US20030017471A1 - Universal variable fragments - Google Patents

Universal variable fragments Download PDF

Info

Publication number
US20030017471A1
US20030017471A1 US09/958,221 US95822102A US2003017471A1 US 20030017471 A1 US20030017471 A1 US 20030017471A1 US 95822102 A US95822102 A US 95822102A US 2003017471 A1 US2003017471 A1 US 2003017471A1
Authority
US
United States
Prior art keywords
oligonucleotide
amplification
genomic dna
dna
repeat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/958,221
Other versions
US6686160B2 (en
Inventor
Willem Van Haeringen
Hendrik van Haeringen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Van Haeringen Laboratorium BV
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to DR. VAN HAERINGEN LABORATORIUM B.V. reassignment DR. VAN HAERINGEN LABORATORIUM B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENDRIK, VAN HAERINGEN, VAN HAERINGEN, WILLEM ANNE
Publication of US20030017471A1 publication Critical patent/US20030017471A1/en
Priority to US10/676,849 priority Critical patent/US20050164203A9/en
Application granted granted Critical
Publication of US6686160B2 publication Critical patent/US6686160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms

Definitions

  • the invention relates generally to methods and materials for the genetic analysis of an individual organism.
  • the invention provides a new technology which has been developed for the quick genetic analysis of a species and individuals thereof.
  • the method includes the use of first and second oligonucleotide primers for performance of a PCR amplification on the genomic DNA.
  • the first oligonucleotide primer is a 5′ variation generator, including a repeat sequence and a least one non-repeat nucleotide.
  • the second oligonucleotide primer is a 3′ fragment generator starting within such a genetic distance that amplification of the genomic DNA can be performed, and preferably includes inosine.
  • a PCR amplification of the genomic DNA is conducted at a relatively low annealing temperature using both the first and second oligonucleotide primers under conditions such that essentially neither the first nor the second oligonucleotide primer alone can amplify sufficient DNA to be detected.
  • DNA fragments are thus produced based on repeat sequences on one end of the genomic DNA, and other sequences based on the opposite end of the genomic DNA.
  • the resulting PCR products can then be analysed for the length of a repeat sequence found in the genome.
  • a second PCR is preferably conducted on the diluted PCR products of the first PCR. Such a second PCR would be conducted using third and fourth oligonucleotide primers.
  • the third and fourth oligonucleotide primers are elongated versions of the first and second oligonucleotide primers, respectively, thus enabling PCR amplification at relatively higher annealing temperatures, and enabling a selection of a sub-set of the DNA fragments amplified in the first PCR.
  • an optional but preferred restriction digestion may be conducted.
  • the technology has been developed for the quick genetic analysis of a species which is reliable, reproducible, simple, and useful for all species/organisms (e.g., animal, avian, bacterial, viral, and plant).
  • the invention particularly relates to samples obtainable from non-human species but is applicable to samples obtained from humans as well.
  • the new technology is generally reliable, reproducible, simple, and useful for all species/organisms (e.g., animal, avian, bacterial, viral, and plant). Furthermore, any material containing DNA (e.g., blood, hair follicles, etc.) can be used as a source for the generation of DNA-patterns.
  • species/organisms e.g., animal, avian, bacterial, viral, and plant.
  • any material containing DNA e.g., blood, hair follicles, etc.
  • the invention includes a method of analysing genomic DNA in a sample.
  • This method includes providing first and second oligonucleotide primers, wherein the first oligonucleotide primer is a “5′ variation generator” comprising a repeat sequence and at least one non-repeat nucleotide on the first oligonucleotide's 5′ end. Meanwhile, the second oligonucleotide primer is a “3′ fragment generator” starting within such a genetic distance that amplification of the genomic DNA can be performed.
  • a nucleic acid amplification such as a polymerase chain reaction (“PCR”) amplification is conducted on the genomic DNA in the sample using both the first and second oligonucleotide primers.
  • PCR polymerase chain reaction
  • the nucleic acid amplification is conducted under conditions such that neither the first nor the second oligonucleotide primer alone amplifies DNA, thus producing DNA fragments based on repeat sequences on one end of the genomic DNA and other sequences based on the opposite end of the genomic DNA.
  • the amplified products are then analysed to determine the length of a repeat sequence found in said genomic DNA, which can be compared with the DNA putatively of the same individual or the DNA of the individual's putative ancestors or relatives.
  • the first primer includes a complementary repeat sequence and at least one non-repeat nucleotide so as to start the amplification at a repeat sequence of the genomic DNA.
  • the 3′ fragment generator is used to amplify fragments of reasonable sizes (e.g., 100 base pairs to 10 kb).
  • the 3′ fragment generator starts within such a genetic distance, that amplification of a sample DNA can be perform, and preferably includes inosine or another a-selective base allowing to influence annealing temperatures without coincident or equal influence on the stringency of the annealing reaction.
  • the 3′ fragment generator is designed to anneal to the DNA within a short distance—as mentioned before.
  • the number of selective nucleotides is kept at a low number, whereas the annealing temperature is influenced by a number of non-selective nucleotides, such as inosines, universal bases, and any combination of A,C,G or T (e.g. R,Y,N.
  • the invention provides optimal reaction conditions in the reaction, generally well suited to the reaction conditions required for the 5′ generator.
  • the number of selective nucleotides of this primer is maintained at a relatively low number, whereby the annealing temperature is raised to enable reliable and reproducible amplification, using a-selective bases such as inosines in the fragment generator oligonucleotide.
  • markers identified using the technology will be located on the male and female sex-chromosomes. After the identification of such markers, these markers can be used to determine the sex of species, which are difficult to establish through phenotypic characteristics (e.g., porcupine or crocodile).
  • the invention also includes a kit of parts for performing the genetic analysis, and a method of manufacturing such kit for use in genetic analysis.
  • the invention is further described in the detailed description without limiting the invention thereto
  • PCR is one of many well known amplification methods known in the art, and will not be described further here.
  • genomic DNA from the sample is amplified in a first PCR at relatively low annealing temperatures.
  • the 5′ variation generator and the 3′ fragment generator are used to generate fragments, of which a selected part is to be used in a second PCR
  • the first PCR is usually run under conditions wherein neither the 5′ variation generator nor the 3′ fragment generator alone amplify DNA.
  • DNA amplification is performed using both the 5′ variation generator and the 3′ fragment generator, many resulting fragments are based on repeat sequences on one end of the genomic DNA, and, at the same time, many sequences based on an opposite end of an genomic DNA result.
  • a second PCR is preferably performed.
  • This second PCR is conducted using third and fourth oligonucleotide primers.
  • the third and fourth oligonucleotide primers are commonly elongated versions of the first and second oligonucleotide primers, respectively, thus enabling PCR amplification at relatively higher annealing temperatures, and enabling a selection of a sub-set of the DNA fragments amplified in the first PCR.
  • the fourth oligonucleotide primer preferably includes inosine residues.
  • restriction digestion may take place.
  • Another source of genetic variation in amplified fragments is the presence or absence of restriction sites. Addition of a restriction digest after the second PCR increases the number of genetic polymorphisms detected. Furthermore, the sizes of the DNA fragments to be analysed for their length are decreased as well.
  • the amplified PCR products can then be analysed using a variety of existing methods.
  • the variation generator starts at a repeat sequence, while the fragment generator starts within such a genetic distance, that amplification of the DNA can be performed.
  • repeat sequences exist throughout any genome in many variations, such as mononucleotide (A, G, C or T) repeat, dinucleotide (CT, CA, CG, AT, AC, AG, GT, GC, GA, TA, TG and TC) repeat, trinucleotide (e.g., TGA, CTG, etc.) repeat, tetranucleotide (e.g., TGCA, CTGT) repeat, and so forth.
  • an AC repeat can have the structure: CACACACACACA (SEQ. ID. NO. 1 ) (“6-repeat”), or CACACA (SEQ. I.D. NO. 2) (3-repeat).
  • oligonucleotide primer By localising the oligonucleotide primer at the 5′ site of repeat sequences as described herein, the repeat length variation is enclosed in the amplification rounds which are part of PCR. Primers are forced to hybridise at 5′ ends of repeat sequences by adding one or more nucleotides which do not continue the repeat pattern at the 5′ end of the primer. This result is due to the nature of the amplifying enzyme, which elongates DNA-fragments starting from the 3′-end of oligonucleotide primers.
  • the 3′ fragment generator is essentially used to amplify fragments of reasonable sizes (100 bp to 10 kb).
  • the number of selective oligonucleotides of the primer is maintained at a low number.
  • the annealing temperature at the same time is raised to enable reliable and reproducible amplification. This is done using inosine substitutions in the fragment generator. Inosines are used to increase annealing temperatures without affecting the binding conditions of oligonucleotides. Inosines match to any of the four nucleotides in the DNA. When inosine is substituted for a nucleic acid, it contributes to the sensitivity of the technique.
  • the resulting amplified fragments are preferably subjected to restriction digestion to determine the presence or absence of restriction sites.
  • Use of the restriction enzymes increases the number of genetic polymorphisms detected.
  • the preferably digested) product is then sequenced using techniques known in the art to determine the particular genetic patterns or markers present, when so desired.
  • UVF universal variable fragments
  • UVF has an increased power to generate polymorphisms in search for high marker density.
  • One distinct advantage of the UVF system is found in the possibility to increase the marker density in regions of chromosomes of specific interest by choosing the order of the bases of the Fragment Generator—instead of random in the flanking region of a known genetic marker.
  • AFLP and SAMPL
  • ISSR Inter Simple Sequence Repeat
  • RAPD random amplified polymorphism detection
  • b) Amplification using ISSR Inter Simple Sequence Repeat is based on one primer in one PCR reaction. UVF is completely different based on typically two PCR amplifications and the use of a digestion step.
  • AFLP Amplified Fragment Length Polymorphisms
  • SAMPL is completely based on AFLP, but is directed to the detection of microsatellites using the AFLP technology.
  • UVF ultraviolet-sensitive fluorescent dye
  • the number of markers in a defined region can be increased using the UVF technology. This can be achieved by locating the nine bases of the Fragment Generator in the flanking region of the polymorphic marker. This enables generation of genetic markers in specific areas of interest. Using this approach, the range in which QTLs may be located can be decreased, and e.g. ‘candidate gene approach’ can be more directed.
  • a genetic marker e.g. RFLP or microsatellite
  • This strategy can be further used to detect genetic variation in the genomic regions close to promoter sites located close to genes.
  • the design of the Fragment Generator can be based on general promoter sites, or based on sequences recognized by transcription factors. This further illustrates the power of UVF over other available technologies.
  • UVF Due to the nature of UVF, small quantities of DNA can be used to generate DNA-profiles. This enables the use of UVF in situations where only limited amounts of DNA are available for genetic analysis—e.g. forensics.
  • UVF enables the search for breed- and species-specific markers.
  • (sub)-species identification of for example birds will solve many enduring discussions.
  • the invention is quite straightforward.
  • the invention provides rapid and straightforward identification of endangered animals and plants. Many wildlife species—both animals and plants—are protected by law. Only limited numbers of individuals may be kept in private. However, identification and lineage of these individuals needs to be proven to effectively protect the law.
  • the invention provides the means to answer any question in wildlife management relating to identity or lineage, also of species of which specific sequences are little known.
  • the invention also provides genetic maps of a species. In some species genetic information, and certainly genetic maps are underdeveloped. Usually, identification of genetic markers is time and labour consuming using the existing methodologies (e.g. microsatellites).
  • the genetic markers of the individual can likewise be determined for the putative parents.
  • the sets of markers e.g., the number of repeats in a locus the length variation of the set of amplified fragments, and so on
  • the sets of markers from an individual can then be compared with the markers of the putative parent or parents, and a determination of lineage made.
  • the aforementioned hawk for instance, if the number of repeats in a particular locus of the hawk's DNA do not match that of the tamed breeding putative parents, the conclusion can be drawn that the tamed breeding pair are not the parents.
  • a library would first be constructed of the particular species (e.g., crocodile) with particular emphasis put on the Y chromosome. Once conserved genetic markers present on the Y chromosome are identified for the species, the DNA of the individual in question can be analysed with the instant invention.
  • species e.g., crocodile
  • a kit of parts for use with the invention includes first and second oligonucleotide primers for performance of the first polymerase chain reaction amplification on the genomic DNA of the individual.
  • the first oligonucleotide primer is a 5′ variation generator, starting at a repeat sequence.
  • the second oligonucleotide primer is a 3′ fragment generator starting within such a genetic distance that amplification of the genomic DNA can be performed.
  • the kit will also preferably include components for performing the second PCR.
  • Such components include third and fourth oligonucleotide primers, wherein the third oligonucleotide primers is an elongated version of the 5′ variation generator, and the fourth oligonucleotide primers is an elongated version of the 3′ fragment generator.
  • the kit of parts further also preferably includes appropriate restriction enzymes.
  • the hereinafter described examples of feasible primer sequences were determined.
  • the 5′ (left) end of the variation generator includes a nucleotide which is not consistent with the existing repeat pattern of the repeat sequence.
  • ATGTGTGTG (SEQ. I.D. NO. 4)
  • CTGTGTGTG SEQ. I.D. NO. 5
  • CCACACACA SEQ. I.D. NO. 6
  • ATGTCTIIIT SEQ. I.D. NO. 13
  • TIIIACGTCG SEQ. I.D. NO. 15
  • Genomaic DNA taken from a sample was amplified in a first PCR at low annealing temperatures (for example 30-65° C., but preferably lower than temperatures used at an optional second round of amplification).
  • low annealing temperatures for example 30-65° C., but preferably lower than temperatures used at an optional second round of amplification.
  • the previously described oligonucleotide primers were used to generate fragments.
  • the first PCR was run under conditions, where neither the fragment generator primer nor the variation generator primer alone could amplify DNA.
  • a second PCR was conducted using the resulting fragments.
  • This second PCR was based on the hereinafter described fragment and variation generators, which, as can be seen, were elongated to enable PCR amplification at higher annealing temperatures (40-70° C.). This enabling the selection of a sub-set of the DNA-fragments amplified in PCR 1.
  • PCR Variation generator
  • CTGTGTGTGTGTGTG (SEQ. I.D. NO. 18)
  • Fragment generator Six examples are shown:
  • ATGTCIIIITIIIITA SEQ. I.D. NO. 23
  • TIIITGTCAGIIIA SEQ. I.D. NO. 24
  • TIIIACGTCGIIIA SEQ. I.D. NO. 26
  • the samples used in the illustrations are based on high molecular DNA obtained from blood samples from each animal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

A method and associated kit for analysing genomic DNA in a sample, said method comprising: providing first and second oligonucleotide primers, said first oligonucleotide primer being a 5′ variation generator, and comprising a repeat sequence and at least one nucleotide inconsistent with the repeat pattern, said first oligonucleotide primer having at least one nucleotide positioned on the first oligonucleotide's 5′ end, and said second oligonucleotide primer being a 3′fragment generator starting within such a genetic distance that amplification of the genomic DNA can be performed; conducting a nucleic acid amplification on said genomic DNA in the sample at a relatively low annealing temperature using both the first and second oligonucleotide primers, said amplification being conducted under conditions such that neither the first nor the second oligonucleotide primer alone can amplify DNA, thus producing DNA fragments based on repeat sequences on one end of the genomic DNA and other sequences based on the opposite end of the genomic DNA; and analysing the amplified products thus produced to determine the length of a repeat sequence found in said genomic DNA.

Description

  • The invention relates generally to methods and materials for the genetic analysis of an individual organism. [0001]
  • For some species, reliable, simple technologies are available for genetic analysis of individuals. However, for most animal and bird species genetic information is insufficient for applied genetics. Developing existing technologies for each species to obtain genetic data will be extremely laborious and time consuming. Progress to date has been slow. The situation is particularly problematic in the area of wildlife management. For example, building DNA-patterns of hawks is currently almost impossible. At the same time, there have been reports of people illegally placing eggs from wild mating hawk couples in tamed breeding hawk nests. It is currently nearly impossible to prove fraud using DNA-data in species where genetic variation has not been previously described. [0002]
  • Other areas of interest are DNA-identification of exotic species (e.g., animals, plants, organisms) for various reasons. For instance, animals arriving through the veterinary control can be identified by sampling them both at departure, as well as at arrival. Using the animal's individual DNA to identify it, animals can be tracked, and proof of their origin always possible. [0003]
  • Furthermore, parentage verification in rare, expensive, animals and strain identification of plants can be performed for any given combination Or species. Reports have been made of selling the offspring of ‘lower’ breeding parents as the highest possible quality animals. [0004]
  • Another problem is the determination of sex. For many exotic species, genetic markers are not available to perform sex determination. [0005]
  • A need exists for a method of quickly genetically analysing a species to determine, among other things, its lineage, sex, and origin. [0006]
  • The invention provides a new technology which has been developed for the quick genetic analysis of a species and individuals thereof. The method includes the use of first and second oligonucleotide primers for performance of a PCR amplification on the genomic DNA. The first oligonucleotide primer is a 5′ variation generator, including a repeat sequence and a least one non-repeat nucleotide. The second oligonucleotide primer is a 3′ fragment generator starting within such a genetic distance that amplification of the genomic DNA can be performed, and preferably includes inosine. A PCR amplification of the genomic DNA is conducted at a relatively low annealing temperature using both the first and second oligonucleotide primers under conditions such that essentially neither the first nor the second oligonucleotide primer alone can amplify sufficient DNA to be detected. DNA fragments are thus produced based on repeat sequences on one end of the genomic DNA, and other sequences based on the opposite end of the genomic DNA. The resulting PCR products can then be analysed for the length of a repeat sequence found in the genome. A second PCR is preferably conducted on the diluted PCR products of the first PCR. Such a second PCR would be conducted using third and fourth oligonucleotide primers. The third and fourth oligonucleotide primers are elongated versions of the first and second oligonucleotide primers, respectively, thus enabling PCR amplification at relatively higher annealing temperatures, and enabling a selection of a sub-set of the DNA fragments amplified in the first PCR. At any point, an optional but preferred restriction digestion may be conducted. The technology has been developed for the quick genetic analysis of a species which is reliable, reproducible, simple, and useful for all species/organisms (e.g., animal, avian, bacterial, viral, and plant). The invention particularly relates to samples obtainable from non-human species but is applicable to samples obtained from humans as well. Neither variation in genome length nor genome composition appears to influence or limit the characteristics of the technology. The new technology is generally reliable, reproducible, simple, and useful for all species/organisms (e.g., animal, avian, bacterial, viral, and plant). Furthermore, any material containing DNA (e.g., blood, hair follicles, etc.) can be used as a source for the generation of DNA-patterns. [0007]
  • In one aspect, the invention includes a method of analysing genomic DNA in a sample. This method includes providing first and second oligonucleotide primers, wherein the first oligonucleotide primer is a “5′ variation generator” comprising a repeat sequence and at least one non-repeat nucleotide on the first oligonucleotide's 5′ end. Meanwhile, the second oligonucleotide primer is a “3′ fragment generator” starting within such a genetic distance that amplification of the genomic DNA can be performed. A nucleic acid amplification such as a polymerase chain reaction (“PCR”) amplification is conducted on the genomic DNA in the sample using both the first and second oligonucleotide primers. The nucleic acid amplification is conducted under conditions such that neither the first nor the second oligonucleotide primer alone amplifies DNA, thus producing DNA fragments based on repeat sequences on one end of the genomic DNA and other sequences based on the opposite end of the genomic DNA. The amplified products are then analysed to determine the length of a repeat sequence found in said genomic DNA, which can be compared with the DNA putatively of the same individual or the DNA of the individual's putative ancestors or relatives. [0008]
  • Alternatively, and as more thoroughly described hereinafter, multiple amplifications and/or restriction digestion might also be used with the technique. [0009]
  • As described, the first primer, the “5′ variation generator”, includes a complementary repeat sequence and at least one non-repeat nucleotide so as to start the amplification at a repeat sequence of the genomic DNA. [0010]
  • By localising the 5′ variation generator at the 5′ site of repeat sequences, the repeat length variation is enclosed in the amplification rounds. Primers are thus bound to hybridise at the 5′ ends of repeat sequences by addition of one or more nucleotides at the end of the primer. [0011]
  • While the oligonucleotide primers at repeat sequences provide detection of genetic variation, the 3′ fragment generator is used to amplify fragments of reasonable sizes (e.g., 100 base pairs to 10 kb). The 3′ fragment generator starts within such a genetic distance, that amplification of a sample DNA can be perform, and preferably includes inosine or another a-selective base allowing to influence annealing temperatures without coincident or equal influence on the stringency of the annealing reaction. The 3′ fragment generator is designed to anneal to the DNA within a short distance—as mentioned before. To do this, the number of selective nucleotides is kept at a low number, whereas the annealing temperature is influenced by a number of non-selective nucleotides, such as inosines, universal bases, and any combination of A,C,G or T (e.g. R,Y,N. By providing the use of such a 3′ fragment generator the invention provides optimal reaction conditions in the reaction, generally well suited to the reaction conditions required for the 5′ generator. In short, the number of selective nucleotides of this primer is maintained at a relatively low number, whereby the annealing temperature is raised to enable reliable and reproducible amplification, using a-selective bases such as inosines in the fragment generator oligonucleotide. [0012]
  • Some of the genetic markers identified using the technology will be located on the male and female sex-chromosomes. After the identification of such markers, these markers can be used to determine the sex of species, which are difficult to establish through phenotypic characteristics (e.g., porcupine or crocodile). [0013]
  • The invention also includes a kit of parts for performing the genetic analysis, and a method of manufacturing such kit for use in genetic analysis. The invention is further described in the detailed description without limiting the invention thereto [0014]
  • DETAILED DESCRIPTION
  • To combine the amplification of many DNA-fragments with the selection of a specific set of informative DNA-fragments, a preferred protocol is used which is based on two subsequent PCR amplifications. PCR is one of many well known amplification methods known in the art, and will not be described further here. [0015]
  • In a preferred method, genomic DNA from the sample is amplified in a first PCR at relatively low annealing temperatures. The 5′ variation generator and the 3′ fragment generator are used to generate fragments, of which a selected part is to be used in a second PCR The first PCR is usually run under conditions wherein neither the 5′ variation generator nor the 3′ fragment generator alone amplify DNA. Thus, when DNA amplification is performed using both the 5′ variation generator and the 3′ fragment generator, many resulting fragments are based on repeat sequences on one end of the genomic DNA, and, at the same time, many sequences based on an opposite end of an genomic DNA result. [0016]
  • After possible dilution of the PCR products of the first PCR, a second PCR is preferably performed. This second PCR is conducted using third and fourth oligonucleotide primers. The third and fourth oligonucleotide primers are commonly elongated versions of the first and second oligonucleotide primers, respectively, thus enabling PCR amplification at relatively higher annealing temperatures, and enabling a selection of a sub-set of the DNA fragments amplified in the first PCR. The fourth oligonucleotide primer preferably includes inosine residues. [0017]
  • At any point during this procedure, a preferred, but optional, restriction digestion may take place. Another source of genetic variation in amplified fragments is the presence or absence of restriction sites. Addition of a restriction digest after the second PCR increases the number of genetic polymorphisms detected. Furthermore, the sizes of the DNA fragments to be analysed for their length are decreased as well. [0018]
  • The amplified PCR products can then be analysed using a variety of existing methods. [0019]
  • As can be determined, in the first PCR amplification, many DNA-fragments are amplified, whereas in the second PCR amplification, a subset of these DNA-fragments are multiplied. Both reactions are preferably run under stringent conditions. Primers used in the PCR procedure can vary in length. Lengths between 4 and 50 nucleotides or inosines were used in the examples. [0020]
  • Primer Design
  • As previously identified, the variation generator starts at a repeat sequence, while the fragment generator starts within such a genetic distance, that amplification of the DNA can be performed. [0021]
  • For the 5′ variation generator, repeat sequences exist throughout any genome in many variations, such as mononucleotide (A, G, C or T) repeat, dinucleotide (CT, CA, CG, AT, AC, AG, GT, GC, GA, TA, TG and TC) repeat, trinucleotide (e.g., TGA, CTG, etc.) repeat, tetranucleotide (e.g., TGCA, CTGT) repeat, and so forth. For instance, an AC repeat can have the structure: CACACACACACA (SEQ. ID. NO. 1 ) (“6-repeat”), or CACACA (SEQ. I.D. NO. 2) (3-repeat). [0022]
  • Repeat sequences of course also exist in the as yet unanalysed genomes of species. Repeat sequences exhibit different lengths due to the number of repeats present. For different individuals, differences exist in the numbers of repeats in each locus (“microsatellite”). Thus, genetic variation in repeat sequences can he determined based upon length variation caused by the number of nucleotide repeats in a locus. The number of repeats in a microsatellite can vary enormously with different individuals of the species. Many sequences contain a few repeats (e.g., 2 or 3), whereas some repeats are known to include thousands of base pairs (“bp”). [0023]
  • By localising the oligonucleotide primer at the 5′ site of repeat sequences as described herein, the repeat length variation is enclosed in the amplification rounds which are part of PCR. Primers are forced to hybridise at 5′ ends of repeat sequences by adding one or more nucleotides which do not continue the repeat pattern at the 5′ end of the primer. This result is due to the nature of the amplifying enzyme, which elongates DNA-fragments starting from the 3′-end of oligonucleotide primers. [0024]
  • While the choice of oligonucleotide primers at repeat sequences provides most the detection of genetic variation, the 3′ fragment generator is essentially used to amplify fragments of reasonable sizes (100 bp to 10 kb). [0025]
  • The number of selective oligonucleotides of the primer is maintained at a low number. The annealing temperature at the same time, is raised to enable reliable and reproducible amplification. This is done using inosine substitutions in the fragment generator. Inosines are used to increase annealing temperatures without affecting the binding conditions of oligonucleotides. Inosines match to any of the four nucleotides in the DNA. When inosine is substituted for a nucleic acid, it contributes to the sensitivity of the technique. [0026]
  • PCR
  • To combine the amplification of many DNA-fragments with the selection of a specific set of informative DNA-fragments, a protocol is used which is based on two subsequent PCR-amplifications. In the first PCR amplification, many DNA-fragments are amplified, whereas in the second PCR amplification, a subset of these DNA-fragments are multiplied. Both reactions are run under stringent conditions. [0027]
  • After the PCR (or PCRs) have been conducted, the resulting amplified fragments are preferably subjected to restriction digestion to determine the presence or absence of restriction sites. Use of the restriction enzymes increases the number of genetic polymorphisms detected. [0028]
  • The preferably digested) product is then sequenced using techniques known in the art to determine the particular genetic patterns or markers present, when so desired. [0029]
  • Applications
  • The nature of universal variable fragments (UVF) combines flexibility and reproducibility with high levels of polymorphisms. The Variation Generator (based on the microsatellite sequence) mostly corresponds with genetic variation typically found in microsatellites, whereas the Fragment Generator is mainly linked to presence/absence polymorphisms. This strategy is typically based on the use of two different fluorescent labels—one associated with the Variation Generator, the other corresponding to the Fragment Generator. This concept enables the optimal use of high throughput analysis systems based on multiple fluorescent dyes. [0030]
  • In comparison with other technologies, e.g. AFLP, UVF has an increased power to generate polymorphisms in search for high marker density. One distinct advantage of the UVF system is found in the possibility to increase the marker density in regions of chromosomes of specific interest by choosing the order of the bases of the Fragment Generator—instead of random in the flanking region of a known genetic marker. As a result, a number of genetic markers can be identified within a short distance from e.g. QTL-markers. This prospect is not possible with other technologies such as AFLP (and SAMPL), or ISSR (Inter Simple Sequence Repeat). [0031]
  • Compared to Several Technologies UVF is Different
  • a) The power to generate polymorphisms is much larger compared to RAPD (random amplified polymorphism detection). Due to it's concept of a three step strategy, UVF has increased power to generate polymorphisms. RAPD is based on only one primer in just one PCR, whereas UVF is typically based on two consequent PCR amplifications, followed by a digestion step. [0032]
  • b) Amplification using ISSR (Inter Simple Sequence Repeat) is based on one primer in one PCR reaction. UVF is completely different based on typically two PCR amplifications and the use of a digestion step. [0033]
  • c) Amplified Fragment Length Polymorphisms (AFLP) is based on the use of adaptor ligation to initiate PCR. This procedure is topically completely absent in UVF, as is the obligation to start the reaction with a digestion of several restriction enzymes. [0034]
  • d) SAMPL is completely based on AFLP, but is directed to the detection of microsatellites using the AFLP technology. [0035]
  • Furthermore, compared to RAPD and microsatellite analysis the power to generate large amounts of polymorphisms from a small amount of genomic DNA is clear. [0036]
  • Several Areas For Applications Based on UVF Include
  • 1. Gene hunting [0037]
  • The detection and identification of genetic markers for diseases or beneficial genetic characteristics is possible using UVF. Due to its effectiveness, even in species with a relatively well-developed genetic map UVF is useful. In other species where the number of available genetic markers is low, UVF will be the technology of choice. [0038]
  • 2. Marker density [0039]
  • In situations where QTL-analysis has revealed a genetic marker (e.g. RFLP or microsatellite) with known sequence the number of markers in a defined region can be increased using the UVF technology. This can be achieved by locating the nine bases of the Fragment Generator in the flanking region of the polymorphic marker. This enables generation of genetic markers in specific areas of interest. Using this approach, the range in which QTLs may be located can be decreased, and e.g. ‘candidate gene approach’ can be more directed. [0040]
  • This strategy can be further used to detect genetic variation in the genomic regions close to promoter sites located close to genes. The design of the Fragment Generator can be based on general promoter sites, or based on sequences recognized by transcription factors. This further illustrates the power of UVF over other available technologies. [0041]
  • 3. Forensic Analysis [0042]
  • Due to the nature of UVF, small quantities of DNA can be used to generate DNA-profiles. This enables the use of UVF in situations where only limited amounts of DNA are available for genetic analysis—e.g. forensics. [0043]
  • 4. Biodiversity [0044]
  • UVF enables the search for breed- and species-specific markers. Amongst other issues, (sub)-species identification of for example birds will solve many enduring discussions. [0045]
  • In use, the invention is quite straightforward. The invention provides rapid and straightforward identification of endangered animals and plants. Many wildlife species—both animals and plants—are protected by law. Only limited numbers of individuals may be kept in private. However, identification and lineage of these individuals needs to be proven to effectively protect the law. The invention provides the means to answer any question in wildlife management relating to identity or lineage, also of species of which specific sequences are little known. The invention also provides genetic maps of a species. In some species genetic information, and certainly genetic maps are underdeveloped. Usually, identification of genetic markers is time and labour consuming using the existing methodologies (e.g. microsatellites). [0046]
  • Furthermore, testing of these markers is inefficient due to the low number of genetic markers amplified in one, single, reaction. [0047]
  • With the new technology genetic markers are developed at low costs with high speed and efficiency. Thus, ‘classical’ laborious methods are no longer needed, and no individual primer sets for each marker is needed. Furthermore, using the invention, many genetic markers can be identified, and analysed in a short period of time. Further analysis of the segregation of these markers in families where diseases, resistance genes, or other genes of interest are segregating as well will enable the identification of genetic markers related to the genes of interest. [0048]
  • In the case where lineage is in question, once the genetic markers of the individual have been determined, they can likewise be determined for the putative parents. The sets of markers (e.g., the number of repeats in a locus the length variation of the set of amplified fragments, and so on) from an individual can then be compared with the markers of the putative parent or parents, and a determination of lineage made. In the case of the aforementioned hawk, for instance, if the number of repeats in a particular locus of the hawk's DNA do not match that of the tamed breeding putative parents, the conclusion can be drawn that the tamed breeding pair are not the parents. [0049]
  • The same situation arises when the question of pedigree arises. The genetic markers of the individual are compared and contrasted with those of the putative ancestors or relatives, especially parents. [0050]
  • In the case of gender determination, a library would first be constructed of the particular species (e.g., crocodile) with particular emphasis put on the Y chromosome. Once conserved genetic markers present on the Y chromosome are identified for the species, the DNA of the individual in question can be analysed with the instant invention. [0051]
  • When the question centers around whether or not an individual of a species is the same individual previously tested (e.g., by a nation's health, agricultural, or racing authorities), the individual is tested at a different time, and the results are compared with those of the earlier analysis. [0052]
  • A kit of parts for use with the invention includes first and second oligonucleotide primers for performance of the first polymerase chain reaction amplification on the genomic DNA of the individual. The first oligonucleotide primer is a 5′ variation generator, starting at a repeat sequence. The second oligonucleotide primer is a 3′ fragment generator starting within such a genetic distance that amplification of the genomic DNA can be performed. The kit will also preferably include components for performing the second PCR. Such components include third and fourth oligonucleotide primers, wherein the third oligonucleotide primers is an elongated version of the 5′ variation generator, and the fourth oligonucleotide primers is an elongated version of the 3′ fragment generator. The kit of parts further also preferably includes appropriate restriction enzymes. [0053]
  • The invention is further explained by use of the following illustrative examples. In the examples, only a limited number of primers are shown. However, any combination of primers based on the information presented herein is considered to be using the same principles of this technology. [0054]
  • EXAMPLES Example I Primer Design
  • Using the previously described criteria (e.g., starting at a repeat sequence and localising the variation generator oligonucleotide primer at the 5′ site of repeat sequences, and starting within a genetic distance), the hereinafter described examples of feasible primer sequences were determined. As can be seen, the 5′ (left) end of the variation generator includes a nucleotide which is not consistent with the existing repeat pattern of the repeat sequence. [0055]
  • PCR 1 Variation generator. [0056]
  • TTGTGTGTG (SEQ. I.D. NO. 3) [0057]
  • ATGTGTGTG (SEQ. I.D. NO. 4) [0058]
  • CTGTGTGTG (SEQ. I.D. NO. 5) [0059]
  • CCACACACA (SEQ. I.D. NO. 6) [0060]
  • GCACACACA (SEQ. I.D. NO. 7) [0061]
  • TCACACACA (SEQ. I.D. NO. 8) [0062]
  • TTTGTGTGTG (SEQ. I.D. NO. 9) [0063]
  • ATTGTGTGTG (SEQ. I.D. NO. 10) [0064]
  • Fragment generator. [0065]
  • ATGTTIIIIT (SEQ. I.D. NO. 11) [0066]
  • ATGTCIIIIT (SEQ. I.D. NO. 12) [0067]
  • ATGTCTIIIT (SEQ. I.D. NO. 13) [0068]
  • TIIITGTCAG (SEQ. I.D. NO. 14) [0069]
  • TIIIACGTCG (SEQ. I.D. NO. 15) [0070]
  • PCR 1. AMPLIFICATION OF MANY FRAGMENTS
  • Genomaic DNA taken from a sample was amplified in a first PCR at low annealing temperatures (for example 30-65° C., but preferably lower than temperatures used at an optional second round of amplification). The previously described oligonucleotide primers were used to generate fragments. The first PCR was run under conditions, where neither the fragment generator primer nor the variation generator primer alone could amplify DNA. [0071]
  • PCR 2. AMPLIFICATION OF A SUB-SET OF PCR 1
  • After dilution of the PCR products of the first PCR, a second PCR was conducted using the resulting fragments. This second PCR was based on the hereinafter described fragment and variation generators, which, as can be seen, were elongated to enable PCR amplification at higher annealing temperatures (40-70° C.). This enabling the selection of a sub-set of the DNA-fragments amplified in PCR 1. [0072]
  • Examples of the elongated primer sequences [0073]
  • PCR 2. Variation generator. [0074]
  • TTGTGTGTGTGTGTGTG (SEQ. I.D. NO. 16) [0075]
  • ATGTGTGTGTGTGTGTG (SEQ. I.D. NO. 17) [0076]
  • CTGTGTGTGTGTGTGTG (SEQ. I.D. NO. 18) [0077]
  • CCACACACACACACACA (SEQ. I.D. NO. 19) [0078]
  • GCACACACACACACACA (SEQ. I.D. NO. 20) [0079]
  • TCACACACACACACACA (SEQ. I.D. NO. 21) [0080]
  • Fragment generator. Six examples are shown: [0081]
  • ATGTIIIIITIIIIT (SEQ. I.D. NO. 22) [0082]
  • ATGTCIIIITIIIITA (SEQ. I.D. NO. 23) [0083]
  • TIIITGTCAGIIIA (SEQ. I.D. NO. 24) [0084]
  • TIIITGTCAGIIIAA (SEQ. I.D. NO. 25) [0085]
  • TIIIACGTCGIIIA (SEQ. I.D. NO. 26) [0086]
  • TIILACGTCGIIIAA (SEQ. I.D. NO. 27) [0087]
  • The thus amplified PCR products were digested with restriction enzymes such as BamHI or HinfI increasing the number of genetic polymorphisms detected and reducing the sizes of the DNA fragments to be analysed. [0088]
  • ANALYSIS
  • Analysis of the digested product was conducted on a ABI 377 sequencer (Perkin Elmer, Calif., USA). The detection on this sequencer was made possible through the use of fluorescently labelled primers (both the 5′ variation generator and the 3′ fragment generator were labelled with different dyes (such as FAM, HEX). [0089]
  • Analysis of the various fragment sizes was performed using the software GENESCAN™ and GENOTYPER™ (both from Perkin Elmer, Calif., USA). [0090]
  • Figure Legends
  • The samples used in the illustrations are based on high molecular DNA obtained from blood samples from each animal. [0091]
  • I. Illustration of analyses of five species. Clear differences are present. Different lanes present [0092] 1) horse, 2) parrot, 3) cattle, 4) ostrich and 5) pig. The illustration shows DNA-fragments ranging from sizes between 100 and 1200 bp.
  • II. Illustration of analyses of five species. Clear differences are present. Different lanes present [0093] 1) horse, 2) parrot, 3) cattle, 4) ostrich and 5) pig. The illustration shows DNA-fragments ranging from sizes between 250 and 300 bp.
  • III. Illustration of variation within species Two samples of the same species (ostrich) are presented. At least three loci are presented. [0094]
  • 1 27 1 12 DNA Artificial Sequence Description of Artificial Sequence primer 1 cacacacaca ca 12 2 6 DNA Artificial Sequence Description of Artificial Sequence primer 2 cacaca 6 3 9 DNA Artificial Sequence Description of Artificial Sequence primer 3 ttgtgtgtg 9 4 9 DNA Artificial Sequence Description of Artificial Sequence primer 4 atgtgtgtg 9 5 9 DNA Artificial Sequence Description of Artificial Sequence primer 5 ctgtgtgtg 9 6 9 DNA Artificial Sequence Description of Artificial Sequence primer 6 ccacacaca 9 7 9 DNA Artificial Sequence Description of Artificial Sequence primer 7 gcacacaca 9 8 9 DNA Artificial Sequence Description of Artificial Sequence primer 8 tcacacaca 9 9 10 DNA Artificial Sequence Description of Artificial Sequence primer 9 tttgtgtgtg 10 10 10 DNA Artificial Sequence Description of Artificial Sequence primer 10 attgtgtgtg 10 11 10 DNA Artificial Sequence Description of Artificial Sequence primer 11 atgtnnnnnt 10 12 10 DNA Artificial Sequence Description of Artificial Sequence primer 12 atgtcnnnnt 10 13 10 DNA Artificial Sequence Description of Artificial Sequence primer 13 atgtctnnnt 10 14 10 DNA Artificial Sequence Description of Artificial Sequence primer 14 tnnntgtcag 10 15 10 DNA Artificial Sequence Description of Artificial Sequence primer 15 tnnnacgtcg 10 16 17 DNA Artificial Sequence Description of Artificial Sequence primer 16 ttgtgtgtgt gtgtgtg 17 17 17 DNA Artificial Sequence Description of Artificial Sequence primer 17 atgtgtgtgt gtgtgtg 17 18 17 DNA Artificial Sequence Description of Artificial Sequence primer 18 ctgtgtgtgt gtgtgtg 17 19 17 DNA Artificial Sequence Description of Artificial Sequence primer 19 ccacacacac acacaca 17 20 17 DNA Artificial Sequence Description of Artificial Sequence primer 20 gcacacacac acacaca 17 21 17 DNA Artificial Sequence Description of Artificial Sequence primer 21 tcacacacac acacaca 17 22 15 DNA Artificial Sequence Description of Artificial Sequence primer 22 atgtnnnnnt nnnnt 15 23 16 DNA Artificial Sequence Description of Artificial Sequence primer 23 atgtcnnnnt nnnnta 16 24 14 DNA Artificial Sequence Description of Artificial Sequence primer 24 tnnntgtcag nnna 14 25 15 DNA Artificial Sequence Description of Artificial Sequence primer 25 tnnntgtcag nnnaa 15 26 14 DNA Artificial Sequence Description of Artificial Sequence primer 26 tnnnacgtcg nnna 14 27 15 DNA Artificial Sequence Description of Artificial Sequence primer 27 tnnnacgtcg nnnaa 15

Claims (13)

1. A method of analysing genomic DNA in a sample, said method comprising:
providing first and second oligonucleotide primers, said first oligonucleotide primer being a 5′ variation generator, comprising a repeat sequence and at least one nucleotide inconsistent with the repeat pattern, said first oligonucleotide primer having at least one nucleotide positioned on the first oligonucleotide's 5′ end, and said second oligonucleotide primer being a 3′ fragment generator starting within such a genetic distance that amplification of the genomic DNA can be performed;
conducting a nucleic acid amplification on said genomic DNA in the sample using both the first and second oligonucleotide primers, thus producing DNA fragments based on repeat sequences on at least one end of the genomic DNA; and
analysing an amplified product thus produced to determine its length.
2. The method according to claim 1 further comprising, conducting a second amplification on the products of the nucleic acid amplification, said second amplification being conducted using third and fourth oligonucleotide primers, said third and fourth oligonucleotide primers being elongated versions of said first and second oligonucleotide primers, respectively, enabling a selection of a sub-set of the DNA fragments amplified in the first amplification.
3. The method according to claim 1 or claim 2 further comprising digesting said amplified products with a restriction enzyme thus increasing the number of genetic polymorphisms detected in said genomic DNA and decreasing the sizes of the DNA fragments to be analysed for their length.
4. The method according to claim 1, 2, or 3 wherein the second oligonucleotide primer comprises an a selective base such as inosine.
5. The method according to claim 2, 3 or 4 wherein the fourth oligonucleotide primer comprises an a selective base such as inosine.
6. A method of determining the lineage of an individual by analysing genomic DNA in a biological sample of the individual, said method comprising:
analysing said genomic DNA in said biological sample to determine the presence of a repeat sequence;
determining the repeat sequence's length in number of nucleic acids; and
comparing the repeat sequence's length with a corresponding repeat sequence length of a putative ancestor of said individual.
7. The method according to claim 6 wherein the analysis of said genomic DNA in said sample comprises using a first oligonucleotide primer for performing a first amplification on said genomic DNA, said first oligonucleotide primer being a 5′ variation generator and comprising a repeat sequence and at least one non-repeat nucleotide on the first oligonucleotide's 5′ end.
8. A kit of parts for analysing genomic DNA in a sample, said kit of parts comprising:
first and second oligonucleotide primers for performance of a first nucleic acid amplification on said genomic DNA, said first oligonucleotide primer being a 5′ variation generator, and comprising a repeat sequence and at least one non-repeat nucleotide on the first oligonucleotide's 5′ end, and said second oligonucleotide primer being a 3′ fragment generator.
9. The kit of parts of claim 8 further comprising:
third and fourth oligonucleotide primers, said third oligonucleotide primer comprising the oligonucleotide sequence of said first oligonucleotide primer together with further nucleotides, and said fourth oligonucleotide primer comprising the oligonucleotide sequence of said second oligonucleotide primers together with further nucleotides.
10. The kit of parts of claim 8 further comprising at least one restriction enzyme.
11. The method according to claim 9 or claim 10 wherein at least one of the further nucleotides of the fourth oligonucleotide primer comprises an a selective base such as inosine.
12. A method of analysing genomic DNA in a sample, said method comprising:
providing first and second oligonucleotide primers for performance of a first polymerase chain reaction amplification on said genomic DNA, said first oligonucleotide primer being a 5′ variation generator, and comprising a repeat sequence and at least one non-repeat nucleotide on the first oligonucleotide's 5′ end, and said second oligonucleotide primer being a 3′ fragment generator comprising at least one a-selective base such as inosine;
conducting said first amplification of said genomic DNA at a relatively low annealing temperature using both the first and second oligonucleotide primers, said first amplification being conducted under conditions such that neither the first nor the second oligonucleotide primer alone can amplify DNA, thus producing DNA fragments based on repeat sequences on one end of the genomic DNA, and other sequences based on the opposite end of the genomic DNA;
optionally diluting the reaction products of the first amplification;
conducting a second amplification on the reaction products of the first amplification, said second amplification being conducted using third and fourth oligonucleotide primers, said third and fourth oligonucleotide primers being elongated versions of said first and second oligonucleotide primers, respectively, enabling amplification at relatively higher annealing temperatures, and enabling a selection of a sub-set of the DNA fragments amplified in the first amplification; and
analysing the sub-set of amplified products.
13. The method according to claim 12 further comprising digesting the amplified products of the first or second amplification with a restriction enzyme thus increasing the number of genetic polymorphisms detected in said genomic DNA and decreasing the sizes of the DNA fragments to be analysed for their length.
US09/958,221 2000-03-03 2001-03-05 Universal variable fragments Expired - Fee Related US6686160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/676,849 US20050164203A9 (en) 2000-03-03 2003-09-30 Universal variable fragments

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00200757 2000-03-03
EP00200757A EP1130114A1 (en) 2000-03-03 2000-03-03 Universal variable fragments
EP00200757.3 2000-03-03
PCT/NL2001/000177 WO2001064948A1 (en) 2000-03-03 2001-03-05 Universal variable fragments

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/676,849 Continuation US20050164203A9 (en) 2000-03-03 2003-09-30 Universal variable fragments
US10676849 Continuation 2004-05-05

Publications (2)

Publication Number Publication Date
US20030017471A1 true US20030017471A1 (en) 2003-01-23
US6686160B2 US6686160B2 (en) 2004-02-03

Family

ID=8171142

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/958,221 Expired - Fee Related US6686160B2 (en) 2000-03-03 2001-03-05 Universal variable fragments
US10/676,849 Abandoned US20050164203A9 (en) 2000-03-03 2003-09-30 Universal variable fragments

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/676,849 Abandoned US20050164203A9 (en) 2000-03-03 2003-09-30 Universal variable fragments

Country Status (10)

Country Link
US (2) US6686160B2 (en)
EP (2) EP1130114A1 (en)
JP (1) JP2003534778A (en)
AU (1) AU2001241278A1 (en)
BR (1) BR0108928A (en)
CA (1) CA2401994A1 (en)
IL (1) IL151520A0 (en)
MX (1) MXPA02008511A (en)
NZ (1) NZ521161A (en)
WO (1) WO2001064948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183574A1 (en) * 2009-01-12 2010-07-22 Danisco A/S Lactic acid bacteria and their use in swine direct-fed microbials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3598B1 (en) * 2006-10-10 2020-07-05 Infinity Discovery Inc Boronic acids and esters as inhibitors of fatty acid amide hydrolase
AU2021224298A1 (en) 2020-02-18 2022-09-22 Life Technologies Corporation Compositions, kits and methods for detection of viral sequences
EP4136247A4 (en) * 2020-04-15 2024-05-15 CZ Biohub SF, LLC Local-ancestry inference with machine learning model
EP4278002A2 (en) * 2021-01-18 2023-11-22 Life Technologies Corporation Compositions, kits and methods for direct amplification from crude biological samples

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2152933T3 (en) * 1991-10-23 2001-02-16 Baylor College Medicine DETERMINATION OF FOOTPRINTS RELATING TO BACTERIAL VINTAGES USING AMPLIFICATION OF REPETITIVE DNA SEQUENCES.
WO1996017082A2 (en) * 1994-11-28 1996-06-06 E.I. Du Pont De Nemours And Company Compound microsatellite primers for the detection of genetic polymorphisms
EP0721987A1 (en) * 1995-01-16 1996-07-17 Keygene N.V. Amplification of simple sequence repeats

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183574A1 (en) * 2009-01-12 2010-07-22 Danisco A/S Lactic acid bacteria and their use in swine direct-fed microbials
US8563295B2 (en) 2009-01-12 2013-10-22 Dupont Nutrition Biosciences Aps Lactic acid bacteria and their use in swine direct-fed microbials
US9011877B2 (en) 2009-01-12 2015-04-21 Dupont Nutrition Biosciences Aps Lactic acid bacteria and their use in swine direct-fed microbials

Also Published As

Publication number Publication date
AU2001241278A1 (en) 2001-09-12
EP1130114A1 (en) 2001-09-05
US6686160B2 (en) 2004-02-03
US20050009038A1 (en) 2005-01-13
MXPA02008511A (en) 2003-10-15
IL151520A0 (en) 2003-04-10
EP1259645A1 (en) 2002-11-27
BR0108928A (en) 2003-04-29
US20050164203A9 (en) 2005-07-28
JP2003534778A (en) 2003-11-25
WO2001064948A1 (en) 2001-09-07
CA2401994A1 (en) 2001-09-07
NZ521161A (en) 2005-01-28

Similar Documents

Publication Publication Date Title
AU704660B2 (en) Compound microsatellite primers for the detection of genetic polymorphisms
Sharon et al. An integrated genetic linkage map of avocado
Crooijmans et al. New microsatellite markers in chicken optimized for automated fluorescent genotyping
Knorr et al. Application of AFLP markers to genome mapping in poultry
Ribaut et al. Use of STSs and SSRs as rapid and reliable preselection tools in a marker-assisted selection-backcross scheme
Wilton DNA methods of assessing dingo purity
US20160362752A1 (en) Genotyping method for use in cattle traceability and means thereof
Marmiroli et al. Advanced PCR techniques in identifying food components
Zhou et al. The zon laboratory guide to positional cloning in zebrafish
Bahary et al. The Zon laboratory guide to positional cloning in zebrafish
Óvilo et al. Characterisation of Iberian pig genotypes using AFLP markers
US7217516B2 (en) Methods and kits comprising AFLP primers, and ramp primers with a part complementary to a compound microsatellite repeat and an anchor part complementary to nucleotides adjacent to the repeat
Sabir et al. Applying molecular tools for improving livestock performance: From DNA markers to next generation sequencing technologies
Rincón et al. Genomic polymorphism in Uruguayan Creole cattle using RAPD and microsatellite markers
US6686160B2 (en) Universal variable fragments
EP0509089A1 (en) Compositions and methods for analyzing genomic variation
GB2206586A (en) Polynucleotide probes
JP4982746B2 (en) Pig parent-child determination method using DNA marker
GB2295228A (en) Selective amplification of DNA having a plurality of sites for a specific endonuclease
Arens et al. Identification of tomato cultivars using microsatellites
US11788154B2 (en) Method for identifying racehorse using microsatellite marker
Gu et al. Evaluation of RAPD analysis for identification of polymorphisms in canine genomic DNA
Ndlovu Standardization of a PCR-HRM assay for DNA sexing of birds
JP2001512961A (en) Microsatellite sequences for canine genotyping.
Okumuş et al. RT-PCR Analysis of Caucasian and Mugla Honey Bees by SNP Markers of Chalkbrood Disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: DR. VAN HAERINGEN LABORATORIUM B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN HAERINGEN, WILLEM ANNE;HENDRIK, VAN HAERINGEN;REEL/FRAME:012835/0480

Effective date: 20020412

CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20080203