US20030008305A1 - Oligonucleotide and method for detecting verotoxin - Google Patents

Oligonucleotide and method for detecting verotoxin Download PDF

Info

Publication number
US20030008305A1
US20030008305A1 US10/085,056 US8505602A US2003008305A1 US 20030008305 A1 US20030008305 A1 US 20030008305A1 US 8505602 A US8505602 A US 8505602A US 2003008305 A1 US2003008305 A1 US 2003008305A1
Authority
US
United States
Prior art keywords
rna
oligonucleotide
seq
sequence
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/085,056
Inventor
Takahiro Maruyama
Takahiko Ishiguro
Toshiki Taya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Assigned to TOSOH CORPORATION reassignment TOSOH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIGURO, TAKAHIKO, MARUYAMA, TAKAHIRO, TAYA, TOSHIKI
Publication of US20030008305A1 publication Critical patent/US20030008305A1/en
Priority to US11/233,094 priority Critical patent/US7514241B2/en
Priority to US11/313,849 priority patent/US20060099637A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention relates to oligonucleotides for use in detecting Verotoxin (hereafter, abbreviated as “VT”) in clinical examinations, public health examinations, food evaluations and food poisoning examinations, as well as a detection method using said oligonucleotides.
  • the oligonucleotide provided by the present invention can be used as a gene diagnosing reagent for cleaving, amplifying and detecting RNA or DNA, and is, for example, useful as a reagent for quantifying or diagnosing VT.
  • Verotoxin is a potent toxin produced by Verotoxin-producing Escherichia coli (hereafter, abbreviated as “VTEC”), typically pathogenic E. coli 0157.
  • VTEC Verotoxin-producing Escherichia coli
  • HUS hemolytic uremic syndrome
  • VTEC has many various serotypes, which may be 60 types or more, in view of their detection frequencies, it is deemed that the major serotype is 0157:H7.
  • VT includes VT type 1 which has the same structure as Shiga toxin produced by Shigella dysenteriae as well as VT type 2 having different physicochemical and immunological properties.
  • Means which had been used for examining VT include detection of 0157 antigen.
  • Salmonella and Citrobacter strains show cross-antigenecity with 0157 antigen, and it is reported that this detection method sometimes provides false positive results.
  • mass infections caused by serotypes other than 0157 have been reported, and therefore it is required to carry out tests using antisera against various serotypes.
  • VT results in a great deal of harm with smaller amounts of contaminating bacteria and, therefore, the food examination field, and the like, desire a more rapid and highly sensitive detection method.
  • previous methods carry problems regarding their speed and simplicity.
  • an examining instrument which carries out the detection automatically is desired.
  • RT-PCR Reverse Transcription-Polymerase Chain Reaction
  • This method involves synthesizing a cDNA from the target RNA in a reverse transcription step, and then amplifying a specific sequence of said cDNA by repetition of a cycle comprising heat denaturation, primer annealing and extension reactions, in the presence of a pair of primers complementarily and homologous to both ends of said specific sequence (the antisense primer may be the same as the one used in reverse transcription step) as well as a thermostable DNA polymerase.
  • RT-PCR method requires a two-step operation (a reverse transcription step and a PCR step) as well as an operation involving repetition of rapidly increasing and decreasing the temperature, which prevent its automation.
  • NASBA and 3SR method are known, whereby the specific sequence is amplified by the concerted action of a reverse transcriptase and an RNA polymerase.
  • RNA as a template, a double-stranded DNA including a promoter sequence is synthesized with a primer containing the promoter sequence, reverse transcriptase and Ribonuclease H; this double-stranded DNA is used as a template in synthesizing an RNA containing the specific sequence with an RNA polymerase and, subsequently, this RNA provides a template in a chain reaction for synthesizing a double-stranded DNA containing the promoter sequence.
  • NASBA, 3SR, and the like allow amplification at a constant temperature and are considered suitable for automation.
  • amplification methods such as NASBA and 3SR methods involve relatively low temperature reactions (41° C., for example), however, the target RNA may form an intramolecular structure that inhibits binding of the primer, which may reduce the reaction efficiency. Therefore, they require subjecting the target RNA to heat denaturation prior to the amplification reaction so as to destroy the intramolecular structure thereof and thus to improve the primer binding efficiency. As a result, the simplicity and speed of the methods are impaired.
  • an object of the present invention is to provide an oligonucleotide capable of complementarily binding to an intramolecular structure-free region of the target RNA, the binding of which against the target RNA would not be inhibited even when being manipulated at relatively low temperature (for example, between 35 and 50° C., preferably, about 41° C.), whereby its reaction efficiency would not be impaired.
  • relatively low temperature for example, between 35 and 50° C., preferably, about 41° C.
  • an object of the present invention is to provide an oligonucleotide capable of binding to the intramolecular structure-free region of VT1 RNA or VT2 RNA at relatively low temperature, or to provide an oligonucleotide primer which can be used in a nucleic acid amplification method so as to detect VT1 RNA or VT2 RNA, and also to provide simple, speedy and highly sensitive detecting method using such an oligonucleotide.
  • the invention according to claim 1 and intended to accomplish the objects relates to an oligonucleotide for detection or amplification of VT1 RNA, which oligonucleotide is capable of specifically binding to VT1 RNA, and comprises at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5.
  • the invention according to claim 2 and intended to accomplish the objects relates to an oligonucleotide for detection or amplification of VT2 RNA, which oligonucleotide is capable of specifically binding to VT2 RNA, and comprises at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14.
  • the invention according to claim 3 and intended to accomplish the objects relates to a process of detecting VT1 RNA, wherein a specific sequence of VT1 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the formed RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase, the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase, the amplification process being characterized by employing a first oligonucleotide capable
  • the invention according to claim 4 and intended to accomplish the objects relates to a process of detecting VT2 RNA, wherein a specific sequence of VT2 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the formed RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase, the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase, the amplification process being characterized by employing a first oligonucleot
  • the invention according to claim 5 relates to the process according to claim 3 or 4, wherein said amplification is carried out in the presence of an oligonucleotide probe capable of specifically binding to the RNA transcription product resulting from the amplification and labeled with an intercalator fluorescent pigment, and measuring changes in the fluorescent properties of the reaction solution.
  • the invention according to claim 6 relates to the process according to claim 5, characterized in that the oligonucleotide probe is designed so as to complementarily bind to at least a portion of the sequence of the RNA transcription product, and the fluorescent property changes relative to that of a situation where a complex formation is absent.
  • the invention according to claim 7 relates to the process according to claim 5 for detecting VT1 RNA, characterized in that the oligonucleotide probe comprises at least 10 contiguous bases of SEQ. ID. No. 24 or its complementary sequence.
  • the invention according to claim 8 relates to the process according to claim 5 for detecting VT2 RNA, characterized in that the oligonucleotide probe comprises at least 10 contiguous bases of SEQ. ID. No. 25 or its complementary sequence.
  • the present invention will be explained below.
  • the present invention provides an oligonucleotide useful in detecting VT1 RNA, which oligonucleotide is capable of specifically binding to VT1 RNA, and comprises at least 10 contiguous bases of any of the sequence listed as SEQ. ID. Nos. 1 to 5.
  • This oligonucleotide is capable of binding to VT1 RNA at relatively low and constant temperature (35 to 50° C., preferably, about 41° C.).
  • the RNA detecting process involving the step of amplifying VT1 RNA in a sample provided by the present invention includes PCR method, NASBA method, 3SR method, or the like.
  • the nucleic acid amplification is a one which can be conducted under constant temperature, such as NASBA or 3SR method in which specific sequence within VT1 RNA is amplified with the concerted action of reverse transcriptase and RNA polymerase.
  • a specific sequence of VT1 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase
  • the RNA of the RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA
  • the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase
  • the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase
  • the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase.
  • the process of the present invention is characterized by employing a first oligonucleotide capable of specifically binding to VT1 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 15 to 18 and having a sequence homologous to a portion of the VT1 RNA sequence to be amplified, where either the first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5′ end.
  • RNA-dependent DNA polymerase the DNA-dependent DNA polymerase and the ribonuclease H are not critical, AMV reverse transcriptase that has all of these types of activity is most preferably used.
  • RNA polymerase is not critical, T7 phage RNA polymerase or SP6 phage RNA polymerase is preferably used.
  • an oligonucleotide that is complementary to the region adjacent to and overlapping with the 5′ end region of the specific sequence (bases 1 to 10) of VT1 RNA sequence is added, and the VT1 RNA is cleaved (with ribonuclease H) at the 5′ end region of the specific sequence to provide the initial template for nucleic acid amplification, thereby allowing amplification of VT1 RNA even when the specific sequence is not positioned at the 5′ end.
  • the oligonucleotide used for this cleaving may, for example, be any of those of SEQ. ID. Nos.
  • the oligonucleotide for cleaving is preferably chemically modified (for example, aminated) at the 3′ hydroxyl group in order to prevent an extension reaction from the 3′ end.
  • the RNA transcription product obtained by the above nucleic acid amplification can be detected by a known method, per se, preferably, it is detected by carrying out the above amplification process in the presence of an oligonucleotide probe labeled with an intercalator fluorescent pigment, and measuring changes in the fluorescent properties of the reaction solution.
  • the oligonucleotide probe include one in which the intercalator fluorescent pigment is bonded to a phosphorus atom in the oligonucleotide through a linker.
  • the probe is characterized in that when it forms a double-stranded chain with the target nucleic acid (complementary nucleic acid), separation analysis is not required because the intercalator portion intercalates into the double-stranded chain portion to vary the fluorescent characteristics (Ishiguro, T. et al. (1996), Nucleic Acids Res. 24 (24) 4992-4997).
  • the probe sequence is not critical so long as it has a sequence complementary to at least a portion of the RNA transcription product.
  • the probe sequence is preferably one comprising at least 10 contiguous bases of the sequence listed as SEQ. ID. No. 24.
  • chemical modification for example, glycolic acid addition
  • at the 3′ end hydroxyl group of the probe is preferred in order to inhibit an extension reaction in which the probe acts as a primer.
  • RNA comprising the same sequence as the specific sequence of VT1 RNA in a single tube at a constant temperature and in a single step by carrying out the amplification process in the presence of the probe, as explained above, and, thus, the amplification process is easily automated.
  • the present invention provides an oligonucleotide useful in detecting VT2 RNA, which oligonucleotide is capable of specifically binding to VT2 RNA, and comprises at least 10 contiguous bases of any of the sequence listed as SEQ. ID. Nos. 6 to 14.
  • This oligonucleotide is capable of binding to VT2 RNA at relatively low and constant temperature (35 to 50° C., preferably, about 41° C.).
  • the RNA detecting process involving the step of amplifying VT2 RNA in a sample provided by the present invention includes PCR method, NASBA method, 3SR method, or the like.
  • the nucleic acid amplification is a one which can be conducted under constant temperature, such as NASBA or 3SR method in which specific sequence within VT2 RNA is amplified with the concerted action of reverse transcriptase and RNA polymerase.
  • a specific sequence of VT2 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase
  • the RNA of the RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA
  • the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase
  • the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase
  • the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase.
  • the process of the present invention is characterized by employing a first oligonucleotide capable of specifically binding to VT2 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 19 to 23 and having a sequence homologous to a portion of the VT2 RNA sequence to be amplified, where either the first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5′ end.
  • RNk-dependent DNA polymerase the DNA-dependent DNA polymerase and the ribonuclease H are not critical, AMV reverse transcriptase that has all of these types of activity is most preferably used.
  • RNA polymerase is not critical, T7 phage RNA polymerase or SP6 phage RNA polymerase is preferably used.
  • an oligonucleotide that is complementary to the region adjacent to and overlapping with the 5′ end region of the specific sequence (bases 1 to 10) of VT2 RNA sequence is added, and the VT2 RNA is cleaved (with ribonuclease H) at the 5′ end region of the specific sequence to give the initial template for nucleic acid amplification, thereby allowing amplification of VT2 RNA even when the specific sequence is not positioned at the 5′ end.
  • the oligonucleotide used for this cleaving may, for example, be any of those of SEQ. ID. Nos.
  • the oligonucleotide for cleaving is preferably chemically modified (for example, aminated) at the 3′ hydroxyl group in order to prevent an extension reaction from the 3′ end.
  • the RNA transcription product obtained by the above nucleic acid amplification can be detected by a method known per se, preferably, it is detected by carrying out the above amplification process in the presence of an oligonucleotide probe labeled with an intercalator fluorescent pigment, and measuring changes in the fluorescent properties of the reaction solution.
  • the oligonucleotide probe include one in which the intercalator fluorescent pigment is bonded to a phosphorus atom in the oligonucleotide through a linker.
  • the probe is characterized in that when it forms a double-stranded chain with the target nucleic acid (complementary nucleic acid), separation analysis is not required because the intercalator portion intercalates into the double-stranded chain portion to vary the fluorescent characteristics (Ishiguro, T. et al. (1996), Nucleic Acids Res. 24 (24) 4992-4997).
  • the probe sequence is not critical so long as it has a sequence complementary to at least a portion of the RNA transcription product.
  • the probe sequence is preferably one comprising at least 10 contiguous bases of the sequence listed as SEQ. ID. No. 25.
  • chemical modification for example, glycolic acid addition
  • at the 3′ end hydroxyl group of the probe is preferred in order to inhibit an extension reaction based on the probe used as a primer.
  • RNA comprising the same sequence as the specific sequence of VT2 RNA in a single tube at a constant temperature and in a single step by carrying out the amplification process in the presence of the probe, as explained above, and, thus, the amplification process is easily automated.
  • FIG. 1 is a urea modified 6% polyacrylamide electrophoresis diagram for samples obtained by performing cleaving experiments on VT1 RNA standard at 41° C., using Oligos 1 to 6 and AMV-Reverse Transcriptase (black and white inverted). The lanes without any indications are unrelated to the present invention.
  • FIG. 2 is a urea modified 6% polyacrylamide electrophoresis diagram for samples detained by performing cleaving experiments on VT2 RNA standard at 41° C., using Oligos 7 to 15 and AMV-Reverse Transcriptase (black and white inverted). The lanes without any indications are unrelated to the present invention.
  • FIG. 3 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT1 RNA standard performed as described in Example 3 using oligonucleotide probe combinations (a) to (c) shown in Table 3 (black and white inverted), with an initial RNA amount of 10 4 copies/30 ⁇ l and 10 3 copies/30 ⁇ l.
  • Lane 1 is the result for combination (a) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 2 and 3 are for combination (a) with an initial RNA amount of 10 3 copies/30 ⁇ l; lane 4 is for combination (a) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (b) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 6 and 7 are for combination (b) with an initial RNA amount of 10 3 copies/30 ⁇ l; lane 8 is for combination (b) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (c) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 10 and 11 are for combination (c) with an initial RNA amount of 10 3 copies/30 ⁇ l and lane 12 is for combination (c) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 4 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT1 RNA standard performed as described in Example 3 using oligonucleotide probe combinations (d) to (f) shown in Table 3 (black and white inverted), with an initial RNA amount of 10 4 copies/30 ⁇ l and 10 3 copies/30 ⁇ l.
  • Lane 1 is the result for combination (d) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 2 and 3 are for combination (d) with an initial RNA amount of 10 3 copies/30 ⁇ l; lane 4 is for combination (d) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (e) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 6 and 7 are for combination (e) with an initial RNA amount of 10 3 copies/30 ⁇ l; lane 8 is for combination (e) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (f) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 10 and 11 are for combination (f) with an initial RNA amount of 10 3 copies/30 ⁇ l; and lane 12 is for combination (f) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 5 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT2 RNA standard performed as described in Example 4 using oligonucleotide probe combinations (g) to (i) shown in Table 4 (black and white inverted), with an initial RNA amount of 10 4 copies/30 ⁇ l and 10 3 copies/30 ⁇ l.
  • Lane 1 is the result for combination (g) with an initial RNA amount of 10 4 copies/30 ⁇ l
  • lanes 2 and 3 are for combination (g) with an initial RNA amount of 10 3 copies/30 ⁇ l
  • lane 4 is for combination (g) using only the diluent instead of RNA samples (control)
  • lane 5 is the result for combination (h) with an initial RNA amount of 10 4 copies/30 ⁇ l
  • lanes 6 and 7 are for combination (h) with an initial RNA amount of 10 3 copies/30 ⁇ l
  • lane 8 is for combination (h) using only the diluent instead of RNA samples (control)
  • lane 9 is the result for combination (i) with an initial RNA amount of 10 4 copies/30 ⁇ l
  • lanes 10 and 11 are for combination (i) with an initial RNA amount of 10 3 copies/30 ⁇ l
  • lane 12 is for combination (i) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 6 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT2 RNA standard performed as described in Example 4 using oligonucleotide probe combinations (j) to (1) shown in Table 4 (black and white inverted), with an initial RNA amount of 10 4 copies/30 ⁇ l and 10 3 copies/30 ⁇ l.
  • Lane 1 is the result for combination (j) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 2 and 3 are for combination (j) with an initial RNA amount of 10 3 copies/30 ⁇ l; lane 4 is for combination (j) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (k) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 6 and 7 are for combination (k) with an initial RNA amount of 10 3 copies/30 ⁇ l; lane 8 is for combination (k) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (1) with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 10 and 11 are for combination (1) with an initial RNA amount of 10 3 copies/30 ⁇ l; and lane 12 is for combination (1) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 7 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT2 RNA standard performed as described in Example 4 using oligonucleotide probe combination (m) shown in Table 4 (black and white inverted), with an initial RNA amount of 10 4 copies/30 ⁇ l and 10 3 copies/30 ⁇ l.
  • Lane 1 is the result with an initial RNA amount of 10 4 copies/30 ⁇ l; lanes 2 and 3 are the results with an initial RNA amount of 10 3 copies/30 ⁇ l and lane 4 is the result obtained by using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 8 shows the results obtained in Example 5 for samples prepared from the VT2 RNA standard with an initial RNA amount of from 10 4 copies/30 ⁇ l to 10 5 copies/30 ⁇ l.
  • Panel (a) is a fluorescence profile exhibiting the fluorescence increase ratio that increases with the reaction time-course formation of RNA.
  • Panel (b) is a calibration curve exhibiting the relationship between the logarithm of the initial RNA amount and the detection time (time at which the relative fluorescence reaches 1.2).
  • shows the result for 10 5 copies, ⁇ is for 10 4 copies, ⁇ is for 10 3 copies, ⁇ is for 10 2 copies, + is for 10 copies and ⁇ is for control. It was demonstrated that RNA with initial copies of 10 1 copies/30 ⁇ l can be detected by a reaction for about 20 minutes, and that there is a correlation between the initial RNA amount and the detection time.
  • RNA comprising a region of base Nos. 228 to 1558 of the VT1 RNA base sequence (Calderwood, S. B. et al., Proc. Natl. Acad. Sci. U.S.A., 84, 4364-4368 (1987), U.S. GenBank Registered No.
  • M16625 was quantified by ultraviolet absorption at 260 nm, and then diluted to a concentration of 1.33 pmol/ ⁇ l with an RNA diluent (10 mM Tris-HCl (pH 8.0)), 0.1 mM EDTA, 1 mM DTT, 0.5 U/ ⁇ l RNase Inhibitor).
  • Oligo-1 SEQ. ID. No. 1;
  • Oligo-2 SEQ. ID. No. 2;
  • Oligo-3 SEQ. ID. No. 26;
  • Oligo-4 SEQ. ID. No. 3;
  • Oligo-5 SEQ. ID. No. 4;
  • Oligo-6 SEQ. ID. No. 5
  • RNA of the double stranded DNA/RNA is cleaved by the ribonuclease H activity of AMV-Reverse Transcriptase and, thereby, a characteristic band can be observed.
  • FIG. 1 The results of the electrophoresis are shown in FIG. 1 (black and white inverted). If the oligonucleotide binds specifically to the standard RNA, the standard RNA will be cleaved at this region, yielding a decomposition product having a characteristic chain length. Table 1 shows the positions of the standard RNA where each oligonucleotide had specifically bind and the expected band lengths of the fragments. Cleavages at the expected positions were confirmed with oligos 1 to 6. These indicated that these oligonucleotides bind strongly to the VT1 RNA under a constant temperature of 41° C.
  • RNA diluent 10 mM Tris-HCl (pH 8.0)
  • 0.1 mM EDTA 1 mM DTT
  • 0.5 U/ ⁇ l RNase Inhibitor 0.5 U/ ⁇ l
  • Oligo-7 SEQ. ID. No. 6;
  • Oligo-8 SEQ. ID. No. 7;
  • Oligo-9 SEQ. ID. No. 8;
  • Oligo-10 SEQ. ID. No. 9;
  • Oligo-11 SEQ. ID. No. 10;
  • Oligo-12 SEQ. ID. No. 11;
  • Oligo-13 SEQ. ID. No. 12;
  • Oligo-14 SEQ. ID. No. 13;
  • Oligo-15 SEQ. ID. No. 14;
  • RNA of the double stranded DNA/RNA is cleaved by the ribonuclease H activity of AMV-Reverse Transcriptase and, thereby, a characteristic band can be observed.
  • RNA amplification reactions were carried out using the oligonucleotides which specifically bind to VT1 RNA.
  • VT1 standard RNA was diluted to 10 4 copies/2.5 ⁇ l and 10 3 copies/2.5 ⁇ l with an RNA diluent (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT).
  • an RNA diluent (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT.
  • RNA diluent 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT.
  • Reaction Solution Composition (each concentration represents a concentration in a final reaction solution volume of 30 ⁇ l)
  • RNA amplification reactions were carried out using the oligonucleotide sequences listed in Table 3, as the first, second and third oligonucleotides. Solutions were prepared so that the combinations of the first, second and third oligonucleotides would be those as listed in Table 3.
  • RNA portion between the second and third oligonucleotide is amplified and, thereby, a characteristic band could be observed.
  • FIGS. 3 and 4 The results of the electrophoresis are shown in FIGS. 3 and 4 (black and white inverted).
  • the lengths of the specific bands amplified in this reaction are shown in Table 3. Since specific bands were confirmed in any of the combinations shown in Table 3, it was demonstrated that these oligonucleotides are effective in detecting VT1 RNA.
  • Table 3 shows the combinations of first, second and third oligonucleotides used in this example, as well as the chain lengths of the amplified specific bands resulted from the RNA amplification reaction using these combinations.
  • the 3′ end hydroxyl group of each first oligonucleotide base sequence was aminated.
  • the region of the 1st “A” to the 22nd “A” from the 5′ end corresponds to the T7 promoter region
  • the subsequent region from the 23rd “G” to the 28th “A” corresponds to the enhancer sequence.
  • RNA amplification reactions were carried out using the oligonucleotides which specifically bind to VT2 RNA.
  • VT2 standard RNA was diluted to 10 4 copies/2.5 ⁇ l and 10 3 copies/2.5 ⁇ l with an RNA diluent (10 mM, Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT).
  • an RNA diluent (10 mM, Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT.
  • the control test sections negative, only the diluent was used.
  • Reaction Solution Composition (each concentration represents a concentration in a final reaction solution volume of 30 ⁇ l)
  • RNA amplification reactions were carried out using the oligonucleotide sequences listed in Table 4, as the first, second and third oligonucleotides. Solutions were prepared so that the combinations of the first, second and third oligonucleotides would be those as listed in Table 4.
  • RNA portion between the second and third oligonucleotide is amplified, thereby a characteristic band could be observed.
  • Table 4 shows the combinations of first, second and third oligonucleotides used in this example, as well as the chain lengths of the amplified specific bands resulted from the RNA amplification reaction using these combinations.
  • the 3′ end hydroxyl group of each first oligonucleotide base sequence was aminated.
  • the region of the 1st “A” to the 22nd “A” from the 5′ end corresponds to the T7 promoter region
  • the subsequent region from the 23rd “G” to the 28th “A” corresponds to the enhancer sequence.
  • Combinations of oligonucleotide primers according to the present invention were used for specific detection of different initial copy numbers of the target VT2 RNA.
  • VT2 standard RNA was diluted with an RNA diluent (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT) to concentrations ranging from 10 5 copies/2.5 ⁇ l to 10 1 copies/2.5 ⁇ l.
  • an RNA diluent (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/ ⁇ l RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT)
  • Reaction Solution Composition (each concentration represents that in a final reaction solution of 30 ⁇ l)
  • Enzyme Solution Composition (each concentration represents that in a final reaction solution of 30 ⁇ l)
  • FIG. 8 (A) shows the time-course changes in the fluorescence increase ratio (fluorescence intensity at predetermined time/background fluorescence intensity) of the sample, where enzyme was added at 0 minutes.
  • FIG. 8 (B) shows the relationship between the logarithm of the initial RNA amount and the rise time (time at which the relative fluorescence reaches the negative sample's average value plus 3 standard deviations; i.e., the time to reach a ratio of 1.2).
  • the initial RNA amount was between 10 1 copies/test and 10 5 copies/test.
  • FIG. 8 shows that 10 1 copies were detected at approximately 20 minutes. A fluorescent profile and calibration curve depending on the initial concentration of the labeled RNA were obtained, indicating that it is possible to quantify the VT2 RNA present in unknown samples. This demonstrated that speedy, highly sensitive detection of VT2 RNA is possible using this method.
  • the oligonucleotide provided by the present invention complementarily binds to the intramolecular structure-free region of VT1 RNA or VT2 RNA.
  • this oligonucleotide it is possible to detect an RNA by a process carried out under a relatively low and constant temperature, without the need of an operation which destroys the intramolecular structure of an RNA by heat-degradation so as to improve the primer binding efficiency.
  • the oligonucleotide according to the present invention it would be possible to provide an RNA detection method which is speedy, simple, and even suitable for automation.

Abstract

An oligonucleotide capable of binding to the intramolecular structure-free region of Verotoxin type 1 RNA or Verotoxin type 2 RNA at relatively low and constant temperature, and which can be used in a constant temperature nucleic acid amplification method, is provided. Also, a simple, speedy and highly sensitive method for detecting Verotoxin type 1 RNA or Verotoxin type 2 RNA is provided.

Description

    FIELD OF THE INVENTION
  • The present invention relates to oligonucleotides for use in detecting Verotoxin (hereafter, abbreviated as “VT”) in clinical examinations, public health examinations, food evaluations and food poisoning examinations, as well as a detection method using said oligonucleotides. The oligonucleotide provided by the present invention can be used as a gene diagnosing reagent for cleaving, amplifying and detecting RNA or DNA, and is, for example, useful as a reagent for quantifying or diagnosing VT. [0001]
  • PRIOR ART
  • Verotoxin is a potent toxin produced by Verotoxin-producing [0002] Escherichia coli (hereafter, abbreviated as “VTEC”), typically pathogenic E. coli 0157. Although the primary symptom caused by infection with VTEC can be food poisoning represented by hemorrhagic colitis, it is reported that, in some cases, the symptom will advance to a hemolytic uremic syndrome (HUS) and, at worst, it will cause death.
  • Although VTEC has many various serotypes, which may be 60 types or more, in view of their detection frequencies, it is deemed that the major serotype is 0157:H7. Further, VT includes [0003] VT type 1 which has the same structure as Shiga toxin produced by Shigella dysenteriae as well as VT type 2 having different physicochemical and immunological properties.
  • In Japan, VTEC mass infection occurs frequently and, therefore, in order to accomplish early detection and exclusion of the infectious source, speedy detection is desired. Further, from a clinical standpoint, since it is demonstrated that dosing with antibacterial composition comprising antibiotics at an early condition stage, i.e. within a few days from the onset of the disease is effective, speedy identification of the bacteria is becoming important. [0004]
  • Means which had been used for examining VT include detection of 0157 antigen. However, it is known that some Salmonella and Citrobacter strains show cross-antigenecity with 0157 antigen, and it is reported that this detection method sometimes provides false positive results. In addition, mass infections caused by serotypes other than 0157 have been reported, and therefore it is required to carry out tests using antisera against various serotypes. [0005]
  • Recently, a method of selectively detecting Verotoxin-producing bacteria comprising construction of oligonucleotides that selectively hybridize against a VTEC gene, and use of these oligonucleotides in a gene-amplification process (PCR process) as primers, has been proposed. However, since identification of the amplified DNA fragment is carried out with agarose electrophoresis, there remains a problem in view of the lack of speeds. [0006]
  • Contrary to the other types of food poisoning, VT results in a great deal of harm with smaller amounts of contaminating bacteria and, therefore, the food examination field, and the like, desire a more rapid and highly sensitive detection method. However, previous methods carry problems regarding their speed and simplicity. In addition, in order to simplify the an examination, an examining instrument which carries out the detection automatically is desired. [0007]
  • It is known that when the target nucleic acid is RNA, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) can be used. This method involves synthesizing a cDNA from the target RNA in a reverse transcription step, and then amplifying a specific sequence of said cDNA by repetition of a cycle comprising heat denaturation, primer annealing and extension reactions, in the presence of a pair of primers complementarily and homologous to both ends of said specific sequence (the antisense primer may be the same as the one used in reverse transcription step) as well as a thermostable DNA polymerase. However, RT-PCR method requires a two-step operation (a reverse transcription step and a PCR step) as well as an operation involving repetition of rapidly increasing and decreasing the temperature, which prevent its automation. [0008]
  • As amplification methods in cases where the target nucleic acid is RNA, in addition to the above, NASBA and 3SR method are known, whereby the specific sequence is amplified by the concerted action of a reverse transcriptase and an RNA polymerase. In these methods, the following procedures are carried out: using the target RNA as a template, a double-stranded DNA including a promoter sequence is synthesized with a primer containing the promoter sequence, reverse transcriptase and Ribonuclease H; this double-stranded DNA is used as a template in synthesizing an RNA containing the specific sequence with an RNA polymerase and, subsequently, this RNA provides a template in a chain reaction for synthesizing a double-stranded DNA containing the promoter sequence. [0009]
  • NASBA, 3SR, and the like, allow amplification at a constant temperature and are considered suitable for automation. [0010]
  • Because amplification methods such as NASBA and 3SR methods involve relatively low temperature reactions (41° C., for example), however, the target RNA may form an intramolecular structure that inhibits binding of the primer, which may reduce the reaction efficiency. Therefore, they require subjecting the target RNA to heat denaturation prior to the amplification reaction so as to destroy the intramolecular structure thereof and thus to improve the primer binding efficiency. As a result, the simplicity and speed of the methods are impaired. [0011]
  • Thus, an object of the present invention is to provide an oligonucleotide capable of complementarily binding to an intramolecular structure-free region of the target RNA, the binding of which against the target RNA would not be inhibited even when being manipulated at relatively low temperature (for example, between 35 and 50° C., preferably, about 41° C.), whereby its reaction efficiency would not be impaired. In particular, an object of the present invention is to provide an oligonucleotide capable of binding to the intramolecular structure-free region of VT1 RNA or VT2 RNA at relatively low temperature, or to provide an oligonucleotide primer which can be used in a nucleic acid amplification method so as to detect VT1 RNA or VT2 RNA, and also to provide simple, speedy and highly sensitive detecting method using such an oligonucleotide. [0012]
  • The invention according to [0013] claim 1 and intended to accomplish the objects relates to an oligonucleotide for detection or amplification of VT1 RNA, which oligonucleotide is capable of specifically binding to VT1 RNA, and comprises at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5.
  • Moreover, the invention according to [0014] claim 2 and intended to accomplish the objects relates to an oligonucleotide for detection or amplification of VT2 RNA, which oligonucleotide is capable of specifically binding to VT2 RNA, and comprises at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14.
  • Furthermore, the invention according to [0015] claim 3 and intended to accomplish the objects relates to a process of detecting VT1 RNA, wherein a specific sequence of VT1 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the formed RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase, the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase, the amplification process being characterized by employing a first oligonucleotide capable of specifically binding to VT1 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 15 to 18, where either the first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5 end.
  • Still furthermore, the invention according to [0016] claim 4 and intended to accomplish the objects relates to a process of detecting VT2 RNA, wherein a specific sequence of VT2 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the formed RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase, the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase, the amplification process being characterized by employing a first oligonucleotide capable of specifically binding to VT2 RNA, and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 19 to 23, where either the first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5′ end.
  • The invention according to [0017] claim 5 relates to the process according to claim 3 or 4, wherein said amplification is carried out in the presence of an oligonucleotide probe capable of specifically binding to the RNA transcription product resulting from the amplification and labeled with an intercalator fluorescent pigment, and measuring changes in the fluorescent properties of the reaction solution. The invention according to claim 6 relates to the process according to claim 5, characterized in that the oligonucleotide probe is designed so as to complementarily bind to at least a portion of the sequence of the RNA transcription product, and the fluorescent property changes relative to that of a situation where a complex formation is absent. The invention according to claim 7 relates to the process according to claim 5 for detecting VT1 RNA, characterized in that the oligonucleotide probe comprises at least 10 contiguous bases of SEQ. ID. No. 24 or its complementary sequence. The invention according to claim 8 relates to the process according to claim 5 for detecting VT2 RNA, characterized in that the oligonucleotide probe comprises at least 10 contiguous bases of SEQ. ID. No. 25 or its complementary sequence. The present invention will be explained below.
  • First, the present invention provides an oligonucleotide useful in detecting VT1 RNA, which oligonucleotide is capable of specifically binding to VT1 RNA, and comprises at least 10 contiguous bases of any of the sequence listed as SEQ. ID. Nos. 1 to 5. This oligonucleotide is capable of binding to VT1 RNA at relatively low and constant temperature (35 to 50° C., preferably, about 41° C.). [0018]
  • The RNA detecting process involving the step of amplifying VT1 RNA in a sample provided by the present invention includes PCR method, NASBA method, 3SR method, or the like. However, it is preferred that the nucleic acid amplification is a one which can be conducted under constant temperature, such as NASBA or 3SR method in which specific sequence within VT1 RNA is amplified with the concerted action of reverse transcriptase and RNA polymerase. [0019]
  • For example, in the NASBA method, a specific sequence of VT1 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase, the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase. The process of the present invention is characterized by employing a first oligonucleotide capable of specifically binding to VT1 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 15 to 18 and having a sequence homologous to a portion of the VT1 RNA sequence to be amplified, where either the first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5′ end. [0020]
  • Although the RNA-dependent DNA polymerase, the DNA-dependent DNA polymerase and the ribonuclease H are not critical, AMV reverse transcriptase that has all of these types of activity is most preferably used. Moreover, although the RNA polymerase is not critical, T7 phage RNA polymerase or SP6 phage RNA polymerase is preferably used. [0021]
  • In the above amplification process, an oligonucleotide that is complementary to the region adjacent to and overlapping with the 5′ end region of the specific sequence ([0022] bases 1 to 10) of VT1 RNA sequence is added, and the VT1 RNA is cleaved (with ribonuclease H) at the 5′ end region of the specific sequence to provide the initial template for nucleic acid amplification, thereby allowing amplification of VT1 RNA even when the specific sequence is not positioned at the 5′ end. The oligonucleotide used for this cleaving may, for example, be any of those of SEQ. ID. Nos. 1 to 5, provided that it differs from the one used as the first oligonucleotide in the amplification process. In addition, the oligonucleotide for cleaving is preferably chemically modified (for example, aminated) at the 3′ hydroxyl group in order to prevent an extension reaction from the 3′ end.
  • Although the RNA transcription product obtained by the above nucleic acid amplification can be detected by a known method, per se, preferably, it is detected by carrying out the above amplification process in the presence of an oligonucleotide probe labeled with an intercalator fluorescent pigment, and measuring changes in the fluorescent properties of the reaction solution. Examples of the oligonucleotide probe include one in which the intercalator fluorescent pigment is bonded to a phosphorus atom in the oligonucleotide through a linker. The probe is characterized in that when it forms a double-stranded chain with the target nucleic acid (complementary nucleic acid), separation analysis is not required because the intercalator portion intercalates into the double-stranded chain portion to vary the fluorescent characteristics (Ishiguro, T. et al. (1996), Nucleic Acids Res. 24 (24) 4992-4997). [0023]
  • The probe sequence is not critical so long as it has a sequence complementary to at least a portion of the RNA transcription product. However, the probe sequence is preferably one comprising at least 10 contiguous bases of the sequence listed as SEQ. ID. No. 24. Moreover, chemical modification (for example, glycolic acid addition) at the 3′ end hydroxyl group of the probe is preferred in order to inhibit an extension reaction in which the probe acts as a primer. [0024]
  • It becomes possible to amplify and detect RNA comprising the same sequence as the specific sequence of VT1 RNA in a single tube at a constant temperature and in a single step by carrying out the amplification process in the presence of the probe, as explained above, and, thus, the amplification process is easily automated. [0025]
  • Next, the present invention provides an oligonucleotide useful in detecting VT2 RNA, which oligonucleotide is capable of specifically binding to VT2 RNA, and comprises at least 10 contiguous bases of any of the sequence listed as SEQ. ID. Nos. 6 to 14. This oligonucleotide is capable of binding to VT2 RNA at relatively low and constant temperature (35 to 50° C., preferably, about 41° C.). [0026]
  • The RNA detecting process involving the step of amplifying VT2 RNA in a sample provided by the present invention includes PCR method, NASBA method, 3SR method, or the like. However, it is preferred that the nucleic acid amplification is a one which can be conducted under constant temperature, such as NASBA or 3SR method in which specific sequence within VT2 RNA is amplified with the concerted action of reverse transcriptase and RNA polymerase. [0027]
  • For example, in the NASBA method, a specific sequence of VT2 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, the single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising the specific sequence or the sequence complementary to the specific sequence employing a DNA-dependent DNA polymerase, the double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and the RNA transcription product is then used as a template for cDNA synthesis employing the RNA-dependent DNA polymerase. The process of the present invention is characterized by employing a first oligonucleotide capable of specifically binding to VT2 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 19 to 23 and having a sequence homologous to a portion of the VT2 RNA sequence to be amplified, where either the first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5′ end. [0028]
  • Although the RNk-dependent DNA polymerase, the DNA-dependent DNA polymerase and the ribonuclease H are not critical, AMV reverse transcriptase that has all of these types of activity is most preferably used. Moreover, although the RNA polymerase is not critical, T7 phage RNA polymerase or SP6 phage RNA polymerase is preferably used. [0029]
  • In the above amplification process, an oligonucleotide that is complementary to the region adjacent to and overlapping with the 5′ end region of the specific sequence ([0030] bases 1 to 10) of VT2 RNA sequence is added, and the VT2 RNA is cleaved (with ribonuclease H) at the 5′ end region of the specific sequence to give the initial template for nucleic acid amplification, thereby allowing amplification of VT2 RNA even when the specific sequence is not positioned at the 5′ end. The oligonucleotide used for this cleaving may, for example, be any of those of SEQ. ID. Nos. 6 to 14, provided that it differs from the one used as the first oligonucleotide in the amplification process. In addition, the oligonucleotide for cleaving is preferably chemically modified (for example, aminated) at the 3′ hydroxyl group in order to prevent an extension reaction from the 3′ end.
  • Although the RNA transcription product obtained by the above nucleic acid amplification can be detected by a method known per se, preferably, it is detected by carrying out the above amplification process in the presence of an oligonucleotide probe labeled with an intercalator fluorescent pigment, and measuring changes in the fluorescent properties of the reaction solution. Examples of the oligonucleotide probe include one in which the intercalator fluorescent pigment is bonded to a phosphorus atom in the oligonucleotide through a linker. The probe is characterized in that when it forms a double-stranded chain with the target nucleic acid (complementary nucleic acid), separation analysis is not required because the intercalator portion intercalates into the double-stranded chain portion to vary the fluorescent characteristics (Ishiguro, T. et al. (1996), Nucleic Acids Res. 24 (24) 4992-4997). [0031]
  • The probe sequence is not critical so long as it has a sequence complementary to at least a portion of the RNA transcription product. However, the probe sequence is preferably one comprising at least 10 contiguous bases of the sequence listed as SEQ. ID. No. 25. Moreover, chemical modification (for example, glycolic acid addition) at the 3′ end hydroxyl group of the probe is preferred in order to inhibit an extension reaction based on the probe used as a primer. [0032]
  • It becomes possible to amplify and detect RNA comprising the same sequence as the specific sequence of VT2 RNA in a single tube at a constant temperature and in a single step by carrying out the amplification process in the presence of the probe, as explained above, and, thus, the amplification process is easily automated.[0033]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a urea modified 6% polyacrylamide electrophoresis diagram for samples obtained by performing cleaving experiments on VT1 RNA standard at 41° C., using [0034] Oligos 1 to 6 and AMV-Reverse Transcriptase (black and white inverted). The lanes without any indications are unrelated to the present invention.
  • FIG. 2 is a urea modified 6% polyacrylamide electrophoresis diagram for samples detained by performing cleaving experiments on VT2 RNA standard at 41° C., using [0035] Oligos 7 to 15 and AMV-Reverse Transcriptase (black and white inverted). The lanes without any indications are unrelated to the present invention.
  • FIG. 3 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT1 RNA standard performed as described in Example 3 using oligonucleotide probe combinations (a) to (c) shown in Table 3 (black and white inverted), with an initial RNA amount of 10[0036] 4 copies/30 μl and 103 copies/30 μl. Lane 1 is the result for combination (a) with an initial RNA amount of 104 copies/30 μl; lanes 2 and 3 are for combination (a) with an initial RNA amount of 103 copies/30 μl; lane 4 is for combination (a) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (b) with an initial RNA amount of 104 copies/30 μl; lanes 6 and 7 are for combination (b) with an initial RNA amount of 103 copies/30 μl; lane 8 is for combination (b) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (c) with an initial RNA amount of 104 copies/30 μl; lanes 10 and 11 are for combination (c) with an initial RNA amount of 103 copies/30 μl and lane 12 is for combination (c) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 4 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT1 RNA standard performed as described in Example 3 using oligonucleotide probe combinations (d) to (f) shown in Table 3 (black and white inverted), with an initial RNA amount of 10[0037] 4 copies/30 μl and 103 copies/30 μl. Lane 1 is the result for combination (d) with an initial RNA amount of 104 copies/30 μl; lanes 2 and 3 are for combination (d) with an initial RNA amount of 103 copies/30 μl; lane 4 is for combination (d) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (e) with an initial RNA amount of 104 copies/30 μl; lanes 6 and 7 are for combination (e) with an initial RNA amount of 103 copies/30 μl; lane 8 is for combination (e) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (f) with an initial RNA amount of 104 copies/30 μl; lanes 10 and 11 are for combination (f) with an initial RNA amount of 103 copies/30 μl; and lane 12 is for combination (f) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 5 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT2 RNA standard performed as described in Example 4 using oligonucleotide probe combinations (g) to (i) shown in Table 4 (black and white inverted), with an initial RNA amount of 10[0038] 4 copies/30 μl and 103 copies/30 μl. Lane 1 is the result for combination (g) with an initial RNA amount of 104 copies/30 μl lanes 2 and 3 are for combination (g) with an initial RNA amount of 103 copies/30 μl lane 4 is for combination (g) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (h) with an initial RNA amount of 104 copies/30 μl; lanes 6 and 7 are for combination (h) with an initial RNA amount of 103 copies/30 μl; lane 8 is for combination (h) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (i) with an initial RNA amount of 104 copies/30 μl; lanes 10 and 11 are for combination (i) with an initial RNA amount of 103 copies/30 μl and lane 12 is for combination (i) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 6 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT2 RNA standard performed as described in Example 4 using oligonucleotide probe combinations (j) to (1) shown in Table 4 (black and white inverted), with an initial RNA amount of 10[0039] 4 copies/30 μl and 103 copies/30 μl. Lane 1 is the result for combination (j) with an initial RNA amount of 104 copies/30 μl; lanes 2 and 3 are for combination (j) with an initial RNA amount of 103 copies/30 μl; lane 4 is for combination (j) using only the diluent instead of RNA samples (control); lane 5 is the result for combination (k) with an initial RNA amount of 104 copies/30 μl; lanes 6 and 7 are for combination (k) with an initial RNA amount of 103 copies/30 μl; lane 8 is for combination (k) using only the diluent instead of RNA samples (control); lane 9 is the result for combination (1) with an initial RNA amount of 104 copies/30 μl; lanes 10 and 11 are for combination (1) with an initial RNA amount of 103 copies/30 μl; and lane 12 is for combination (1) using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 7 is a 4% agarose gel electrophoresis diagram for RNA amplification reactions of VT2 RNA standard performed as described in Example 4 using oligonucleotide probe combination (m) shown in Table 4 (black and white inverted), with an initial RNA amount of 10[0040] 4 copies/30 μl and 103 copies/30 μl. Lane 1 is the result with an initial RNA amount of 104 copies/30 μl; lanes 2 and 3 are the results with an initial RNA amount of 103 copies/30 μl and lane 4 is the result obtained by using only the diluent instead of RNA samples (control). Specific bands were confirmed in every combination.
  • FIG. 8 shows the results obtained in Example 5 for samples prepared from the VT2 RNA standard with an initial RNA amount of from 10[0041] 4 copies/30 μl to 105 copies/30 μl. Panel (a) is a fluorescence profile exhibiting the fluorescence increase ratio that increases with the reaction time-course formation of RNA. Panel (b) is a calibration curve exhibiting the relationship between the logarithm of the initial RNA amount and the detection time (time at which the relative fluorescence reaches 1.2). □ shows the result for 105 copies, ◯ is for 104 copies, Δ is for 103 copies, ⋄ is for 102 copies, + is for 10 copies and × is for control. It was demonstrated that RNA with initial copies of 101 copies/30 μl can be detected by a reaction for about 20 minutes, and that there is a correlation between the initial RNA amount and the detection time.
  • EXAMPLES
  • The present invention will now be explained in greater detail by way of examples, with the understanding that the invention is not limited by these examples. [0042]
  • Example 1
  • (1) An oligonucleotide which specifically binds to VT1 RNA at 41° C. was selected. A standard RNA comprising a region of base Nos. 228 to 1558 of the VT1 RNA base sequence (Calderwood, S. B. et al., Proc. Natl. Acad. Sci. U.S.A., 84, 4364-4368 (1987), U.S. GenBank Registered No. M16625) was quantified by ultraviolet absorption at 260 nm, and then diluted to a concentration of 1.33 pmol/μl with an RNA diluent (10 mM Tris-HCl (pH 8.0)), 0.1 mM EDTA, 1 mM DTT, 0.5 U/μl RNase Inhibitor). [0043]
  • (2) 14.0 μl of a reaction solution having the following composition was dispended into 0.5 ml volume PCR tubes (Gene Amp Thin-Walled Reaction Tube™, Perkin-Elmer Co. Ltd.) [0044]
  • Reaction Solution Composition [0045]
  • 60.0 mM Tris-HCl buffer (pH 8.6) [0046]
  • 90.0 mM potassium chloride [0047]
  • 13.0 mM magnesium chloride [0048]
  • 1.0 mM DTT [0049]
  • 80.0 nM standard RNA [0050]
  • 0.8 μM oligonucleotide (one of the oligonucleotides shown below). [0051]
  • Oligo-1: SEQ. ID. No. 1; [0052]
  • Oligo-2: SEQ. ID. No. 2; [0053]
  • Oligo-3: SEQ. ID. No. 26; [0054]
  • Oligo-4: SEQ. ID. No. 3; [0055]
  • Oligo-5: SEQ. ID. No. 4; [0056]
  • Oligo-6: SEQ. ID. No. 5 [0057]
  • Distilled Water for Adjusting Volume [0058]
  • (3) The reaction solutions were then incubated at 41° C. for 5 minutes, and then 1 μl of 8.0 U/μl AMV-Reverse Transcriptase (Takara Shuzo Co. Ltd.; an enzyme which cleaves RNA of a double stranded-DNA/RNA) was added thereto. [0059]
  • (4) Subsequently, the PCR tubes were incubated at 41° C. for 10 minutes. Modified-urea polyacrylamide gel (acrylamide concentration: 6%; urea: 7M) electrophoresis was conducted to confirm the cleaved fragments after the reaction. Dyeing following the electrophoresis was carried out with SYBR Green II™ (Takara Shuzo Co. Ltd.). Upon binding of the oligonucleotide to the specific site of the target RNA, RNA of the double stranded DNA/RNA is cleaved by the ribonuclease H activity of AMV-Reverse Transcriptase and, thereby, a characteristic band can be observed. [0060]
  • (5) The results of the electrophoresis are shown in FIG. 1 (black and white inverted). If the oligonucleotide binds specifically to the standard RNA, the standard RNA will be cleaved at this region, yielding a decomposition product having a characteristic chain length. Table 1 shows the positions of the standard RNA where each oligonucleotide had specifically bind and the expected band lengths of the fragments. Cleavages at the expected positions were confirmed with [0061] oligos 1 to 6. These indicated that these oligonucleotides bind strongly to the VT1 RNA under a constant temperature of 41° C.
    TABLE 1
    Expected band Length
    Oligo Position1) (base)
    Oligo −1 425 425, 912
    Oligo −2 555 555, 782
    Oligo −3 710 710, 627
    Oligo −4 890 890, 447
    Oligo −5 980 980, 357
    Oligo −6 1031  1031, 306 
  • Example 2
  • (1) An oligonucleotide which specifically binds to VT2 RNA at 41° C. was selected. A standard RNA comprising a region of base Nos. 81 to 1437 of the VT2 RNA base sequence (Schmitt, C. K. et al., Infect. Immun, 59, 1065-1073 (1991), US GenBank Registered No. X07865) was quantified by ultraviolet absorption at 260 nm, and then diluted to a concentration of 1.75 pmol/μl with an RNA diluent (10 mM Tris-HCl (pH 8.0)), 0.1 mM EDTA, 1 mM DTT, 0.5 U/μl RNase Inhibitor). [0062]
  • (2) 14.0 μl of a reaction solution having the following composition was dispended into 0.5 ml volume PCR tubes (Gene Amp Thin-Walled Reaction Tube™, Perkin-Elmer Co. Ltd.) [0063]
  • Reaction Solution Composition [0064]
  • 60.0 mM Tris-HCl buffer (pH 8.6) [0065]
  • 90.0 mM potassium chloride [0066]
  • 13.0 mM magnesium chloride [0067]
  • 1.0 mM DTT [0068]
  • 80.0 nM standard RNA [0069]
  • 0.8 μM oligonucleotide (one of the oligonucleotides shown below). [0070]
  • Oligo-7: SEQ. ID. No. 6; [0071]
  • Oligo-8: SEQ. ID. No. 7; [0072]
  • Oligo-9: SEQ. ID. No. 8; [0073]
  • Oligo-10,: SEQ. ID. No. 9; [0074]
  • Oligo-11: SEQ. ID. No. 10; [0075]
  • Oligo-12: SEQ. ID. No. 11; [0076]
  • Oligo-13: SEQ. ID. No. 12; [0077]
  • Oligo-14: SEQ. ID. No. 13; [0078]
  • Oligo-15: SEQ. ID. No. 14; [0079]
  • Distilled water for adjusting volume [0080]
  • (3) The reaction solutions were then incubated at 41° C. for 5 minutes, and then 1 μl of 8.0 U/μl AMV-Reverse Transcriptase (Takara Shuzo Co. Ltd.; an enzyme which cleaves RNA of a double stranded-DNA/RNA) was added thereto. [0081]
  • (4) Subsequently, the PCR tubes were incubated at 41° C. for 10 minutes. Modified-urea polyacrylamide gel (acrylamide concentration: 6%; urea: 7M) electrophoresis was conducted to confirm the cleaved fragments after the reaction. Dyeing following the electrophoresis was carried out with SYBR Green II™ (Takara Shuzo Co. Ltd.). Upon binding of the oligonucleotide to the specific site of the target RNA, RNA of the double stranded DNA/RNA is cleaved by the ribonuclease H activity of AMV-Reverse Transcriptase and, thereby, a characteristic band can be observed. [0082]
  • (5) The results of the electrophoresis are shown in FIG. 2 (black and white inverted). If the oligonucleotide binds specifically to the standard RNA, the standard RNA will be cleaved at this region, yielding a decomposition product having a characteristic chain length. Table 2 shows the positions of the standard RNA where each oligonucleotide had specifically bound and the expected band lengths of the fragments. Cleavages at the expected positions were confirmed with [0083] Oligos 7 to 15. These indicated that these oligonucleotides bind strongly to the VT2 RNA under a constant temperature of 41° C.
    TABLE 2
    Expected band Length
    Oligo Position1) (base)
    Oligo −7  102  102, 1259
    Oligo −8  260  260, 1101
    Oligo −9  365 365, 996
    Oligo −10 436 436, 925
    Oligo −11 675 675, 686
    Oligo −12 723 723, 638
    Oligo −13 787 787, 574
    Oligo −14 848 848, 513
    Oligo −15 986 986, 375
  • Example 3
  • RNA amplification reactions were carried out using the oligonucleotides which specifically bind to VT1 RNA. [0084]
  • (1) As described in example 1, VT1 standard RNA was diluted to 10[0085] 4 copies/2.5 μl and 103 copies/2.5 μl with an RNA diluent (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/μl RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT). In the control test sections (negative), only the diluent was used.
  • (2) 23.3 μl of a solution having the following composition was dispended into 0.5 ml volume PCR tubes (Gene Amp Thin-Walled Reaction Tuber, Perkin-Elmer Co. Ltd.), followed by addition of 2.5 μl of the above RNA sample. [0086]
  • Reaction Solution Composition (each concentration represents a concentration in a final reaction solution volume of 30 μl) [0087]
  • 60 mM Tris-HCl buffer (pH 8.6) [0088]
  • 17 mM magnesium chloride [0089]
  • 90 mM potassium chloride [0090]
  • 39 U RNase Inhibitor [0091]
  • 1 mM DTT [0092]
  • 0.25 μl of each dATP, dCTP, dGTP, dTTP [0093]
  • 3.6 mM ITP [0094]
  • 3.0 μl of each ATP, CTP, GTP, UTP [0095]
  • 0.16 μM first oligonucleotide [0096]
  • 1.0 μM second oligonucleotide [0097]
  • 1.0 μM third oligonucleotide [0098]
  • 13% DMSO [0099]
  • Distilled Water for Adjusting Volume [0100]
  • (3) RNA amplification reactions were carried out using the oligonucleotide sequences listed in Table 3, as the first, second and third oligonucleotides. Solutions were prepared so that the combinations of the first, second and third oligonucleotides would be those as listed in Table 3. [0101]
  • (4) After incubating the above reaction solutions for 5 minutes at 41° C., 4.2 μl of an enzyme solution having the following composition was added. [0102]
  • Composition of Enzyme Solution (each figure represents the amount in a final reaction solution volume of 30 μl) [0103]
  • 1.7% sorbitol [0104]
  • 3 μg bovine serum albumin [0105]
  • 142 U T7 RNA polymerase (Gibco) [0106]
  • 8 U AMV-Reverse Transcriptase (Takara Shuzo Co. Ltd.) [0107]
  • Distilled Water for Adjusting Volume [0108]
  • (5) Subsequently, the PCR tubes were incubated at 41° C. for 30 minutes. In order to identify the RNA amplified portion after the reaction, agarose gel ([0109] agarose concentration 4%) electrophoresis was performed. Dyeing following the electrophoresis was performed with SYBR Green II (Takara Shuzo Co. Ltd.). When an oligonucleotide probe binds to the specific portion of the target RNA, the RNA portion between the second and third oligonucleotide is amplified and, thereby, a characteristic band could be observed.
  • The results of the electrophoresis are shown in FIGS. 3 and 4 (black and white inverted). The lengths of the specific bands amplified in this reaction are shown in Table 3. Since specific bands were confirmed in any of the combinations shown in Table 3, it was demonstrated that these oligonucleotides are effective in detecting VT1 RNA. [0110]
    TABLE 3
    Amplification
    1st Oligo- 2nd Oligo- 3rd Oligo- Product
    nucleotide nucleotide nucleotide Length
    Combination Probe Probe Probe (Base)
    (a) 5S 5F 6R 141
    (b) 6S 6F 7R 166
    (c) 6S 6F 8R 346
    (d) 7S 7F 8R 191
    (e) 7S 7F 9R 281
    (f) 8S 8F 9R 101
  • Table 3 shows the combinations of first, second and third oligonucleotides used in this example, as well as the chain lengths of the amplified specific bands resulted from the RNA amplification reaction using these combinations. The 3′ end hydroxyl group of each first oligonucleotide base sequence was aminated. In each second oligonucleotide base sequence, the region of the 1st “A” to the 22nd “A” from the 5′ end corresponds to the T7 promoter region, and the subsequent region from the 23rd “G” to the 28th “A” corresponds to the enhancer sequence. [0111]
  • First Oligonucleotide [0112]
  • 5S (SEQ. ID. No. 27) [0113]
  • 6S (SEQ. ID. No. 28) [0114]
  • 7S (SEQ. ID. No. 29) [0115]
  • 8S (SEQ. ID. No. 30) [0116]
  • Second Oligonucleotide [0117]
  • 5F (SEQ. ID. No. 36) [0118]
  • 6F (SEQ. ID. No. 37) [0119]
  • 7F (SEQ. ID. No. 38) [0120]
  • 8F (SEQ. ID. No. 39) [0121]
  • Third Oligonucleotide [0122]
  • 6R (SEQ. ID. No. 2) [0123]
  • 7R (SEQ. ID. No. 26) [0124]
  • 8R (SEQ. ID. No. 3) [0125]
  • 9R (SEQ. ID. No. 4) [0126]
  • Example 4
  • RNA amplification reactions were carried out using the oligonucleotides which specifically bind to VT2 RNA. [0127]
  • (1) As described in example 2, VT2 standard RNA was diluted to 10[0128] 4 copies/2.5 μl and 103 copies/2.5 μl with an RNA diluent (10 mM, Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/μl RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT). In the control test sections (negative), only the diluent was used.
  • (2) 23.3 μl of a solution having the following composition was dispended into 0.5 ml volume PCR tubes (Gene Amp Thin-Walled Reaction Tube™, Perkin-Elmer Co. Ltd.), followed by addition of 2.5 μl of the above RNA sample. [0129]
  • Reaction Solution Composition (each concentration represents a concentration in a final reaction solution volume of 30 μl) [0130]
  • 60 mM Tris-HCl buffer (pH 8.6) [0131]
  • 17 mM magnesium chloride [0132]
  • 90 mM potassium chloride [0133]
  • 39 U RNase Inhibitor [0134]
  • 1 mM DTT [0135]
  • 0.25 μl of each dATP, dCTP, dGTP, dTTP [0136]
  • 3.6 mM ITP [0137]
  • 3.0 μl of each ATP, CTP, GTP, UTP [0138]
  • 0.16 μM first oligonucleotide [0139]
  • 1.0 μM second oligonucleotide [0140]
  • 1.0 μM third oligonucleotide [0141]
  • 13% DMSO [0142]
  • Distilled Water for Adjusting Volume [0143]
  • (3) RNA amplification reactions were carried out using the oligonucleotide sequences listed in Table 4, as the first, second and third oligonucleotides. Solutions were prepared so that the combinations of the first, second and third oligonucleotides would be those as listed in Table 4. [0144]
  • (4) After incubating the above reaction solutions for 5 minutes at 41° C., 4.2 μl of an enzyme solution having the following composition was added. [0145]
  • Composition of Enzyme Solution (each figure represents the amount in a final reaction solution volume of 30 μl) [0146]
  • 1.7% sorbitol [0147]
  • 3 μg bovine serum albumin [0148]
  • 142 U T7 RNA polymerase (Gibco) [0149]
  • 8 U AMV-Reverse Transcriptase (Takara Shuzo Co. Ltd.) [0150]
  • Distilled Water for Adjusting Volume [0151]
  • (5) Subsequently, the PCR tubes were incubated at 41° C. for 30 minutes. In order to identify the RNA amplified portion after the reaction, agarose gel ([0152] agarose concentration 4%) electrophoresis was performed. Dyeing following the electrophoresis was performed with SYBR Green II (Takara Shuzo Co. Ltd.). When an oligonucleotide probe binds to the specific portion of the target RNA, the RNA portion between the second and third oligonucleotide is amplified, thereby a characteristic band could be observed.
  • The results of the electrophoresis are shown in FIGS. [0153] 5 to 7 (black and white inverted). The lengths of the specific bands amplified in this reaction are shown in Table 4. Since specific bands were confirmed in any of the combinations shown in Table 4, it was demonstrated that these oligonucleotides are effective in detecting VT1 RNA.
    TABLE 4
    Amplification
    1st Oligo- 2nd Oligo- 3rd Oligo- Product
    nucleotide nucleotide nucleotide Length
    Combination Probe Probe Probe (Base)
    (g) B2S B2F B4R 274
    (h) B3S B3F B4R 116
    (i) B3S B3F B5R 187
    (j) B4S B4F B7R 321
    (k) B5S B5F B7R 250
    (l) B5S B5F B8R 298
    (m) B7S B7F B9R 123
  • Table 4 shows the combinations of first, second and third oligonucleotides used in this example, as well as the chain lengths of the amplified specific bands resulted from the RNA amplification reaction using these combinations. The 3′ end hydroxyl group of each first oligonucleotide base sequence was aminated. In each second oligonucleotide base sequence, the region of the 1st “A” to the 22nd “A” from the 5′ end corresponds to the T7 promoter region, and the subsequent region from the 23rd “G” to the 28th “A” corresponds to the enhancer sequence. [0154]
  • First Oligonucleotide [0155]
  • B2S (SEQ. ID. No. 31) [0156]
  • B3S (SEQ. ID. No. 32) [0157]
  • B4S (SEQ. ID. No. 33) [0158]
  • B5S (SEQ. ID. No. 34) [0159]
  • B7S (SEQ. ID. No . 35) [0160]
  • Second Oligonucleotide [0161]
  • B2F (SEQ. ID. No. 40) [0162]
  • B3F (SEQ. ID. No. 41) [0163]
  • B4F (SEQ. ID. No. 42) [0164]
  • B5F (SEQ. ID. No. 43) [0165]
  • B7F (SEQ. ID. No. 44) [0166]
  • Third Oligonucleotide [0167]
  • B4R (SEQ. ID. No. 8) [0168]
  • B5R (SEQ. ID. No. 9) [0169]
  • B7R (SEQ. ID. No. 10) [0170]
  • B8R (SEQ. ID. No. 11) [0171]
  • B9R (SEQ. ID. No. 12) [0172]
  • Example 5
  • Combinations of oligonucleotide primers according to the present invention were used for specific detection of different initial copy numbers of the target VT2 RNA. [0173]
  • (1) As described in example 2, VT2 standard RNA was diluted with an RNA diluent (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 0.5 U/μl RNase Inhibitor (Takara Shuzo Co. Ltd.), 5 mM DTT) to concentrations ranging from 10[0174] 5 copies/2.5 μl to 101 copies/2.5 μl. In the control testing sections, only the diluent was used (Negative).
  • (2) 23.3 μl of a reaction solution having the composition shown below was dispended into 0.5 ml volume PCR tubes (Gene Amp Thin-walled Reaction Tube™, Perkin-Elmer) followed by addition of 2.5 μl of the above RNA sample. [0175]
  • Reaction Solution Composition (each concentration represents that in a final reaction solution of 30 μl) [0176]
  • 60 mM Tris-HCl buffer (pH 8.6) [0177]
  • 17 mM magnesium chloride [0178]
  • 150 mM potassium chloride [0179]
  • 39 U RNase Inhibitor [0180]
  • 1 mM DTT [0181]
  • 0.25 mM each of dATP, dCTP, dGTP and dTTP [0182]
  • 3.6 mM ITP [0183]
  • 3.0 mM each of ATP, CTP, GTP and UTP [0184]
  • 0.16 μM first oligonucleotide (5S shown in Table 4, [0185]
  • wherein its 3′ end is aminated) [0186]
  • 1.0 μM second oligonucleotide (5F shown in Table 4) [0187]
  • 1.0 μM third oligonucleotide (7R shown in Table 4) [0188]
  • 25 nM intercalator fluorescent pigment-labeled oligonucleotide (SEQ. ID. No. 25, labeled with an intercalator fluorescent pigment at the phosphorous atom between the 12th “T” and the 13th “A” from the 5′ end, and modified with a glycol group at its 3′ end hydroxyl) [0189]
  • 13% DMSO [0190]
  • Distilled Water for Adjusting Volume [0191]
  • (3) After incubating the above reaction solution for 5 minutes at 41° C., 4.2 μl of an enzyme solution having the following composition and pre-incubated for 2 minutes at 41° C. was added. [0192]
  • Enzyme Solution Composition (each concentration represents that in a final reaction solution of 30 μl) [0193]
  • 1.7% sorbitol [0194]
  • 3 μg bovine serum albumin [0195]
  • 142 U T7 RNA polymerase (Gibco) [0196]
  • 8 U AMV-Reverse Transcriptase (Takara Shuzo Co. Ltd.) [0197]
  • Distilled Water for Adjusting Volume [0198]
  • (4) The PCR tube was then incubated at 41° C. using a direct-measuring fluorescence spectrophotometer equipped with a temperature-controller, and the reaction solution was periodically measured at an excitation wavelength of 470 nm and a fluorescent wavelength of 510 nm. [0199]
  • FIG. 8 (A) shows the time-course changes in the fluorescence increase ratio (fluorescence intensity at predetermined time/background fluorescence intensity) of the sample, where enzyme was added at 0 minutes. FIG. 8 (B) shows the relationship between the logarithm of the initial RNA amount and the rise time (time at which the relative fluorescence reaches the negative sample's average value plus 3 standard deviations; i.e., the time to reach a ratio of 1.2). The initial RNA amount was between 10[0200] 1 copies/test and 105 copies/test.
  • FIG. 8 shows that 10[0201] 1 copies were detected at approximately 20 minutes. A fluorescent profile and calibration curve depending on the initial concentration of the labeled RNA were obtained, indicating that it is possible to quantify the VT2 RNA present in unknown samples. This demonstrated that speedy, highly sensitive detection of VT2 RNA is possible using this method.
  • As explained above, the oligonucleotide provided by the present invention complementarily binds to the intramolecular structure-free region of VT1 RNA or VT2 RNA. By using this oligonucleotide, it is possible to detect an RNA by a process carried out under a relatively low and constant temperature, without the need of an operation which destroys the intramolecular structure of an RNA by heat-degradation so as to improve the primer binding efficiency. As a result, by use of the oligonucleotide according to the present invention, it would be possible to provide an RNA detection method which is speedy, simple, and even suitable for automation. [0202]
  • It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and use may be made without departing from the inventive scope of this application. [0203]
  • 1 44 1 20 DNA Artificial Sequence Synthetic DNA 1 aaaaaacatt atttgtcctg 20 2 20 DNA Artificial Sequence Synthetic DNA 2 tggcgattta tctgcatccc 20 3 20 DNA Artificial Sequence Synthetic DNA 3 gatgatgaca attcagtatt 20 4 20 DNA Artificial Sequence Synthetic DNA 4 ttttattgtg cgtaatccca 20 5 20 DNA Artificial Sequence Synthetic DNA 5 taatagttct gcgcatcaga 20 6 20 DNA Artificial Sequence Synthetic DNA 6 tatacaggtg ttccttttgg 20 7 20 DNA Artificial Sequence Synthetic DNA 7 tatatgttca agaggggtcg 20 8 20 DNA Artificial Sequence Synthetic DNA 8 atggtcaaaa cgcgcctgat 20 9 20 DNA Artificial Sequence Synthetic DNA 9 tagaaagtat ttgttgccgt 20 10 20 DNA Artificial Sequence Synthetic DNA 10 gtaaggcttc tgctgtgaca 20 11 20 DNA Artificial Sequence Synthetic DNA 11 cagtttcaga cagtgcctga 20 12 20 DNA Artificial Sequence Synthetic DNA 12 ttgctgattc gcccccagtt 20 13 20 DNA Artificial Sequence Synthetic DNA 13 attattaaag gatattctcc 20 14 20 DNA Artificial Sequence Synthetic DNA 14 attgtttatt tttataacag 20 15 25 DNA Artificial Sequence Synthetic DNA 15 tttttatcgc tttgctgatt tttca 25 16 25 DNA Artificial Sequence Synthetic DNA 16 cgccattcgt tgactacttc ttatc 25 17 25 DNA Artificial Sequence Synthetic DNA 17 tgatctcagt gggcgttctt atgta 25 18 25 DNA Artificial Sequence Synthetic DNA 18 tcatcatgca tcgcgagttg ccaga 25 19 25 DNA Artificial Sequence Synthetic DNA 19 gtatatgaag tgtatattat ttaaa 25 20 25 DNA Artificial Sequence Synthetic DNA 20 atatatctca ggggaccaca tcggt 25 21 25 DNA Artificial Sequence Synthetic DNA 21 accatcttcg tctgattatt gagca 25 22 25 DNA Artificial Sequence Synthetic DNA 22 ttctaccgtt tttcagattt tacac 25 23 25 DNA Artificial Sequence Synthetic DNA 23 cttacgcttc aggcagatac agaga 25 24 20 DNA Artificial Sequence Synthetic DNA 24 tgtaacgtgg tatagctact 20 25 20 DNA Artificial Sequence Synthetic DNA 25 ttaacgccag atatgatgaa 20 26 20 DNA Artificial Sequence Synthetic DNA 26 gatcatccag tgttgtacga 20 27 39 DNA Artificial Sequence Synthetic DNA 27 aaaaaacatt atttgtcctg ttaacaaatc ctgtcacat 39 28 39 DNA Artificial Sequence Synthetic DNA 28 tggcgattta tctgcatccc cgtacgactg atccctgca 39 29 39 DNA Artificial Sequence Synthetic DNA 29 gatcatccag tgttgtacga aatcccctct gtatttgcc 39 30 39 DNA Artificial Sequence Synthetic DNA 30 gatgatgaca attcagtatt aatgccacgc ttcccagaa 39 31 39 DNA Artificial Sequence Synthetic DNA 31 tatacaggtg ttccttttgg ctgaagtaat cagcaccag 39 32 39 DNA Artificial Sequence Synthetic DNA 32 tatatgttca agaggggtcg atatctctgt ccgtatact 39 33 39 DNA Artificial Sequence Synthetic DNA 33 atggtcaaaa cgcgcctgat agacatcaag ccctcgtat 39 34 39 DNA Artificial Sequence Synthetic DNA 34 tagaaagtat ttgttgccgt attaacgaac ccggccaca 39 35 39 DNA Artificial Sequence Synthetic DNA 35 gtaaggcttc tgctgtgaca gtgacaaaac gcagaactg 39 36 53 DNA Artificial Sequence Synthetic DNA 36 aattctaata cgactcacta tagggagatt tttatcgctt tgctgatttt tca 53 37 53 DNA Artificial Sequence Synthetic DNA 37 aattctaata cgactcacta tagggagacg ccattcgttg actacttctt atc 53 38 53 DNA Artificial Sequence Synthetic DNA 38 aattctaata cgactcacta tagggagatg atctcagtgg gcgttcttat gta 53 39 53 DNA Artificial Sequence Synthetic DNA 39 aattctaata cgactcacta tagggagatc atcatgcatc gcgagttgcc aga 53 40 53 DNA Artificial Sequence Synthetic DNA 40 aattctaata cgactcacta tagggagagt atatgaagtg tatattattt aaa 53 41 53 DNA Artificial Sequence Synthetic DNA 41 aattctaata cgactcacta tagggagaat atatctcagg ggaccacatc ggt 53 42 53 DNA Artificial Sequence Synthetic DNA 42 aattctaata cgactcacta tagggagaac catcttcgtc tgattattga gca 53 43 53 DNA Artificial Sequence Synthetic DNA 43 aattctaata cgactcacta tagggagatt ctaccgtttt tcagatttta cac 53 44 53 DNA Artificial Sequence Synthetic DNA 44 aattctaata cgactcacta tagggagact tacgcttcag gcagatacag aga 53

Claims (8)

What is claimed is:
1. An oligonucleotide for detection or amplification of VT1 RNA, which oligonucleotide is capable of specifically binding to VT1 RNA, and comprises at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5.
2. An oligonucleotide for detection or amplification of VT2 RNA, which oligonucleotide is capable of specifically binding to VT2 RNA, and comprises at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14.
3. A process of detecting VT1 RNA, wherein a specific sequence of VT1 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the formed RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, said single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising said specific sequence or a sequence complementary to said specific sequence employing a DNA-dependent DNA polymerase, said double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and said RNA transcription product is then used as a template for cDNA synthesis employing said RNA-dependent DNA polymerase, the amplification process being characterized by employing a first oligonucleotide capable of specifically binding to VT1 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 1 to 5 and a second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 15 to 18, where either said first or second oligonucleotide includes said RNA polymerase promoter sequence at the 5′ end.
4. A process of detecting VT2 RNA, wherein a specific sequence of VT2 RNA present in a sample is used as a template for synthesis of a cDNA employing an RNA-dependent DNA polymerase, the RNA of the formed RNA/DNA hybrid is digested by ribonuclease H to produce a single-stranded DNA, said single-stranded DNA is then used as a template for production of a double-stranded DNA having a promoter sequence capable of transcribing RNA comprising said specific sequence or a sequence complementary to said specific sequence employing a DNA-dependent DNA polymerase, said double-stranded DNA produces an RNA transcription product in the presence of an RNA polymerase, and said RNA transcription product is then used as a template for cDNA synthesis employing said RNA-dependent DNA polymerase, the amplification process being characterized by employing a first oligonucleotide capable of specifically binding to VT2 RNA and comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 6 to 14 and a to second oligonucleotide comprising at least 10 contiguous bases of any of the sequences listed as SEQ. ID. Nos. 19 to 23, where either said first or second oligonucleotide includes the RNA polymerase promoter sequence at the 5′ end.
5. The process according to claim 3 or 4, wherein said amplification process is carried out in the presence of an oligonucleotide probe capable of specifically binding to the RNA transcription product resulting from said amplification and labeled with an intercalator fluorescent pigment, and changes in the fluorescent properties of the reaction solution is measured, with the proviso that the labeled oligonucleotide has a sequence different from those of the first oligonucleotide and the second oligonucleotide in the sequence.
6. The detection process according to claim 5, characterized in that said oligonucleotide probe is designed so as to complementarily bind to at least a portion of the sequence of said RNA transcription product, and the fluorescent property changes relative to that of a situation where a complex formation is absent.
7. The detection process according to claim 5, characterized in that said oligonucleotide probe for detecting said VT1 mRNA comprises at least 10 contiguous bases of SEQ. ID. No. 24 or its complementary sequence.
8. The detection process according to claim 5 for detecting said VT2 RNA, characterized in that said oligonucleotide probe comprises at least 10 contiguous bases of SEQ. ID. No. 25 or its complementary sequence.
US10/085,056 2001-03-02 2002-03-01 Oligonucleotide and method for detecting verotoxin Abandoned US20030008305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/233,094 US7514241B2 (en) 2001-03-02 2005-09-23 Oligonucleotide and method for detecting Verotoxin
US11/313,849 US20060099637A1 (en) 2001-03-02 2005-12-22 Oligonucleotide and method for detecting Verotoxin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-58143 2001-03-02
JP2001058143A JP2002253257A (en) 2001-03-02 2001-03-02 Oligonucleotide for vero toxin detection and method for detection

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/233,094 Continuation US7514241B2 (en) 2001-03-02 2005-09-23 Oligonucleotide and method for detecting Verotoxin
US11/313,849 Continuation US20060099637A1 (en) 2001-03-02 2005-12-22 Oligonucleotide and method for detecting Verotoxin

Publications (1)

Publication Number Publication Date
US20030008305A1 true US20030008305A1 (en) 2003-01-09

Family

ID=18917912

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/085,056 Abandoned US20030008305A1 (en) 2001-03-02 2002-03-01 Oligonucleotide and method for detecting verotoxin
US11/233,094 Expired - Fee Related US7514241B2 (en) 2001-03-02 2005-09-23 Oligonucleotide and method for detecting Verotoxin
US11/313,849 Abandoned US20060099637A1 (en) 2001-03-02 2005-12-22 Oligonucleotide and method for detecting Verotoxin

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/233,094 Expired - Fee Related US7514241B2 (en) 2001-03-02 2005-09-23 Oligonucleotide and method for detecting Verotoxin
US11/313,849 Abandoned US20060099637A1 (en) 2001-03-02 2005-12-22 Oligonucleotide and method for detecting Verotoxin

Country Status (4)

Country Link
US (3) US20030008305A1 (en)
EP (1) EP1236806B1 (en)
JP (1) JP2002253257A (en)
DE (1) DE60222603T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060115823A1 (en) * 2004-02-03 2006-06-01 Tosoh Corporation Detection reagent for shiga toxin family gene of entero-hemorrhagic escherichia coli

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136533A (en) * 1997-07-03 2000-10-24 Id Biomedical Additives for use in cycling probe reactions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506424A (en) * 1995-03-24 1999-06-08 オフィディアン ファーマシューティカルズ インコーポレーテッド Treatment for Verotoxin-producing Escherichia coli
FR2760749B1 (en) * 1997-03-14 1999-04-30 Veterinaires Et Alimentaires C OLIGONUCLEOTIDES DERIVED FROM VERTSOXIN-PRODUCING E. coli VTS GENES, AND USES THEREOF
JP4438110B2 (en) * 1998-07-01 2010-03-24 東ソー株式会社 Quantification method of target nucleic acid
JP2000210090A (en) * 1998-11-19 2000-08-02 Tosoh Corp Oligo dna strongly combining with hcv rna and convenient production of the dna
JP2000316587A (en) * 1999-03-05 2000-11-21 Tosoh Corp Nucleic acid probe
CA2365135C (en) * 1999-03-19 2009-08-18 Takara Shuzo Co., Ltd. Method for amplifying nucleic acid sequence
US6162605A (en) * 1999-04-12 2000-12-19 Becton Dickinson And Company Amplification and detection of shiga-like toxin I producing organisms
DE60014762T2 (en) * 1999-05-24 2005-10-13 Tosoh Corp., Shinnanyo Method for the detection of ribonucleic acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136533A (en) * 1997-07-03 2000-10-24 Id Biomedical Additives for use in cycling probe reactions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060115823A1 (en) * 2004-02-03 2006-06-01 Tosoh Corporation Detection reagent for shiga toxin family gene of entero-hemorrhagic escherichia coli
US7345161B2 (en) * 2004-02-03 2008-03-18 Tosoh Corporation Detection reagent for shiga toxin family gene of entero-hemorrhagic Escherichia coli

Also Published As

Publication number Publication date
DE60222603D1 (en) 2007-11-08
EP1236806B1 (en) 2007-09-26
DE60222603T2 (en) 2008-06-12
US7514241B2 (en) 2009-04-07
US20060099637A1 (en) 2006-05-11
US20060094041A1 (en) 2006-05-04
EP1236806A3 (en) 2004-05-12
EP1236806A2 (en) 2002-09-04
JP2002253257A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
EP1512756B1 (en) Methods for detection mecA gene of methicillin-resistant Staphylococcus Aureus
EP1134292B1 (en) Oligonucleotides for detection of 'Vibrio parahaemolyticus' and detection method for 'Vibrio parahaemolyticus' using the same oligonucleotides
US7345161B2 (en) Detection reagent for shiga toxin family gene of entero-hemorrhagic Escherichia coli
US7495094B2 (en) Detection reagent for thermostable direct hemolysin-related hemolysin gene of Vibrio parahaemolyticus
US7514241B2 (en) Oligonucleotide and method for detecting Verotoxin
US20050208547A1 (en) Oligonucleotide for detecting Salmonella and method of detecting Salmonella
US7105319B2 (en) Oligonucleotides for detecting tubercle bacillus and method therefor
US20020031760A1 (en) Oligonucleotides and method for detection of small round structured virus (SRSV) RNA
US7339041B2 (en) Oligonucleotides and method for characterizing and detecting Genogroup II type small round structured virus
US20050112629A1 (en) Detection reagent for thermostable direct hemolysin gene of Vibrio parahaemolyticus
US20020123038A1 (en) Oligonucleotide for highly sensitive detection of hepatitis C virus and method for detection thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOSOH CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARUYAMA, TAKAHIRO;ISHIGURO, TAKAHIKO;TAYA, TOSHIKI;REEL/FRAME:012662/0373

Effective date: 20020215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION