US20030040747A1 - Interlocking intramedullary nail - Google Patents

Interlocking intramedullary nail Download PDF

Info

Publication number
US20030040747A1
US20030040747A1 US09/935,526 US93552601A US2003040747A1 US 20030040747 A1 US20030040747 A1 US 20030040747A1 US 93552601 A US93552601 A US 93552601A US 2003040747 A1 US2003040747 A1 US 2003040747A1
Authority
US
United States
Prior art keywords
screw
lag screw
lag
intramedullary nail
nail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/935,526
Other versions
US6524314B1 (en
Inventor
John Dean
Dennis Moad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/935,526 priority Critical patent/US6524314B1/en
Application granted granted Critical
Publication of US6524314B1 publication Critical patent/US6524314B1/en
Publication of US20030040747A1 publication Critical patent/US20030040747A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7233Intramedullary pins, nails or other devices with special means of locking the nail to the bone
    • A61B17/725Intramedullary pins, nails or other devices with special means of locking the nail to the bone with locking pins or screws of special form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • A61B17/7283Intramedullary pins, nails or other devices with special cross-section of the nail

Definitions

  • the present invention relates to an improved intramedullary nail and method for stabilizing fractures of the femur. More specifically, the present invention relates to a surgical interlocking intramedullary nail including an interlocking screw assembly for immobilization of distal femur parts involved in fractures occurring in the condylar and supracondylar portions of the femur.
  • fixation device adapted to facilitate recovery of the fractured bone.
  • the fixation device provides immobilization of the bone fragments and stabilization of the fractured femur, thus providing earlier mobilization and weight bearing of a patient.
  • the fixation device is attached to or inserted into the femur and cooperates with the bone fragments and the femoral shaft to stabilize the bone. As the bone heals, the fixation device allows the bone fragments to compress into each other so the fragments grow together to restore the bone.
  • the resultant devasculariztion of the distal portion of the femur has lead to a high frequency of complications of delayed union of the bone sections, osseous fracture and infection. Additionally, due to the muscular stresses in the region of the condylus and supracondylus, the treatment may involve undesirable post-operative procedures and complications including the bending or breaking of the plates, loosening of the screws and migration of the femoral shaft.
  • IM nailing has become a standard procedure for treating supracondylar and condylar fractures.
  • IM nailing consists of driving a rod-like nail into the intramedullary bone canal of the femur to stabilize transverse fractures of the femur.
  • IM nails often fall short to provide effective fixation or immobilization for supracondylar and condylar fractures since they fail to sufficiently compress bone fragments. Improvements have been made on IM nails to further stabilize the bone fragments by introducing interlocking cross-bolts or screws through the nail that are fixed on both sides of the fracture.
  • Matthews discloses an intramedullary nail incorporating a Cruciate arrangement of two obliquely crossing locking bolts such that each condyle of the femur is gripped by an individual bolt.
  • the Cruciate or staggered/crossed configuration of holes permits two distal locking bolts to be inserted.
  • Asche et al. discloses a supracondylar bone nail that has an elongated shank with two bends.
  • the first bend begins at a distance from the distal end of about a quarter or a third of the length of the nail at an angle of about 8°.
  • the second bend begins in the last third of the nail length if looking from the distal end and has an angle of approximately 3°.
  • the nail includes transverse bores in the distal and proximal end which are adapted to accommodate screws.
  • an object of the present invention to provide an interlocking intramedullary nail for fixation of the distal femur which overcomes certain disadvantages of the prior art devices while maintaining their advantages.
  • the present invention provides an interlocking intramedullary nail that aims to achieve greater fixation and immobilization of condylus and supracondylus fractures of the femur.
  • the interlocking intramedullary nail comprises an intramedullary nail, a first lag screw, a second lag screw and a locking screw, all being adapted to accommodate one another.
  • the nail is configured to be inserted from a distal end of the femur below the condylus and has a distal end with a transverse bore extending therethrough.
  • the first lag screw has a distal end with a cylindrical first portion and an axial through hole.
  • the first lag screw is arranged to be inserted into one end of the transverse bore.
  • the second lag screw has an axial through hole and is adapted to receive the cylindrical portion of the first lag screw at another end of the transverse bore.
  • the locking screw is adapted to be inserted into the axial through hole of the second lag screw so as to thread onto the first lag screw and the second lag screw.
  • the interlocking intramedullary nail has at least one transverse distal bore that is angled with respect to a longitudinal axis of the nail such that the first and second lag screws extend obliquely from the intramedullary nail.
  • the first lag screw and the second lag screw each may include a major external thread diameter having a taper. Further, according to yet another variant of the invention, the first lag screw and the second lag screw each may include a minor external thread having a taper. Still further, according to another embodiment of the invention, the first lag screw and the second lag screw each may include a major external thread diameter having a taper and a minor external thread diameter having a taper.
  • FIG. 1 shows an elevation cutaway view of an intramedullary nail according to the present invention showing its location in a distal end of a femur;
  • FIG. 2A is a side view of an embodiment of the intramedullary rod according to the present invention.
  • FIG. 2B is a cross-sectional view of the embodiment of the intramedullary rod of FIG. 2A;
  • FIG. 3A is a side view of another embodiment of the intramedullary rod according to the present invention.
  • FIG. 3B is a cross-sectional view of the embodiment of the intramedullary rod of FIG. 3A;
  • FIG. 4A is a side view of a first embodiment of a first lag screw according to the present invention.
  • FIG. 4B is a cross-sectional view of the first embodiment of the first lag screw of FIG. 4A;
  • FIG. 5A is a side view of a first embodiment of a second lag screw according to the present invention.
  • FIG. 5B is a cross-sectional view of the first embodiment of the second lag screw of FIG. 5A;
  • FIG. 6 is a side view of a second embodiment of a first lag screw according to the present invention.
  • FIG. 7 is a side view of a second embodiment of a second lag screw according to the present invention.
  • FIG. 8 is a side view of a third embodiment of a first lag screw according to the present invention.
  • FIG. 9 is a side view of a third embodiment of a second lag screw according to the present invention.
  • FIG. 10 is a plan view of an embodiment of the present invention showing the intramedullary nail installed in the distal portion of the femur along with a guiding lance;
  • FIG. 11 depicts a step in the embodiment of FIG. 10
  • FIG. 12 depicts a next step in the embodiment of FIG. 11;
  • FIG. 13 depicts a next step in the embodiment of FIG. 12;
  • FIG. 14 depicts an assembled, cross-sectional view of an assembled intramedullary nail.
  • FIG. 1 the distal portion of a femur 52 is shown which accommodates an intramedullary nail 10 with an elongate first lag screw 26 and a second lag screw 36 .
  • the first lag screw 26 and the second lag screw 36 receive a locking screw 62 .
  • the nail 10 is installed within the medullary or marrow canal 66 of the femur 52 in accordance with known medical procedures.
  • FIG. 2A is a side view of one embodiment of the nail 10 .
  • the basic structure of the nail 10 includes a distal portion 12 having a distal end 14 and a proximal portion 16 having a proximal end 18 .
  • the distal portion 12 has at least one transverse bore 20 and the proximal portion 16 has at least one transverse bore 22 .
  • FIG. 2B shows a cross-sectional view of FIG. 2A.
  • the transverse bore 20 is generally arranged at a 90° angle with respect to the longitudinal axis of the nail 10 .
  • the nail 10 is provided with an axial through hole 50 along its longitudinal axis.
  • FIGS. 3A and 3B show another embodiment of the nail 10 whereby a transverse bore 24 extends at an angle with respect to the longitudinal axis of the nail 10 .
  • FIGS. 4A and 4B One preferred embodiment of the first lag screw of the invention is shown in FIGS. 4A and 4B.
  • the first lag screw 26 divides into an outer threaded portion 27 at a first end and an outer cylindrical portion 32 at a second end.
  • the outer threaded portion 27 and the outer cylindrical portion 32 are axially spaced along the length of the first lag screw 26 .
  • the outer threaded portion 27 has a constant outer diameter 28 and a minor diameter 30 located at the roots of the threads which progressively decreases from the first end to an end of the outer threaded portion 27 that is adjacent to the outer cylindrical portion 32 .
  • FIG. 4B shows a cross-sectional view of FIG.
  • the first lag screw 26 internal configuration includes an axial bore 34 which includes a first threaded portion 70 extending axially from the second end a predetermined distance into the first lag screw 26 .
  • FIGS. 5A and 5B show a second lag screw 36 for mating with and receiving the first lag screw 26 .
  • the threaded portion of the second lag screw 36 has a constant threaded outer diameter 28 .
  • the outer threaded portion also includes a minor diameter 30 located at the roots of the threads 30 and progressively decreases from a first end to a second end of the second lag screw 36 .
  • FIG. 5B shows a cross-sectional view of FIG. 5A along the plane E-E illustrating the internal configuration of the second lag screw 36 .
  • the internal configuration of the second lag screw 36 includes an axial through hole 38 having a screw seat 42 located at a first end and a mating portion 40 located at a second end.
  • the screw seat 42 and the mating portion 40 are axially spaced along the length of the screw.
  • the mating portion 40 is adapted to cooperate with the first outer cylindrical portion 32 of the first lag screw 26 .
  • the mating portion 40 includes a recess formed by the second lag screw 36 and extends into the second lag screw 36 a predetermined distance.
  • the recess of the mating portion 40 is dimensioned to accommodate the first outer cylindrical portion 32 of the first lag screw 26 .
  • the screw seat 42 acts as a stop for a locking screw as it is threaded onto the first lag screw 26 and the second lag screw 36 .
  • the screw seat 42 includes a recess formed by the second lag screw 36 and extends axially from the first end into the second lag screw 36 a predetermined distance.
  • FIGS. 6 and 7 each show another embodiment of both the first lag screw 26 and the second lag screw 36 .
  • the threaded outer diameter 28 and the inner threaded diameter 44 each have diameters that remain constant.
  • the internal configuration of the first lag screw 36 and the second lag screw 44 is the same as illustrated in FIGS. 4B and 5B respectively.
  • FIGS. 8 and 9 each show yet another embodiment of both the first lag screw 26 and the second lag screw 36 .
  • the major external thread portion 46 of the first lag screw 26 progressively decreases from the first end to the end adjacent to the outer cylindrical portion 32 .
  • the minor diameter 48 at the roots of the threads of the first lag screw also progressively decreases from the first end to the end adjacent to the outer cylindrical portion 32 .
  • FIG. 9 shows that the major external thread portion 46 of the second lag screw 36 progressively decreases from the first end to the second end. Morever, the minor diameter 48 at the roots of the threads of the second lag screw 36 also progressively decreases from the first end to the second end.
  • Intramedullary nails in accordance with this invention are introduced into the femur through the knee. After exposing the femur, the nail is inserted through a bore which is in line with the axis of the intramedullary canal.
  • FIG. 10 shows a nail 10 that has been inserted into the intramedullary canal 66 .
  • a pilot through hole is drilled through the femur along the axis of a distal transverse bore 20 .
  • a guide wire 50 is passed through of the distal transverse bore 20 .
  • FIG. 11 shows the first lag screw 26 inserted axially along the guide wire 50 into one side of the distal transverse bore 20 .
  • the cylindrical portion 32 of the first lag screw 26 extends through the distal transverse bore 20 .
  • FIG. 12 shows the second lag screw 36 inserted axially along the guide wire 50 on another side of the distal transverse bore 20 .
  • the second lag screw 36 receives and engages the cylindrical portion 32 (not shown) of the first lag screw 26 .
  • FIG. 13 shows a locking screw 62 being inserted axially along the guide wire 50 .
  • FIG. 14 shows the locking screw 62 as received by the locking screw receiving bore 42 of the second lag screw 36 .
  • the locking screw 62 is threaded onto the axial through hole 34 of the first lag screw so as to operatively couple the nail 10 , the first lag screw 26 and the second lag screw 36 .
  • the nails may be manufactured in varying lengths from a biologically inert material which is sterilizable and has the appropriate mechanical strength and stiffness. It will be understood that any or all of the elements constituting the present invention may be included in a kit provided to a medical practitioner. Still further advantages of the present invention should be readily apparent to those of skill in the art based upon the written description provided above.
  • the invention is not limited for use in the condylar and supracondylar regions of the femur.
  • the intramedullary nail and the interlocking screws can be adapted to stabilize fractures of other bones throughout the human body.

Abstract

An interlocking intramedullary nail assembly including an intramedullary nail, a first lag screw, a second lag screw and a locking screw. The first and the second lag screws are arranged to mate with one another and are received by the intramedullary nail at opposite ends of a transverse through bore passing through a distal portion of the nail. The interlocking screw is used to operatively couple the first lag screw and second lag so as to fix the first and the second lag screws to the nail.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to an improved intramedullary nail and method for stabilizing fractures of the femur. More specifically, the present invention relates to a surgical interlocking intramedullary nail including an interlocking screw assembly for immobilization of distal femur parts involved in fractures occurring in the condylar and supracondylar portions of the femur. [0002]
  • 2. Description of the Prior Art [0003]
  • It is known that bone parts or fragments involved in fractures of the femur are difficult to stabilize satisfactorily. Since the femur functions as a weight bearing bone, the femoral fractures often take longer to heal and there is potential for greater complications in setting the fracture than in non-weight bearing bones. Furthermore, it is well understood that patients that remain inactive following surgery have an increase in the risk of serious complications including the development of blood clots and pneumonia. Therefore after stabilizing a femoral fracture, early mobilization of a patient is necessary so that the femur will heal quickly, with stronger repair and less likelihood of complications. [0004]
  • In treating a femoral fracture, it is standard practice to use a fixation device adapted to facilitate recovery of the fractured bone. The fixation device provides immobilization of the bone fragments and stabilization of the fractured femur, thus providing earlier mobilization and weight bearing of a patient. The fixation device is attached to or inserted into the femur and cooperates with the bone fragments and the femoral shaft to stabilize the bone. As the bone heals, the fixation device allows the bone fragments to compress into each other so the fragments grow together to restore the bone. [0005]
  • Two prevalent types of femoral fractures are supracondylar or “T-type” condylar fractures about the distal femur. A number of different fixation devices, both external and implantable, have been devised for fixation of supracondylar and condylar fractures. In the past, treatment of condylar or supracondylar fractures consisted of stabilizing the bone portions with plates and screws. However, in using plates and screws, invasive surgery is required and includes considerable dissection of the thigh in order to expose the fracture so as to attach the plates and screws. The resultant devasculariztion of the distal portion of the femur has lead to a high frequency of complications of delayed union of the bone sections, osseous fracture and infection. Additionally, due to the muscular stresses in the region of the condylus and supracondylus, the treatment may involve undesirable post-operative procedures and complications including the bending or breaking of the plates, loosening of the screws and migration of the femoral shaft. [0006]
  • Recently, intramedullary (IM) nailing has become a standard procedure for treating supracondylar and condylar fractures. In its basic form, IM nailing consists of driving a rod-like nail into the intramedullary bone canal of the femur to stabilize transverse fractures of the femur. However, such IM nails often fall short to provide effective fixation or immobilization for supracondylar and condylar fractures since they fail to sufficiently compress bone fragments. Improvements have been made on IM nails to further stabilize the bone fragments by introducing interlocking cross-bolts or screws through the nail that are fixed on both sides of the fracture. [0007]
  • Despite their advantages over plate and screw fixation devices, there are still complications that arise with interlocking IM nails. One difficulty is that the screws may loosen, creating a decrease in screw fixation which results in screw toggling, or in a worst case scenario, complete screwing out of the nail. Another difficulty results from the oblique position of the condyles with respect to the shaft of the femur. Since the fixation of the screws is often transverse to the femoral shaft, the screws do not extend through the major mass of the cancellous bone of each condylus. Furthermore, the sizes of many current screws used with the IM nails do not achieve sufficient purchase in the bone. Stabilizing the fracture is further compounded by the fact that the bone is often of poorer quality. [0008]
  • Known IM nails have been designed for treatment of condylar and supracondylar fractures. For example, U.S. Pat. No. 5,779,705 issued to Matthews and U.S. Pat. No. 6,010,505 Asche et al., which are herein incorporated by reference in their entirety, each disclose an intramedullary device having an IM nail and interlocking bolts or screws to grip and stabilize the femoral condyles with respect to the femoral shaft. The disclosures of the references are considered to establish the state art for condylus and supracondylus IM nails. Each of the devices disclosed thereby addresses the desirability of compression in the treatment of femoral fractures and emphasizes compression of the condyles with respect to the femoral shaft. [0009]
  • Matthews discloses an intramedullary nail incorporating a Cruciate arrangement of two obliquely crossing locking bolts such that each condyle of the femur is gripped by an individual bolt. The Cruciate or staggered/crossed configuration of holes permits two distal locking bolts to be inserted. [0010]
  • Asche et al. discloses a supracondylar bone nail that has an elongated shank with two bends. The first bend begins at a distance from the distal end of about a quarter or a third of the length of the nail at an angle of about 8°. The second bend begins in the last third of the nail length if looking from the distal end and has an angle of approximately 3°. The nail includes transverse bores in the distal and proximal end which are adapted to accommodate screws. [0011]
  • Although effective results have been achieved with the above noted IM nails, problems of internal fixation still persist. Therefore, it is desirable to modify an IM nail so as to achieve greater internal fixation of the condyles and mitigate screw loosening and toggling. [0012]
  • SUMMARY OF THE INVENTION
  • To meet the above noted desires, it is an object of the present invention to provide an interlocking intramedullary nail for fixation of the distal femur which overcomes certain disadvantages of the prior art devices while maintaining their advantages. The present invention provides an interlocking intramedullary nail that aims to achieve greater fixation and immobilization of condylus and supracondylus fractures of the femur. [0013]
  • According to one embodiment of the present invention, the interlocking intramedullary nail comprises an intramedullary nail, a first lag screw, a second lag screw and a locking screw, all being adapted to accommodate one another. The nail is configured to be inserted from a distal end of the femur below the condylus and has a distal end with a transverse bore extending therethrough. The first lag screw has a distal end with a cylindrical first portion and an axial through hole. The first lag screw is arranged to be inserted into one end of the transverse bore. The second lag screw has an axial through hole and is adapted to receive the cylindrical portion of the first lag screw at another end of the transverse bore. The locking screw is adapted to be inserted into the axial through hole of the second lag screw so as to thread onto the first lag screw and the second lag screw. [0014]
  • According to a second embodiment, the interlocking intramedullary nail has at least one transverse distal bore that is angled with respect to a longitudinal axis of the nail such that the first and second lag screws extend obliquely from the intramedullary nail. [0015]
  • According to another variant of the invention, the first lag screw and the second lag screw each may include a major external thread diameter having a taper. Further, according to yet another variant of the invention, the first lag screw and the second lag screw each may include a minor external thread having a taper. Still further, according to another embodiment of the invention, the first lag screw and the second lag screw each may include a major external thread diameter having a taper and a minor external thread diameter having a taper. [0016]
  • For a better understanding of the present invention, together with other and further objects thereof, reference is made to the following description, taken in conjunction with the accompanying drawings describing the preferred embodiments thereof. [0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an elevation cutaway view of an intramedullary nail according to the present invention showing its location in a distal end of a femur; [0018]
  • FIG. 2A is a side view of an embodiment of the intramedullary rod according to the present invention; [0019]
  • FIG. 2B is a cross-sectional view of the embodiment of the intramedullary rod of FIG. 2A; [0020]
  • FIG. 3A is a side view of another embodiment of the intramedullary rod according to the present invention; [0021]
  • FIG. 3B is a cross-sectional view of the embodiment of the intramedullary rod of FIG. 3A; [0022]
  • FIG. 4A is a side view of a first embodiment of a first lag screw according to the present invention; [0023]
  • FIG. 4B is a cross-sectional view of the first embodiment of the first lag screw of FIG. 4A; [0024]
  • FIG. 5A is a side view of a first embodiment of a second lag screw according to the present invention; [0025]
  • FIG. 5B is a cross-sectional view of the first embodiment of the second lag screw of FIG. 5A; [0026]
  • FIG. 6 is a side view of a second embodiment of a first lag screw according to the present invention; [0027]
  • FIG. 7 is a side view of a second embodiment of a second lag screw according to the present invention; [0028]
  • FIG. 8 is a side view of a third embodiment of a first lag screw according to the present invention; [0029]
  • FIG. 9 is a side view of a third embodiment of a second lag screw according to the present invention; [0030]
  • FIG. 10 is a plan view of an embodiment of the present invention showing the intramedullary nail installed in the distal portion of the femur along with a guiding lance; [0031]
  • FIG. 11 depicts a step in the embodiment of FIG. 10; [0032]
  • FIG. 12 depicts a next step in the embodiment of FIG. 11; [0033]
  • FIG. 13 depicts a next step in the embodiment of FIG. 12; [0034]
  • FIG. 14 depicts an assembled, cross-sectional view of an assembled intramedullary nail.[0035]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As shown in FIG. 1 according to a preferred embodiment of the invention, the distal portion of a [0036] femur 52 is shown which accommodates an intramedullary nail 10 with an elongate first lag screw 26 and a second lag screw 36. The first lag screw 26 and the second lag screw 36 receive a locking screw 62. The nail 10 is installed within the medullary or marrow canal 66 of the femur 52 in accordance with known medical procedures.
  • FIG. 2A is a side view of one embodiment of the [0037] nail 10. The basic structure of the nail 10 includes a distal portion 12 having a distal end 14 and a proximal portion 16 having a proximal end 18. The distal portion 12 has at least one transverse bore 20 and the proximal portion 16 has at least one transverse bore 22.
  • FIG. 2B shows a cross-sectional view of FIG. 2A. The transverse bore [0038] 20 is generally arranged at a 90° angle with respect to the longitudinal axis of the nail 10. The nail 10 is provided with an axial through hole 50 along its longitudinal axis.
  • FIGS. 3A and 3B show another embodiment of the [0039] nail 10 whereby a transverse bore 24 extends at an angle with respect to the longitudinal axis of the nail 10.
  • One preferred embodiment of the first lag screw of the invention is shown in FIGS. 4A and 4B. According to this embodiment, the [0040] first lag screw 26 divides into an outer threaded portion 27 at a first end and an outer cylindrical portion 32 at a second end. The outer threaded portion 27 and the outer cylindrical portion 32 are axially spaced along the length of the first lag screw 26. The outer threaded portion 27 has a constant outer diameter 28 and a minor diameter 30 located at the roots of the threads which progressively decreases from the first end to an end of the outer threaded portion 27 that is adjacent to the outer cylindrical portion 32. FIG. 4B shows a cross-sectional view of FIG. 4A along the plane D-D illustrating the internal configuration of the first lag screw 26. The first lag screw 26 internal configuration includes an axial bore 34 which includes a first threaded portion 70 extending axially from the second end a predetermined distance into the first lag screw 26.
  • Corresponding to the embodiment of the [0041] first lag screw 26 in FIGS. 4A and 4B, FIGS. 5A and 5B show a second lag screw 36 for mating with and receiving the first lag screw 26. Similar to the first lag screw 26 in FIGS. 4A and 4B, the threaded portion of the second lag screw 36 has a constant threaded outer diameter 28. The outer threaded portion also includes a minor diameter 30 located at the roots of the threads 30 and progressively decreases from a first end to a second end of the second lag screw 36.
  • FIG. 5B shows a cross-sectional view of FIG. 5A along the plane E-E illustrating the internal configuration of the [0042] second lag screw 36. The internal configuration of the second lag screw 36 includes an axial through hole 38 having a screw seat 42 located at a first end and a mating portion 40 located at a second end. The screw seat 42 and the mating portion 40 are axially spaced along the length of the screw. The mating portion 40 is adapted to cooperate with the first outer cylindrical portion 32 of the first lag screw 26. The mating portion 40 includes a recess formed by the second lag screw 36 and extends into the second lag screw 36 a predetermined distance. The recess of the mating portion 40 is dimensioned to accommodate the first outer cylindrical portion 32 of the first lag screw 26. Moreover, the screw seat 42 acts as a stop for a locking screw as it is threaded onto the first lag screw 26 and the second lag screw 36. The screw seat 42 includes a recess formed by the second lag screw 36 and extends axially from the first end into the second lag screw 36 a predetermined distance.
  • FIGS. 6 and 7 each show another embodiment of both the [0043] first lag screw 26 and the second lag screw 36. Specifically, the threaded outer diameter 28 and the inner threaded diameter 44 each have diameters that remain constant. The internal configuration of the first lag screw 36 and the second lag screw 44 is the same as illustrated in FIGS. 4B and 5B respectively.
  • FIGS. 8 and 9 each show yet another embodiment of both the [0044] first lag screw 26 and the second lag screw 36. Specifically, in FIG. 8 the major external thread portion 46 of the first lag screw 26 progressively decreases from the first end to the end adjacent to the outer cylindrical portion 32. The minor diameter 48 at the roots of the threads of the first lag screw also progressively decreases from the first end to the end adjacent to the outer cylindrical portion 32. FIG. 9 shows that the major external thread portion 46 of the second lag screw 36 progressively decreases from the first end to the second end. Morever, the minor diameter 48 at the roots of the threads of the second lag screw 36 also progressively decreases from the first end to the second end.
  • Intramedullary nails in accordance with this invention are introduced into the femur through the knee. After exposing the femur, the nail is inserted through a bore which is in line with the axis of the intramedullary canal. FIG. 10 shows a [0045] nail 10 that has been inserted into the intramedullary canal 66. A pilot through hole is drilled through the femur along the axis of a distal transverse bore 20. In a preferred embodiment of the present invention, a guide wire 50 is passed through of the distal transverse bore 20.
  • FIG. 11 shows the [0046] first lag screw 26 inserted axially along the guide wire 50 into one side of the distal transverse bore 20. Upon insertion into the nail 10, the cylindrical portion 32 of the first lag screw 26 extends through the distal transverse bore 20.
  • FIG. 12 shows the [0047] second lag screw 36 inserted axially along the guide wire 50 on another side of the distal transverse bore 20. The second lag screw 36 receives and engages the cylindrical portion 32 (not shown) of the first lag screw 26.
  • FIG. 13 shows a locking [0048] screw 62 being inserted axially along the guide wire 50.
  • FIG. 14 shows the locking [0049] screw 62 as received by the locking screw receiving bore 42 of the second lag screw 36. The locking screw 62 is threaded onto the axial through hole 34 of the first lag screw so as to operatively couple the nail 10, the first lag screw 26 and the second lag screw 36.
  • Typically, the nails may be manufactured in varying lengths from a biologically inert material which is sterilizable and has the appropriate mechanical strength and stiffness. It will be understood that any or all of the elements constituting the present invention may be included in a kit provided to a medical practitioner. Still further advantages of the present invention should be readily apparent to those of skill in the art based upon the written description provided above. [0050]
  • It should be noted that the invention is not limited for use in the condylar and supracondylar regions of the femur. The intramedullary nail and the interlocking screws can be adapted to stabilize fractures of other bones throughout the human body. [0051]
  • Although multiple preferred embodiments of the invention have been described above, it is to be understood that various modifications could be made to the embodiments by any person skilled in the art without departing from the scope of the invention as defined in the claims that follow, and that the various embodiments could be used interchangeably with other embodiments. [0052]

Claims (11)

We claim:
1. An intramedullary nail and interlocking screw assemblycomprising:
a nail having a longitudinal axis and an elongated shank with a distal portion having a distal end and a proximal portion having a proximal end, said distal portion having at least one distal transverse bore located near the distal end, said nail being configured to be inserted from an end of a bone;
an elongate first lag screw having a first outer threaded portion at a first end, a first outer cylindrical portion dimensioned to fit closely within said transverse bore at a second end, and a first axial bore having a first inner threaded portion, said first outer cylindrical and first outer threaded portions being axially spaced along the first lag screw length;
a second lag screw having opposed first and second opposed ends, a second outer threaded portion, a second axial through bore spanning said first and second ends and having a screw seat at a first end and a mating portion adapted to cooperate with the first cylindrical portion of said first lag screw at said second end, said screw seat and said mating portion being axially spaced along the second lag screw length; and
an elongate locking screw adapted to fit within said first and second bores, and arranged to engage said first threaded portion and said screw seat to connect said first and second lag screws together within said transverse bore when said first cylinder portion is inserted in said transverse bore, said mating portion is assembled in cooperative relationship with said first cylindrical portion and said locking screw is threaded into said first axial bore and seated on said screw seat.
2. The intramedullary nail and interlocking screw assembly according to claim 1 wherein said outer threaded portions of said first lag screw and said second lag screw each include a minor diameter at the roots of the threads, wherein said minor diameter of said first lag screw progressively decreases from said from said first end of said first lag screw to an end of said first outer threaded portion adjacent to said cylindrical portion, and said minor diameter of said second lag screw progressively decreases from said first end to said second end of said second lag screw.
3. The intramedullary nail and interlocking screw assembly according to claim 1 wherein said first and second outer threaded portion each include a major external thread portion having a taper along the length of said screws wherein said major external thread portion of said first lag screw progressively decreases from said first end of said first lag screw to an end of said first outer threaded portion adjacent to said cylindrical portion and said major external thread portion of said second lag screw progressively decreases from said first end to said second end of said second lag screw.
4. The intramedullary nail and interlocking screw assembly according to claim 3 wherein said outer threaded portions of said first lag screw and said second lag screw each include a minor diameter at the roots of the threads wherein said minor diameter of said first lag screw progressively decreases from said first end of said first lag screw to the end adjacent to said cylindrical portion, and said minor diameter of said second lag screw progressively decreases from said first end to said second end of said second lag screw.
5. The intramedullary nail and interlocking assembly according to claim 1 wherein at least one transverse distal bore extends at an angle with respect to said longitudinal axis of said nail.
6. The intramedullary nail and interlocking assembly according to claim 1 wherein said locking screw includes an axial through hole.
7. The intramedullary nail and interlocking assembly according to claim 1 wherein said first axial bore extends through said first lag screw.
8. The intramedullary nail and interlocking assembly according to claim 1 wherein said second lag screw defining a recess at said first end, said recess axially extending a predetermined distance into said second lag screw, and wherein said screw seat is located at the inner terminus of said recess.
9. A method for interlocking an intramedullary nail implantable within a medullary canal of a bone for stabilizing a fracture, the method comprising the steps of:
providing an intramedullary nail including an elongated shankwith a distal portion having a distal end and at least one distal transverse bore;
surgically implanting the intramedullary nail longitudinally into the medullary canal of the bone;
drilling a pilot through hole through a medial lateral direction of the bone along the axis of a distal transverse bore of said nail;
inserting an elongate first lag screw into a first side of said pilot hole, said first lag screw having a first outer cylindrical portion, a first outer threaded portion and a first axial bore having a first inner threaded portion, said outer cylindrical portion extending through and fitting closely within said transverse bore from a first side thereof, said first outer cylindrical and first outer threaded portions being axially spaced along the first lag screw length; and
inserting a second lag screw into a second side of said pilot hole, said second lag screw having a second outer threaded portion and an axial through bore having a screw seat, a mating portion and a second inner threaded portion, said mating portion engaging with said outer cylindrical portion of said first lag screw from a side of the transverse bore opposite from said first side, said screw seat and said mating portion axially spaced along the second lag screw length.
10. The method according to claim 9 further comprising the step of inserting a locking screw into said second lag screw, wherein said locking screw threadably engages said first inner threaded portion and said screw seat to connect said first and second lag screws together within said transverse bore so that said mating portion is assembled in cooperative relationship with said first cylindrical portion, whereby said locking screw operatively couples said first and second lag screws with said intramedullary nail.
11. The method according to claim 9 including using a guide wire to guide said first lag screw, said second lag screw and said locking screw, and providing in said first lag screw, said second lag screw and said locking screw an axial through hole for receiving said guide wire.
US09/935,526 2001-08-24 2001-08-24 Interlocking intramedullary nail Expired - Fee Related US6524314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/935,526 US6524314B1 (en) 2001-08-24 2001-08-24 Interlocking intramedullary nail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/935,526 US6524314B1 (en) 2001-08-24 2001-08-24 Interlocking intramedullary nail

Publications (2)

Publication Number Publication Date
US6524314B1 US6524314B1 (en) 2003-02-25
US20030040747A1 true US20030040747A1 (en) 2003-02-27

Family

ID=25467302

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/935,526 Expired - Fee Related US6524314B1 (en) 2001-08-24 2001-08-24 Interlocking intramedullary nail

Country Status (1)

Country Link
US (1) US6524314B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075637A1 (en) * 2003-04-04 2005-04-07 Semet Elliot Charles Interlocking IM nails with outer screw
US20080147066A1 (en) * 2006-12-19 2008-06-19 Zimmer Technology, Inc. Bone fixing system
US20100121327A1 (en) * 2008-11-11 2010-05-13 Zimmer, Gmbh Orthopedic screw
US20100211073A1 (en) * 2009-02-17 2010-08-19 Gregory Merrell Intramedullary compression rod
DE102009030177A1 (en) * 2009-06-24 2010-12-30 Aesculap Ag Implant for determining circular intramedullary nail in bone, has bone screw with thread shaft carries bone thread, tip, end and casing
US20120310283A1 (en) * 2011-06-02 2012-12-06 Morreale Vittorio M Segmental spinal fixation system and a method of fixating a plurality of spinal segments
US20210282821A1 (en) * 2020-03-11 2021-09-16 DePuy Synthes Products, Inc. Compression nut, a system and a method for treating a bone
US11478277B2 (en) 2020-03-11 2022-10-25 DePuy Synthes Products, Inc. Compression nut and a system for treating a bone

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527775B1 (en) * 2000-09-22 2003-03-04 Piper Medical, Inc. Intramedullary interlocking fixation device for the distal radius
US20050101961A1 (en) * 2003-11-12 2005-05-12 Huebner Randall J. Bone screws
US7955388B2 (en) * 2006-11-01 2011-06-07 Acumed Llc Orthopedic connector system
JP2006522637A (en) * 2003-04-09 2006-10-05 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Intramedullary nail for fixation of femoral fracture
US7799030B2 (en) * 2003-09-08 2010-09-21 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US7780667B2 (en) * 2003-09-08 2010-08-24 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US20050055024A1 (en) * 2003-09-08 2005-03-10 James Anthony H. Orthopaedic implant and screw assembly
DE20315613U1 (en) * 2003-10-08 2003-12-11 Aesculap Ag & Co. Kg Intervertebral implant
EP1691700B1 (en) * 2003-12-01 2012-01-11 Smith & Nephew, Inc. Humeral nail with insert for fixing a screw
US7588577B2 (en) * 2004-07-15 2009-09-15 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
US20060015101A1 (en) * 2004-07-15 2006-01-19 Wright Medical Technology, Inc. Intramedullary fixation assembly and devices and methods for installing the same
US8388667B2 (en) 2004-08-09 2013-03-05 Si-Bone, Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US20070156241A1 (en) 2004-08-09 2007-07-05 Reiley Mark A Systems and methods for the fixation or fusion of bone
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US9662158B2 (en) * 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US20060036251A1 (en) 2004-08-09 2006-02-16 Reiley Mark A Systems and methods for the fixation or fusion of bone
US20180228621A1 (en) 2004-08-09 2018-08-16 Mark A. Reiley Apparatus, systems, and methods for the fixation or fusion of bone
US8414648B2 (en) 2004-08-09 2013-04-09 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US8444693B2 (en) 2004-08-09 2013-05-21 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US7410488B2 (en) 2005-02-18 2008-08-12 Smith & Nephew, Inc. Hindfoot nail
US7951198B2 (en) 2005-05-10 2011-05-31 Acumed Llc Bone connector with pivotable joint
US20080221623A1 (en) * 2005-10-17 2008-09-11 Gooch Hubert L Systems and Methods for the Medical Treatment of Structural Tissue
CA2667776C (en) * 2006-11-17 2015-01-20 Synthes Usa, Llc Intramedullary nail including stable locking bolts
US7918853B2 (en) * 2007-03-20 2011-04-05 Smith & Nephew, Inc. Orthopaedic plate and screw assembly
US9597129B2 (en) * 2007-05-25 2017-03-21 Zimmer Gmbh Reinforced intramedullary nail
US8771283B2 (en) 2007-12-17 2014-07-08 Wright Medical Technology, Inc. Guide assembly for intramedullary fixation and method of using the same
CA2719699C (en) 2008-03-26 2018-05-15 Synthes Usa, Llc Universal anchor for attaching objects to bone tissue
US20110087331A1 (en) 2008-06-05 2011-04-14 Synthes Usa, Llc Articulating disc implant
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010006195A1 (en) * 2008-07-09 2010-01-14 Amei Technologies, Inc. Ankle arthrodesis nail and outrigger assembly
EP2954862B1 (en) * 2008-12-05 2017-03-22 Synthes GmbH Anchor-in-anchor system for use in bone fixation
US9060808B2 (en) 2008-12-05 2015-06-23 DePuy Synthes Products, Inc. Anchor-in-anchor system for use in bone fixation
US8449544B2 (en) 2009-06-30 2013-05-28 Smith & Nephew, Inc. Orthopaedic implant and fastener assembly
BRPI1011556A2 (en) 2009-06-30 2016-03-29 Smith & Nephew Inc orthopedic implant and fixation assembly
WO2013134682A1 (en) 2012-03-09 2013-09-12 Si-Bone Inc. Artificial si joint
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
CN104334102A (en) 2012-03-09 2015-02-04 西-博恩公司 Integrated implant
EP2846705B1 (en) 2012-05-04 2018-12-26 SI-Bone, Inc. Fenestrated implant
US9936983B2 (en) 2013-03-15 2018-04-10 Si-Bone Inc. Implants for spinal fixation or fusion
DE102013005414A1 (en) * 2013-03-28 2014-10-02 Dietmar Wolter Osteosynthesis system for the multidirectional, angularly stable treatment of fractures of long bones including an intramedullary nail and bone screws
US9839448B2 (en) 2013-10-15 2017-12-12 Si-Bone Inc. Implant placement
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US9662157B2 (en) 2014-09-18 2017-05-30 Si-Bone Inc. Matrix implant
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
WO2019067584A1 (en) 2017-09-26 2019-04-04 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
AU2018347969A1 (en) * 2017-10-09 2020-05-07 Acumed Llc System and method for bone fixation using a nail locked to an encircling anchor
MX2020003481A (en) 2017-10-11 2020-12-07 Howmedica Osteonics Corp Humeral fixation plate guides.
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
EP3923829A4 (en) 2019-02-14 2022-12-14 SI-Bone, Inc. Implants for spinal fixation and or fusion
US11350976B2 (en) * 2019-11-06 2022-06-07 DePuy Synthes Products, Inc. System and method for treating a bone
WO2021108590A1 (en) 2019-11-27 2021-06-03 Si-Bone, Inc. Bone stabilizing implants and methods of placement across si joints
JP2023553120A (en) 2020-12-09 2023-12-20 エスアイ-ボーン・インコーポレイテッド Sacroiliac joint stabilization implants and implant methods

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH668173A5 (en) 1984-05-14 1988-12-15 Synthes Ag DEVICE FOR FIXING TUBE BONE FRACTURES WITH A BONE MARBLE NAIL AND AT LEAST ONE CROSS-BOLT LOCKING.
US4644943A (en) 1984-07-20 1987-02-24 Regents Of The University Of Minnesota Bone fixation device
US4913137A (en) 1988-02-09 1990-04-03 Orthopedic Designs, Inc. Intramedullary rod system
US4858601A (en) 1988-05-27 1989-08-22 Glisson Richard R Adjustable compression bone screw
FR2698261B1 (en) 1992-11-24 1995-03-17 Lacaffiniere Jean Yves De Device for guiding a double screw of the neck of the femur for locked trochantero-diaphyseal nail.
GB9411693D0 (en) 1994-06-10 1994-08-03 Matthews Michael G Surgical intramedullary nail for stabilisation of condylar and supracondylar fractures
DE29615482U1 (en) 1996-09-05 1998-01-08 Howmedica Gmbh Supracondylar bone nail
US5810821A (en) 1997-03-28 1998-09-22 Biomet Inc. Bone fixation screw system
US6019761A (en) 1998-12-23 2000-02-01 Gustilo; Ramon B. Intramedullary nail and method of use
US6443954B1 (en) * 2001-04-24 2002-09-03 Dale G. Bramlet Femoral nail intramedullary system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075637A1 (en) * 2003-04-04 2005-04-07 Semet Elliot Charles Interlocking IM nails with outer screw
US20080147066A1 (en) * 2006-12-19 2008-06-19 Zimmer Technology, Inc. Bone fixing system
EP1935361A1 (en) * 2006-12-19 2008-06-25 Zimmer Technology, Inc. Bone fixing system
US8808292B2 (en) 2008-11-11 2014-08-19 Zimmer Gmbh Orthopedic screw
US20100121327A1 (en) * 2008-11-11 2010-05-13 Zimmer, Gmbh Orthopedic screw
US20100211073A1 (en) * 2009-02-17 2010-08-19 Gregory Merrell Intramedullary compression rod
WO2010096298A2 (en) * 2009-02-17 2010-08-26 Gregory Merrell Intramedullary compression rod
WO2010096298A3 (en) * 2009-02-17 2011-01-27 Gregory Merrell Intramedullary compression rod
US9622798B2 (en) 2009-02-17 2017-04-18 Gregory Merrell Intramedullary compression rod
DE102009030177A1 (en) * 2009-06-24 2010-12-30 Aesculap Ag Implant for determining circular intramedullary nail in bone, has bone screw with thread shaft carries bone thread, tip, end and casing
DE102009030177B4 (en) 2009-06-24 2018-04-26 Aesculap Ag Medullary nail and implant for fixing a medullary nail
US20120310283A1 (en) * 2011-06-02 2012-12-06 Morreale Vittorio M Segmental spinal fixation system and a method of fixating a plurality of spinal segments
US20210282821A1 (en) * 2020-03-11 2021-09-16 DePuy Synthes Products, Inc. Compression nut, a system and a method for treating a bone
US11471200B2 (en) * 2020-03-11 2022-10-18 DePuy Synthes Products, Inc. Compression nut, a system and a method for treating a bone
US11478277B2 (en) 2020-03-11 2022-10-25 DePuy Synthes Products, Inc. Compression nut and a system for treating a bone

Also Published As

Publication number Publication date
US6524314B1 (en) 2003-02-25

Similar Documents

Publication Publication Date Title
US6524314B1 (en) Interlocking intramedullary nail
US5562666A (en) Method for treating intertrochanteric fracture utilizing a femoral fracture device
US4827917A (en) Fermoral fracture device
US5167663A (en) Femoral fracture device
JP3009232B2 (en) Hip intramedullary screw
US6517541B1 (en) Axial intramedullary screw for the osteosynthesis of long bones
US6524313B1 (en) Intramedullary nail system
US7425213B2 (en) Method of endosteal nailing
US6123708A (en) Intramedullary bone fixation rod
US6562042B2 (en) Orthopedic implant used to repair intertrochanteric fractures and a method for inserting the same
US4733654A (en) Intramedullar nailing assembly
US7645279B1 (en) Bone fixation method
JPH10501438A (en) Intramedullary nail
WO2013075730A1 (en) Implant system for bone fixation
US9161790B2 (en) Adjustable length orthopedic device
WO2006107264A1 (en) Surgical fixation pin
US8758345B2 (en) Interlocking nail geometry and method of use
JPH02277452A (en) Appliance implanted into femur
KR20050123111A (en) Hybrid interlocking proximal femoral fracture fixation
US11219476B2 (en) Surgical systems, kits and methods for setting bone segments
CA2446779C (en) Osteosynthetic device
EP1792578A1 (en) Implant and applicator for osteosynthesis of the elbow
Mueckley et al. Compression nailing of long bones
AU2013248171B2 (en) Modular lag screw
NL2025982B1 (en) Bone compression device

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20070225