, see J. SantaLucia Jr., et al., (1996), supra. Briefly, these methods operate in two steps. First, a map of all possible compatible intramolecular base pairs is made. Second, the global minimum of the free energy of the various possible base pairing configurations is found, using the nearest neighbor model to estimate the enthalpy and entropy, the user input temperature to complete the calculation of free energy, and a dynamic programming algorithm to find the global minimum. The algorithm is computationally intensive; calculation times scale as the third power of the sequence length.
  • The following Table 1 summarizes groups of parameters that are independently predictive of the ability of each of the oligonucleotides to hybridize to the target nucleotide sequence together with a reference to methods for their determination. Parameters within a given group are known or expected to be strongly correlated to one another, while parameters in different groups are known or expected to be poorly correlated with one another. [0143]
    TABLE 1
    Group Parameter Source or Reference
    I duplex enthalpy, ΔH Santa Lucia et al., 1996; Sugimoto et al., 1995
    duplex entropy, ΔS Santa Lucia et al., 1996; Sugimoto et al., 1995
    duplex free energy, ΔG ΔG = ΔH − TΔS (see text)
    melting temperature, Tm (see text)
    mole fraction (or percent) G + C self-explanatory
    subsequence duplex enthalpy Santa Lucia et al., 1996; Sugimoto et al., 1995
    subsequence duplex entropy Santa Lucia et al., 1996; Sugimoto et al., 1995
    subsequence duplex free energy ΔG = ΔH − TΔS (see text)
    subsequence duplex Tm (see text)
    subsequence duplex mole fraction self-explanatory
    (or percent) G + C
    II intramolecular enthalpy, ΔHMFOLD Jaeger et al., 1989; Santa Lucia et al., 1996
    intramolecular entropy, ΔSMFOLD Jaeger et al., 1989; Santa Lucia et al., 1996
    intramolecular free energy, ΔGMFOLD ΔG = ΔH − TΔS (see text)
    hairpin enthalpy, ΔHhairpin Jaeger et al., 1989; Santa Lucia et al., 1996
    hairpin entropy, ΔShairpin Jaeger et al., 1989; Santa Lucia et al., 1996
    hairpin free energy, ΔGhairpin ΔG = ΔH − TΔS (see text)
    intramolecular partition function, Z Z = k structures exp ( - Δ G intramolecular ( k ) / RT )
    Figure US20030054346A1-20030320-M00005
    III sequence complexity Altschul et al., 1994
    sequence information content Altschul et al., 1994
    IV steric factors molecular modeling or experiment
    molecular dynamic simulation Weber & Hefland, 1979
    enthalpy, entropy & free energy of measured experimentally
    activation
    association & dissociation rates Patzel & Sczakiel, 1998
    V oligonucleotide chemosynthetic measured experimentally
    efficiencies
    VI target synthetic efficiencies measured experimentally
  • In a next step of the present method, a subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified based on the above evaluation of the parameter. A number of mathematical approaches may be followed to sort the oligonucleotides based on a parameter. In one approach a cut-off value is established. The cut-off value is adjustable and can be optimized relative to one or more training data sets. This is done by first establishing some metric for how well a cutoff value is performing; for example, one might use the normalized signal observed for each oligonucleotide in the training set. Once such a metric is established, the cutoff value can be numerically optimized to maximize the value of that metric, using optimization algorithms well known to the art. Alternatively, the cutoff value can be estimated using graphical methods, by graphing the value of the metric as a function of one or more parameters, and then establishing cutoff values that bracket the region of the graph where the chosen metric exceeds some chosen threshold value. In essence, the cut off values are chosen so that the rule set used yields training data that maximizes the inclusion of oligonucleotides that exhibit good hybridization efficiency and minimizes the inclusion of oligonucleotides that exhibit poor hybridization efficiency. [0144]
  • A preferred approach to performing such a graph-based optimization of filter parameters is shown in FIG. 3. In FIG. 3, hybridization data from several different genes have been used to prepare a contour plot of relative hybridization intensity as a function of DNA/RNA heteroduplex melting temperature and free energy of the most stable intramolecular structure of the probe. Contours are shown only for regions for which there are data; the white space outside of the outermost contour indicates that there are no experimental data for that region. The details of how the data were obtained can be found in Example 1 below. A summary of the sequences and number of data points employed is shown in Table 2 below. The measured hybridization intensities for each data set were normalized prior to construction of the contour plot depicted in FIG. 3 by dividing each observed intensity by the maximum intensity observed for that gene. In addition, differences in hybridization salt concentrations and hybridization temperatures were accounted for by using the salt concentration-corrected values of the melting temperatures and by subtracting the hybridization temperature from each predicted melting temperature, respectively. The filter set determined by examination of FIG. 3 is indicated by both the dotted open box in the figure and by the inequalities above the box. [0145]
  • One way in which such a contour plot may be prepared involves the use of an appropriate software application such as Microsoft® Excel® or the like. For example, the cross-tabulation tool may be used in the Microsoft® Excel® program. Data is accumulated into rectangular bins that are 0.5 kcal ΔG[0146] MFOLD wide and 2.5° C. Tm wide. In each bin the average values of ΔGMFOLD, Tm−Thyb, and the normalized hybridization intensity are calculated. The data is output to the software application DeltaGraph® (Deltapoint, Inc., Monterey, Calif.) and the contour plot is prepared using the tools and instructions provided.
    TABLE 2
    Target (GenBank Target No. Data [Na+]
    Accession No.) Strand Points Thyb Correction
    HIV protease-reverse Sense 1,022 35° C. −1.4° C.
    transcriptase (PRT)a
    (M15654)
    HIV protease-reverse antisense 1,041 30° C. −1.4° C.
    transcriptase (PRT)a
    (M15654)
    HIV protease-reverse Sense 88 35° C. −1.4° C.
    transcriptase (PRT)b
    (M15654)
    Human G3PDH antisense 93 35° C. −1.4° C.
    (glyceraldehyde-3-
    dehydrogenase)b (X01677)
    Human p53b (X02469) antisense 93 35° C. −1.4° C.
    Rabbit β-globinc (K03256) antisense 106 30° C.   0° C.
  • Once the cut-off value is selected, a subset of oligonucleotides having parameter values greater than or equal to the cut-off value is identified. This refers to the inclusion of oligonucleotides in a subset based on whether the value of a predictive parameter satisfies an inequality. [0147]
  • Examples of identifying a subset of oligonucleotides by establishing cut-off values for predictive parameters are as follows: for melting temperature an inequality might be 60° C.≦T[0148] m; for predicted free energy an inequality, preferably, might be Δ G M F O L D - 0.4 kcal m o l e .
    Figure US20030054346A1-20030320-M00006
  • In a variation of the above, both a maximum and a minimum cut-off value may be selected. A subset of oligonucleotides is identified whose values fall within the maximum and minimum values, i.e., values greater than or equal to the minimum cut-off value and less than or equal to the maximum cut-off value. An example of this approach for melting temperature might be the [0149] inequality 60° C.≦Tm≦85° C.
  • With regard to cut off values for T[0150] m the lower limit is most important, and is preferably Tm=Thyb, more preferably, Tm=Thyb+15° C. The upper cutoff is important when the sequence region under consideration is unusually rich in G and C, and is preferably Tm=Thyb+40° C. With regard to ΔGMFOLD the cutoff value is usually greater than or equal to −1.0 kcal/mole. As mentioned above, the cutoff values preferably are determined from real data through experimental observations.
  • In another approach the parameter values may be converted into dimensionless numbers. The parameter value is converted into a dimensionless number by determining a dimensionless score for each parameter resulting in a distribution of scores having a mean value of zero and a standard deviation of one. The dimensionless score is a number that is used to rank some object (such as an oligonucleotide) to which that score relates. A score that has no units (i.e., a pure number) is called a dimensionless score. [0151]
  • In one approach the following equations are used for converting the values of said parameters into dimensionless numbers: [0152] s i , x = x i - x σ { x } ,
    Figure US20030054346A1-20030320-M00007
  • where s[0153] i,x is the dimensionless score derived from parameter x calculated for oligonucleotide i, xi is the value of parameter x calculated for oligonucleotide i, <x> is the average of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and σ{x} is the standard deviation of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and is given by the equation σ { x } = j = 1 M ( x j - x ) 2 M - 1 ,
    Figure US20030054346A1-20030320-M00008
  • where M is the number of oligonucleotides. The resulting distribution of scores, {s} has a mean value of zero and a standard deviation of one. These properties can be important for a combination of the scores discussed below. [0154]
  • The use of a dimensionless number approach may further include calculating a combination score S[0155] i by evaluating a weighted average of the individual values of the dimensionless scores si,x by the equation: S i = { x } q x s i , x ,
    Figure US20030054346A1-20030320-M00009
  • where q[0156] x is the weight assigned to the score derived from parameter x, the individual values of qx are always greater than zero, and the sum of the weights qx is unity.
  • In another variation of the above approach, the method of calculation of the composite parameter is optimized based on the correlation of the individual composite scores to real data, as explained more fully below. [0157]
  • In one approach the calculation of the composite score further involves determining a moving window-averaged combination score <S[0158] i> for the ith probe by the equation: S i = 1 w j = i - w - 1 2 i + w - 1 2 S J ,
    Figure US20030054346A1-20030320-M00010
  • w=an odd integer, [0159]
  • where w is the length of the window for averaging (i.e., w nucleotides long), and then applying a cutoff filter to the value of <S[0160] i>. This procedure results in smoothing (smoothing procedure) by turning each score into a consensus metric for a set of w adjacent oligonucleotide probes. The score, referred to as the “smoothed score,” is essentially continuous rather than a few discrete values. The value of the smoothed score is strongly influenced by clustering of scores with high or low values; window averaging therefore provides a measurement of cluster size.
  • An advantage of the dimensionless score approach to the probe prediction algorithm is that it is easy to objectively optimize. In one approach to training the algorithm, optimization of the weights q[0161] x above may be performed by varying the values of the weights so that the correlation coefficient ρ{<Si>},{Vi} between the set of window-averaged combination scores {<Si>} and a set of calibration experimental measurements {Vi} is maximized. The correlation coefficient ρ{<Si>},{Vi} is calculated from the equation ρ { S i } , { V i } = ( 1 M ) C o v a r i a n c e ( S , V ) σ { S i } σ { V i } ,
    Figure US20030054346A1-20030320-M00011
  • where M is the number of window averaged, combination dimensionless scores and the number of corresponding measurements, the covariance is as defined earlier (see earlier equations) and σ[0162] {<Si>} and σ{Vi} are the standard deviations of {<Si>} and {Vi}, as defined previously. An example of this approach is shown in Example 2, below.
  • In another approach the parameter is derived from one or more factors by mathematical transformation of the factors. This involves the calculation of a new predictive parameter from one or more existing predictive parameters, by means of an equation. For instance, the equilibrium constant K[0163] open for formation of an oligonucleotide with no intramolecular structure from its structured form can be calculated from the intramolecular structure free energy ΔGMFOLD, using the equation: K open = exp ( Δ G MFOLD RT ) .
    Figure US20030054346A1-20030320-M00012
  • In a next step of the method oligonucleotides in the subset are then identified that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. For example, consider a set of overlapping oligonucleotides identified by dividing a nucleotide sequence into subsequences. A subset of the oligonucleotides is obtained as described above. In general, this subset is obtained by applying a rule that rejects some members of the set. For the remaining members of the set, namely, the subset, there will be some average number of nucleotides in the nucleotide sequence between the first nucleotides of adjacent remaining subsequences. If, for some sub-region of the nucleotide sequence, the average number of nucleotides in the nucleotide sequence between the first nucleotides of adjacent remaining subsequences is less than the average for the entire nucleotide sequence, then the oligonucleotides are clustered. The smaller the average number of nucleotides between the first nucleotides of adjacent oligonucleotides, the stronger the clustering. The strongest clustering occurs when there are no intervening nucleotides between adjacent starting nucleotides. In this case, the oligonucleotides are said to be contiguous and may be referred to as contiguous sequence elements or “contigs.”[0164]
  • Accordingly, in this step oligonucleotides are sorted based on length of contiguous sequence elements. Oligonucleotides in the subset determined above are identified that are contiguous along a region of the input nucleic acid sequence. The length of each contig that is equal to the number of oligonucleotides in each contig, namely, oligonucleotides from the above step whose complement begin at positions m+1, m+2 . . . . , m+k in the target sequence, form a contig of length k. Contigs can be identified and contig length can be calculated using, for example, a Visual Basic ® module that can be incorporated into a Microsoft® Excel workbook. [0165]
  • Cluster size can be defined in several ways: [0166]
  • For contiguous clusters, the size is simply the number of adjacent oligonucleotides in the cluster. Again, this may also be referred to as contiguous sequence elements. The number may also be referred to as “contig length”. For example, consider the nucleotide sequence discussed above, namely, ATGGACTTAGCATTCG (SEQ ID NO:3) and the identified set of overlapping oligonucleotides [0167]
    ATGGACTTAGCA (SEQ ID NO:4)
     TGGACTTAGCAT (SEQ ID NO:5)
      GGACTTAGCATT (SEQ ID NO:6)
       GACTTAGCATTC (SEQ ID NO:7)
        ACTTAGCATTCG (SEQ ID NO:8)
  • Suppose that, after calculation and evaluation of the predictive parameters, four nucleotides remain: [0168]
    Figure US20030054346A1-20030320-C00001
  • A “contig” encompassing three of the oligonucleotides of the subset is present together with a single oligonucleotide. The contig length is 3 oligonucleotides. [0169]
  • Alternatively, cluster size at some position in the sequence hybridizable or complementary to the target sequence may be defined as the number of oligonucleotides whose center nucleotides fall inside a region of length M centered about the position in question, divided by M. This definition of clustering allows small gaps in clusters. In the example used above for contiguous clusters, if M was 10, then the cluster size would step through the [0170] values 0/10, . . . , 0/10, 1/10, 2/10, 3/10, 3/10, 4/10, 4/10, 4/10, 4/10, 4/10, 3/10, 2110, 1110, 1/10, 0/10 as the center of the window of length 10 passed through the cluster. In each fraction, the numerator is the number of oligonucleotide sequences that have satisfied the filter set and whose central nucleotides are within a window 10 nucleotides long, centered about the nucleotide under consideration. The denominator (10) is simply the window length.
  • Another alternative is to define the size of a cluster at some position in the sequence hybridizable or complementary to the target sequence as the number of oligonucleotide sequences overlapping that position. This definition is equivalent to the last definition with M set equal to the oligonucleotide probe length and omission of the division by M. [0171]
  • Finally, cluster size can be approximated at each position in a nucleotide sequence by dividing the sequence into oligonucleotides, evaluating a numerical score for each oligonucleotide, and then averaging the scores in the neighborhood of each position by means of a moving window average as described above. Window averaging has the effect of reinforcing clusters of high or low values around a particular position, while canceling varying values about that position. The window average, therefore, provides a score that is sensitive to both the hybridization potential of a given oligonucleotide and the hybridization potentials of its neighbors. [0172]
  • In a next step of the present method, the oligonucleotides in the subset are ranked. Generally, this ranking is based on the lengths of the clusters or contigs, sizes of the clusters or values of a window averaged score. Oligonucleotides found in the longest contigs or largest clusters, or possessing the highest window averaged scores usually show the highest hybridization efficiencies. Often, the highest signal intensity within the cluster corresponds to the median oligonucleotide of the cluster. However, the peak signal intensity within the contig can be determined experimentally, by sampling the cluster at its first quartile, midpoint and third quartile, measuring the hybridization efficiencies of the sampled oligonucleotides, interpolating or extrapolating the results, predicting the position of the optimal probe, and then iterating the probe design process. [0173]
  • FIG. 1 shows a diagram of an example of the above-described method by way of illustration and not limitation. Referring to FIG. 1 a target sequence of length L from, e.g., a database, is used to generate a sequence that is hybridizable to the target sequence from which candidate oligonucleotide probe sequences are generated. One or more parameters are calculated for each of the oligonucleotide probe sequences. The candidate oligonucleotide probe sequences are filtered based on the values of the parameters. Clustering of the filtered candidate probe sequences is evaluated and the clusters are ranked by size. Then, the oligonucleotide probes are statistically sampled and synthesized. Further evaluation may be made by evaluating the hybridization of the selected oligonucleotide probes in real hybridization experiments. The above process may be reiterated to further define the selection. In this way only a small fraction of the potential oligonucleotide probe candidates are synthesized and tested. This is in sharp contrast to the known method of synthesizing and testing all or a major portion of potential oligonucleotide probes for a given target sequence. [0174]
  • The methods of the present invention are preferably carried out at least in part with the aid of a computer. For example, an IBM® compatible personal computer (PC) may be utilized. The computer is driven by software specific to the methods described herein. [0175]
  • The preferred computer hardware capable of assisting in the operation of the methods in accordance with the present invention involves a system with at least the following specifications: Pentium® processor or better with a clock speed of at least 100 MHz, at least 32 megabytes of random access memory (RAM) and at least 80 megabytes of virtual memory, running under either the Windows 95 or Windows NT 4.0 operating system (or successor thereof). [0176]
  • As mentioned above, software that may be used to carry out the methods may be either Microsoft Excel or Microsoft Access, suitably extended via user-written functions and templates, and linked when necessary to stand-alone programs that calculate specific parameters (e.g., MFOLD for intramolecular thermodynamic parameters). Examples of software programs used in assisting in conducting the present methods may be written, preferably, in Visual BASIC, FORTRAN and C++, as exemplified below in the Examples. It should be understood that the above computer information and the software used herein are by way of example and not limitation. The present methods may be adapted to other computers and software. Other languages that may be used include, for example, PASCAL, PERL or assembly language. [0177]
  • FIG. 2 depicts a more specific approach to a method in accordance with the present invention. Referring to FIG. 2, a sequence of length L is obtained from a database such as GenBank, UniGene or a proprietary sequence database. Probe length N is determined by the user based on the requirements for sensitivity and specificity and the limitations of the oligonucleotide synthetic scheme employed. The probe length and sequence length are used to generate L−[0178] N+1 candidate oligonucleotide probes, i.e., from every possible starting position. An initial selection is made based on local sequence predicted thermodynamic properties. To this end, melting temperature Tm and the self-structure free energy ΔGMFOLD, are calculated for each of the potential oligonucleotide probe: target nucleotide sequence complexes. Next, M probes that satisfy Tm and ΔGMFOLD filters are selected. A further selection can be made based on clustering of “good” parameters. Good parameters are parameters that satisfy all of the filters in the filter set. Clustering is defined by any of the methods described previously; in FIG. 2, the “contig length” definition of clustering is used.
  • For each of the M oligonucleotide sequences that satisfied all filters the question is asked whether the oligonucleotide sequence immediately following the sequence under consideration is also one of the sequences that satisfied all of the filters. If the answer to this question is NO, then one stores the current value of the contig length counter, resets the counter to zero and proceeds to the next oligonucleotide sequence that satisfied all filters. If the answer to the question is YES, then 1 is added to the contig length counter and, if the counter now equals 1 (i.e., this is the first oligonucleotide probe sequence in the contig), the starting position of the oligonucleotide is stored. One then moves to the next oligonucleotide that satisfied all filters, which, in this case, is the same as the next oligonucleotide before the application of the filter set. The process is repeated until all M filtered oligonucleotide sequences have been examined. In this way, a single pass through the set of M filtered oligonucleotide sequences generates the lengths and starting positions of all contigs. [0179]
  • Next, contigs are ranked based on the lengths of their contiguous sequence elements. Longer contig lengths generally correlate with higher hybridization efficiencies. All oligonucleotides of the higher-ranking contigs may be considered, or candidate oligonucleotide probes may be picked. For example, candidate oligonucleotide probes can be picked one quarter, one half and three quarters of the way through each contig. The latter approach provides local curvature determination after experimental determination of hybridization efficiencies, which allows either interpolation or extrapolation of the positions of the next probes to be synthesized in order to close in on the optimal probe in the region. If the contig brackets the actual peak of hybridization efficiency, the process will converge in 2-3 iterations. If the contig lies to one side of the actual peak, the process will converge in 3-4 iterations. [0180]
  • The above illustrative approach is further described with reference to the following DNA nucleotide sequence, which is the complement of the target RNA nucleotide sequence: [0181]
    GTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAAAAACTCATGTTCAAGA (SEQ ID NO:9).
  • In the first step of the method, the nucleotide sequence is divided into overlapping oligonucleotides that are 25 nucleotides in length. This length is chosen because it is an effective compromise between the need for sensitivity (enhanced by longer oligonucleotides) and the chemosynthetic efficiency of schemes for synthesis of surface-bound arrays of oligonucleotide probes. [0182]
  • Next, the estimated duplex melting temperatures (T[0183] m) and self-structure free energies (ΔGMFOLD) are calculated for each oligonucleotide in the set of overlapping oligonucleotides. The values are obtained from a user-written function that calculates DNA/RNA heteroduplex thermodynamic parameters (see N. Sugimoto, et al., Biochemistry, 34:11211 (1995)) and a modified version of the program MFOLD that estimates the free energy of the most stable intramolecular structure of a single stranded DNA molecule (see J. A. Jaeger, et al., (1989), supra, respectively. The steps are illustrated below.
    GTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAAAAACTCATGTTCAAGA (target complement sequence)
    Tm (°C) ΔG MFOLD
    GTCCAAAAAGGGTCAGTCTACCTCC 71.77 −1.20 SEQ ID NO:10
     TCCAAAAAGGGTCAGTCTACCTCCC 71.99 −1.20 SEQ ID NO:11
      CCAAAAAGGGTCAGTCTACCTCCCG 70.78 −1.20 SEQ ID NO:12
       CAAAAAGGGTCAGTCTACCTCCCGC 71.23 −1.20 SEQ ID NO:13
        AAAAAGGGTCAGTCTACCTCCCGCC 73.07 −1.20 SEQ ID NO:14
         AAAAGGGTCAGTCTACCTCCCGCCA 75.68 −1.20 SEQ ID NO:15
          AAAGGGTCAGTCTACCTCCCGCCAT 77.53 −1.20 SEQ ID NO:16
           AAGGGTCAGTCTACCTCCCGCCATA 79.03 −1.20 SEQ ID NO:17
            AGGGTCAGTCTACCTCCCGCCATAA 79.03 −1.20 SEQ ID NO:18
             GGGTCAGTCTACCTCCCGCCATAAA 76.85 −1.20 SEQ ID NO:19
              GGTCAGTCTACCTCCCGCCATAAAA 73.10 −0.80 SEQ ID NO:20
               GTCAGTCTACCTCCCGCCATAAAAA 69.50  0.90 SEQ ID NO:21
                TCAGTCTACCTCCCGCCATAAAAAA 65.60  0.90 SEQ ID NO:22
                 CAGTCTACCTCCCGCCATAAAAAAC 64.96  0.90 SEQ ID NO:23
                  AGTCTACCTCCCGCCATAAAAAACT 65.  1.10 SEQ ID NO:24
                   GTCTACCTCCCGCCATAAAAAACTC 66.36  2.40 SEQ ID NO:25
                    TCTACCTCCCGCCATAAAAAACTCA 64.97  2.90 SEQ ID NO:26
                     CTACCTCCCGCCATAAAAAACTCAT 63.96  2.70 SEQ ID NO:27
                      TACCTCCCGCCATAAAAAACTCATG 62.58  1.10 SEQ ID NO:28
                       ACCTCCCGCCATAAAAAACTCATGT 65.10  0.40 SEQ ID NO:29
                        CCTCCCGCCATAAAAAACTCATGTT 64.96  0.10 SEQ ID NO:30
                         CTCCCGCCATAAAAAACTCATGTTC 63.37 −0.10 SEQ ID NO:31
                          TCCCGCCATAAAAAACTCATGTTCA 62.86 −0.10 SEQ ID NO:32
                           CCCGCCATAAAAAACTCATGTTCAA 60.47 −0.10 SEQ ID NO:33
                            CCGCCATAAAAAACTCATGTTCAAG 57.98 −0.10 SEQ ID NO:34
                             CGCCATAAAAAACTCATGTTCAAGA 56.20 −0.10 SEQ ID NO:35
  • Next, the oligonucleotide sequences are filtered on the basis of T[0184] m. A high and low cut-off value may be selected, for example, 60° C.≦Tm≦85° C. Thus, oligonucleotides having Tm values falling within the above range are retained. Those outside the range are discarded, which is indicated below by lining out of those oligonucleotides and parameter values.
    Figure US20030054346A1-20030320-C00002
  • Next, the oligonucleotide sequences remaining after the above exercise are filtered on the basis of ΔG[0185] MFOLD and are retained if the value is greater than −0.4. Those oligonucleotides with a ΔGMFOLD less than −0.4 are discarded, which is indicated below by double lining out of those oligonucleotides and parameter values.
    Figure US20030054346A1-20030320-C00003
  • Clusters of retained oligonucleotides are identified and ranked based on cluster size. In this example, a contiguous cluster of 13 retained oligonucleotides is identified by the vertical black bar on the left. Any or all of the oligonucleotides in this cluster may be evaluated experimentally. [0186]
    Figure US20030054346A1-20030320-C00004
  • Alternatively, in one approach the oligonucleotides at the first quartile, the median and the third quartile of the cluster may be selected for experimental evaluation, indicated below by bold print. [0187]
    Figure US20030054346A1-20030320-C00005
  • In one aspect of the present method, at least two parameters are determined wherein the parameters are poorly correlated with respect to one another. The reason for requiring that the different parameters chosen are poorly correlated with one another is that an additional parameter that is strongly correlated to the original parameter brings no additional information to the prediction process. The correlation to the original parameter is a strong indication that both parameters represent the same physical property of the system. Another way of stating this is that correlated parameters are linearly dependent on one another, while poorly correlated parameters are linearly independent of one another. In practice, the absolute value of the correlation coefficient between any two parameters should be less than 0.5, more preferably, less than 0.25, and, most preferably, as close to zero as possible. [0188]
  • In one preferred approach instead of T[0189] m, for each oligonucleotide/target nucleotide sequence duplex, the difference between the predicted duplex melting temperature corrected for salt concentration and the temperature of hybridization of each of the oligonucleotides with the target nucleotide sequence is determined.
  • In one aspect the present method comprises determining two parameters at least one of the parameters being the association free energy between a subsequence within each of the oligonucleotides and its complementary sequence on the target nucleotide sequence, or some similar, strongly correlated parameter. The object of this approach is to identify a particularly stable subsequence of the oligonucleotide that might be capable of acting as a nucleation site for the beginning of the heteroduplex formation between the oligonucleotide and the target nucleotide sequence. Such nucleation is believed to be the rate-limiting step for process of heteroduplex formation. [0190]
  • The subsequence within the oligonucleotide is from about 3 to 9 nucleotides in length, usually, 5 to 7 nucleotides in length. The subsequence is at least three nucleotides from the terminus of the oligonucleotide. For support-bound oligonucleotides the subsequence is at least three nucleotides from the free end of the oligonucleotide, i.e., the end that is not attached to the support. Generally, this free end is the 5′ end of the oligonucleotide. When the oligonucleotide is attached to a support, the subsequence is at least three nucleotides from the end of the oligonucleotide that is bound to the surface of the support to which the oligonucleotide is attached. Generally, the 3′ end of the oligonucleotide is bound to the support. [0191]
  • The predictive parameter can be, for example, either melting temperature or duplex free energy of the subsequence with the target nucleotide sequence. The subsequence with the maximum (melting temperature) or minimum (free energy) value of one of the above parameters is chosen as the representative subsequence for that oligonucleotide probe. For example, if the oligonucleotide is 20 nucleotides in length and a subsequence of 5 nucleotides is chosen, i.e., a 5-mer, then parameter values are calculated for all 5-mer subsequences of the oligonucleotide that do not include the 2 nucleotides at the free end of the oligonucleotide. Where 5′ is the free end of the oligonucleotide with designated [0192] nucleotide number 1, the values are calculated for all 5-mer subsequences with starting nucleotides from position number 3 to position number 16. Thus, in this example, parameter values for 14 different subsequences are calculated. The subsequence with the maximum value for the parameter is then assigned as the stability subsequence for the oligonucleotide.
  • The inclusion of the above determination of a stability subsequence results in the following algorithm for determining the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides are identified within a nucleotide sequence that is hybridizable with said target nucleotide sequence. The oligonucleotides are chosen to sample the entire length of the nucleotide sequence. For each of the oligonucleotides, parameters that are independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence are determined and evaluated. Two parameters that may be used are the thermodynamic parameters of T[0193] m and ΔGMFOLD. These parameters give rise to associated parameter filters. In one approach evaluation of the parameters involves establishing cut-off values as described above. Application of these cut-off values results in the identification of a subset of oligonucleotides for further scrutiny under the algorithm. In accordance with this embodiment of the present invention, there is included a stability subsequence limit in addition to the above. Cutoff values are determined either by means of objective optimization algorithms well known to the art or via graphical estimation methods; both approaches have been described previously in this document. In either case, the optimization of cutoff values involves comparison of predictions to known hybridization efficiency data sets. This process results in objective optimization as it looks at prediction versus experimental results and is otherwise referred to herein as “training the algorithm.” The experimental data used to train the algorithm is referred to herein as “training data.”
  • In the present approach filters are assigned to the T[0194] m oligonucleotide probe data. The Tm of each oligonucleotide probe needs to be greater than or equal to the assigned filter (Tm probe limit) to be given a filter score of “1”; otherwise, the filter score is “0”. In addition, one can also impose a second filter for this parameter; that is, that the Tm of the oligonucleotide probe also has to be less than a defined upper limit. Filters are also assigned to the ΔGMFOLD data. The ΔGMFOLD of each oligonucleotide probe should be greater than or equal to the assigned filter (ΔGMFOLD limit) to be given a filter score of “1”; otherwise, the filter score is “0”. The filter scores are added. Furthermore, one can also impose a second filter for this parameter; that is, that the ΔGMFOLD also has to be less than a defined upper limit. In accordance with the above discussion stability subsequences are identified. This leads to another filter. Accordingly, filters are assigned to the stability sequence data. The stability subsequence of each oligonucleotide probe needs to be greater than or equal to the assigned filter limit to be given a filter score of “1 ”; otherwise, the filter score is “0”. In addition, one can also impose a second filter for this parameter; that is, that the stability subsequence also has to be less than a defined upper limit. In all cases, the filter values are determined by objective optimization (algorithmic or graphical) of the predictions of the present method versus training data, as described previously.
  • On the basis of the above filter sets a subset of oligonucleotides within said predetermined number of unique oligonucleotides is identified. Oligonucleotides in the subset are identified that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. The resulting number of oligonucleotide probe regions is examined. The above filters may then be loosened or tightened by changing the filter limits to obtain more or fewer clusters of oligonucleotides to match the goal, which is set by the needs of the investigator. For instance, a particular application might require that the [0195] investigator design 5 non-overlapping probes that efficiently hybridize to a given target sequence.
  • As mentioned above, the contigs may be selected on the basis of contig length. In another approach, the scores defined above may be summed for cluster size determination. To this end the probe score of the particular filter set (e.g., T[0196] m probe limit, ΔGMFOLD limit and stability sequence limit) is calculated for each oligonucleotide probe. The probe score is the sum of the filter scores. Thus, the probe score is 0 if no parameters pass their respective filters. The probe score is 1, 2 or 3 if one, two or three parameters, respectively, pass their filters for that oligonucleotide probe. This summing is continued for each parameter that is in the current filter set of the algorithm used. For a given algorithm a minimum probe score limit is set. In the current example this limit will be at least 1 and could be 2 or 3 depending on the needs of the investigator, the number of probe clusters required and the results of objective optimizations of algorithm performance against training data. The probe score is compared to this probe score limit. If the probe score of oligonucleotide probe i is greater than or equal to the probe score limit, then oligonucleotide probe i is assigned a score passed value of 1. Next, a window is chosen for the evaluation of clustering (the “cluster window”). This will be the next filter applied. The cluster window (“w”) smoothes the score passed values by summing the values in a window w nucleotides long, centered about position i. The resulting sum is called the cluster sum. Usually, the cluster window is an odd integer, usually 7 or 9 nucleotides. The cluster sum values are then filtered, by comparing to a user-set threshold, cluster filter. If cluster sum is greater than or equal to cluster filter, this filter is passed, and the probe is predicted to hybridize efficiently to its target.
  • This window summing procedure converts the score for the passed value for each oligonucleotide into a consensus metric for a set of w adjacent probes. A “consensus metric” is a measurement that distills a number of values into one consensus value. In this case, the consensus value is calculated by simply summing the individual values. The window summing procedure therefore evaluates a property similar to the contig length metric discussed above. However, the summed score has the advantage of allowing for a few probes within a cluster to have not passed their individual probe score limits. We have found that this allows more observed hybridization peaks to be predicted. [0197]
  • It may be desired in some circumstances to combine the results of multiple algorithm versions. We refer to this operation as “tiling”. This may be explained more fully as follows. Tiling generally involves joining together the predicted oligonucleotide probe sets identified by multiple algorithm versions. In the context of the present invention, tiling multiple algorithm versions involves forming the union of multiple sets of predictions. These predictions may arise from different embodiments of the present invention. Alternatively, the different sets of predictions may arise from the same embodiment, but different filter sets. The different filter sets may additionally be restricted to different combinations of parameter values. For instance, one filter set might be used when the predicted duplex melting temperature T[0198] m is greater than or equal to some value, while another might be used when Tm is below that value.
  • An example of the logical endpoint of tiling multiple filter sets across different regions of the possible combinations of predictive parameters and then forming the union of the resulting predictions is the contour plot shown in FIG. 3, with the associated rule that “the value of the normalized hybridization intensity associated with a particular combination of (T[0199] m−Thyb) and ΔGMFOLD must be greater than or equal to some threshold value.” In this case, the contour at the threshold value becomes the filter. This contour and its interior can be thought of as the union of many small rectangular regions (“tiles”), each of which is bracketed by low and high cutoff values for each of the parameters.
  • The predictions of different algorithm versions can also be combined by forming the intersection of two or more different predictions. The reliability of predictions within such intersection sets is enhanced because such sets are, by definition, insensitive to changes in the details of the predictive algorithm. Intersection is a useful method for reducing the number of predicted probes when a single algorithm version produces too many candidate probes for efficient experimental evaluation. [0200]
  • The most specific oligonucleotide probe set (i.e., the set least likely to include poor probes) will be the intersection set from multiple algorithms. Clusters that have overlapping oligonucleotide probes from multiple algorithms constitute the intersection set of oligonucleotide probes. The oligonucleotide probe that is in the center of an intersection cluster is chosen. This central oligonucleotide probe may have the highest probability of predicting a peak or, in other words, of binding well to the target nucleotide sequence. Oligonucleotide probes on either side of center, which are still within the intersection cluster, may also be selected. The distance of these “side” oligonucleotide probes from the center generally will be shorter or longer depending upon the length of the cluster. [0201]
  • The most sensitive set of oligonucleotide probes (i.e., the set most likely to include at least one good probe) is generally the union set from multiple algorithms. Clusters that are predicted by at least one type of algorithm constitute the union set of oligonucleotide probes. The oligonucleotide probe in the center of a union cluster is chosen. Oligonucleotide probes on either side of center, which are still within the union cluster, usually are also chosen. The distance of these side probes from the center will be shorter or longer depending upon the length of the cluster. In summary, the combination of using the stability subsequence parameter, tiling multiple filter sets, and making union and intersection cluster sets of oligonucleotide probes exhibits very high sensitivity and specificity in predicting oligonucleotide probes that effectively hybridize to a target nucleotide sequence of interest. [0202]
  • Another aspect of the present invention is a computer based method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides within a nucleotide sequence that is hybridizable with the target nucleotide sequence is identified under computer control. The oligonucleotides are chosen to sample the entire length of the nucleotide sequence. A value is determined and evaluated under computer control for each of the oligonucleotides for at least one parameter that is independently predictive of the ability of each of the oligonucleotides to hybridize to the target nucleotide sequence. The parameter values are stored. Based on the examination of the stored parameter values, a subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified under computer control. Then, oligonucleotides in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence are identified under computer control. [0203]
  • A computer program is utilized to carry out the above method steps. The computer program provides for input of a target-hybridizable or target-complementary nucleotide sequence, efficient algorithms for computation of oligonucleotide sequences and their associated predictive parameters, efficient, versatile mechanisms for filtering sets of oligonucleotide sequences based on parameter values, mechanisms for computation of the size of clusters of oligonucleotide sequences that pass multiple filters, and mechanisms for outputting the final predictions of the method of the present invention in a versatile, machine-readable or human-readable form. [0204]
  • Another aspect of the present invention is a computer system for conducting a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. An input means for introducing a target nucleotide sequence into the computer system is provided. The input means may permit manual input of the target nucleotide sequence. The input means may also be a database or a standard format file such as GenBank. Also included in the system is means for determining a number of unique oligonucleotide sequences that are within a nucleotide sequence that is hybridizable with the target nucleotide sequence. The oligonucleotide sequences is chosen to sample the entire length of the nucleotide sequence. Suitable means is a computer program or software, which also provides memory means for storing the oligonucleotide sequences. The system also includes means for controlling the computer system to carry out a determination and evaluation for each of the oligonucleotide sequences a value for at least one parameter that is independently predictive of the ability of each of the oligonucleotide sequences to hybridize to the target nucleotide sequence. Suitable means is a computer program or software such as, for example, Microsoft® Excel spreadsheet, Microsoft® Access relational database or the like, which also provides memory means for storing the parameter values. The system further comprises means for controlling the computer to carry out an identification of a subset of oligonucleotide sequences within the number of unique oligonucleotide sequences based on the automated examination of the stored parameter values. Suitable means is a computer program or software, which also allocates memory means for storing the subset of oligonucleotides. The system also includes means for controlling the computer to carry out an identification of oligonucleotide sequences in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. Suitable means is a computer program or software, which also allocates memory means for storing the oligonucleotide sequences in the subset. The computer system also includes means for outputting data relating to the oligonucleotide sequences in the subset. Such means may be machine readable or human readable and may be software that communicates with a printer, electronic mail, another computer program, and the like. One particularly attractive feature of the present invention is that the outputting means may communicate directly with software that is part of an oligonucleotide synthesizer. In this way the results of the method of the present invention may be used directly to provide instruction for the synthesis of the desired oligonucleotides. [0205]
  • Another advantage of the present invention is that it may be used to predict efficient hybridization oligonucleotides for each of multiple target sequences. Thus, very large arrays may be constructed and tested with minimal synthesis of oligonucleotides. [0206]
  • EXAMPLES
  • The invention is demonstrated further by the following illustrative examples. Parts and percentages are by weight unless otherwise indicated. Temperatures are in degrees Centigrade (°C.) unless otherwise specified. The following preparations and examples illustrate the invention but are not intended to limit its scope. All reagents used herein were from Amresco, Inc., Solon, Ohio (buffers), Pharmacia Biotech, Piscataway, N.J. (nucleoside triphosphates) or Promega, Madison, Wisconsin (RNA polymerases) unless indicated otherwise. [0207]
  • Example 1
  • Synopsis: Data from labeled RNA target hybridizations to surface-bound DNA probes directed against 4 different gene sequences were compared to the predictions of the preferred version of the prediction algorithm illustrated by the flow chart in FIG. 2. The RNA targets were sequences derived from the human immunodeficiency virus protease-reverse transcriptase region (HIV PRT; sense-strand target polynucleotide), human glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH; antisense-strand target polynucleotide), human tumor suppressor p53 gene (p53; antisense-strand target polynucleotide) and rabbit β-globin gene (β-globin; antisense-strand target polynucleotide). The GenBank accession numbers for the gene sequences, number of data points collected and temperature of hybridization have all been previously listed in Table 2. [0208]
  • Materials and Methods: Three different experimental systems and two different labeling schemes were used to collect data. [0209]
  • The sequence and hybridization data for β-globin were taken from the literature (see Milner et al., (1997), supra; in this experiment, [0210] 32P-radiolabeled RNA target was used.
  • The hybridization data for HIV PRT were obtained using an Affymetrix GeneChip™ HIV PRT-sense probe array (i.e. sense strand target polynucleotide) (GeneChip™ HIV PRT 440s, Affymetrix Corporation, Santa Clara, Calif.) as specified by the manufacturer, except that the fluorescein-labeled RNA target was not fragmented prior to hybridization and that hybridization was performed for 24 hours. The concentration of fluorescein-labeled RNA used was 26.3 nM; label density was approximately 18 fluoresceinated uridyl nucleotides per 1 kilobase (kb) RNA transcript. The raw data were collected by scanning the array with a GeneChip™ Scanner 50 (Affymetrix Corporation, Santa Clara, Calif.), as specified by the manufacturer. The raw data were reduced to a feature-averaged (“.CEL”) file, using the GeneChip™ software supplied with the scanner. Finally, a table of hybridization intensities for perfect-complement 20-mer probes was constructed using the ASCII feature map file supplied with the GeneChip™ software to connect probe sequences to measured hybridization intensities. The resulting data set contained data for every overlapping 20-mer probe to the target sequence. [0211]
  • The data for G3PDH and p53 were measured using 93-feature arrays constructed using commercially available streptavidin-coated microtiter plates (Pierce Chemical Company, Rockford, Ill.). Every tenth possible 25-mer probe complementary to each target was synthesized and 3′-biotinylated by a contract synthesis vendor (Operon, Inc., Alameda, Calif.). The 3′-linked biotin was used to anchor individual probes to microtiter wells, via the well known, strong affinity of streptavidin for biotin. Biotinylated DNA probes were resuspended to a concentration of 10 μM in hybridization buffer (5× sodium chloride-sodium phosphate-disodium ethylenediaminetetraacetate (SSPE), 0.05% Triton X-100, filter-sterilized; 1× SSPE is 150 mM sodium chloride, 10 mM sodium phosphate, 1 mM disodium ethylenediaminetetraacetate (EDTA), pH 7.4). Individual probes were diluted 1:10 in hybridization buffer into specified wells (100 μl total volume per well) of a streptavidin-coated microtiter plate; probes were allowed to bind to the covered plates overnight at 35° C. The other 3 wells of the 96-well microtiter plate were probe-less controls. The coated plates were washed with 3×200 μl of wash buffer (6× SSPE, 0.005% Triton X-100, filter-sterilized). Fluorescein-labeled RNA (100 μl of a 10 nM solution in hybridization buffer) was added to each well. The plates were covered and hybridized at 35° C. for 20-24 hours. The hybridized plates were washed with 3×200 μl of wash buffer. Label was then released in each well by adding 100 μl of 20 μg/ml RNAase I (Sigma Chemical Company, St. Louis, Mo.) in Tris-EDTA (TE) (10 mM Tris(hydroxymethyl)aminomethane (Tris), 1 mM EDTA, pH 8.0, sterile) and incubating at 35° C. for at least 30 minutes. The fluorescence released from the surface of each well was quantitated with a PerSeptive Biosystems Cytofluor II microtiter plate fluorimeter (PerSeptive Biosystems, Inc., Framingham, Mass.) using the manufacturer's recommended excitation and emission filter sets for fluorescein. Each plate hybridization was performed in quadruplicate, and the data for each probe were averaged to obtain the hybridization intensity. [0212]
  • Labeled RNA targets specific for G3PDH and p53 were produced via T7 RNA polymerase transcription of DNA templates in the presence of fluorescein-UTP (Boehringer Mannheim Corporation, Indianapolis, Ind.), using the same method as that outlined by Affymetrix for their GeneChip™ HIV PRT sense probe array. The DNA template for G3PDH was purchased from a commercial source (Clontech, Inc., Palo Alto, Calif.). The DNA template for p53 was obtained by sub-cloning a PCR fragment from an ATCC-derived reference clone (No. 57254) of human p53 into the commercially-available PCR cloning vector pCR2.1-TOPO (Invitrogen, Inc., Carlsbad, Calif.), then linearizing the plasmid at the end of the polycloning site opposite the vector-derived T7 promoter. [0213]
  • Probe predictions were performed using a software application (referred to as “p5”) that was built atop Microsoft's Access relational database application, using added Visual Basic modules, the TrueDB Grid Pro 5.0 (Apex Software Corporation, Pittsburgh, Pa.) enhancement to Visual Basic, and a version of the FORTRAN application MFOLD, modified to run in a Windows NT 4.0 environment, as an ActiveX control. The Visual Basic source code for the p5 software application is found in the Microfiche appendix to this specification. The DNA target sequence complements that were input into p5 for division into potential oligonucleotide probe sequences are listed below: [0214]
  • Parent Sequence Accession No.: K03256 [0215]
  • Locus: BUNGLOB.DNA (portion of rabbit β-globin) [0216]
  • Length: 122 [0217]
    1 TTCTTCCACA TTCACCTTGC CCCACAGGGC AGTGACCGCA GACTTCTCCT CACTGGACAG SEQ ID NO:36
    61 ATGCACCATT CTGTCTGTTT TGGGGGATTG CAAGTAAACA CAGTTGTGTC AAAAGCAAGT
    121 GT
  • Parent Sequence Accession No.: M15654 [0218]
  • Locus: HIV_PRTA.S (HIV PRT antisense; parses into probes specific for sense-strand target) [0219]
  • Length: 1040 [0220]
    1 TGTACTGTCC ATTTATCAGG ATGGAGTTCA TAACCCATCC AAAGGAATCG AGGTTCTTTC SEQ ID NO:37
    61 TGATGTTTTT TGTCTGGTGT GGTAAGTCCC CACCTCAACA GATGTTGTCT CAGCTCCTCT
    121 ATTTTTGTTC TATGCTGCCC TATTTCTAAG TCAGATCCTA CATACAAATC ATCCATGTAT
    181 TGATAGATAA CTATGTCTGG ATTTTGTTTT TTAAAAGGCT CTAAGATTTT TGTCATGCTA
    241 CTTTGGAATA TTGCTGGTGA TCCTTTCCAT CCCTGTGGAA GCACATTGTA CTGATATCTA
    301 ATCCCTGGTG TCTCATTGTT TATACTAGGT ATGGTAAATG CAGTATACTT CCTGAAGTCT
    361 TCATCTAAGG GAACTGAAAA ATATGCATCA CCCACATCCA GTACTGTTAC TGATTTTTTC
    421 TTTTTTAACC CTGCGGGATG TGGTATTCCT AATTGAACTT CCCAGAAGTC TTGAGTTCTC
    481 TTATTAAGTT CTCTGAAATC TACTAATTTT CTCCATTTAG TACTGTCTTT TTTCTTTATG
    541 GCAAATACTG GAGTATTGTA TGGATTCTCA GGCCCAATTT TTGAAATTTT CCCTTCCTTT
    601 TCCATTTCTG TACAAATTTC TACTAATGCT TTTATTTTTT CTTCTGTCAA TGGCCATTGT
    661 TTAACTTTTG GGCCATCCAT TCCTGGCTTT AATTTTACTG GTACAGTCTC AATAGGGCTA
    721 ATGGGAAAAT TTAAAGTGCA ACCAATCTGA GTCAACAGAT TTCTTCCAAT TATGTTGACA
    781 GGTGTAGGTC CTACTAATAC TGTACCTATA GCTTTATGTC CACAGATTTC TATGAGTATC
    841 TGATCATACT GTCTTACTTT GATAAAACCT CCAATTCCCC CTATCATTTT TGGTTTCCAT
    901 CTTCCTGGCA AACTCATTTC TTCTAATACT GTATCATCTG CTCCTGTATC TAATAGAGCT
    961 TCCTTTAGTT GCCCCCCTAT CTTTATTGTG ACGAGGGGTC GTTGCCAAAG AGTGATCTGA
    1021 GGGAAGTTAA AGGATACAGT
  • Parent Sequence Accession No.: X01677 [0221]
  • Locus: G3PDH (Clontech G3PDH template—parses into probes specific for antisense-strand target) [0222]
  • Length: 999 [0223]
    1 GAAGGTCGGA GTCAACGGAT TTGGTCGTAT TGGGCGCCTG GTCACCAGGG CTGCTTTTAA SEQ ID NO:38
    61 CTCTGGTAAA GTGGATATTG TTGCCATCAA TGACCCCTTC ATTGACCTCA ACTACATGGT
    121 TTACATGTTC CAATATGATT CCACCCATGG CAAATTCCAT GGCACCGTCA AGGCTGAGAA
    181 CGGGAAGCTT GTCATCAATG GAAATCCCAT CACCATCTTC CAGGAGCGAG ATCCCTCCAA
    241 AATCAAGTGG GGCGATGCTG GCGCTGAGTA CGTCGTGGAG TCCACTGGCG TCTTCACCAC
    301 CATGGAGAAG GCTGGGGCTC ATTTGCAGGG GGGAGCCAAA AGGGTCATCA TCTCTGCCCC
    361 CTCTGCTGAT GCCCCCATGT TCGTCATGGG TGTGAACCAT GAGAAGTATG ACAACAGCCT
    421 CAAGATCATC AGCAATGCCT CCTGCACCAC CAACTGCTTA GCACCCCTGG CCAAGGTCAT
    481 CCATGACAAC TTTGGTATCG TGGAAGGACT CATGACCACA GTCCATGCCA TCACTGCCAC
    541 CCAGAAGACT GTGGATGGCC CCTCCGGGAA ACTGTGGCGT GATGGCCGCG GGGCTCTCCA
    601 GAACATCATC CCTGCCTCTA CTGGCGCTGC CAAGGCTGTG GGCAAGGTCA TCCCTGAGCT
    661 AGACGGGAAG CTCACTGGCA TGGCCTTCCG TGTCCCCACT GCCAACGTGT CAGTGGTGGA
    721 CCTGACCTGC CGTCTAGAAA AACCTGCCAA ATATGATGAC ATCAAGAAGG TGGTGAAGCA
    781 GGCGTCGGAG GGCCCCCTCA AAGGCATCCT GGGCTACACT GAGCACCAGG TGGTCTCCTC
    841 TGACTTCAAC AGCGACACCC ACTCCTCCAC CTTTGACGCT GGGGCTGGCA TTGCCCTCAA
    901 CGACCACTTT GTCAAGCTCA TTTCCTGGTA TGACAACGAA TTTGGCTACA GCAACAGGGT
    961 GGTGGACCTC ATGGCCCACA TGCTATAGTG AGTCGTATT
  • Parent Sequence Accession No.: X54156 [0224]
  • Locus: HSP53PCRa (p53 template—parses into probes specific for antisense-strand target) [0225]
  • Length: 1049 [0226]
    1 GAGGTGCGTG TTTGTGCCTG TCCTGGGAGA GACCGGCGCA CAGAGGAAGA GAATCTCCGC SEQ ID NO:39
    61 AAGAAAGGGG AGCCTCACCA CGAGCTGCCC CCAGGGAGCA CTAAGCGAGC ACTGCCCAAC
    121 AACACCAGCT CCTCTCCCCA GCCAAAGAAG AAACCACTGG ATGGAGAATA TTTCACCCTT
    181 CAGATCCGTG GGCGTGAGCG CTTCGAGATG TTCCGAGAGC TGAATGAGGC CTTGGAACTC
    241 AAGGATGCCC AGGCTGGGAA GGAGCCAGGG GGGAGCAGGG CTCACTCCAG CCACCTGAAG
    301 TCCAAAAAGG GTCAGTCTAC CTCCCGCCAT AAAAAACTCA TGTTCAAGAC AGAAGGGCCT
    361 GACTCAGACT GACATTCTCC ACTTCTTGTT CCCCACTGAC AGCCTCCCTC CCCCATCTCT
    421 CCCTCCCCTG CCATTTTGGG TTTTGGGTCT TTGAACCCTT GCTTGCAATA GGTGTGCGTC
    481 AGAAGCACCC AGGACTTCCA TTTGCTTTGT CCCGGGGCTC CACTGAACAA GTTGGCCTGC
    541 ACTGGTGTTT TGTTGTGGGG AGGAGGATGG GGAGTAGGAC ATACCAGCTT AGATTTTAAG
    601 GTTTTTACTG TGAGGGATGT TTGGGAGATG TAAGAAATGT TCTTGCAGTT AAGGGTTAGT
    661 TTACAATCAG CCACATTCTA GGTAGGTAGG GGCCCACTTC AGCGTACTAA CCAGGGAAGC
    721 TGTCCCTCAT GTTGAATTTT CTCTAACTTC AAGGCCCATA TCTGTGAAAT GCTGGCATTT
    781 GCACCTACCT CACAGAGTGC ATTGTGAGGG TTAATGAAAT AATGTACATC TGGCCTTGAA
    841 ACCACCTTTT ATTACATGGG GTCTAAAACT TGACCCCCTT GAGGGTGCCT GTTCCCTCTC
    901 CCTCTCCCTG TTGGCTGGTG GGTTGGTAGT TTCTACAGTT GGGCAGCTGG TTAGGTAGAG
    961 GGAGTTGTCA AGTCTTGCTG GCCCAGCCAA ACCCTGTCTG ACAACCTCTT GGTCGACCTT
    1021 AGTACCTAAA AGGAAATCTC ACCCCATCC
  • The sequences indicated above, which are complements of the target sequences, were divided into overlapping oligonucleotide sequences with one nucleotide between starting positions. The oligonucleotide sequence lengths were 17 (rabbit β-globin), 20 (HIV PRT) or 25 (G3PDH; p53). The oligonucleotide sequence lengths were dictated by the probe lengths used in the experiments to which the predictions were compared. The RNA target concentrations used to calculate predicted RNA/DNA duplex melting temperatures were 100 pM (rabbit β-globin), 26.3 nM (HIV PRT) and 10 nM (G3PDH; p53). These were also dictated by experimental conditions for the comparison data. The cut-off filter used for the predicted free energy of the most stable probe sequence intramolecular structure, ΔG[0227] MFOLD, was Δ G MFOLD - 0.4 kcal mole .
    Figure US20030054346A1-20030320-M00013
  • The filter condition used for the predicted RNA/DNA duplex melting temperature was[0228]
  • 25° C.≦T m+16.6 log([Na +])−T hyb≦50° C.,
  • where T[0229] m is the target concentration-dependent value of the predicted RNA/DNA duplex melting temperature before correction for salt concentration, the term “16.6 log([Na+])” corrects the melting temperature for salt effects, and Thyb is the hybridization temperature. The values of the salt correction term and Thyb have already been listed in Table 2. For convenient use within p5, the above condition was algebraically rearranged into the equivalent form
  • 25° C. −16.6 log([Na +])+T hyb ≦T m≦50° C.−16.6 log([Na+])+T hyb.
  • Clusters were ranked according to the number of contiguous oligonucleotide sequences that passed through the filter set (“contig” length). [0230]
  • Results: The detailed analysis results for rabbit β-globin are presented in Table 3; a graphical summary of the results is shown in FIG. 4. In Table 3, values of T[0231] m and ΔGMFOLD that were excluded by the filter set are shown with a line through them, and table entries for contig length are shown in gray when the oligonucleotide sequence in question was not in a contig. The top 20% of the observed hybridization intensities are shown underlined.
    TABLE 3
    Oligonucleotide SEQ ID ΔGMFOLD Contig Hybridization Intensity
    Position Sequence NO: Tm (° C.) (kcal/mole) Length (Milner et al., 1997)
    1 TTCTTCCACATTCACCT 40
    Figure US20030054346A1-20030320-C00006
    5.00 100
    2 TCTTCCACATTCACCTT 41
    Figure US20030054346A1-20030320-C00007
    5.00 130
    3 CTTCCACATTCACCTTG 42
    Figure US20030054346A1-20030320-C00008
    0.90 130
    4 TTCCACATTCACCTTGC 43
    Figure US20030054346A1-20030320-C00009
    0.50 200
    5 TCCACATTCACCTTGCC 44 58.46 0.50 7 120
    6 CCACATTCACCTTGCCC 45 61.10 0.50 7 180
    7 CACATTCACCTTGCCCC 46 61.10 0.50 7 230
    8 ACATTCACCTTGCCCCA 47 61.10 0.50 7 220
    9 CATTCACCTTGCCCCAC 48 61.10 0.90 7 320
    10 ATTCACCTTGCCCCACA 49 61.10 0.70 7 310
    11 TTCACCTTGCCCCACAG 50 61.33 0.50 7 320
    12 TCACCTTGCCCCACAGG 51 63.70
    Figure US20030054346A1-20030320-C00010
    390
    13 CACCTTGCCCCACAGGG 52 64.85
    Figure US20030054346A1-20030320-C00011
    410
    14 ACCTTGCCCCACAGGGC 53 68.01
    Figure US20030054346A1-20030320-C00012
    240
    15 CCTTGCCCCACAGGGCA 54 68.63
    Figure US20030054346A1-20030320-C00013
     50
    16 CTTGCCCCACAGGGCAG 55 64.95
    Figure US20030054346A1-20030320-C00014
     20
    17 TTGCCCCACAGGGCAGT 56 66.31
    Figure US20030054346A1-20030320-C00015
     20
    18 TGCCCCACAGGGCAGTG 57 65.79
    Figure US20030054346A1-20030320-C00016
     20
    19 GCCCCACAGGGCAGTGA 58 67.37
    Figure US20030054346A1-20030320-C00017
     20
    20 CCCCACAGGGCAGTGAC 59 63.42
    Figure US20030054346A1-20030320-C00018
     40
    21 CCCACAGGGCAGTGACC 60 63.42
    Figure US20030054346A1-20030320-C00019
     20
    22 CCACAGGGCAGTGACCG 61 59.85
    Figure US20030054346A1-20030320-C00020
     20
    23 CACAGGGCAGTGACCGC 62 60.14
    Figure US20030054346A1-20030320-C00021
     20
    24 ACAGGGCAGTCACCGCA 63 60.14
    Figure US20030054346A1-20030320-C00022
     20
    25 CAGGGCAGTGACCGCAG 64 59.76
    Figure US20030054346A1-20030320-C00023
     30
    26 AGGGCAGTGACCGCAGA 65 59.83
    Figure US20030054346A1-20030320-C00024
     20
    27 GGGCAGTGACCGCAGAC 66 60.22
    Figure US20030054346A1-20030320-C00025
     30
    28 GGCAGTGACCGCAGACT 67 59.53
    Figure US20030054346A1-20030320-C00026
     30
    29 GCAGTGACCGCAGACTT 68 57.06
    Figure US20030054346A1-20030320-C00027
     30
    30 CAGTGACCGCAGACTTC 69
    Figure US20030054346A1-20030320-C00028
    Figure US20030054346A1-20030320-C00029
     40
    31 AGTGACCGCAGACTTCT 70
    Figure US20030054346A1-20030320-C00030
    −0.20    40
    32 GTGACCGCAGACTTCTC 71 55.99 0.60 7 100
    33 TGACCGCAGACTTCTCC 72 57.01 0.60 7 120
    34 GACCGCAGACTTCTCCT 73 59.22 0.60 7 180
    35 ACCGCAGACTTCTCCTC 74 59.28 0.60 7 210
    36 CCGCAGACTTCTCCTCA 75 60.07 0.60 7 200
    37 CGCAGACTTCTCCTCAC 76 56.34 0.60 7 190
    38 GCAGACTTCTCCTCACT 77 57.79 0.60 7 240
    39 CAGACTTCTCCTCACTG 78
    Figure US20030054346A1-20030320-C00031
    0.60 240
    40 AGACTTCTCCTCACTGG 79
    Figure US20030054346A1-20030320-C00032
    0.00 340
    41 GACTTCTCCTCACTGGA 80 55.77
    Figure US20030054346A1-20030320-C00033
    340
    42 ACTTCTCCTCACTGGAC 81
    Figure US20030054346A1-20030320-C00034
    Figure US20030054346A1-20030320-C00035
    240
    43 CTTCTCCTCACTGGACA 82 55.75
    Figure US20030054346A1-20030320-C00036
    240
    44 TTCTCCTCACTGGACAG 83
    Figure US20030054346A1-20030320-C00037
    Figure US20030054346A1-20030320-C00038
    120
    45 TCTCCTCACTGGACAGA 84
    Figure US20030054346A1-20030320-C00039
    Figure US20030054346A1-20030320-C00040
    100
    46 CTCCTCACTGGACAGAT 85
    Figure US20030054346A1-20030320-C00041
    Figure US20030054346A1-20030320-C00042
    110
    47 TCCTCACTGGACAGATG 86
    Figure US20030054346A1-20030320-C00043
    Figure US20030054346A1-20030320-C00044
     80
    48 CCTCACTGGACAGATGC 87
    Figure US20030054346A1-20030320-C00045
    0.00 240
    49 CTCACTGGACAGATGCA 88
    Figure US20030054346A1-20030320-C00046
    0.20  90
    50 TCACTGGACAGATGCAC 89
    Figure US20030054346A1-20030320-C00047
    0.20  30
    51 CACTGGACAGATGCACC 90
    Figure US20030054346A1-20030320-C00048
    0.50 100
    52 ACTGGACAGATGCACCA 91
    Figure US20030054346A1-20030320-C00049
    Figure US20030054346A1-20030320-C00050
     80
    53 CTGGACAGATGCACCAT 92
    Figure US20030054346A1-20030320-C00051
    Figure US20030054346A1-20030320-C00052
     90
    54 TGGACAGATGCACCATT 93
    Figure US20030054346A1-20030320-C00053
    Figure US20030054346A1-20030320-C00054
     80
    55 GGACAGATGCACCATTC 94
    Figure US20030054346A1-20030320-C00055
    0.30 180
    56 GACAGATGCACCATTCT 95
    Figure US20030054346A1-20030320-C00056
    −0.10   220
    57 ACAGATGCACCATTCTG 96
    Figure US20030054346A1-20030320-C00057
    Figure US20030054346A1-20030320-C00058
    120
    58 CAGATGCACCATTCTGT 97
    Figure US20030054346A1-20030320-C00059
    Figure US20030054346A1-20030320-C00060
    120
    59 AGATGCACCATTCTGTC 98
    Figure US20030054346A1-20030320-C00061
    −0.10   250
    60 GATGCACCATTCTGTCT 99
    Figure US20030054346A1-20030320-C00062
    0.30 520
    61 ATGCACCATTCTGTCTG 100
    Figure US20030054346A1-20030320-C00063
    0.40 980
    62 TGCACCATTCTGTCTGT 101 56.05 0.20 2 780
    63 GCACCATTCTGTCTGTT 102 56.52 0.20 2 810
    64 CACCATTCTGTCTGTTT 103
    Figure US20030054346A1-20030320-C00064
    0.20 220
    65 ACCATTCTGTCTGTTTT 104
    Figure US20030054346A1-20030320-C00065
    0.20 120
    66 CCATTCTGTCTGTTTTG 105
    Figure US20030054346A1-20030320-C00066
    0.20 120
    67 CATTCTGTCTGTTTTGG 106
    Figure US20030054346A1-20030320-C00067
    0.60 160
    68 ATTCTGTCTGTTTTGGG 107
    Figure US20030054346A1-20030320-C00068
    1.70 310
    69 TTCTGTCTGTTTTGGGG 108
    Figure US20030054346A1-20030320-C00069
    1.70 250
    70 TCTGTCTGTTTTGGGGG 109 55.90 1.70 2  80
    71 CTGTCTGTTTTGGGGGA 110 55.91 1.40 2  30
    72 TGTCTGTTTTGGGGGAT 111
    Figure US20030054346A1-20030320-C00070
    0.90  50
    73 GTCTGTTTTGGGGGATT 112
    Figure US20030054346A1-20030320-C00071
    0.90  10
    74 TCTGTTTTGGGGGATTG 113
    Figure US20030054346A1-20030320-C00072
    1.10  10
    75 CTGTTTTGGGGGATTGC 114
    Figure US20030054346A1-20030320-C00073
    2.20  10
    76 TGTTTTGGGGGATTGCA 115
    Figure US20030054346A1-20030320-C00074
    1.20  10
    77 GTTTTGGGGGATTGCAA 116
    Figure US20030054346A1-20030320-C00075
    0.00  5
    78 TTTTGGGGGATTGCAAG 117
    Figure US20030054346A1-20030320-C00076
    −0.20    5
    79 TTTGGGGGATTGCAAGT 118
    Figure US20030054346A1-20030320-C00077
    −0.20    5
    80 TTGGGGGATTGCAAGTA 119
    Figure US20030054346A1-20030320-C00078
    0.00  5
    81 TGGGGGATTGCAAGTAA 120
    Figure US20030054346A1-20030320-C00079
    1.20  5
    82 GGGGGATTGCAAGTAAA 121
    Figure US20030054346A1-20030320-C00080
    1.40  5
    83 GGGGATTGCAAGTAAAC 122
    Figure US20030054346A1-20030320-C00081
    1.40  5
    84 GGGATTGCAAGTAAACA 123
    Figure US20030054346A1-20030320-C00082
    1.30  5
    85 GGATTGCAAGTAAACAC 124
    Figure US20030054346A1-20030320-C00083
    0.90  5
    86 GATTGCAAGTAAACACA 125
    Figure US20030054346A1-20030320-C00084
    0.50  5
    87 ATTGCAAGTAAACACAG 126
    Figure US20030054346A1-20030320-C00085
    0.50  5
    88 TTGCAAGTAAACACAGT 127
    Figure US20030054346A1-20030320-C00086
    0.50  5
    89 TGCAAGTAAACACAGTT 128
    Figure US20030054346A1-20030320-C00087
    0.30  5
    90 GCAAGTAAACACAGTTG 129
    Figure US20030054346A1-20030320-C00088
    0.10  10
    91 CAAGTAAACACAGTTGT 130
    Figure US20030054346A1-20030320-C00089
    −0.30    5
    92 AAGTAAACACAGTTGTG 131
    Figure US20030054346A1-20030320-C00090
    Figure US20030054346A1-20030320-C00091
     5
    93 AGTAAACACAGTTGTGT 132
    Figure US20030054346A1-20030320-C00092
    Figure US20030054346A1-20030320-C00093
     5
    94 GTAAACACAGTTGTGTC 133
    Figure US20030054346A1-20030320-C00094
    Figure US20030054346A1-20030320-C00095
     5
    95 TAAACACAGTTGTGTCA 134
    Figure US20030054346A1-20030320-C00096
    Figure US20030054346A1-20030320-C00097
     5
    96 AAACACAGTTGTGTCAA 135
    Figure US20030054346A1-20030320-C00098
    Figure US20030054346A1-20030320-C00099
     5
    97 AACACAGTTGTGTCAAA 136
    Figure US20030054346A1-20030320-C00100
    Figure US20030054346A1-20030320-C00101
     5
    98 ACACAGTTGTGTCAAAA 137
    Figure US20030054346A1-20030320-C00102
    Figure US20030054346A1-20030320-C00103
     10
    99 CACAGTTGTGTCAAAAG 138
    Figure US20030054346A1-20030320-C00104
    Figure US20030054346A1-20030320-C00105
     15
    100 ACAGTTGTGTCAAAAGC 139
    Figure US20030054346A1-20030320-C00106
    Figure US20030054346A1-20030320-C00107
     30
    101 CAGTTGTGTCAAAAGCA 140
    Figure US20030054346A1-20030320-C00108
    0.20  25
    102 AGTTGTGTCAAAAGCAA 141
    Figure US20030054346A1-20030320-C00109
    −0.10    25
    103 GTTGTGTCAAAAGCAAG 142
    Figure US20030054346A1-20030320-C00110
    −0.30    20
    104 TTGTGTCAAAAGCAAGT 143
    Figure US20030054346A1-20030320-C00111
    −0.10   120
    105 TGTGTCAAAAGCAAGTG 144
    Figure US20030054346A1-20030320-C00112
    0.50  20
  • In FIG. 4, the hybridization intensity observed experimentally is plotted as a function of oligonucleotide starting position in the target-complementary sequence that was input into p5. The identified contigs are plotted as horizontal bars, with the contig rank (by length) shown in parentheses next to each bar. It is clear from Table 3 and FIG. 4 that the prediction algorithm identified contigs that overlap all of the “top 20%” hybridization intensity peaks observed. Iterative experimental improvement of these predictions would converge on each of the observed intensity maxima in 3-4 iterations. [0232]
  • Prediction worksheets for HIV PRT, G3PDH and p53 were prepared in a manner similar to that for rabbit β-globin as shown in Table 3, except that the probes were longer as indicated above and that approximately 1,000 probes were analyzed for each of these genes. The results of these analyses are shown in FIG. 5 (HIV PRT), FIG. 6 (G3PDH) and FIG. 7 (p53). In FIG. 5, data are plotted for all possible 20-mer oligonucleotide probes. In FIGS. 6 and 7, data were available for only every 10[0233] th 25-mer probe, and the actual data points are plotted as open diamonds.
  • It is clear from FIGS. [0234] 5-7 that the hybridization efficiency prediction algorithm of the present invention performed well in the task of identifying regions with observed high hybridization intensity. In each case, the 4 longest contigs point to good-to-excellent regions for experimental investigation. It should be noted that the contigs usually bracket observed intensity peaks; experimental iterative refinement would therefore be expected to converge in 2-3 iterations. By this is meant that certain oligonucleotides from the identified contigs are prepared and subjected to evaluation in actual hybridization experiments. Based on the results of such experiments, the observed signal is evaluated to determine whether the oligonucleotides are hybridizing to the left of, the right of, or on the center of a peak with respect to the graphed data. The next iteration is carried out to experimentally evaluate the hybridization efficiency of probes that are inferred to lie closer to the peak of hybridization efficiency, based on the data from the previous iteration. Iteration is continued until the signal level is deemed acceptable by the user, or the local hybridization efficiency maximum is reached (i.e. the best probe in the cluster identified by the method of the current invention has been experimentally identified). A detailed illustration of this process is shown in Example 3.
  • It should be noted that clusters of predictions that overlap the maxima of observed peaks of hybridization efficiency will often yield user-acceptable probes on the first iteration. Thus, the method of the present invention is much more efficient than current methods in which every potential probe is synthesized. For instance, in the HIV PRT example shown in FIG. 5, at least 3 good probes would be identified after synthesis of ˜10 test probes (i.e. statistical sampling of the 3 longest contigs). This is much more efficient than the ˜1,000 probes represented by the data in FIG. 5. [0235]
  • Example 2
  • Synopsis: Data from a labeled RNA target hybridization to an Affymetrix GeneChip™ HIV PRT-sense probe array (GeneChip™ HIV PRT 440s, Affymetrix Corporation, Santa Clara, Calif.) were compared to the predictions of the window-averaged composite dimensionless score version of the method of the present invention. [0236]
  • Materials and Methods: Data were obtained as described for the Affymetrix GeneChip™ HIV PRT-sense probe array (GeneChip™ HIV PRT 440s, Affymetrix Corporation, Santa Clara, Calif.) in Example 1. The DNA sequence (SEQ ID NO: 37) complementary to the fluorescein-labeled RNA target was divided into overlapping 20-mer oligonucleotide sequences spaced one nucleotide apart, using the prototype application p5; p5 was also used to calculate the predicted values of the RNA/DNA heteroduplex melting temperature (T[0237] m) and the free energy of the most stable predicted probe intramolecular structure, ΔGMFOLD, as described in Example 1. The probe sequences and parameter values were then transferred to a Microsoft Excel spreadsheet, which was used to complete the predictions of efficient and inefficient probes. The weight was obtained by optimizing the performance of the algorithm with the data of Milner et al., supra, as the training data using the Microsoft® Excel® spreadsheet software. The composite score was calculated using a weight of 0.62 for the dimensionless Tm score and a weight of 0.38 for the ΔGMFOLD dimensionless score. The windowed-averaging was performed using a window width of 7 and Microsofte Excel® spreadsheet software. Finally, the oligonucleotide sequences having the top 10% of the window-averaged composite dimensionless scores were predicted to be efficient probes, while the oligonucleotide sequences having the bottom 10% of the window-averaged composite dimensionless scores were predicted to be inefficient probes.
  • Results: The calculated parameters and scores are shown in Table 4; the algorithm predictions are also shown diagrammatically in FIG. 8. In Table 4, window-averaged composite score values that were in the top 10% of the distribution of values are shown in bold type, values that were in the bottom 10% are shown in italics, and all other values are shown with a line through them. It is clear from both Table 4 and FIG. 8 that the window-averaged composite dimensionless score embodiment of the current invention correctly predicted both efficient and inefficient hybridization probes for HIV PRT sense-strand RNA. As in Example 1, statistical sampling of contiguous stretches of predicted “good” probes would lead to convergence of the design process to the best probes in each region in 24 design iterations. [0238]
    TABLE 4
    Window-
    SEQ ΔGMFOLD Averaged HIV PRT
    p5 Probe ID RNA/DNA (kcal/mole Tm ΔGMFOLD Composite Composite GeneChip ™
    Position DNA Probe Sequence NO: Tm (° C.) @ 35° C.) Score Score Score Score Data
    1 GTACTGTCCATTTATCAGGA 145 64.16 −0.10 0.557 −0.199 0.269 1152.2
    2 TACTGTCCATTTATCAGGAT 146 60.91 −0.40 0.080 −0.460 −0.125 1040.7
    3 ACTGTCCATTTATCAGGATG 147 61.41 −0.90 0.152 −0.895 −0.246 291.9
    4 CTGTCCATTTATCAGGATGG 148 63.46 −0.90 0.453 −0.895 −0.059
    Figure US20030054346A1-20030320-C00113
    221.8
    5 TGTCCATTTATCAGGATGGA 149 62.82 −0.90 0.360 −0.895 −0.117
    Figure US20030054346A1-20030320-C00114
    148.3
    6 GTCCATTTATCAGGATGGAG 150 63.15 −1.90 0.408 −1.764 −0.418
    Figure US20030054346A1-20030320-C00115
    84.6
    7 TCCATTTATCAGGATGGAGT 151 63.15 −2.10 0.408 −1.938 −0.484
    Figure US20030054346A1-20030320-C00116
    128.7
    8 CCATTTATCAGGATGGAGTT 152 62.03 −1.90 0.245 −1.764 −0.519
    Figure US20030054346A1-20030320-C00117
    94.6
    9 CATTTATCAGGATGGAGTTC 153 59.53 −0.60 −0.122 −0.634 −0.317
    Figure US20030054346A1-20030320-C00118
    157.5
    10 ATTTATCAGGATGGAGTTCA 154 59.53 0.80 −0.122 0.583 0.146
    Figure US20030054346A1-20030320-C00119
    316.9
    11 TTTATCAGGATGGAGTTCAT 155 59.53 0.40 −0.122 0.236 0.014
    Figure US20030054346A1-20030320-C00120
    360.2
    12 TTATCAGGATGGAGTTCATA 156 58.58 0.40 −0.262 0.236 −0.073
    Figure US20030054346A1-20030320-C00121
    403.8
    13 TATCAGGATGGAGTTCATAA 157 56.21 0.20 −0.609 0.062 −0.354
    Figure US20030054346A1-20030320-C00122
    382.5
    14 ATCAGGATGGAGTTCATAAC 158 57.34 0.20 −0.444 0.062 −0.252
    Figure US20030054346A1-20030320-C00123
    324.4
    15 TCAGGATGGAGTTCATAACC 159 61.25 0.20 0.129 0.062 0.104
    Figure US20030054346A1-20030320-C00124
    320.5
    16 CAGGATGGAGTTCATAACCC 160 63.57 0.20 0.470 0.062 0.315
    Figure US20030054346A1-20030320-C00125
    238.9
    17 AGGATGGAGTTCATAACCCA 161 63.57 −0.10 0.470 −0.199 0.216
    Figure US20030054346A1-20030320-C00126
    202.3
    18 GGATGGAGTTCATAACCCAT 162 63.34 −1.30 0.436 −1.243 −0.202
    Figure US20030054346A1-20030320-C00127
    113.6
    19 GATGGAGTTCATAACCCATC 163 62.24 −2.00 0.275 −1.851 −0.533
    Figure US20030054346A1-20030320-C00128
    97.7
    20 ATGGAGTTCATAACCCATCC 164 64.62 −3.30 0.624 −2.982 −0.746
    Figure US20030054346A1-20030320-C00129
    143.3
    21 TGGAGTTCATAACCCATCCC 165 68.18 −2.00 1.146 −1.851 0.007
    Figure US20030054346A1-20030320-C00130
    484.6
    22 GGAGTTCATAACCCATCCCA 166 69.39 −1.60 1.324 −1.504 0.249
    Figure US20030054346A1-20030320-C00131
    857.6
    23 GAGTTCATAACCCATCCCAA 167 64.93 −0.20 0.670 −0.286 0.307
    Figure US20030054346A1-20030320-C00132
    991.4
    24 AGTTCATAACCCATCCCAAA 168 61.82 0.20 0.213 0.062 0.155
    Figure US20030054346A1-20030320-C00133
    907.0
    25 GTTCATAACCCATCCCAAAG 169 61.82 0.20 0.213 0.062 0.155
    Figure US20030054346A1-20030320-C00134
    887.9
    26 TTCATAACCCATCCCAAAGG 170 61.36 0.60 0.145 0.410 0.246
    Figure US20030054346A1-20030320-C00135
    1015.3
    27 TCATAACCCATCCCAAAGGA 171 62.21 −0.10 0.270 −0.199 0.092
    Figure US20030054346A1-20030320-C00136
    279.7
    28 CATAACCCATCCCAAAGGAA 172 59.26 −0.30 −0.163 −0.373 −0.243
    Figure US20030054346A1-20030320-C00137
    210.7
    29 ATAACCCATCCCAAAGGAAT 173 58.19 −0.30 −0.320 −0.373 −0.340
    Figure US20030054346A1-20030320-C00138
    179.9
    30 TAACCCATCCCAAAGGAATG 174 58.13 −0.30 −0.328 −0.373 −0.345
    Figure US20030054346A1-20030320-C00139
    91.8
    31 AACCCATCCCAAAGGAATGG 175 60.78 −1.30 0.061 −1.243 −0.435
    Figure US20030054346A1-20030320-C00140
    44.6
    32 ACCCATCCCAAAGGAATGGA 176 63.69 −2.00 0.487 −1.851 −0.401
    Figure US20030054346A1-20030320-C00141
    42.9
    33 CCCATCCCAAAGGAATGGAG 177 63.40 −2.20 0.445 −2.025 −0.494
    Figure US20030054346A1-20030320-C00142
    45.0
    34 CCATCCCAAAGGAATGGAGG 178 62.34 −2.30 0.290 −2.112 −0.623
    Figure US20030054346A1-20030320-C00143
    45.3
    35 CATCCCAAAGGAATGGAGGT 179 61.72 −2.60 0.199 −2.373 −0.778
    Figure US20030054346A1-20030320-C00144
    47.9
    36 ATCCCAAAGGAATGGAGGTT 180 60.90 −2.20 0.079 −2.025 −0.721
    Figure US20030054346A1-20030320-C00145
    49.2
    37 TCCCAAAGGAATGGAGGTTC 181 62.24 −2.20 0.274 −2.025 −0.600
    Figure US20030054346A1-20030320-C00146
    74.2
    38 CCCAAAGGAATGGAGGTTCT 182 62.71 −2.00 0.344 −1.851 −0.490
    Figure US20030054346A1-20030320-C00147
    125.5
    39 CCAAAGGAATGGAGGTTCTT 183 59.47 −0.70 −0.132 −0.721 −0.356
    Figure US20030054346A1-20030320-C00148
    183.3
    40 CAAAGGAATGGAGGTTCTTT 184 56.10 −0.30 −0.627 −0.373 −0.530
    Figure US20030054346A1-20030320-C00149
    261.4
    41 AAAGGAATGGAGGTTCTTTC 185 56.11 −0.30 −0.625 −0.373 −0.529
    Figure US20030054346A1-20030320-C00150
    518.3
    42 AAGGAATGGAGGTTCTTTCT 186 60.05 −0.30 −0.046 −0.373 −0.170
    Figure US20030054346A1-20030320-C00151
    716.5
    43 AGGAATGGAGGTTCTTTCTG 187 62.09 −0.30 0.253 −0.373 0.015
    Figure US20030054346A1-20030320-C00152
    1056.0
    44 GGAATGGAGGTTCTTTCTGA 188 63.23 −0.30 0.420 −0.373 0.119
    Figure US20030054346A1-20030320-C00153
    1084.3
    45 GAATGGAGGTTCTTTCTGAT 189 60.56 0.10 0.028 −0.025 0.008
    Figure US20030054346A1-20030320-C00154
    1241.1
    46 AATGGAGGTTCTTTCTGATG 190 59.12 0.30 −0.183 0.149 −0.057
    Figure US20030054346A1-20030320-C00155
    1278.8
    47 ATGGAGGTTCTTTCTGATGT 191 64.58 0.30 0.618 0.149 0.440
    Figure US20030054346A1-20030320-C00156
    1616.0
    48 TGGAGGTTCTTTCTGATGTT 192 64.98 0.30 0.677 0.149 0.476
    Figure US20030054346A1-20030320-C00157
    1677.5
    49 GGAGGTTCTTTCTGATGTTT 193 65.49 0.30 0.751 0.149 0.522
    Figure US20030054346A1-20030320-C00158
    1963.1
    50 GAGGTTCTTTCTGATGTTTT 194 63.04 0.30 0.392 0.149 0.300
    Figure US20030054346A1-20030320-C00159
    2126.1
    51 AGGTTCTTTCTGATGTTTTT 195 61.97 0.30 0.235 0.149 0.202
    Figure US20030054346A1-20030320-C00160
    2143.3
    52 GGTTCTTTCTGATGTTTTTT 196 62.11 0.30 0.256 0.149 0.215
    Figure US20030054346A1-20030320-C00161
    3540.6
    53 GTTCTTTCTGATGTTTTTTG 197 59.21 0.30 −0.170 0.149 −0.049
    Figure US20030054346A1-20030320-C00162
    1728.7
    54 TTCTTTCTGATGTTTTTTGT 198 59.21 0.30 −0.170 0.149 −0.049
    Figure US20030054346A1-20030320-C00163
    1364.3
    55 TCTTTCTGATGTTTTTTGTC 199 60.35 0.50 −0.002 0.323 0.121
    Figure US20030054346A1-20030320-C00164
    1788.4
    56 CTTTCTGATGTTTTTTGTCT 200 60.96 1.20 0.086 0.931 0.407
    Figure US20030054346A1-20030320-C00165
    2670.9
    57 TTTCTGATGTTTTTTGTCTG 201 58.76 1.20 −0.235 0.931 0.208
    Figure US20030054346A1-20030320-C00166
    3336.2
    58 TTCTGATGTTTTTTGTCTGG 202 61.17 1.20 0.118 0.931 0.427
    Figure US20030054346A1-20030320-C00167
    6683.6
    59 TCTGATGTTTTTTGTCTGGT 203 64.20 1.20 0.562 0.931 0.702
    Figure US20030054346A1-20030320-C00168
    10227.0
    60 CTGATGTTTTTTGTCTGGTG 204 62.51 1.20 0.315 0.931 0.549
    Figure US20030054346A1-20030320-C00169
    10965.0
    61 TGATGTTTTTTGTCTGGTGT 205 63.80 1.20 0.504 0.931 0.666
    Figure US20030054346A1-20030320-C00170
    11133.0
    62 GATGTTTTTTGTCTGGTGTG 206 63.80 1.60 0.504 1.279 0.798 0.894 11503.0
    63 ATGTTTTTTGTCTGGTGTGG 207 65.18 1.90 0.705 1.540 1.023 0.894 9492.8
    64 TGTTTTTTGTCTGGTGTGGT 208 68.78 1.70 1.234 1.366 1.284 0.914 10704.0
    65 GTTTTTTGTCTGGTGTGGTA 209 68.28 1.70 1.161 1.366 1.239 0.933 10741.0
    66 TTTTTTGTCTGGTGTGGTAA 210 62.37 1.70 0.294 1.366 0.701 0.950 9187.5
    67 TTTTTGTCTGGTGTGGTAAG 211 62.23 1.70 0.273 1.366 0.689 0.941 7871.0
    68 TTTTGTCTGGTGTGGTAAGT 212 65.28 1.20 0.721 0.931 0.801 0.921 7209.1
    69 TTTGTCTGGTGTGGTAAGTC 213 66.56 1.20 0.908 0.931 0.917 0.959 8052.3
    70 TTGTCTGGTGTGGTAAGTCC 214 70.25 0.30 1.449 0.149 0.955 1.022 7230.6
    71 TGTCTGGTGTGGTAAGTCCC 215 73.77 −0.10 1.966 −0.199 1.143 0.998 6809.5
    72 GTCTGGTGTGGTAAGTCCCC 216 77.74 −0.10 2.549 −0.199 1.504 0.913 7442.8
    73 TCTGGTGTGGTAAGTCCCCA 217 75.28 −0.50 2.187 −0.547 1.148
    Figure US20030054346A1-20030320-C00171
    2627.7
    74 CTGGTGTGGTAAGTCCCCAC 218 74.18 −2.10 2.026 −1.938 0.519
    Figure US20030054346A1-20030320-C00172
    1315.0
    75 TGGTGTGGTAAGTCCCCACC 219 75.80 −3.50 2.263 −3.156 0.204
    Figure US20030054346A1-20030320-C00173
    4182.3
    76 GGTGTGGTAAGTCCCCACCT 220 77.89 −3.80 2.571 −3.417 0.296
    Figure US20030054346A1-20030320-C00174
    474.7
    77 GTGTGGTAAGTCCCCACCTC 221 77.05 −2.50 2.448 −2.286 0.649
    Figure US20030054346A1-20030320-C00175
    682.4
    78 TGTGGTAAGTCCCCACCTCA 222 74.71 −2.50 2.105 −2.286 0.436
    Figure US20030054346A1-20030320-C00176
    679.1
    79 GTGGTAAGTCCCCACCTCAA 223 72.54 −2.10 1.785 −1.938 0.370
    Figure US20030054346A1-20030320-C00177
    924.0
    80 TGGTAAGTCCCCACCTCAAC 224 69.94 −0.90 1.404 −0.895 0.531
    Figure US20030054346A1-20030320-C00178
    835.5
    81 GGTAAGTCCCCACCTCAACA 225 71.14 −0.50 1.580 −0.547 0.772
    Figure US20030054346A1-20030320-C00179
    1213.6
    82 GTAAGTCCCCACCTCAACAG 226 68.97 0.90 1.262 0.670 1.037
    Figure US20030054346A1-20030320-C00180
    1106.1
    83 TAAGTCCCCACCTCAACAGA 227 67.18 0.90 0.999 0.670 0.874 0.872 1009.0
    84 AAGTCCCCACCTCAACAGAT 228 67.68 0.50 1.073 0.323 0.788 0.908 1656.2
    85 AGTCCCCACCTCAACAGATG 229 69.68 0.50 1.366 0.323 0.970
    Figure US20030054346A1-20030320-C00181
    2178.3
    86 GTCCCCACCTCAACAGATGT 230 72.56 0.20 1.789 0.062 1.132
    Figure US20030054346A1-20030320-C00182
    2567.0
    87 TCCCCACCTCAACAGATGTT 231 69.77 −0.10 1.379 −0.199 0.779
    Figure US20030054346A1-20030320-C00183
    3000.5
    88 CCCCACCTCAACAGATGTTG 232 68.19 −1.30 1.148 −1.243 0.240
    Figure US20030054346A1-20030320-C00184
    2025.4
    89 CCCACCTCAACAGATGTTGT 233 67.78 −2.00 1.087 −1.851 −0.030
    Figure US20030054346A1-20030320-C00185
    429.2
    90 CCACCTCAACAGATGTTGTC 234 65.65 −2.00 0.775 −1.851 −0.223
    Figure US20030054346A1-20030320-C00186
    157.9
    91 CACCTCAACAGATGTTGTCT 235 63.85 −2.00 0.511 −1.851 −0.387
    Figure US20030054346A1-20030320-C00187
    135.3
    92 ACCTCAACAGATGTTGTCTC 236 64.11 −2.00 0.549 −1.851 −0.363
    Figure US20030054346A1-20030320-C00188
    330.8
    93 CCTCAACAGATGTTGTCTCA 237 64.77 −2.00 0.646 −1.851 −0.303
    Figure US20030054346A1-20030320-C00189
    900.0
    94 CTCAACAGATGTTGTCTCAG 238 61.08 −2.00 0.104 −1.851 −0.639
    Figure US20030054346A1-20030320-C00190
    1177.0
    95 TCAACAGATGTTGTCTCAGC 239 63.40 −2.00 0.444 −1.851 −0.428
    Figure US20030054346A1-20030320-C00191
    795.1
    96 CAACAGATGTTGTCTCAGCT 240 63.91 −1.60 0.520 −1.504 −0.249
    Figure US20030054346A1-20030320-C00192
    889.2
    97 AACAGATGTTGTCTCAGCTC 241 64.19 −0.10 0.560 −0.199 0.272
    Figure US20030054346A1-20030320-C00193
    1703.6
    98 ACAGATGTTGTCTCAGCTCC 242 70.61 0.00 1.503 −0.112 0.889
    Figure US20030054346A1-20030320-C00194
    3115.2
    99 CAGATGTTGTCTCAGCTCCT 243 72.08 0.00 1.719 −0.112 1.023 0.847 4445.0
    100 AGATGTTGTCTCAGCTCCTC 244 72.66 0.20 1.803 0.062 1.141 1.070 6762.8
    101 GATGTTGTCTCAGCTCCTCT 245 74.49 0.90 2.071 0.670 1.539 1.227 8845.0
    102 ATGTTGTCTCAGCTCCTCTA 246 72.38 0.80 1.763 0.583 1.314 1.253 9010.6
    103 TGTTGTCTCAGCTCCTCTAT 247 72.38 0.80 1.763 0.583 1.314 1.260 19941.0
    104 GTTGTCTCAGCTCCTCTATT 248 72.97 0.80 1.849 0.583 1.368 1.257 12577.0
    105 TTGTCTCAGCTCCTCTATTT 249 69.70 0.80 1.369 0.583 1.071 1.149 7503.3
    106 TGTCTCAGCTCCTCTATTTT 250 69.70 0.80 1.369 0.583 1.071 1.098 7033.8
    107 GTCTCAGCTCCTCTATTTTT 251 70.26 0.80 1.451 0.583 1.121 1.024 8276.7
    108 TCTCAGCTCCTCTATTTTTG 252 66.57 0.80 0.910 0.583 0.786 0.942 2899.0
    109 CTCAGCTCCTCTATTTTTGT 253 68.39 0.80 1.177 0.583 0.952 0.923 2935.0
    110 TCAGCTCCTCTATTTTTGTT 254 66.69 0.80 0.927 0.583 0.796 0.930 1512.8
    111 CAGCTCCTCTATTTTTGTTC 255 66.69 0.80 0.927 0.583 0.796 0.872 1708.8
    112 AGCTCCTCTATTTTTGTTCT 256 67.52 1.00 1.050 0.757 0.939 0.833 1977.3
    113 GCTCCTCTATTTTTGTTCTA 257 66.63 1.80 0.919 1.453 1.122
    Figure US20030054346A1-20030320-C00195
    2114.8
    114 CTCCTCTATTTTTGTTCTAT 258 62.13 1.80 0.259 1.453 0.713
    Figure US20030054346A1-20030320-C00196
    1527.3
    115 TCCTCTATTTTTGTTCTATG 259 59.97 1.80 −0.058 1.453 0.516
    Figure US20030054346A1-20030320-C00197
    1536.8
    116 CCTCTATTTTTGTTCTATGC 260 62.84 1.80 0.363 1.453 0.777
    Figure US20030054346A1-20030320-C00198
    1824.5
    117 CTCTATTTTTGTTCTATGCT 261 60.87 1.50 0.074 1.192 0.499
    Figure US20030054346A1-20030320-C00199
    1169.2
    118 TCTATTTTTGTTCTATGCTG 262 58.71 1.50 −0.244 1.192 0.302
    Figure US20030054346A1-20030320-C00200
    683.7
    119 CTATTTTTGTTCTATGCTGC 263 61.60 1.50 0.181 1.192 0.565
    Figure US20030054346A1-20030320-C00201
    1306.8
    120 TATTTTTGTTCTATGCTGCC 264 63.53 1.50 0.464 1.192 0.741
    Figure US20030054346A1-20030320-C00202
    2523.6
    121 ATTTTTGTTCTATGCTGCCC 265 67.96 1.50 1.113 1.192 1.143 0.931 6682.0
    122 TTTTTGTTCTATGCTGCCCT 266 69.96 1.50 1.407 1.192 1.325 1.060 9417.4
    123 TTTTGTTCTATGCTGCCCTA 267 69.01 1.50 1.267 1.192 1.239 1.151 10339.0
    124 TTTGTTCTATGCTGCCCTAT 268 68.62 1.50 1.210 1.192 1.203 1.254 10750.0
    125 TTGTTCTATGCTGCCCTATT 269 68.62 1.50 1.210 1.192 1.203 1.282 11180.0
    126 TGTTCTATGCTGCCCTATTT 270 68.62 1.50 1.210 1.192 1.203 1.271 11060.0
    127 GTTCTATGCTGCCCTATTTC 271 70.37 1.80 1.468 1.453 1.462 1.221 16074.0
    128 TTCTATGCTGCCCTATTTCT 272 69.00 1.80 1.266 1.453 1.337 1.144 9183.8
    129 TCTATGCTGCCCTATTTCTA 273 68.05 1.80 1.127 1.453 1.251 1.082 8617.8
    130 CTATGCTGCCCTATTTCTAA 274 64.38 1.70 0.589 1.366 0.884 1.040 7286.8
    131 TATGCTGCCCTATTTCTAAG 275 62.71 1.50 0.344 1.192 0.666 0.978 3642.4
    132 ATGCTGCCCTATTTCTAAGT 276 66.39 0.80 0.883 0.583 0.769 0.883 3799.7
    133 TGCTGCCCTATTTCTAAGTC 277 67.95 0.80 1.112 0.583 0.911
    Figure US20030054346A1-20030320-C00203
    3408.3
    134 GCTGCCCTATTTCTAAGTCA 278 69.25 0.80 1.303 0.583 1.030
    Figure US20030054346A1-20030320-C00204
    4017.4
    135 CTGCCCTATTTCTAAGTCAG 279 65.26 0.80 0.718 0.583 0.667
    Figure US20030054346A1-20030320-C00205
    2197.2
    136 TGCCCTATTTCTAAGTCAGA 280 64.63 −0.10 0.626 −0.199 0.312
    Figure US20030054346A1-20030320-C00206
    1125.0
    137 GCCCTATTTCTAAGTCAGAT 281 64.73 −0.60 0.639 −0.634 0.156
    Figure US20030054346A1-20030320-C00207
    1306.3
    138 CCCTATTTCTAAGTCAGATC 282 61.98 −0.60 0.236 −0.634 −0.094
    Figure US20030054346A1-20030320-C00208
    1019.5
    139 CCTATTTCTAAGTCAGATCC 283 61.98 −0.60 0.236 −0.634 −0.094
    Figure US20030054346A1-20030320-C00209
    1852.3
    140 CTATTTCTAAGTCAGATCCT 284 60.05 −0.60 −0.046 −0.634 −0.270
    Figure US20030054346A1-20030320-C00210
    3159.3
    141 TATTTCTAAGTCAGATCCTA 285 57.43 −0.60 −0.430 −0.634 −0.508
    Figure US20030054346A1-20030320-C00211
    2604.8
    142 ATTTCTAAGTCAGATCCTAC 286 58.59 −0.60 −0.261 −0.634 −0.402
    Figure US20030054346A1-20030320-C00212
    3986.1
    143 TTTCTAAGTCAGATCCTACA 287 59.91 −0.60 −0.068 −0.634 −0.283
    Figure US20030054346A1-20030320-C00213
    4500.7
    144 TTCTAAGTCAGATCCTACAT 288 59.55 −0.60 −0.120 −0.634 −0.315
    Figure US20030054346A1-20030320-C00214
    4754.5
    145 TCTAAGTCAGATCCTACATA 289 58.62 −0.40 −0.257 −0.460 −0.334
    Figure US20030054346A1-20030320-C00215
    3802.1
    146 CTAAGTCAGATCCTACATAC 290 57.80 1.20 −0.377 0.931 0.120
    Figure US20030054346A1-20030320-C00216
    5069.4
    147 TAAGTCAGATCCTACATACA 291 57.13 1.30 −0.476 1.018 0.092
    Figure US20030054346A1-20030320-C00217
    3965.2
    148 AAGTCAGATCCTACATACAA 292 55.78 1.30 −0.673 1.018 −0.030
    Figure US20030054346A1-20030320-C00218
    3862.3
    149 AGTCAGATCCTACATACAAA 293 55.78 1.30 −0.673 1.018 −0.030
    Figure US20030054346A1-20030320-C00219
    2868.9
    150 GTCAGATCCTACATACAAAT 294 55.62 1.70 −0.697 1.366 0.087
    Figure US20030054346A1-20030320-C00220
    3542.9
    151 TCAGATCCTACATACAAATC 295 54.02 1.50 −0.932 1.192 −0.125
    Figure US20030054346A1-20030320-C00221
    2477.1
    152 CAGATCCTACATACAAATCA 296 54.07 1.10 −0.924 0.844 −0.252
    Figure US20030054346A1-20030320-C00222
    2522.4
    153 AGATCCTACATACAAATCAT 297 52.83 1.10 −1.106 0.844 −0.365
    Figure US20030054346A1-20030320-C00223
    2554.6
    154 GATCCTACATACAAATCATC 298 53.87 1.50 −0.953 1.192 −0.138
    Figure US20030054346A1-20030320-C00224
    3580.0
    155 ATCCTACATACAAATCATCC 299 56.33 1.80 −0.591 1.453 0.185
    Figure US20030054346A1-20030320-C00225
    5937.7
    156 TCCTACATACAAATCATCCA 300 57.54 1.80 −0.415 1.453 0.295
    Figure US20030054346A1-20030320-C00226
    4606.7
    157 CCTACATACAAATCATCCAT 301 56.32 1.80 −0.594 1.453 0.184
    Figure US20030054346A1-20030320-C00227
    4877.2
    158 CTACATACAAATCATCCATG 302 52.68 1.10 −1.128 0.844 −0.379
    Figure US20030054346A1-20030320-C00228
    2608.6
    159 TACATACAAATCATCCATGT 303 53.56 0.30 −0.999 0.149 −0.563
    Figure US20030054346A1-20030320-C00229
    1491.7
    160 ACATACAAATCATCCATGTA 304 53.56 −0.10 −0.999 −0.199 −0.695
    Figure US20030054346A1-20030320-C00230
    1364.3
    161 CATACAAATCATCCATGTAT 305 53.07 −0.80 −1.071 −0.808 −0.971 0.751 1089.8
    162 ATACAAATCATCCATGTATT 306 52.11 −1.10 −1.211 −1.069 −1.157 0.818 1008.6
    163 TACAAATCATCCATGTATTG 307 52.08 −0.40 −1.215 −0.460 −0.928 0.891 624.8
    164 ACAAATCATCCATGTATTGA 308 53.86 0.20 −0.955 0.062 −0.568 0.921 535.8
    165 CAAATCATCCATGTATTGAT 309 53.36 −0.50 −1.027 −0.547 −0.845 0.860 3019.6
    166 AAATCATCCATGTATTGATA 310 51.57 −0.70 −1.291 −0.721 −1.074 0.753 214.0
    167 AATCATCCATGTATTGATAG 311 53.47 −0.70 −1.012 −0.721 −0.901
    Figure US20030054346A1-20030320-C00231
    212.7
    168 ATCATCCATGTATTGATAGA 312 56.66 −0.50 −0.543 −0.547 −0.545
    Figure US20030054346A1-20030320-C00232
    165.2
    169 TCATCCATGTATTGATAGAT 313 56.66 −0.10 −0.543 −0.199 −0.412
    Figure US20030054346A1-20030320-C00233
    166.0
    170 CATCCATGTATTGATAGATA 314 54.80 0.30 −0.817 0.149 −0.450
    Figure US20030054346A1-20030320-C00234
    151.0
    171 ATCCATGTATTGATAGATAA 315 51.69 0.30 −1.273 0.149 −0.733
    Figure US20030054346A1-20030320-C00235
    101.8
    172 TCCATGTATTGATAGATAAC 316 52.19 0.30 −1.199 0.149 −0.687
    Figure US20030054346A1-20030320-C00236
    84.0
    173 CCATGTATTGATAGATAACT 317 52.89 0.30 −1.097 0.149 −0.623 0.850 130.3
    174 CATGTATTGATAGATAACTA 318 48.47 0.70 −1.746 0.496 −0.894 0.937 67.8
    175 ATGTATTGATAGATAACTAT 319 47.12 0.00 −1.944 −0.112 −1.248 1.006 65.7
    176 TGTATTGATAGATAACTATG 320 47.11 −0.20 −1.945 −0.286 −1.315 1.048 90.0
    177 GTATTGATAGATAACTATGT 321 49.90 −0.20 −1.536 −0.286 −1.061 1.099 125.9
    178 TATTGATAGATAACTATGTC 322 48.24 −0.20 −1.779 −0.286 −1.212 1.083 132.6
    179 ATTGATAGATAACTATGTCT 323 50.78 −0.20 −1.407 −0.286 −0.981 0.998 167.4
    180 TTGATAGATAACTATGTCTG 324 50.75 −0.20 −1.411 −0.286 −0.984 0.916 219.0
    181 TGATAGATAACTATGTCTGG 325 53.01 −0.20 −1.080 −0.286 −0.778 0.866 722.6
    182 GATAGATAACTATGTCTGGA 326 54.36 −0.20 −0.881 −0.286 −0.655 0.774 825.1
    183 ATAGATAACTATGTCTGGAT 327 53.04 −0.10 −1.074 −0.199 −0.742
    Figure US20030054346A1-20030320-C00237
    844.4
    184 TAGATAACTATGTCTGGATT 328 53.37 −0.10 −1.027 −0.199 −0.712
    Figure US20030054346A1-20030320-C00238
    912.6
    185 AGATAACTATGTCTGGATTT 329 54.27 0.10 −0.895 −0.025 −0.565
    Figure US20030054346A1-20030320-C00239
    1301.8
    186 GATAACTATGTCTGGATTTT 330 54.43 0.80 −0.870 0.583 −0.318
    Figure US20030054346A1-20030320-C00240
    1367.4
    187 ATAACTATGTCTGGATTTTG 331 53.08 1.50 −1.070 1.192 −0.210
    Figure US20030054346A1-20030320-C00241
    1284.2
    188 TAACTATGTCTGGATTTTGT 332 56.05 1.50 −0.634 1.192 0.060
    Figure US20030054346A1-20030320-C00242
    1162.5
    189 AACTATGTCTGGATTTTGTT 333 56.97 1.50 −0.499 1.192 0.144
    Figure US20030054346A1-20030320-C00243
    1396.7
    190 ACTATGTCTGGATTTTGTTT 334 59.38 1.50 −0.145 1.192 0.363
    Figure US20030054346A1-20030320-C00244
    1348.3
    191 CTATGTCTGGATTTTGTTTT 335 59.16 1.50 −0.177 1.192 0.343
    Figure US20030054346A1-20030320-C00245
    1092.8
    192 TATGTCTGGATTTTGTTTTT 336 57.45 1.50 −0.428 1.192 0.188
    Figure US20030054346A1-20030320-C00246
    912.6
    193 ATGTCTGGATTTTGTTTTTT 337 58.41 1.70 −0.287 1.366 0.341
    Figure US20030054346A1-20030320-C00247
    994.3
    194 TGTCTGGATTTTGTTTTTTA 338 57.81 2.00 −0.375 1.627 0.386
    Figure US20030054346A1-20030320-C00248
    840.7
    195 GTCTGGATTTTGTTTTTTAA 339 55.82 1.00 −0.667 0.757 −0.126
    Figure US20030054346A1-20030320-C00249
    941.9
    196 TCTGGATTTTGTTTTTTAAA 340 50.98 0.80 −1.377 0.583 −0.632
    Figure US20030054346A1-20030320-C00250
    84.9
    197 CTGGATTTTGTTTTTTAAAA 341 48.16 0.30 −1.790 0.149 −1.054
    Figure US20030054346A1-20030320-C00251
    78.6
    198 TGGATTTTGTTTTTTAAAAG 342 46.41 0.10 −2.048 −0.025 −1.279 0.851 93.2
    199 GGATTTTGTTTTTTAAAAGG 343 48.87 0.10 −1.686 −0.025 −1.055 0.933 56.0
    200 GATTTTGTTTTTTAAAAGGC 344 50.22 0.10 −1.488 −0.025 −0.932 0.912 49.9
    201 ATTTTGTTTTTTAAAAGGCT 345 50.84 0.10 −1.397 −0.025 −0.876 0.843 55.0
    202 TTTTGTTTTTTAAAAGGCTC 346 52.03 0.30 −1.223 0.149 −0.702 0.768 64.6
    203 TTTGTTTTTTAAAAGGCTCT 347 53.64 0.50 −0.987 0.323 −0.489
    Figure US20030054346A1-20030320-C00252
    162.8
    204 TTGTTTTTTAAAAGGCTCTA 348 52.76 0.50 −1.115 0.323 −0.569
    Figure US20030054346A1-20030320-C00253
    265.8
    205 TGTTTTTTAAAAGGCTCTAA 349 50.71 0.50 −1.417 0.323 −0.756
    Figure US20030054346A1-20030320-C00254
    288.5
    206 GTTTTTTAAAAGGCTCTAAG 350 50.86 0.50 −1.395 0.323 −0.742
    Figure US20030054346A1-20030320-C00255
    548.4
    207 TTTTTTAAAAGGCTCTAAGA 351 49.40 0.70 −1.609 0.496 −0.809
    Figure US20030054346A1-20030320-C00256
    524.7
    208 TTTTTAAAAGGCTCTAAGAT 352 49.11 1.20 −1.651 0.931 −0.670 0.746 937.9
    209 TTTTAAAAGGCTCTAAGATT 353 49.11 1.20 −1.651 0.931 −0.670 0.790 1440.3
    210 TTTAAAAGGCTCTAAGATTT 354 49.11 1.20 −1.651 0.931 −0.670 0.820 1633.3
    211 TTAAAAGGCTCTAAGATTTT 355 49.11 0.50 −1.651 0.323 −0.901 0.735 1987.4
    212 TAAAAGGCTCTAAGATTTTT 356 49.11 0.00 −1.651 −0.112 −1.067
    Figure US20030054346A1-20030320-C00257
    1792.3
    213 AAAAGGCTCTAAGATTTTTG 357 49.63 0.20 −1.575 0.062 −0.953
    Figure US20030054346A1-20030320-C00258
    2218.9
    214 AAAGGCTCTAAGATTTTTGT 358 54.13 1.20 −0.914 0.931 −0.213
    Figure US20030054346A1-20030320-C00259
    2371.4
    215 AAGGCTCTAAGATTTTTGTC 359 57.38 1.20 −0.439 0.931 0.082
    Figure US20030054346A1-20030320-C00260
    3308.9
    216 AGGCTCTAAGATTTTTGTCA 360 60.78 0.80 0.061 0.583 0.260
    Figure US20030054346A1-20030320-C00261
    4070.5
    217 GGCTCTAAGATTTTTGTCAT 361 60.56 0.80 0.028 0.583 0.239
    Figure US20030054346A1-20030320-C00262
    5394.5
    218 GCTCTAAGATTTTTGTCATG 362 57.81 0.80 −0.376 0.583 −0.011
    Figure US20030054346A1-20030320-C00263
    2025.5
    219 CTCTAAGATTTTTGTCATGC 363 57.81 0.80 −0.376 0.583 −0.011
    Figure US20030054346A1-20030320-C00264
    1741.9
    220 TCTAAGATTTTTGTCATGCT 364 57.81 0.80 −0.376 0.583 −0.011
    Figure US20030054346A1-20030320-C00265
    1707.6
    221 CTAAGATTTTTGTCATGCTA 365 55.87 0.80 −0.660 0.583 −0.187
    Figure US20030054346A1-20030320-C00266
    1783.0
    222 TAAGATTTTTGTCATGCTAC 366 54.43 0.80 −0.872 0.583 −0.319
    Figure US20030054346A1-20030320-C00267
    3131.4
    223 AAGATTTTTGTCATGCTACT 367 56.99 0.60 −0.495 0.410 −0.151
    Figure US20030054346A1-20030320-C00268
    4892.5
    224 AGATTTTTGTCATGCTACTT 368 59.39 0.60 −0.144 0.410 0.067
    Figure US20030054346A1-20030320-C00269
    5856.4
    225 GATTTTTGTCATGCTACTTT 369 59.54 0.60 −0.122 0.410 0.080
    Figure US20030054346A1-20030320-C00270
    6439.0
    226 ATTTTTGTCATGCTACTTTG 370 58.09 0.60 −0.334 0.410 −0.051
    Figure US20030054346A1-20030320-C00271
    5820.3
    227 TTTTTGTCATGCTACTTTGG 371 60.78 0.60 0.060 0.410 0.193
    Figure US20030054346A1-20030320-C00272
    5189.6
    228 TTTTGTCATGCTACTTTGGA 372 61.79 0.60 0.209 0.410 0.285
    Figure US20030054346A1-20030320-C00273
    4721.7
    229 TTTGTCATGCTACTTTGGAA 373 59.35 0.60 −0.149 0.410 0.063
    Figure US20030054346A1-20030320-C00274
    4221.0
    230 TTGTCATGCTACTTTGGAAT 374 59.00 0.60 −0.200 0.410 0.032
    Figure US20030054346A1-20030320-C00275
    4279.0
    231 TGTCATGCTACTTTGGAATA 375 58.10 0.60 −0.333 0.410 −0.051
    Figure US20030054346A1-20030320-C00276
    4102.0
    232 GTCATGCTACTTTGGAATAT 376 58.16 0.90 −0.324 0.670 0.054
    Figure US20030054346A1-20030320-C00277
    5069.8
    233 TCATGCTACTTTGGAATATT 377 55.52 0.90 −0.711 0.670 −0.186
    Figure US20030054346A1-20030320-C00278
    2407.9
    234 CATGCTACTTTGGAATATTG 378 54.23 1.30 −0.900 1.018 −0.171
    Figure US20030054346A1-20030320-C00279
    2443.0
    235 ATGCTACTTTGGAATATTGC 379 56.90 1.40 −0.508 1.105 0.105
    Figure US20030054346A1-20030320-C00280
    2324.3
    236 TGCTACTTTGGAATATTGCT 380 58.82 0.90 −0.227 0.670 0.114
    Figure US20030054346A1-20030320-C00281
    1894.1
    237 GCTACTTTGGAATATTGCTG 381 58.82 1.30 −0.227 1.018 0.246
    Figure US20030054346A1-20030320-C00282
    2363.8
    238 CTACTTTGGAATATTGCTGG 382 57.35 1.70 −0.443 1.366 0.244
    Figure US20030054346A1-20030320-C00283
    1363.0
    239 TACTTTGGAATATTGCTGGT 383 58.39 1.70 −0.290 1.366 0.339
    Figure US20030054346A1-20030320-C00284
    1217.5
    240 ACTTTGGAATATTGCTGGTG 384 58.88 1.70 −0.217 1.366 0.384
    Figure US20030054346A1-20030320-C00285
    1621.8
    241 CTTTGGAATATTGCTGGTGA 385 59.64 1.70 −0.106 1.366 0.453
    Figure US20030054346A1-20030320-C00286
    1438.2
    242 TTTGGAATATTGCTGGTGAT 386 57.72 1.80 −0.388 1.453 0.311
    Figure US20030054346A1-20030320-C00287
    1608.0
    243 TTGGAATATTGCTGGTGATC 387 58.73 1.80 −0.241 1.453 0.403
    Figure US20030054346A1-20030320-C00288
    2334.6
    244 TGGAATATTGCTGGTGATCC 388 62.18 0.50 0.266 0.323 0.288
    Figure US20030054346A1-20030320-C00289
    3776.7
    245 GGAATATTGCTGGTGATCCT 389 64.19 −0.20 0.561 −0.286 0.239
    Figure US20030054346A1-20030320-C00290
    5648.7
    246 GAATATTGCTGGTGATCCTT 390 61.99 −0.20 0.238 −0.286 0.039
    Figure US20030054346A1-20030320-C00291
    5358.8
    247 AATATTGCTGGTGATCCTTT 391 61.03 −0.20 0.097 −0.286 −0.049
    Figure US20030054346A1-20030320-C00292
    5517.2
    248 ATATTGCTGGTGATCCTTTC 392 64.63 −0.20 0.625 −0.286 0.279
    Figure US20030054346A1-20030320-C00293
    6246.4
    249 TATTGCTGGTGATCCTTTCC 393 68.48 −0.20 1.190 −0.286 0.629
    Figure US20030054346A1-20030320-C00294
    9975.1
    250 ATTGCTGGTGATCCTTTCCA 394 70.22 −0.20 1.446 −0.286 0.788
    Figure US20030054346A1-20030320-C00295
    11990.0
    251 TTGCTGGTGATCCTTTCCAT 395 70.22 −0.60 1.446 −0.634 0.655
    Figure US20030054346A1-20030320-C00296
    11543.0
    252 TGCTGGTGATCCTTTCCATC 396 71.48 −0.60 1.631 −0.634 0.770 0.862 14125.0
    253 GCTGGTGATCCTTTCCATCC 397 75.32 −0.60 2.193 −0.634 1.119 0.936 23489.0
    254 CTGGTGATCCTTTCCATCCC 398 74.58 −0.60 2.085 −0.634 1.052 1.022 15975.0
    255 TGGTGATCCTTTCCATCCCT 399 74.58 −0.70 2.085 −0.721 1.019 1.082 16053.0
    256 GGTGATCCTTTCCATCCCTG 400 74.58 −0.30 2.085 −0.373 1.151 1.136 19205.0
    257 GTGATCCTTTCCATCCCTGT 401 75.40 0.20 2.206 0.062 1.391 1.080 17872.0
    258 TGATCCTTTCCATCCCTGTG 402 71.89 0.20 1.691 0.062 1.072 0.955 12871.0
    259 GATCCTTTCCATCCCTGTGG 403 74.58 −0.30 2.085 −0.373 1.151
    Figure US20030054346A1-20030320-C00297
    8792.7
    260 ATCCTTTCCATCCCTGTGGA 404 74.58 −1.60 2.085 −1.504 0.721
    Figure US20030054346A1-20030320-C00298
    5609.6
    261 TCCTTTCCATCCCTGTGGAA 405 72.27 −2.60 1.746 −2.373 0.181
    Figure US20030054346A1-20030320-C00299
    3018.0
    262 CCTTTCCATCCCTGTGGAAG 406 71.00 −2.80 1.559 −2.547 −0.001
    Figure US20030054346A1-20030320-C00300
    1802.6
    263 CTTTCCATCCCTGTGGAAGC 407 71.60 −2.80 1.648 −2.547 0.054
    Figure US20030054346A1-20030320-C00301
    1074.0
    264 TTTCCATCCCTGTGGAAGCA 408 70.81 −2.80 1.532 −2.547 −0.018
    Figure US20030054346A1-20030320-C00302
    1132.5
    265 TTCCATCCCTGTGGAAGCAC 409 71.02 −2.60 1.562 −2.373 0.067
    Figure US20030054346A1-20030320-C00303
    1454.5
    266 TCCATCCCTGTGGAAGCACA 410 71.74 −1.70 1.669 −1.591 0.430
    Figure US20030054346A1-20030320-C00304
    1676.8
    267 CCATCCCTGTGGAAGCACAT 411 70.20 −2.20 1.443 −2.025 0.125
    Figure US20030054346A1-20030320-C00305
    2268.9
    268 CATCCCTGTGGAAGCACATT 412 67.07 −2.20 0.983 −2.025 −0.160
    Figure US20030054346A1-20030320-C00306
    1682.6
    269 ATCCCTGTGGAAGCACATTG 413 65.82 −2.20 0.801 −2.025 −0.273
    Figure US20030054346A1-20030320-C00307
    1753.9
    270 TCCCTGTGGAAGCACATTGT 414 68.98 −2.20 1.263 −2.025 0.014
    Figure US20030054346A1-20030320-C00308
    1281.8
    271 CCCTGTGGAAGCACATTGTA 415 66.92 −2.20 0.962 −2.025 −0.173
    Figure US20030054346A1-20030320-C00309
    1227.8
    272 CCTGTGGAAGCACATTGTAC 416 63.84 −2.20 0.509 −2.025 −0.454
    Figure US20030054346A1-20030320-C00310
    700.3
    273 CTGTGGAAGCACATTGTACT 417 62.01 −2.20 0.241 −2.025 −0.620
    Figure US20030054346A1-20030320-C00311
    618.7
    274 TGTGGAAGCACATTGTACTG 418 59.99 −2.00 −0.056 −1.851 −0.738
    Figure US20030054346A1-20030320-C00312
    771.5
    275 GTGGAAGCACATTGTACTGA 419 61.39 −0.50 0.149 −0.547 −0.115
    Figure US20030054346A1-20030320-C00313
    1180.6
    276 TGGAAGCACATTGTACTGAT 420 58.35 0.50 −0.296 0.323 −0.061
    Figure US20030054346A1-20030320-C00314
    1160.5
    277 GGAAGCACATTGTACTGATA 421 57.86 0.50 −0.368 0.323 −0.106
    Figure US20030054346A1-20030320-C00315
    1314.7
    278 GAAGCACATTGTACTGATAT 422 55.32 0.50 −0.740 0.323 −0.336
    Figure US20030054346A1-20030320-C00316
    1102.5
    279 AAGCACATTGTACTGATATC 423 55.30 0.50 −0.744 0.323 −0.339
    Figure US20030054346A1-20030320-C00317
    1222.1
    280 AGCACATTGTACTGATATCT 424 59.26 0.50 −0.162 0.323 0.022
    Figure US20030054346A1-20030320-C00318
    1893.2
    281 GCACATTGTACTGATATCTA 425 58.48 0.50 −0.277 0.323 −0.049
    Figure US20030054346A1-20030320-C00319
    2097.7
    282 CACATTGTACTGATATCTAA 426 52.51 0.50 −1.152 0.323 −0.592
    Figure US20030054346A1-20030320-C00320
    1237.8
    283 ACATTGTACTGATATCTAAT 427 51.20 0.50 −1.345 0.323 −0.711
    Figure US20030054346A1-20030320-C00321
    959.5
    284 CATTGTACTGATATCTAATC 428 51.89 0.10 −1.244 −0.025 −0.781
    Figure US20030054346A1-20030320-C00322
    1149.1
    285 ATTGTACTGATATCTAATCC 429 54.53 −0.30 −0.856 −0.373 −0.672
    Figure US20030054346A1-20030320-C00323
    2351.3
    286 TTGTACTGATATCTAATCCC 430 58.41 −0.30 −0.287 −0.373 −0.320
    Figure US20030054346A1-20030320-C00324
    4191.6
    287 TGTACTGATATCTAATCCCT 431 59.99 −0.30 −0.055 −0.373 −0.176
    Figure US20030054346A1-20030320-C00325
    5565.8
    288 GTACTGATATCTAATCCCTG 432 59.99 −0.30 −0.055 −0.373 −0.176
    Figure US20030054346A1-20030320-C00326
    9980.2
    289 TACTGATATCTAATCCCTGG 433 59.52 −0.30 −0.124 −0.373 −0.218
    Figure US20030054346A1-20030320-C00327
    6318.9
    290 ACTGATATCTAATCCCTGGT 434 63.07 −0.30 0.397 −0.373 0.104
    Figure US20030054346A1-20030320-C00328
    7749.5
    291 CTGATATCTAATCCCTGGTG 435 62.43 −0.30 0.303 −0.373 0.046
    Figure US20030054346A1-20030320-C00329
    8165.3
    292 TGATATCTAATCCCTGGTGT 436 63.60 −0.30 0.474 −0.373 0.152
    Figure US20030054346A1-20030320-C00330
    9107.6
    293 GATATCTAATCCCTGGTGTC 437 65.19 0.10 0.707 −0.025 0.429
    Figure US20030054346A1-20030320-C00331
    13914.0
    294 ATATCTAATCCCTGGTGTCT 438 65.82 1.50 0.800 1.192 0.949
    Figure US20030054346A1-20030320-C00332
    15093.0
    295 TATCTAATCCCTGGTGTCTC 439 67.41 1.50 1.033 1.192 1.093
    Figure US20030054346A1-20030320-C00333
    18647.0
    296 ATCTAATCCCTGGTGTCTCA 440 69.20 1.30 1.296 1.018 1.190 0.904 21810.0
    297 TCTAATCCCTGGTGTCTCAT 441 69.20 0.80 1.296 0.583 1.025 0.996 20102.0
    298 CTAATCCCTGGTGTCTCATT 442 67.98 0.80 1.117 0.583 0.914 1.052 20967.0
    299 TAATCCCTGGTGTCTCATTG 443 65.90 0.80 0.811 0.583 0.725 1.092 18200.0
    300 AATCCCTGGTGTCTCATTGT 444 69.78 0.80 1.380 0.583 1.077 1.088 19845.0
    301 ATCCCTGGTGTCTCATTGTT 445 72.61 0.80 1.797 0.583 1.336 1.057 19231.0
    302 TCCCTGGTGTCTCATTGTTT 446 73.04 0.80 1.860 0.583 1.375 0.981 17629.0
    303 CCCTGGTGTCTCATTGTTTA 447 70.72 0.80 1.519 0.583 1.164 0.918 17009.0
    304 CCTGGTGTCTCATTGTTTAT 448 66.82 0.80 0.946 0.583 0.808
    Figure US20030054346A1-20030320-C00334
    11580.0
    305 CTGGTGTCTCATTGTTTATA 449 62.17 0.80 0.264 0.583 0.386
    Figure US20030054346A1-20030320-C00335
    8374.6
    306 TGGTGTCTCATTGTTTATAC 450 60.65 0.90 0.042 0.670 0.281
    Figure US20030054346A1-20030320-C00336
    6153.3
    307 GGTGTCTCATTGTTTATACT 451 62.88 0.20 0.369 0.062 0.252
    Figure US20030054346A1-20030320-C00337
    7134.0
    308 GTGTCTCATTGTTTATACTA 452 59.43 0.20 −0.138 0.062 −0.062
    Figure US20030054346A1-20030320-C00338
    4435.2
    309 TGTCTCATTGTTTATACTAG 453 56.35 0.20 −0.589 0.062 −0.342
    Figure US20030054346A1-20030320-C00339
    2035.5
    310 GTCTCATTGTTTATACTAGG 454 59.21 0.20 −0.170 0.062 −0.082
    Figure US20030054346A1-20030320-C00340
    2466.6
    311 TCTCATTGTTTATACTAGGT 455 59.21 0.20 −0.170 0.062 −0.082
    Figure US20030054346A1-20030320-C00341
    1080.9
    312 CTCATTGTTTATACTAGGTA 456 57.15 0.20 −0.472 0.062 −0.269
    Figure US20030054346A1-20030320-C00342
    956.0
    313 TCATTGTTTATACTAGGTAT 457 55.08 0.20 −0.776 0.062 −0.458
    Figure US20030054346A1-20030320-C00343
    529.4
    314 CATTGTTTATACTAGGTATG 458 53.70 0.20 −0.978 0.062 −0.583
    Figure US20030054346A1-20030320-C00344
    471.4
    315 ATTGTTTATACTAGGTATGG 459 55.01 0.20 −0.785 0.062 −0.463
    Figure US20030054346A1-20030320-C00345
    510.4
    316 TTGTTTATACTAGGTATGGT 460 58.17 0.20 −0.322 0.062 −0.176
    Figure US20030054346A1-20030320-C00346
    531.0
    317 TGTTTATACTAGGTATGGTA 461 57.21 0.20 −0.463 0.062 −0.264
    Figure US20030054346A1-20030320-C00347
    613.3
    318 GTTTATACTAGGTATGGTAA 462 55.23 0.00 −0.753 −0.112 −0.510
    Figure US20030054346A1-20030320-C00348
    685.1
    319 TTTATACTAGGTATGGTAAA 463 50.42 0.00 −1.459 −0.112 −0.947
    Figure US20030054346A1-20030320-C00349
    300.0
    320 TTATACTAGGTATGGTAAAT 464 50.12 0.00 −1.504 −0.112 −0.975
    Figure US20030054346A1-20030320-C00350
    316.1
    321 TATACTAGGTATGGTAAATG 465 49.79 0.00 −1.551 −0.112 −1.004
    Figure US20030054346A1-20030320-C00351
    387.5
    322 ATACTAGGTATGGTAAATGC 466 54.30 0.00 −0.889 −0.112 −0.594
    Figure US20030054346A1-20030320-C00352
    685.7
    323 TACTAGGTATGGTAAATGCA 467 55.59 0.20 −0.700 0.062 −0.411
    Figure US20030054346A1-20030320-C00353
    759.6
    324 ACTAGGTATGGTAAATGCAG 468 56.32 0.80 −0.593 0.583 −0.146
    Figure US20030054346A1-20030320-C00354
    1050.2
    325 CTAGGTATGGTAAATGCAGT 469 58.78 1.10 −0.232 0.844 0.177
    Figure US20030054346A1-20030320-C00355
    1020.4
    326 TAGGTATGGTAAATGCAGTA 470 56.24 1.10 −0.605 0.844 −0.054
    Figure US20030054346A1-20030320-C00356
    742.6
    327 AGGTATGGTAAATGCAGTAT 471 56.81 1.10 −0.521 0.844 −0.002
    Figure US20030054346A1-20030320-C00357
    889.6
    328 GGTATGGTAAATGCAGTATA 472 56.07 1.10 −0.631 0.844 −0.070
    Figure US20030054346A1-20030320-C00358
    858.8
    329 GTATGGTAAATGCAGTATAC 473 54.02 1.10 −0.931 0.844 −0.256
    Figure US20030054346A1-20030320-C00359
    379.0
    330 TATGGTAAATGCAGTATACT 474 53.06 0.40 −1.071 0.236 −0.575
    Figure US20030054346A1-20030320-C00360
    166.7
    331 ATGGTAAATGCAGTATACTT 475 53.94 0.40 −0.943 0.236 −0.495
    Figure US20030054346A1-20030320-C00361
    215.3
    332 TGGTAAATGCAGTATACTTC 476 55.21 0.40 −0.757 0.236 −0.380
    Figure US20030054346A1-20030320-C00362
    103.2
    333 GGTAAATGCAGTATACTTCC 477 59.15 0.40 −0.178 0.236 −0.021
    Figure US20030054346A1-20030320-C00363
    246.3
    334 GTAAATGCAGTATACTTCCT 478 58.53 0.80 −0.269 0.583 0.055
    Figure US20030054346A1-20030320-C00364
    163.4
    335 TAAATGCAGTATACTTCCTG 479 55.54 0.10 −0.708 −0.025 −0.448
    Figure US20030054346A1-20030320-C00365
    294.1
    336 AAATGCAGTATACTTCCTGA 480 57.36 −0.30 −0.441 −0.373 −0.415
    Figure US20030054346A1-20030320-C00366
    531.4
    337 AATGCAGTATACTTCCTGAA 481 57.36 −0.30 −0.441 −0.373 −0.415
    Figure US20030054346A1-20030320-C00367
    1995.5
    338 ATGCAGTATACTTCCTGAAG 482 59.50 −0.30 −0.128 −0.373 −0.221
    Figure US20030054346A1-20030320-C00368
    510.1
    339 TGCAGTATACTTCCTGAAGT 483 62.63 −0.90 0.332 −0.895 −0.134
    Figure US20030054346A1-20030320-C00369
    555.4
    340 GCAGTATACTTCCTGAAGTC 484 64.24 −1.10 0.568 −1.069 −0.054
    Figure US20030054346A1-20030320-C00370
    1214.0
    341 CAGTATACTTCCTGAAGTCT 485 61.94 −1.10 0.230 −1.069 −0.263
    Figure US20030054346A1-20030320-C00371
    825.7
    342 AGTATACTTCCTGAAGTCTT 486 61.00 −1.10 0.094 −1.069 −0.348
    Figure US20030054346A1-20030320-C00372
    1582.6
    343 GTATACTTCCTGAAGTCTTC 487 62.28 −1.10 0.281 −1.069 −0.232
    Figure US20030054346A1-20030320-C00373
    2391.8
    344 TATACTTCCTGAAGTCTTCA 488 60.34 −1.10 −0.004 −1.069 −0.409
    Figure US20030054346A1-20030320-C00374
    2276.3
    345 ATACTTCCTGAAGTCTTCAT 489 60.91 −1.20 0.080 −1.156 −0.389
    Figure US20030054346A1-20030320-C00375
    2702.8
    346 TACTTCCTGAAGTCTTCATC 490 62.40 −1.20 0.299 −1.156 −0.254
    Figure US20030054346A1-20030320-C00376
    3781.7
    347 ACTTCCTGAAGTCTTCATCT 491 65.05 −1.20 0.686 −1.156 −0.014
    Figure US20030054346A1-20030320-C00377
    5343.4
    348 CTTCCTGAAGTCTTCATCTA 492 63.86 −1.20 0.512 −1.156 −0.122
    Figure US20030054346A1-20030320-C00378
    6309.0
    349 TTCCTGAAGTCTTCATCTAA 493 59.70 −1.20 −0.098 −1.156 −0.500
    Figure US20030054346A1-20030320-C00379
    6372.4
    350 TCCTGAAGTCTTCATCTAAG 494 59.55 −1.20 −0.120 −1.156 −0.513
    Figure US20030054346A1-20030320-C00380
    3835.3
    351 CCTGAAGTCTTCATCTAAGG 495 60.76 −1.20 0.057 −1.156 −0.404
    Figure US20030054346A1-20030320-C00381
    8925.5
    352 CTGAAGTCTTCATCTAAGGG 496 59.48 −1.20 −0.130 −1.156 −0.520
    Figure US20030054346A1-20030320-C00382
    1211.8
    353 TGAAGTCTTCATCTAAGGGA 497 58.84 −1.00 −0.224 −0.982 −0.512
    Figure US20030054346A1-20030320-C00383
    609.4
    354 GAAGTCTTCATCTAAGGGAA 498 56.91 −0.10 −0.507 −0.199 −0.390
    Figure US20030054346A1-20030320-C00384
    629.1
    355 AAGTCTTCATCTAAGGGAAC 499 56.13 −0.10 −0.622 −0.199 −0.461
    Figure US20030054346A1-20030320-C00385
    749.3
    356 AGTCTTCATCTAAGGGAACT 500 60.12 −0.10 −0.036 −0.199 −0.098
    Figure US20030054346A1-20030320-C00386
    805.6
    357 GTCTTCATCTAAGGGAACTG 501 59.84 −0.10 −0.077 −0.199 −0.124
    Figure US20030054346A1-20030320-C00387
    817.0
    358 TCTTCATCTAAGGGAACTGA 502 58.11 −0.10 −0.331 −0.199 −0.281
    Figure US20030054346A1-20030320-C00388
    327.1
    359 CTTCATCTAAGGGAACTGAA 503 54.95 −0.60 −0.794 −0.634 −0.733
    Figure US20030054346A1-20030320-C00389
    320.0
    360 TTCATCTAAGGGAACTGAAA 504 51.39 −0.60 −1.316 −0.634 −1.057 0.822 84.1
    361 TCATCTAAGGGAACTGAAAA 505 49.50 0.10 −1.595 −0.025 −0.998 1.002 67.7
    362 CATCTAAGGGAACTGAAAAA 506 46.98 0.10 −1.963 −0.025 −1.227 1.171 62.2
    363 ATCTAAGGGAACTGAAAAAT 507 45.78 0.10 −2.140 −0.025 −1.336 1.298 78.9
    364 TCTAAGGGAACTGAAAAATA 508 45.27 0.10 −2.214 −0.025 −1.382 1.328 43.2
    365 CTAAGGGAACTGAAAAATAT 509 44.36 0.10 −2.349 −0.025 −1.466 1.322 50.4
    366 TAAGGGAACTGAAAAATATG 510 42.71 0.10 −2.591 −0.025 −1.616 1.242 43.7
    367 AAGGGAACTGAAAAATATGC 511 46.54 0.10 −2.028 −0.025 −1.267 1.163 45.6
    368 AGGGAACTGAAAAATATGCA 512 49.21 0.30 −1.637 0.149 −0.958 1.119 49.8
    369 GGGAACTGAAAAATATGCAT 513 49.11 1.20 −1.651 0.931 −0.670 1.082 53.2
    370 GGAACTGAAAAATATGCATC 514 47.87 1.20 −1.834 0.931 −0.783 0.958 56.6
    371 GAACTGAAAAATATGCATCA 515 46.82 0.60 −1.987 0.410 −1.076 0.844 45.3
    372 AACTGAAAAATATGCATCAC 516 46.12 0.40 −2.090 0.236 −1.206 0.773 56.3
    373 ACTGAAAAATATGCATCACC 517 51.18 0.40 −1.347 0.236 −0.746
    Figure US20030054346A1-20030320-C00390
    61.7
    374 CTGAAAAATATGCATCACCC 518 54.20 0.40 −0.905 0.236 −0.471
    Figure US20030054346A1-20030320-C00391
    224.5
    375 TGAAAAATATGCATCACCCA 519 53.65 0.60 −0.985 0.410 −0.455
    Figure US20030054346A1-20030320-C00392
    413.0
    376 GAAAAATATGCATCACCCAC 520 54.14 1.30 −0.913 1.018 −0.179
    Figure US20030054346A1-20030320-C00393
    1584.0
    377 AAAAATATGCATCACCCACA 521 54.14 1.30 −0.913 1.018 −0.179
    Figure US20030054346A1-20030320-C00394
    1846.7
    378 AAAATATGCATCACCCACAT 522 55.78 1.10 −0.673 0.844 −0.096
    Figure US20030054346A1-20030320-C00395
    2445.8
    379 AAATATGCATCACCCACATC 523 58.72 0.90 −0.241 0.670 0.105
    Figure US20030054346A1-20030320-C00396
    3709.4
    380 AATATGCATCACCCACATCC 524 64.13 0.90 0.552 0.670 0.597
    Figure US20030054346A1-20030320-C00397
    4548.4
    381 ATATGCATCACCCACATCCA 525 67.27 0.90 1.013 0.670 0.883
    Figure US20030054346A1-20030320-C00398
    5254.1
    382 TATGCATCACCCACATCCAG 526 67.53 0.90 1.051 0.670 0.906 0.864 5527.2
    383 ATGCATCACCCACATCCAGT 527 71.21 0.90 1.590 0.670 1.241 0.991 6916.9
    384 TGCATCACCCACATCCAGTA 528 70.68 0.70 1.513 0.496 1.127 1.030 5861.4
    385 GCATCACCCACATCCAGTAC 529 71.39 0.70 1.617 0.496 1.191 1.043 8078.4
    386 CATCACCCACATCCAGTACT 530 69.16 0.70 1.290 0.496 0.988 1.013 4148.8
    387 ATCACCCACATCCAGTACTG 531 67.91 0.70 1.107 0.496 0.875 0.913 3317.1
    388 TCACCCACATCCAGTACTGT 532 71.15 0.10 1.582 −0.025 0.971
    Figure US20030054346A1-20030320-C00399
    2486.4
    389 CACCCACATCCAGTACTGTT 533 69.94 −0.40 1.404 −0.460 0.696
    Figure US20030054346A1-20030320-C00400
    2746.4
    390 ACCCACATCCAGTACTGTTA 534 68.25 −0.40 1.157 −0.460 0.543
    Figure US20030054346A1-20030320-C00401
    2133.0
    391 CCCACATCCAGTACTGTTAC 535 68.25 −0.40 1.157 −0.460 0.543
    Figure US20030054346A1-20030320-C00402
    2197.0
    392 CCACATCCAGTACTGTTACT 536 66.50 −0.40 0.900 −0.460 0.383
    Figure US20030054346A1-20030320-C00403
    1824.0
    393 CACATCCAGTACTGTTACTG 537 62.61 −1.90 0.329 −1.764 −0.467
    Figure US20030054346A1-20030320-C00404
    1675.2
    394 ACATCCAGTACTGTTACTGA 538 62.71 −2.30 0.344 −2.112 −0.590
    Figure US20030054346A1-20030320-C00405
    1219.8
    395 CATCCAGTACTGTTACTGAT 539 62.12 −2.30 0.258 −2.112 −0.643
    Figure US20030054346A1-20030320-C00406
    1414.0
    396 ATCCAGTACTGTTACTGATT 540 61.21 −2.30 0.124 −2.112 −0.726
    Figure US20030054346A1-20030320-C00407
    1710.7
    397 TCCAGTACTGTTACTGATTT 541 61.58 −2.30 0.178 −2.112 −0.692
    Figure US20030054346A1-20030320-C00408
    2280.7
    398 CCAGTACTGTTACTGATTTT 542 60.48 −2.30 0.017 −2.112 −0.792
    Figure US20030054346A1-20030320-C00409
    2847.7
    399 CAGTACTGTTACTGATTTTT 543 56.84 −1.90 −0.518 −1.764 −0.992
    Figure US20030054346A1-20030320-C00410
    2830.2
    400 AGTACTGTTACTGATTTTTT 544 55.82 −0.30 −0.666 −0.373 −0.555
    Figure US20030054346A1-20030320-C00411
    4336.3
    401 GTACTGTTACTGATTTTTTC 545 57.04 0.40 −0.488 0.236 −0.213
    Figure US20030054346A1-20030320-C00412
    6581.1
    402 TACTGTTACTGATTTTTTCT 546 55.95 −0.10 −0.649 −0.199 −0.478
    Figure US20030054346A1-20030320-C00413
    5406.6
    403 ACTGTTACTGATTTTTTCTT 547 56.89 −0.10 −0.510 −0.199 −0.392
    Figure US20030054346A1-20030320-C00414
    6083.1
    404 CTGTTACTGATTTTTTCTTT 548 56.67 −0.10 −0.542 −0.199 −0.412
    Figure US20030054346A1-20030320-C00415
    6585.7
    405 TGTTACTGATTTTTTCTTTT 549 54.96 −0.10 −0.793 −0.199 −0.567
    Figure US20030054346A1-20030320-C00416
    3923.2
    406 GTTACTGATTTTTTCTTTTT 550 55.36 −0.10 −0.734 −0.199 −0.531
    Figure US20030054346A1-20030320-C00417
    4093.5
    407 TTACTGATTTTTTCTTTTTT 551 52.62 −0.10 −1.136 −0.199 −0.780
    Figure US20030054346A1-20030320-C00418
    1381.5
    408 TACTGATTTTTTCTTTTTTA 552 51.70 −0.10 −1.272 −0.199 −0.864 0.784 1194.3
    409 ACTGATTTTTTCTTTTTTAA 553 50.45 −0.10 −1.454 −0.199 −0.977 0.746 2371.3
    410 CTGATTTTTTCTTTTTTAAC 554 50.45 −0.10 −1.454 −0.199 −0.977
    Figure US20030054346A1-20030320-C00419
    395.9
    411 TGATTTTTTCTTTTTTAACC 555 52.50 −0.10 −1.155 −0.199 −0.792
    Figure US20030054346A1-20030320-C00420
    230.7
    412 GATTTTTTCTTTTTTAACCC 556 56.43 0.30 −0.578 0.149 −0.302
    Figure US20030054346A1-20030320-C00421
    314.9
    413 ATTTTTTCTTTTTTAACCCT 557 57.05 0.80 −0.487 0.583 −0.080
    Figure US20030054346A1-20030320-C00422
    276.1
    414 TTTTTTCTTTTTTAACCCTG 558 56.99 0.80 −0.495 0.583 −0.085
    Figure US20030054346A1-20030320-C00423
    273.3
    415 TTTTTCTTTTTTAACCCTGC 559 60.68 0.80 0.045 0.583 0.250
    Figure US20030054346A1-20030320-C00424
    628.4
    416 TTTTCTTTTTTAACCCTGCG 560 60.85 0.80 0.071 0.583 0.265
    Figure US20030054346A1-20030320-C00425
    4661.4
    417 TTTCTTTTTTAACCCTGCGG 561 62.93 0.70 0.377 0.496 0.422
    Figure US20030054346A1-20030320-C00426
    411.2
    418 TTCTTTTTTAACCCTGCGGG 562 65.01 −0.60 0.681 −0.634 0.181
    Figure US20030054346A1-20030320-C00427
    289.5
    419 TCTTTTTTAACCCTGCGGGA 563 65.91 −1.00 0.813 −0.982 0.131
    Figure US20030054346A1-20030320-C00428
    244.8
    420 CTTTTTTAACCCTGCGGGAT 564 64.52 −1.00 0.610 −0.982 0.005
    Figure US20030054346A1-20030320-C00429
    250.7
    421 TTTTTTAACCCTGCGGGATG 565 62.66 −1.00 0.337 −0.982 −0.164
    Figure US20030054346A1-20030320-C00430
    207.8
    422 TTTTTAACCCTGCGGGATGT 566 65.23 −1.00 0.713 −0.982 0.069
    Figure US20030054346A1-20030320-C00431
    255.8
    423 TTTTAACCCTGCGGGATGTG 567 64.80 −1.00 0.651 −0.982 0.030
    Figure US20030054346A1-20030320-C00432
    356.8
    424 TTTAACCCTGCGGGATGTGG 568 66.83 −1.00 0.949 −0.982 0.215
    Figure US20030054346A1-20030320-C00433
    497.8
    425 TTAACCCTGCGGGATGTGGT 569 69.50 −1.00 1.339 −0.982 0.457
    Figure US20030054346A1-20030320-C00434
    754.3
    426 TAACCCTGCGGGATGTGGTA 570 68.63 −1.00 1.212 −0.982 0.378
    Figure US20030054346A1-20030320-C00435
    902.4
    427 AACCCTGCGGGATGTGGTAT 571 69.14 −1.00 1.286 −0.982 0.424
    Figure US20030054346A1-20030320-C00436
    1186.6
    428 ACCCTGCGGGATGTGGTATT 572 71.66 −1.00 1.657 −0.982 0.654
    Figure US20030054346A1-20030320-C00437
    1514.9
    429 CCCTGCGGGATGTGGTATTC 573 72.66 −0.60 1.804 −0.634 0.878
    Figure US20030054346A1-20030320-C00438
    2407.6
    430 CCTGCGGGATGTGGTATTCC 574 72.66 −0.60 1.804 −0.634 0.878
    Figure US20030054346A1-20030320-C00439
    3019.4
    431 CTGCGGGATGTGGTATTCCT 575 71.02 −1.30 1.563 −1.243 0.497
    Figure US20030054346A1-20030320-C00440
    3275.3
    432 TGCGGGATGTGGTATTCCTA 576 68.54 −1.30 1.199 −1.243 0.271
    Figure US20030054346A1-20030320-C00441
    2830.8
    433 GCGGGATGTGGTATTCCTAA 577 66.48 −1.30 0.896 −1.243 0.083
    Figure US20030054346A1-20030320-C00442
    2620.5
    434 CGGGATGTGGTATTCCTAAT 578 62.46 −1.30 0.307 −1.243 −0.282
    Figure US20030054346A1-20030320-C00443
    1827.8
    435 GGGATGTGGTATTCCTAATT 579 62.37 −1.30 0.294 −1.243 −0.290
    Figure US20030054346A1-20030320-C00444
    1957.4
    436 GGATGTGGTATTCCTAATTG 580 59.71 −0.90 −0.097 −0.895 −0.400
    Figure US20030054346A1-20030320-C00445
    1686.2
    437 GATGTGGTATTCCTAATTGA 581 58.45 −0.20 −0.281 −0.286 −0.283
    Figure US20030054346A1-20030320-C00446
    1395.0
    438 ATGTGGTATTCCTAATTGAA 582 55.24 −0.20 −0.752 −0.286 −0.575
    Figure US20030054346A1-20030320-C00447
    1245.7
    439 TGTGGTATTCCTAATTGAAC 583 55.76 −0.30 −0.675 −0.373 −0.561
    Figure US20030054346A1-20030320-C00448
    1314.0
    440 GTGGTATTCCTAATTGAACT 584 57.73 −0.30 −0.387 −0.373 −0.382
    Figure US20030054346A1-20030320-C00449
    1818.7
    441 TGGTATTCCTAATTGAACTT 585 55.15 −0.30 −0.765 −0.373 −0.616
    Figure US20030054346A1-20030320-C00450
    880.3
    442 GGTATTCCTAATTGAACTTC 586 56.47 −0.30 −0.572 −0.373 −0.496
    Figure US20030054346A1-20030320-C00451
    1419.0
    443 GTATTCCTAATTGAACTTCC 587 57.76 −0.30 −0.383 −0.373 −0.379
    Figure US20030054346A1-20030320-C00452
    1567.9
    444 TATTCCTAATTGAACTTCCC 588 58.57 −0.30 −0.264 −0.373 −0.306
    Figure US20030054346A1-20030320-C00453
    1959.4
    445 ATTCCTAATTGAACTTCCCA 589 60.26 −0.30 −0.016 −0.373 −0.152
    Figure US20030054346A1-20030320-C00454
    2971.8
    446 TTCCTAATTGAACTTCCCAG 590 60.45 −0.10 0.013 −0.199 −0.068
    Figure US20030054346A1-20030320-C00455
    1898.5
    447 TCCTAATTGAACTTCCCAGA 591 61.36 0.70 0.146 0.496 0.279
    Figure US20030054346A1-20030320-C00456
    1392.3
    448 CCTAATTGAACTTCCCAGAA 592 58.27 0.70 −0.308 0.496 −0.002
    Figure US20030054346A1-20030320-C00457
    1143.2
    449 CTAATTGAACTTCCCAGAAG 593 54.92 −0.70 −0.800 −0.721 −0.770
    Figure US20030054346A1-20030320-C00458
    427.7
    450 TAATTGAACTTCCCAGAAGT 594 55.84 −1.90 −0.664 −1.764 −1.082
    Figure US20030054346A1-20030320-C00459
    148.5
    451 AATTGAACTTCCCAGAAGTC 595 57.61 −2.10 −0.404 −1.938 −0.987
    Figure US20030054346A1-20030320-C00460
    259.1
    452 ATTGAACTTCCCAGAAGTCT 596 61.42 −2.10 0.154 −1.938 −0.641 0.751 241.9
    453 TTGAACTTCCCAGAAGTCTT 597 61.76 −2.10 0.205 −1.938 −0.609 0.730 808.1
    454 TGAACTTCCCAGAAGTCTTG 598 61.34 −2.10 0.143 −1.938 −0.648
    Figure US20030054346A1-20030320-C00461
    351.6
    455 GAACTTCCCAGAAGTCTTGA 599 62.71 −2.10 0.344 −1.938 −0.523
    Figure US20030054346A1-20030320-C00462
    499.7
    456 AACTTCCCAGAAGTCTTGAG 600 61.63 −2.10 0.186 −1.938 −0.621
    Figure US20030054346A1-20030320-C00463
    407.4
    457 ACTTCCCAGAAGTCTTGAGT 601 66.97 −1.90 0.969 −1.764 −0.069
    Figure US20030054346A1-20030320-C00464
    492.1
    458 CTTCCCAGAAGTCTTGAGTT 602 66.75 −1.00 0.937 −0.982 0.208
    Figure US20030054346A1-20030320-C00465
    736.1
    459 TTCCCAGAAGTCTTGAGTTC 603 66.31 −0.20 0.872 −0.286 0.432
    Figure US20030054346A1-20030320-C00466
    815.2
    460 TCCCAGAAGTCTTGAGTTCT 604 67.98 −1.20 1.116 −1.156 0.253
    Figure US20030054346A1-20030320-C00467
    888.8
    461 CCCAGAAGTCTTGAGTTCTC 605 67.98 −1.40 1.116 −1.330 0.187
    Figure US20030054346A1-20030320-C00468
    2021.6
    462 CCAGAAGTCTTGAGTTCTCT 606 66.10 −1.40 0.842 −1.330 0.017
    Figure US20030054346A1-20030320-C00469
    1988.5
    463 CAGAAGTCTTGAGTTCTCTT 607 62.41 −1.40 0.300 −1.330 −0.319
    Figure US20030054346A1-20030320-C00470
    2008.8
    464 AGAAGTCTTGAGTTCTCTTA 608 60.43 −1.20 0.009 −1.156 −0.434
    Figure US20030054346A1-20030320-C00471
    2631.8
    465 GAAGTCTTGAGTTCTCTTAT 609 60.20 −0.50 −0.025 −0.547 −0.223
    Figure US20030054346A1-20030320-C00472
    3052.8
    466 AAGTCTTGAGTTCTCTTATT 610 59.12 0.30 −0.183 0.149 −0.057
    Figure US20030054346A1-20030320-C00473
    3509.3
    467 AGTCTTGAGTTCTCTTATTA 611 60.75 0.30 0.056 0.149 0.091
    Figure US20030054346A1-20030320-C00474
    3221.6
    468 GTCTTGAGTTCTCTTATTAA 612 58.29 0.30 −0.305 0.149 −0.132
    Figure US20030054346A1-20030320-C00475
    3677.1
    469 TCTTGAGTTCTCTTATTAAG 613 55.25 0.30 −0.751 0.149 −0.409
    Figure US20030054346A1-20030320-C00476
    1176.6
    470 CTTGAGTTCTCTTATTAAGT 614 57.04 0.10 −0.488 −0.025 −0.312
    Figure US20030054346A1-20030320-C00477
    1168.1
    471 TTGAGTTCTCTTATTAAGTT 615 55.29 0.10 −0.745 −0.025 −0.471
    Figure US20030054346A1-20030320-C00478
    666.3
    472 TGAGTTCTCTTATTAAGTTC 616 56.35 0.10 −0.589 −0.025 −0.375
    Figure US20030054346A1-20030320-C00479
    674.0
    473 GAGTTCTCTTATTAAGTTCT 617 58.57 0.10 −0.263 −0.025 −0.173
    Figure US20030054346A1-20030320-C00480
    1471.4
    474 AGTTCTCTTATTAAGTTCTC 618 58.61 0.10 −0.257 −0.025 −0.169
    Figure US20030054346A1-20030320-C00481
    1493.5
    475 GTTCTCTTATTAAGTTCTCT 619 60.59 0.10 0.032 −0.025 0.011
    Figure US20030054346A1-20030320-C00482
    2191.5
    476 TTCTCTTATTAAGTTCTCTG 620 57.16 0.10 −0.471 −0.025 −0.301
    Figure US20030054346A1-20030320-C00483
    1410.3
    477 TCTCTTATTAAGTTCTCTGA 621 58.23 0.10 −0.314 −0.025 −0.204
    Figure US20030054346A1-20030320-C00484
    1262.8
    478 CTCTTATTAAGTTCTCTGAA 622 54.79 0.10 −0.817 −0.025 −0.516
    Figure US20030054346A1-20030320-C00485
    1072.9
    479 TCTTATTAAGTTCTCTGAAA 623 50.95 0.10 −1.382 −0.025 −0.866
    Figure US20030054346A1-20030320-C00486
    540.9
    480 CTTATTAAGTTCTCTGAAAT 624 49.77 0.50 −1.554 0.323 −0.841
    Figure US20030054346A1-20030320-C00487
    539.2
    481 TTATTAAGTTCTCTGAAATC 625 48.99 0.50 −1.668 0.323 −0.912 0.768 709.0
    482 TATTAAGTTCTCTGAAATCT 626 50.64 0.50 −1.427 0.323 −0.762 0.775 978.1
    483 ATTAAGTTCTCTGAAATCTA 627 50.64 0.50 −1.427 0.323 −0.762 0.732 1217.7
    484 TTAAGTTCTCTGAAATCTAC 628 51.15 0.50 −1.352 0.323 −0.716
    Figure US20030054346A1-20030320-C00488
    1748.1
    485 TAAGTTCTCTGAAATCTACT 629 52.79 0.50 −1.112 0.323 −0.567
    Figure US20030054346A1-20030320-C00489
    2511.5
    486 AAGTTCTCTGAAATCTACTA 630 52.79 0.50 −1.112 0.323 −0.567
    Figure US20030054346A1-20030320-C00490
    2997.2
    487 AGTTCTCTGAAATCTACTAA 631 52.79 0.50 −1.112 0.323 −0.567
    Figure US20030054346A1-20030320-C00491
    2887.6
    488 GTTCTCTGAAATCTACTAAT 632 52.65 0.50 −1.133 0.323 −0.580
    Figure US20030054346A1-20030320-C00492
    4421.3
    489 TTCTCTGAAATCTACTAATT 633 50.14 0.70 −1.500 0.496 −0.741 0.832 1937.7
    490 TCTCTGAAATCTACTAATTT 634 50.14 0.20 −1.500 0.062 −0.906 0.962 1773.3
    491 CTCTGAAATCTACTAATTTT 635 49.31 −0.30 −1.622 −0.373 −1.147 1.102 1491.1
    492 TCTGAAATCTACTAATTTTC 636 48.55 −0.60 −1.734 −0.634 −1.316 1.171 376.6
    493 CTGAAATCTACTAATTTTCT 637 49.31 −1.30 −1.622 −1.243 −1.478 1.178 371.9
    494 TGAAATCTACTAATTTTCTC 638 48.55 −1.30 −1.734 −1.243 −1.547 1.092 415.2
    495 GAAATCTACTAATTTTCTCC 639 52.45 −0.90 −1.161 −0.895 −1.060 0.938 1097.9
    496 AAATCTACTAATTTTCTCCA 640 52.47 −0.10 −1.158 −0.199 −0.794 0.778 1429.1
    497 AATCTACTAATTTTCTCCAT 641 54.25 0.90 −0.897 0.670 −0.301
    Figure US20030054346A1-20030320-C00493
    1812.5
    498 ATCTACTAATTTTCTCCATT 642 56.46 1.00 −0.572 0.757 −0.067
    Figure US20030054346A1-20030320-C00494
    1943.4
    499 TCTACTAATTTTCTCCATTT 643 56.80 0.50 −0.523 0.323 −0.202
    Figure US20030054346A1-20030320-C00495
    1506.1
    500 CTACTAATTTTCTCCATTTA 644 54.93 0.50 −0.797 0.323 −0.372
    Figure US20030054346A1-20030320-C00496
    1694.7
    501 TACTAATTTTCTCCATTTAG 645 53.14 0.30 −1.060 0.149 −0.600
    Figure US20030054346A1-20030320-C00497
    946.7
    502 ACTAATTTTCTCCATTTAGT 646 56.69 −0.70 −0.539 −0.721 −0.608
    Figure US20030054346A1-20030320-C00498
    1114.3
    503 CTAATTTTCTCCATTTAGTA 647 55.57 0.00 −0.704 −0.112 −0.479
    Figure US20030054346A1-20030320-C00499
    963.9
    504 TAATTTTCTCCATTTAGTAC 648 54.12 0.50 −0.917 0.323 −0.446
    Figure US20030054346A1-20030320-C00500
    1347.9
    505 AATTTTCTCCATTTAGTACT 649 56.69 0.70 −0.539 0.496 −0.145
    Figure US20030054346A1-20030320-C00501
    2067.7
    506 ATTTTCTCCATTTAGTACTG 650 58.66 0.80 −0.250 0.583 0.067
    Figure US20030054346A1-20030320-C00502
    2724.2
    507 TTTTCTCCATTTAGTACTGT 651 61.92 0.60 0.228 0.410 0.297
    Figure US20030054346A1-20030320-C00503
    3367.9
    508 TTTCTCCATTTAGTACTGTC 652 63.10 0.60 0.401 0.410 0.404
    Figure US20030054346A1-20030320-C00504
    5235.8
    509 TTCTCCATTTAGTACTGTCT 653 64.84 0.60 0.656 0.410 0.562
    Figure US20030054346A1-20030320-C00505
    6423.5
    510 TCTCCATTTAGTACTGTCTT 654 64.84 0.60 0.656 0.410 0.562
    Figure US20030054346A1-20030320-C00506
    7758.9
    511 CTCCATTTAGTACTGTCTTT 655 63.63 0.60 0.479 0.410 0.453
    Figure US20030054346A1-20030320-C00507
    8001.5
    512 TCCATTTAGTACTGTCTTTT 656 61.92 0.60 0.228 0.410 0.297
    Figure US20030054346A1-20030320-C00508
    5512.4
    513 CCATTTAGTACTGTCTTTTT 657 60.78 0.60 0.061 0.410 0.194
    Figure US20030054346A1-20030320-C00509
    5300.0
    514 CATTTAGTACTGTCTTTTTT 658 57.04 0.80 −0.489 0.583 −0.081
    Figure US20030054346A1-20030320-C00510
    3902.1
    515 ATTTAGTACTGTCTTTTTTC 659 57.08 0.80 −0.482 0.583 −0.077
    Figure US20030054346A1-20030320-C00511
    4641.8
    516 TTTAGTACTGTCTTTTTTCT 660 59.26 0.80 −0.162 0.583 0.121
    Figure US20030054346A1-20030320-C00512
    4888.4
    517 TTAGTACTGTCTTTTTTCTT 661 59.26 0.80 −0.162 0.583 0.121
    Figure US20030054346A1-20030320-C00513
    5477.3
    518 TAGTACTGTCTTTTTTCTTT 662 59.26 0.80 −0.162 0.583 0.121
    Figure US20030054346A1-20030320-C00514
    5064.9
    519 AGTACTGTCTTTTTTCTTTA 663 59.26 1.00 −0.162 0.757 0.187
    Figure US20030054346A1-20030320-C00515
    5580.3
    520 GTACTGTCTTTTTTCTTTAT 664 59.04 2.70 −0.195 2.236 0.729
    Figure US20030054346A1-20030320-C00516
    5478.3
    521 TACTGTCTTTTTTCTTTATG 665 55.71 2.90 −0.683 2.410 0.492
    Figure US20030054346A1-20030320-C00517
    2275.5
    522 ACTGTCTTTTTTCTTTATGG 666 59.07 1.70 −0.190 1.366 0.402
    Figure US20030054346A1-20030320-C00518
    1730.8
    523 CTGTCTTTTTTCTTTATGGC 667 62.92 1.70 0.374 1.366 0.751
    Figure US20030054346A1-20030320-C00519
    2405.5
    524 TGTCTTTTTTCTTTATGGCA 668 62.14 1.70 0.260 1.366 0.680
    Figure US20030054346A1-20030320-C00520
    1942.0
    525 GTCTTTTTTCTTTATGGCAA 669 60.05 1.50 −0.047 1.192 0.424
    Figure US20030054346A1-20030320-C00521
    2085.6
    526 TCTTTTTTCTTTATGGCAAA 670 54.99 0.60 −0.788 0.410 −0.333
    Figure US20030054346A1-20030320-C00522
    493.2
    527 CTTTTTTCTTTATGGCAAAT 671 53.75 0.10 −0.971 −0.025 −0.612
    Figure US20030054346A1-20030320-C00523
    532.7
    528 TTTTTTCTTTATGGCAAATA 672 51.30 0.10 −1.331 −0.025 −0.835
    Figure US20030054346A1-20030320-C00524
    280.0
    529 TTTTTCTTTATGGCAAATAC 673 51.49 0.10 −1.302 −0.025 −0.817
    Figure US20030054346A1-20030320-C00525
    440.8
    530 TTTTCTTTATGGCAAATACT 674 53.08 0.10 −1.069 −0.025 −0.672
    Figure US20030054346A1-20030320-C00526
    463.1
    531 TTTCTTTATGGCAAATACTG 675 52.74 0.10 −1.119 −0.025 −0.704
    Figure US20030054346A1-20030320-C00527
    579.0
    532 TTCTTTATGGCAAATACTGG 676 54.90 0.10 −0.802 −0.025 −0.507
    Figure US20030054346A1-20030320-C00528
    673.7
    533 TCTTTATGGCAAATACTGGA 677 55.85 0.10 −0.663 −0.025 −0.421
    Figure US20030054346A1-20030320-C00529
    837.0
    534 CTTTATGGCAAATACTGGAG 678 54.78 0.10 −0.820 −0.025 −0.518
    Figure US20030054346A1-20030320-C00530
    1061.9
    535 TTTATGGCAAATACTGGAGT 679 55.74 0.30 −0.679 0.149 −0.365
    Figure US20030054346A1-20030320-C00531
    855.0
    536 TTATGGCAAATACTGGAGTA 680 54.87 0.60 −0.806 0.410 −0.344
    Figure US20030054346A1-20030320-C00532
    775.0
    537 TATGGCAAATACTGGAGTAT 681 54.56 0.00 −0.852 −0.112 −0.571
    Figure US20030054346A1-20030320-C00533
    773.6
    538 ATGGCAAATACTGGAGTATT 682 55.42 −1.00 −0.726 −0.982 −0.823
    Figure US20030054346A1-20030320-C00534
    702.5
    539 TGGCAAATACTGGAGTATTG 683 55.37 −1.20 −0.733 −1.156 −0.893 0.775 387.5
    540 GGCAAATACTGGAGTATTGT 684 58.33 −1.20 −0.298 −1.156 −0.624 0.924 435.3
    541 GCAAATACTGGAGTATTGTA 685 55.24 −1.20 −0.753 −1.156 −0.906 0.974 93.7
    542 CAAATACTGGAGTATTGTAT 686 51.30 −1.20 −1.331 −1.156 −1.264 0.913 50.0
    543 AAATACTGGAGTATTGTATG 687 49.96 −1.20 −1.527 −1.156 −1.386 0.809 50.4
    544 AATACTGGAGTATTGTATGG 688 54.30 −1.00 −0.890 −0.982 −0.925
    Figure US20030054346A1-20030320-C00535
    64.7
    545 ATACTGGAGTATTGTATGGA 689 57.60 −0.30 −0.406 −0.373 −0.394
    Figure US20030054346A1-20030320-C00536
    76.0
    546 TACTGGAGTATTGTATGGAT 690 57.60 0.40 −0.406 0.236 −0.162
    Figure US20030054346A1-20030320-C00537
    86.0
    547 ACTGGAGTATTGTATGGATT 691 58.53 1.30 −0.269 1.018 0.220
    Figure US20030054346A1-20030320-C00538
    123.4
    548 CTGGAGTATTGTATGGATTC 692 59.39 2.00 −0.144 1.627 0.529
    Figure US20030054346A1-20030320-C00539
    121.5
    549 TGGAGTATTGTATGGATTCT 693 59.39 1.80 −0.144 1.453 0.463
    Figure US20030054346A1-20030320-C00540
    641.3
    550 GGAGTATTGTATGGATTCTC 694 60.95 0.60 0.086 0.410 0.209
    Figure US20030054346A1-20030320-C00541
    161.5
    551 GAGTATTGTATGGATTCTCA 695 59.52 0.60 −0.124 0.410 0.079
    Figure US20030054346A1-20030320-C00542
    129.9
    552 AGTATTGTATGGATTCTCAG 696 58.31 1.10 −0.302 0.844 0.134
    Figure US20030054346A1-20030320-C00543
    88.7
    553 GTATTGTATGGATTCTCAGG 697 60.87 1.10 0.074 0.844 0.367
    Figure US20030054346A1-20030320-C00544
    112.5
    554 TATTGTATGGATTCTCAGGC 698 61.97 1.10 0.236 0.844 0.467
    Figure US20030054346A1-20030320-C00545
    134.6
    555 ATTGTATGGATTCTCAGGCC 699 66.52 1.10 0.902 0.844 0.880
    Figure US20030054346A1-20030320-C00546
    191.6
    556 TTGTATGGATTCTCAGGCCC 700 70.34 0.70 1.463 0.496 1.096
    Figure US20030054346A1-20030320-C00547
    254.5
    557 TGTATGGATTCTCAGGCCCA 701 71.11 0.20 1.577 0.062 1.001
    Figure US20030054346A1-20030320-C00548
    332.2
    558 GTATGGATTCTCAGGCCCAA 702 68.95 0.00 1.259 −0.112 0.738
    Figure US20030054346A1-20030320-C00549
    415.6
    559 TATGGATTCTCAGGCCCAAT 703 65.78 0.00 0.795 −0.112 0.450
    Figure US20030054346A1-20030320-C00550
    285.0
    560 ATGGATTCTCAGGCCCAATT 704 66.68 0.00 0.925 −0.112 0.531
    Figure US20030054346A1-20030320-C00551
    464.0
    561 TGGATTCTCAGGCCCAATTT 705 67.04 0.20 0.979 0.062 0.630
    Figure US20030054346A1-20030320-C00552
    492.5
    562 GGATTCTCAGGCCCAATTTT 706 67.51 1.10 1.048 0.844 0.970
    Figure US20030054346A1-20030320-C00553
    639.7
    563 GATTCTCAGGCCCAATTTTT 707 65.34 1.30 0.729 1.018 0.839
    Figure US20030054346A1-20030320-C00554
    512.4
    564 ATTCTCAGGCCCAATTTTTG 708 63.94 0.60 0.524 0.410 0.481
    Figure US20030054346A1-20030320-C00555
    393.4
    565 TTCTCAGGCCCAATTTTTGA 709 65.24 0.20 0.716 0.062 0.467
    Figure US20030054346A1-20030320-C00556
    334.3
    566 TCTCAGGCCCAATTTTTGAA 710 62.85 0.20 0.364 0.062 0.249
    Figure US20030054346A1-20030320-C00557
    308.2
    567 CTCAGGCCCAATTTTTGAAA 711 59.62 0.20 −0.109 0.062 −0.044
    Figure US20030054346A1-20030320-C00558
    199.2
    568 TCAGGCCCAATTTTTGAAAT 712 57.85 0.20 −0.369 0.062 −0.205
    Figure US20030054346A1-20030320-C00559
    164.3
    569 CAGGCCCAATTTTTGAAATT 713 56.95 −0.50 −0.501 −0.547 −0.518
    Figure US20030054346A1-20030320-C00560
    125.6
    570 AGGCCCAATTTTTGAAATTT 714 56.09 −1.00 −0.627 −0.982 −0.762
    Figure US20030054346A1-20030320-C00561
    102.6
    571 GGCCCAATTTTTGAAATTTT 715 56.23 −1.00 −0.606 −0.982 −0.749
    Figure US20030054346A1-20030320-C00562
    91.6
    572 GCCCAATTTTTGAAATTTTC 716 55.07 −1.00 −0.777 −0.982 −0.855 0.806 76.2
    573 CCCAATTTTTGAAATTTTCC 717 54.96 −1.00 −0.792 −0.982 −0.864 0.881 78.8
    574 CCAATTTTTGAAATTTTCCC 718 54.96 −1.00 −0.792 −0.982 −0.864 0.841 84.8
    575 CAATTTTTGAAATTTTCCCT 719 53.17 −1.00 −1.055 −0.982 −1.027 0.755 162.0
    576 AATTTTTGAAATTTTCCCTT 720 52.25 −0.80 −1.190 −0.808 −1.045
    Figure US20030054346A1-20030320-C00563
    539.5
    577 ATTTTTGAAATTTTCCCTTC 721 55.17 0.10 −0.762 −0.025 −0.482
    Figure US20030054346A1-20030320-C00564
    1787.3
    578 TTTTTGAAATTTTCCCTTCC 722 58.88 0.10 −0.219 −0.025 −0.145
    Figure US20030054346A1-20030320-C00565
    6354.2
    579 TTTTGAAATTTTCCCTTCCT 723 60.39 0.10 0.004 −0.025 −0.007
    Figure US20030054346A1-20030320-C00566
    9513.6
    580 TTTGAAATTTTCCCTTCCTT 724 60.39 0.10 0.004 −0.025 −0.007
    Figure US20030054346A1-20030320-C00567
    10660.0
    581 TTGAAATTTTCCCTTCCTTT 725 60.39 0.10 0.004 −0.025 −0.007
    Figure US20030054346A1-20030320-C00568
    11202.0
    582 TGAAATTTTCCCTTCCTTTT 726 60.39 0.10 0.004 −0.025 −0.007
    Figure US20030054346A1-20030320-C00569
    11543.0
    583 GAAATTTTCCCTTCCTTTTC 727 61.81 0.40 0.212 0.236 0.221
    Figure US20030054346A1-20030320-C00570
    14774.0
    584 AAATTTTCCCTTCCTTTTCC 728 64.17 1.20 0.557 0.931 0.699 0.952 18197.0
    585 AATTTTCCCTTCCTTTTCCA 729 67.39 1.70 1.030 1.366 1.158 1.307 21410.0
    586 ATTTTCCCTTCCTTTTCCAT 730 69.58 4.00 1.351 3.366 2.117 1.679 22869.0
    587 TTTTCCCTTCCTTTTCCATT 731 69.96 5.00 1.408 4.236 2.482 2.039 21818.0
    588 TTTCCCTTCCTTTTCCATTT 732 69.96 5.00 1.408 4.236 2.482 2.113 21341.0
    589 TTCCCTTCCTTTTCCATTTC 733 71.19 5.00 1.588 4.236 2.594 2.085 22063.0
    590 TCCCTTCCTTTTCCATTTCT 734 72.77 5.00 1.820 4.236 2.738 1.863 22152.0
    591 CCCTTCCTTTTCCATTTCTG 735 71.01 0.90 1.561 0.670 1.223 1.571 20764.0
    592 CCTTCCTTTTCCATTTCTGT 736 70.68 0.20 1.513 0.062 0.961 1.289 12579.0
    593 CTTCCTTTTCCATTTCTGTA 737 66.30 0.20 0.870 0.062 0.563 0.945 9036.3
    594 TTCCTTTTCCATTTCTGTAC 738 64.87 0.20 0.660 0.062 0.433
    Figure US20030054346A1-20030320-C00571
    8251.8
    595 TCCTTTTCCATTTCTGTACA 739 65.74 0.20 0.788 0.062 0.512
    Figure US20030054346A1-20030320-C00572
    20788.0
    596 CCTTTTCCATTTCTGTACAA 740 62.11 0.20 0.256 0.062 0.182
    Figure US20030054346A1-20030320-C00573
    7073.9
    597 CTTTTCCATTTCTGTACAAA 741 56.39 0.20 −0.583 0.062 −0.338
    Figure US20030054346A1-20030320-C00574
    2932.4
    598 TTTTCCATTTCTGTACAAAT 742 54.49 0.20 −0.862 0.062 −0.511
    Figure US20030054346A1-20030320-C00575
    1897.3
    599 TTTCCATTTCTGTACAAATT 743 54.49 −0.30 −0.862 −0.373 −0.676
    Figure US20030054346A1-20030320-C00576
    2158.1
    600 TTCCATTTCTGTACAAATTT 744 54.49 −0.30 −0.862 −0.373 −0.676
    Figure US20030054346A1-20030320-C00577
    2215.9
    601 TCCATTTCTGTACAAATTTC 745 55.43 −0.30 −0.724 −0.373 −0.591
    Figure US20030054346A1-20030320-C00578
    2168.6
    602 CCATTTCTGTACAAATTTCT 746 56.07 −0.30 −0.631 −0.373 −0.533
    Figure US20030054346A1-20030320-C00579
    2025.8
    603 CATTTCTGTACAAATTTCTA 747 51.65 −0.30 −1.278 −0.373 −0.934
    Figure US20030054346A1-20030320-C00580
    1277.2
    604 ATTTCTGTACAAATTTCTAC 748 50.83 −0.10 −1.398 −0.199 −0.943 0.736 1944.8
    605 TTTCTGTACAAATTTCTACT 749 52.78 0.40 −1.112 0.236 −0.600 0.790 2504.3
    606 TTCTGTACAAATTTCTACTA 750 51.90 0.40 −1.242 0.236 −0.681 0.876 2941.5
    607 TCTGTACAAATTTCTACTAA 751 49.84 0.40 −1.544 0.236 −0.868 0.846 2694.8
    608 CTGTACAAATTTCTACTAAT 752 48.73 0.40 −1.707 0.236 −0.969 0.827 2610.7
    609 TGTACAAATTTCTACTAATG 753 46.88 0.40 −1.979 0.236 −1.137 0.845 1678.1
    610 GTACAAATTTCTACTAATGC 754 50.66 0.60 −1.424 0.410 −0.727 0.854 5877.3
    611 TACAAATTTCTACTAATGCT 755 49.82 0.60 −1.547 0.410 −0.803 0.849 4461.0
    612 ACAAATTTCTACTAATGCTT 756 50.65 0.60 −1.425 0.410 −0.728 0.816 5943.2
    613 CAAATTTCTACTAATGCTTT 757 50.46 0.60 −1.453 0.410 −0.745 0.753 6492.9
    614 AAATTTCTACTAATGCTTTT 758 49.47 0.60 −1.599 0.410 −0.836 0.745 6875.0
    615 AATTTCTACTAATGCTTTTA 759 50.61 0.60 −1.431 0.410 −0.731
    Figure US20030054346A1-20030320-C00581
    7950.3
    616 ATTTCTACTAATGCTTTTAT 760 52.40 0.20 −1.169 0.062 −0.701
    Figure US20030054346A1-20030320-C00582
    8314.8
    617 TTTCTACTAATGCTTTTATT 761 52.72 0.20 −1.122 0.062 −0.672
    Figure US20030054346A1-20030320-C00583
    6885.8
    618 TTCTACTAATGCTTTTATTT 762 52.72 0.20 −1.122 0.062 −0.672
    Figure US20030054346A1-20030320-C00584
    6443.2
    619 TCTACTAATGCTTTTATTTT 763 52.72 0.20 −1.122 0.062 −0.672 0.731 6331.0
    620 CTACTAATGCTTTTATTTTT 764 51.81 0.20 −1.255 0.062 −0.755
    Figure US20030054346A1-20030320-C00585
    5952.5
    621 TACTAATGCTTTTATTTTTT 765 50.18 0.20 −1.494 0.062 −0.903
    Figure US20030054346A1-20030320-C00586
    2662.8
    622 ACTAATGCTTTTATTTTTTC 766 51.96 0.20 −1.233 0.062 −0.741
    Figure US20030054346A1-20030320-C00587
    3034.0
    623 CTAATGCTTTTATTTTTTCT 767 53.41 0.20 −1.021 0.062 −0.609
    Figure US20030054346A1-20030320-C00588
    2198.5
    624 TAATGCTTTTATTTTTTCTT 768 51.76 0.40 −1.263 0.236 −0.694
    Figure US20030054346A1-20030320-C00589
    1670.1
    625 AATGCTTTTATTTTTTCTTC 769 53.61 1.10 −0.992 0.844 −0.294
    Figure US20030054346A1-20030320-C00590
    3039.4
    626 ATGCTTTTATTTTTTCTTCT 770 57.66 2.10 −0.397 1.714 0.405
    Figure US20030054346A1-20030320-C00591
    3873.8
    627 TGCTTTTATTTTTTCTTCTG 771 57.60 2.80 −0.406 2.323 0.631
    Figure US20030054346A1-20030320-C00592
    3609.7
    628 GCTTTTATTTTTTCTTCTGT 772 60.96 3.10 0.087 2.583 1.036
    Figure US20030054346A1-20030320-C00593
    4891.4
    629 CTTTTATTTTTTCTTCTGTC 773 57.96 3.10 −0.353 2.583 0.763
    Figure US20030054346A1-20030320-C00594
    3071.6
    630 TTTTATTTTTTCTTCTGTCA 774 57.22 3.10 −0.461 2.583 0.696
    Figure US20030054346A1-20030320-C00595
    2667.2
    631 TTTATTTTTTCTTCTGTCAA 775 54.81 1.70 −0.816 1.366 0.013
    Figure US20030054346A1-20030320-C00596
    2293.1
    632 TTATTTTTTCTTCTGTCAAT 776 54.46 1.20 −0.866 0.931 −0.183
    Figure US20030054346A1-20030320-C00597
    2123.0
    633 TATTTTTTCTTCTGTCAATG 777 54.08 1.20 −0.922 0.931 −0.218
    Figure US20030054346A1-20030320-C00598
    1914.7
    634 ATTTTTTCTTCTGTCAATGG 778 57.36 1.20 −0.442 0.931 0.080
    Figure US20030054346A1-20030320-C00599
    2174.1
    635 TTTTTTCTTCTGTCAATGGC 779 61.67 1.20 0.192 0.931 0.473
    Figure US20030054346A1-20030320-C00600
    3659.7
    636 TTTTTCTTCTGTCAATGGCC 780 65.26 1.20 0.717 0.931 0.799
    Figure US20030054346A1-20030320-C00601
    5217.7
    637 TTTTCTTCTGTCAATGGCCA 781 66.11 1.20 0.843 0.931 0.877
    Figure US20030054346A1-20030320-C00602
    4559.7
    638 TTTCTTCTGTCAATGGCCAT 782 65.73 1.00 0.787 0.757 0.776
    Figure US20030054346A1-20030320-C00603
    4347.7
    639 TTCTTCTGTCAATGGCCATT 783 65.73 1.00 0.787 0.757 0.776
    Figure US20030054346A1-20030320-C00604
    5267.4
    640 TCTTCTGTCAATGGCCATTG 784 65.26 −0.60 0.718 −0.634 0.204
    Figure US20030054346A1-20030320-C00605
    3922.8
    641 CTTCTGTCAATGGCCATTGT 785 66.97 −1.30 0.968 −1.243 0.128
    Figure US20030054346A1-20030320-C00606
    3608.6
    642 TTCTGTCAATGGCCATTGTT 786 65.36 −1.30 0.733 −1.243 −0.018
    Figure US20030054346A1-20030320-C00607
    1881.6
    643 TCTGTCAATGGCCATTGTTT 787 65.36 −1.30 0.733 −1.243 −0.018
    Figure US20030054346A1-20030320-C00608
    1658.0
    644 CTGTCAATGGCCATTGTTTA 788 63.32 −1.30 0.433 −1.243 −0.204
    Figure US20030054346A1-20030320-C00609
    1369.8
    645 TGTCAATGGCCATTGTTTAA 789 59.38 −1.30 −0.144 −1.243 −0.562
    Figure US20030054346A1-20030320-C00610
    605.8
    646 GTCAATGGCCATTGTTTAAC 790 59.99 −1.30 −0.055 −1.243 −0.506
    Figure US20030054346A1-20030320-C00611
    933.2
    647 TCAATGGCCATTGTTTAACT 791 58.93 −1.30 −0.211 −1.243 −0.603
    Figure US20030054346A1-20030320-C00612
    441.8
    648 CAATGGCCATTGTTTAACTT 792 57.97 −0.90 −0.352 −0.895 −0.558
    Figure US20030054346A1-20030320-C00613
    545.6
    649 AATGGCCATTGTTTAACTTT 793 57.07 0.90 −0.483 0.670 −0.045
    Figure US20030054346A1-20030320-C00614
    781.4
    650 ATGGCCATTGTTTAACTTTT 794 59.31 0.90 −0.156 0.670 0.158
    Figure US20030054346A1-20030320-C00615
    1027.3
    651 TGGCCATTGTTTAACTTTTG 795 59.24 0.90 −0.165 0.670 0.152
    Figure US20030054346A1-20030320-C00616
    1102.5
    652 GGCCATTGTTTAACTTTTGG 796 61.84 0.30 0.216 0.149 0.190
    Figure US20030054346A1-20030320-C00617
    935.7
    653 GCCATTGTTTAACTTTTGGG 797 61.84 −0.10 0.216 −0.199 0.058
    Figure US20030054346A1-20030320-C00618
    403.7
    654 CCATTGTTTAACTTTTGGGC 798 61.84 0.30 0.216 0.149 0.190
    Figure US20030054346A1-20030320-C00619
    269.3
    655 CATTGTTTAACTTTTGGGCC 799 61.84 0.90 0.216 0.670 0.389
    Figure US20030054346A1-20030320-C00620
    296.8
    656 ATTGTTTAACTTTTGGGCCA 800 61.84 0.90 0.216 0.670 0.389
    Figure US20030054346A1-20030320-C00621
    449.4
    657 TTGTTTAACTTTTGGGCCAT 801 61.84 0.90 0.216 0.670 0.389
    Figure US20030054346A1-20030320-C00622
    448.1
    658 TGTTTAACTTTTGGGCCATC 802 62.91 0.90 0.373 0.670 0.486
    Figure US20030054346A1-20030320-C00623
    584.9
    659 GTTTAACTTTTGGGCCATCC 803 66.73 0.40 0.934 0.236 0.669
    Figure US20030054346A1-20030320-C00624
    1032.4
    660 TTTAACTTTTGGGCCATCCA 804 64.79 −0.70 0.649 −0.721 0.128
    Figure US20030054346A1-20030320-C00625
    737.8
    661 TTAACTTTTGGGCCATCCAT 805 64.44 −1.20 0.598 −1.156 −0.069
    Figure US20030054346A1-20030320-C00626
    950.2
    662 TAACTTTTGGGCCATCCATT 806 64.44 −1.20 0.598 −1.156 −0.069
    Figure US20030054346A1-20030320-C00627
    1308.0
    663 AACTTTTGGGCCATCCATTC 807 66.42 −1.20 0.888 −1.156 0.111
    Figure US20030054346A1-20030320-C00628
    2360.1
    664 ACTTTTGGGCCATCCATTCC 808 72.21 −1.20 1.738 −1.156 0.638
    Figure US20030054346A1-20030320-C00629
    4946.0
    665 CTTTTGGGCCATCCATTCCT 809 73.53 −1.20 1.930 −1.156 0.758
    Figure US20030054346A1-20030320-C00630
    6789.2
    666 TTTTGGGCCATCCATTCCTG 810 71.49 −1.20 1.632 −1.156 0.573
    Figure US20030054346A1-20030320-C00631
    8150.6
    667 TTTGGGCCATCCATTCCTGG 811 73.62 −1.20 1.945 −1.156 0.766
    Figure US20030054346A1-20030320-C00632
    7589.0
    668 TTGGGCCATCCATTCCTGGC 812 77.43 −2.80 2.504 −2.547 0.584
    Figure US20030054346A1-20030320-C00633
    13914.0
    669 TGGGCCATCCATTCCTGGCT 813 78.94 −3.50 2.725 −3.156 0.490
    Figure US20030054346A1-20030320-C00634
    17513.0
    670 GGGCCATCCATTCCTGGCTT 814 79.51 −3.50 2.809 −3.156 0.542
    Figure US20030054346A1-20030320-C00635
    19883.0
    671 GGCCATCCATTCCTGGCTTT 815 77.37 −3.50 2.494 −3.156 0.347
    Figure US20030054346A1-20030320-C00636
    20103.0
    672 GCCATCCATTCCTGGCTTTA 816 74.28 −3.10 2.040 −2.808 0.198
    Figure US20030054346A1-20030320-C00637
    18622.0
    673 CCATCCATTCCTGGCTTTAA 817 67.92 −1.30 1.109 −1.243 0.215
    Figure US20030054346A1-20030320-C00638
    16915.0
    674 CATCCATTCCTGGCTTTAAT 818 64.36 −1.30 0.585 −1.243 −0.109
    Figure US20030054346A1-20030320-C00639
    13910.0
    675 ATCCATTCCTGGCTTTAATT 819 63.53 −1.30 0.464 −1.243 −0.185
    Figure US20030054346A1-20030320-C00640
    12524.0
    676 TCCATTCCTGGCTTTAATTT 820 63.88 −1.30 0.516 −1.243 −0.152
    Figure US20030054346A1-20030320-C00641
    11890.0
    677 CCATTCCTGGCTTTAATTTT 821 62.81 −0.90 0.359 −0.895 −0.118
    Figure US20030054346A1-20030320-C00642
    12839.0
    678 CATTCCTGGCTTTAATTTTA 822 58.55 0.90 −0.266 0.670 0.090
    Figure US20030054346A1-20030320-C00643
    9726.8
    679 ATTCCTGGCTTTAATTTTAC 823 57.84 1.50 −0.371 1.192 0.223
    Figure US20030054346A1-20030320-C00644
    8499.7
    680 TTCCTGGCTTTAATTTTACT 824 59.78 1.90 −0.086 1.540 0.532
    Figure US20030054346A1-20030320-C00645
    6800.4
    681 TCCTGGCTTTAATTTTACTG 825 59.37 1.90 −0.146 1.540 0.494
    Figure US20030054346A1-20030320-C00646
    5445.6
    682 CCTGGCTTTAATTTTACTGG 826 60.53 1.90 0.024 1.540 0.600
    Figure US20030054346A1-20030320-C00647
    2901.6
    683 CTGGCTTTAATTTTACTGGT 827 59.77 1.90 −0.087 1.540 0.531
    Figure US20030054346A1-20030320-C00648
    1174.2
    684 TGGCTTTAATTTTACTGGTA 828 57.25 1.90 −0.458 1.540 0.301
    Figure US20030054346A1-20030320-C00649
    521.3
    685 GGCTTTAATTTTACTGGTAC 829 57.86 1.90 −0.368 1.540 0.357
    Figure US20030054346A1-20030320-C00650
    611.1
    686 GCTTTAATTTTACTGGTACA 830 56.55 1.80 −0.560 1.453 0.205
    Figure US20030054346A1-20030320-C00651
    287.6
    687 CTTTAATTTTACTGGTACAG 831 52.66 0.40 −1.130 0.236 −0.611
    Figure US20030054346A1-20030320-C00652
    109.5
    688 TTTAATTTTACTGGTACAGT 832 53.62 −0.80 −0.989 −0.808 −0.920
    Figure US20030054346A1-20030320-C00653
    59.5
    689 TTAATTTTACTGGTACAGTC 833 54.59 −1.00 −0.847 −0.982 −0.898
    Figure US20030054346A1-20030320-C00654
    62.1
    690 TAATTTTACTGGTACAGTCT 834 56.28 −1.00 −0.599 −0.982 −0.745
    Figure US20030054346A1-20030320-C00655
    59.4
    691 AATTTTACTGGTACAGTCTC 835 58.27 −1.00 −0.308 −0.982 −0.564
    Figure US20030054346A1-20030320-C00656
    68.0
    692 ATTTTACTGGTACAGTCTCA 836 61.78 −1.00 0.207 −0.982 −0.245
    Figure US20030054346A1-20030320-C00657
    72.9
    693 TTTTACTGGTACAGTCTCAA 837 59.61 −1.00 −0.111 −0.982 −0.442
    Figure US20030054346A1-20030320-C00658
    62.2
    694 TTTACTGGTACAGTCTCAAT 838 59.25 −1.00 −0.164 −0.982 −0.475
    Figure US20030054346A1-20030320-C00659
    64.5
    695 TTACTGGTACAGTCTCAATA 839 58.30 −1.00 −0.303 −0.982 −0.561
    Figure US20030054346A1-20030320-C00660
    53.5
    696 TACTGGTACAGTCTCAATAG 840 58.15 −1.00 −0.326 −0.982 −0.575
    Figure US20030054346A1-20030320-C00661
    57.8
    697 ACTGGTACAGTCTCAATAGG 841 61.44 −0.80 0.157 −0.808 −0.210
    Figure US20030054346A1-20030320-C00662
    341.0
    698 CTGGTACAGTCTCAATAGGG 842 63.55 0.10 0.467 −0.025 0.280
    Figure US20030054346A1-20030320-C00663
    54.8
    699 TGGTACAGTCTCAATAGGGC 843 65.89 1.10 0.810 0.844 0.823
    Figure US20030054346A1-20030320-C00664
    47.1
    700 GGTACAGTCTCAATAGGGCT 844 68.08 0.90 1.131 0.670 0.956
    Figure US20030054346A1-20030320-C00665
    59.7
    701 GTACAGTCTCAATAGGGCTA 845 64.73 0.70 0.640 0.496 0.586
    Figure US20030054346A1-20030320-C00666
    47.0
    702 TACAGTCTCAATAGGGCTAA 846 59.35 0.70 −0.149 0.496 0.096
    Figure US20030054346A1-20030320-C00667
    49.3
    703 ACAGTCTCAATAGGGCTAAT 847 59.91 0.70 −0.067 0.496 0.147
    Figure US20030054346A1-20030320-C00668
    55.0
    704 CAGTCTCAATAGGGCTAATG 848 59.29 0.70 −0.158 0.496 0.091
    Figure US20030054346A1-20030320-C00669
    49.0
    705 AGTCTCAATAGGGCTAATGG 849 60.62 0.90 0.037 0.670 0.278
    Figure US20030054346A1-20030320-C00670
    45.7
    706 GTCTCAATAGGGCTAATGGG 850 63.00 1.10 0.386 0.844 0.560
    Figure US20030054346A1-20030320-C00671
    115.6
    707 TCTCAATAGGGCTAATGGGA 851 61.22 0.40 0.125 0.236 0.167
    Figure US20030054346A1-20030320-C00672
    50.6
    708 CTCAATAGGGCTAATGGGAA 852 57.97 1.40 −0.352 1.105 0.202
    Figure US20030054346A1-20030320-C00673
    48.0
    709 TCAATAGGGCTAATGGGAAA 853 54.39 1.40 −0.877 1.105 −0.124
    Figure US20030054346A1-20030320-C00674
    50.5
    710 CAATAGGGCTAATGGGAAAA 854 51.64 1.80 −1.281 1.453 −0.242
    Figure US20030054346A1-20030320-C00675
    44.1
    711 AATAGGGCTAATGGGAAAAT 855 50.45 1.90 −1.454 1.540 −0.316
    Figure US20030054346A1-20030320-C00676
    43.1
    712 ATAGGGCTAATGGGAAAATT 856 52.34 1.00 −1.178 0.757 −0.442
    Figure US20030054346A1-20030320-C00677
    45.2
    713 TAGGGCTAATGGGAAAATTT 857 52.63 0.50 −1.135 0.323 −0.581
    Figure US20030054346A1-20030320-C00678
    47.4
    714 AGGGCTAATGGGAAAATTTA 858 52.63 0.50 −1.135 0.323 −0.581
    Figure US20030054346A1-20030320-C00679
    50.0
    715 GGGCTAATGGGAAAATTTAA 859 50.89 0.50 −1.390 0.323 −0.739 0.867 47.8
    716 GGCTAATGGGAAAATTTAAA 860 47.14 0.50 −1.940 0.323 −1.080 1.022 50.2
    717 GCTAATGGGAAAATTTAAAG 861 45.00 0.50 −2.254 0.323 −1.275 1.096 43.0
    718 CTAATGGGAAAATTTAAAGT 862 43.95 0.50 −2.408 0.323 −1.371 1.088 57.0
    719 TAATGGGAAAATTTAAAGTG 863 42.27 0.50 −2.655 0.323 −1.524 1.072 58.7
    720 AATGGGAAAATTTAAAGTGC 864 46.18 0.70 −2.081 0.496 −1.102 1.011 183.6
    721 ATGGGAAAATTTAAAGTGCA 865 48.90 1.70 −1.682 1.366 −0.524 0.924 303.4
    722 TGGGAAAATTTAAAGTGCAA 866 47.39 1.80 −1.903 1.453 −0.628 0.837 135.7
    723 GGGAAAATTTAAAGTGCAAC 867 47.84 1.60 −1.838 1.279 −0.653 0.766 241.7
    724 GGAAAATTTAAAGTGCAACC 868 49.12 1.20 −1.649 0.931 −0.669 0.737 132.5
    725 GAAAATTTAAAGTGCAACCA 869 48.09 1.20 −1.801 0.931 −0.763 0.758 128.8
    726 AAAATTTAAAGTGCAACCAA 870 45.57 1.10 −2.171 0.844 −1.025
    Figure US20030054346A1-20030320-C00680
    141.0
    727 AAATTTAAAGTGCAACCAAT 871 46.97 1.10 −1.965 0.844 −0.897
    Figure US20030054346A1-20030320-C00681
    282.0
    728 AATTTAAAGTGCAACCAATC 872 49.46 1.10 −1.599 0.844 −0.671
    Figure US20030054346A1-20030320-C00682
    948.6
    729 ATTTAAAGTGCAACCAATCT 873 52.84 1.10 −1.104 0.844 −0.363
    Figure US20030054346A1-20030320-C00683
    1815.1
    730 TTTAAAGTGCAACCAATCTG 874 52.81 1.10 −1.109 0.844 −0.366
    Figure US20030054346A1-20030320-C00684
    3188.2
    731 TTAAAGTGCAACCAATCTGA 875 53.71 1.00 −0.976 0.757 −0.317
    Figure US20030054346A1-20030320-C00685
    3566.1
    732 TAAAGTGCAACCAATCTGAG 876 53.56 1.00 −0.999 0.757 −0.331
    Figure US20030054346A1-20030320-C00686
    2925.1
    733 AAAGTGCAACCAATCTGAGT 877 56.81 1.00 −0.522 0.757 −0.036
    Figure US20030054346A1-20030320-C00687
    3233.2
    734 AAGTGCAACCAATCTGAGTC 878 59.99 1.00 −0.055 0.757 0.254
    Figure US20030054346A1-20030320-C00688
    3615.6
    735 AGTGCAACCAATCTGAGTCA 879 63.25 1.00 0.422 0.757 0.550
    Figure US20030054346A1-20030320-C00689
    3994.8
    736 GTGCAACCAATCTGAGTCAA 880 61.00 1.00 0.093 0.757 0.345
    Figure US20030054346A1-20030320-C00690
    4033.0
    737 TGCAACCAATCTGAGTCAAC 881 58.62 1.00 −0.257 0.757 0.128
    Figure US20030054346A1-20030320-C00691
    3380.2
    738 GCAACCAATCTGAGTCAACA 882 59.87 1.00 −0.073 0.757 0.242
    Figure US20030054346A1-20030320-C00692
    4288.7
    739 CAACCAATCTGAGTCAACAG 883 56.22 −0.30 −0.608 −0.373 −0.519
    Figure US20030054346A1-20030320-C00693
    744.1
    740 AACCAATCTGAGTCAACAGA 884 56.24 −1.60 −0.605 −1.504 −0.946 0.757 392.2
    741 ACCAATCTGAGTCAACAGAT 885 58.10 −2.30 −0.332 −2.112 −1.009 1.030 158.1
    742 CCAATCTGAGTCAACAGATT 886 57.90 −3.30 −0.362 −2.982 −1.357 1.219 70.8
    743 CAATCTGAGTCAACAGATTT 887 54.41 −3.80 −0.874 −3.417 −1.840 1.262 190.0
    744 AATCTGAGTCAACAGATTTC 888 54.37 −3.60 −0.880 −3.243 −1.778 1.168 87.7
    745 ATCTGAGTCAACAGATTTCT 889 58.37 −2.60 −0.293 −2.373 −1.084 1.017 152.7
    746 TCTGAGTCAACAGATTTCTT 890 58.73 −1.90 −0.241 −1.764 −0.820 0.797 270.5
    747 CTGAGTCAACAGATTTCTTC 891 58.73 −0.30 −0.241 −0.373 −0.291
    Figure US20030054346A1-20030320-C00694
    498.7
    748 TGAGTCAACAGATTTCTTCC 892 60.70 0.20 0.049 0.062 0.054
    Figure US20030054346A1-20030320-C00695
    891.0
    749 GAGTCAACAGATTTCTTCCA 893 62.06 0.20 0.248 0.062 0.177
    Figure US20030054346A1-20030320-C00696
    1509.8
    750 AGTCAACAGATTTCTTCCAA 894 58.66 0.20 −0.250 0.062 −0.132
    Figure US20030054346A1-20030320-C00697
    1009.3
    751 GTCAACAGATTTCTTCCAAT 895 58.47 0.20 −0.279 0.062 −0.149
    Figure US20030054346A1-20030320-C00698
    1198.0
    752 TCAACAGATTTCTTCCAATT 896 55.86 0.20 −0.661 0.062 −0.387
    Figure US20030054346A1-20030320-C00699
    680.5
    753 CAACAGATTTCTTCCAATTA 897 54.08 0.20 −0.922 0.062 −0.548
    Figure US20030054346A1-20030320-C00700
    762.5
    754 AACAGATTTCTTCCAATTAT 898 52.82 0.20 −1.107 0.062 −0.663
    Figure US20030054346A1-20030320-C00701
    689.8
    755 ACAGATTTCTTCCAATTATG 899 54.58 0.20 −0.849 0.062 −0.503
    Figure US20030054346A1-20030320-C00702
    715.1
    756 CAGATTTCTTCCAATTATGT 900 56.99 0.20 −0.496 0.062 −0.284
    Figure US20030054346A1-20030320-C00703
    833.8
    757 AGATTTCTTCCAATTATGTT 901 56.02 0.20 −0.638 0.062 −0.372
    Figure US20030054346A1-20030320-C00704
    1067.7
    758 GATTTCTTCCAATTATGTTG 902 55.80 0.30 −0.670 0.149 −0.359
    Figure US20030054346A1-20030320-C00705
    1225.9
    759 ATTTCTTCCAATTATGTTGA 903 55.80 −0.10 −0.670 −0.199 −0.491
    Figure US20030054346A1-20030320-C00706
    1028.7
    760 TTTCTTCCAATTATGTTGAC 904 56.34 −0.10 −0.591 −0.199 −0.442
    Figure US20030054346A1-20030320-C00707
    1419.0
    761 TTCTTCCAATTATGTTGACA 905 57.29 −0.10 −0.452 −0.199 −0.356
    Figure US20030054346A1-20030320-C00708
    1437.4
    762 TCTTCCAATTATGTTGACAG 906 57.14 −0.10 −0.474 −0.199 −0.369
    Figure US20030054346A1-20030320-C00709
    1518.3
    763 CTTCCAATTATGTTGACAGG 907 58.36 −0.10 −0.295 −0.199 −0.259
    Figure US20030054346A1-20030320-C00710
    1560.3
    764 TTCCAATTATGTTGACAGGT 908 59.43 −0.10 −0.138 −0.199 −0.161
    Figure US20030054346A1-20030320-C00711
    1100.0
    765 TCCAATTATGTTGACAGGTG 909 59.02 −0.10 −0.198 −0.199 −0.198
    Figure US20030054346A1-20030320-C00712
    1096.4
    766 CCAATTATGTTGACAGGTGT 910 60.68 −0.10 0.046 −0.199 −0.047
    Figure US20030054346A1-20030320-C00713
    1103.4
    767 CAATTATGTTGACAGGTGTA 911 56.24 0.30 −0.605 0.149 −0.319
    Figure US20030054346A1-20030320-C00714
    738.1
    768 AATTATGTTGACAGGTGTAG 912 55.09 1.10 −0.774 0.844 −0.159
    Figure US20030054346A1-20030320-C00715
    596.7
    769 ATTATGTTGACAGGTGTAGG 913 59.83 1.10 −0.079 0.844 0.272
    Figure US20030054346A1-20030320-C00716
    548.1
    770 TTATGTTGACAGGTGTAGGT 914 63.16 1.10 0.409 0.844 0.575
    Figure US20030054346A1-20030320-C00717
    701.1
    771 TATGTTGACAGGTGTAGGTC 915 64.38 −0.20 0.588 −0.286 0.256
    Figure US20030054346A1-20030320-C00718
    724.7
    772 ATGTTGACAGGTGTAGGTCC 916 69.08 −0.60 1.278 −0.634 0.551
    Figure US20030054346A1-20030320-C00719
    1129.8
    773 TGTTGACAGGTGTAGGTCCT 917 71.21 −0.60 1.591 −0.634 0.745
    Figure US20030054346A1-20030320-C00720
    1214.0
    774 GTTGACAGGTGTAGGTCCTA 918 70.75 −0.60 1.523 −0.634 0.703
    Figure US20030054346A1-20030320-C00721
    1425.4
    775 TTGACAGGTGTAGGTCCTAC 919 67.83 −0.60 1.095 −0.634 0.438
    Figure US20030054346A1-20030320-C00722
    838.8
    776 TGACAGGTGTAGGTCCTACT 920 69.52 −0.90 1.343 −0.895 0.493
    Figure US20030054346A1-20030320-C00723
    1173.1
    777 GACAGGTGTAGGTCCTACTA 921 69.06 −0.90 1.275 −0.895 0.450
    Figure US20030054346A1-20030320-C00724
    1367.0
    778 ACAGGTGTAGGTCCTACTAA 922 65.30 −0.90 0.723 −0.895 0.108
    Figure US20030054346A1-20030320-C00725
    872.0
    779 CAGGTGTAGGTCCTACTAAT 923 64.69 −0.90 0.634 −0.895 0.053
    Figure US20030054346A1-20030320-C00726
    897.6
    780 AGGTGTAGGTCCTACTAATA 924 62.84 −0.90 0.362 −0.895 −0.115
    Figure US20030054346A1-20030320-C00727
    962.2
    781 GGTGTAGGTCCTACTAATAC 925 63.19 −0.90 0.414 −0.895 −0.083
    Figure US20030054346A1-20030320-C00728
    1382.6
    782 GTGTAGGTCCTACTAATACT 926 62.53 −0.90 0.317 −0.895 −0.143
    Figure US20030054346A1-20030320-C00729
    1132.9
    783 TGTAGGTCCTACTAATACTG 927 59.27 −0.90 −0.160 −0.895 −0.439
    Figure US20030054346A1-20030320-C00730
    1180.7
    784 GTAGGTCCTACTAATACTGT 928 62.53 −0.50 0.317 −0.547 −0.011
    Figure US20030054346A1-20030320-C00731
    1932.9
    785 TAGGTCCTACTAATACTGTA 929 58.77 0.70 −0.234 0.496 0.043
    Figure US20030054346A1-20030320-C00732
    1634.4
    786 AGGTCCTACTAATACTGTAC 930 59.91 0.50 −0.067 0.323 0.081
    Figure US20030054346A1-20030320-C00733
    2488.1
    787 GGTCCTACTAATACTGTACC 931 63.54 0.50 0.466 0.323 0.411
    Figure US20030054346A1-20030320-C00734
    3560.9
    788 GTCCTACTAATACTGTACCT 932 62.91 0.50 0.373 0.323 0.354
    Figure US20030054346A1-20030320-C00735
    3850.1
    789 TCCTACTAATACTGTACCTA 933 59.31 0.50 −0.155 0.323 0.026
    Figure US20030054346A1-20030320-C00736
    1879.0
    790 CCTACTAATACTGTACCTAT 934 57.99 0.50 −0.348 0.323 −0.093
    Figure US20030054346A1-20030320-C00737
    1920.4
    791 CTACTAATACTGTACCTATA 935 53.68 0.50 −0.981 0.323 −0.486
    Figure US20030054346A1-20030320-C00738
    1131.2
    792 TACTAATACTGTACCTATAG 936 51.92 0.70 −1.240 0.496 −0.580
    Figure US20030054346A1-20030320-C00739
    756.5
    793 ACTAATACTGTACCTATAGC 937 56.45 1.20 −0.574 0.931 −0.002
    Figure US20030054346A1-20030320-C00740
    1881.3
    794 CTAATACTGTACCTATAGCT 938 57.85 1.20 −0.369 0.931 0.125
    Figure US20030054346A1-20030320-C00741
    2033.6
    795 TAATACTGTACCTATAGCTT 939 56.25 1.20 −0.604 0.931 −0.021
    Figure US20030054346A1-20030320-C00742
    1853.9
    796 AATACTGTACCTATAGCTTT 940 57.14 1.20 −0.473 0.931 0.060
    Figure US20030054346A1-20030320-C00743
    2462.6
    797 ATACTGTACCTATAGCTTTA 941 58.55 1.20 −0.266 0.931 0.189
    Figure US20030054346A1-20030320-C00744
    2436.8
    798 TACTGTACCTATAGCTTTAT 942 58.55 1.20 −0.266 0.931 0.189
    Figure US20030054346A1-20030320-C00745
    1865.2
    799 ACTGTACCTATAGCTTTATG 943 59.06 1.20 −0.192 0.931 0.235
    Figure US20030054346A1-20030320-C00746
    1682.1
    800 CTGTACCTATAGCTTTATGT 944 61.64 1.30 0.187 1.018 0.503
    Figure US20030054346A1-20030320-C00747
    1551.3
    801 TGTACCTATAGCTTTATGTC 945 61.08 1.10 0.105 0.844 0.386
    Figure US20030054346A1-20030320-C00748
    1600.1
    802 GTACCTATAGCTTTATGTCC 946 65.16 1.10 0.703 0.844 0.757
    Figure US20030054346A1-20030320-C00749
    4094.6
    803 TACCTATAGCTTTATGTCCA 947 63.16 1.10 0.409 0.844 0.575
    Figure US20030054346A1-20030320-C00750
    2794.2
    804 ACCTATAGCTTTATGTCCAC 948 64.30 1.30 0.577 1.018 0.745
    Figure US20030054346A1-20030320-C00751
    4754.9
    805 CCTATAGCTTTATGTCCACA 949 64.94 1.30 0.671 1.018 0.803
    Figure US20030054346A1-20030320-C00752
    4185.4
    806 CTATAGCTTTATGTCCACAG 950 61.34 1.10 0.143 0.844 0.409
    Figure US20030054346A1-20030320-C00753
    3284.3
    807 TATAGCTTTATGTCCACAGA 951 60.70 1.10 0.048 0.844 0.351
    Figure US20030054346A1-20030320-C00754
    2819.7
    808 ATAGCTTTATGTCCACAGAT 952 61.27 0.60 0.132 0.410 0.238
    Figure US20030054346A1-20030320-C00755
    3545.1
    809 TAGCTTTATGTCCACAGATT 953 61.63 0.60 0.186 0.410 0.271
    Figure US20030054346A1-20030320-C00756
    4232.6
    810 AGCTTTATGTCCACAGATTT 954 62.57 0.60 0.324 0.410 0.356
    Figure US20030054346A1-20030320-C00757
    5252.8
    811 GCTTTATGTCCACAGATTTC 955 63.85 0.60 0.511 0.410 0.472
    Figure US20030054346A1-20030320-C00758
    6823.9
    812 CTTTATGTCCACAGATTTCT 956 61.56 0.60 0.176 0.410 0.265
    Figure US20030054346A1-20030320-C00759
    4829.8
    813 TTTATGTCCACAGATTTCTA 957 58.97 0.60 −0.205 0.410 0.029
    Figure US20030054346A1-20030320-C00760
    4333.7
    814 TTATGTCCACAGATTTCTAT 958 58.62 0.60 −0.257 0.410 −0.004
    Figure US20030054346A1-20030320-C00761
    3801.0
    815 TATGTCCACAGATTTCTATG 959 58.20 0.60 −0.318 0.410 −0.041
    Figure US20030054346A1-20030320-C00762
    3528.2
    816 ATGTCCACAGATTTCTATGA 960 60.12 0.60 −0.036 0.410 0.134
    Figure US20030054346A1-20030320-C00763
    2080.0
    817 TGTCCACAGATTTCTATGAG 961 60.34 0.60 −0.004 0.410 0.153
    Figure US20030054346A1-20030320-C00764
    913.8
    818 GTCCACAGATTTCTATGAGT 962 63.68 0.60 0.486 0.410 0.457
    Figure US20030054346A1-20030320-C00765
    1228.3
    819 TCCACAGATTTCTATGAGTA 963 59.83 0.80 −0.078 0.583 0.173
    Figure US20030054346A1-20030320-C00766
    238.1
    820 CCACAGATTTCTATGAGTAT 964 58.43 1.10 −0.285 0.844 0.144
    Figure US20030054346A1-20030320-C00767
    219.4
    821 CACAGATTTCTATGAGTATC 965 55.78 0.90 −0.673 0.670 −0.162
    Figure US20030054346A1-20030320-C00768
    138.6
    822 ACAGATTTCTATGAGTATCT 966 56.48 −0.10 −0.571 −0.199 −0.430
    Figure US20030054346A1-20030320-C00769
    112.7
    823 CAGATTTCTATGAGTATCTG 967 55.85 −1.30 −0.663 −1.243 −0.883
    Figure US20030054346A1-20030320-C00770
    133.8
    824 AGATTTCTATGAGTATCTGA 968 55.87 −0.10 −0.659 −0.199 −0.485
    Figure US20030054346A1-20030320-C00771
    296.8
    825 GATTTCTATGAGTATCTGAT 969 55.69 0.60 −0.686 0.410 −0.270
    Figure US20030054346A1-20030320-C00772
    279.7
    826 ATTTCTATGAGTATCTGATC 970 55.67 0.80 −0.689 0.583 −0.206
    Figure US20030054346A1-20030320-C00773
    484.4
    827 TTTCTATGAGTATCTGATCA 971 57.06 0.20 −0.485 0.062 −0.277
    Figure US20030054346A1-20030320-C00774
    502.0
    828 TTCTATGAGTATCTGATCAT 972 56.70 −0.50 −0.538 −0.547 −0.541
    Figure US20030054346A1-20030320-C00775
    637.3
    829 TCTATGAGTATCTGATCATA 973 55.75 −1.10 −0.678 −1.069 −0.826
    Figure US20030054346A1-20030320-C00776
    489.0
    830 CTATGAGTATCTGATCATAC 974 54.95 −1.30 −0.794 −1.243 −0.965
    Figure US20030054346A1-20030320-C00777
    808.7
    831 TATGAGTATCTGATCATACT 975 54.95 −1.10 −0.794 −1.069 −0.899 0.738 903.2
    832 ATGAGTATCTGATCATACTG 976 55.49 −1.20 −0.715 −1.156 −0.883
    Figure US20030054346A1-20030320-C00778
    1709.3
    833 TGAGTATCTGATCATACTGT 977 58.64 −1.20 −0.254 −1.156 −0.597
    Figure US20030054346A1-20030320-C00779
    2103.9
    834 GAGTATCTGATCATACTGTC 978 60.20 −1.20 −0.025 −1.156 −0.455
    Figure US20030054346A1-20030320-C00780
    3973.4
    835 AGTATCTGATCATACTGTCT 979 60.88 −1.00 0.076 −0.982 −0.326
    Figure US20030054346A1-20030320-C00781
    6462.3
    836 GTATCTGATCATACTGTCTT 980 61.03 −0.30 0.097 −0.373 −0.081
    Figure US20030054346A1-20030320-C00782
    9749.0
    837 TATCTGATCATACTGTCTTA 981 57.16 0.90 −0.470 0.670 −0.037
    Figure US20030054346A1-20030320-C00783
    7817.2
    838 ATCTGATCATACTGTCTTAC 982 58.34 0.90 −0.298 0.670 0.070
    Figure US20030054346A1-20030320-C00784
    9683.1
    839 TCTGATCATACTGTCTTACT 983 60.42 0.90 0.008 0.670 0.259
    Figure US20030054346A1-20030320-C00785
    8089.0
    840 CTGATCATACTGTCTTACTT 984 59.32 0.90 −0.154 0.670 0.159
    Figure US20030054346A1-20030320-C00786
    8696.8
    841 TGATCATACTGTCTTACTTT 985 57.63 0.90 −0.401 0.670 0.006
    Figure US20030054346A1-20030320-C00787
    6880.5
    842 GATCATACTGTCTTACTTTG 986 57.63 0.90 −0.401 0.670 0.006
    Figure US20030054346A1-20030320-C00788
    7033.7
    843 ATCATACTGTCTTACTTTGA 987 57.63 0.90 −0.401 0.670 0.006
    Figure US20030054346A1-20030320-C00789
    5406.5
    844 TCATACTGTCTTACTTTGAT 988 57.63 0.70 −0.401 0.496 −0.060
    Figure US20030054346A1-20030320-C00790
    4239.4
    845 CATACTGTCTTACTTTGATA 989 55.68 0.70 −0.688 0.496 −0.238
    Figure US20030054346A1-20030320-C00791
    3727.4
    846 ATACTGTCTTACTTTGATAA 990 52.44 0.70 −1.163 0.496 −0.533
    Figure US20030054346A1-20030320-C00792
    2665.5
    847 TACTGTCTTACTTTCATAAA 991 50.65 0.70 −1.426 0.496 −0.696
    Figure US20030054346A1-20030320-C00793
    1817.8
    848 ACTGTCTTACTTTGATAAAA 992 49.49 −0.30 −1.595 −0.373 −1.131 0.809 1335.9
    849 CTGTCTTACTTTGATAAAAC 993 49.49 −0.50 −1.595 −0.547 −1.197 0.916 1526.2
    850 TGTCTTACTTTGATAAAACC 994 51.45 −0.50 −1.309 −0.547 −1.019 0.949 822.7
    851 GTCTTACTTTGATAAAACCT 995 53.32 −0.50 −1.034 −0.547 −0.849 0.966 1227.4
    852 TCTTACTTTGATAAAACCTC 996 51.75 −0.50 −1.264 −0.547 −0.991 0.946 503.0
    853 CTTACTTTGATAAAACCTCC 997 54.28 −0.50 −0.894 −0.547 −0.762 0.910 1174.3
    854 TTACTTTGATAAAACCTCCA 998 53.70 −0.50 −0.978 −0.547 −0.814 0.901 885.5
    855 TACTTTGATAAAACCTCCAA 999 51.79 −0.50 −1.259 −0.547 −0.988 0.916 650.6
    856 ACTTTGATAAAACCTCCAAT 1000 52.29 −0.50 −1.185 −0.547 −0.943 0.826 615.4
    857 CTTTGATAAAACCTCCAATT 1001 52.11 −0.50 −1.212 −0.547 −0.959
    Figure US20030054346A1-20030320-C00794
    563.4
    858 TTTGATAAAACCTCCAATTC 1002 51.46 −0.30 −1.307 −0.373 −0.952
    Figure US20030054346A1-20030320-C00795
    420.9
    859 TTGATAAAACCTCCAATTCC 1003 54.68 0.60 −0.834 0.410 −0.362
    Figure US20030054346A1-20030320-C00796
    536.6
    860 TGATAAAACCTCCAATTCCC 1004 57.79 0.60 −0.378 0.410 −0.079
    Figure US20030054346A1-20030320-C00797
    1417.8
    861 GATAAAACCTCCAATTCCCC 1005 61.15 1.00 0.114 0.757 0.359
    Figure US20030054346A1-20030320-C00798
    4351.2
    862 ATAAAACCTCCAATTCCCCC 1006 63.24 1.90 0.421 1.540 0.846
    Figure US20030054346A1-20030320-C00799
    7738.7
    863 TAAAACCTCCAATTCCCCCT 1007 64.88 1.90 0.663 1.540 0.996
    Figure US20030054346A1-20030320-C00800
    11136.0
    864 AAAACCTCCAATTCCCCCTA 1008 64.88 1.90 0.663 1.540 0.996 1.074 14811.0
    865 AAACCTCCAATTCCCCCTAT 1009 66.73 1.90 0.933 1.540 1.164 1.261 15751.0
    866 AACCTCCAATTCCCCCTATC 1010 70.07 1.80 1.424 1.453 1.435 1.330 19661.0
    867 ACCTCCAATTCCCCCTATCA 1011 73.21 1.80 1.883 1.453 1.720 1.335 20301.0
    868 CCTCCAATTCCCCCTATCAT 1012 72.64 1.80 1.801 1.453 1.669 1.327 19376.0
    869 CTCCAATTCCCCCTATCATT 1013 69.66 1.60 1.364 1.279 1.332 1.254 17642.0
    870 TCCAATTCCCCCTATCATTT 1014 68.21 1.10 1.150 0.844 1.034 1.093 13751.0
    871 CCAATTCCCCCTATCATTTT 1015 67.12 1.10 0.991 0.844 0.935 0.931 12669.0
    872 CAATTCCCCCTATCATTTTT 1016 64.02 1.10 0.536 0.844 0.653
    Figure US20030054346A1-20030320-C00801
    9255.9
    873 AATTCCCCCTATCATTTTTG 1017 62.80 0.40 0.357 0.236 0.311
    Figure US20030054346A1-20030320-C00802
    8929.1
    874 ATTCCCCCTATCATTTTTGG 1018 67.28 0.00 1.014 −0.112 0.586
    Figure US20030054346A1-20030320-C00803
    6148.2
    875 TTCCCCCTATCATTTTTGGT 1019 70.46 0.00 1.480 −0.112 0.875
    Figure US20030054346A1-20030320-C00804
    5468.0
    876 TCCCCCTATCATTTTTGGTT 1020 70.46 0.00 1.480 −0.112 0.875
    Figure US20030054346A1-20030320-C00805
    5803.7
    877 CCCCCTATCATTTTTGGTTT 1021 69.27 0.00 1.307 −0.112 0.768
    Figure US20030054346A1-20030320-C00806
    5192.0
    878 CCCCTATCATTTTTGGTTTC 1022 67.18 0.00 1.000 −0.112 0.577
    Figure US20030054346A1-20030320-C00807
    3557.4
    879 CCCTATCATTTTTGGTTTCC 1023 67.18 0.00 1.000 −0.112 0.577
    Figure US20030054346A1-20030320-C00808
    5274.3
    880 CCTATCATTTTTGGTTTCCA 1024 64.63 0.00 0.625 −0.112 0.345
    Figure US20030054346A1-20030320-C00809
    3787.9
    881 CTATCATTTTTGGTTTCCAT 1025 60.77 −0.50 0.059 −0.547 −0.171
    Figure US20030054346A1-20030320-C00810
    2726.8
    882 TATCATTTTTGGTTTCCATC 1026 60.20 −0.50 −0.025 −0.547 −0.223
    Figure US20030054346A1-20030320-C00811
    3249.9
    883 ATCATTTTTGGTTTCCATCT 1027 62.83 −0.50 0.361 −0.547 0.016
    Figure US20030054346A1-20030320-C00812
    5548.9
    884 TCATTTTTGGTTTCCATCTT 1028 63.21 −0.50 0.416 −0.547 0.050
    Figure US20030054346A1-20030320-C00813
    5290.0
    885 CATTTTTGGTTTCCATCTTC 1029 63.21 −0.50 0.416 −0.547 0.050
    Figure US20030054346A1-20030320-C00814
    7451.0
    886 ATTTTTGGTTTCCATCTTCC 1030 65.88 −0.50 0.809 −0.547 0.293
    Figure US20030054346A1-20030320-C00815
    11578.0
    887 TTTTTGGTTTCCATCTTCCT 1031 67.93 −0.50 1.109 −0.547 0.480
    Figure US20030054346A1-20030320-C00816
    13722.0
    888 TTTTGGTTTCCATCTTCCTG 1032 67.42 −0.50 1.035 −0.547 0.434
    Figure US20030054346A1-20030320-C00817
    15064.0
    889 TTTGGTTTCCATCTTCCTGG 1033 69.71 −0.90 1.370 −0.895 0.509
    Figure US20030054346A1-20030320-C00818
    10869.0
    890 TTGGTTTCCATCTTCCTGGC 1034 73.74 −1.30 1.962 −1.243 0.744
    Figure US20030054346A1-20030320-C00819
    16035.0
    891 TGGTTTCCATCTTCCTGGCA 1035 74.48 −1.30 2.071 −1.243 0.812
    Figure US20030054346A1-20030320-C00820
    16304.0
    892 GGTTTCCATCTTCCTGGCAA 1036 72.21 −1.30 1.737 −1.243 0.605
    Figure US20030054346A1-20030320-C00821
    14885.0
    893 GTTTCCATCTTCCTGGCAAA 1037 67.37 −1.30 1.027 −1.243 0.165
    Figure US20030054346A1-20030320-C00822
    11910.0
    894 TTTCCATCTTCCTGGCAAAC 1038 64.82 −1.30 0.653 −1.243 −0.067
    Figure US20030054346A1-20030320-C00823
    11929.0
    895 TTCCATCTTCCTGGCAAACT 1039 66.34 −1.30 0.877 −1.243 0.071
    Figure US20030054346A1-20030320-C00824
    11517.0
    896 TCCATCTTCCTGGCAAACTC 1040 67.47 −1.30 1.042 −1.243 0.174
    Figure US20030054346A1-20030320-C00825
    11822.0
    897 CCATCTTCCTGGCAAACTCA 1041 67.12 −0.90 0.991 −0.895 0.274
    Figure US20030054346A1-20030320-C00826
    11710.0
    898 CATCTTCCTGGCAAACTCAT 1042 63.55 0.90 0.466 0.670 0.544
    Figure US20030054346A1-20030320-C00827
    7635.3
    899 ATCTTCCTGGCAAACTCATT 1043 62.71 1.00 0.343 0.757 0.501
    Figure US20030054346A1-20030320-C00828
    8378.2
    900 TCTTCCTGGCAAACTCATTT 1044 63.06 0.90 0.395 0.670 0.500
    Figure US20030054346A1-20030320-C00829
    6321.4
    901 CTTCCTGGCAAACTCATTTC 1045 63.06 0.70 0.395 0.496 0.434
    Figure US20030054346A1-20030320-C00830
    7659.0
    902 TTCCTGGCAAACTCATTTCT 1046 63.06 0.70 0.395 0.496 0.434
    Figure US20030054346A1-20030320-C00831
    11621.0
    903 TCCTGGCAAACTCATTTCTT 1047 63.06 0.70 0.395 0.496 0.434
    Figure US20030054346A1-20030320-C00832
    3389.0
    904 CCTGGCAAACTCATTTCTTC 1048 63.06 0.70 0.395 0.496 0.434
    Figure US20030054346A1-20030320-C00833
    3870.6
    905 CTGGCAAACTCATTTCTTCT 1049 61.24 0.70 0.127 0.496 0.268
    Figure US20030054346A1-20030320-C00834
    1992.7
    906 TGGCAAACTCATTTCTTCTA 1050 58.74 0.70 −0.239 0.496 0.040
    Figure US20030054346A1-20030320-C00835
    698.3
    907 GGCAAACTCATTTCTTCTAA 1051 56.86 0.70 −0.514 0.496 −0.130
    Figure US20030054346A1-20030320-C00836
    718.3
    908 GCAAACTCATTTCTTCTAAT 1052 54.36 0.70 −0.882 0.496 −0.358
    Figure US20030054346A1-20030320-C00837
    372.3
    909 CAAACTCATTTCTTCTAATA 1053 49.93 0.60 −1.530 0.410 −0.793
    Figure US20030054346A1-20030320-C00838
    180.6
    910 AAACTCATTTCTTCTAATAC 1054 49.11 0.60 −1.651 0.410 −0.868
    Figure US20030054346A1-20030320-C00839
    430.0
    911 AACTCATTTCTTCTAATACT 1055 52.79 0.60 −1.111 0.410 −0.533
    Figure US20030054346A1-20030320-C00840
    904.3
    912 ACTCATTTCTTCTAATACTG 1056 54.63 0.60 −0.842 0.410 −0.366
    Figure US20030054346A1-20030320-C00841
    1663.5
    913 CTCATTTCTTCTAATACTGT 1057 57.14 0.60 −0.474 0.410 −0.138
    Figure US20030054346A1-20030320-C00842
    2694.2
    914 TCATTTCTTCTAATACTGTA 1058 54.51 0.60 −0.859 0.410 −0.377
    Figure US20030054346A1-20030320-C00843
    3222.9
    915 CATTTCTTCTAATACTGTAT 1059 53.21 0.60 −1.049 0.410 −0.495
    Figure US20030054346A1-20030320-C00844
    3142.8
    916 ATTTCTTCTAATACTGTATC 1060 53.13 0.80 −1.061 0.583 −0.436
    Figure US20030054346A1-20030320-C00845
    5867.0
    917 TTTCTTCTAATACTGTATCA 1061 54.51 1.20 −0.859 0.931 −0.179
    Figure US20030054346A1-20030320-C00846
    6641.4
    918 TTCTTCTAATACTGTATCAT 1062 54.17 1.30 −0.908 1.018 −0.176
    Figure US20030054346A1-20030320-C00847
    7151.9
    919 TCTTCTAATACTGTATCATC 1063 55.17 1.30 −0.762 1.018 −0.086
    Figure US20030054346A1-20030320-C00848
    8134.9
    920 CTTCTAATACTGTATCATCT 1064 55.86 1.30 −0.661 1.018 −0.023
    Figure US20030054346A1-20030320-C00849
    8551.4
    921 TTCTAATACTGTATCATCTG 1065 53.80 1.30 −0.964 1.018 −0.211
    Figure US20030054346A1-20030320-C00850
    5741.7
    922 TCTAATACTGTATCATCTGC 1066 57.65 1.30 −0.398 1.018 0.140
    Figure US20030054346A1-20030320-C00851
    8575.9
    923 CTAATACTGTATCATCTGCT 1067 58.28 1.30 −0.307 1.018 0.197
    Figure US20030054346A1-20030320-C00852
    8980.3
    924 TAATACTGTATCATCTGCTC 1068 57.65 1.30 −0.398 1.018 0.140
    Figure US20030054346A1-20030320-C00853
    10762.0
    925 AATACTGTATCATCTGCTCC 1069 62.19 1.30 0.268 1.018 0.553
    Figure US20030054346A1-20030320-C00854
    17037.0
    926 ATACTGTATCATCTGCTCCT 1070 66.43 1.30 0.889 1.018 0.938
    Figure US20030054346A1-20030320-C00855
    20970.0
    927 TACTGTATCATCTGCTCCTG 1071 66.32 1.30 0.874 1.018 0.929
    Figure US20030054346A1-20030320-C00856
    23084.0
    928 ACTGTATCATCTGCTCCTGT 1072 70.36 0.60 1.466 0.410 1.065 0.875 24474.0
    929 CTGTATCATCTGCTCCTGTA 1073 69.13 0.60 1.286 0.410 0.953 0.910 22217.0
    930 TGTATCATCTGCTCCTGTAT 1074 67.04 0.60 0.979 0.410 0.763 0.890 19829.0
    931 GTATCATCTGCTCCTGTATC 1075 68.85 0.60 1.244 0.410 0.927 0.842 23548.0
    932 TATCATCTGCTCCTGTATCT 1076 67.44 0.60 1.037 0.410 0.799
    Figure US20030054346A1-20030320-C00857
    21759.0
    933 ATCATCTGCTCCTGTATCTA 1077 67.44 0.60 1.037 0.410 0.799
    Figure US20030054346A1-20030320-C00858
    22711.0
    934 TCATCTGCTCCTGTATCTAA 1078 65.13 0.60 0.699 0.410 0.589
    Figure US20030054346A1-20030320-C00859
    18134.0
    935 CATCTGCTCCTGTATCTAAT 1079 63.60 1.00 0.475 0.757 0.582
    Figure US20030054346A1-20030320-C00860
    17772.0
    936 ATCTGCTCCTGTATCTAATA 1080 61.77 1.60 0.207 1.279 0.614
    Figure US20030054346A1-20030320-C00861
    17134.0
    937 TCTGCTCCTGTATCTAATAG 1081 62.01 1.60 0.241 1.279 0.635
    Figure US20030054346A1-20030320-C00862
    10969.0
    938 CTGCTCCTGTATCTAATAGA 1082 61.90 0.50 0.225 0.323 0.262
    Figure US20030054346A1-20030320-C00863
    9556.3
    939 TGCTCCTGTATCTAATAGAG 1083 60.12 0.30 −0.036 0.149 0.034
    Figure US20030054346A1-20030320-C00864
    3739.9
    940 GCTCCTGTATCTAATAGAGC 1084 64.50 −1.00 0.607 −0.982 0.003
    Figure US20030054346A1-20030320-C00865
    4088.3
    941 CTCCTGTATCTAATAGAGCT 1085 62.21 0.30 0.271 0.149 0.224
    Figure US20030054346A1-20030320-C00866
    2263.0
    942 TCCTGTATCTAATAGAGCTT 1086 60.56 0.30 0.028 0.149 0.074
    Figure US20030054346A1-20030320-C00867
    1018.0
    943 CCTGTATCTAATAGAGCTTC 1087 60.56 0.30 0.028 0.149 0.074
    Figure US20030054346A1-20030320-C00868
    1319.1
    944 CTGTATCTAATAGAGCTTCC 1088 60.56 0.30 0.028 0.149 0.074
    Figure US20030054346A1-20030320-C00869
    2347.8
    945 TGTATCTAATAGAGCTTCCT 1089 60.56 0.30 0.028 0.149 0.074
    Figure US20030054346A1-20030320-C00870
    1871.6
    946 GTATCTAATAGAGCTTCCTT 1090 61.00 0.30 0.092 0.149 0.114
    Figure US20030054346A1-20030320-C00871
    3469.1
    947 TATCTAATAGAGCTTCCTTT 1091 58.20 0.30 −0.318 0.149 −0.141
    Figure US20030054346A1-20030320-C00872
    1114.6
    948 ATCTAATAGAGCTTCCTTTA 1092 58.20 0.30 −0.318 0.149 −0.141
    Figure US20030054346A1-20030320-C00873
    1358.4
    949 TCTAATAGAGCTTCCTTTAG 1093 58.39 0.30 −0.289 0.149 −0.123
    Figure US20030054346A1-20030320-C00874
    665.4
    950 CTAATAGAGCTTCCTTTAGT 1094 60.12 0.00 −0.036 −0.112 −0.065
    Figure US20030054346A1-20030320-C00875
    807.4
    951 TAATAGAGCTTCCTTTAGTT 1095 58.46 0.30 −0.280 0.149 −0.117
    Figure US20030054346A1-20030320-C00876
    608.7
    952 AATAGAGCTTCCTTTAGTTG 1096 58.97 0.30 −0.205 0.149 −0.070
    Figure US20030054346A1-20030320-C00877
    623.8
    953 ATAGAGCTTCCTTTAGTTGC 1097 65.53 0.30 0.758 0.149 0.526
    Figure US20030054346A1-20030320-C00878
    674.5
    954 TAGAGCTTCCTTTAGTTGCC 1098 69.50 0.30 1.340 0.149 0.887 0.841 814.3
    955 AGAGCTTCCTTTAGTTGCCC 1099 73.89 0.30 1.983 0.149 1.286 1.157 1183.8
    956 GAGCTTCCTTTAGTTGCCCC 1100 77.20 0.30 2.470 0.149 1.588 1.454 2219.4
    957 AGCTTCCTTTAGTTGCCCCC 1101 79.38 0.30 2.789 0.149 1.785 1.650 4642.2
    958 GCTTCCTTTAGTTGCCCCCC 1102 82.41 0.40 3.234 0.236 2.095 1.765 8804.8
    959 CTTCCTTTAGTTGCCCCCCT 1103 80.06 0.80 2.889 0.583 2.013 1.823 11331.0
    960 TTCCTTTAGTTGCCCCCCTA 1104 77.67 1.10 2.539 0.844 1.895 1.818 12976.0
    961 TCCTTTAGTTGCCCCCCTAT 1105 77.27 0.60 2.480 0.410 1.693 1.765 12369.0
    962 CCTTTAGTTGCCCCCCTATC 1106 77.27 0.60 2.480 0.410 1.693 1.669 15090.0
    963 CTTTAGTTGCCCCCCTATCT 1107 75.74 0.60 2.255 0.410 1.554 1.581 16130.0
    964 TTTAGTTGCCCCCCTATCTT 1108 74.23 0.60 2.033 0.410 1.416 1.545 15304.0
    965 TTAGTTGCCCCCCTATCTTT 1109 74.23 0.60 2.033 0.410 1.416 1.539 14829.0
    966 TAGTTGCCCCCCTATCTTTA 1110 73.31 0.80 1.899 0.583 1.399 1.490 15309.0
    967 AGTTGCCCCCCTATCTTTAT 1111 73.83 1.40 1.976 1.105 1.645 1.498 15205.0
    968 GTTGCCCCCCTATCTTTATT 1112 73.91 1.40 1.986 1.105 1.652 1.524 14192.0
    969 TTGCCCCCCTATCTTTATTG 1113 70.59 1.40 1.500 1.105 1.350 1.515 8699.5
    970 TGCCCCCCTATCTTTATTGT 1114 73.39 1.40 1.911 1.105 1.605 1.461 7786.6
    971 GCCCCCCTATCTTTATTGTG 1115 73.39 1.40 1.911 1.105 1.605 1.328 6709.1
    972 CCCCCCTATCTTTATTGTGA 1116 70.61 1.40 1.502 1.105 1.351 1.165 6198.4
    973 CCCCCTATCTTTATTGTGAC 1117 67.66 1.20 1.070 0.931 1.017 0.999 4910.2
    974 CCCCTATCTTTATTGTGACG 1118 64.37 1.20 0.587 0.931 0.718
    Figure US20030054346A1-20030320-C00879
    850.0
    975 CCCTATCTTTATTGTGACGA 1119 62.05 1.20 0.248 0.931 0.507
    Figure US20030054346A1-20030320-C00880
    404.9
    976 CCTATCTTTATTGTGACGAG 1120 58.56 1.20 −0.265 0.931 0.190
    Figure US20030054346A1-20030320-C00881
    166.6
    977 CTATCTTTATTGTGACGAGG 1121 57.28 1.20 −0.452 0.931 0.073
    Figure US20030054346A1-20030320-C00882
    126.9
    978 TATCTTTATTGTGACGAGGG 1122 57.91 1.20 −0.361 0.931 0.130
    Figure US20030054346A1-20030320-C00883
    92.6
    979 ATCTTTATTGTGACGAGGGG 1123 61.03 1.20 0.097 0.931 0.414
    Figure US20030054346A1-20030320-C00884
    97.9
    980 TCTTTATTGTGACGAGGGGT 1124 64.18 0.90 0.559 0.670 0.601
    Figure US20030054346A1-20030320-C00885
    122.3
    981 CTTTATTGTGACGAGGGGTC 1125 64.18 −0.80 0.559 −0.808 0.039
    Figure US20030054346A1-20030320-C00886
    267.0
    982 TTTATTGTGACGAGGGGTCG 1126 62.63 −1.20 0.332 −1.156 −0.233
    Figure US20030054346A1-20030320-C00887
    396.0
    983 TTATTGTGACGAGGGGTCGT 1127 65.37 −2.30 0.734 −2.112 −0.348
    Figure US20030054346A1-20030320-C00888
    446.0
    984 TATTGTGACGAGGGGTCGTT 1128 65.37 −2.80 0.734 −2.547 −0.513
    Figure US20030054346A1-20030320-C00889
    661.9
    985 ATTGTGACGAGGGGTCGTTG 1129 65.82 −2.80 0.800 −2.547 −0.472
    Figure US20030054346A1-20030320-C00890
    864.5
    986 TTGTGACGAGGGGTCGTTGC 1130 70.01 −2.80 1.414 −2.547 −0.091
    Figure US20030054346A1-20030320-C00891
    1465.7
    987 TGTGACGAGGGGTCGTTGCC 1131 73.21 −2.80 1.884 −2.547 0.200
    Figure US20030054346A1-20030320-C00892
    2836.9
    988 GTGACGAGGGGTCGTTGCCA 1132 74.44 −2.80 2.065 −2.547 0.312
    Figure US20030054346A1-20030320-C00893
    3589.7
    989 TGACGAGGGGTCGTTGCCAA 1133 69.05 −2.80 1.274 −2.547 −0.178
    Figure US20030054346A1-20030320-C00894
    2100.4
    990 GACGAGGGGTCGTTGCCAAA 1134 67.10 −2.80 0.988 −2.547 −0.355
    Figure US20030054346A1-20030320-C00895
    1948.7
    991 ACGAGGGGTCGTTGCCAAAG 1135 66.13 −2.60 0.845 −2.373 −0.378
    Figure US20030054346A1-20030320-C00896
    1384.3
    992 CGAGGGGTCGTTGCCAAAGA 1136 66.81 −1.40 0.945 −1.330 0.081
    Figure US20030054346A1-20030320-C00897
    1192.0
    993 GAGGGGTCGTTGCCAAAGAG 1137 66.84 0.20 0.950 0.062 0.612
    Figure US20030054346A1-20030320-C00898
    1221.0
    994 AGGGGTCGTTGCCAAAGAGT 1138 68.70 0.20 1.223 0.062 0.782
    Figure US20030054346A1-20030320-C00899
    953.2
    995 GGGGTCGTTGCCAAAGAGTG 1139 68.32 0.20 1.167 0.062 0.747
    Figure US20030054346A1-20030320-C00900
    988.6
    996 GGGTCGTTGCCAAAGAGTGA 1140 67.11 0.20 0.989 0.062 0.636
    Figure US20030054346A1-20030320-C00901
    937.8
    997 GGTCGTTGCCAAAGAGTGAT 1141 64.59 0.50 0.620 0.323 0.507
    Figure US20030054346A1-20030320-C00902
    852.1
    998 GTCGTTGCCAAAGAGTGATC 1142 63.51 0.00 0.461 −0.112 0.243
    Figure US20030054346A1-20030320-C00903
    1189.4
    999 TCGTTGCCAAAGAGTGATCT 1143 62.35 −1.00 0.291 −0.982 −0.192
    Figure US20030054346A1-20030320-C00904
    1501.7
    1000 CGTTGCCAAAGAGTGATCTG 1144 60.92 −1.20 0.081 −1.156 −0.389
    Figure US20030054346A1-20030320-C00905
    1360.9
    1001 GTTGCCAAAGAGTGATCTGA 1145 61.71 −1.20 0.198 −1.156 −0.317
    Figure US20030054346A1-20030320-C00906
    1112.9
    1002 TTGCCAAAGAGTGATCTGAG 1146 58.90 −1.20 −0.215 −1.156 −0.572
    Figure US20030054346A1-20030320-C00907
    468.3
    1003 TGCCAAAGAGTGATCTGAGG 1147 61.08 −1.20 0.104 −1.156 −0.375
    Figure US20030054346A1-20030320-C00908
    400.1
    1004 GCCAAAGAGTGATCTGAGGG 1148 63.68 −1.50 0.485 −1.417 −0.237
    Figure US20030054346A1-20030320-C00909
    401.6
    1005 CCAAAGAGTGATCTGAGGGA 1149 60.94 −1.20 0.084 −1.156 −0.387
    Figure US20030054346A1-20030320-C00910
    199.9
    1006 CAAAGAGTGATCTGAGGGAA 1150 55.32 −1.20 −0.741 −1.156 −0.899
    Figure US20030054346A1-20030320-C00911
    202.1
    1007 AAAGAGTGATCTGAGGGAAG 1151 54.21 −1.20 −0.903 −1.156 −0.999
    Figure US20030054346A1-20030320-C00912
    258.7
    1008 AAGAGTGATCTGAGGGAAGT 1152 59.12 −1.20 −0.183 −1.156 −0.552
    Figure US20030054346A1-20030320-C00913
    274.7
    1009 AGAGTGATCTGAGGGAAGTT 1153 61.60 −1.00 0.181 −0.982 −0.261
    Figure US20030054346A1-20030320-C00914
    297.2
    1010 GAGTGATCTGAGGGAAGTTA 1154 60.78 −0.30 0.061 −0.373 −0.104
    Figure US20030054346A1-20030320-C00915
    250.6
    1011 AGTGATCTGAGGGAAGTTAA 1155 57.35 0.60 −0.443 0.410 −0.119
    Figure US20030054346A1-20030320-C00916
    231.3
    1012 GTGATCTGAGGGAAGTTAAA 1156 55.25 0.60 −0.751 0.410 −0.310
    Figure US20030054346A1-20030320-C00917
    214.5
    1013 TGATCTGAGGGAAGTTAAAG 1157 52.55 0.60 −1.147 0.410 −0.556
    Figure US20030054346A1-20030320-C00918
    102.3
    1014 GATCTGAGGGAAGTTAAAGG 1158 55.09 0.60 −0.774 0.410 −0.324
    Figure US20030054346A1-20030320-C00919
    102.3
    1015 ATCTGAGGGAAGTTAAAGGA 1159 55.09 0.60 −0.774 0.410 −0.324
    Figure US20030054346A1-20030320-C00920
    49.4
    1016 TCTGAGGGAAGTTAAAGGAT 1160 55.09 0.60 −0.774 0.410 −0.324
    Figure US20030054346A1-20030320-C00921
    104.3
    1017 CTGAGGGAAGTTAAAGGATA 1161 53.32 1.00 −1.034 0.757 −0.353
    Figure US20030054346A1-20030320-C00922
    46.3
    1018 TGAGGGAAGTTAAAGGATAC 1162 51.95 1.30 −1.235 1.018 −0.378
    Figure US20030054346A1-20030320-C00923
    50.9
    1019 GAGGGAAGTTAAAGGATACA 1163 53.26 0.90 −1.043 0.670 −0.392 58.2
    1020 AGGGAAGTTAAAGGATACAG 1164 52.14 0.90 −1.207 0.670 −0.494 50.5
    1021 GGGAAGTTAAAGGATACAGT 1165 54.81 0.90 −0.815 0.670 −0.251 53.1
  • Example 3
  • Synopsis: The method of the present invention is particularly useful as a guide to the iterative refinement of probes. One of the specific predictions made for rabbit β-globin in Example 1 is used to provide an example of such a refinement. [0239]
  • Materials and Methods: The contig spanning positions 5-11 of a portion of the rabbit β-globin gene (Example 1, Table 3) was analyzed, using the experimentally measured data to simulate the results of successive experimental measurements. The iterative refinement was performed using a rule-based algorithm, outlined below. This algorithm is used by way of example only; other algorithms for efficiently finding local maxima are well known to the art and could be employed to perform this task. [0240]
  • Given experimental data for probes from the 1[0241] st quartile, median and 3rd quartile of a contig, as well as a user-set signal threshold for further consideration of a probe,
  • 1) If all 3 measurements are below the user-specified signal threshold, discard the prediction. [0242]
  • 2) If at least one of the measurements is above the user-specified threshold, determine which point yields the maximum signal. [0243]
  • a) If the maximum point is the 1[0244] st quartile probe, then make three new measurements for probes with the same spacing as that used in the preceding iteration, but displaced so that the third probe is identical to the original 1st quartile probe. In other words, repeat the search with the same pattern and spacing, but displace the pattern in the direction of increasing signal found in the first experiment.
  • b) If the maximum point is the 3[0245] rd quartile probe, then make three new measurements for probes with the same spacing as that used in the preceding iteration, but displaced so that the first probe is identical to the original 3rd quartile probe. In other words, repeat the search with the same pattern and spacing, but displace the pattern in the direction of increasing signal found in the first experiment.
  • c) If the maximum point is the median probe, then repeat the experiment, keeping the median point the same, but shrinking the spacing between probes by a factor of 2. [0246]
  • 3) Continue iteration until a maximum is found, or the user judges the signal level observed to be acceptable. Use the experimental value measured for the probe duplicated in successive iterations to tie together the successive data sets, via a simple normalization procedure, described below. Where appropriate, consider all of the data (i.e. all of the iterations) when deciding how to proceed, or whether the peak hybridization intensity has been found. [0247]
  • Results: Iterative refinement of the contig spanning positions 5-11 in Table 3 proceeds as follows: [0248]
  • Iteration 1: Probes are synthesized at [0249] positions 6, 8 and 10, yielding the experimental hybridization intensities 180, 220 and 310, respectively.
  • Iteration 2: Following rule 2b), probes are synthesized at [0250] positions 10, 12 and 14. Note that the redundant measurement at position 10 serves as a bridge between experiments, and allows comparison of the two sets by normalizing the intensities by multiplying the second iteration measurements by the ratio of the intensity observed for the probe at position 10 in the first iteration to the value observed in the second iteration. In the simplest case, the ratio is 1; in any case, the second iteration yields the normalized values 310, 390, 240 for probe positions 10, 12 and 14, respectively.
  • Iteration 3: By rule 2c), measurements are performed for probes at positions 11, 12 and 13; after normalization, these yield the normalized hybridization intensities 320, 390 and 410, respectively. Combination of these results with the results from [0251] iteration 2, probe position 14, yields the conclusion that the best probe for this intensity peak is the probe that starts at sequence position 13.
  • The overall result is that iterative improvement converges in three iterations, and requires the synthesis of seven test probes, one of which is the local optimal probe. In addition, the first and second iterations yield probes that exhibit 75% and 95% of the local maximum hybridization intensities, respectively. In many applications, either of these probes would be considered acceptable. [0252]
  • The above examples 1 and 2 demonstrate that two different implementations of the method of the present invention are capable of efficiently predicting regions of high hybridization efficiency in a variety of polynucleotide targets. Many of the predictions yield acceptable probe sequences on the first design iteration, and all would yield optimized probe sets after 2-4 rounds of iterative refinement, as demonstrated in Example 3. The performance demonstrated in these examples greatly exceeds the performance of current methods. Finally, the examples demonstrate that the predictions can be performed by a software application that has been implemented and installed on a Pentium®-based computer workstation. [0253]
  • All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. [0254]
  • Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims. [0255]
    Figure US20030054346A1-20030320-P00001
    Figure US20030054346A1-20030320-P00002
    Figure US20030054346A1-20030320-P00003
    Figure US20030054346A1-20030320-P00004
    Figure US20030054346A1-20030320-P00005
    Figure US20030054346A1-20030320-P00006
    Figure US20030054346A1-20030320-P00007
    Figure US20030054346A1-20030320-P00008
    Figure US20030054346A1-20030320-P00009
    Figure US20030054346A1-20030320-P00010
    Figure US20030054346A1-20030320-P00011
    Figure US20030054346A1-20030320-P00012
    Figure US20030054346A1-20030320-P00013
    Figure US20030054346A1-20030320-P00014
    Figure US20030054346A1-20030320-P00015
    Figure US20030054346A1-20030320-P00016
    Figure US20030054346A1-20030320-P00017
    Figure US20030054346A1-20030320-P00018
    Figure US20030054346A1-20030320-P00019
    Figure US20030054346A1-20030320-P00020
    Figure US20030054346A1-20030320-P00021
    Figure US20030054346A1-20030320-P00022
    Figure US20030054346A1-20030320-P00023
    Figure US20030054346A1-20030320-P00024
    Figure US20030054346A1-20030320-P00025
    Figure US20030054346A1-20030320-P00026
    Figure US20030054346A1-20030320-P00027
    Figure US20030054346A1-20030320-P00028
    Figure US20030054346A1-20030320-P00029
    Figure US20030054346A1-20030320-P00030
    Figure US20030054346A1-20030320-P00031
    Figure US20030054346A1-20030320-P00032
    Figure US20030054346A1-20030320-P00033
    Figure US20030054346A1-20030320-P00034
    Figure US20030054346A1-20030320-P00035
    Figure US20030054346A1-20030320-P00036
    Figure US20030054346A1-20030320-P00037
    Figure US20030054346A1-20030320-P00038
    Figure US20030054346A1-20030320-P00039
    Figure US20030054346A1-20030320-P00040
    Figure US20030054346A1-20030320-P00041
    Figure US20030054346A1-20030320-P00042
  • 1 1165 24 base pairs nucleic acid single linear cDNA YES NO stem_loop 2..21 1 ACTGGCAATC ACAATTGCCA GTAA 24 75 base pairs nucleic acid single linear tRNA NO NO Saccharomyces cerevisiae tRNA 1..75 experimental /function= “transfer RNA” /product= “tRNA-Ala” /evidence= EXPERIMENTAL /anticodon= (pos 34 .. 36, aa Ala) /citation= ([1][2]) modified_base 9 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= m1g /citation= ([1][2]) modified_base 16 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= d /citation= ([1][2]) modified_base 20 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= d /citation= ([1][2]) modified_base 26 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= m22g /citation= ([1][2]) modified_base 34 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= i /citation= ([1][2]) modified_base 37 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= m1i /citation= ([1][2]) modified_base 38 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= p /citation= ([1][2]) modified_base 46 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= d /citation= ([1][2]) modified_base 53 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= t /citation= ([1][2]) modified_base 54 experimental /evidence= EXPERIMENTAL /frequency= 0.9999 /mod_base= p /citation= ([1][2]) R. W. Apgar, J. Everett, G. A. Madison, J. T. Marquisee, M. Merrill, S. H. Penswick, J. R. Zamir, A. Holley Structure of a ribonucleic acid Science 147 1462-1465 1965 2 FROM 1 TO 75 J. R. Martin, R. Dirheimer, G. Penswick Evidence supporting a revised sequence for yeast alanine tRNA FEBS Lett. 50 28-31 1975 2 FROM 1 TO 75 2 GGGCGUGUGG CGUAGUCGGU AGCGCGCUCC CUUGGCGUGG GAGAGUCUCC GGUUCGAUUC 60 CGGACUCGUC CACCA 75 16 base pairs nucleic acid single linear cDNA YES NO 3 ATGGACTTAG CATTCG 16 12 base pairs nucleic acid single linear cDNA YES NO 4 ATGGACTTAG CA 12 12 base pairs nucleic acid single linear cDNA YES NO 5 TGGACTTAGC AT 12 12 base pairs nucleic acid single linear cDNA YES NO 6 GGACTTAGCA TT 12 12 base pairs nucleic acid single linear cDNA YES NO 7 GACTTAGCAT TC 12 12 base pairs nucleic acid single linear cDNA YES NO 8 ACTTAGCATT CG 12 50 base pairs nucleic acid single linear cDNA YES NO 9 GTCCAAAAAG GGTCAGTCTA CCTCCCGCCA TAAAAAACTC ATGTTCAAGA 50 25 base pairs nucleic acid single linear cDNA YES NO 10 GTCCAAAAAG GGTCAGTCTA CCTCC 25 25 base pairs nucleic acid single linear cDNA YES NO 11 TCCAAAAAGG GTCAGTCTAC CTCCC 25 25 base pairs nucleic acid single linear cDNA YES NO 12 CCAAAAAGGG TCAGTCTACC TCCCG 25 25 base pairs nucleic acid single linear cDNA YES NO 13 CAAAAAGGGT CAGTCTACCT CCCGC 25 25 base pairs nucleic acid single linear cDNA YES NO 14 AAAAAGGGTC AGTCTACCTC CCGCC 25 25 base pairs nucleic acid single linear cDNA YES NO 15 AAAAGGGTCA GTCTACCTCC CGCCA 25 25 base pairs nucleic acid single linear cDNA YES NO 16 AAAGGGTCAG TCTACCTCCC GCCAT 25 25 base pairs nucleic acid single linear cDNA YES NO 17 AAGGGTCAGT CTACCTCCCG CCATA 25 25 base pairs nucleic acid single linear cDNA YES NO 18 AGGGTCAGTC TACCTCCCGC CATAA 25 25 base pairs nucleic acid single linear cDNA YES NO 19 GGGTCAGTCT ACCTCCCGCC ATAAA 25 25 base pairs nucleic acid single linear cDNA YES NO 20 GGTCAGTCTA CCTCCCGCCA TAAAA 25 25 base pairs nucleic acid single linear cDNA YES NO 21 GTCAGTCTAC CTCCCGCCAT AAAAA 25 25 base pairs nucleic acid single linear cDNA YES NO 22 TCAGTCTACC TCCCGCCATA AAAAA 25 25 base pairs nucleic acid single linear cDNA YES NO 23 CAGTCTACCT CCCGCCATAA AAAAC 25 25 base pairs nucleic acid single linear cDNA YES NO 24 AGTCTACCTC CCGCCATAAA AAACT 25 25 base pairs nucleic acid single linear cDNA YES NO 25 GTCTACCTCC CGCCATAAAA AACTC 25 25 base pairs nucleic acid single linear cDNA YES NO 26 TCTACCTCCC GCCATAAAAA ACTCA 25 25 base pairs nucleic acid single linear cDNA YES NO 27 CTACCTCCCG CCATAAAAAA CTCAT 25 25 base pairs nucleic acid single linear cDNA YES NO 28 TACCTCCCGC CATAAAAAAC TCATG 25 25 base pairs nucleic acid single linear cDNA YES NO 29 ACCTCCCGCC ATAAAAAACT CATGT 25 25 base pairs nucleic acid single linear cDNA YES NO 30 CCTCCCGCCA TAAAAAACTC ATGTT 25 25 base pairs nucleic acid single linear cDNA YES NO 31 CTCCCGCCAT AAAAAACTCA TGTTC 25 25 base pairs nucleic acid single linear cDNA YES NO 32 TCCCGCCATA AAAAACTCAT GTTCA 25 25 base pairs nucleic acid single linear cDNA YES NO 33 CCCGCCATAA AAAACTCATG TTCAA 25 25 base pairs nucleic acid single linear cDNA YES NO 34 CCGCCATAAA AAACTCATGT TCAAG 25 25 base pairs nucleic acid single linear cDNA YES NO 35 CGCCATAAAA AACTCATGTT CAAGA 25 122 base pairs nucleic acid single linear cDNA NO NO Oryctolagus cuniculus 5′UTR 1..53 CDS 54..122 /codon_start= 54 /product= “rabbit beta1 globin, N-terminus” /citation= ([1]) M. L. III Johnson, J. E. James, M. D. Hardison, R. C. Rohrbaugh Transcriptional unit of the rabbit beta1 globin gene Mol. Cell. Biol. 5 147-160 1985 36 FROM 1 TO 122 36 ACACTTGCTT TTGACACAAC TGTGTTTACT TGCAATCCCC CAAAACAGAC AGA ATG 56 Met 1 GTG CAT CTG TCC AGT GAG GAG AAG TCT GCG GTC ACT GCC CTG TGG GGC 104 Val His Leu Ser Ser Glu Glu Lys Ser Ala Val Thr Ala Leu Trp Gly 5 10 15 AAG GTG AAT GTG GAA GAA 122 Lys Val Asn Val Glu Glu 20 1040 base pairs nucleic acid single linear cDNA NO NO Human immunodefficiency virus type I BH10 misc_RNA 1..1040 experimental /partial /function= “protease & reverse transcriptase regions” /product= “pol polyprotein (partial)” /evidence= EXPERIMENTAL /citation= ([1]) F. Gallo, R. C. Chang, N. T. Ghrayeb, J. Papas, T. S. Lautenberger, J. A. Pearson, M. L. Jr. Petteway, S. R. Ivanoff, L. Baumeister, K. Wong-Stahl Complete nucleotide sequence of the AIDS virus, HTLV-III Nature 313 277-284 1985 37 FROM 1 TO 1040 37 TGTACTGTCC ATTTATCAGG ATGGAGTTCA TAACCCATCC AAAGGAATGG AGGTTCTTTC 60 TGATGTTTTT TGTCTGGTGT GGTAAGTCCC CACCTCAACA GATGTTGTCT CAGCTCCTCT 120 ATTTTTGTTC TATGCTGCCC TATTTCTAAG TCAGATCCTA CATACAAATC ATCCATGTAT 180 TGATAGATAA CTATGTCTGG ATTTTGTTTT TTAAAAGGCT CTAAGATTTT TGTCATGCTA 240 CTTTGGAATA TTGCTGGTGA TCCTTTCCAT CCCTGTGGAA GCACATTGTA CTGATATCTA 300 ATCCCTGGTG TCTCATTGTT TATACTAGGT ATGGTAAATG CAGTATACTT CCTGAAGTCT 360 TCATCTAAGG GAACTGAAAA ATATGCATCA CCCACATCCA GTACTGTTAC TGATTTTTTC 420 TTTTTTAACC CTGCGGGATG TGGTATTCCT AATTGAACTT CCCAGAAGTC TTGAGTTCTC 480 TTATTAAGTT CTCTGAAATC TACTAATTTT CTCCATTTAG TACTGTCTTT TTTCTTTATG 540 GCAAATACTG GAGTATTGTA TGGATTCTCA GGCCCAATTT TTGAAATTTT CCCTTCCTTT 600 TCCATTTCTG TACAAATTTC TACTAATGCT TTTATTTTTT CTTCTGTCAA TGGCCATTGT 660 TTAACTTTTG GGCCATCCAT TCCTGGCTTT AATTTTACTG GTACAGTCTC AATAGGGCTA 720 ATGGGAAAAT TTAAAGTGCA ACCAATCTGA GTCAACAGAT TTCTTCCAAT TATGTTGACA 780 GGTGTAGGTC CTACTAATAC TGTACCTATA GCTTTATGTC CACAGATTTC TATGAGTATC 840 TGATCATACT GTCTTACTTT GATAAAACCT CCAATTCCCC CTATCATTTT TGGTTTCCAT 900 CTTCCTGGCA AACTCATTTC TTCTAATACT GTATCATCTG CTCCTGTATC TAATAGAGCT 960 TCCTTTAGTT GCCCCCCTAT CTTTATTGTG ACGAGGGGTC GTTGCCAAAG AGTGATCTGA 1020 GGGAAGTTAA AGGATACAGT 1040 999 base pairs nucleic acid single linear cDNA NO NO Homo sapiens CDS 1..982 experimental /partial /codon_start= 2 /function= “glycolysis” /product= “Glyceraldehydephosphate Dehydrogenase” /evidence= EXPERIMENTAL /standard_name= “G3PDH” /citation= ([1]) promoter 983..999 /function= “promoter for T7 RNA polymerase” P. Martinelli, R. Salvatore, F. Arcari The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase evidence for multiple mRNA species Nucleic Acids Res. 12 23 9179-9189 1984 38 FROM 1 TO 999 38 G AAG GTC GGA GTC AAC GGA TTT GGT CGT ATT GGG CGC CTG GTC ACC 46 Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg Leu Val Thr 1 5 10 15 AGG GCT GCT TTT AAC TCT GGT AAA GTG GAT ATT GTT GCC ATC AAT GAC 94 Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala Ile Asn Asp 20 25 30 CCC TTC ATT GAC CTC AAC TAC ATG GTT TAC ATG TTC CAA TAT GAT TCC 142 Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln Tyr Asp Ser 35 40 45 ACC CAT GGC AAA TTC CAT GGC ACC GTC AAG GCT GAG AAC GGG AAG CTT 190 Thr His Gly Lys Phe His Gly Thr Val Lys Ala Glu Asn Gly Lys Leu 50 55 60 GTC ATC AAT GGA AAT CCC ATC ACC ATC TTC CAG GAG CGA GAT CCC TCC 238 Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg Asp Pro Ser 65 70 75 AAA ATC AAG TGG GGC GAT GCT GGC GCT GAG TAC GTC GTG GAG TCC ACT 286 Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val Glu Ser Thr 80 85 90 95 GGC GTC TTC ACC ACC ATG GAG AAG GCT GGG GCT CAT TTG CAG GGG GGA 334 Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu Gln Gly Gly 100 105 110 GCC AAA AGG GTC ATC ATC TCT GCC CCC TCT GCT GAT GCC CCC ATG TTC 382 Ala Lys Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala Pro Met Phe 115 120 125 GTC ATG GGT GTG AAC CAT GAG AAG TAT GAC AAC AGC CTC AAG ATC ATC 430 Val Met Gly Val Asn His Glu Lys Tyr Asp Asn Ser Leu Lys Ile Ile 130 135 140 AGC AAT GCC TCC TGC ACC ACC AAC TGC TTA GCA CCC CTG GCC AAG GTC 478 Ser Asn Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu Ala Lys Val 145 150 155 ATC CAT GAC AAC TTT GGT ATC GTG GAA GGA CTC ATG ACC ACA GTC CAT 526 Ile His Asp Asn Phe Gly Ile Val Glu Gly Leu Met Thr Thr Val His 160 165 170 175 GCC ATC ACT GCC ACC CAG AAG ACT GTG GAT GGC CCC TCC GGG AAA CTG 574 Ala Ile Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser Gly Lys Leu 180 185 190 TGG CGT GAT GGC CGC GGG GCT CTC CAG AAC ATC ATC CCT GCC TCT ACT 622 Trp Arg Asp Gly Arg Gly Ala Leu Gln Asn Ile Ile Pro Ala Ser Thr 195 200 205 GGC GCT GCC AAG GCT GTG GGC AAG GTC ATC CCT GAG CTA GAC GGG AAG 670 Gly Ala Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu Asp Gly Lys 210 215 220 CTC ACT GGC ATG GCC TTC CGT GTC CCC ACT GCC AAC GTG TCA GTG GTG 718 Leu Thr Gly Met Ala Phe Arg Val Pro Thr Ala Asn Val Ser Val Val 225 230 235 GAC CTG ACC TGC CGT CTA GAA AAA CCT GCC AAA TAT GAT GAC ATC AAG 766 Asp Leu Thr Cys Arg Leu Glu Lys Pro Ala Lys Tyr Asp Asp Ile Lys 240 245 250 255 AAG GTG GTG AAG CAG GCG TCG GAG GGC CCC CTC AAA GGC ATC CTG GGC 814 Lys Val Val Lys Gln Ala Ser Glu Gly Pro Leu Lys Gly Ile Leu Gly 260 265 270 TAC ACT GAG CAC CAG GTG GTC TCC TCT GAC TTC AAC AGC GAC ACC CAC 862 Tyr Thr Glu His Gln Val Val Ser Ser Asp Phe Asn Ser Asp Thr His 275 280 285 TCC TCC ACC TTT GAC GCT GGG GCT GGC ATT GCC CTC AAC GAC CAC TTT 910 Ser Ser Thr Phe Asp Ala Gly Ala Gly Ile Ala Leu Asn Asp His Phe 290 295 300 GTC AAG CTC ATT TCC TGG TAT GAC AAC GAA TTT GGC TAC AGC AAC AGG 958 Val Lys Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr Ser Asn Arg 305 310 315 GTG GTG GAC CTC ATG GCC CAC ATG CTATAGTGAG TCGTATT 999 Val Val Asp Leu Met Ala His Met 320 325 1049 base pairs nucleic acid single linear cDNA NO NO Homo sapiens CDS 1..372 experimental /partial /codon_start= 1 /function= “tumor suppressor” /product= “p53 (C-terminal portion)” /evidence= EXPERIMENTAL /gene= “HSP53G” /standard_name= “p53” 3′UTR 373..1049 /citation= ([1]) P. A. Barrett, J. C. Wiseman, R. W. Futreal An Alu polymorphism intragenic to the TP53 gene Nucleic Acids Res. 19 24 6977- 1991 39 FROM 1 TO 1049 39 GAG GTG CGT GTT TGT GCC TGT CCT GGG AGA GAC CGG CGC ACA GAG GAA 48 Glu Val Arg Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu 1 5 10 15 GAG AAT CTC CGC AAG AAA GGG GAG CCT CAC CAC GAG CTG CCC CCA GGG 96 Glu Asn Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly 20 25 30 AGC ACT AAG CGA GCA CTG CCC AAC AAC ACC AGC TCC TCT CCC CAG CCA 144 Ser Thr Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro 35 40 45 AAG AAG AAA CCA CTG GAT GGA GAA TAT TTC ACC CTT CAG ATC CGT GGG 192 Lys Lys Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly 50 55 60 CGT GAG CGC TTC GAG ATG TTC CGA GAG CTG AAT GAG GCC TTG GAA CTC 240 Arg Glu Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu 65 70 75 80 AAG GAT GCC CAG GCT GGG AAG GAG CCA GGG GGG AGC AGG GCT CAC TCC 288 Lys Asp Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His Ser 85 90 95 AGC CAC CTG AAG TCC AAA AAG GGT CAG TCT ACC TCC CGC CAT AAA AAA 336 Ser His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys 100 105 110 CTC ATG TTC AAG ACA GAA GGG CCT GAC TCA GAC TGA CATTCTCCAC 382 Leu Met Phe Lys Thr Glu Gly Pro Asp Ser Asp * 115 120 TTCTTGTTCC CCACTGACAG CCTCCCTCCC CCATCTCTCC CTCCCCTGCC ATTTTGGGTT 442 TTGGGTCTTT GAACCCTTGC TTGCAATAGG TGTGCGTCAG AAGCACCCAG GACTTCCATT 502 TGCTTTGTCC CGGGGCTCCA CTGAACAAGT TGGCCTGCAC TGGTGTTTTG TTGTGGGGAG 562 GAGGATGGGG AGTAGGACAT ACCAGCTTAG ATTTTAAGGT TTTTACTGTG AGGGATGTTT 622 GGGAGATGTA AGAAATGTTC TTGCAGTTAA GGGTTAGTTT ACAATCAGCC ACATTCTAGG 682 TAGGTAGGGG CCCACTTCAC CGTACTAACC AGGGAAGCTG TCCCTCATGT TGAATTTTCT 742 CTAACTTCAA GGCCCATATC TGTGAAATGC TGGCATTTGC ACCTACCTCA CAGAGTGCAT 802 TGTGAGGGTT AATGAAATAA TGTACATCTG GCCTTGAAAC CACCTTTTAT TACATGGGGT 862 CTAAAACTTG ACCCCCTTGA GGGTGCCTGT TCCCTCTCCC TCTCCCTGTT GGCTGGTGGG 922 TTGGTAGTTT CTACAGTTGG GCAGCTGGTT AGGTAGAGGG AGTTGTCAAG TCTTGCTGGC 982 CCAGCCAAAC CCTGTCTGAC AACCTCTTGG TCGACCTTAG TACCTAAAAG GAAATCTCAC 1042 CCCATCC 1049 17 base pairs nucleic acid single linear cDNA NO NO 40 TTCTTCCACA TTCACCT 17 17 base pairs nucleic acid single linear cDNA NO NO 41 TCTTCCACAT TCACCTT 17 17 base pairs nucleic acid single linear cDNA NO NO 42 CTTCCACATT CACCTTG 17 17 base pairs nucleic acid single linear cDNA NO NO 43 TTCCACATTC ACCTTGC 17 17 base pairs nucleic acid single linear cDNA NO NO 44 TCCACATTCA CCTTGCC 17 17 base pairs nucleic acid single linear cDNA NO NO 45 CCACATTCAC CTTGCCC 17 17 base pairs nucleic acid single linear cDNA NO NO 46 CACATTCACC TTGCCCC 17 17 base pairs nucleic acid single linear cDNA NO NO 47 ACATTCACCT TGCCCCA 17 17 base pairs nucleic acid single linear cDNA NO NO 48 CATTCACCTT GCCCCAC 17 17 base pairs nucleic acid single linear cDNA NO NO 49 ATTCACCTTG CCCCACA 17 17 base pairs nucleic acid single linear cDNA NO NO 50 TTCACCTTGC CCCACAG 17 17 base pairs nucleic acid single linear cDNA NO NO 51 TCACCTTGCC CCACAGG 17 17 base pairs nucleic acid single linear cDNA NO NO 52 CACCTTGCCC CACAGGG 17 17 base pairs nucleic acid single linear cDNA NO NO 53 ACCTTGCCCC ACAGGGC 17 17 base pairs nucleic acid single linear cDNA NO NO 54 CCTTGCCCCA CAGGGCA 17 17 base pairs nucleic acid single linear cDNA NO NO 55 CTTGCCCCAC AGGGCAG 17 17 base pairs nucleic acid single linear cDNA NO NO 56 TTGCCCCACA GGGCAGT 17 17 base pairs nucleic acid single linear cDNA NO NO 57 TGCCCCACAG GGCAGTG 17 17 base pairs nucleic acid single linear cDNA NO NO 58 GCCCCACAGG GCAGTGA 17 17 base pairs nucleic acid single linear cDNA NO NO 59 CCCCACAGGG CAGTGAC 17 17 base pairs nucleic acid single linear cDNA NO NO 60 CCCACAGGGC AGTGACC 17 17 base pairs nucleic acid single linear cDNA NO NO 61 CCACAGGGCA GTGACCG 17 17 base pairs nucleic acid single linear cDNA NO NO 62 CACAGGGCAG TGACCGC 17 17 base pairs nucleic acid single linear cDNA NO NO 63 ACAGGGCAGT GACCGCA 17 17 base pairs nucleic acid single linear cDNA NO NO 64 CAGGGCAGTG ACCGCAG 17 17 base pairs nucleic acid single linear cDNA NO NO 65 AGGGCAGTGA CCGCAGA 17 17 base pairs nucleic acid single linear cDNA NO NO 66 GGGCAGTGAC CGCAGAC 17 17 base pairs nucleic acid single linear cDNA NO NO 67 GGCAGTGACC GCAGACT 17 17 base pairs nucleic acid single linear cDNA NO NO 68 GCAGTGACCG CAGACTT 17 17 base pairs nucleic acid single linear cDNA NO NO 69 CAGTGACCGC AGACTTC 17 17 base pairs nucleic acid single linear cDNA NO NO 70 AGTGACCGCA GACTTCT 17 17 base pairs nucleic acid single linear cDNA NO NO 71 GTGACCGCAG ACTTCTC 17 17 base pairs nucleic acid single linear cDNA NO NO 72 TGACCGCAGA CTTCTCC 17 17 base pairs nucleic acid single linear cDNA NO NO 73 GACCGCAGAC TTCTCCT 17 17 base pairs nucleic acid single linear cDNA NO NO 74 ACCGCAGACT TCTCCTC 17 17 base pairs nucleic acid single linear cDNA NO NO 75 CCGCAGACTT CTCCTCA 17 17 base pairs nucleic acid single linear cDNA NO NO 76 CGCAGACTTC TCCTCAC 17 17 base pairs nucleic acid single linear cDNA NO NO 77 GCAGACTTCT CCTCACT 17 17 base pairs nucleic acid single linear cDNA NO NO 78 CAGACTTCTC CTCACTG 17 17 base pairs nucleic acid single linear cDNA NO NO 79 AGACTTCTCC TCACTGG 17 17 base pairs nucleic acid single linear cDNA NO NO 80 GACTTCTCCT CACTGGA 17 17 base pairs nucleic acid single linear cDNA NO NO 81 ACTTCTCCTC ACTGGAC 17 17 base pairs nucleic acid single linear cDNA NO NO 82 CTTCTCCTCA CTGGACA 17 17 base pairs nucleic acid single linear cDNA NO NO 83 TTCTCCTCAC TGGACAG 17 17 base pairs nucleic acid single linear cDNA NO NO 84 TCTCCTCACT GGACAGA 17 17 base pairs nucleic acid single linear cDNA NO NO 85 CTCCTCACTG GACAGAT 17 17 base pairs nucleic acid single linear cDNA NO NO 86 TCCTCACTGG ACAGATG 17 17 base pairs nucleic acid single linear cDNA NO NO 87 CCTCACTGGA CAGATGC 17 17 base pairs nucleic acid single linear cDNA NO NO 88 CTCACTGGAC AGATGCA 17 17 base pairs nucleic acid single linear cDNA NO NO 89 TCACTGGACA GATGCAC 17 17 base pairs nucleic acid single linear cDNA NO NO 90 CACTGGACAG ATGCACC 17 17 base pairs nucleic acid single linear cDNA NO NO 91 ACTGGACAGA TGCACCA 17 17 base pairs nucleic acid single linear cDNA NO NO 92 CTGGACAGAT GCACCAT 17 17 base pairs nucleic acid single linear cDNA NO NO 93 TGGACAGATG CACCATT 17 17 base pairs nucleic acid single linear cDNA NO NO 94 GGACAGATGC ACCATTC 17 17 base pairs nucleic acid single linear cDNA NO NO 95 GACAGATGCA CCATTCT 17 17 base pairs nucleic acid single linear cDNA NO NO 96 ACAGATGCAC CATTCTG 17 17 base pairs nucleic acid single linear cDNA NO NO 97 CAGATGCACC ATTCTGT 17 17 base pairs nucleic acid single linear cDNA NO NO 98 AGATGCACCA TTCTGTC 17 17 base pairs nucleic acid single linear cDNA NO NO 99 GATGCACCAT TCTGTCT 17 17 base pairs nucleic acid single linear cDNA NO NO 100 ATGCACCATT CTGTCTG 17 17 base pairs nucleic acid single linear cDNA NO NO 101 TGCACCATTC TGTCTGT 17 17 base pairs nucleic acid single linear cDNA NO NO 102 GCACCATTCT GTCTGTT 17 17 base pairs nucleic acid single linear cDNA NO NO 103 CACCATTCTG TCTGTTT 17 17 base pairs nucleic acid single linear cDNA NO NO 104 ACCATTCTGT CTGTTTT 17 17 base pairs nucleic acid single linear cDNA NO NO 105 CCATTCTGTC TGTTTTG 17 17 base pairs nucleic acid single linear cDNA NO NO 106 CATTCTGTCT GTTTTGG 17 17 base pairs nucleic acid single linear cDNA NO NO 107 ATTCTGTCTG TTTTGGG 17 17 base pairs nucleic acid single linear cDNA NO NO 108 TTCTGTCTGT TTTGGGG 17 17 base pairs nucleic acid single linear cDNA NO NO 109 TCTGTCTGTT TTGGGGG 17 17 base pairs nucleic acid single linear cDNA NO NO 110 CTGTCTGTTT TGGGGGA 17 17 base pairs nucleic acid single linear cDNA NO NO 111 TGTCTGTTTT GGGGGAT 17 17 base pairs nucleic acid single linear cDNA NO NO 112 GTCTGTTTTG GGGGATT 17 17 base pairs nucleic acid single linear cDNA NO NO 113 TCTGTTTTGG GGGATTG 17 17 base pairs nucleic acid single linear cDNA NO NO 114 CTGTTTTGGG GGATTGC 17 17 base pairs nucleic acid single linear cDNA NO NO 115 TGTTTTGGGG GATTGCA 17 17 base pairs nucleic acid single linear cDNA NO NO 116 GTTTTGGGGG ATTGCAA 17 17 base pairs nucleic acid single linear cDNA NO NO 117 TTTTGGGGGA TTGCAAG 17 17 base pairs nucleic acid single linear cDNA NO NO 118 TTTGGGGGAT TGCAAGT 17 17 base pairs nucleic acid single linear cDNA NO NO 119 TTGGGGGATT GCAAGTA 17 17 base pairs nucleic acid single linear cDNA NO NO 120 TGGGGGATTG CAAGTAA 17 17 base pairs nucleic acid single linear cDNA NO NO 121 GGGGGATTGC AAGTAAA 17 17 base pairs nucleic acid single linear cDNA NO NO 122 GGGGATTGCA AGTAAAC 17 17 base pairs nucleic acid single linear cDNA NO NO 123 GGGATTGCAA GTAAACA 17 17 base pairs nucleic acid single linear cDNA NO NO 124 GGATTGCAAG TAAACAC 17 17 base pairs nucleic acid single linear cDNA NO NO 125 GATTGCAAGT AAACACA 17 17 base pairs nucleic acid single linear cDNA NO NO 126 ATTGCAAGTA AACACAG 17 17 base pairs nucleic acid single linear cDNA NO NO 127 TTGCAAGTAA ACACAGT 17 17 base pairs nucleic acid single linear cDNA NO NO 128 TGCAAGTAAA CACAGTT 17 17 base pairs nucleic acid single linear cDNA NO NO 129 GCAAGTAAAC ACAGTTG 17 17 base pairs nucleic acid single linear cDNA NO NO 130 CAAGTAAACA CAGTTGT 17 17 base pairs nucleic acid single linear cDNA NO NO 131 AAGTAAACAC AGTTGTG 17 17 base pairs nucleic acid single linear cDNA NO NO 132 AGTAAACACA GTTGTGT 17 17 base pairs nucleic acid single linear cDNA NO NO 133 GTAAACACAG TTGTGTC 17 17 base pairs nucleic acid single linear cDNA NO NO 134 TAAACACAGT TGTGTCA 17 17 base pairs nucleic acid single linear cDNA NO NO 135 AAACACAGTT GTGTCAA 17 17 base pairs nucleic acid single linear cDNA NO NO 136 AACACAGTTG TGTCAAA 17 17 base pairs nucleic acid single linear cDNA NO NO 137 ACACAGTTGT GTCAAAA 17 17 base pairs nucleic acid single linear cDNA NO NO 138 CACAGTTGTG TCAAAAG 17 17 base pairs nucleic acid single linear cDNA NO NO 139 ACAGTTGTGT CAAAAGC 17 17 base pairs nucleic acid single linear cDNA NO NO 140 CAGTTGTGTC AAAAGCA 17 17 base pairs nucleic acid single linear cDNA NO NO 141 AGTTGTGTCA AAAGCAA 17 17 base pairs nucleic acid single linear cDNA NO NO 142 GTTGTGTCAA AAGCAAG 17 17 base pairs nucleic acid single linear cDNA NO NO 143 TTGTGTCAAA AGCAAGT 17 17 base pairs nucleic acid single linear cDNA NO NO 144 TGTGTCAAAA GCAAGTG 17 20 base pairs nucleic acid single linear cDNA NO NO 145 GTACTGTCCA TTTATCAGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 146 TACTGTCCAT TTATCAGGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 147 ACTGTCCATT TATCAGGATG 20 20 base pairs nucleic acid single linear cDNA NO NO 148 CTGTCCATTT ATCAGGATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 149 TGTCCATTTA TCAGGATGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 150 GTCCATTTAT CAGGATGGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 151 TCCATTTATC AGGATGGAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 152 CCATTTATCA GGATGGAGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 153 CATTTATCAG GATGGAGTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 154 ATTTATCAGG ATGGAGTTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 155 TTTATCAGGA TGGAGTTCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 156 TTATCAGGAT GGAGTTCATA 20 20 base pairs nucleic acid single linear cDNA NO NO 157 TATCAGGATG GAGTTCATAA 20 20 base pairs nucleic acid single linear cDNA NO NO 158 ATCAGGATGG AGTTCATAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 159 TCAGGATGGA GTTCATAACC 20 20 base pairs nucleic acid single linear cDNA NO NO 160 CAGGATGGAG TTCATAACCC 20 20 base pairs nucleic acid single linear cDNA NO NO 161 AGGATGGAGT TCATAACCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 162 GGATGGAGTT CATAACCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 163 GATGGAGTTC ATAACCCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 164 ATGGAGTTCA TAACCCATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 165 TGGAGTTCAT AACCCATCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 166 GGAGTTCATA ACCCATCCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 167 GAGTTCATAA CCCATCCCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 168 AGTTCATAAC CCATCCCAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 169 GTTCATAACC CATCCCAAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 170 TTCATAACCC ATCCCAAAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 171 TCATAACCCA TCCCAAAGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 172 CATAACCCAT CCCAAAGGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 173 ATAACCCATC CCAAAGGAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 174 TAACCCATCC CAAAGGAATG 20 20 base pairs nucleic acid single linear cDNA NO NO 175 AACCCATCCC AAAGGAATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 176 ACCCATCCCA AAGGAATGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 177 CCCATCCCAA AGGAATGGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 178 CCATCCCAAA GGAATGGAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 179 CATCCCAAAG GAATGGAGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 180 ATCCCAAAGG AATGGAGGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 181 TCCCAAAGGA ATGGAGGTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 182 CCCAAAGGAA TGGAGGTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 183 CCAAAGGAAT GGAGGTTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 184 CAAAGGAATG GAGGTTCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 185 AAAGGAATGG AGGTTCTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 186 AAGGAATGGA GGTTCTTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 187 AGGAATGGAG GTTCTTTCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 188 GGAATGGAGG TTCTTTCTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 189 GAATGGAGGT TCTTTCTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 190 AATGGAGGTT CTTTCTGATG 20 20 base pairs nucleic acid single linear cDNA NO NO 191 ATGGAGGTTC TTTCTGATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 192 TGGAGGTTCT TTCTGATGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 193 GGAGGTTCTT TCTGATGTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 194 GAGGTTCTTT CTGATGTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 195 AGGTTCTTTC TGATGTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 196 GGTTCTTTCT GATGTTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 197 GTTCTTTCTG ATGTTTTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 198 TTCTTTCTGA TGTTTTTTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 199 TCTTTCTGAT GTTTTTTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 200 CTTTCTGATG TTTTTTGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 201 TTTCTGATGT TTTTTGTCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 202 TTCTGATGTT TTTTGTCTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 203 TCTGATGTTT TTTGTCTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 204 CTGATGTTTT TTGTCTGGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 205 TGATGTTTTT TGTCTGGTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 206 GATGTTTTTT GTCTGGTGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 207 ATGTTTTTTG TCTGGTGTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 208 TGTTTTTTGT CTGGTGTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 209 GTTTTTTGTC TGGTGTGGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 210 TTTTTTGTCT GGTGTGGTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 211 TTTTTGTCTG GTGTGGTAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 212 TTTTGTCTGG TGTGGTAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 213 TTTGTCTGGT GTGGTAAGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 214 TTGTCTGGTG TGGTAAGTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 215 TGTCTGGTGT GGTAAGTCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 216 GTCTGGTGTG GTAAGTCCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 217 TCTGGTGTGG TAAGTCCCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 218 CTGGTGTGGT AAGTCCCCAC 20 20 base pairs nucleic acid single linear cDNA NO NO 219 TGGTGTGGTA AGTCCCCACC 20 20 base pairs nucleic acid single linear cDNA NO NO 220 GGTGTGGTAA GTCCCCACCT 20 20 base pairs nucleic acid single linear cDNA NO NO 221 GTGTGGTAAG TCCCCACCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 222 TGTGGTAAGT CCCCACCTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 223 GTGGTAAGTC CCCACCTCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 224 TGGTAAGTCC CCACCTCAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 225 GGTAAGTCCC CACCTCAACA 20 20 base pairs nucleic acid single linear cDNA NO NO 226 GTAAGTCCCC ACCTCAACAG 20 20 base pairs nucleic acid single linear cDNA NO NO 227 TAAGTCCCCA CCTCAACAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 228 AAGTCCCCAC CTCAACAGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 229 AGTCCCCACC TCAACAGATG 20 20 base pairs nucleic acid single linear cDNA NO NO 230 GTCCCCACCT CAACAGATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 231 TCCCCACCTC AACAGATGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 232 CCCCACCTCA ACAGATGTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 233 CCCACCTCAA CAGATGTTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 234 CCACCTCAAC AGATGTTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 235 CACCTCAACA GATGTTGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 236 ACCTCAACAG ATGTTGTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 237 CCTCAACAGA TGTTGTCTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 238 CTCAACAGAT GTTGTCTCAG 20 20 base pairs nucleic acid single linear cDNA NO NO 239 TCAACAGATG TTGTCTCAGC 20 20 base pairs nucleic acid single linear cDNA NO NO 240 CAACAGATGT TGTCTCAGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 241 AACAGATGTT GTCTCAGCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 242 ACAGATGTTG TCTCAGCTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 243 CAGATGTTGT CTCAGCTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 244 AGATGTTGTC TCAGCTCCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 245 GATGTTGTCT CAGCTCCTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 246 ATGTTGTCTC AGCTCCTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 247 TGTTGTCTCA GCTCCTCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 248 GTTGTCTCAG CTCCTCTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 249 TTGTCTCAGC TCCTCTATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 250 TGTCTCAGCT CCTCTATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 251 GTCTCAGCTC CTCTATTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 252 TCTCAGCTCC TCTATTTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 253 CTCAGCTCCT CTATTTTTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 254 TCAGCTCCTC TATTTTTGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 255 CAGCTCCTCT ATTTTTGTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 256 AGCTCCTCTA TTTTTGTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 257 GCTCCTCTAT TTTTGTTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 258 CTCCTCTATT TTTGTTCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 259 TCCTCTATTT TTGTTCTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 260 CCTCTATTTT TGTTCTATGC 20 20 base pairs nucleic acid single linear cDNA NO NO 261 CTCTATTTTT GTTCTATGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 262 TCTATTTTTG TTCTATGCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 263 CTATTTTTGT TCTATGCTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 264 TATTTTTGTT CTATGCTGCC 20 20 base pairs nucleic acid single linear cDNA NO NO 265 ATTTTTGTTC TATGCTGCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 266 TTTTTGTTCT ATGCTGCCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 267 TTTTGTTCTA TGCTGCCCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 268 TTTGTTCTAT GCTGCCCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 269 TTGTTCTATG CTGCCCTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 270 TGTTCTATGC TGCCCTATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 271 GTTCTATGCT GCCCTATTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 272 TTCTATGCTG CCCTATTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 273 TCTATGCTGC CCTATTTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 274 CTATGCTGCC CTATTTCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 275 TATGCTGCCC TATTTCTAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 276 ATGCTGCCCT ATTTCTAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 277 TGCTGCCCTA TTTCTAAGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 278 GCTGCCCTAT TTCTAAGTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 279 CTGCCCTATT TCTAAGTCAG 20 20 base pairs nucleic acid single linear cDNA NO NO 280 TGCCCTATTT CTAAGTCAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 281 GCCCTATTTC TAAGTCAGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 282 CCCTATTTCT AAGTCAGATC 20 20 base pairs nucleic acid single linear cDNA NO NO 283 CCTATTTCTA AGTCAGATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 284 CTATTTCTAA GTCAGATCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 285 TATTTCTAAG TCAGATCCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 286 ATTTCTAAGT CAGATCCTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 287 TTTCTAAGTC AGATCCTACA 20 20 base pairs nucleic acid single linear cDNA NO NO 288 TTCTAAGTCA GATCCTACAT 20 20 base pairs nucleic acid single linear cDNA NO NO 289 TCTAAGTCAG ATCCTACATA 20 20 base pairs nucleic acid single linear cDNA NO NO 290 CTAAGTCAGA TCCTACATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 291 TAAGTCAGAT CCTACATACA 20 20 base pairs nucleic acid single linear cDNA NO NO 292 AAGTCAGATC CTACATACAA 20 20 base pairs nucleic acid single linear cDNA NO NO 293 AGTCAGATCC TACATACAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 294 GTCAGATCCT ACATACAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 295 TCAGATCCTA CATACAAATC 20 20 base pairs nucleic acid single linear cDNA NO NO 296 CAGATCCTAC ATACAAATCA 20 20 base pairs nucleic acid single linear cDNA NO NO 297 AGATCCTACA TACAAATCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 298 GATCCTACAT ACAAATCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 299 ATCCTACATA CAAATCATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 300 TCCTACATAC AAATCATCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 301 CCTACATACA AATCATCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 302 CTACATACAA ATCATCCATG 20 20 base pairs nucleic acid single linear cDNA NO NO 303 TACATACAAA TCATCCATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 304 ACATACAAAT CATCCATGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 305 CATACAAATC ATCCATGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 306 ATACAAATCA TCCATGTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 307 TACAAATCAT CCATGTATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 308 ACAAATCATC CATGTATTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 309 CAAATCATCC ATGTATTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 310 AAATCATCCA TGTATTGATA 20 20 base pairs nucleic acid single linear cDNA NO NO 311 AATCATCCAT GTATTGATAG 20 20 base pairs nucleic acid single linear cDNA NO NO 312 ATCATCCATG TATTGATAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 313 TCATCCATGT ATTGATAGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 314 CATCCATGTA TTGATAGATA 20 20 base pairs nucleic acid single linear cDNA NO NO 315 ATCCATGTAT TGATAGATAA 20 20 base pairs nucleic acid single linear cDNA NO NO 316 TCCATGTATT GATAGATAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 317 CCATGTATTG ATAGATAACT 20 20 base pairs nucleic acid single linear cDNA NO NO 318 CATGTATTGA TAGATAACTA 20 20 base pairs nucleic acid single linear cDNA NO NO 319 ATGTATTGAT AGATAACTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 320 TGTATTGATA GATAACTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 321 GTATTGATAG ATAACTATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 322 TATTGATAGA TAACTATGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 323 ATTGATAGAT AACTATGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 324 TTGATAGATA ACTATGTCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 325 TGATAGATAA CTATGTCTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 326 GATAGATAAC TATGTCTGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 327 ATAGATAACT ATGTCTGGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 328 TAGATAACTA TGTCTGGATT 20 20 base pairs nucleic acid single linear cDNA NO NO 329 AGATAACTAT GTCTGGATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 330 GATAACTATG TCTGGATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 331 ATAACTATGT CTGGATTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 332 TAACTATGTC TGGATTTTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 333 AACTATGTCT GGATTTTGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 334 ACTATGTCTG GATTTTGTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 335 CTATGTCTGG ATTTTGTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 336 TATGTCTGGA TTTTGTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 337 ATGTCTGGAT TTTGTTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 338 TGTCTGGATT TTGTTTTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 339 GTCTGGATTT TGTTTTTTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 340 TCTGGATTTT GTTTTTTAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 341 CTGGATTTTG TTTTTTAAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 342 TGGATTTTGT TTTTTAAAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 343 GGATTTTGTT TTTTAAAAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 344 GATTTTGTTT TTTAAAAGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 345 ATTTTGTTTT TTAAAAGGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 346 TTTTGTTTTT TAAAAGGCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 347 TTTGTTTTTT AAAAGGCTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 348 TTGTTTTTTA AAAGGCTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 349 TGTTTTTTAA AAGGCTCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 350 GTTTTTTAAA AGGCTCTAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 351 TTTTTTAAAA GGCTCTAAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 352 TTTTTAAAAG GCTCTAAGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 353 TTTTAAAAGG CTCTAAGATT 20 20 base pairs nucleic acid single linear cDNA NO NO 354 TTTAAAAGGC TCTAAGATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 355 TTAAAAGGCT CTAAGATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 356 TAAAAGGCTC TAAGATTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 357 AAAAGGCTCT AAGATTTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 358 AAAGGCTCTA AGATTTTTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 359 AAGGCTCTAA GATTTTTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 360 AGGCTCTAAG ATTTTTGTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 361 GGCTCTAAGA TTTTTGTCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 362 GCTCTAAGAT TTTTGTCATG 20 20 base pairs nucleic acid single linear cDNA NO NO 363 CTCTAAGATT TTTGTCATGC 20 20 base pairs nucleic acid single linear cDNA NO NO 364 TCTAAGATTT TTGTCATGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 365 CTAAGATTTT TGTCATGCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 366 TAAGATTTTT GTCATGCTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 367 AAGATTTTTG TCATGCTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 368 AGATTTTTGT CATGCTACTT 20 20 base pairs nucleic acid single linear cDNA NO NO 369 GATTTTTGTC ATGCTACTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 370 ATTTTTGTCA TGCTACTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 371 TTTTTGTCAT GCTACTTTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 372 TTTTGTCATG CTACTTTGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 373 TTTGTCATGC TACTTTGGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 374 TTGTCATGCT ACTTTGGAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 375 TGTCATGCTA CTTTGGAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 376 GTCATGCTAC TTTGGAATAT 20 20 base pairs nucleic acid single linear cDNA NO NO 377 TCATGCTACT TTGGAATATT 20 20 base pairs nucleic acid single linear cDNA NO NO 378 CATGCTACTT TGGAATATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 379 ATGCTACTTT GGAATATTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 380 TGCTACTTTG GAATATTGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 381 GCTACTTTGG AATATTGCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 382 CTACTTTGGA ATATTGCTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 383 TACTTTGGAA TATTGCTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 384 ACTTTGGAAT ATTGCTGGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 385 CTTTGGAATA TTGCTGGTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 386 TTTGGAATAT TGCTGGTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 387 TTGGAATATT GCTGGTGATC 20 20 base pairs nucleic acid single linear cDNA NO NO 388 TGGAATATTG CTGGTGATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 389 GGAATATTGC TGGTGATCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 390 GAATATTGCT GGTGATCCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 391 AATATTGCTG GTGATCCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 392 ATATTGCTGG TGATCCTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 393 TATTGCTGGT GATCCTTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 394 ATTGCTGGTG ATCCTTTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 395 TTGCTGGTGA TCCTTTCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 396 TGCTGGTGAT CCTTTCCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 397 GCTGGTGATC CTTTCCATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 398 CTGGTGATCC TTTCCATCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 399 TGGTGATCCT TTCCATCCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 400 GGTGATCCTT TCCATCCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 401 GTGATCCTTT CCATCCCTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 402 TGATCCTTTC CATCCCTGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 403 GATCCTTTCC ATCCCTGTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 404 ATCCTTTCCA TCCCTGTGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 405 TCCTTTCCAT CCCTGTGGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 406 CCTTTCCATC CCTGTGGAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 407 CTTTCCATCC CTGTGGAAGC 20 20 base pairs nucleic acid single linear cDNA NO NO 408 TTTCCATCCC TGTGGAAGCA 20 20 base pairs nucleic acid single linear cDNA NO NO 409 TTCCATCCCT GTGGAAGCAC 20 20 base pairs nucleic acid single linear cDNA NO NO 410 TCCATCCCTG TGGAAGCACA 20 20 base pairs nucleic acid single linear cDNA NO NO 411 CCATCCCTGT GGAAGCACAT 20 20 base pairs nucleic acid single linear cDNA NO NO 412 CATCCCTGTG GAAGCACATT 20 20 base pairs nucleic acid single linear cDNA NO NO 413 ATCCCTGTGG AAGCACATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 414 TCCCTGTGGA AGCACATTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 415 CCCTGTGGAA GCACATTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 416 CCTGTGGAAG CACATTGTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 417 CTGTGGAAGC ACATTGTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 418 TGTGGAAGCA CATTGTACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 419 GTGGAAGCAC ATTGTACTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 420 TGGAAGCACA TTGTACTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 421 GGAAGCACAT TGTACTGATA 20 20 base pairs nucleic acid single linear cDNA NO NO 422 GAAGCACATT GTACTGATAT 20 20 base pairs nucleic acid single linear cDNA NO NO 423 AAGCACATTG TACTGATATC 20 20 base pairs nucleic acid single linear cDNA NO NO 424 AGCACATTGT ACTGATATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 425 GCACATTGTA CTGATATCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 426 CACATTGTAC TGATATCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 427 ACATTGTACT GATATCTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 428 CATTGTACTG ATATCTAATC 20 20 base pairs nucleic acid single linear cDNA NO NO 429 ATTGTACTGA TATCTAATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 430 TTGTACTGAT ATCTAATCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 431 TGTACTGATA TCTAATCCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 432 GTACTGATAT CTAATCCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 433 TACTGATATC TAATCCCTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 434 ACTGATATCT AATCCCTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 435 CTGATATCTA ATCCCTGGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 436 TGATATCTAA TCCCTGGTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 437 GATATCTAAT CCCTGGTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 438 ATATCTAATC CCTGGTGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 439 TATCTAATCC CTGGTGTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 440 ATCTAATCCC TGGTGTCTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 441 TCTAATCCCT GGTGTCTCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 442 CTAATCCCTG GTGTCTCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 443 TAATCCCTGG TGTCTCATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 444 AATCCCTGGT GTCTCATTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 445 ATCCCTGGTG TCTCATTGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 446 TCCCTGGTGT CTCATTGTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 447 CCCTGGTGTC TCATTGTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 448 CCTGGTGTCT CATTGTTTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 449 CTGGTGTCTC ATTGTTTATA 20 20 base pairs nucleic acid single linear cDNA NO NO 450 TGGTGTCTCA TTGTTTATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 451 GGTGTCTCAT TGTTTATACT 20 20 base pairs nucleic acid single linear cDNA NO NO 452 GTGTCTCATT GTTTATACTA 20 20 base pairs nucleic acid single linear cDNA NO NO 453 TGTCTCATTG TTTATACTAG 20 20 base pairs nucleic acid single linear cDNA NO NO 454 GTCTCATTGT TTATACTAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 455 TCTCATTGTT TATACTAGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 456 CTCATTGTTT ATACTAGGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 457 TCATTGTTTA TACTAGGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 458 CATTGTTTAT ACTAGGTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 459 ATTGTTTATA CTAGGTATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 460 TTGTTTATAC TAGGTATGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 461 TGTTTATACT AGGTATGGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 462 GTTTATACTA GGTATGGTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 463 TTTATACTAG GTATGGTAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 464 TTATACTAGG TATGGTAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 465 TATACTAGGT ATGGTAAATG 20 20 base pairs nucleic acid single linear cDNA NO NO 466 ATACTAGGTA TGGTAAATGC 20 20 base pairs nucleic acid single linear cDNA NO NO 467 TACTAGGTAT GGTAAATGCA 20 20 base pairs nucleic acid single linear cDNA NO NO 468 ACTAGGTATG GTAAATGCAG 20 20 base pairs nucleic acid single linear cDNA NO NO 469 CTAGGTATGG TAAATGCAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 470 TAGGTATGGT AAATGCAGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 471 AGGTATGGTA AATGCAGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 472 GGTATGGTAA ATGCAGTATA 20 20 base pairs nucleic acid single linear cDNA NO NO 473 GTATGGTAAA TGCAGTATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 474 TATGGTAAAT GCAGTATACT 20 20 base pairs nucleic acid single linear cDNA NO NO 475 ATGGTAAATG CAGTATACTT 20 20 base pairs nucleic acid single linear cDNA NO NO 476 TGGTAAATGC AGTATACTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 477 GGTAAATGCA GTATACTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 478 GTAAATGCAG TATACTTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 479 TAAATGCAGT ATACTTCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 480 AAATGCAGTA TACTTCCTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 481 AATGCAGTAT ACTTCCTGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 482 ATGCAGTATA CTTCCTGAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 483 TGCAGTATAC TTCCTGAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 484 GCAGTATACT TCCTGAAGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 485 CAGTATACTT CCTGAAGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 486 AGTATACTTC CTGAAGTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 487 GTATACTTCC TGAAGTCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 488 TATACTTCCT GAAGTCTTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 489 ATACTTCCTG AAGTCTTCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 490 TACTTCCTGA AGTCTTCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 491 ACTTCCTGAA GTCTTCATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 492 CTTCCTGAAG TCTTCATCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 493 TTCCTGAAGT CTTCATCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 494 TCCTGAAGTC TTCATCTAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 495 CCTGAAGTCT TCATCTAAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 496 CTGAAGTCTT CATCTAAGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 497 TGAAGTCTTC ATCTAAGGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 498 GAAGTCTTCA TCTAAGGGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 499 AAGTCTTCAT CTAAGGGAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 500 AGTCTTCATC TAAGGGAACT 20 20 base pairs nucleic acid single linear cDNA NO NO 501 GTCTTCATCT AAGGGAACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 502 TCTTCATCTA AGGGAACTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 503 CTTCATCTAA GGGAACTGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 504 TTCATCTAAG GGAACTGAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 505 TCATCTAAGG GAACTGAAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 506 CATCTAAGGG AACTGAAAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 507 ATCTAAGGGA ACTGAAAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 508 TCTAAGGGAA CTGAAAAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 509 CTAAGGGAAC TGAAAAATAT 20 20 base pairs nucleic acid single linear cDNA NO NO 510 TAAGGGAACT GAAAAATATG 20 20 base pairs nucleic acid single linear cDNA NO NO 511 AAGGGAACTG AAAAATATGC 20 20 base pairs nucleic acid single linear cDNA NO NO 512 AGGGAACTGA AAAATATGCA 20 20 base pairs nucleic acid single linear cDNA NO NO 513 GGGAACTGAA AAATATGCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 514 GGAACTGAAA AATATGCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 515 GAACTGAAAA ATATGCATCA 20 20 base pairs nucleic acid single linear cDNA NO NO 516 AACTGAAAAA TATGCATCAC 20 20 base pairs nucleic acid single linear cDNA NO NO 517 ACTGAAAAAT ATGCATCACC 20 20 base pairs nucleic acid single linear cDNA NO NO 518 CTGAAAAATA TGCATCACCC 20 20 base pairs nucleic acid single linear cDNA NO NO 519 TGAAAAATAT GCATCACCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 520 GAAAAATATG CATCACCCAC 20 20 base pairs nucleic acid single linear cDNA NO NO 521 AAAAATATGC ATCACCCACA 20 20 base pairs nucleic acid single linear cDNA NO NO 522 AAAATATGCA TCACCCACAT 20 20 base pairs nucleic acid single linear cDNA NO NO 523 AAATATGCAT CACCCACATC 20 20 base pairs nucleic acid single linear cDNA NO NO 524 AATATGCATC ACCCACATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 525 ATATGCATCA CCCACATCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 526 TATGCATCAC CCACATCCAG 20 20 base pairs nucleic acid single linear cDNA NO NO 527 ATGCATCACC CACATCCAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 528 TGCATCACCC ACATCCAGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 529 GCATCACCCA CATCCAGTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 530 CATCACCCAC ATCCAGTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 531 ATCACCCACA TCCAGTACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 532 TCACCCACAT CCAGTACTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 533 CACCCACATC CAGTACTGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 534 ACCCACATCC AGTACTGTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 535 CCCACATCCA GTACTGTTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 536 CCACATCCAG TACTGTTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 537 CACATCCAGT ACTGTTACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 538 ACATCCAGTA CTGTTACTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 539 CATCCAGTAC TGTTACTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 540 ATCCAGTACT GTTACTGATT 20 20 base pairs nucleic acid single linear cDNA NO NO 541 TCCAGTACTG TTACTGATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 542 CCAGTACTGT TACTGATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 543 CAGTACTGTT ACTGATTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 544 AGTACTGTTA CTGATTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 545 GTACTGTTAC TGATTTTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 546 TACTGTTACT GATTTTTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 547 ACTGTTACTG ATTTTTTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 548 CTGTTACTGA TTTTTTCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 549 TGTTACTGAT TTTTTCTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 550 GTTACTGATT TTTTCTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 551 TTACTGATTT TTTCTTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 552 TACTGATTTT TTCTTTTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 553 ACTGATTTTT TCTTTTTTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 554 CTGATTTTTT CTTTTTTAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 555 TGATTTTTTC TTTTTTAACC 20 20 base pairs nucleic acid single linear cDNA NO NO 556 GATTTTTTCT TTTTTAACCC 20 20 base pairs nucleic acid single linear cDNA NO NO 557 ATTTTTTCTT TTTTAACCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 558 TTTTTTCTTT TTTAACCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 559 TTTTTCTTTT TTAACCCTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 560 TTTTCTTTTT TAACCCTGCG 20 20 base pairs nucleic acid single linear cDNA NO NO 561 TTTCTTTTTT AACCCTGCGG 20 20 base pairs nucleic acid single linear cDNA NO NO 562 TTCTTTTTTA ACCCTGCGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 563 TCTTTTTTAA CCCTGCGGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 564 CTTTTTTAAC CCTGCGGGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 565 TTTTTTAACC CTGCGGGATG 20 20 base pairs nucleic acid single linear cDNA NO NO 566 TTTTTAACCC TGCGGGATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 567 TTTTAACCCT GCGGGATGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 568 TTTAACCCTG CGGGATGTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 569 TTAACCCTGC GGGATGTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 570 TAACCCTGCG GGATGTGGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 571 AACCCTGCGG GATGTGGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 572 ACCCTGCGGG ATGTGGTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 573 CCCTGCGGGA TGTGGTATTC 20 20 base pairs nucleic acid single linear cDNA NO NO 574 CCTGCGGGAT GTGGTATTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 575 CTGCGGGATG TGGTATTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 576 TGCGGGATGT GGTATTCCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 577 GCGGGATGTG GTATTCCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 578 CGGGATGTGG TATTCCTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 579 GGGATGTGGT ATTCCTAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 580 GGATGTGGTA TTCCTAATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 581 GATGTGGTAT TCCTAATTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 582 ATGTGGTATT CCTAATTGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 583 TGTGGTATTC CTAATTGAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 584 GTGGTATTCC TAATTGAACT 20 20 base pairs nucleic acid single linear cDNA NO NO 585 TGGTATTCCT AATTGAACTT 20 20 base pairs nucleic acid single linear cDNA NO NO 586 GGTATTCCTA ATTGAACTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 587 GTATTCCTAA TTGAACTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 588 TATTCCTAAT TGAACTTCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 589 ATTCCTAATT GAACTTCCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 590 TTCCTAATTG AACTTCCCAG 20 20 base pairs nucleic acid single linear cDNA NO NO 591 TCCTAATTGA ACTTCCCAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 592 CCTAATTGAA CTTCCCAGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 593 CTAATTGAAC TTCCCAGAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 594 TAATTGAACT TCCCAGAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 595 AATTGAACTT CCCAGAAGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 596 ATTGAACTTC CCAGAAGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 597 TTGAACTTCC CAGAAGTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 598 TGAACTTCCC AGAAGTCTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 599 GAACTTCCCA GAAGTCTTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 600 AACTTCCCAG AAGTCTTGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 601 ACTTCCCAGA AGTCTTGAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 602 CTTCCCAGAA GTCTTGAGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 603 TTCCCAGAAG TCTTGAGTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 604 TCCCAGAAGT CTTGAGTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 605 CCCAGAAGTC TTGAGTTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 606 CCAGAAGTCT TGAGTTCTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 607 CAGAAGTCTT GAGTTCTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 608 AGAAGTCTTG AGTTCTCTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 609 GAAGTCTTGA GTTCTCTTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 610 AAGTCTTGAG TTCTCTTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 611 AGTCTTGAGT TCTCTTATTA 20 20 base pairs nucleic acid single linear cDNA NO NO 612 GTCTTGAGTT CTCTTATTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 613 TCTTGAGTTC TCTTATTAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 614 CTTGAGTTCT CTTATTAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 615 TTGAGTTCTC TTATTAAGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 616 TGAGTTCTCT TATTAAGTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 617 GAGTTCTCTT ATTAAGTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 618 AGTTCTCTTA TTAAGTTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 619 GTTCTCTTAT TAAGTTCTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 620 TTCTCTTATT AAGTTCTCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 621 TCTCTTATTA AGTTCTCTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 622 CTCTTATTAA GTTCTCTGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 623 TCTTATTAAG TTCTCTGAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 624 CTTATTAAGT TCTCTGAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 625 TTATTAAGTT CTCTGAAATC 20 20 base pairs nucleic acid single linear cDNA NO NO 626 TATTAAGTTC TCTGAAATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 627 ATTAAGTTCT CTGAAATCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 628 TTAAGTTCTC TGAAATCTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 629 TAAGTTCTCT GAAATCTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 630 AAGTTCTCTG AAATCTACTA 20 20 base pairs nucleic acid single linear cDNA NO NO 631 AGTTCTCTGA AATCTACTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 632 GTTCTCTGAA ATCTACTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 633 TTCTCTGAAA TCTACTAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 634 TCTCTGAAAT CTACTAATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 635 CTCTGAAATC TACTAATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 636 TCTGAAATCT ACTAATTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 637 CTGAAATCTA CTAATTTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 638 TGAAATCTAC TAATTTTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 639 GAAATCTACT AATTTTCTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 640 AAATCTACTA ATTTTCTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 641 AATCTACTAA TTTTCTCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 642 ATCTACTAAT TTTCTCCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 643 TCTACTAATT TTCTCCATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 644 CTACTAATTT TCTCCATTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 645 TACTAATTTT CTCCATTTAG 20 20 base pairs nucleic acid single linear cDNA NO NO 646 ACTAATTTTC TCCATTTAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 647 CTAATTTTCT CCATTTAGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 648 TAATTTTCTC CATTTAGTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 649 AATTTTCTCC ATTTAGTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 650 ATTTTCTCCA TTTAGTACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 651 TTTTCTCCAT TTAGTACTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 652 TTTCTCCATT TAGTACTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 653 TTCTCCATTT AGTACTGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 654 TCTCCATTTA GTACTGTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 655 CTCCATTTAG TACTGTCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 656 TCCATTTAGT ACTGTCTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 657 CCATTTAGTA CTGTCTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 658 CATTTAGTAC TGTCTTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 659 ATTTAGTACT GTCTTTTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 660 TTTAGTACTG TCTTTTTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 661 TTAGTACTGT CTTTTTTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 662 TAGTACTGTC TTTTTTCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 663 AGTACTGTCT TTTTTCTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 664 GTACTGTCTT TTTTCTTTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 665 TACTGTCTTT TTTCTTTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 666 ACTGTCTTTT TTCTTTATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 667 CTGTCTTTTT TCTTTATGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 668 TGTCTTTTTT CTTTATGGCA 20 20 base pairs nucleic acid single linear cDNA NO NO 669 GTCTTTTTTC TTTATGGCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 670 TCTTTTTTCT TTATGGCAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 671 CTTTTTTCTT TATGGCAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 672 TTTTTTCTTT ATGGCAAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 673 TTTTTCTTTA TGGCAAATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 674 TTTTCTTTAT GGCAAATACT 20 20 base pairs nucleic acid single linear cDNA NO NO 675 TTTCTTTATG GCAAATACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 676 TTCTTTATGG CAAATACTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 677 TCTTTATGGC AAATACTGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 678 CTTTATGGCA AATACTGGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 679 TTTATGGCAA ATACTGGAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 680 TTATGGCAAA TACTGGAGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 681 TATGGCAAAT ACTGGAGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 682 ATGGCAAATA CTGGAGTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 683 TGGCAAATAC TGGAGTATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 684 GGCAAATACT GGAGTATTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 685 GCAAATACTG GAGTATTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 686 CAAATACTGG AGTATTGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 687 AAATACTGGA GTATTGTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 688 AATACTGGAG TATTGTATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 689 ATACTGGAGT ATTGTATGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 690 TACTGGAGTA TTGTATGGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 691 ACTGGAGTAT TGTATGGATT 20 20 base pairs nucleic acid single linear cDNA NO NO 692 CTGGAGTATT GTATGGATTC 20 20 base pairs nucleic acid single linear cDNA NO NO 693 TGGAGTATTG TATGGATTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 694 GGAGTATTGT ATGGATTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 695 GAGTATTGTA TGGATTCTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 696 AGTATTGTAT GGATTCTCAG 20 20 base pairs nucleic acid single linear cDNA NO NO 697 GTATTGTATG GATTCTCAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 698 TATTGTATGG ATTCTCAGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 699 ATTGTATGGA TTCTCAGGCC 20 20 base pairs nucleic acid single linear cDNA NO NO 700 TTGTATGGAT TCTCAGGCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 701 TGTATGGATT CTCAGGCCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 702 GTATGGATTC TCAGGCCCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 703 TATGGATTCT CAGGCCCAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 704 ATGGATTCTC AGGCCCAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 705 TGGATTCTCA GGCCCAATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 706 GGATTCTCAG GCCCAATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 707 GATTCTCAGG CCCAATTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 708 ATTCTCAGGC CCAATTTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 709 TTCTCAGGCC CAATTTTTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 710 TCTCAGGCCC AATTTTTGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 711 CTCAGGCCCA ATTTTTGAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 712 TCAGGCCCAA TTTTTGAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 713 CAGGCCCAAT TTTTGAAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 714 AGGCCCAATT TTTGAAATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 715 GGCCCAATTT TTGAAATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 716 GCCCAATTTT TGAAATTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 717 CCCAATTTTT GAAATTTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 718 CCAATTTTTG AAATTTTCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 719 CAATTTTTGA AATTTTCCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 720 AATTTTTGAA ATTTTCCCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 721 ATTTTTGAAA TTTTCCCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 722 TTTTTGAAAT TTTCCCTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 723 TTTTGAAATT TTCCCTTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 724 TTTGAAATTT TCCCTTCCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 725 TTGAAATTTT CCCTTCCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 726 TGAAATTTTC CCTTCCTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 727 GAAATTTTCC CTTCCTTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 728 AAATTTTCCC TTCCTTTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 729 AATTTTCCCT TCCTTTTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 730 ATTTTCCCTT CCTTTTCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 731 TTTTCCCTTC CTTTTCCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 732 TTTCCCTTCC TTTTCCATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 733 TTCCCTTCCT TTTCCATTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 734 TCCCTTCCTT TTCCATTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 735 CCCTTCCTTT TCCATTTCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 736 CCTTCCTTTT CCATTTCTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 737 CTTCCTTTTC CATTTCTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 738 TTCCTTTTCC ATTTCTGTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 739 TCCTTTTCCA TTTCTGTACA 20 20 base pairs nucleic acid single linear cDNA NO NO 740 CCTTTTCCAT TTCTGTACAA 20 20 base pairs nucleic acid single linear cDNA NO NO 741 CTTTTCCATT TCTGTACAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 742 TTTTCCATTT CTGTACAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 743 TTTCCATTTC TGTACAAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 744 TTCCATTTCT GTACAAATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 745 TCCATTTCTG TACAAATTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 746 CCATTTCTGT ACAAATTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 747 CATTTCTGTA CAAATTTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 748 ATTTCTGTAC AAATTTCTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 749 TTTCTGTACA AATTTCTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 750 TTCTGTACAA ATTTCTACTA 20 20 base pairs nucleic acid single linear cDNA NO NO 751 TCTGTACAAA TTTCTACTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 752 CTGTACAAAT TTCTACTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 753 TGTACAAATT TCTACTAATG 20 20 base pairs nucleic acid single linear cDNA NO NO 754 GTACAAATTT CTACTAATGC 20 20 base pairs nucleic acid single linear cDNA NO NO 755 TACAAATTTC TACTAATGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 756 ACAAATTTCT ACTAATGCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 757 CAAATTTCTA CTAATGCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 758 AAATTTCTAC TAATGCTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 759 AATTTCTACT AATGCTTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 760 ATTTCTACTA ATGCTTTTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 761 TTTCTACTAA TGCTTTTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 762 TTCTACTAAT GCTTTTATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 763 TCTACTAATG CTTTTATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 764 CTACTAATGC TTTTATTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 765 TACTAATGCT TTTATTTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 766 ACTAATGCTT TTATTTTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 767 CTAATGCTTT TATTTTTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 768 TAATGCTTTT ATTTTTTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 769 AATGCTTTTA TTTTTTCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 770 ATGCTTTTAT TTTTTCTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 771 TGCTTTTATT TTTTCTTCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 772 GCTTTTATTT TTTCTTCTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 773 CTTTTATTTT TTCTTCTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 774 TTTTATTTTT TCTTCTGTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 775 TTTATTTTTT CTTCTGTCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 776 TTATTTTTTC TTCTGTCAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 777 TATTTTTTCT TCTGTCAATG 20 20 base pairs nucleic acid single linear cDNA NO NO 778 ATTTTTTCTT CTGTCAATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 779 TTTTTTCTTC TGTCAATGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 780 TTTTTCTTCT GTCAATGGCC 20 20 base pairs nucleic acid single linear cDNA NO NO 781 TTTTCTTCTG TCAATGGCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 782 TTTCTTCTGT CAATGGCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 783 TTCTTCTGTC AATGGCCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 784 TCTTCTGTCA ATGGCCATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 785 CTTCTGTCAA TGGCCATTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 786 TTCTGTCAAT GGCCATTGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 787 TCTGTCAATG GCCATTGTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 788 CTGTCAATGG CCATTGTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 789 TGTCAATGGC CATTGTTTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 790 GTCAATGGCC ATTGTTTAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 791 TCAATGGCCA TTGTTTAACT 20 20 base pairs nucleic acid single linear cDNA NO NO 792 CAATGGCCAT TGTTTAACTT 20 20 base pairs nucleic acid single linear cDNA NO NO 793 AATGGCCATT GTTTAACTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 794 ATGGCCATTG TTTAACTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 795 TGGCCATTGT TTAACTTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 796 GGCCATTGTT TAACTTTTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 797 GCCATTGTTT AACTTTTGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 798 CCATTGTTTA ACTTTTGGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 799 CATTGTTTAA CTTTTGGGCC 20 20 base pairs nucleic acid single linear cDNA NO NO 800 ATTGTTTAAC TTTTGGGCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 801 TTGTTTAACT TTTGGGCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 802 TGTTTAACTT TTGGGCCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 803 GTTTAACTTT TGGGCCATCC 20 20 base pairs nucleic acid single linear cDNA NO NO 804 TTTAACTTTT GGGCCATCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 805 TTAACTTTTG GGCCATCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 806 TAACTTTTGG GCCATCCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 807 AACTTTTGGG CCATCCATTC 20 20 base pairs nucleic acid single linear cDNA NO NO 808 ACTTTTGGGC CATCCATTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 809 CTTTTGGGCC ATCCATTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 810 TTTTGGGCCA TCCATTCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 811 TTTGGGCCAT CCATTCCTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 812 TTGGGCCATC CATTCCTGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 813 TGGGCCATCC ATTCCTGGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 814 GGGCCATCCA TTCCTGGCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 815 GGCCATCCAT TCCTGGCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 816 GCCATCCATT CCTGGCTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 817 CCATCCATTC CTGGCTTTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 818 CATCCATTCC TGGCTTTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 819 ATCCATTCCT GGCTTTAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 820 TCCATTCCTG GCTTTAATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 821 CCATTCCTGG CTTTAATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 822 CATTCCTGGC TTTAATTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 823 ATTCCTGGCT TTAATTTTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 824 TTCCTGGCTT TAATTTTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 825 TCCTGGCTTT AATTTTACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 826 CCTGGCTTTA ATTTTACTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 827 CTGGCTTTAA TTTTACTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 828 TGGCTTTAAT TTTACTGGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 829 GGCTTTAATT TTACTGGTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 830 GCTTTAATTT TACTGGTACA 20 20 base pairs nucleic acid single linear cDNA NO NO 831 CTTTAATTTT ACTGGTACAG 20 20 base pairs nucleic acid single linear cDNA NO NO 832 TTTAATTTTA CTGGTACAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 833 TTAATTTTAC TGGTACAGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 834 TAATTTTACT GGTACAGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 835 AATTTTACTG GTACAGTCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 836 ATTTTACTGG TACAGTCTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 837 TTTTACTGGT ACAGTCTCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 838 TTTACTGGTA CAGTCTCAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 839 TTACTGGTAC AGTCTCAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 840 TACTGGTACA GTCTCAATAG 20 20 base pairs nucleic acid single linear cDNA NO NO 841 ACTGGTACAG TCTCAATAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 842 CTGGTACAGT CTCAATAGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 843 TGGTACAGTC TCAATAGGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 844 GGTACAGTCT CAATAGGGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 845 GTACAGTCTC AATAGGGCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 846 TACAGTCTCA ATAGGGCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 847 ACAGTCTCAA TAGGGCTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 848 CAGTCTCAAT AGGGCTAATG 20 20 base pairs nucleic acid single linear cDNA NO NO 849 AGTCTCAATA GGGCTAATGG 20 20 base pairs nucleic acid single linear cDNA NO NO 850 GTCTCAATAG GGCTAATGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 851 TCTCAATAGG GCTAATGGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 852 CTCAATAGGG CTAATGGGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 853 TCAATAGGGC TAATGGGAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 854 CAATAGGGCT AATGGGAAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 855 AATAGGGCTA ATGGGAAAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 856 ATAGGGCTAA TGGGAAAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 857 TAGGGCTAAT GGGAAAATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 858 AGGGCTAATG GGAAAATTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 859 GGGCTAATGG GAAAATTTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 860 GGCTAATGGG AAAATTTAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 861 GCTAATGGGA AAATTTAAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 862 CTAATGGGAA AATTTAAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 863 TAATGGGAAA ATTTAAAGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 864 AATGGGAAAA TTTAAAGTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 865 ATGGGAAAAT TTAAAGTGCA 20 20 base pairs nucleic acid single linear cDNA NO NO 866 TGGGAAAATT TAAAGTGCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 867 GGGAAAATTT AAAGTGCAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 868 GGAAAATTTA AAGTGCAACC 20 20 base pairs nucleic acid single linear cDNA NO NO 869 GAAAATTTAA AGTGCAACCA 20 20 base pairs nucleic acid single linear cDNA NO NO 870 AAAATTTAAA GTGCAACCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 871 AAATTTAAAG TGCAACCAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 872 AATTTAAAGT GCAACCAATC 20 20 base pairs nucleic acid single linear cDNA NO NO 873 ATTTAAAGTG CAACCAATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 874 TTTAAAGTGC AACCAATCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 875 TTAAAGTGCA ACCAATCTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 876 TAAAGTGCAA CCAATCTGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 877 AAAGTGCAAC CAATCTGAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 878 AAGTGCAACC AATCTGAGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 879 AGTGCAACCA ATCTGAGTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 880 GTGCAACCAA TCTGAGTCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 881 TGCAACCAAT CTGAGTCAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 882 GCAACCAATC TGAGTCAACA 20 20 base pairs nucleic acid single linear cDNA NO NO 883 CAACCAATCT GAGTCAACAG 20 20 base pairs nucleic acid single linear cDNA NO NO 884 AACCAATCTG AGTCAACAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 885 ACCAATCTGA GTCAACAGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 886 CCAATCTGAG TCAACAGATT 20 20 base pairs nucleic acid single linear cDNA NO NO 887 CAATCTGAGT CAACAGATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 888 AATCTGAGTC AACAGATTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 889 ATCTGAGTCA ACAGATTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 890 TCTGAGTCAA CAGATTTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 891 CTGAGTCAAC AGATTTCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 892 TGAGTCAACA GATTTCTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 893 GAGTCAACAG ATTTCTTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 894 AGTCAACAGA TTTCTTCCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 895 GTCAACAGAT TTCTTCCAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 896 TCAACAGATT TCTTCCAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 897 CAACAGATTT CTTCCAATTA 20 20 base pairs nucleic acid single linear cDNA NO NO 898 AACAGATTTC TTCCAATTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 899 ACAGATTTCT TCCAATTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 900 CAGATTTCTT CCAATTATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 901 AGATTTCTTC CAATTATGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 902 GATTTCTTCC AATTATGTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 903 ATTTCTTCCA ATTATGTTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 904 TTTCTTCCAA TTATGTTGAC 20 20 base pairs nucleic acid single linear cDNA NO NO 905 TTCTTCCAAT TATGTTGACA 20 20 base pairs nucleic acid single linear cDNA NO NO 906 TCTTCCAATT ATGTTGACAG 20 20 base pairs nucleic acid single linear cDNA NO NO 907 CTTCCAATTA TGTTGACAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 908 TTCCAATTAT GTTGACAGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 909 TCCAATTATG TTGACAGGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 910 CCAATTATGT TGACAGGTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 911 CAATTATGTT GACAGGTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 912 AATTATGTTG ACAGGTGTAG 20 20 base pairs nucleic acid single linear cDNA NO NO 913 ATTATGTTGA CAGGTGTAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 914 TTATGTTGAC AGGTGTAGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 915 TATGTTGACA GGTGTAGGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 916 ATGTTGACAG GTGTAGGTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 917 TGTTGACAGG TGTAGGTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 918 GTTGACAGGT GTAGGTCCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 919 TTGACAGGTG TAGGTCCTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 920 TGACAGGTGT AGGTCCTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 921 GACAGGTGTA GGTCCTACTA 20 20 base pairs nucleic acid single linear cDNA NO NO 922 ACAGGTGTAG GTCCTACTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 923 CAGGTGTAGG TCCTACTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 924 AGGTGTAGGT CCTACTAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 925 GGTGTAGGTC CTACTAATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 926 GTGTAGGTCC TACTAATACT 20 20 base pairs nucleic acid single linear cDNA NO NO 927 TGTAGGTCCT ACTAATACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 928 GTAGGTCCTA CTAATACTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 929 TAGGTCCTAC TAATACTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 930 AGGTCCTACT AATACTGTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 931 GGTCCTACTA ATACTGTACC 20 20 base pairs nucleic acid single linear cDNA NO NO 932 GTCCTACTAA TACTGTACCT 20 20 base pairs nucleic acid single linear cDNA NO NO 933 TCCTACTAAT ACTGTACCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 934 CCTACTAATA CTGTACCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 935 CTACTAATAC TGTACCTATA 20 20 base pairs nucleic acid single linear cDNA NO NO 936 TACTAATACT GTACCTATAG 20 20 base pairs nucleic acid single linear cDNA NO NO 937 ACTAATACTG TACCTATAGC 20 20 base pairs nucleic acid single linear cDNA NO NO 938 CTAATACTGT ACCTATAGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 939 TAATACTGTA CCTATAGCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 940 AATACTGTAC CTATAGCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 941 ATACTGTACC TATAGCTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 942 TACTGTACCT ATAGCTTTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 943 ACTGTACCTA TAGCTTTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 944 CTGTACCTAT AGCTTTATGT 20 20 base pairs nucleic acid single linear cDNA NO NO 945 TGTACCTATA GCTTTATGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 946 GTACCTATAG CTTTATGTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 947 TACCTATAGC TTTATGTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 948 ACCTATAGCT TTATGTCCAC 20 20 base pairs nucleic acid single linear cDNA NO NO 949 CCTATAGCTT TATGTCCACA 20 20 base pairs nucleic acid single linear cDNA NO NO 950 CTATAGCTTT ATGTCCACAG 20 20 base pairs nucleic acid single linear cDNA NO NO 951 TATAGCTTTA TGTCCACAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 952 ATAGCTTTAT GTCCACAGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 953 TAGCTTTATG TCCACAGATT 20 20 base pairs nucleic acid single linear cDNA NO NO 954 AGCTTTATGT CCACAGATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 955 GCTTTATGTC CACAGATTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 956 CTTTATGTCC ACAGATTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 957 TTTATGTCCA CAGATTTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 958 TTATGTCCAC AGATTTCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 959 TATGTCCACA GATTTCTATG 20 20 base pairs nucleic acid single linear cDNA NO NO 960 ATGTCCACAG ATTTCTATGA 20 20 base pairs nucleic acid single linear cDNA NO NO 961 TGTCCACAGA TTTCTATGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 962 GTCCACAGAT TTCTATGAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 963 TCCACAGATT TCTATGAGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 964 CCACAGATTT CTATGAGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 965 CACAGATTTC TATGAGTATC 20 20 base pairs nucleic acid single linear cDNA NO NO 966 ACAGATTTCT ATGAGTATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 967 CAGATTTCTA TGAGTATCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 968 AGATTTCTAT GAGTATCTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 969 GATTTCTATG AGTATCTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 970 ATTTCTATGA GTATCTGATC 20 20 base pairs nucleic acid single linear cDNA NO NO 971 TTTCTATGAG TATCTGATCA 20 20 base pairs nucleic acid single linear cDNA NO NO 972 TTCTATGAGT ATCTGATCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 973 TCTATGAGTA TCTGATCATA 20 20 base pairs nucleic acid single linear cDNA NO NO 974 CTATGAGTAT CTGATCATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 975 TATGAGTATC TGATCATACT 20 20 base pairs nucleic acid single linear cDNA NO NO 976 ATGAGTATCT GATCATACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 977 TGAGTATCTG ATCATACTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 978 GAGTATCTGA TCATACTGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 979 AGTATCTGAT CATACTGTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 980 GTATCTGATC ATACTGTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 981 TATCTGATCA TACTGTCTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 982 ATCTGATCAT ACTGTCTTAC 20 20 base pairs nucleic acid single linear cDNA NO NO 983 TCTGATCATA CTGTCTTACT 20 20 base pairs nucleic acid single linear cDNA NO NO 984 CTGATCATAC TGTCTTACTT 20 20 base pairs nucleic acid single linear cDNA NO NO 985 TGATCATACT GTCTTACTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 986 GATCATACTG TCTTACTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 987 ATCATACTGT CTTACTTTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 988 TCATACTGTC TTACTTTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 989 CATACTGTCT TACTTTGATA 20 20 base pairs nucleic acid single linear cDNA NO NO 990 ATACTGTCTT ACTTTGATAA 20 20 base pairs nucleic acid single linear cDNA NO NO 991 TACTGTCTTA CTTTGATAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 992 ACTGTCTTAC TTTGATAAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 993 CTGTCTTACT TTGATAAAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 994 TGTCTTACTT TGATAAAACC 20 20 base pairs nucleic acid single linear cDNA NO NO 995 GTCTTACTTT GATAAAACCT 20 20 base pairs nucleic acid single linear cDNA NO NO 996 TCTTACTTTG ATAAAACCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 997 CTTACTTTGA TAAAACCTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 998 TTACTTTGAT AAAACCTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 999 TACTTTGATA AAACCTCCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1000 ACTTTGATAA AACCTCCAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1001 CTTTGATAAA ACCTCCAATT 20 20 base pairs nucleic acid single linear cDNA NO NO 1002 TTTGATAAAA CCTCCAATTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1003 TTGATAAAAC CTCCAATTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1004 TGATAAAACC TCCAATTCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1005 GATAAAACCT CCAATTCCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1006 ATAAAACCTC CAATTCCCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1007 TAAAACCTCC AATTCCCCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1008 AAAACCTCCA ATTCCCCCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1009 AAACCTCCAA TTCCCCCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1010 AACCTCCAAT TCCCCCTATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1011 ACCTCCAATT CCCCCTATCA 20 20 base pairs nucleic acid single linear cDNA NO NO 1012 CCTCCAATTC CCCCTATCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1013 CTCCAATTCC CCCTATCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 1014 TCCAATTCCC CCTATCATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1015 CCAATTCCCC CTATCATTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1016 CAATTCCCCC TATCATTTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1017 AATTCCCCCT ATCATTTTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1018 ATTCCCCCTA TCATTTTTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1019 TTCCCCCTAT CATTTTTGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1020 TCCCCCTATC ATTTTTGGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1021 CCCCCTATCA TTTTTGGTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1022 CCCCTATCAT TTTTGGTTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1023 CCCTATCATT TTTGGTTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1024 CCTATCATTT TTGGTTTCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 1025 CTATCATTTT TGGTTTCCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1026 TATCATTTTT GGTTTCCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1027 ATCATTTTTG GTTTCCATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1028 TCATTTTTGG TTTCCATCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1029 CATTTTTGGT TTCCATCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1030 ATTTTTGGTT TCCATCTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1031 TTTTTGGTTT CCATCTTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1032 TTTTGGTTTC CATCTTCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1033 TTTGGTTTCC ATCTTCCTGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1034 TTGGTTTCCA TCTTCCTGGC 20 20 base pairs nucleic acid single linear cDNA NO NO 1035 TGGTTTCCAT CTTCCTGGCA 20 20 base pairs nucleic acid single linear cDNA NO NO 1036 GGTTTCCATC TTCCTGGCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1037 GTTTCCATCT TCCTGGCAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1038 TTTCCATCTT CCTGGCAAAC 20 20 base pairs nucleic acid single linear cDNA NO NO 1039 TTCCATCTTC CTGGCAAACT 20 20 base pairs nucleic acid single linear cDNA NO NO 1040 TCCATCTTCC TGGCAAACTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1041 CCATCTTCCT GGCAAACTCA 20 20 base pairs nucleic acid single linear cDNA NO NO 1042 CATCTTCCTG GCAAACTCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1043 ATCTTCCTGG CAAACTCATT 20 20 base pairs nucleic acid single linear cDNA NO NO 1044 TCTTCCTGGC AAACTCATTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1045 CTTCCTGGCA AACTCATTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1046 TTCCTGGCAA ACTCATTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1047 TCCTGGCAAA CTCATTTCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1048 CCTGGCAAAC TCATTTCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1049 CTGGCAAACT CATTTCTTCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1050 TGGCAAACTC ATTTCTTCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1051 GGCAAACTCA TTTCTTCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1052 GCAAACTCAT TTCTTCTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1053 CAAACTCATT TCTTCTAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 1054 AAACTCATTT CTTCTAATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 1055 AACTCATTTC TTCTAATACT 20 20 base pairs nucleic acid single linear cDNA NO NO 1056 ACTCATTTCT TCTAATACTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1057 CTCATTTCTT CTAATACTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1058 TCATTTCTTC TAATACTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1059 CATTTCTTCT AATACTGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1060 ATTTCTTCTA ATACTGTATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1061 TTTCTTCTAA TACTGTATCA 20 20 base pairs nucleic acid single linear cDNA NO NO 1062 TTCTTCTAAT ACTGTATCAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1063 TCTTCTAATA CTGTATCATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1064 CTTCTAATAC TGTATCATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1065 TTCTAATACT GTATCATCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1066 TCTAATACTG TATCATCTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 1067 CTAATACTGT ATCATCTGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1068 TAATACTGTA TCATCTGCTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1069 AATACTGTAT CATCTGCTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1070 ATACTGTATC ATCTGCTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1071 TACTGTATCA TCTGCTCCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1072 ACTGTATCAT CTGCTCCTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1073 CTGTATCATC TGCTCCTGTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1074 TGTATCATCT GCTCCTGTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1075 GTATCATCTG CTCCTGTATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1076 TATCATCTGC TCCTGTATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1077 ATCATCTGCT CCTGTATCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1078 TCATCTGCTC CTGTATCTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1079 CATCTGCTCC TGTATCTAAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1080 ATCTGCTCCT GTATCTAATA 20 20 base pairs nucleic acid single linear cDNA NO NO 1081 TCTGCTCCTG TATCTAATAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1082 CTGCTCCTGT ATCTAATAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1083 TGCTCCTGTA TCTAATAGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1084 GCTCCTGTAT CTAATAGAGC 20 20 base pairs nucleic acid single linear cDNA NO NO 1085 CTCCTGTATC TAATAGAGCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1086 TCCTGTATCT AATAGAGCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1087 CCTGTATCTA ATAGAGCTTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1088 CTGTATCTAA TAGAGCTTCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1089 TGTATCTAAT AGAGCTTCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1090 GTATCTAATA GAGCTTCCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1091 TATCTAATAG AGCTTCCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1092 ATCTAATAGA GCTTCCTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1093 TCTAATAGAG CTTCCTTTAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1094 CTAATAGAGC TTCCTTTAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1095 TAATAGAGCT TCCTTTAGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1096 AATAGAGCTT CCTTTAGTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1097 ATAGAGCTTC CTTTAGTTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 1098 TAGAGCTTCC TTTAGTTGCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1099 AGAGCTTCCT TTAGTTGCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1100 GAGCTTCCTT TAGTTGCCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1101 AGCTTCCTTT AGTTGCCCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1102 GCTTCCTTTA GTTGCCCCCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1103 CTTCCTTTAG TTGCCCCCCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1104 TTCCTTTAGT TGCCCCCCTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1105 TCCTTTAGTT GCCCCCCTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1106 CCTTTAGTTG CCCCCCTATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1107 CTTTAGTTGC CCCCCTATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1108 TTTAGTTGCC CCCCTATCTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1109 TTAGTTGCCC CCCTATCTTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1110 TAGTTGCCCC CCTATCTTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1111 AGTTGCCCCC CTATCTTTAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1112 GTTGCCCCCC TATCTTTATT 20 20 base pairs nucleic acid single linear cDNA NO NO 1113 TTGCCCCCCT ATCTTTATTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1114 TGCCCCCCTA TCTTTATTGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1115 GCCCCCCTAT CTTTATTGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1116 CCCCCCTATC TTTATTGTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1117 CCCCCTATCT TTATTGTGAC 20 20 base pairs nucleic acid single linear cDNA NO NO 1118 CCCCTATCTT TATTGTGACG 20 20 base pairs nucleic acid single linear cDNA NO NO 1119 CCCTATCTTT ATTGTGACGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1120 CCTATCTTTA TTGTGACGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1121 CTATCTTTAT TGTGACGAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1122 TATCTTTATT GTGACGAGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1123 ATCTTTATTG TGACGAGGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1124 TCTTTATTGT GACGAGGGGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1125 CTTTATTGTG ACGAGGGGTC 20 20 base pairs nucleic acid single linear cDNA NO NO 1126 TTTATTGTGA CGAGGGGTCG 20 20 base pairs nucleic acid single linear cDNA NO NO 1127 TTATTGTGAC GAGGGGTCGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1128 TATTGTGACG AGGGGTCGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1129 ATTGTGACGA GGGGTCGTTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1130 TTGTGACGAG GGGTCGTTGC 20 20 base pairs nucleic acid single linear cDNA NO NO 1131 TGTGACGAGG GGTCGTTGCC 20 20 base pairs nucleic acid single linear cDNA NO NO 1132 GTGACGAGGG GTCGTTGCCA 20 20 base pairs nucleic acid single linear cDNA NO NO 1133 TGACGAGGGG TCGTTGCCAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1134 GACGAGGGGT CGTTGCCAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1135 ACGAGGGGTC GTTGCCAAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1136 CGAGGGGTCG TTGCCAAAGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1137 GAGGGGTCGT TGCCAAAGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1138 AGGGGTCGTT GCCAAAGAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1139 GGGGTCGTTG CCAAAGAGTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1140 GGGTCGTTGC CAAAGAGTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1141 GGTCGTTGCC AAAGAGTGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1142 GTCGTTGCCA AAGAGTGATC 20 20 base pairs nucleic acid single linear cDNA NO NO 1143 TCGTTGCCAA AGAGTGATCT 20 20 base pairs nucleic acid single linear cDNA NO NO 1144 CGTTGCCAAA GAGTGATCTG 20 20 base pairs nucleic acid single linear cDNA NO NO 1145 GTTGCCAAAG AGTGATCTGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1146 TTGCCAAAGA GTGATCTGAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1147 TGCCAAAGAG TGATCTGAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1148 GCCAAAGAGT GATCTGAGGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1149 CCAAAGAGTG ATCTGAGGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1150 CAAAGAGTGA TCTGAGGGAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1151 AAAGAGTGAT CTGAGGGAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1152 AAGAGTGATC TGAGGGAAGT 20 20 base pairs nucleic acid single linear cDNA NO NO 1153 AGAGTGATCT GAGGGAAGTT 20 20 base pairs nucleic acid single linear cDNA NO NO 1154 GAGTGATCTG AGGGAAGTTA 20 20 base pairs nucleic acid single linear cDNA NO NO 1155 AGTGATCTGA GGGAAGTTAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1156 GTGATCTGAG GGAAGTTAAA 20 20 base pairs nucleic acid single linear cDNA NO NO 1157 TGATCTGAGG GAAGTTAAAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1158 GATCTGAGGG AAGTTAAAGG 20 20 base pairs nucleic acid single linear cDNA NO NO 1159 ATCTGAGGGA AGTTAAAGGA 20 20 base pairs nucleic acid single linear cDNA NO NO 1160 TCTGAGGGAA GTTAAAGGAT 20 20 base pairs nucleic acid single linear cDNA NO NO 1161 CTGAGGGAAG TTAAAGGATA 20 20 base pairs nucleic acid single linear cDNA NO NO 1162 TGAGGGAAGT TAAAGGATAC 20 20 base pairs nucleic acid single linear cDNA NO NO 1163 GAGGGAAGTT AAAGGATACA 20 20 base pairs nucleic acid single linear cDNA NO NO 1164 AGGGAAGTTA AAGGATACAG 20 20 base pairs nucleic acid single linear cDNA NO NO 1165 GGGAAGTTAA AGGATACAGT 20

Claims (101)

What is claimed is:
1. A method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence, said method comprising:
(a) identifying a predetermined number of unique oligonucleotides within a nucleotide sequence that is hybridizable with said target nucleotide sequence, said oligonucleotides being chosen to sample the entire length of said nucleotide sequence,
(b) determining and evaluating for each of said oligonucleotides at least one parameter that is independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence,
(c) identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides based on an examination of said parameter, and
(d) identifying oligonucleotides in said subset that are clustered along a region of said nucleotide sequence that is hybridizable to said target nucleotide sequence.
2. A method according to claim 1 which comprises ranking said oligonucleotides of step (d) based on the size of said clusters of oligonucleotides.
3. A method according to claim 1 wherein said unique oligonucleotides are of identical length N.
4. A method according to claim 3 wherein said unique oligonucleotides are spaced one nucleotide apart, said predetermined number comprising L−N+1 oligonucleotides, where L is the length of the hybridizable sequence.
5. A method according to claim 1 wherein said parameter is selected from the group consisting of composition factors, thermodynamic factors, chemosynthetic efficiencies and kinetic factors.
6. A method according to claim 1 wherein said parameter is a composition factor selected from the group consisting of mole fraction (G+C), percent (G+C), sequence complexity, and sequence information content.
7. A method according to claim 1 wherein said parameter is a thermodynamic factor selected from the group consisting of predicted duplex melting temperature, predicted enthalpy of duplex formation, predicted entropy of duplex formation, predicted free energy of duplex formation, predicted melting temperature of the most stable intramolecular structure of the oligonucleotide or its complement, predicted enthalpy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted entropy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted free energy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted melting temperature of the most stable hairpin structure of the oligonucleotide or its complement, predicted enthalpy of the most stable hairpin structure of the oligonucleotide or its complement, predicted entropy of the most stable hairpin structure of the oligonucleotide or its complement, predicted free energy of the most stable hairpin structure of the oligonucleotide or its complement, thermodynamic partition function for intramolecular structure of the oligonucleotide or its complement.
8. A method according to claim 1 wherein said parameter is a chemosynthetic efficiency selected from the group consisting of coupling efficiencies and overall efficiency of the synthesis of a target nucleotide sequence or an oligonucleotide probe.
9. A method according to claim 1 wherein said parameter is a kinetic factor selected from the group consisting of steric factors calculated via molecular modeling, rate constants calculated via molecular dynamics simulations, rate constants calculated via semi-empirical kinetic modeling, associative rate constants, dissociative rate constants, enthalpies of activation, entropies of activation, and free energies of activation.
10. A method according to claim 1 wherein said parameter is derived from a factor by mathematical transformation of said factor.
11. A method according to claim 1 which comprises ranking said clustered oligonucleotides of step (d) based on the size of said clusters of oligonucleotides and selecting a subset of said clustered oligonucleotides.
12. A method according to claim 11 wherein said subset consists of any number of oligonucleotides within said cluster of oligonucleotides.
13. A method according to claim 11 wherein the subset of said clustered oligonucleotides are selected to statistically sample the cluster.
14. A method according to claim 13 wherein said statistical sample consists of oligonucleotides spaced at the first quartile, median and third quartile of the cluster of oligonucleotides.
15. A method according to claim 1 wherein said parameters are determined for said oligonucleotides by means of a computer program.
16. A method according to claim 1 wherein said oligonucleotides are attached to a surface.
17. A method according to claim 1 wherein said oligonucleotides are DNA.
18. A method according to claim 1 wherein said oligonucleotides are RNA.
19. A method according to claim 1 wherein said oligonucleotides contain chemically modified nucleotides.
20. A method according to claim 1 wherein said target nucleotide sequence is RNA.
21. A method according to claim 1 wherein said target nucleotide sequence is DNA.
22. A method according to claim 1 wherein said target nucleotide sequence contains chemically modified nucleotides.
23. A method according to claim 1 wherein said parameter is, for each oligonucleotide/target nucleotide sequence duplex, the difference between the predicted duplex melting temperature corrected for salt concentration and the temperature of hybridization of each of said oligonucleotides with said target nucleotide sequence.
24. A method according to claim 1 wherein step (c) comprises identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides by establishing cut-off values for said parameter.
25. A method according to claim 1 wherein said step (c) comprises identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides by converting the values of said parameter into a dimensionless number.
26. A method according to claim 25 wherein said value is converted into a dimensionless number by determining a dimensionless score for each parameter resulting in a distribution of scores having a mean value of zero and a standard deviation of one.
27. A method according to claim 26 which comprises optimizing a method according to calculation for said parameter based on said individual scores.
28. A method according to claim 1 wherein step (b) comprises determining at least two parameters wherein said parameters are poorly correlated with respect to one another.
29. A method according to claim 28 wherein said parameters are derived from a combination of factors by mathematical transformation of those factors.
30. A method according to claim 1 wherein step (b) comprises determining two parameters at least one of said parameters being the association free energy between a subsequence within each of said oligonucleotides and its complementary sequence on said target nucleotide sequence.
31. A method according to claim 30 wherein said subsequence is 3 to 9 nucleotides in length.
32. A method according to claim 30 wherein said subsequence is 5 to 7 nucleotides in length.
33. A method according to claim 30 wherein said subsequence is at least three nucleotides from the terminus of said oligonucleotides.
34. A method according to claim 30 wherein said subsequence is at least three nucleotides from a surface to which said oligonucleotides are attached.
35. A method according to claim 30 wherein said oligonucleotides are attached to a surface and said subsequence is at least five nucleotides from the terminus of said oligonucleotides that is attached to said surface and at least three nucleotides from the free end of said oligonucleotides.
36. A method according to claim 30 wherein th e association free energy of the members of a set of subsequences within each of said oligonucleotides is determined and said subsequence having the minimum valu e is identified.
37. A method according to claim 1 which comprises including oligonucleotides that are adjacent to said oligonucleotides in said subset that are clustered along a region of said target nucleotide sequence.
38. A method according to claim 1 which comprises (i) identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides by establishing cut-off values for each of said parameters.
39. A method according to claim 1 which comprises determining the sizes of said clusters of step (d) by counting the number of contiguous oligonucleotides in said region of said hybridizable sequence.
40. A method according to claim 1 which comprises determining the sizes of said clusters of step (d) by counting the number of oligonucleotides in said subset that begin in a region of predetermined length in said hybridizable sequence.
41. A method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence, said method comprising:
(a) identifying a set of overlapping oligonucleotides from a nucleotide sequence that is complementary to said target nucleotide sequence,
(b) determining and evaluating for each of said oligonucleotides at least two parameters that are independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence wherein said parameters are poorly correlated with respect to one another,
(c) identifying a subset of oligonucleotides within said set of oligonucleotides based on an examination of said parameters, and
(d) identifying oligonucleotides in said subset that are clustered along a region of said complementary nucleotide sequence.
42. A method according to claim 41 which comprises ranking said oligonucleotides of step (d) based on the size of said clusters of oligonucleotides.
43. A method according to claim 41 which comprises determining the sizes of said clusters of step (d) by counting the number of contiguous oligonucleotides in said region of said complementary sequence.
44. A method according to claim 41 which comprises determining the sizes of said clusters of step (d) by counting the number of oligonucleotides in said subset that begin in a region of set length in said complementary sequence.
45. A method according to claim 41 wherein said overlapping oligonucleotides are of identical length N.
46. A method according to claim 45 wherein said overlapping oligonucleotides are spaced one nucleotide apart, said set comprising L−N+1 oligonucleotides, where L is the length of the complementary sequence.
47. A method according to claim 41 wherein said parameters are each independently selected from the group consisting of composition factors, thermodynamic factors, chemosynthetic efficiencies and kinetic factors.
48. A method according to claim 41 wherein said parameters are composition factors selected from the group consisting of mole fraction (G+C), percent (G+C), sequence complexity, and sequence information content.
49. A method according to claim 41 wherein said parameters are thermodynamic factors selected from the group consisting of predicted duplex melting temperature, predicted enthalpy of duplex formation, predicted entropy of duplex formation, predicted free energy of duplex formation, predicted melting temperature of the most stable intramolecular structure of the oligonucleotide or its complement, predicted enthalpy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted entropy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted free energy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted melting temperature of the most stable hairpin structure of the oligonucleotide or its complement, predicted enthalpy of the most stable hairpin structure of the oligonucleotide or its complement, predicted entropy of the most stable hairpin structure of the oligonucleotide or its complement, predicted free energy of the most stable hairpin structure of the oligonucleotide or its complement, thermodynamic partition function for intramolecular structure of the oligonucleotide or its complement.
50. A method according to claim 41 wherein any of said parameters is derived from a factor by mathematical transformation of said factor.
51. A method according to claim 49 wherein any of said parameters is derived from a combination of factors by mathematical transformation of those factors.
52. A method according to claim 41 wherein said parameters are chemosynthetic efficiencies selected from the group consisting of coupling efficiencies and overall efficiencies of the syntheses of a target nucleotide sequence or an oligonucleotide probe.
53. A method according to claim 41 wherein said parameters are kinetic factors selected from the group consisting of steric factors calculated via molecular modeling, rate constants calculated via molecular dynamics simulations, rate constants calculated via semi-empirical kinetic modeling, associative rate constants, dissociative rate constants, enthalpies of activation, entropies of activation, and free energies of activation.
54. A method according to claim 41 which comprises ranking said clustered oligonucleotides of step (d) based on the size of said clusters of oligonucleotides and selecting a subset of said clustered oligonucleotides.
55. A method according to claim 54 wherein said subset consists of any number of oligonucleotides within said cluster of oligonucleotides.
56. A method according to claim 54 wherein the subset of said clustered oligonucleotides are selected to statistically sample the cluster.
57. A method according to claim 54 wherein said statistical sample consists of oligonucleotides spaced at the first quartile, median and third quartile of the cluster of oligonucleotides.
58. A method according to claim 41 wherein said parameters are determined for said oligonucleotides by means of a computer program.
59. A method according to claim 41 wherein said oligonucleotides are attached to a surface.
60. A method according to claim 41 wherein said oligonucleotides are DNA.
61. A method according to claim 41 wherein said oligonucleotides are RNA.
62. A method according to claim 41 wherein said oligonucleotides contain chemically modified nucleotides.
63. A method according to claim 41 wherein said target nucleotide sequence is RNA.
64. A method according to claim 41 wherein said target nucleotide sequence is DNA.
65. A method according to claim 41 wherein said target nucleotide sequence contains chemically modified nucleotides.
66. A method according to claim 41 wherein said parameter is, for each oligonucleotide/target nucleotide sequence duplex, the difference between the predicted duplex melting temperature corrected for salt concentration and the temperature of hybridization of each of said oligonucleotides with said target nucleotide sequence.
67. A method according to claim 41 wherein step (c) comprises identifying a subset of oligonucleotides within said set of oligonucleotides by establishing cut-off values for each set of parameters.
68. A method according to claim 41 wherein said step (c) comprises identifying a subset of oligonucleotides within said set of oligonucleotides by converting the values of said parameters into a dimensionless number.
69. A method according to claim 66 wherein said values are converted into dimensionless numbers by (a) determining a dimensionless score for each parameter resulting in a distribution of scores having a mean value of zero and a standard deviation of one and (b) calculating a combination score by evaluating a weighted average of the individual scores.
70. A method according to claim 69 wherein step (b) comprises optimizing the weighting factors based on comparison of said individual scores to a calibration data set.
71. A method according to claim 41 wherein step (b) comprises determining two parameters at least one of said parameters being the association free energy between a subsequence within each of said oligonucleotides and its complementary sequence on said target nucleotide sequence.
72. A method according to claim 71 wherein said subsequence is 3 to 9 nucleotides in length.
73. A method according to claim 71 wherein said subsequence is 5 to 7 nucleotides in length.
74. A method according to claim 71 wherein said subsequence is at least three nucleotides from the terminus of said oligonucleotides.
75. A method according to claim 71 wherein said oligonucleotides are attached to a surface and said subsequence is at least five nucleotides from the terminus of said oligonucleotides that is attached to said surface and at least three nucleotides from the free end of said oligonucleotides.
76. A method according to claim 71 wherein the association free energy of the members of a set of subsequences within each of said oligonucleotides is determined and said subsequence having the minimum value is identified.
77. A method according to claim 41 which comprises including in said evaluation oligonucleotides that are adjacent to said oligonucleotides in said subset that are clustered along a region of said target nucleotide sequence.
78. A method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence, said method comprising:
(a) obtaining, from a nucleotide sequence complementary to said target nucleotide sequence, a set of overlapping oligonucleotides of identical length N and spaced one nucleotide apart, said set comprising L−N+1 oligonucleotides,
(b) determining and evaluating for each of said oligonucleotides the parameters: (i) the predicted melt temperature of the duplex of said oligonucleotide and said target nucleotide sequence corrected for salt concentration and (ii) predicted free energy of the most stable intramolecular structure of the oligonucleotide at the temperature of hybridization of each of said oligonucleotides with said target nucleotide sequence,
(c) identifying a subset of oligonucleotides within said set of oligonucleotides based on an examination of said parameters by establishing cut-off values for each of said parameters,
(d) ranking oligonucleotides in said subset that are clustered along a region of said complementary nucleotide sequence based on the size of said clusters of oligonucleotides, and
(e) selecting a subset of said clustered oligonucleotides.
79. A method according to claim 78 wherein said subset consists of any number of oligonucleotides within said cluster of oligonucleotides.
80. A method according to claim 78 wherein the subset of said clustered oligonucleotides are selected to statistically sample the cluster.
81. A method according to claim 78 wherein said parameters are derived by mathematical transformation of the factors named in claim 76(b).
82. A method according to claim 78 wherein the melting temperature of step (b) is transformed by subtracting the temperature of hybridization.
83. A method according to claim 78 which comprises determining the sizes of said clusters of step (d) by counting the number of contiguous oligonucleotides in said region of said complementary sequence.
84. A method according to claim 78 wherein said statistical sample consists of oligonucleotides spaced at the first quartile, median and third quartile of the cluster of oligonucleotides.
85. A method according to claim 78 wherein said parameters are determined for said oligonucleotides by means of a computer program.
86. A method according to claim 78 wherein said oligonucleotides are attached to a surface.
87. A method according to claim 78 wherein said oligonucleotides are DNA.
88. A method according to claim 78 wherein said oligonucleotides are RNA.
89. A method according to claim 78 wherein said oligonucleotides contain chemically modified nucleotides.
90. A method according to claim 78 wherein said target nucleotide sequence is RNA.
91. A method according to claim 78 wherein said target nucleotide sequence is DNA.
92. A method according to claim 78 wherein said target nucleotide sequence contains chemically modified nucleotides.
93. A method according to claim 68 wherein the following equations are used for converting the values of said parameters into a dimensionless number:
s i , x = x i - x σ { x } ,
Figure US20030054346A1-20030320-M00014
where si,x is the dimensionless score derived from parameter x calculated for oligonucleotide i, xi is the value of parameter x calculated for oligonucleotide i, <x> is the average of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and σ{x} is the standard deviation of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and is given by the equation
σ { x } = j = 1 L - N + 1 ( x j - x ) 2 L - N . ,
Figure US20030054346A1-20030320-M00015
where the target sequence is of length L and the oligonucleotides are of length N.
94. A method according to claim 68 wherein a combination score Si is calculated by evaluating a weighted average of the individual values of the dimensionless scores si,x by the equation:
S i = { x } q x s i , x ,
Figure US20030054346A1-20030320-M00016
where qx is the weight assigned to the score derived from parameter x, the individual values of qx are always greater than zero, and the sum of the weights qx is unity.
95. A method according to claim 78 where clustering is determined by calculating a moving window-averaged combination score <Si> for the ith probe by the equation:
S i = 1 w j = i - w - 1 2 i + w - 1 2 S j , w = an odd integer . ,
Figure US20030054346A1-20030320-M00017
where w is the length of the window for averaging, and then applying a cutoff filter to the value of <Si>.
96. A method according to claim 94 wherein optimization of the weights qx is performed by varying the values of the weights so that the correlation coefficient ρ{<Si>},{Vi} between the set of window-averaged combination scores {<Si>} and a set of calibration experimental measurements {Vi} is maximized. The correlation coefficient ρ{<Si>},{Vi} is calculated from the equation
ρ x , y = Covariance ( x , y ) Variance ( x ) Variance ( y ) ,
Figure US20030054346A1-20030320-M00018
where x=<Si>, y=Vi and the Covariance (x,y) is defined by
Covariance ( x , y ) = 1 N i = 1 N ( x i - μ x ) ( y i - μ y ) .
Figure US20030054346A1-20030320-M00019
The quantities μx and μy are the averages of the quantities x and y, while the variances are the squares of the standard deviations.
97. A method according to claim 95 wherein the cutoff filter selects the lowest values of the window-averaged combination score <Si> and the clustered probes so identified are predicted to exhibit low hybridization efficiency.
98. A computer based method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence, said method comprising:
(a) identifying under computer control a predetermined number of unique oligonucleotides within a nucleotide sequence that is hybridizable with said target nucleotide sequence, said oligonucleotides being chosen to sample the entire length of said nucleotide sequence,
(b) under computer control, determining and evaluating for each of said oligonucleotides a value for at least one parameter that is independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence and storing said parameter values,
(c) identifying under computer control, from said stored parameter values, a subset of oligonucleotides within said predetermined number of unique oligonucleotides based on an examination of said parameter, and
(d) identifying under computer control oligonucleotides in said subset that are clustered along a region of said nucleotide sequence that is hybridizable to said target nucleotide sequence.
99. A method according to claim 98 wherein the identified subset of oligonucleotide sequences is electronically transferred to an oligonucleotide array manufacturing system.
100. A computer system for conducting a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence, said system comprising:
(a) input means for introducing a target nucleotide sequence into said computer system,
(b) means for determining a number of unique oligonucleotide sequences that are within a nucleotide sequence that is hybridizable with said target nucleotide sequence, said oligonucleotide sequences being chosen to sample the entire length of said nucleotide sequence,
(c) memory means for storing said oligonucleotide sequences,
(d) means for controlling said computer system to carry out a determination and evaluation for each of said oligonucleotide sequences a value for at least one parameter that is independently predictive of the ability of each of said oligonucleotide sequences to hybridize to said target nucleotide sequence,
(e) means for storing said parameter values,
(f) means for controlling said computer to carry out an identification from said stored parameter values a subset of oligonucleotide sequences within said number of unique oligonucleotide sequences based on an examination of said parameter,
(g) means for storing said subset of oligonucleotides,
(h) means for controlling said computer to carry out an identification of oligonucleotide sequences in said subset that are clustered along a region of said nucleotide sequence that is hybridizable to said target nucleotide sequence.
(i) means for storing said oligonucleotide sequences in said subset, and
(j) means for outputting data relating to said oligonucleotide sequences in said subset.
101. A computer system according to claim 100 wherein the identified subset of oligonucleotide sequences is electronically transferred to an oligonucleotide array manufacturing system.
US09/784,674 1998-02-10 2001-02-15 Methods for evaluating oligonucleotide probe sequences Abandoned US20030054346A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/784,674 US20030054346A1 (en) 1998-02-10 2001-02-15 Methods for evaluating oligonucleotide probe sequences
US10/877,231 US20050027461A1 (en) 1998-02-10 2004-06-24 Methods for evaluating oligonucleotide probe sequences

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/021,701 US6251588B1 (en) 1998-02-10 1998-02-10 Method for evaluating oligonucleotide probe sequences
US09/784,674 US20030054346A1 (en) 1998-02-10 2001-02-15 Methods for evaluating oligonucleotide probe sequences

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/021,701 Continuation US6251588B1 (en) 1998-02-10 1998-02-10 Method for evaluating oligonucleotide probe sequences

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/877,231 Continuation US20050027461A1 (en) 1998-02-10 2004-06-24 Methods for evaluating oligonucleotide probe sequences

Publications (1)

Publication Number Publication Date
US20030054346A1 true US20030054346A1 (en) 2003-03-20

Family

ID=21805664

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/021,701 Expired - Lifetime US6251588B1 (en) 1998-02-10 1998-02-10 Method for evaluating oligonucleotide probe sequences
US09/784,674 Abandoned US20030054346A1 (en) 1998-02-10 2001-02-15 Methods for evaluating oligonucleotide probe sequences
US10/877,231 Abandoned US20050027461A1 (en) 1998-02-10 2004-06-24 Methods for evaluating oligonucleotide probe sequences

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/021,701 Expired - Lifetime US6251588B1 (en) 1998-02-10 1998-02-10 Method for evaluating oligonucleotide probe sequences

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/877,231 Abandoned US20050027461A1 (en) 1998-02-10 2004-06-24 Methods for evaluating oligonucleotide probe sequences

Country Status (1)

Country Link
US (3) US6251588B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653385A2 (en) * 2004-10-26 2006-05-03 Samsung Electronics Co., Ltd. Method of designing probe from polynucleotide group comprising plurality of polynucleotides
US20060204995A1 (en) * 2005-03-08 2006-09-14 Oh Ji-Young Method of designing probe set, probe set designed by the method, microarray comprising the probe set, computer readable medium recorded thereon program to execute the method, and method of identifying target sequence using the probe set
US20070059693A1 (en) * 2003-01-02 2007-03-15 University Of Rochester Hybridization-based biosensor containing hairpin probes and use thereof
US20070166731A1 (en) * 2004-01-02 2007-07-19 University Of Rochester Method of identifying hairpin dna probes by partial fold analysis
US20070238104A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. Competitive oligonucleotides
US20070238105A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. High resolution chromosomal mapping
US20070238108A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. Validation of comparative genomic hybridization
US20090047670A1 (en) * 2007-08-14 2009-02-19 University Of Rochester Hybridization-based biosensor containing hairpin probes and use thereof
US8957002B2 (en) 2007-11-05 2015-02-17 University Of Rochester DNA microarray having hairpin probes tethered to nanostructured metal surface
CN109273047A (en) * 2017-12-15 2019-01-25 武汉科技大学 A kind of nucleic acid structure prediction technique based on simulated annealing

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395888B1 (en) * 1996-02-01 2002-05-28 Gilead Sciences, Inc. High affinity nucleic acid ligands of complement system proteins
EP1770164B1 (en) * 1996-10-31 2010-09-01 Human Genome Sciences, Inc. Streptococcus pneumoniae antigens and vaccines
US20030228597A1 (en) * 1998-04-13 2003-12-11 Cowsert Lex M. Identification of genetic targets for modulation by oligonucleotides and generation of oligonucleotides for gene modulation
US6516276B1 (en) * 1999-06-18 2003-02-04 Eos Biotechnology, Inc. Method and apparatus for analysis of data from biomolecular arrays
US7504213B2 (en) * 1999-07-09 2009-03-17 Agilent Technologies, Inc. Methods and apparatus for preparing arrays comprising features having degenerate biopolymers
US7013221B1 (en) * 1999-07-16 2006-03-14 Rosetta Inpharmatics Llc Iterative probe design and detailed expression profiling with flexible in-situ synthesis arrays
US6892141B1 (en) * 2000-03-17 2005-05-10 Hitachi, Ltd. Primer design system
WO2001066804A2 (en) * 2000-03-09 2001-09-13 Protogene Laboratories, Inc. Methods for optimizing hybridization performance of polynucleotide probes and localizing and detecting sequence variations
US20030224344A1 (en) * 2000-03-27 2003-12-04 Ron Shamir Method and system for clustering data
CA2406830C (en) * 2000-04-20 2012-10-02 Virco Bvba Method for mutation detection in hiv using pol sequencing
US6800463B1 (en) * 2000-04-20 2004-10-05 Virco Bvba Method for mutation detection in HIV-1 using pol sequencing
AU2001275349A1 (en) * 2000-06-07 2001-12-17 Wayne State University Method and system for predicting nucleic acid hybridization thermodynamics and computer-readable storage medium for use therein
US20030190609A1 (en) * 2000-06-08 2003-10-09 White P. Scott Address/capture tags for flow-cytometery based minisequencing
AU1141602A (en) * 2000-10-04 2002-04-15 Celadon Lab Inc Computer system for designing oligonucleotides used in biochemical methods
US7117095B2 (en) * 2000-11-21 2006-10-03 Affymetrix, Inc. Methods for selecting nucleic acid probes
JP2002357606A (en) * 2000-11-21 2002-12-13 Affymetrix Inc Method for predicting nucleic acid hybridization affinity and computer software product
JP4109873B2 (en) * 2001-02-28 2008-07-02 キヤノン株式会社 Probe design method and information processing apparatus
US7313482B2 (en) * 2001-05-17 2007-12-25 The Public Health Research Institute Of The City Of New York, Inc. Selection of target sites for antisense attack of RNA
US20040063109A2 (en) 2002-01-25 2004-04-01 Applera Corporation Single-tube, ready-to-use assay kits, and methods using same
US20030162183A1 (en) * 2002-02-27 2003-08-28 Robert Kincaid Array design system and method
US20030198987A1 (en) * 2002-02-28 2003-10-23 Matveeva Olga V. Methods for designing oligo-probes with high hybridization efficiency and high antisense activity
US20030199603A1 (en) * 2002-04-04 2003-10-23 3M Innovative Properties Company Cured compositions transparent to ultraviolet radiation
US7894998B2 (en) * 2002-06-26 2011-02-22 Agilent Technologies, Inc. Method for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays
US20040101846A1 (en) * 2002-11-22 2004-05-27 Collins Patrick J. Methods for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays
US7029854B2 (en) * 2002-11-22 2006-04-18 Agilent Technologies, Inc. Methods designing multiple mRNA transcript nucleic acid probe sequences for use in nucleic acid arrays
EP1576192B1 (en) * 2002-12-23 2014-10-29 Agilent Technologies, Inc. Comparative genomic hybridization assays using immobilized oligonucleotide features and compositions for practicing the same
KR100506089B1 (en) * 2003-02-05 2005-08-05 삼성전자주식회사 System for designing probe array using heterogeneneous genomic information and method of the same
ES2388138T3 (en) 2003-08-27 2012-10-09 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
US7324677B2 (en) 2003-10-14 2008-01-29 Agilent Technologies, Inc. Feature quantitation methods and system
US20050079509A1 (en) * 2003-10-14 2005-04-14 Shannon Karen W. Methods for identifying suitable nucleic acid normalization probe sequences for use in nucleic acid arrays
US20050095596A1 (en) * 2003-10-30 2005-05-05 Leproust Eric M. Methods for identifying suitable nucleic acid probe sequences for use in nucleic acid arrays
US20050095598A1 (en) * 2003-10-30 2005-05-05 Wolber Paul K. Nucleic acid arrays comprising depurination probe features and methods for using the same
US20080050718A1 (en) * 2003-11-14 2008-02-28 Gesteland Raymond F Methods, Articles, and Compositions for Identifying Oligonucleotides
US20050112584A1 (en) * 2003-11-20 2005-05-26 Cifuentes Francisco J. Methods for evaluating tissue pair combinations for use in nucleic acid array technology
US7803931B2 (en) 2004-02-12 2010-09-28 Archemix Corp. Aptamer therapeutics useful in the treatment of complement-related disorders
US20050240357A1 (en) * 2004-04-26 2005-10-27 Minor James M Methods and systems for differential clustering
CA2567526A1 (en) * 2004-05-26 2005-12-15 Wisconsin Alumni Research Foundation Cancer treatment method by inhibiting mage gene expression or function
US20050282174A1 (en) * 2004-06-19 2005-12-22 Webb Peter G Methods and systems for selecting nucleic acid probes for microarrays
US7702466B1 (en) 2004-06-29 2010-04-20 Illumina, Inc. Systems and methods for selection of nucleic acid sequence probes
KR100663992B1 (en) * 2004-07-05 2007-01-02 (주)바이오메드랩 The method selecting highly specific probes for HPV genotype analysis and the probes thereof
US20060110744A1 (en) * 2004-11-23 2006-05-25 Sampas Nicolas M Probe design methods and microarrays for comparative genomic hybridization and location analysis
WO2006123246A2 (en) * 2005-02-11 2006-11-23 Aurelium Biopharma Inc. Methods for identifying chemotherapeutic resistance in non-hematopoietic tumors
US20060247867A1 (en) * 2005-04-29 2006-11-02 Delenstarr Glenda C Customized and dynamic association of probe type with feature extraction algorithms
PL2596807T3 (en) * 2006-03-08 2016-06-30 Archemix Llc Complement binding aptamers and anti-C5 agents useful in the treatment of ocular disorders
US20070233398A1 (en) * 2006-03-28 2007-10-04 Shchegrova Svetlana V Oligonucleotide microarray probe design via statistical regression analysis of experimental data
ES2429225T3 (en) 2006-05-17 2013-11-13 The Ludwig Institute For Cancer Research Anti-VEGF-B antibodies for the treatment or prophylaxis of type II diabetes or metabolic syndrome
US20080027653A1 (en) * 2006-07-28 2008-01-31 Nelson Charles F Systems and methods for probe qualification
US20080027655A1 (en) * 2006-07-28 2008-01-31 Nelson Charles F Systems and methods for probe selection
WO2008047128A2 (en) * 2006-10-18 2008-04-24 Nazneen Rahman Materials and methods for determining susceptibility to cancer
WO2008140494A2 (en) * 2006-11-22 2008-11-20 The Board Of Trustees Of Michigan State University High throughput screening using microarrays
US9938641B2 (en) * 2006-12-18 2018-04-10 Fluidigm Corporation Selection of aptamers based on geometry
TW201206954A (en) * 2007-02-02 2012-02-16 Amgen Inc Hepcidin, hepcidin antagonists and methods of use
US20080243396A1 (en) * 2007-03-28 2008-10-02 Webb Peter G Systems and methods for sub-genomic region specific comparative genome hybridization probe selection
US8221981B2 (en) * 2007-07-30 2012-07-17 Argos Therapeutics, Inc. Primers and probes for the amplification and detection of HIV Gag, Rev and Nef polynucleotides
CL2008002775A1 (en) 2007-09-17 2008-11-07 Amgen Inc Use of a sclerostin binding agent to inhibit bone resorption.
US20090089329A1 (en) * 2007-09-28 2009-04-02 Nelson Iii Charles F Systems and methods for the dynamic generation of repeat libraries for uncharacterized species
AU2008338464A1 (en) 2007-12-14 2009-06-25 Amgen Inc. Method for treating bone fracture with anti-sclerostin antibodies
ES2363358B1 (en) 2009-04-03 2012-06-21 FUNDACIÓ INSTITUT DE RECERCA HOSPITAL UNIVERSITARI VALL D'HEBRON (Titular al THERAPEUTIC AGENTS FOR THE TREATMENT OF DISEASES ASSOCIATED WITH AN INDESEABLE CELLULAR PROLIFERATION.
US20110039735A1 (en) * 2009-08-13 2011-02-17 Agilent Technologies, Inc. Probe design for oligonucleotide fluorescence in situ hybridization (fish)
EP2322149A1 (en) 2009-11-03 2011-05-18 Universidad del Pais Vasco Methods and compositions for the treatment of ischemia
EP2338492A1 (en) 2009-12-24 2011-06-29 Universidad del Pais Vasco Methods and compositions for the treatment of alzheimer
WO2012100835A1 (en) 2011-01-28 2012-08-02 Laboratorios Del Dr. Esteve, S.A. Methods and compositions for the treatment of aids
US9139860B2 (en) * 2011-04-11 2015-09-22 Korea University Research And Business Foundation Signal-amplifying folded oligonucleotide
WO2012149438A1 (en) 2011-04-28 2012-11-01 Life Technologies Corporation Methods and compositions for multiplex pcr
US20130059738A1 (en) 2011-04-28 2013-03-07 Life Technologies Corporation Methods and compositions for multiplex pcr
US20130059762A1 (en) 2011-04-28 2013-03-07 Life Technologies Corporation Methods and compositions for multiplex pcr
WO2013011153A2 (en) 2011-07-21 2013-01-24 Fundació Institut D'investigació Biomèdica De Bellvitge (Idibell) Method for the prognosis and treatment of metastasis in breast cancer
WO2013013708A1 (en) 2011-07-26 2013-01-31 Fundació Institut D'investigació Biomèdica De Bellvitge Treatment of acute rejection in renal transplant
WO2013034684A1 (en) 2011-09-07 2013-03-14 Fundació Institut D'investigació Biomèdica De Bellvitge (Idibell) Strategies for prevention and/or treatment of diseases based on cd40 silencing
WO2013039880A1 (en) 2011-09-12 2013-03-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Biomarkers and therapeutic targets of hepatocellular cancer
US10504612B2 (en) * 2012-06-15 2019-12-10 Emerald Therapeutics, Inc. Polynucleotide probe design
AU2013202668B2 (en) 2012-12-24 2014-12-18 Adelaide Research & Innovation Pty Ltd Inhibition of cancer growth and metastasis
US9753030B2 (en) * 2013-03-06 2017-09-05 University of Pittsburgh—of the Commonwealth System of Higher Education Degradable carbon nanotube-containing biosensors and methods for target clinical marker detection
ES2943498T3 (en) 2013-08-05 2023-06-13 Twist Bioscience Corp de novo synthesized libraries
CA2975855A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
WO2016126882A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
GB2557529A (en) 2015-09-18 2018-06-20 Twist Bioscience Corp Oligonucleic acid variant libraries and synthesis thereof
WO2017053450A1 (en) 2015-09-22 2017-03-30 Twist Bioscience Corporation Flexible substrates for nucleic acid synthesis
WO2017053681A1 (en) 2015-09-24 2017-03-30 Wisconsin Alumni Research Foundation Methods of expanding hematopoietic stem cells, compositions, and methods of use thereof
WO2017079227A1 (en) 2015-11-05 2017-05-11 University Of Connecticut Compositions and methods for the treatment of liver fibrosis
WO2017095958A1 (en) 2015-12-01 2017-06-08 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
CN109996876A (en) 2016-08-22 2019-07-09 特韦斯特生物科学公司 The nucleic acid library of de novo formation
WO2018057526A2 (en) 2016-09-21 2018-03-29 Twist Bioscience Corporation Nucleic acid based data storage
AU2017378492B2 (en) 2016-12-16 2022-06-16 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
US11550939B2 (en) 2017-02-22 2023-01-10 Twist Bioscience Corporation Nucleic acid based data storage using enzymatic bioencryption
CA3056388A1 (en) 2017-03-15 2018-09-20 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
WO2018231872A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
JP2020527569A (en) 2017-07-17 2020-09-10 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド、ア・ボデイー・コーポレイト Compositions and Methods for Preventing and Treating Radiation-Induced Bystander Effects Caused by Radiation or Radiation Therapy
SG11202002194UA (en) 2017-09-11 2020-04-29 Twist Bioscience Corp Gpcr binding proteins and synthesis thereof
KR20240024357A (en) 2017-10-20 2024-02-23 트위스트 바이오사이언스 코포레이션 Heated nanowells for polynucleotide synthesis
KR20200106067A (en) 2018-01-04 2020-09-10 트위스트 바이오사이언스 코포레이션 DNA-based digital information storage
EP3814497A4 (en) 2018-05-18 2022-03-02 Twist Bioscience Corporation Polynucleotides, reagents, and methods for nucleic acid hybridization
CN113785057A (en) 2019-02-26 2021-12-10 特韦斯特生物科学公司 Variant nucleic acid libraries for antibody optimization
CA3131689A1 (en) 2019-02-26 2020-09-03 Twist Bioscience Corporation Variant nucleic acid libraries for glp1 receptor
AU2020298294A1 (en) 2019-06-21 2022-02-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
WO2022034474A1 (en) 2020-08-10 2022-02-17 Novartis Ag Treatments for retinal degenerative diseases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310650A (en) * 1986-09-29 1994-05-10 Abbott Laboratoires Method and device for improved reaction kinetics in nucleic acid hybridizations
US5616488A (en) * 1992-12-07 1997-04-01 Ribozyme Pharmaceuticals, Inc. IL-5 targeted ribozymes
US5959098A (en) * 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081584A (en) 1989-03-13 1992-01-14 United States Of America Computer-assisted design of anti-peptides based on the amino acid sequence of a target peptide
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5582986A (en) 1991-06-14 1996-12-10 Isis Pharmaceuticals, Inc. Antisense oligonucleotide inhibition of the ras gene
DE69333698T2 (en) 1992-07-20 2005-12-01 Isis Pharmaceutical, Inc., Carlsbad PSEUDO HALF NODES FORMING RNA BY HYBRIDIZING ANTISSESEOLIGON NUCLEOTIDES TO TARGETED RNA SECONDARY STRUCTURES
US5556749A (en) 1992-11-12 1996-09-17 Hitachi Chemical Research Center, Inc. Oligoprobe designstation: a computerized method for designing optimal DNA probes
US5593834A (en) 1993-06-17 1997-01-14 The Research Foundation Of State University Of New York Method of preparing DNA sequences with known ligand binding characteristics
EP0880598A4 (en) * 1996-01-23 2005-02-23 Affymetrix Inc Nucleic acid analysis techniques
US6456942B1 (en) * 1998-01-25 2002-09-24 Combimatrix Corporation Network infrastructure for custom microarray synthesis and analysis
US20030120432A1 (en) * 2001-01-29 2003-06-26 Affymetrix, Inc. Method, system and computer software for online ordering of custom probe arrays
US6804679B2 (en) * 2001-03-12 2004-10-12 Affymetrix, Inc. System, method, and user interfaces for managing genomic data
US20040002818A1 (en) * 2001-12-21 2004-01-01 Affymetrix, Inc. Method, system and computer software for providing microarray probe data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310650A (en) * 1986-09-29 1994-05-10 Abbott Laboratoires Method and device for improved reaction kinetics in nucleic acid hybridizations
US5616488A (en) * 1992-12-07 1997-04-01 Ribozyme Pharmaceuticals, Inc. IL-5 targeted ribozymes
US5959098A (en) * 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070059693A1 (en) * 2003-01-02 2007-03-15 University Of Rochester Hybridization-based biosensor containing hairpin probes and use thereof
US7442510B2 (en) 2004-01-02 2008-10-28 University Of Rochester Method of identifying hairpin DNA probes by partial fold analysis
US7598034B2 (en) 2004-01-02 2009-10-06 University Of Rochester Method of identifying hairpin DNA probes by partial fold analysis
US20090087835A1 (en) * 2004-01-02 2009-04-02 Miller Benjamin L Method of Identifying Hairpin DNA Probes by Partial Fold Analysis
US20070166731A1 (en) * 2004-01-02 2007-07-19 University Of Rochester Method of identifying hairpin dna probes by partial fold analysis
US7321832B2 (en) 2004-10-26 2008-01-22 Samsung Electronics Co., Ltd. Method of designing probe from polynucleotide group comprising plurality of polynucleotides
EP1653385A3 (en) * 2004-10-26 2006-05-31 Samsung Electronics Co., Ltd. Method of designing probe from polynucleotide group comprising plurality of polynucleotides
EP1653385A2 (en) * 2004-10-26 2006-05-03 Samsung Electronics Co., Ltd. Method of designing probe from polynucleotide group comprising plurality of polynucleotides
US20060204995A1 (en) * 2005-03-08 2006-09-14 Oh Ji-Young Method of designing probe set, probe set designed by the method, microarray comprising the probe set, computer readable medium recorded thereon program to execute the method, and method of identifying target sequence using the probe set
US20090118137A1 (en) * 2006-04-07 2009-05-07 Michael Thomas Barrett Competitive oligonucleotides
US20070238104A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. Competitive oligonucleotides
US20070238105A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. High resolution chromosomal mapping
US20070238108A1 (en) * 2006-04-07 2007-10-11 Agilent Technologies, Inc. Validation of comparative genomic hybridization
US8058055B2 (en) 2006-04-07 2011-11-15 Agilent Technologies, Inc. High resolution chromosomal mapping
US8309307B2 (en) 2006-04-07 2012-11-13 Agilent Technologies, Inc. High resolution chromosomal mapping
US20090047670A1 (en) * 2007-08-14 2009-02-19 University Of Rochester Hybridization-based biosensor containing hairpin probes and use thereof
US7811764B2 (en) 2007-08-14 2010-10-12 University Of Rochester Hybridization-based biosensor containing hairpin probes and use thereof
US8957002B2 (en) 2007-11-05 2015-02-17 University Of Rochester DNA microarray having hairpin probes tethered to nanostructured metal surface
CN109273047A (en) * 2017-12-15 2019-01-25 武汉科技大学 A kind of nucleic acid structure prediction technique based on simulated annealing

Also Published As

Publication number Publication date
US20050027461A1 (en) 2005-02-03
US6251588B1 (en) 2001-06-26

Similar Documents

Publication Publication Date Title
US6251588B1 (en) Method for evaluating oligonucleotide probe sequences
US7853408B2 (en) Method for the design of oligonucleotides for molecular biology techniques
Mathews et al. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences
US7344831B2 (en) Methods for controlling cross-hybridization in analysis of nucleic acid sequences
Ding et al. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms
Scherf et al. Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: a novel context analysis approach
US20060142951A1 (en) Computer software products for nucleic acid hybridization analysis
Ponomarenko et al. Identification of sequence-dependent DNA features correlating to activity of DNA sites interacting with proteins.
Bertone et al. Design optimization methods for genomic DNA tiling arrays
WO2014058890A9 (en) Methods and systems for identifying, from read symbol sequences, variations with respect to a reference symbol sequence
WO2005003314A2 (en) A method of selecting an active oligonucleotide predictive model
US20040009484A1 (en) Methods for evaluating oligonucleotide probes of variable length
US7565248B2 (en) Computer system for designing oligonucleotides used in biochemical methods
US20030138778A1 (en) Prediction of disease-causing alleles from sequence context
US7085652B2 (en) Methods for searching polynucleotide probe targets in databases
Simmler et al. Real‐time primer design for DNA chips
Thiyagarajan et al. PathogenMIPer: a tool for the design of molecular inversion probes to detect multiple pathogens
KR101205619B1 (en) Design and selection of genetic targets for sequence resolved organism detection and identification
US20090037116A1 (en) Systems, devices, and methods for analyzing macromolecules, biomolecules, and the like
EP1148123B1 (en) Method for determining base sequence of analytical oligonucleotides for the detection of nucleic acids
Lee et al. Multi-objective evolutionary probe design based on thermodynamic criteria for HPV detection
Freyhult New techniques for analysing RNA structure
Dai et al. rnaDesign: Local search for RNA secondary structure design
Hundewale et al. Integrated design flow for universal DNA tag arrays
Lipson Optimization problems in design of oligonucleotides for hybridization based methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: AGILENT TECHNOLOGIES, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY, A DELAWARE CORPORATION;REEL/FRAME:012381/0616

Effective date: 20011119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION