US20030004631A1 - Filter method for engine speed to vehicle speed ratios - Google Patents

Filter method for engine speed to vehicle speed ratios Download PDF

Info

Publication number
US20030004631A1
US20030004631A1 US09/896,766 US89676601A US2003004631A1 US 20030004631 A1 US20030004631 A1 US 20030004631A1 US 89676601 A US89676601 A US 89676601A US 2003004631 A1 US2003004631 A1 US 2003004631A1
Authority
US
United States
Prior art keywords
ratios
filtered
gear
further including
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/896,766
Other versions
US6490517B1 (en
Inventor
Phillip McGrath
Yi Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FCA US LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/896,766 priority Critical patent/US6490517B1/en
Application filed by Individual filed Critical Individual
Assigned to DAIMLERCHRYSLER CORPORATION reassignment DAIMLERCHRYSLER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, YI, MCGRATH, PHILLIP B.
Application granted granted Critical
Publication of US6490517B1 publication Critical patent/US6490517B1/en
Publication of US20030004631A1 publication Critical patent/US20030004631A1/en
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY Assignors: CHRYSLER LLC
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY Assignors: CHRYSLER LLC
Assigned to DAIMLERCHRYSLER COMPANY LLC reassignment DAIMLERCHRYSLER COMPANY LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DAIMLERCHRYSLER CORPORATION
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DAIMLERCHRYSLER COMPANY LLC
Assigned to US DEPARTMENT OF THE TREASURY reassignment US DEPARTMENT OF THE TREASURY GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR Assignors: CHRYSLER LLC
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: US DEPARTMENT OF THE TREASURY
Assigned to THE UNITED STATES DEPARTMENT OF THE TREASURY reassignment THE UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: NEW CARCO ACQUISITION LLC
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY Assignors: WILMINGTON TRUST COMPANY
Assigned to CHRYSLER LLC reassignment CHRYSLER LLC RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY Assignors: WILMINGTON TRUST COMPANY
Assigned to NEW CARCO ACQUISITION LLC reassignment NEW CARCO ACQUISITION LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER LLC
Assigned to CHRYSLER GROUP LLC reassignment CHRYSLER GROUP LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NEW CARCO ACQUISITION LLC
Assigned to CHRYSLER GROUP LLC, CHRYSLER GROUP GLOBAL ELECTRIC MOTORCARS LLC reassignment CHRYSLER GROUP LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY AGREEMENT Assignors: CHRYSLER GROUP LLC
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY AGREEMENT Assignors: CHRYSLER GROUP LLC
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: CHRYSLER GROUP LLC
Assigned to FCA US LLC reassignment FCA US LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER GROUP LLC
Assigned to FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC reassignment FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC RELEASE OF SECURITY INTEREST RELEASING SECOND-LIEN SECURITY INTEREST PREVIOUSLY RECORDED AT REEL 026426 AND FRAME 0644, REEL 026435 AND FRAME 0652, AND REEL 032384 AND FRAME 0591 Assignors: CITIBANK, N.A.
Assigned to FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) reassignment FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Assigned to FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) reassignment FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC) RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/42Ratio indicator devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0042Transfer function lag; delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • F16H2059/706Monitoring gear ratio in stepped transmissions, e.g. by calculating the ratio from input and output speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle

Definitions

  • the present invention relates generally to a method for determining optimal gear engagement for a motor vehicle, and more particularly to an improved filter method for processing the ratio of engine speed to vehicle speed.
  • One approach to addressing gear transition problems is the use of an automatic transmission.
  • the automatic transmission takes the task of determining when a proper gear shift is necessary away from the vehicle operator.
  • a computer controlled system is integrated with the transmission and upon obtaining vehicle feedback, the computer determines the appropriate time for gear changes.
  • the smoothness of the gear transitions obtained by the automatic transmission results in an optimal environment for the operator of the vehicle while enhancing the operating conditions of the vehicle.
  • the present invention relates to a method for determining a maximum performance gear for an automobile when performing acceleration/deceleration maneuvers and a system for enhancing a motor vehicle's gear indicator capabilities.
  • One object of the present invention is to reduce the amount of “noise” present in the output which occurs during acceleration/deceleration maneuvers throughout transmission gear stages.
  • the present invention relates to a method of determining the optimal gear for operation of a manual transmission by obtaining vehicle speed and engine speed data and filtering such data through a mathematical filter implemented by a microprocessor.
  • the present invention has been desired on the basis of application with a manual transmission, the present invention may be applied to any sort of transmission which is not electronically controlled. This may include any automatic transmissions that are not electronically controlled by a computer, such as three-speed hydraulic engines.
  • FIG. 1 is a schematic diagram of the present invention including key operating elements
  • FIG. 2 is a functionality flow chart of the filter method and technique for operation
  • FIG. 3 is graph of a conventional N/V ratio for a manual transmission going from first gear to fifth gear, useful in understanding the present invention
  • FIG. 4 is a graph of a filtered N/V ratio for a manual transmission in first gear.
  • FIG. 5 is a more detailed graph of the filtered N/V ratio shown in FIG. 4.
  • the key elements that are associated with the present invention include; an engine speed sensor 10 , a vehicle speed sensor 12 , a microprocessor 14 , a filter 16 , and if necessary, a device 18 for indicating the operating gear of the transmission to the operator of the motor vehicle.
  • the vehicle speed (v) and the engine speed (n) of the motor vehicle must be determined.
  • the vehicle speed of the automobile is determined by a vehicle speed sensor 12 positioned relative to a gear in the transmission.
  • the sensor 12 therefore detects pulses from the gear in the transmission and converts the mechanical data provided by the gear into a vehicle speed measurement.
  • An electrical signal which correlates to the vehicle speed is then sent to the microprocessor 14 to be interpreted.
  • the engine speed must initially be determined.
  • the engine speed is determined by an engine speed sensor 10 positioned relative to the crank shaft of the engine.
  • the engine speed sensor 10 processes pulses from the crank shaft and transfers the physical data to a representative electrical signal.
  • the raw data from the engine speed sensor 10 and the vehicle speed sensor 12 are processed by the microprocessor 14 and the output data is provided as a “raw” engine speed (n) to vehicle speed (v) ratio.
  • the engine speed to vehicle speed, or n/v, ratio is the fundamental basis of the present invention and moreover, is currently the means by which a manual transmission determines the selected gear of operation.
  • the representative electrical signal is sent to a filter 16 .
  • a more in-depth description of the filter routine is represented by the functionality flow chart in FIG. 2.
  • the present invention uses a first order lag filter to remove the unnecessary noise from the selected gear and to obtain a stable output when processing the selected gear output data.
  • the preferred first order lag filter is represented by the following formula:
  • filtered n/v new [(unfiltered n/v ) ⁇ filter constant]+[(filtered n/v old ) ⁇ (1 ⁇ filter constant)]
  • the filter constant is a value that is determined by the calibrator to obtain an appropriate filtered n/v value that is stable and conclusive.
  • the object of the first order lag filter is to compress the noise present in selected gears, as can be seen in the graphical representation of the unfiltered n/v values in FIG. 3 at plot 28 .
  • the engine speed (n) and vehicle speed (v) are obtained and processed at step S 1 .
  • the processing of the engine speed and vehicle speed result in a determination of an unfiltered engine speed to vehicle speed ratio at step S 2 (unfiltered n/v ratio).
  • the first order lag filter is then applied to the unfiltered n/v ratio as described above.
  • the filtered n/v value is processed and stored in a new RAM location at step S- 4 .
  • the filtered n/v value is then recalculated every calabratable time period. Each information cycle takes approximately 12.5 milliseconds, also referred to as a 12.5 ms loop.
  • the filtered n/v value may therefore be recalculated once every calabratable time period, or once every so many 12.5 ms loops.
  • Each filtered n/v signal is then stored in a new RAM location for each selected gear that is in operation at the calabratable time period.
  • the calabratable time periods may further be designed to have the filter applied every 12.5 milliseconds, but the results of the filtered n/v are only processed every specified calabratable time period. Thus, there may be a variety of time periods in which data is collected and stored.
  • the plot 20 of FIG. 4 is a graphical representation of the improved filter routine in comparison with the unfiltered n/v output data. More specifically, FIG. 4 is a graphical representation of the output which occurs in a 5 speed manual T350+ transmission throughout the operation of 1 st gear. A comparison of the unfiltered n/v ratio to the filtered n/v ratio is further provided. As represented by the dotted line, the unfiltered or “raw” n/v ratio output curve 22 exhibits a large amount of fluctuation within the first gear maneuvers. It can be seen that aggressive throttle movements are performed in each gear and the fluctuations of the throttle result in a large amount of “noise” in the unfiltered n/v ratio data signals.
  • the filtered n/v ratio output curve 24 (represented by the solid line) demonstrates a much more stable data output signal.
  • the stable output signal that is provided by the filtered n/v ratio allows for a clear determination of the operational gear and causes less strain on the transmission system. This type of data management system is desirable throughout the operation of the transmission because less data must be interpreted and a more solid gear determination is possible.
  • a 2-D table may be incorporated within this system to provide a direct correlation between the filtered n/v ratio data signals and the selected gear of operation. Therefore, selected filtered n/v values would directly result in a determination of a selected gear. This information could then be relayed to the operator of the vehicle by a variety of selected indicator mechanism, such as a visual or auricular signal.
  • An additional object of the present invention is to provide a quick transition from one gear to another during operation. Once the filtered n/v ratio has provided a stable output during a select gear, a method must be designed to allow for the filtered n/v ratio to deactivate during a gear change. As functionally described in FIG. 3 and graphically shown in plot 26 of FIG. 5, the deactivation of the filter routine results in a quick gear transition during shifting.
  • a calabratable window period is determined and provides the signal for when the filter routine is deactivated during shifting.
  • a determination is made at step S 6 as to whether the unfiltered n/v signal goes outside of the filtered n/v calabratable window. If the unfiltered n/v signal goes outside of the filtered n/v calabratable window a gear determination may be determined at step S 7 .
  • This type of gear determination data may be provided within the framework of the microprocessor in the form of a data table or gear change timeline.
  • a time period may be set by the calibrator to determine the necessary length of time for the unfiltered n/v value to be outside of the calibratable window before the filter routine is turned off.
  • the filtered n/v value is made equal to the unfiltered n/v feature by disabling the new filter feature, in otherwords the filter is turned off at step S 8 .
  • the filtered n/v value and the unfiltered n/v value are maintained at equal levels for a calabratable “no filter” time period or until the n/v value of the next gear is reached. This allows for rapid n/v tracking, which must occur during gear change.
  • the filter is reactivated and applied to the unfiltered n/v data signals within the next consecutive gear.
  • the filter routine described above continues throughout each gear transition provided by a manual transmission.
  • Each of the cycles may be altered based on the preference of the calibrator.
  • the present invention therefore provides a general application of a first order lag filter and the framework of calabratable time period throughout the filter routine.
  • Each of the calibratable time periods may be altered based on the specific type, design or performance qualities of the transmission.
  • the calibrator may be able to set specific standards based on desirable responses of the power train system during gear changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

The present invention relates to a method for determining a maximum performance gear for an automobile when performing acceleration/deceleration maneuvers and a system for enhancing a motor vehicle's gear indicator capabilities. More specifically, the present invention relates to a method for determining the optimal gear for operation of a manual transmission by obtaining vehicle speed and engine speed data and filtering such data through a mathematical filter implemented by a microprocessor. The application of the filter that may be adjusted throughout vehicle usage to optimize gear and transmission operability.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field [0001]
  • The present invention relates generally to a method for determining optimal gear engagement for a motor vehicle, and more particularly to an improved filter method for processing the ratio of engine speed to vehicle speed. [0002]
  • 2. Discussion [0003]
  • The ability to determine which gear a transmission should be engaged in is one of the most crucial tasks to master in order for a vehicle to operate correctly. The design of a manual transmission relies on the operator of the motor vehicle to determine the correct operable gear based on the vehicle speed and rpm measurements provided. In many cases, it is up to the skill of the operator to determine how to obtain the most efficient transition from gear to gear. Throughout a variety of acceleration/deceleration maneuvers, a transmission experiences a large amount of strain on the system. [0004]
  • In a typical power train system with a manual transmission, an increase in air flow occurs due to the operator's foot being on the throttle. The increase in air flow increases the torque output of the engine. This is a shock load on the dynamic vehicle system and causes the vehicle to oscillate back and forth or shake. Furthermore, if the throttle is opened too quickly it can be expected that the car will start to shake and ultimately stop on its own. It is because of these problems that it is necessary to develop a new type of technology for power trains that may reduce above-mentioned gear transition problems. [0005]
  • One approach to addressing gear transition problems is the use of an automatic transmission. Essentially, the automatic transmission takes the task of determining when a proper gear shift is necessary away from the vehicle operator. Instead, a computer controlled system is integrated with the transmission and upon obtaining vehicle feedback, the computer determines the appropriate time for gear changes. The smoothness of the gear transitions obtained by the automatic transmission results in an optimal environment for the operator of the vehicle while enhancing the operating conditions of the vehicle. [0006]
  • Therefore, it is desirable to develop a method and system for determining the optimal performance gear for a manual transmission that is similar to that of the automatic transmission. Currently, engine control software uses the ratio of engine speed to vehicle speed to determine the gear in which a manual transmission vehicle is operating. This approach does not result in a clean stable output when performing engine acceleration/deceleration maneuvers. Therefore, the usefulness of the engine speed to vehicle speed ratio as a gear indicator is compromised due to the “noise” that occurs during the gear output. In order to obtain a more stable output for gear feedback, a method for determining a continuous gear indicator system must be developed. It is also desirable to obtain a relatively simple operating system for a manual transmission which provides a more enjoyable atmosphere for the operator of the vehicle while decreasing the strain placed on the transmission. [0007]
  • It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute part of this specification. The drawings illustrate various features and embodiments of the invention, and together with the description serve to explain the principles and operation of the invention. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a method for determining a maximum performance gear for an automobile when performing acceleration/deceleration maneuvers and a system for enhancing a motor vehicle's gear indicator capabilities. [0009]
  • One object of the present invention is to reduce the amount of “noise” present in the output which occurs during acceleration/deceleration maneuvers throughout transmission gear stages. [0010]
  • It is another object of the present invention to provide a filter for the engine speed over vehicle speed ratio which currently serves as the gear indicator system for a manual transmission. [0011]
  • It is still another object of the present invention to provide a filter that may be adjusted throughout vehicle usage to optimize gear and transmission operability. [0012]
  • In general, the present invention relates to a method of determining the optimal gear for operation of a manual transmission by obtaining vehicle speed and engine speed data and filtering such data through a mathematical filter implemented by a microprocessor. [0013]
  • Although the present invention has been desired on the basis of application with a manual transmission, the present invention may be applied to any sort of transmission which is not electronically controlled. This may include any automatic transmissions that are not electronically controlled by a computer, such as three-speed hydraulic engines. [0014]
  • Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood however that the detailed description and specific examples, while indicating preferred embodiments of the invention, are intended for purposes of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and sub-joined claims and by referencing the following drawings, in which: [0016]
  • The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein: [0017]
  • FIG. 1 is a schematic diagram of the present invention including key operating elements; [0018]
  • FIG. 2 is a functionality flow chart of the filter method and technique for operation; [0019]
  • FIG. 3 is graph of a conventional N/V ratio for a manual transmission going from first gear to fifth gear, useful in understanding the present invention; [0020]
  • FIG. 4 is a graph of a filtered N/V ratio for a manual transmission in first gear; and [0021]
  • FIG. 5 is a more detailed graph of the filtered N/V ratio shown in FIG. 4. [0022]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. [0023]
  • Referring first to FIG. 1, the systematic diagram of the key elements of the present invention are shown. The key elements that are associated with the present invention include; an [0024] engine speed sensor 10, a vehicle speed sensor 12, a microprocessor 14, a filter 16, and if necessary, a device 18 for indicating the operating gear of the transmission to the operator of the motor vehicle.
  • It will be appreciated that prior to the application of the present invention, the vehicle speed (v) and the engine speed (n) of the motor vehicle must be determined. The vehicle speed of the automobile is determined by a [0025] vehicle speed sensor 12 positioned relative to a gear in the transmission. The sensor 12 therefore detects pulses from the gear in the transmission and converts the mechanical data provided by the gear into a vehicle speed measurement. An electrical signal which correlates to the vehicle speed is then sent to the microprocessor 14 to be interpreted. Similarly to the detection of the vehicle speed, the engine speed must initially be determined. The engine speed is determined by an engine speed sensor 10 positioned relative to the crank shaft of the engine. The engine speed sensor 10 processes pulses from the crank shaft and transfers the physical data to a representative electrical signal. The raw data from the engine speed sensor 10 and the vehicle speed sensor 12 are processed by the microprocessor 14 and the output data is provided as a “raw” engine speed (n) to vehicle speed (v) ratio. The engine speed to vehicle speed, or n/v, ratio is the fundamental basis of the present invention and moreover, is currently the means by which a manual transmission determines the selected gear of operation.
  • Upon processing the unfiltered engine speed to vehicle speed ratio, the representative electrical signal is sent to a [0026] filter 16. A more in-depth description of the filter routine is represented by the functionality flow chart in FIG. 2. In order to obtain a solid output during the acceleration/deceleration maneuvers within a selected gear, it is necessary to use a method to average out the signals being received. The present invention uses a first order lag filter to remove the unnecessary noise from the selected gear and to obtain a stable output when processing the selected gear output data. The preferred first order lag filter is represented by the following formula:
  • filtered n/v new=[(unfiltered n/v)×filter constant]+[(filtered n/v old)×(1−filter constant)]
  • The filter constant is a value that is determined by the calibrator to obtain an appropriate filtered n/v value that is stable and conclusive. The object of the first order lag filter is to compress the noise present in selected gears, as can be seen in the graphical representation of the unfiltered n/v values in FIG. 3 at [0027] plot 28.
  • Therefore, according to FIG. 2 the engine speed (n) and vehicle speed (v) are obtained and processed at step S[0028] 1. The processing of the engine speed and vehicle speed result in a determination of an unfiltered engine speed to vehicle speed ratio at step S2 (unfiltered n/v ratio). At step S3 the first order lag filter is then applied to the unfiltered n/v ratio as described above. Following the application of the first order lag filter to the unfiltered n/v value, the filtered n/v value is processed and stored in a new RAM location at step S-4. The filtered n/v value is then recalculated every calabratable time period. Each information cycle takes approximately 12.5 milliseconds, also referred to as a 12.5 ms loop. The filtered n/v value may therefore be recalculated once every calabratable time period, or once every so many 12.5 ms loops. Each filtered n/v signal is then stored in a new RAM location for each selected gear that is in operation at the calabratable time period. The calabratable time periods may further be designed to have the filter applied every 12.5 milliseconds, but the results of the filtered n/v are only processed every specified calabratable time period. Thus, there may be a variety of time periods in which data is collected and stored.
  • The object of being able to select the specific calabratable time period for when the n/v ratio is filtered allows the calibrator to delay the calculation and slow down the output. This slowing down of the calculation results in a more average output overall and provides an improved gear indicator, as can be see in FIG. 4. [0029]
  • The [0030] plot 20 of FIG. 4 is a graphical representation of the improved filter routine in comparison with the unfiltered n/v output data. More specifically, FIG. 4 is a graphical representation of the output which occurs in a 5 speed manual T350+ transmission throughout the operation of 1st gear. A comparison of the unfiltered n/v ratio to the filtered n/v ratio is further provided. As represented by the dotted line, the unfiltered or “raw” n/v ratio output curve 22 exhibits a large amount of fluctuation within the first gear maneuvers. It can be seen that aggressive throttle movements are performed in each gear and the fluctuations of the throttle result in a large amount of “noise” in the unfiltered n/v ratio data signals. Following the application of the first order lag filter to the unfiltered n/v ratio, the filtered n/v ratio output curve 24 (represented by the solid line) demonstrates a much more stable data output signal. The stable output signal that is provided by the filtered n/v ratio allows for a clear determination of the operational gear and causes less strain on the transmission system. This type of data management system is desirable throughout the operation of the transmission because less data must be interpreted and a more solid gear determination is possible.
  • Although not currently applied, a 2-D table may be incorporated within this system to provide a direct correlation between the filtered n/v ratio data signals and the selected gear of operation. Therefore, selected filtered n/v values would directly result in a determination of a selected gear. This information could then be relayed to the operator of the vehicle by a variety of selected indicator mechanism, such as a visual or auricular signal. [0031]
  • An additional object of the present invention is to provide a quick transition from one gear to another during operation. Once the filtered n/v ratio has provided a stable output during a select gear, a method must be designed to allow for the filtered n/v ratio to deactivate during a gear change. As functionally described in FIG. 3 and graphically shown in [0032] plot 26 of FIG. 5, the deactivation of the filter routine results in a quick gear transition during shifting.
  • Initially a calabratable window period is determined and provides the signal for when the filter routine is deactivated during shifting. Following the storage of the filtered n/v signal based on the original unfiltered n/v ratio, a determination is made at step S[0033] 6 as to whether the unfiltered n/v signal goes outside of the filtered n/v calabratable window. If the unfiltered n/v signal goes outside of the filtered n/v calabratable window a gear determination may be determined at step S7. This type of gear determination data may be provided within the framework of the microprocessor in the form of a data table or gear change timeline. A time period may be set by the calibrator to determine the necessary length of time for the unfiltered n/v value to be outside of the calibratable window before the filter routine is turned off. Once the specific time period is reached, the filtered n/v value is made equal to the unfiltered n/v feature by disabling the new filter feature, in otherwords the filter is turned off at step S8. The filtered n/v value and the unfiltered n/v value are maintained at equal levels for a calabratable “no filter” time period or until the n/v value of the next gear is reached. This allows for rapid n/v tracking, which must occur during gear change. At the conclusion of the “no filter” calabratable time period, the filter is reactivated and applied to the unfiltered n/v data signals within the next consecutive gear.
  • The filter routine described above continues throughout each gear transition provided by a manual transmission. Each of the cycles may be altered based on the preference of the calibrator. The present invention therefore provides a general application of a first order lag filter and the framework of calabratable time period throughout the filter routine. Each of the calibratable time periods may be altered based on the specific type, design or performance qualities of the transmission. Furthermore, the calibrator may be able to set specific standards based on desirable responses of the power train system during gear changes. [0034]
  • The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims. [0035]
  • Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention can be described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification and following claims. [0036]

Claims (18)

What is claimed:
1. A method for identifying a current gear of a manual transmission, the method comprising the steps of:
calculating raw ratios of engine speed to vehicle speed based on engine speed data and vehicle speed data;
filtering noise out of the raw ratios such that filtered ratios result; and
identifying current gears based on the filtered ratios.
2. The method of claim 1 further including the steps of:
selecting a calibratable time period;
applying a first order lag filter to the raw ratios once for each calibratable time period such that the filtered ratios result; and
storing the filtered ratios to a memory device.
3. The method of claim 2 further including the step of increasing the calibratable time period to increase an averaging effect on the filtered ratios.
4. The method of claim 2 further including the step of storing the filtered ratios to a random access memory.
5. The method of claim I further including the steps of:
identifying gear changes based on the filtered ratios; and
discontinuing the filtering step during the gear changes.
6. The method of claim 1 further including the steps of:
selecting a calibratable window for the filtered ratios; and
determining when the filtered ratios are outside the calibratable window.
7. The method of claim 1 further including the step of generating a correlation table associating selectable gears with known filtered ratios.
8. The method of claim 1 further including the step of relaying the identified current gears to an operator of the manual transmission.
9. A method for filtering noise out of raw ratios of engine speed to vehicle speed, the method comprising the steps of:
selecting a calibratable time period;
applying a first order lag filter to the raw ratios once for each calibratable time period such that filtered ratios of engine speed to vehicle speed result; and
storing the filtered ratios to a memory device.
10. The method of claim 9 further including the step of increasing the calibratable time period to increase an averaging effect on the filtered ratios.
11. The method of claim 9 further including the step of storing the filtered ratios to a random access memory.
12. A method for identifying a current gear of a manual transmission, the method comprising the steps of:
calculating raw ratios of engine speed to vehicle speed based on engine speed data and vehicle speed data;
selecting a calibratable time period;
applying a first order lag filter to the raw ratios once for each calibratable time period such that the filtered ratios result;
storing the filtered ratios to a random access memory;
selecting a calibratable window for the filtered ratios;
determining when the filtered ratios are outside the calibratable window such that gear changes are identified;
discontinuing application of the filter during the gear changes; and
relaying the identified gear changes and current gears to an operator of the manual transmission.
13. The method of claim 12 further including the step of generating a correlation table associating selectable gears with know filtered ratios.
14. A manual transmission gear identification system comprising:
a microprocessor for calculating raw ratios of engine speed to vehicle speed based on engine speed data and vehicle speed data; and
a filter for filtering noise out of the raw ratios such that filtered ratios result;
said microprocessor identifying current gears based on the filtered ratios.
15. The identification system of claim 14 wherein the filter is a first order lag filter.
16. The identification system of claim 14 further including a gear change indicator for relaying the identified current gears to an operator of the manual transmission.
17. The identification system of claim 14 further including a vehicle speed sensor for generating the vehicle speed data.
18. The identification system of claim 14 further including an engine speed sensor for generating the engine speed data.
US09/896,766 2001-06-29 2001-06-29 Filter method for engine speed to vehicle speed ratios Expired - Lifetime US6490517B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/896,766 US6490517B1 (en) 2001-06-29 2001-06-29 Filter method for engine speed to vehicle speed ratios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/896,766 US6490517B1 (en) 2001-06-29 2001-06-29 Filter method for engine speed to vehicle speed ratios

Publications (2)

Publication Number Publication Date
US6490517B1 US6490517B1 (en) 2002-12-03
US20030004631A1 true US20030004631A1 (en) 2003-01-02

Family

ID=25406789

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/896,766 Expired - Lifetime US6490517B1 (en) 2001-06-29 2001-06-29 Filter method for engine speed to vehicle speed ratios

Country Status (1)

Country Link
US (1) US6490517B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096768A1 (en) * 2006-02-23 2007-08-30 Toyota Jidosha Kabushiki Kaisha Vehicle driving force control apparatus and method
FR2907746A1 (en) * 2006-10-30 2008-05-02 Peugeot Citroen Automobiles Sa Manual gearbox's gear ratio determining method for motor vehicle, involves defining gear ratio, while estimating whether gear ratio is greater, lower or identical to determined ratio, when clutch is not closed
JP2013204580A (en) * 2012-03-29 2013-10-07 Daihatsu Motor Co Ltd Vehicle control device
EP1571375A3 (en) * 2004-02-20 2014-06-18 CNH Industrial Belgium nv Method and apparatus for determining a vehicle gear ratio
US20170046447A1 (en) * 2014-06-06 2017-02-16 Tencent Technology (Shenzhen) Company Limited Information Category Obtaining Method and Apparatus
CN110594410A (en) * 2019-08-27 2019-12-20 中国第一汽车股份有限公司 Transmission gear identification method and vehicle
CN110985657A (en) * 2019-12-17 2020-04-10 潍柴动力股份有限公司 Gear shifting method and device of AMT (automated mechanical Transmission)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832881A (en) * 2012-08-31 2012-12-19 郑州春泉暖通节能设备有限公司 Simple motor gear identification method and device based on potential transformation technology
CN102830354A (en) * 2012-08-31 2012-12-19 郑州春泉暖通节能设备有限公司 Motor gear identification method and device
DE102015213613A1 (en) 2015-07-20 2017-01-26 Volkswagen Aktiengesellschaft Sensorless real-time modeling
US10145325B2 (en) * 2016-01-28 2018-12-04 GM Global Technology Operations LLC System and method for identifying a potential engine stall and controlling a powertrain system to prevent an engine stall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016176A (en) 1989-05-12 1991-05-14 Chrysler Corporation Method of in-gear tolerance control
US5582558A (en) * 1995-07-27 1996-12-10 Rockwell International Corporation Combined system for assisting shifting of manual transmission
US5974354A (en) 1997-02-05 1999-10-26 Eaton Corporation Engagement of gear ratio confirmation
DE19726743A1 (en) 1997-06-24 1999-01-07 Bosch Gmbh Robert Method and device for the automatic determination of the differential gear ratio

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571375A3 (en) * 2004-02-20 2014-06-18 CNH Industrial Belgium nv Method and apparatus for determining a vehicle gear ratio
WO2007096768A1 (en) * 2006-02-23 2007-08-30 Toyota Jidosha Kabushiki Kaisha Vehicle driving force control apparatus and method
KR101134338B1 (en) * 2006-02-23 2012-04-09 도요타 지도샤(주) Vehicle driving force control apparatus and method
US8175779B2 (en) 2006-02-23 2012-05-08 Toyota Jidosha Kabushiki Kaisha Vehicle driving force control apparatus and method
FR2907746A1 (en) * 2006-10-30 2008-05-02 Peugeot Citroen Automobiles Sa Manual gearbox's gear ratio determining method for motor vehicle, involves defining gear ratio, while estimating whether gear ratio is greater, lower or identical to determined ratio, when clutch is not closed
JP2013204580A (en) * 2012-03-29 2013-10-07 Daihatsu Motor Co Ltd Vehicle control device
US20170046447A1 (en) * 2014-06-06 2017-02-16 Tencent Technology (Shenzhen) Company Limited Information Category Obtaining Method and Apparatus
CN110594410A (en) * 2019-08-27 2019-12-20 中国第一汽车股份有限公司 Transmission gear identification method and vehicle
CN110985657A (en) * 2019-12-17 2020-04-10 潍柴动力股份有限公司 Gear shifting method and device of AMT (automated mechanical Transmission)

Also Published As

Publication number Publication date
US6490517B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
US7653469B2 (en) Automatic transmission shift point control system and method of use
US6490517B1 (en) Filter method for engine speed to vehicle speed ratios
KR101670535B1 (en) System for determining a vehicle mass-based breakpoint for selecting between two different transmission shift schedules
US4285252A (en) Speed-change control system for an automatic transmission
US7931561B2 (en) Aggressive torque converter clutch slip control design through driveline torsional velocity measurements
US20020082132A1 (en) Malfunction diagnostic method and system for output shaft rpm sensor of a transmission
JPH0587232A (en) Transmission control device for automobile
US7433770B2 (en) Hydraulic fluid change indicating device for automatic transmission
AU2002301595B2 (en) Method for Diagnosing a Failure of an Output-Shaft Speed Sensor of an Automatic Transmission for a Vehicle
EP2478267B1 (en) System for control of gearshift points
AU772072B2 (en) Method for controlling continuously variable transmission
KR960008278A (en) Method and apparatus for resetting the value of the control parameter representing the total weight of the vehicle to the default value
CN114562559B (en) Neutral gear control method and device of two-gear motor, electronic equipment and storage medium
CN113147636B (en) Engine noise reduction method, automobile and computer readable storage medium
US20020084160A1 (en) Method for controlling a damper clutch of an automatic transmission
US7610137B2 (en) Shift control method and system for an automatic transmission
US7207923B2 (en) Method for reducing shift shock of automatic vehicle transmission by engine torque reduction control
JP2006521519A (en) System and method for controlling clutch engagement
US5618244A (en) System for adjusting the working range of a damper clutch in an automatic transmission
CN113847421B (en) Vehicle transmission control method, unit and control system and vehicle
WO2002092376A1 (en) Apparatus for converting a manual transmission of an automobile into an automated manual transmission
CN115059753B (en) Engine water temperature control method and system and automobile
JP2020034020A (en) Shift control device and shift control method
JP6086040B2 (en) Vehicle engine speed display device and control method for vehicle engine speed display device
KR100267295B1 (en) Shift selection method of automatic transmission

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIMLERCHRYSLER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCGRATH, PHILLIP B.;CHENG, YI;REEL/FRAME:011965/0121

Effective date: 20010628

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019773/0001

Effective date: 20070803

Owner name: WILMINGTON TRUST COMPANY,DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019773/0001

Effective date: 20070803

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019767/0810

Effective date: 20070803

Owner name: WILMINGTON TRUST COMPANY,DELAWARE

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019767/0810

Effective date: 20070803

AS Assignment

Owner name: DAIMLERCHRYSLER COMPANY LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:DAIMLERCHRYSLER CORPORATION;REEL/FRAME:021779/0793

Effective date: 20070329

AS Assignment

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:DAIMLERCHRYSLER COMPANY LLC;REEL/FRAME:021826/0001

Effective date: 20070727

AS Assignment

Owner name: US DEPARTMENT OF THE TREASURY, DISTRICT OF COLUMBI

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022259/0188

Effective date: 20090102

Owner name: US DEPARTMENT OF THE TREASURY,DISTRICT OF COLUMBIA

Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022259/0188

Effective date: 20090102

AS Assignment

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US DEPARTMENT OF THE TREASURY;REEL/FRAME:022902/0310

Effective date: 20090608

Owner name: CHRYSLER LLC,MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US DEPARTMENT OF THE TREASURY;REEL/FRAME:022902/0310

Effective date: 20090608

AS Assignment

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0498

Effective date: 20090604

Owner name: CHRYSLER LLC, MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0740

Effective date: 20090604

Owner name: NEW CARCO ACQUISITION LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022915/0001

Effective date: 20090610

Owner name: THE UNITED STATES DEPARTMENT OF THE TREASURY, DIST

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022915/0489

Effective date: 20090610

Owner name: CHRYSLER LLC,MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0498

Effective date: 20090604

Owner name: CHRYSLER LLC,MICHIGAN

Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0740

Effective date: 20090604

Owner name: NEW CARCO ACQUISITION LLC,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022915/0001

Effective date: 20090610

Owner name: THE UNITED STATES DEPARTMENT OF THE TREASURY,DISTR

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022915/0489

Effective date: 20090610

AS Assignment

Owner name: CHRYSLER GROUP LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022919/0126

Effective date: 20090610

Owner name: CHRYSLER GROUP LLC,MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022919/0126

Effective date: 20090610

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CHRYSLER GROUP LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:026343/0298

Effective date: 20110524

Owner name: CHRYSLER GROUP GLOBAL ELECTRIC MOTORCARS LLC, NORT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:026343/0298

Effective date: 20110524

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:026404/0123

Effective date: 20110524

AS Assignment

Owner name: CITIBANK, N.A., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:026435/0652

Effective date: 20110524

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:032384/0640

Effective date: 20140207

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: FCA US LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:035553/0356

Effective date: 20141203

AS Assignment

Owner name: FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC,

Free format text: RELEASE OF SECURITY INTEREST RELEASING SECOND-LIEN SECURITY INTEREST PREVIOUSLY RECORDED AT REEL 026426 AND FRAME 0644, REEL 026435 AND FRAME 0652, AND REEL 032384 AND FRAME 0591;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037784/0001

Effective date: 20151221

AS Assignment

Owner name: FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC),

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:042885/0255

Effective date: 20170224

AS Assignment

Owner name: FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC),

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048177/0356

Effective date: 20181113