US20030001743A1 - Personal medical device communication system and method - Google Patents

Personal medical device communication system and method Download PDF

Info

Publication number
US20030001743A1
US20030001743A1 US10/165,624 US16562402A US2003001743A1 US 20030001743 A1 US20030001743 A1 US 20030001743A1 US 16562402 A US16562402 A US 16562402A US 2003001743 A1 US2003001743 A1 US 2003001743A1
Authority
US
United States
Prior art keywords
range
personal device
long
wireless communications
personal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/165,624
Other versions
US20040027244A9 (en
US7088233B2 (en
Inventor
Raymond Menard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31892364&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030001743(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/384,165 external-priority patent/US6356192B1/en
Priority claimed from PCT/US2001/018734 external-priority patent/WO2001093926A2/en
Priority claimed from US09/956,474 external-priority patent/US6759956B2/en
Priority claimed from US10/112,669 external-priority patent/US20020169539A1/en
Priority to US10/165,624 priority Critical patent/US7088233B2/en
Application filed by Individual filed Critical Individual
Priority to US10/285,778 priority patent/US7103344B2/en
Publication of US20030001743A1 publication Critical patent/US20030001743A1/en
Publication of US20040027244A9 publication Critical patent/US20040027244A9/en
Publication of US7088233B2 publication Critical patent/US7088233B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B1/00Systems for signalling characterised solely by the form of transmission of the signal
    • G08B1/08Systems for signalling characterised solely by the form of transmission of the signal using electric transmission ; transformation of alarm signals to electrical signals from a different medium, e.g. transmission of an electric alarm signal upon detection of an audible alarm signal
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0861Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication

Definitions

  • the present invention relates generally to bi-directional personal and health-wellness provider communication system and in particular to a personal communication system suitable for use with children, vulnerable adults (such as those in assisted living situations), and more specifically, medically distressed persons and those in whom an personal medical device has been deployed, for medical testing, and for other life enhancements.
  • PMD Personal Medical Devices
  • PMDs may be surgically implanted, strapped externally to the body, carried in a pocket, transported in a carrying case, or installed as a home appliance. They may be used only for rare emergencies, on an occasional basis, on a regular schedule, or in a continuous or nearly continuous fashion.
  • PMDs may monitor individual or combinations of body functions such as heart function, respiration, body chemistry, brain function, or muscular/skeleton actions.
  • PMDs may provide body functions such as mechanical hearts, kidney dialysis, digestive or respiratory activities.
  • PMDs may be used to deliver drugs, heart defibrillation, or other treatment.
  • PMDs may be used to enhance wellness, test drug therapies, monitor patient health, deliver long-term care, or treat acute conditions.
  • the purpose for communications include but are not limited to the following: to provide health care professionals with access to information for remote diagnostic capabilities; to provide notification of acute conditions possibly requiring immediate assistance, transportation to a medical center, or remote treatment action; to provide a location information of mobile persons for caregivers; to notify responsible parties of the occurrence of a medical condition; and to provide remote intervention assistance by caregivers through verbal or visual interaction.
  • the communications network links together the PMD, casual caregivers, a medical center, an emergency dispatch center, medical databases, and related responsible parties. This group of associated parties is able to combine resources to improve the survivability during an acute medical event.
  • the medical communications system delivers an end-to-end comprehensive solution to provide care to a remote or mobile user of a PMD.
  • FIG. 1 is a block diagram showing the overall structure of the system of the present invention.
  • FIG. 2 is a block diagram showing the internal structure of a portable device.
  • FIG. 3 is a block diagram showing the structure of a user interface module.
  • FIGS. 4 A- 4 F are block diagrams showing various configurations of the system of the present invention.
  • FIG. 5 is a network diagram showing communications through the system of the present invention.
  • FIG. 6 is a chart showing the uses of various data by a dispatcher or medical caregiver.
  • the present system provides many benefits, including but not limited to, low cost, easy installation, limited power requirements and wireless operation and signal transmission. Many other benefits will be appreciated by those skilled in the art upon reading and understanding the present description.
  • FIG. 1 is a block diagram showing the interoperability of a personal medical device (PMD) 100 with a medical device interface (MDI) 200 and a network 400 .
  • PMD personal medical device
  • MDI medical device interface
  • the PMD 100 may interact directly with the network 400 or through the mediation of the MDI 200 .
  • the PMD may interact with a personal wireless device 500 which in turn interacts with the network.
  • FIG. 2 is a block diagram depicting the components of one embodiment of a PMD 100 .
  • the PMD includes a power module 110 .
  • the power module 110 may be a battery or a line connection. If a battery, it may be rechargeable.
  • the PMD includes a memory 120 .
  • the PMD includes a processor 130 .
  • the processor 130 executes instructions from its programming and also may participate in data transfer between other components of the PMD 100 .
  • PMD 100 has connections to related external or embedded devices.
  • PMD 100 includes connections to detectors 140 .
  • Detectors 140 may be any sensor of bodily or physiological parameters such as, but not limited to: temperature, motion, respiration, blood oxygen content, electrocardiogram (ECG), electroencephalogram (EEG), and other measurements.
  • PMD 100 has connections to outputs 150 .
  • the outputs may be signaled by changes in voltages, impedance, current, magnetic field, electromagnetic energy such as radio frequency signals, infrared signals or optical signals, and audible or other forms of mechanical energy.
  • the outputs may be direct changes of state, analog, or digital in form. Several embodiments are possible, and the examples given herein are not intended in a limiting or restrictive sense.
  • the outputs may be activated and controlled by the medical device interface 200 or the processor 130 , or by the actuation of the detector 140 or a combination of these.
  • the outputs 150 may be used, for example, to actuate solenoids, operate motors, or apply electrical current to the heart.
  • PMD 100 has connections to data input/output ports 160 .
  • Data I/O ports 160 may include, but are not limited to: serial, parallel, USB, etc.
  • PMD 100 includes a User Interface Module (UIM) 200 .
  • the UIM 200 may allow users to view or enter data, conduct voice communications, use a camera to transmit images, or view a screen for graphical images.
  • PMD 100 includes a wireless communications module 300 .
  • the wireless communications module includes systems and standards for Local Area Wireless 330 .
  • the wireless communications are designed to be Network Based Communications (NBC) 360 .
  • NBC Network Based Communications
  • FIG. 3 depicts User Interface Module (UIM) 200 .
  • UIM User Interface Module
  • display 220 is included.
  • Display 220 may be any standard device for displaying information, such as a CRT, plasma display, LED, LCD, etc. or equivalent.
  • the UIM 200 includes data input means 240 .
  • Data input means may be any standard means for inputting information, such as a keypad, touch screen, bar code scanner, telephone keypad, buttons, switches, etc., or equivalent.
  • a speaker/microphone module 260 is included.
  • Speaker/microphone module may be any device for producing sound, such as a speaker or microphone or the equivalent.
  • a camera 280 is included.
  • Camera 280 may be a still camera, video camera, etc.
  • FIGS. 4 A- 4 E depict various possible wireless communication paths that may be used by the PMD 100 to connect to the long-range bi-directional network 400 .
  • FIG. 4A depicts one embodiment of the present system.
  • PMD 100 communicates to Personal Wireless Device (PWD) 500 with local area wireless (LAW) 330 .
  • PWD 500 includes a LAW 330 compatible with LAW 330 in PMD 100 .
  • PWD 500 includes a UIM 200 .
  • PWD 500 includes network based communications (NBC) 360 .
  • NBC 360 communicates information received from LAW 330 to long-range bi-directional network 400 .
  • FIG. 4B depicts another embodiment of the present system.
  • PMD 100 communicates to the network 400 through NBC 360 .
  • LAW 330 is not employed.
  • FIG. 4C depicts another embodiment of the present system.
  • PMD 100 communicates through data port 160 to Medical Device Interface (MDI) 600 .
  • MDI 600 includes a UIM 200 .
  • MDI 600 includes a LAW 330 and communicates to PWD 500 through LAW 330 .
  • PWD 500 includes a LAW 330 compatible with MDI 600 .
  • PWD 500 includes UIM 200 .
  • PWD 500 includes NBC 360 and communicates to long-range bi-directional 400 through NBC 360 .
  • FIG. 4D depicts another embodiment of the present system.
  • PMD 100 communicates through data port 160 to MDI 600 .
  • MDI 600 may include UIM 200 .
  • MDI 600 includes NBC 360 and communicates to long-range bi-directional network 400 through NBC 360 .
  • FIG. 4E depicts another embodiment of the present system.
  • PMD 100 communicates through LAW 330 to another PMD 100 , which in turn communicates through data port 160 to a third PMD 100 .
  • FIG. 4F shows that a single medical device interface 600 can communicate simultaneously with multiple PMDs 100 .
  • LAW 330 may include, but is not limited to, infrared or radio frequency (RF). Any suitable RF system that conforms to FCC requirements and power requirements may be used.
  • RF radio frequency
  • BLUETOOTH is a 2.4 GHz wireless technology employed to transport data between cellular phones, notebook PCs, and other handheld or portable electronic gear at speeds of up to 1 megabit per second.
  • the BLUETOOTH standard was developed by the Bluetooth Special Interest Group (“BSIG”), a consortioum formed by Ericsson, IBM, Intel, Nokia, and Toshiba.
  • the BLUETOOTH standard is designed to be broadband compatible and capable of simultaneously supporting multiple information sets and architecture, transmitting data at relatively high speeds, and providing data, sound, and video services on demand.
  • the present system includes a transceiver in compliance with BLUETOOTH® technical specification version 1.0, herein incorporated by reference. In one embodiment, the present system includes a transceiver in compliance with standards established, or anticipated to be established, by the Bluetooth Special Interest Group.
  • the present system includes a transceiver in compliance with standards established, or anticipated to be established, by the Institute of Electrical and Electronics Engineers, Inc., (IEEE).
  • IEEE 802.15 WPAN standard is anticipated to include the technology developed by the BLUETOOTH® Special Interest Group. WPAN refers to Wireless Personal Area Networks.
  • the IEEE 802.15 WPAN standard is expected to define a standard for wireless communications within a personal operating space (POS) which encircles a person.
  • the transceiver is a wireless, bi-directional, transceiver suitable for short-range, omni-directional communication that allows ad hoc networking of multiple transceivers for purposes of extending the effective range of communication.
  • Ad hoc networking refers to the ability of one transceiver to automatically detect and establish a digital communication link with another transceiver.
  • the resulting network known as a piconet, enables each transceiver to exchange digital data with the other transceiver.
  • BLUETOOTH® involves a wireless transceiver transmitting a digital signal and periodically monitoring a radio frequency for an incoming digital message encoded in a network protocol.
  • the transceiver communicates digital data in the network protocol upon receiving an incoming digital message.
  • short-range may refer to systems designed primarily for use in and around a premises and thus, the range generally is below a mile.
  • Short-range communications may also be construed as point-to-point communications, examples of which include those compatible with protocols such as BLUETOOTH®, HomeRFTM, and the IEEE 802.11 WAN standard (described subsequently).
  • Long-range thus, may be construed as networked communications with a range in excess of short-range communications. Examples of long-range communication may include, Aeris MicroBurst cellular communication system, and various networked pager, cellular telephone or, in some cases, radio frequency communication systems.
  • transceiver includes a transceiver compatible with BLUETOOTH® protocol, for example, then the personal device may have sufficient range to conduct bidirectional communications over relatively short-range distances, such as approximately 10 to 1,000 meters or more. In some applications, this distance allows communications throughout a premise.
  • LAW 330 may include a separate, integrated or software based short-range bi-directional wireless module.
  • the short-range network may be based upon HomeRF, 802.11, Bluetooth or other conventional or unconventional protocols. However, these are short-range networks and the meaning imposed herein is to include premises and facility based wireless networks and not to describe long-range networks such as cellular telephone networks used to communicate over long-distances.
  • Such a system may include programmable or automatically selecting electronics to decide whether to conduct communications between the network module and an optional base station using the short-range module or the network module.
  • the system may employ different portions of the network to provide short-range or long-range network connections, depending on the distance between the devices and the base stations. In one such embodiment, the network automatically adjusts for different required transmission distances.
  • the transceiver is compatible with both a long-range communication protocol and a short-range communication protocol.
  • a person located a long distance away, such as several miles may communicate with the transceiver using a cellular telephone compatible with the long-range protocol of transceiver.
  • Long-range network based communications 360 refers to a type of communications system that has a greater range than LAW 330 , primarily because more power is available and/or because of an FCC license.
  • NBC 360 may include a long-range wireless communications network 362 , such as a cellular network, satellite network, paging network, narrowband PCS, narrowband trunk radio, or other wireless communication network. Combinations of such networks and other embodiments may be substituted without departing from the present system.
  • a long-range wireless communications network 362 such as a cellular network, satellite network, paging network, narrowband PCS, narrowband trunk radio, or other wireless communication network. Combinations of such networks and other embodiments may be substituted without departing from the present system.
  • the long-range wireless network 362 is a cellular communications network.
  • the long-range wireless network is a paging network.
  • the long-range wireless network is a satellite network.
  • the long-range wireless network is a wideband or narrowband PCS network.
  • the long-range wireless network is a wideband or narrowband trunk radio module.
  • the NBC 360 supports multiple network systems, such as a cellular module and a two-way paging module, for example. In such embodiments, the system may prefer one form of network communications over another and may switch depending on a variety of factors such as available service, signal strength, or types of communications being supported.
  • the cellular network may be used as a default and the paging network may take over once cellular service is either weak or otherwise unavailable. Other permutations are possible without departing from the present system.
  • the long-range wireless network 362 employed may be any consumer or proprietary network designed to serve users in range of the detection system, including, but not limited to, a cellular network such as analog or digital cellular systems employing such protocols and designs as CDPD, CDMA, GSM, PDC, PHS, TDMA, FLEXTM, ReFLEXTM, iDENTM, TETRATM, DECT, DataTACTM, and MobitexTM, RAMNETTM or ArdisTM or other protocols such as trunk radio, MicroburstTM, CellemetryTM, satellite, or other analogue or digital wireless networks or the control channels or portions of various networks.
  • the networks may be proprietary or public, special purpose or broadly capable. However, these are long-range networks and the meaning imposed herein is not to describe a premises or facility based type of wireless network.
  • the long-range wireless network 362 may employ various messaging protocols.
  • WAP Wireless Application Protocol
  • WAP is a protocol created by an international body representing numerous wireless and computing industry companies. WAP is designed to work with most wireless networks such as CDPD, CDMA, GSM, PDC, PHS, TDMA, FLEX, ReFLEX, iDEN, TETRA, DECT, DataTAC, and Mobitex and also to work with some Internet protocols such as HTTP and IP.
  • Other messaging protocols such as iModeTM, WML, SMS and other conventional and unconventional protocols may be employed without departing from the design of the present embodiment.
  • these long-range communication protocols described above may include, but are not limited to, cellular telephone protocols, one-way or two-way pager protocols, and PCS protocols.
  • PCS systems operate in the 1900 MHZ frequency range.
  • CDMA Code-Division Multiple Access
  • Qualcomm Inc. one variant is IS-95
  • CDMA uses spread spectrum techniques.
  • CDMA uses the full available spectrum and individual messages are encoded with a pseudo-random digital sequence.
  • GSM Global Systems for Mobile communications
  • GSM Global Systems for Mobile communications
  • Time Division Multiple Access uses time-division multiplexing (TDM) in which a radio frequency is time divided and slots are allocated to multiple calls.
  • TDM time-division multiplexing
  • TDMA is used by the GSM digital cellular system.
  • 3G promulgated by the ITU (International Telecommunication Union, Geneva, Switzerland) represents a third generation of mobile communications technology with analog and digital PCS representing first and second generations. 3G is operative over wireless air interfaces such as GSM, TDMA, and CDMA.
  • the EDGE Enhanced Data rates for Global Evolution
  • Aloha enables satellite and terrestrial radio transmissions.
  • SMS Short Message Service
  • IP address a cellular telephone
  • IP address a cellular telephone
  • GPRS General Packet Radio Service
  • GSM Global System for Mobile communications
  • a long-range communication protocol is based on two way pager technology.
  • two way pager protocols include ReFLEXTM (Motorola) format, InFLEXion ⁇ (Motorola) format, NexNet ⁇ (Nexus Telecommunications Ltd. of Israel) format and others.
  • a medical device interface 600 is similar to a personal wireless device 500 except that network based communications 360 is optional with a medical device interface 600 .
  • the personal wireless device 500 or medical device interface 600 may be of several different designs. For example, in one embodiment it may be a “response messaging” capable two-way pager. This is service where a two-way pager receives a message and optional multiple-choice responses. The user can select the appropriate responses. Such a design may be adapted to provide basic control options related to the system.
  • the personal wireless device 500 or medical device interface 600 may be a programmable two-way paging device such as the Motorola PageWriterTM 2000. This is a class of device that acts as both a two-way pager and a handheld computer also known as a PDA (Personal Digital Assistant).
  • PDA Personal Digital Assistant
  • the personal wireless device 500 or medical device interface 600 may be a cellular telephone.
  • the cell phone may be analog or digital in any of the various technologies employed by the cell phone industry such as PCS, or CDMA, or TDMA, or others.
  • the cell phone may have programmable capability such as is found in a NokiaTM 9000 series of devices.
  • security passwords may be entered by using numeric or other keys on a phone.
  • the security password may be entered by speaking words.
  • the system may use word recognition, voice recognition or a combination of these technologies.
  • a distinct order of pressing certain keys could provide the equivalent of a security code. For example, 3 short and 1 long on a certain key; or once on key ‘a’, once on key ‘b’, and once more on key ‘a’.
  • the personal wireless device 500 or medical device interface 600 is a handheld computer.
  • Many personal digital assistants (PDAs) offer programmable capability and connectivity to various types of long-range wireless networks.
  • PDAs personal digital assistants
  • An example of this type of device is the PalmPilotTM or Palm series of devices manufactured by Palm, Inc.
  • a programmable personal wireless device 500 or medical device interface 600 is used such as a PalmPilot, PageWriter or programmable cell phone
  • the programmable nature of the devices facilitates the implementation of industry-standard designs and would allow for the development of a program written for the devices.
  • a special manufactured device may be manufactured to serve the needs of the system user.
  • the personal medical device 100 is directly connected to a personal wireless device 500 that is manufactured as an integrated unit.
  • the personal medical device 100 communicates with a device referred to herein as central communication base station 700 .
  • Central communication base station 700 may include a first transceiver compatible with BLUETOOTH® or other short-range wireless network as described herein.
  • Base station may provide a repeater service to receive a message using BLUETOOTH® and to retransmit the message using a different communication protocol or also using BLUETOOTH® communication protocol.
  • Base station 700 may also include a second transceiver or a wired interface having access to another communication network 750 .
  • the second transceiver or wired interface may retransmit the signal received from the personal device 100 or received from some other device.
  • central communication base station 700 may serve to extend the communication range of the personal device.
  • a message between the personal device and an emergency-dispatch center may be coupled to communication with the base station 700 connected network 750 and a short-range wireless network. Communications between the personal device 100 and a device coupled to communicate with the base station 700 connected network 750 may be considered long-range communications.
  • Base station may 700 also communicate bi-directionally within the premise with one or more additional compatible devices. These may be a second personal device 100 or any other device.
  • the base station connected network 750 may be a public switched telephone network (PSTN), a pager communication network, a cellular communication network, a radio communication network, the Internet, or some other communication network. It will be further appreciated that with a suitable repeater, gateway, switch, router, bridge or network interface, the effective range of communication of a short-range transceiver may be extended to any distance.
  • base station 700 may receive transmissions on a BLUETOOTH® communication protocol and provide an interface to connect with the base station connected network 750 , such as the public switched telephone network (PSTN) using the base station link.
  • PSTN public switched telephone network
  • a wired telephone at a remote location can be used to communicate with the personal device 100 .
  • the range may be extended by coupling a BLUETOOTH® transceiver with a cellular telephone network, a narrow band personal communication systems (“PCS”) network, a CELLEMETRY® network, a narrow band trunk radio network or other type of wired or wireless communication network.
  • PCS personal communication systems
  • CELLEMETRY® a narrow band trunk radio network or other type of wired or wireless communication network.
  • Examples of devices compatible with such long-range protocols include, but are not limited to, a telephone coupled to the public switched telephone network (PSTN), a cellular telephone, a pager (either one way or two way), a personal communication device (such as a personal digital assistant, PDA), a computer, or other wired or wireless communication device.
  • PSTN public switched telephone network
  • a cellular telephone such as a GSM
  • a pager either one way or two way
  • PDA personal digital assistant
  • a computer or other wired or wireless communication device.
  • the long distance network 750 may include a telephone network, which may include an intranet or the Internet. Coupling to such a network may be accomplished, for example, using a variety of connections, including a leased line connection, such as a T-1, an ISDN, a DSL line, or other high-speed broadband connection, or it may entail a dial-up connection using a modem.
  • the long distance network 750 may include a radio frequency or satellite communication network.
  • one or more of the aforementioned networks may be combined to achieve desired results.
  • Short-range communication protocols compatible with the base station may include, but are not limited to, wireless protocols such as HomeRFTM, BLUETOOTH®, wireless LAN (WLAN), or other personal wireless networking technology.
  • HomeRFTM currently defined by specification 2.1, provides support for broadband wireless digital communications at a frequency of approximately 2.45 GHz.
  • the base station 700 may be compatible with more than one communication protocol.
  • the base station may be compatible with three protocols, such as a cellular telephone communication protocol, a two-way pager communication protocol, and BLUETOOTH® protocol.
  • a particular personal device 100 may be operable using a cellular telephone, a two-way pager, or a device compatible with BLUETOOTH®.
  • the personal device 100 can communicate with a remote device using more than one communication protocols.
  • the personal device may include programming to determine which protocol to use for communicating.
  • the determination of which communication protocol to use to communicate with a remote device may be based on power requirements of each transceiver, based on the range to the remote device, based on a schedule, based on the most recent communication from the remote device, or based on any other measurable parameter.
  • the personal device 100 communicates simultaneously using multiple protocols.
  • networks connected to the base station 700 there are various types of networks connected to the base station 700 . These may be telephone networks, modem connections, frame relay systems, spread-spectrum, DSL, cable modems, dedicated line or other similar wire based communication and data networks. In addition, these may be long-range, bi-directional, wireless networks as describe above.
  • connection to the Internet using various Internet protocols such as TCP/IP/HTTP/HTCP and others.
  • signals generated by the medical device are received by a central monitoring station 800 .
  • the central monitoring station 800 may include operators that provide emergency dispatch services. An operator at the central monitoring station 800 may also attempt to verify the authenticity of a received alarm signal.
  • the alarm signal generated by the personal device 100 is first transmitted to a user, using either a short-range or long-range communication protocol, who then may forward the alarm signal to a monitoring station if authentic or cancel the alarm signal if the alarm is not valid.
  • the personal device 100 may communicate with a building control or security system 900 by communicating using its transceiver.
  • the personal device may operate as an auxiliary input to a building control or security system.
  • an alarm signal is transmitted from the personal device, via its transceiver, to the building security system.
  • the building security system if monitored by a central monitoring station, then forwards the alarm signal to the monitoring station.
  • the personal device 100 can receive a transmission from a separate building control or security system.
  • the security system can, for example, instruct the personal device to repeatedly toggle power to load a flashing light visible from the exterior of the building that may aid emergency personnel in locating an emergency site.
  • the personal device can establish communications with a predetermined remote device or a central monitoring service.
  • the present invention includes, but is not limited to, the following routing paths from the personal device 100 :
  • the personal device 100 is connected to a short-range wireless module that communicates to a telephone or Internet base station in a person's home.
  • the personal device 100 is directly connected to a long-range wireless network module.
  • feedback may be transmitted to a remote device based on the operation of the personal device. For example, if a user issues a command to the personal device using a cellular telephone, then the display of the phone will indicate the changes arising from the command.
  • the cellular telephone, the base station, emergency monitoring center, or other device displays real time information from the personal device 100 .
  • Various methods may be used to communicate with, or send a message or instruction to, the personal device 100 from a remote location. For example, using a cellular telephone, a user may speak a particular phrase, word or phoneme that is recognized by the cellular telephone which then generates and transmits a coded message to the personal device 100 . As another example, the user may manipulate a keypad on the telephone to encode and transmit a message to the personal device.
  • Table I below shows the types of data that may be communicated to and/or from the personal device 100 , and the direction of data flow.
  • PMD/MDI or from bi-directional medical center manual request from PMD identification (e.g., bluetooth serial from PMD number, PMD ID, account number) use alert (e.g., opening a container, etc.) from PMD activation (shock, release medication, brain bi-directional stimulation) body reading (electrical, chemical, analog, from PMD digital, mechanical, temperature, etc.) two-way voice (to responding agency, bi-directional bystander, or patient) digital instructions bi-directional standard I/O ports bi-directional camera: visual, video exhange bi-directional authorizations and authentications bi-directional Security codes, data confirmations, bi-directional acknowledgements transceiver activation to PMD encryption bi-directional interaction with related PMDs bi-directional verification (alarms, emergencies) bi-directional
  • FIG. 5 One possible example of data flow to and from the personal device 100 is shown in FIG. 5.
  • the personal device 100 may be implanted in the victim V, or carried on the person of the victim V.
  • the personal device 100 may be a pacemaker that is imbedded in the chest cavity of the victim V and connected by leads to the victim's heart, as is well known in the art.
  • the victim V undergoes some sort of cardiac problem, such as tachycardia, that causes the personal device 100 to attempt to establish communication with a caregiver. While this is going on, a bystander B attempts to give aid to the victim V.
  • the bystander B is carrying on his person a medical device interface 500 or a personal wireless device 600 .
  • the personal device 100 attempts to establish communication, it sets up communication with the personal wireless device 600 by local area wireless 330 . For example, if the personal device 100 and personal wireless device 600 both use BLUETOOTH for local area wireless communications, the personal device 100 and personal wireless device 600 will follow the communications protocols of the BLUETOOTH standard and establish communications.
  • the personal device 100 may request the personal wireless device 600 to establish a connection to the dispatcher or medical caregiver D, using network based communications 360 .
  • the personal wireless device 600 may be a cell phone or PDA.
  • the personal wireless device establishes a connection to the computer of the dispatcher or medical caregiver D.
  • the personal wireless device 600 may establish a connection to an automatic processor P, which has database DB that contains information on the victim's medications, medical history, pre-existing conditions, possible diagnoses, personal records, personal device information, treatment strategies, response plans, identities or responsing agencies, and other data.
  • database DB contains information on the victim's medications, medical history, pre-existing conditions, possible diagnoses, personal records, personal device information, treatment strategies, response plans, identities or responsing agencies, and other data.
  • Either the dispatcher D or the processor P may then send an inquiry through the personal wireless device 600 to the personal device 100 , instructing the personal device 100 to send various data, for example, electrocardiogram data. Using this transmitted data, the dispatcher or processor may then make a diagnosis and identify a treatment strategy.
  • the dispatcher D may then alert responding personnel R, such as a paramedic unit, to travel to the victim V.
  • responding personnel R such as a paramedic unit
  • the dispatcher D will be able to give the exact location of the victim to the responding personnel R.
  • the dispatcher D may also alert responsible parties RP such as the victim's parents of the location.
  • the dispatcher D may establish voice communications with the bystander B through the bystander B's personal wireless device 600 .
  • the dispatcher may ask the bystander B to use the camera 280 of the personal wireless device to transmit an image of the victim V.
  • the dispatcher D may give the bystander B instructions on how to render first aid to the victim V until the responding personnel R arrive.
  • the responding personnel R may establish communications through local area wireless 330 from their medical device interface 500 to the victim's personal device 100 , request data from the personal device 100 , and request the personal device 100 to take some action, such as dispensing medication to the victim V.
  • Their medical device interface 500 may also establish communication with the dispatcher D or medical caregiver using network based communications 360 .
  • FIG. 6 summarizes data flow from the point of view of a remote caregiver, showing that comprehensive data creates the best options for the remote caregiver.
  • the personal device 100 includes the ability to detect its own location and to communicate this location to authorized requesters.
  • the location-determining function may be device-based, network-based, or a combination of device-based and network-based, as described in co-pending U.S. Patent Application entitled “Method and System for Wireless Tracking”, filed Mar. 28, 2002, herein incorporated by reference, in the Detailed Description, and in FIGS. 4A, 4B and 4 C therein.
  • the personal device 100B may include a GPS receiver positioned internal to device 100b.
  • FIG. 4B of the referenced patent illustrates a communication network 200A having integral LDS 165A.
  • Location information in one embodiment, is based on a geographical location of first device 100C and is determined based on timing information for wireless signals between network 200A and device 100C.
  • Second device 300 is also connected to communication network 200A.
  • a server coupled to network 200A includes programming to determine location information and selected clients accessing the server are able to receive the location information. Selected clients are those authorized to receive the location information.
  • FIG. 4C of the referenced patent application illustrates LDS 145B and LDS 165B within first device 100D and network 200B, respectively. In such an embodiment, the combination of information generated by LDS 145B and LDS 165B provides the location information.
  • the device 100 may include an electronic circuit or an electronic circuit and programming to determine location.
  • LDS 145 uses a terrestrial location system. There are several varieties of terrestrial solutions, including time differential, signal strength, angle of arrival and varieties of triangulation. In one described embodiment, LDS 145 uses a combination of terrestrial and satellite navigation systems.
  • the system and method of the present invention may also include various types of security arrangements.
  • data transmitted to and from the personal device 100 may be encrypted by standard encryption algorithms, making it essentially impossible for the unsophisticated interceptor to interpret the data.
  • voice and visual channels of transmission may be controlled for activation by the personal device 100 or by an authorized entity, but may not necessarily be encrypted.
  • security keys may be held by a central agency and provided to the responding personnel RP.
  • the user of the personal device 100 may have a security key that he can enter to release information or access to authorized parties.
  • Biometrics refers to the measurement of some bodily parameter (such as fingerprint, retinal scan, etc.) that is unique to the individual.
  • a public/private key system can be used in which access to both keys is required for decoding an encrypted message.
  • Each party that wishes to participate in secure communications must create a key set for encrypting and decrypting messages.
  • One key is private and the other is public.
  • the public key is for exchanging with other parties with whom you who wish to participate in secure communication sessions.
  • Each individual owner must keep the private portion of the key secure.
  • the private key also has a secret pass phrase, in the event that it is ever ‘misappropriated’.
  • Public key/private key technology allows the sender to sign a message with their private key. When the recipient receives the message, they can validate the authenticity of the signature because they have the sender's public key.
  • a user needing access to the device 100 may make a request for such access to a responsible third party.
  • the personal device 100 may have pre-authorized authority for certain users.
  • the power consumed by the personal device 100 is critical.
  • the personal device 100 is implanted in a human being, long battery life is essential.
  • BLUETOOTH Although some communications systems, such as BLUETOOTH, have low power consumption states, nevertheless power is being consumed. Further, in an environment such as BLUETOOTH, a BLUETOOTH transceiver that is powered on may constantly be wakened from the low power states whenever a transmission is received from another BLUETOOTH transceiver.
  • the transceiver must consume no power in the powered-off state.
  • a mechanical signal such as throwing a switch or applying pressure to a pad
  • a magnetic signal may be used, as in passing a magnet in the vicinity of the communications module.
  • sound or ultra-sound may be used.
  • infrared may be used provided there is a direct line of sight to the communications module.
  • radio frequency may be used, which has the advantage of not requiring line of sight to the communications module.
  • Radio frequency is already being used for applications such as automated meter reading and electronic article surveillance.
  • applications included un-powered RF receivers such as RFID tags.
  • FIG. 7 shows a general block diagram of this power management function.
  • the personal device 100 is modified to include an un-powered RF receiver 710 that is tuned to a particular frequency.
  • Power-up device 800 has an RF transmitter tuned to the same frequency.
  • the receiver 710 gathers the RF energy and activates logic 720 . Any code transmitted on the frequency is passed to the logic 720 , which decodes it and compares it to a proper wake-up code. If a proper wake-up code is received, logic 720 signals the processor 130 to power-on the communications module 300 .
  • the wake-up code is optional, in that the receiver 710 may just signal the processor 130 directly without decode.

Abstract

A personal and/or institutional health and wellness communications system, which may be used for a variety of emergency and non-emergency situations using two-way communication devices and a bi-directional communication network. In one application two-way pagers are adapted for use in the system. In one application cellular devices are adapted for use in the system. In one application an assisted living response center is established using various embodiments of the present personal and/or institutional communications system. The system provides multiple levels of prioritization, authentication of person (task, step, process or order), and confirmation via interrogation of person, device, or related monitor. One embodiment provides a method for receiving, evaluating and responding to calls received from a subscriber, patient, related party, or health care provider or health care system.

Description

    BACKGROUND OF THE INVENTION
  • The present application is a continuation-in-part of co-pending U.S. patent application Ser. No. 09/956,474 filed Sep. 19, 2001, which is a continuation of U.S. patent application Ser. No. 09/384,165, filed Aug. 27, 1999 and now issued as U.S. Pat. No. 6,356,192, which claims priority to U.S. provisional patent application serial No. 60/135,862, filed May 25, 1999 and to U.S. provisional patent application serial No. 60/105,493 filed Oct. 23, 1998. The present application is also a continuation-in-part of a co-pending U.S. patent application filed Mar. 28, 2002, entitled “Method and System for Wireless Tracking”, which claims priority to a provisional patent application serial No. 60/279,401, filed Mar. 28, 2001.[0001]
  • The present invention relates generally to bi-directional personal and health-wellness provider communication system and in particular to a personal communication system suitable for use with children, vulnerable adults (such as those in assisted living situations), and more specifically, medically distressed persons and those in whom an personal medical device has been deployed, for medical testing, and for other life enhancements. [0002]
  • There are several trends which taken together are causing a change in the way medical services are delivered. Among other things, these include longer lifespan, medical technology improvements, automation of diagnostic processes, specialization of caregivers, the rapid pace of technology that causes a shortening of the amortization of development and investment costs, increasing expense of medical care centers, and the shortage of health care workers. [0003]
  • The results of these trends are manifold. They include moving more of the delivery of services out of a medical center and away from the direct supervision of highly trained medical personnel. They include providing personal medical devices to allow long-term patients to resume a more mobile lifestyle. They include allowing patients to be treated from home for issues of cost and comfort. They include reducing the level of training associated with caregivers so that in some cases, even a casual passerby is able to provide meaningful assistance with devices once associated only with properly trained medical personnel, for example using Portable Automated Defibrillators. However, the remoteness of patients from professional caregivers increases the need for communications systems to monitor the patient, deliver care, and communicate. [0004]
  • What is needed in the art is an improved detection system that is friendly to a mobile user, that is easy to adapt to existing devices, that is easy to install, that is inexpensive, and that provides substantial interoperability between wireless technologies, communication network providers, and other widely used medical and public systems. [0005]
  • SUMMARY OF THE INVENTION
  • One skilled in the art will readily recognize that the embodiments described solve all of these problems and many more not mentioned expressly herein. [0006]
  • Personal Medical Devices (PMD) take many forms. PMDs may be surgically implanted, strapped externally to the body, carried in a pocket, transported in a carrying case, or installed as a home appliance. They may be used only for rare emergencies, on an occasional basis, on a regular schedule, or in a continuous or nearly continuous fashion. PMDs may monitor individual or combinations of body functions such as heart function, respiration, body chemistry, brain function, or muscular/skeleton actions. PMDs may provide body functions such as mechanical hearts, kidney dialysis, digestive or respiratory activities. PMDs may be used to deliver drugs, heart defibrillation, or other treatment. PMDs may be used to enhance wellness, test drug therapies, monitor patient health, deliver long-term care, or treat acute conditions. [0007]
  • We describe a device and method to couple with PMDs to provide wireless communication and locating functions. The purpose for communications include but are not limited to the following: to provide health care professionals with access to information for remote diagnostic capabilities; to provide notification of acute conditions possibly requiring immediate assistance, transportation to a medical center, or remote treatment action; to provide a location information of mobile persons for caregivers; to notify responsible parties of the occurrence of a medical condition; and to provide remote intervention assistance by caregivers through verbal or visual interaction. [0008]
  • In one embodiment, in order to provide mobility for users of PMDs in a public environment, we employ standard network communication systems to deliver a comprehensive medical communications service. In one embodiment, the communications network links together the PMD, casual caregivers, a medical center, an emergency dispatch center, medical databases, and related responsible parties. This group of associated parties is able to combine resources to improve the survivability during an acute medical event. [0009]
  • In one embodiment, the medical communications system delivers an end-to-end comprehensive solution to provide care to a remote or mobile user of a PMD.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram showing the overall structure of the system of the present invention. [0011]
  • FIG. 2 is a block diagram showing the internal structure of a portable device. [0012]
  • FIG. 3 is a block diagram showing the structure of a user interface module. [0013]
  • FIGS. [0014] 4A-4F are block diagrams showing various configurations of the system of the present invention.
  • FIG. 5 is a network diagram showing communications through the system of the present invention. [0015]
  • FIG. 6 is a chart showing the uses of various data by a dispatcher or medical caregiver.[0016]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • This detailed description provides a number of different embodiments of the present system. The embodiments provided herein are not intended in an exclusive or limited sense, and variations may exist in organization, dimension, hardware, software, mechanical design and configuration without departing from the claimed invention, the scope of which is provided by the attached claims and equivalents thereof. [0017]
  • The present system provides many benefits, including but not limited to, low cost, easy installation, limited power requirements and wireless operation and signal transmission. Many other benefits will be appreciated by those skilled in the art upon reading and understanding the present description. [0018]
  • U.S. Provisional Patent Application No. 60/098,392, filed Aug. 29, 1998; U.S. Provisional Patent Application No. 60/098,270 filed Aug. 28, 1998; U.S. Provisional Patent Application No. 60/105,493 filed Oct. 23, 1998; and U.S. Provisional Patent Application No. 60/135,862 filed May, 25, 1999, are all hereby incorporated by reference in their entirety. [0019]
  • Personal Medical Device [0020]
  • FIG. 1 is a block diagram showing the interoperability of a personal medical device (PMD) [0021] 100 with a medical device interface (MDI) 200 and a network 400. As can be seen, the PMD 100 may interact directly with the network 400 or through the mediation of the MDI 200. Alternatively, the PMD may interact with a personal wireless device 500 which in turn interacts with the network.
  • FIG. 2 is a block diagram depicting the components of one embodiment of a [0022] PMD 100. In one embodiment, the PMD includes a power module 110. The power module 110 may be a battery or a line connection. If a battery, it may be rechargeable. In one embodiment the PMD includes a memory 120. In one embodiment the PMD includes a processor 130. The processor 130 executes instructions from its programming and also may participate in data transfer between other components of the PMD 100.
  • Optionally, PMD [0023] 100 has connections to related external or embedded devices. In one embodiment, PMD 100 includes connections to detectors 140. Detectors 140 may be any sensor of bodily or physiological parameters such as, but not limited to: temperature, motion, respiration, blood oxygen content, electrocardiogram (ECG), electroencephalogram (EEG), and other measurements.
  • Optionally, PMD [0024] 100 has connections to outputs 150. The outputs may be signaled by changes in voltages, impedance, current, magnetic field, electromagnetic energy such as radio frequency signals, infrared signals or optical signals, and audible or other forms of mechanical energy. The outputs may be direct changes of state, analog, or digital in form. Several embodiments are possible, and the examples given herein are not intended in a limiting or restrictive sense. The outputs may be activated and controlled by the medical device interface 200 or the processor 130, or by the actuation of the detector 140 or a combination of these. The outputs 150 may be used, for example, to actuate solenoids, operate motors, or apply electrical current to the heart.
  • Optionally, [0025] PMD 100 has connections to data input/output ports 160. Data I/O ports 160 may include, but are not limited to: serial, parallel, USB, etc.
  • Optionally, [0026] PMD 100 includes a User Interface Module (UIM) 200. The UIM 200 may allow users to view or enter data, conduct voice communications, use a camera to transmit images, or view a screen for graphical images.
  • Optionally, [0027] PMD 100 includes a wireless communications module 300. In one embodiment the wireless communications module includes systems and standards for Local Area Wireless 330. In one embodiment the wireless communications are designed to be Network Based Communications (NBC) 360.
  • User Interface [0028]
  • FIG. 3 depicts User Interface Module (UIM) [0029] 200. In one embodiment of UIM 200, display 220 is included. Display 220 may be any standard device for displaying information, such as a CRT, plasma display, LED, LCD, etc. or equivalent.
  • Preferably the [0030] UIM 200 includes data input means 240. Data input means may be any standard means for inputting information, such as a keypad, touch screen, bar code scanner, telephone keypad, buttons, switches, etc., or equivalent.
  • In one embodiment of [0031] UIM 200, a speaker/microphone module 260 is included. Speaker/microphone module may be any device for producing sound, such as a speaker or microphone or the equivalent.
  • In one embodiment of [0032] UIM 200, a camera 280 is included. Camera 280 may be a still camera, video camera, etc.
  • Communications [0033]
  • FIGS. [0034] 4A-4E depict various possible wireless communication paths that may be used by the PMD 100 to connect to the long-range bi-directional network 400.
  • FIG. 4A depicts one embodiment of the present system. [0035] PMD 100 communicates to Personal Wireless Device (PWD) 500 with local area wireless (LAW) 330. PWD 500 includes a LAW 330 compatible with LAW 330 in PMD 100. In one embodiment, PWD 500 includes a UIM 200. PWD 500 includes network based communications (NBC) 360. NBC 360 communicates information received from LAW 330 to long-range bi-directional network 400.
  • FIG. 4B depicts another embodiment of the present system. [0036] PMD 100 communicates to the network 400 through NBC 360. LAW 330 is not employed.
  • FIG. 4C depicts another embodiment of the present system. [0037] PMD 100 communicates through data port 160 to Medical Device Interface (MDI) 600. In one embodiment, MDI 600 includes a UIM 200. In this embodiment, MDI 600 includes a LAW 330 and communicates to PWD 500 through LAW 330. PWD 500 includes a LAW 330 compatible with MDI 600. Preferably, PWD 500 includes UIM 200. Preferably, PWD 500 includes NBC 360 and communicates to long-range bi-directional 400 through NBC 360.
  • FIG. 4D depicts another embodiment of the present system. [0038] PMD 100 communicates through data port 160 to MDI 600. MDI 600 may include UIM 200. Preferably, MDI 600 includes NBC 360 and communicates to long-range bi-directional network 400 through NBC 360.
  • FIG. 4E depicts another embodiment of the present system. [0039] PMD 100 communicates through LAW 330 to another PMD 100, which in turn communicates through data port 160 to a third PMD 100.
  • FIG. 4F shows that a single [0040] medical device interface 600 can communicate simultaneously with multiple PMDs 100.
  • About Local Area Wireless Communications [0041]
  • [0042] LAW 330 may include, but is not limited to, infrared or radio frequency (RF). Any suitable RF system that conforms to FCC requirements and power requirements may be used. Preferably, the BLUETOOTH standard is used. BLUETOOTH is a 2.4 GHz wireless technology employed to transport data between cellular phones, notebook PCs, and other handheld or portable electronic gear at speeds of up to 1 megabit per second. The BLUETOOTH standard was developed by the Bluetooth Special Interest Group (“BSIG”), a consortioum formed by Ericsson, IBM, Intel, Nokia, and Toshiba. The BLUETOOTH standard is designed to be broadband compatible and capable of simultaneously supporting multiple information sets and architecture, transmitting data at relatively high speeds, and providing data, sound, and video services on demand. Of course, other suitable wireless communication standards and methods now existing or developed in the future are contemplated in the present invention. In addition, embodiments are contemplated that operate in conjunction with a BLUETOOTH or BLUETOOTH-like wireless communication standard, protocol, or system where a frequency other than 2.4 GHz is employed, or where infrared, optical, or other communication means are employed in conjunction with BLUETOOTH or BLUETOOTH-like wireless RF communication techniques.
  • In one embodiment, the present system includes a transceiver in compliance with BLUETOOTH® technical specification version 1.0, herein incorporated by reference. In one embodiment, the present system includes a transceiver in compliance with standards established, or anticipated to be established, by the Bluetooth Special Interest Group. [0043]
  • In one embodiment, the present system includes a transceiver in compliance with standards established, or anticipated to be established, by the Institute of Electrical and Electronics Engineers, Inc., (IEEE). The IEEE 802.15 WPAN standard is anticipated to include the technology developed by the BLUETOOTH® Special Interest Group. WPAN refers to Wireless Personal Area Networks. The IEEE 802.15 WPAN standard is expected to define a standard for wireless communications within a personal operating space (POS) which encircles a person. [0044] In one embodiment, the transceiver is a wireless, bi-directional, transceiver suitable for short-range, omni-directional communication that allows ad hoc networking of multiple transceivers for purposes of extending the effective range of communication. Ad hoc networking refers to the ability of one transceiver to automatically detect and establish a digital communication link with another transceiver. The resulting network, known as a piconet, enables each transceiver to exchange digital data with the other transceiver. According to one embodiment, BLUETOOTH® involves a wireless transceiver transmitting a digital signal and periodically monitoring a radio frequency for an incoming digital message encoded in a network protocol. The transceiver communicates digital data in the network protocol upon receiving an incoming digital message.
  • According to one definition, and subject to the vagaries of radio design and environmental factors, short-range may refer to systems designed primarily for use in and around a premises and thus, the range generally is below a mile. Short-range communications may also be construed as point-to-point communications, examples of which include those compatible with protocols such as BLUETOOTH®, HomeRFTM, and the IEEE 802.11 WAN standard (described subsequently). Long-range, thus, may be construed as networked communications with a range in excess of short-range communications. Examples of long-range communication may include, Aeris MicroBurst cellular communication system, and various networked pager, cellular telephone or, in some cases, radio frequency communication systems. [0045]
  • In the event that transceiver includes a transceiver compatible with BLUETOOTH® protocol, for example, then the personal device may have sufficient range to conduct bidirectional communications over relatively short-range distances, such as approximately 10 to 1,000 meters or more. In some applications, this distance allows communications throughout a premise. [0046]
  • [0047] LAW 330 may include a separate, integrated or software based short-range bi-directional wireless module. The short-range network may be based upon HomeRF, 802.11, Bluetooth or other conventional or unconventional protocols. However, these are short-range networks and the meaning imposed herein is to include premises and facility based wireless networks and not to describe long-range networks such as cellular telephone networks used to communicate over long-distances. Such a system may include programmable or automatically selecting electronics to decide whether to conduct communications between the network module and an optional base station using the short-range module or the network module. In one embodiment the system may employ different portions of the network to provide short-range or long-range network connections, depending on the distance between the devices and the base stations. In one such embodiment, the network automatically adjusts for different required transmission distances.
  • In one embodiment, the transceiver is compatible with both a long-range communication protocol and a short-range communication protocol. For example, a person located a long distance away, such as several miles, may communicate with the transceiver using a cellular telephone compatible with the long-range protocol of transceiver. [0048]
  • Other short-range communication protocols are also contemplated and the foregoing examples are not to be construed as limitations but merely as examples. [0049]
  • About Long-Range Bi-directional Network Based Communications [0050]
  • Long-range network based [0051] communications 360 refers to a type of communications system that has a greater range than LAW 330, primarily because more power is available and/or because of an FCC license.
  • [0052] NBC 360 may include a long-range wireless communications network 362, such as a cellular network, satellite network, paging network, narrowband PCS, narrowband trunk radio, or other wireless communication network. Combinations of such networks and other embodiments may be substituted without departing from the present system.
  • In one embodiment, the long-[0053] range wireless network 362 is a cellular communications network. In another embodiment, the long-range wireless network is a paging network. In another embodiment the long-range wireless network is a satellite network. In another embodiment the long-range wireless network is a wideband or narrowband PCS network. In another embodiment the long-range wireless network is a wideband or narrowband trunk radio module. Other networks are possible without departing from the present system. In one embodiment, the NBC 360 supports multiple network systems, such as a cellular module and a two-way paging module, for example. In such embodiments, the system may prefer one form of network communications over another and may switch depending on a variety of factors such as available service, signal strength, or types of communications being supported. For example, the cellular network may be used as a default and the paging network may take over once cellular service is either weak or otherwise unavailable. Other permutations are possible without departing from the present system.
  • The long-[0054] range wireless network 362 employed may be any consumer or proprietary network designed to serve users in range of the detection system, including, but not limited to, a cellular network such as analog or digital cellular systems employing such protocols and designs as CDPD, CDMA, GSM, PDC, PHS, TDMA, FLEX™, ReFLEX™, iDEN™, TETRA™, DECT, DataTAC™, and Mobitex™, RAMNET™ or Ardis™ or other protocols such as trunk radio, Microburst™, Cellemetry™, satellite, or other analogue or digital wireless networks or the control channels or portions of various networks. The networks may be proprietary or public, special purpose or broadly capable. However, these are long-range networks and the meaning imposed herein is not to describe a premises or facility based type of wireless network.
  • The long-[0055] range wireless network 362 may employ various messaging protocols. In one embodiment Wireless Application Protocol (WAP) is employed as a messaging protocol over the network. WAP is a protocol created by an international body representing numerous wireless and computing industry companies. WAP is designed to work with most wireless networks such as CDPD, CDMA, GSM, PDC, PHS, TDMA, FLEX, ReFLEX, iDEN, TETRA, DECT, DataTAC, and Mobitex and also to work with some Internet protocols such as HTTP and IP. Other messaging protocols such as iMode™, WML, SMS and other conventional and unconventional protocols may be employed without departing from the design of the present embodiment.
  • As an example, these long-range communication protocols described above may include, but are not limited to, cellular telephone protocols, one-way or two-way pager protocols, and PCS protocols. Typically, PCS systems operate in the 1900 MHZ frequency range. One example, known as Code-Division Multiple Access (CDMA, Qualcomm Inc., one variant is IS-95) uses spread spectrum techniques. CDMA uses the full available spectrum and individual messages are encoded with a pseudo-random digital sequence. Another example, Global Systems for Mobile communications (GSM), is one of the leading digital cellular systems and allows eight simultaneous calls on the same radio frequency. Another example, Time Division Multiple Access (TDMA, one variant known as IS-136) uses time-division multiplexing (TDM) in which a radio frequency is time divided and slots are allocated to multiple calls. TDMA is used by the GSM digital cellular system. Another example, 3G, promulgated by the ITU (International Telecommunication Union, Geneva, Switzerland) represents a third generation of mobile communications technology with analog and digital PCS representing first and second generations. 3G is operative over wireless air interfaces such as GSM, TDMA, and CDMA. The EDGE (Enhanced Data rates for Global Evolution) air interface has been developed to meet the bandwidth needs of 3G. Another example, Aloha, enables satellite and terrestrial radio transmissions. Another example, Short Message Service (SMS), allows communications of short messages with a cellular telephone, fax machine and an IP address. Messages are limited to a length of 160 alpha-numeric characters. Another example, General Packet Radio Service (GPRS) is another standard used for wireless communications and operates at transmission speeds far greater than GSM. GPRS can be used for communicating either small bursts of data, such as e-mail and Web browsing, or large volumes of data. [0056]
  • In one embodiment, a long-range communication protocol is based on two way pager technology. Examples of two way pager protocols include ReFLEX™ (Motorola) format, InFLEXion© (Motorola) format, NexNet© (Nexus Telecommunications Ltd. of Israel) format and others. [0057]
  • Other long-range communication protocols are also contemplated and the foregoing examples are not to be construed as limitations but merely as examples. [0058]
  • About the Personal Wireless Device and Medical Device Interface [0059]
  • A [0060] medical device interface 600 is similar to a personal wireless device 500 except that network based communications 360 is optional with a medical device interface 600.
  • The [0061] personal wireless device 500 or medical device interface 600 may be of several different designs. For example, in one embodiment it may be a “response messaging” capable two-way pager. This is service where a two-way pager receives a message and optional multiple-choice responses. The user can select the appropriate responses. Such a design may be adapted to provide basic control options related to the system.
  • In another embodiment, the [0062] personal wireless device 500 or medical device interface 600 may be a programmable two-way paging device such as the Motorola PageWriter™ 2000. This is a class of device that acts as both a two-way pager and a handheld computer also known as a PDA (Personal Digital Assistant).
  • In another embodiment, the [0063] personal wireless device 500 or medical device interface 600 may be a cellular telephone. The cell phone may be analog or digital in any of the various technologies employed by the cell phone industry such as PCS, or CDMA, or TDMA, or others. The cell phone may have programmable capability such as is found in a Nokia™ 9000 series of devices.
  • In embodiments where the user employs standard or adapted paging or cell phones as their [0064] personal wireless device 500 or medical device interface 600, security passwords may be entered by using numeric or other keys on a phone. In another embodiment, the security password may be entered by speaking words. In this embodiment, the system may use word recognition, voice recognition or a combination of these technologies. In the embodiment of a pager, a distinct order of pressing certain keys could provide the equivalent of a security code. For example, 3 short and 1 long on a certain key; or once on key ‘a’, once on key ‘b’, and once more on key ‘a’.
  • In another embodiment, the [0065] personal wireless device 500 or medical device interface 600 is a handheld computer. Many personal digital assistants (PDAs) offer programmable capability and connectivity to various types of long-range wireless networks. An example of this type of device is the PalmPilot™ or Palm series of devices manufactured by Palm, Inc. In these embodiments where a programmable personal wireless device 500 or medical device interface 600 is used such as a PalmPilot, PageWriter or programmable cell phone, the programmable nature of the devices facilitates the implementation of industry-standard designs and would allow for the development of a program written for the devices.
  • In another embodiment, a special manufactured device may be manufactured to serve the needs of the system user. [0066]
  • In another embodiment, the personal [0067] medical device 100 is directly connected to a personal wireless device 500 that is manufactured as an integrated unit.
  • About the Central Communications Base Station [0068]
  • In one embodiment, the personal [0069] medical device 100 communicates with a device referred to herein as central communication base station 700. Central communication base station 700 may include a first transceiver compatible with BLUETOOTH® or other short-range wireless network as described herein. Base station may provide a repeater service to receive a message using BLUETOOTH® and to retransmit the message using a different communication protocol or also using BLUETOOTH® communication protocol.
  • [0070] Base station 700 may also include a second transceiver or a wired interface having access to another communication network 750. The second transceiver or wired interface may retransmit the signal received from the personal device 100 or received from some other device. In this way, central communication base station 700 may serve to extend the communication range of the personal device. For example, a message between the personal device and an emergency-dispatch center may be coupled to communication with the base station 700 connected network 750 and a short-range wireless network. Communications between the personal device 100 and a device coupled to communicate with the base station 700 connected network 750 may be considered long-range communications.
  • Base station may [0071] 700 also communicate bi-directionally within the premise with one or more additional compatible devices. These may be a second personal device 100 or any other device.
  • The base station connected [0072] network 750 may be a public switched telephone network (PSTN), a pager communication network, a cellular communication network, a radio communication network, the Internet, or some other communication network. It will be further appreciated that with a suitable repeater, gateway, switch, router, bridge or network interface, the effective range of communication of a short-range transceiver may be extended to any distance. For example, base station 700 may receive transmissions on a BLUETOOTH® communication protocol and provide an interface to connect with the base station connected network 750, such as the public switched telephone network (PSTN) using the base station link. In this case, a wired telephone at a remote location can be used to communicate with the personal device 100. As another example, the range may be extended by coupling a BLUETOOTH® transceiver with a cellular telephone network, a narrow band personal communication systems (“PCS”) network, a CELLEMETRY® network, a narrow band trunk radio network or other type of wired or wireless communication network.
  • Examples of devices compatible with such long-range protocols include, but are not limited to, a telephone coupled to the public switched telephone network (PSTN), a cellular telephone, a pager (either one way or two way), a personal communication device (such as a personal digital assistant, PDA), a computer, or other wired or wireless communication device. [0073]
  • In one embodiment, the [0074] long distance network 750 may include a telephone network, which may include an intranet or the Internet. Coupling to such a network may be accomplished, for example, using a variety of connections, including a leased line connection, such as a T-1, an ISDN, a DSL line, or other high-speed broadband connection, or it may entail a dial-up connection using a modem. In one embodiment, the long distance network 750 may include a radio frequency or satellite communication network. In addition, one or more of the aforementioned networks may be combined to achieve desired results.
  • Short-range communication protocols, compatible with the base station may include, but are not limited to, wireless protocols such as HomeRFTM, BLUETOOTH®, wireless LAN (WLAN), or other personal wireless networking technology. HomeRFTM, currently defined by specification 2.1, provides support for broadband wireless digital communications at a frequency of approximately 2.45 GHz. [0075]
  • Other long-range and short-range communication protocols are also contemplated and the foregoing examples are not to be construed as limitations but merely as examples. [0076]
  • The [0077] base station 700 may be compatible with more than one communication protocol. For example, the base station may be compatible with three protocols, such as a cellular telephone communication protocol, a two-way pager communication protocol, and BLUETOOTH® protocol. In such a case, a particular personal device 100 may be operable using a cellular telephone, a two-way pager, or a device compatible with BLUETOOTH®.
  • In one embodiment, the [0078] personal device 100 can communicate with a remote device using more than one communication protocols. For example, the personal device may include programming to determine which protocol to use for communicating.
  • The determination of which communication protocol to use to communicate with a remote device may be based on power requirements of each transceiver, based on the range to the remote device, based on a schedule, based on the most recent communication from the remote device, or based on any other measurable parameter. In one embodiment, the [0079] personal device 100 communicates simultaneously using multiple protocols.
  • In one embodiment, there are various types of networks connected to the [0080] base station 700. These may be telephone networks, modem connections, frame relay systems, spread-spectrum, DSL, cable modems, dedicated line or other similar wire based communication and data networks. In addition, these may be long-range, bi-directional, wireless networks as describe above.
  • In one embodiment, there is a connection to the Internet using various Internet protocols such as TCP/IP/HTTP/HTCP and others. [0081]
  • Other Connections from the Personal Medical Device [0082]
  • In one embodiment, signals generated by the medical device are received by a [0083] central monitoring station 800. The central monitoring station 800 may include operators that provide emergency dispatch services. An operator at the central monitoring station 800 may also attempt to verify the authenticity of a received alarm signal. In one embodiment, the alarm signal generated by the personal device 100 is first transmitted to a user, using either a short-range or long-range communication protocol, who then may forward the alarm signal to a monitoring station if authentic or cancel the alarm signal if the alarm is not valid.
  • In one embodiment, the [0084] personal device 100 may communicate with a building control or security system 900 by communicating using its transceiver. For example, the personal device may operate as an auxiliary input to a building control or security system. In which case, if the personal device 100 detects a security event, by way of a sensor coupled to the personal device, then an alarm signal is transmitted from the personal device, via its transceiver, to the building security system. The building security system, if monitored by a central monitoring station, then forwards the alarm signal to the monitoring station. In one embodiment, the personal device 100 can receive a transmission from a separate building control or security system. If the building security system detects an alarm condition, then the security system can, for example, instruct the personal device to repeatedly toggle power to load a flashing light visible from the exterior of the building that may aid emergency personnel in locating an emergency site. Alternatively, the personal device can establish communications with a predetermined remote device or a central monitoring service.
  • Routing Paths from the Personal Medical Device [0085]
  • The present invention includes, but is not limited to, the following routing paths from the personal device [0086] 100:
  • 1) short-range wireless to long-range wireless in a pre-designed system. That is, both the [0087] personal device 100 and the device with which it communicates have been set up in communication in advance. For example, the personal device 100 is connected to a short-range wireless module that communicates to a cell phone or other wireless network device carried by the user.
  • 2) short-range wireless to long-range wireless “ad hoc”: the personal device sets up a short-range “ad hoc” network to any available long-range network connection. [0088]
  • 3) short-range wireless to any network connection. For example, the [0089] personal device 100 is connected to a short-range wireless module that communicates to a telephone or Internet base station in a person's home.
  • 4) long-range wireless directly. For example, the [0090] personal device 100 is directly connected to a long-range wireless network module.
  • Transmission to the Personal Medical Device [0091]
  • In addition, feedback may be transmitted to a remote device based on the operation of the personal device. For example, if a user issues a command to the personal device using a cellular telephone, then the display of the phone will indicate the changes arising from the command. In one embodiment, the cellular telephone, the base station, emergency monitoring center, or other device displays real time information from the [0092] personal device 100.
  • Various methods may be used to communicate with, or send a message or instruction to, the [0093] personal device 100 from a remote location. For example, using a cellular telephone, a user may speak a particular phrase, word or phoneme that is recognized by the cellular telephone which then generates and transmits a coded message to the personal device 100. As another example, the user may manipulate a keypad on the telephone to encode and transmit a message to the personal device.
  • Data Types Communicated to and from the Personal Medical Device [0094]
  • Table I below shows the types of data that may be communicated to and/or from the [0095] personal device 100, and the direction of data flow.
    TABLE I
    Data Type Direction of transmission
    diagnosis (suggested by PMD/MDI or from bi-directional
    medical center
    manual request from PMD
    identification (e.g., bluetooth serial from PMD
    number, PMD ID, account number)
    use alert (e.g., opening a container, etc.) from PMD
    activation (shock, release medication, brain bi-directional
    stimulation)
    body reading (electrical, chemical, analog, from PMD
    digital, mechanical, temperature, etc.)
    two-way voice (to responding agency, bi-directional
    bystander, or patient)
    digital instructions bi-directional
    standard I/O ports bi-directional
    camera: visual, video exhange bi-directional
    authorizations and authentications bi-directional
    Security codes, data confirmations, bi-directional
    acknowledgements
    transceiver activation  to PMD
    encryption bi-directional
    interaction with related PMDs bi-directional
    verification (alarms, emergencies) bi-directional
  • Data Flow Examples [0096]
  • One possible example of data flow to and from the [0097] personal device 100 is shown in FIG. 5.
  • The [0098] personal device 100 may be implanted in the victim V, or carried on the person of the victim V. For example the personal device 100 may be a pacemaker that is imbedded in the chest cavity of the victim V and connected by leads to the victim's heart, as is well known in the art.
  • In this example, the victim V undergoes some sort of cardiac problem, such as tachycardia, that causes the [0099] personal device 100 to attempt to establish communication with a caregiver. While this is going on, a bystander B attempts to give aid to the victim V. The bystander B is carrying on his person a medical device interface 500 or a personal wireless device 600. When the personal device 100 attempts to establish communication, it sets up communication with the personal wireless device 600 by local area wireless 330. For example, if the personal device 100 and personal wireless device 600 both use BLUETOOTH for local area wireless communications, the personal device 100 and personal wireless device 600 will follow the communications protocols of the BLUETOOTH standard and establish communications.
  • Next, the [0100] personal device 100 may request the personal wireless device 600 to establish a connection to the dispatcher or medical caregiver D, using network based communications 360. For example, the personal wireless device 600 may be a cell phone or PDA. Using network based communications 360, the personal wireless device establishes a connection to the computer of the dispatcher or medical caregiver D.
  • Alternatively, the [0101] personal wireless device 600 may establish a connection to an automatic processor P, which has database DB that contains information on the victim's medications, medical history, pre-existing conditions, possible diagnoses, personal records, personal device information, treatment strategies, response plans, identities or responsing agencies, and other data.
  • Either the dispatcher D or the processor P may then send an inquiry through the [0102] personal wireless device 600 to the personal device 100, instructing the personal device 100 to send various data, for example, electrocardiogram data. Using this transmitted data, the dispatcher or processor may then make a diagnosis and identify a treatment strategy.
  • The dispatcher D may then alert responding personnel R, such as a paramedic unit, to travel to the victim V. In the event that the victim's [0103] personal device 100 has location identification capability (discussed below), the dispatcher D will be able to give the exact location of the victim to the responding personnel R. The dispatcher D may also alert responsible parties RP such as the victim's parents of the location.
  • Until the responding personnel R reach the scene, the dispatcher D may establish voice communications with the bystander B through the bystander B's [0104] personal wireless device 600. The dispatcher may ask the bystander B to use the camera 280 of the personal wireless device to transmit an image of the victim V. The dispatcher D may give the bystander B instructions on how to render first aid to the victim V until the responding personnel R arrive.
  • When the responding personnel R reach the victim, they may establish communications through [0105] local area wireless 330 from their medical device interface 500 to the victim's personal device 100, request data from the personal device 100, and request the personal device 100 to take some action, such as dispensing medication to the victim V. Their medical device interface 500 may also establish communication with the dispatcher D or medical caregiver using network based communications 360.
  • The above is just one example of possible data flow to and from the [0106] personal device 100. Many other scenarios are possible.
  • FIG. 6 summarizes data flow from the point of view of a remote caregiver, showing that comprehensive data creates the best options for the remote caregiver. [0107]
  • Location Management [0108]
  • Optionally, the [0109] personal device 100 includes the ability to detect its own location and to communicate this location to authorized requesters. The location-determining function may be device-based, network-based, or a combination of device-based and network-based, as described in co-pending U.S. Patent Application entitled “Method and System for Wireless Tracking”, filed Mar. 28, 2002, herein incorporated by reference, in the Detailed Description, and in FIGS. 4A, 4B and 4C therein.
  • As discussed in the referenced patent application (FIG. 4A), the personal device 100B may include a GPS receiver positioned internal to device 100b. FIG. 4B of the referenced patent illustrates a communication network 200A having integral LDS 165A. Location information, in one embodiment, is based on a geographical location of first device 100C and is determined based on timing information for wireless signals between network 200A and device 100C. [0110] Second device 300 is also connected to communication network 200A. In one embodiment, a server coupled to network 200A includes programming to determine location information and selected clients accessing the server are able to receive the location information. Selected clients are those authorized to receive the location information. FIG. 4C of the referenced patent application illustrates LDS 145B and LDS 165B within first device 100D and network 200B, respectively. In such an embodiment, the combination of information generated by LDS 145B and LDS 165B provides the location information.
  • As described in the referenced patent application, the [0111] device 100 may include an electronic circuit or an electronic circuit and programming to determine location. In one embodiment, LDS 145 uses a terrestrial location system. There are several varieties of terrestrial solutions, including time differential, signal strength, angle of arrival and varieties of triangulation. In one described embodiment, LDS 145 uses a combination of terrestrial and satellite navigation systems.
  • Security [0112]
  • The system and method of the present invention may also include various types of security arrangements. [0113]
  • It will be appreciated that the ability of various entities spread around a network to receive and/or transmit to and control the [0114] personal device 100 requires some measure of security. Only authorized agents should be allowed access to the device 100. For example, in the example shown in FIG. 5, only responding personnel RP (such as trained paramedics) who are on the scene of the event may be allowed to send a command to the personal device 100 causing the personal device 100 to dispense medication to the victim. Certainly, the bystander B should not be allowed this level of access, even though the bystander B's personal wireless device 600 may be acting as an intermediary in communication from the personal device 100 to the dispatcher D.
  • The following are possible embodiments of security and not meant to be exclusive. [0115]
  • First, data transmitted to and from the [0116] personal device 100 may be encrypted by standard encryption algorithms, making it essentially impossible for the unsophisticated interceptor to interpret the data.
  • Second, voice and visual channels of transmission may be controlled for activation by the [0117] personal device 100 or by an authorized entity, but may not necessarily be encrypted.
  • Third, security keys may be held by a central agency and provided to the responding personnel RP. [0118]
  • Fourth, the user of the [0119] personal device 100 may have a security key that he can enter to release information or access to authorized parties.
  • A number of strategies may be employed for authorization and authentication. For example, biometrics may be used. Biometrics refers to the measurement of some bodily parameter (such as fingerprint, retinal scan, etc.) that is unique to the individual. [0120]
  • Second, a public/private key system can be used in which access to both keys is required for decoding an encrypted message. Each party that wishes to participate in secure communications must create a key set for encrypting and decrypting messages. One key is private and the other is public. The public key is for exchanging with other parties with whom you who wish to participate in secure communication sessions. Each individual owner must keep the private portion of the key secure. The private key also has a secret pass phrase, in the event that it is ever ‘misappropriated’. Public key/private key technology allows the sender to sign a message with their private key. When the recipient receives the message, they can validate the authenticity of the signature because they have the sender's public key. [0121]
  • Third, a user needing access to the [0122] device 100 may make a request for such access to a responsible third party.
  • Fourth, the [0123] personal device 100 may have pre-authorized authority for certain users.
  • A number of authorization strategies are discussed in co-pending U.S. Patent Application, entitled “Method and System for Wireless Tracking”, filed Mar. 28, 2002, herein incorporated by reference, in the Detailed Description. [0124]
  • About Power Management [0125]
  • In a number of scenarios, the power consumed by the [0126] personal device 100 is critical. For example, it the personal device 100 is implanted in a human being, long battery life is essential.
  • Although some communications systems, such as BLUETOOTH, have low power consumption states, nevertheless power is being consumed. Further, in an environment such as BLUETOOTH, a BLUETOOTH transceiver that is powered on may constantly be wakened from the low power states whenever a transmission is received from another BLUETOOTH transceiver. [0127]
  • It is therefore an important aspect of the present invention to provide a completely powered-off state for the bi-directional communications module, and for a means of signaling the bi-directional communications module to transition from the powered-off state to the powered-on state. The transceiver must consume no power in the powered-off state. [0128]
  • A number of mechanisms for doing this signaling are possible. First, a mechanical signal, such as throwing a switch or applying pressure to a pad, may be used. Second, a magnetic signal may be used, as in passing a magnet in the vicinity of the communications module. Third, sound or ultra-sound may be used. Fourth, infrared may be used provided there is a direct line of sight to the communications module. Sixth, radio frequency may be used, which has the advantage of not requiring line of sight to the communications module. [0129]
  • Radio frequency is already being used for applications such as automated meter reading and electronic article surveillance. Such applications included un-powered RF receivers such as RFID tags. [0130]
  • FIG. 7 shows a general block diagram of this power management function. The [0131] personal device 100 is modified to include an un-powered RF receiver 710 that is tuned to a particular frequency. Power-up device 800 has an RF transmitter tuned to the same frequency. When a signal is sent to the RF receiver 710, the receiver 710 gathers the RF energy and activates logic 720. Any code transmitted on the frequency is passed to the logic 720, which decodes it and compares it to a proper wake-up code. If a proper wake-up code is received, logic 720 signals the processor 130 to power-on the communications module 300. The wake-up code is optional, in that the receiver 710 may just signal the processor 130 directly without decode.

Claims (57)

What is claimed:
1. A bi-directional wireless communication system comprising:
(a) a first personal device, the first personal device further comprising:
(i) a processor;
(ii) a memory;
(iii) a power supply;
(iv) at least one detector input; and
(v) a short-range bi-directional wireless communications module;
(b) a second device communicating with the first device, the second device having a short-range bidirectional wireless communications module compatible with the short-range bi-directional wireless communications module of the first device; and
(c) a security mechanism governing information transmitted between the first personal device and the second device.
2. The system of claim 1, wherein the security mechanism encrypts the information.
3. The system of claim 1, wherein the security mechanism employs authorization by the first personal device.
4. The system of claim 1, wherein the security mechanism employs a key held by an agent and transmitted to the second device or wherein the security mechanism employs a key entered by a user of the first personal device.
5. The system of claim 1, wherein the security mechanism employs a private key and a public key.
6. The system of claim 1, wherein the security mechanism employs biometrics.
7. The system of claim 1, further comprising a detector connected to the at least one detector input.
8. The system of claim 7, wherein the detector senses body or physiological parameters.
9. The system of claim 8, wherein the body or physiological parameters are selected from the group consisting of temperature, motion, respiration, blood oxygen content, and electroencephalogram.
10. The system of claim 1, wherein the first personal device further comprises a user interface module.
11. The system of claim 10, wherein the user interface module further comprises a display, a data input means, and a speaker/microphone module.
12. The system of claim 10, wherein the user interface module further comprises a camera.
13. The system of claim 1, wherein the short-range wireless communications further comprises BLUETOOTH technology.
14. The system of claim 1, wherein the first personal device further comprises a data input/output port, the second device further comprises a data input/output port, and wherein the second device communicates with the first personal device using the data input/output ports.
15. The system of claim 1, further comprising a central communications base station communicating with the first personal device using short-range wireless communications.
16. The system of claim 15, wherein the short-range wireless communications is selected from the group consisting of HomeRF™, BLUETOOTH, and wireless LAN.
17. The system of claim 15, wherein the central communications base station further comprises long-range wireless communications.
18. The system of claim 17, wherein the long-range wireless communications is selected from the group consisting of cellular, satellite, paging, narrowband PCS, and narrowband trunk radio.
19. The system of claim 18, further comprising long-range messaging protocols executing over the long-range wireless communications.
20. The system of claim 19, wherein the long-range messaging protocols are selected from the group consisting of wireless application protocol, cellular telephone protocols, one-way pager protocols, two-way pager protocols, and PCS protocols.
21. The system of claim 15, wherein the central communications base station further comprises an interface to a long-distance telephone network.
22. The system of claim 15, wherein the central communications base station further comprises a connection to the Internet.
23. The system of claim 1, further comprising a central monitoring station receiving alarm signals from the first personal device.
24. The system of claim 1, wherein the first personal device further comprises a location determination module that determines the geographical location of the first personal device.
25. The system of claim 24, wherein the location determination module further comprises a GPS receiver.
26. The system of claim 1, wherein the bi-directional communications module has a powered-down state and a powered-up state, and further comprising a means for signaling the bi-directional communications module to transition from the powered-down state to the powered-up state.
27. The system of claim 26, wherein the means for signaling is mechanical.
28. The system of claim 26, wherein the means for signaling is magnetic.
29. The system of claim 26, wherein the means for signaling is sound or ultra-sound.
30. The system of claim 26, wherein the means for signaling is infrared.
31. The system of claim 26, wherein the means for signaling is radio frequency.
32. The system of claim 1, wherein the first personal device is implantable in a person.
33. A bi-directional wireless communication system comprising:
(a) a first personal device, the first personal device further comprising:
(i) a processor;
(ii) a memory;
(iii) a power supply;
(iv) at least one detector input; and
(v) a long-range bi-directional wireless communications module;
(b) a long-range bi-directional wireless network communicating with the long-range bi-directional wireless communications module;
(c) an entity communicating with the first personal device over the network; and
(d) a security mechanism governing information transmitted between the first personal device and the entity.
34. The system of claim 33, wherein the long-range wireless communications network is selected from the group consisting of cellular, satellite, paging, narrowband PCS, and narrowband trunk radio.
35. The system of claim 34, further comprising long-range messaging protocols executing over the long-range wireless communications network.
36. The system of claim 35, wherein the long-range messaging protocols are selected from the group consisting of wireless application protocol, cellular telephone protocols, one-way pager protocols, two-way pager protocols, and PCS protocols.
37. The system of claim 33, wherein the first personal device further comprises a location determination module that determines the geographical location of the first personal device.
38. The system of claim 37, wherein the location determination module further comprises a GPS receiver.
39. The system of claim 33, wherein the bi-directional communications module has a powered-down state and a powered-up state, and further comprising a means for signaling the bi-directional communications module to transition from the powered-down state to the powered-up state.
40. The system of claim 39, wherein the means for signaling is selected from the group consisting of mechanical, magnetic, sound or ultrasound, infrared, and radio frequency.
41. The system of claim 39, wherein the security mechanism encrypts the information.
42. The system of claim 33, wherein the security mechanism employs authorization by the first personal device.
43. The system of claim 33, wherein the security mechanism employs a key held by an agent and transmitted to the second device.
44. The system of claim 33, wherein the security mechanism employs a key entered by a user of the first personal device.
45. The system of claim 33, wherein the security mechanism employs a private key and a public key.
46. The system of claim 33, wherein the security mechanism employs biometrics.
47. The system of claim 33, wherein the first personal device is implantable in a person.
48. A bi-directional wireless communication system comprising:
(a) a first personal device, the first personal device further comprising:
(i) a processor;
(ii) a memory;
(iii) a power supply;
(iv) at least one detector input; and
(v) a short-range bi-directional wireless communications module;
(b) a second device communicating with the first personal device, the second device having a short-range bi-directional wireless communications module compatible with the short-range bi-directional wireless communications module of the first personal device and also having a long-range bi-directional wireless communications module; and
(c) a long-range bidirectional wireless network communicating with the long-range bi-directional wireless communications module of the second device.
49. The system of claim 48, wherein the short-range wireless communications further comprises BLUETOOTH technology.
50. The system of claim 48, wherein the long-range wireless communications network is selected from the group consisting of cellular, satellite, paging, narrowband PCS, and narrowband trunk radio.
51. The system of claim 50, further comprising long-range messaging protocols executing over the long-range wireless communications network.
52. The system of claim 51, wherein the long-range messaging protocols are selected from the group consisting of wireless application protocol, cellular telephone protocols, one-way pager protocols, two-way pager protocols, and PCS protocols.
53. The system of claim 48, wherein the bi-directional wireless communications module of the first personal device has a powered-down state and a powered-up state, and further comprising a means for signaling the bi-directional wireless communications module of the first personal device to transition from the powered-down state to the powered-up state.
54. The system of claim 53, wherein the means for signaling is selected from the group consisting of mechanical, magnetic, sound or ultrasound, infrared, and radio frequency.
55. A method of bi-directional communications, comprising the steps of:
(a) detecting an event by a detector connected to a first personal device;
(b) signaling the event to a second device using short-range bi-directional wireless communications between the first personal device and the second device;
(c) wherein the short-range wireless communications is BLUETOOTH; and
(d) wherein a security mechanism controls recognition of the event by the second device.
56. The method of claim 55, further comprising the step of transitioning the first personal device from a powered-down state to a powered-up state by means of an external radio frequency stimulus.
57. The method of claim 56, further comprising the step of signaling the event from the second device to a long-range bi-directional network.
US10/165,624 1998-10-23 2002-06-07 Personal medical device communication system and method Expired - Lifetime US7088233B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/165,624 US7088233B2 (en) 1998-10-23 2002-06-07 Personal medical device communication system and method
US10/285,778 US7103344B2 (en) 2000-06-08 2002-11-01 Device with passive receiver

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US10549398P 1998-10-23 1998-10-23
US13586299P 1999-05-25 1999-05-25
US09/384,165 US6356192B1 (en) 1998-10-23 1999-08-27 Bi-directional wireless detection system
US27940101P 2001-03-28 2001-03-28
PCT/US2001/018734 WO2001093926A2 (en) 2000-06-08 2001-06-08 Automated injection device for administration of liquid medicament
US09/956,474 US6759956B2 (en) 1998-10-23 2001-09-19 Bi-directional wireless detection system
US10/112,669 US20020169539A1 (en) 2001-03-28 2002-03-28 Method and system for wireless tracking
US10/165,624 US7088233B2 (en) 1998-10-23 2002-06-07 Personal medical device communication system and method

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2001/018734 Continuation-In-Part WO2001093926A2 (en) 1998-10-23 2001-06-08 Automated injection device for administration of liquid medicament
US09/956,474 Continuation-In-Part US6759956B2 (en) 1998-10-23 2001-09-19 Bi-directional wireless detection system
US10/112,669 Continuation-In-Part US20020169539A1 (en) 1998-10-23 2002-03-28 Method and system for wireless tracking

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/956,474 Continuation US6759956B2 (en) 1998-10-23 2001-09-19 Bi-directional wireless detection system
US10/285,778 Continuation-In-Part US7103344B2 (en) 2000-06-08 2002-11-01 Device with passive receiver

Publications (3)

Publication Number Publication Date
US20030001743A1 true US20030001743A1 (en) 2003-01-02
US20040027244A9 US20040027244A9 (en) 2004-02-12
US7088233B2 US7088233B2 (en) 2006-08-08

Family

ID=31892364

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/165,624 Expired - Lifetime US7088233B2 (en) 1998-10-23 2002-06-07 Personal medical device communication system and method

Country Status (1)

Country Link
US (1) US7088233B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010010490A1 (en) * 1998-12-16 2001-08-02 Bellin Robert W. Pager-based communications system
US20040147251A1 (en) * 2002-11-21 2004-07-29 Ntt Docomo, Inc. Communication terminal, value entity providing server, application delivery server, electronic procurement supporting method, and electronic procurement supporting program
US20040266390A1 (en) * 2003-06-25 2004-12-30 Nokia Corporation Emergency response system
WO2004090661A3 (en) * 2003-04-08 2005-03-24 Medic4All A G A portable wireless gateway for remote medical examination
US20050085242A1 (en) * 2003-09-12 2005-04-21 Nec Corporation Data delivery apparatus, data delivery system, server, data delivery method, communication device, and electronic apparatus
EP1538581A1 (en) * 2003-12-04 2005-06-08 France Telecom Method and apparatus of processing alerts
WO2006012835A1 (en) * 2004-07-26 2006-02-09 Deutsche Telekom Ag Device for the mobile transmission of data
US20060064472A1 (en) * 2004-09-20 2006-03-23 Mirho Charles A Obtaining information for proximate devices
US20060095273A1 (en) * 2003-03-11 2006-05-04 Koninklijke Philips Electronics N.V. Method , a system and a generator of a script for routing a script-oriented dialog between an operator of a call center and a customer
US20060276161A1 (en) * 2005-06-03 2006-12-07 Terahop Networks, Inc. Remote sensor interface (rsi) stepped wake-up sequence
WO2006136876A1 (en) * 2005-06-22 2006-12-28 Vobio P/S Biometric control systems and associated methods of use
WO2007000021A1 (en) * 2005-06-28 2007-01-04 Vieo Systems Ip Pty Ltd Assistance call and monitoring system
US20070035403A1 (en) * 2005-08-12 2007-02-15 Krishna Sudhir S Method and system of personal healthcare management
US20070112603A1 (en) * 2005-11-01 2007-05-17 Fresenius Medical Care Holdings, Inc. Digital data entry methods and devices
US20070159999A1 (en) * 2000-12-22 2007-07-12 Terahop Networks, Inc. Intelligent node communication using network formation messages in a mobile Ad hoc network
US20070229287A1 (en) * 2006-01-07 2007-10-04 Morgan David W Method and apparatus for processing patient information
WO2007126360A1 (en) 2006-04-27 2007-11-08 Gambro Lundia Ab Remote controlled medical apparatus
US20080058740A1 (en) * 2006-08-29 2008-03-06 Sullivan Shawn J Sensing article for a home automation network
US20080057877A1 (en) * 2006-08-31 2008-03-06 Motorola, Inc. System and method to rapidly deploy one or more communication devices
US20080061122A1 (en) * 2006-08-31 2008-03-13 Motorola, Inc. Method and apparatus for acquiring and establishing a deployable communication system
US20080112377A1 (en) * 2000-12-22 2008-05-15 Terahop Networks, Inc. Radio frequency identification based networks
US20080119757A1 (en) * 2006-11-21 2008-05-22 Suzanne Winter Temperature management system with wireless patient temperature sensor
JP2008532340A (en) * 2004-11-24 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Telemetry monitoring system for patients by internet protocol
US20080218588A1 (en) * 2000-10-11 2008-09-11 Stetten George Dewitt System for remote guidance by expert for imaging device
CN100459539C (en) * 2003-09-23 2009-02-04 Ge医疗系统信息技术公司 Wireless subject monitoring system
US20090076856A1 (en) * 2007-09-19 2009-03-19 Fresenius Medical Care Holdings, Inc. Patient-specific content delivery methods and systems
US20090104902A1 (en) * 2000-12-22 2009-04-23 Terahop Networks, Inc. Class-switching in class-based data communcations network
US20090124302A1 (en) * 2000-12-22 2009-05-14 Terahop Networks, Inc. WIRELESS READER TAGS (WRTs) WITH SENSOR COMPONENTS IN ASSET MONITORING AND TRACKING SYSTEMS
US20090222671A1 (en) * 2005-10-25 2009-09-03 Burbank Jeffrey H Safety features for medical devices requiring assistance and supervision
US20100185460A1 (en) * 2009-01-22 2010-07-22 Sima Nadler Filtering Medical Information
WO2010146206A1 (en) * 2009-06-16 2010-12-23 Crambo Wireless, S.A. Portable safety device, system and method
US20110063105A1 (en) * 2009-09-16 2011-03-17 Broadcom Corporation Emergency message relay
US20110105979A1 (en) * 2009-11-05 2011-05-05 Fresenius Medical Care Holdings, Inc. Patient treatment and monitoring systems and methods
US8078139B2 (en) 2000-12-22 2011-12-13 Terahop Networks, Inc. Wireless data communications network system for tracking container
US8280345B2 (en) 2000-12-22 2012-10-02 Google Inc. LPRF device wake up using wireless tag
US8698741B1 (en) 2009-01-16 2014-04-15 Fresenius Medical Care Holdings, Inc. Methods and apparatus for medical device cursor control and touchpad-based navigation
US8705523B2 (en) 2009-02-05 2014-04-22 Google Inc. Conjoined class-based networking
GB2526116A (en) * 2014-05-14 2015-11-18 Howard Burrell An emergency alarm system using fingerprint recognition
US20150350233A1 (en) * 2014-06-02 2015-12-03 Bastille Networks, Inc. Anomalous Behavior Detection Based on Behavioral Signatures
US20150351698A1 (en) * 2014-06-04 2015-12-10 Grandios Technologies, Llc Health and medical smartphone
US20150351695A1 (en) * 2014-06-04 2015-12-10 Grandios Technologies, Llc Medical smartphone
US20160005295A1 (en) * 2014-07-01 2016-01-07 Panasonic Intellectual Property Management Co., Ltd. Power tool system
CN105321310A (en) * 2014-07-07 2016-02-10 霍尼韦尔国际公司 System and method of communicating data from an alarm system to emergency services personnel
US10265455B2 (en) * 2008-07-09 2019-04-23 Baxter International Inc. Dialysis system including wireless sensor data
CN110826030A (en) * 2019-11-08 2020-02-21 湖南长城医疗科技有限公司 Self-service software and related module authorization use method
US10693760B2 (en) 2013-06-25 2020-06-23 Google Llc Fabric network
US10799117B2 (en) 2009-11-05 2020-10-13 Fresenius Medical Care Holdings, Inc. Patient treatment and monitoring systems and methods with cause inferencing
US11173548B2 (en) 2017-04-04 2021-11-16 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0110594A (en) 2000-05-05 2004-12-14 Hill Rom Services Inc Hospital monitoring system to monitor hospital staff, and method of controlling devices at a patient location
US20020044059A1 (en) 2000-05-05 2002-04-18 Reeder Ryan A. Patient point of care computer system
US6839753B2 (en) * 2001-02-23 2005-01-04 Cardiopulmonary Corporation Network monitoring systems for medical devices
US7474899B1 (en) * 2001-06-15 2009-01-06 Aeris.Net Method and apparatus for communicating using wireless control channels
US20030229811A1 (en) * 2001-10-31 2003-12-11 Cross Match Technologies, Inc. Method that provides multi-tiered authorization and identification
US6873257B2 (en) * 2002-07-01 2005-03-29 Craig Maloney Vehicle location device
US8144183B2 (en) * 2002-10-15 2012-03-27 Revolutionary Concepts, Inc. Two-way audio-video communication method for receiving person at entrance
US8154581B2 (en) 2002-10-15 2012-04-10 Revolutionary Concepts, Inc. Audio-video communication system for receiving person at entrance
US8139098B2 (en) * 2002-10-15 2012-03-20 Revolutionary Concepts, Inc. Video communication method for receiving person at entrance
US20040254479A1 (en) 2003-02-20 2004-12-16 John Fralick Bio-photonic feedback control software and database
US7399205B2 (en) 2003-08-21 2008-07-15 Hill-Rom Services, Inc. Plug and receptacle having wired and wireless coupling
US20050163302A1 (en) * 2004-01-22 2005-07-28 Mock Von A. Customer service system and method using physiological data
US20050278184A1 (en) 2004-06-10 2005-12-15 John Fralick Bio-photonic feedback control software and database
EP1719293A1 (en) * 2004-02-19 2006-11-08 Koninklijke Philips Electronics N.V. Method and associated system for wireless medical monitoring and patient monitoring device
US7319386B2 (en) 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US20090224892A1 (en) * 2004-08-31 2009-09-10 Nortel Networks Limited Mobile rfid tag tracking system using cellular systems
US10645562B2 (en) 2004-09-21 2020-05-05 Agis Software Development Llc Method to provide ad hoc and password protected digital and voice networks
ATE545361T1 (en) * 2004-12-13 2012-03-15 Koninkl Philips Electronics Nv MOBILE MONITORING
US7860731B2 (en) * 2004-12-20 2010-12-28 Confidant Hawaii, Llc Monitoring and feedback wireless medical system and method
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
ATE481685T1 (en) 2005-04-06 2010-10-15 Mallinckrodt Inc SYSTEMS AND METHODS FOR MANAGING INFORMATION REGARDING MEDICAL LIQUIDS AND CONTAINERS THEREOF
US7595697B2 (en) * 2005-04-15 2009-09-29 Ivy Biomedical Systems, Inc. Wireless transmitter
US8480577B2 (en) * 2005-04-15 2013-07-09 Ivy Biomedical Systems, Inc. Wireless patient monitoring system
DE102005029476A1 (en) * 2005-06-24 2007-02-08 Siemens Ag Device for carrying out intravascular examinations
US7818076B2 (en) * 2005-07-26 2010-10-19 Stereotaxis, Inc. Method and apparatus for multi-system remote surgical navigation from a single control center
US20090043253A1 (en) * 2005-10-11 2009-02-12 Blake Podaima Smart medical compliance method and system
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US20070188611A1 (en) * 2006-02-13 2007-08-16 Revolutionary Concepts, Inc. Method for providing multiple viewing opportunities of events at a venue
US20070188612A1 (en) * 2006-02-13 2007-08-16 Revolutionary Concepts, Inc. video system for individually selecting and viewing events at a venue
WO2007095724A1 (en) * 2006-02-27 2007-08-30 Richard Lester Medical cell/mobile phone for resource-limited settings and research settings
US8102245B2 (en) * 2006-07-14 2012-01-24 At&T Intellectual Property I, Lp Method and apparatus for transmitting notification messages
WO2008041062A2 (en) * 2006-10-06 2008-04-10 Bethesda Waters And Associates, Llc System for tracking a person or object and analyzing and reporting related event information
US8068931B2 (en) * 2006-10-24 2011-11-29 Alan An Thuan Tran Systems and methods for monitoring pill taking
US20080139891A1 (en) * 2006-10-25 2008-06-12 Cingular Wireless Ii, Llc Devices and methods for communicating medical information
US20080300748A1 (en) * 2007-06-04 2008-12-04 Michael Drummy Gps enabled datalogging system for a non-destructive inspection instrument
US8271082B2 (en) 2007-06-07 2012-09-18 Zoll Medical Corporation Medical device configured to test for user responsiveness
US8026814B1 (en) 2007-07-25 2011-09-27 Pinpoint Technologies Inc. Wireless mesh network for an asset tracking system
US8400268B1 (en) 2007-07-25 2013-03-19 Pinpoint Technologies Inc. End to end emergency response
US8082160B2 (en) 2007-10-26 2011-12-20 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US20090143047A1 (en) * 2007-10-31 2009-06-04 Hays William D Method and system for mobile personal emergency response
US20090278683A1 (en) * 2008-05-11 2009-11-12 Revolutionary Concepts, Inc. Systems, methods, and apparatus for metal detection, viewing, and communications
US20090284578A1 (en) * 2008-05-11 2009-11-19 Revolutionary Concepts, Inc. Real estate communications and monitoring systems and methods for use by real estate agents
US20090322513A1 (en) * 2008-06-27 2009-12-31 Franklin Dun-Jen Hwang Medical emergency alert system and method
US20100016746A1 (en) * 2008-07-15 2010-01-21 Hampton David R Personal alerting device for use with diagnostic device
US8255225B2 (en) 2008-08-07 2012-08-28 Vocollect Healthcare Systems, Inc. Voice assistant system
US8451101B2 (en) * 2008-08-28 2013-05-28 Vocollect, Inc. Speech-driven patient care system with wearable devices
BRPI0916883A2 (en) * 2008-08-28 2016-02-10 Isense Corp Method and system for communication between wireless devices
US9585562B2 (en) 2008-12-03 2017-03-07 Carefusion 303, Inc. Method and apparatus for automatically integrating a medical device into a medical facility network
JP5195637B2 (en) * 2009-05-21 2013-05-08 富士通株式会社 BAN sensor wireless communication apparatus and method
US8487771B2 (en) * 2009-05-21 2013-07-16 Silverplus, Inc. Personal health management device
JP5706433B2 (en) * 2009-10-13 2015-04-22 カーディオパルモナリー コーポレイション Method and apparatus for displaying data from a medical device
KR101092051B1 (en) * 2009-10-29 2011-12-12 인하대학교 산학협력단 Network device and network control device in wireless body area network and security wake-up method and wake-up authentication code generating method for the network device and the network control device
EP2418596A1 (en) * 2010-08-11 2012-02-15 Akern S.r.L. A system for monitoring patients that perform a medical self-check and relative method
US9937355B2 (en) 2010-11-08 2018-04-10 Zoll Medical Corporation Remote medical device alarm
US9135398B2 (en) 2011-03-25 2015-09-15 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US9684767B2 (en) 2011-03-25 2017-06-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US20140005506A1 (en) 2012-06-29 2014-01-02 Zoll Medical Corporation Rescue scene video transmission
US20140075824A1 (en) * 2012-09-14 2014-03-20 Woodstream Corporation Wi-fi enabled insect trapping apparatus
US9026147B2 (en) * 2012-09-24 2015-05-05 Physio-Control, Inc. Defibrillator location tracking device
JP6437921B2 (en) 2012-11-12 2018-12-12 エンピ・インコーポレイテッド System and method for wireless pairing and communication for electrical stimulation
WO2014100036A1 (en) 2012-12-18 2014-06-26 Coney Lillie Bruce Secure healthcare management and communication system
US9503902B1 (en) 2014-08-06 2016-11-22 Lillie Bruce Coney Proximity-based system that secures linked IP enabled devices
US9730620B2 (en) 2012-12-31 2017-08-15 Dexcom, Inc. Remote monitoring of analyte measurements
US9585563B2 (en) 2012-12-31 2017-03-07 Dexcom, Inc. Remote monitoring of analyte measurements
US9380474B2 (en) 2013-03-08 2016-06-28 Cardiopulmonary Corp. Network monitoring for active medical device alarms
US9215075B1 (en) 2013-03-15 2015-12-15 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
WO2015123198A1 (en) 2014-02-12 2015-08-20 Zoll Medical Corporation System and method for adapting alarms in a wearable medical device
US10028147B1 (en) 2014-08-06 2018-07-17 Bruce Corporation Dynamic defenses to secure a proximity-based communication system of linked wireless-enabled devices
DK3221807T3 (en) 2014-11-20 2020-08-24 Widex As HEARING AID USER ACCOUNT MANAGEMENT
US9338627B1 (en) 2015-01-28 2016-05-10 Arati P Singh Portable device for indicating emergency events
US10272010B2 (en) 2015-03-20 2019-04-30 Zoll Medical Corporation Systems and methods for testing a medical device
US10835449B2 (en) 2015-03-30 2020-11-17 Zoll Medical Corporation Modular components for medical devices
EP3098738A1 (en) * 2015-05-29 2016-11-30 PARI Pharma GmbH Aerosol nebulizer control device
US10252070B2 (en) 2015-09-08 2019-04-09 Zoll Medical Corporation Secure limited components for use with medical devices
US9839735B2 (en) * 2015-09-08 2017-12-12 Fresenius Medical Care Holdings, Inc. Voice interface for a dialysis machine
EP3397140A4 (en) 2015-12-28 2019-08-21 Dexcom, Inc. Systems and methods for remote and host monitoring communications
US11709747B2 (en) 2016-01-08 2023-07-25 Zoll Medical Corporation Patient assurance system and method
US11617538B2 (en) 2016-03-14 2023-04-04 Zoll Medical Corporation Proximity based processing systems and methods
US10674911B2 (en) 2016-03-30 2020-06-09 Zoll Medical Corporation Systems and methods of integrating ambulatory medical devices
US10565396B2 (en) 2016-03-30 2020-02-18 Zoll Medical Corporation Patient data hub
US10426342B2 (en) 2016-03-31 2019-10-01 Zoll Medical Corporation Remote access for ambulatory medical device
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system
US11213691B2 (en) 2017-02-27 2022-01-04 Zoll Medical Corporation Ambulatory medical device interaction
DE102017206877A1 (en) 2017-04-24 2018-10-25 Fresenius Medical Care Deutschland Gmbh Monitoring system for at least one peritoneal dialysis machine
US11568984B2 (en) 2018-09-28 2023-01-31 Zoll Medical Corporation Systems and methods for device inventory management and tracking
US11865352B2 (en) 2020-09-30 2024-01-09 Zoll Medical Corporation Remote monitoring devices and related methods and systems with audible AED signal listening
US11069205B1 (en) * 2020-10-27 2021-07-20 Stephen D. Henley Occupied structure rescue system and method

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969709A (en) 1969-06-26 1976-07-13 Roger Isaacs Wireless burglar alarm system
US3843841A (en) 1973-05-08 1974-10-22 Rubinstein H Remotely actuated automatic telephone care system
US4237344A (en) 1979-04-20 1980-12-02 Hospital Communication Systems, Inc. Rapid response health care communications system
US4284849A (en) 1979-11-14 1981-08-18 Gte Products Corporation Monitoring and signalling system
US4303801A (en) 1979-11-14 1981-12-01 Gte Products Corporation Apparatus for monitoring and signalling system
US4531527A (en) 1982-04-23 1985-07-30 Survival Technology, Inc. Ambulatory monitoring system with real time analysis and telephone transmission
US4845739A (en) 1985-07-10 1989-07-04 Fdr Interactive Technologies Telephonic-interface statistical analysis system
US4772876A (en) 1986-10-10 1988-09-20 Zenith Electronics Corporation Remote security transmitter address programmer
US4843377A (en) 1987-04-21 1989-06-27 Guardian Technologies, Inc. Remote confinement system
US5062147A (en) 1987-04-27 1991-10-29 Votek Systems Inc. User programmable computer monitoring system
US4856047A (en) 1987-04-29 1989-08-08 Bd Systems, Inc. Automated remote telemetry paging system
US5025374A (en) 1987-12-09 1991-06-18 Arch Development Corp. Portable system for choosing pre-operative patient test
US4908600A (en) 1988-04-11 1990-03-13 Cooper Industries, Inc. Narrow band synchronized radio communication and alarm system
US4993059A (en) 1989-02-08 1991-02-12 Cableguard, Inc. Alarm system utilizing wireless communication path
US5081667A (en) 1989-05-01 1992-01-14 Clifford Electronics, Inc. System for integrating a cellular telephone with a vehicle security system
US4994787A (en) 1989-05-25 1991-02-19 Robert W. Kratt Remote intrusion alarm condition advisory system
US5016172A (en) 1989-06-14 1991-05-14 Ramp Comsystems, Inc. Patient compliance and status monitoring system
US5404577A (en) 1990-07-13 1995-04-04 Cairns & Brother Inc. Combination head-protective helmet & communications system
US5155689A (en) 1991-01-17 1992-10-13 By-Word Technologies, Inc. Vehicle locating and communicating method and apparatus
US5228449A (en) 1991-01-22 1993-07-20 Athanasios G. Christ System and method for detecting out-of-hospital cardiac emergencies and summoning emergency assistance
US5128979A (en) 1991-02-06 1992-07-07 Lifeline Systems Inc. Monitored personal emergency response system
FI94581C (en) 1991-02-12 1995-09-25 Nokia Telecommunications Oy System for automatically communicating contact information in a mobile telephone network or the like
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5195126A (en) 1991-05-09 1993-03-16 Bell Atlantic Network Services, Inc. Emergency alert and security apparatus and method
US5179571A (en) 1991-07-10 1993-01-12 Scs Mobilecom, Inc. Spread spectrum cellular handoff apparatus and method
DE4126105A1 (en) 1991-08-07 1993-02-11 Standard Elektrik Lorenz Ag RADIO PHONE
US5333173A (en) 1991-10-15 1994-07-26 Bell Atlantic Network Services, Inc. Personal checkup service and equipment
US5276728A (en) 1991-11-06 1994-01-04 Kenneth Pagliaroli Remotely activated automobile disabling system
US5278539A (en) 1992-02-11 1994-01-11 Bell Atlantic Network Services, Inc. Alerting and warning system
US5319698A (en) 1992-02-11 1994-06-07 Boat Buddy Sentry, Ltd. Security system
US5223844B1 (en) 1992-04-17 2000-01-25 Auto Trac Inc Vehicle tracking and security system
US5568535A (en) 1992-06-01 1996-10-22 Trackmobile, Inc. Alarm system for enclosed area
US5390238A (en) 1992-06-15 1995-02-14 Motorola, Inc. Health support system
US5432841A (en) 1992-07-10 1995-07-11 Rimer; Neil A. System for locating and communicating with mobile vehicles
US5412372A (en) 1992-09-21 1995-05-02 Medical Microsystems, Inc. Article dispenser for monitoring dispensing times
US5402466A (en) 1992-10-20 1995-03-28 Dynamo Dresden, Inc. Home voice mail and paging system using an answering machine and a wide variety of alarms
US5451839A (en) 1993-01-12 1995-09-19 Rappaport; Theodore S. Portable real time cellular telephone and pager network system monitor
US5416695A (en) 1993-03-09 1995-05-16 Metriplex, Inc. Method and apparatus for alerting patients and medical personnel of emergency medical situations
US5917405A (en) 1993-06-08 1999-06-29 Joao; Raymond Anthony Control apparatus and methods for vehicles
US5398782A (en) 1993-11-12 1995-03-21 Otis Elevator Company Remote monitoring system with variable period communication check
US5652570A (en) 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US5815417A (en) 1994-08-04 1998-09-29 City Of Scottsdale Method for acquiring and presenting data relevant to an emergency incident
US5583831A (en) 1994-09-01 1996-12-10 American Research Memory assistance apparatus to improve prescription compliance
US5850180A (en) 1994-09-09 1998-12-15 Tattletale Portable Alarm Systems, Inc. Portable alarm system
US5777551A (en) 1994-09-09 1998-07-07 Hess; Brian K. Portable alarm system
US5587701A (en) 1994-09-09 1996-12-24 Hess; Brian K. Portable alarm system
US5687215A (en) 1995-04-10 1997-11-11 Ford Motor Company Vehicular emergency message system
US5570083A (en) 1995-05-02 1996-10-29 Johnson; Lee A. Door bell/answering system
US5630207A (en) 1995-06-19 1997-05-13 Lucent Technologies Inc. Methods and apparatus for bandwidth reduction in a two-way paging system
US5752976A (en) 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5812536A (en) 1995-07-05 1998-09-22 Pitney Bowes Inc. Secure accounting system employing RF communications for enhanced security and functionality
US5652564A (en) 1995-07-26 1997-07-29 Winbush; Solomon Lanair Bold thief security system
US5850344A (en) 1995-08-14 1998-12-15 Profile Systems, Llc Medication dispensing and timing system
US5784685A (en) 1995-08-16 1998-07-21 H.M. Electronics, Inc. Wireless intercom communication system and method of using same
US5754111A (en) 1995-09-20 1998-05-19 Garcia; Alfredo Medical alerting system
US5786746A (en) 1995-10-03 1998-07-28 Allegro Supercare Centers, Inc. Child care communication and surveillance system
US5898904A (en) 1995-10-13 1999-04-27 General Wireless Communications, Inc. Two-way wireless data network having a transmitter having a range greater than portions of the service areas
US5852408A (en) 1995-10-16 1998-12-22 Christiansen; Steven Aagard Medication dispensing and compliance monitoring system
US5898391A (en) 1996-01-03 1999-04-27 Jefferies; James Vehicle tracking system
US5640147A (en) 1996-01-16 1997-06-17 Chek; Lawrence Child monitoring device
US5845203A (en) 1996-01-25 1998-12-01 Aertis Cormmunications Remote access application messaging wireless method
DE69712145T2 (en) 1996-02-08 2002-12-12 Koninkl Philips Electronics Nv INITIALIZATION OF A WIRELESS SECURITY SYSTEM
US5712619A (en) 1996-04-18 1998-01-27 Simkin; Alan C. Global positioning system personal alarm
US5736932A (en) 1996-07-03 1998-04-07 At&T Corp Security for controlled access systems
US5825283A (en) 1996-07-03 1998-10-20 Camhi; Elie System for the security and auditing of persons and property
US5739748A (en) 1996-07-29 1998-04-14 Flick; Kenneth E. Method and apparatus for remotely alerting a vehicle user of a security breach
US5894591A (en) 1996-08-13 1999-04-13 Tamayo; Elizabeth L. Personal emergency response communication apparatus for pagers
US5719551A (en) 1996-08-22 1998-02-17 Flick; Kenneth E. Vehicle security system for a vehicle having a data communications bus and related methods
JP3119182B2 (en) 1996-12-04 2000-12-18 トヨタ自動車株式会社 Emergency call system
US5873043A (en) 1996-12-18 1999-02-16 Cellemetry Llc System for communicating messages via a forward overhead control channel
US5874889A (en) 1997-01-09 1999-02-23 Roadtrac Llc System and methods for triggering and transmitting vehicle alarms to a central monitoring station
US5742233A (en) 1997-01-21 1998-04-21 Hoffman Resources, Llc Personal security and tracking system
US5793283A (en) 1997-01-21 1998-08-11 Davis; Ronnie Pager vehicle theft prevention and recovery system
US5892442A (en) 1997-01-29 1999-04-06 Ozery; Nissim Two-way pager alarm system
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US5902234A (en) 1997-04-10 1999-05-11 Webb; Nicholas J. Medical communication system for ambulatory home-care patients
US5870020A (en) 1997-05-22 1999-02-09 Harrison, Jr.; Henry B. Vehicle alarm for providing remote indication of infiltration
US5821854A (en) 1997-06-16 1998-10-13 Motorola, Inc. Security system for a personal computer
US6087952A (en) 1998-03-06 2000-07-11 Mobile Information Systems, Inc. Remote mobile data suite and method
US6044257A (en) 1998-03-19 2000-03-28 American Secure Care, Llc Panic button phone
US6057758A (en) 1998-05-20 2000-05-02 Hewlett-Packard Company Handheld clinical terminal
US6295346B1 (en) 1998-07-13 2001-09-25 At&T Corp. Automated emergency notification system
US6118866A (en) 1998-08-03 2000-09-12 Geneys Telecommunications Laboratories, Inc. Emergency call load management for call centers
US6028514A (en) 1998-10-30 2000-02-22 Lemelson Jerome H. Personal emergency, safety warning system and method
US6023241A (en) 1998-11-13 2000-02-08 Intel Corporation Digital multimedia navigation player/recorder
US6023223A (en) 1999-03-18 2000-02-08 Baxter, Jr.; John Francis Early warning detection and notification network for environmental conditions
US6288641B1 (en) 1999-09-15 2001-09-11 Nokia Corporation Assembly, and associated method, for remotely monitoring a surveillance area
WO2001026335A2 (en) 1999-10-06 2001-04-12 Sensoria Corporation Distributed signal processing in a network
DE19962915A1 (en) 1999-12-23 2001-09-06 Intelligent Implants Gmbh Device for the protected operation of neuroprostheses and method therefor
US6480745B2 (en) 1999-12-24 2002-11-12 Medtronic, Inc. Information network interrogation of an implanted device
US6388612B1 (en) 2000-03-26 2002-05-14 Timothy J Neher Global cellular position tracking device
US6340928B1 (en) 2000-06-22 2002-01-22 Trw Inc. Emergency assistance system using bluetooth technology

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683526B2 (en) * 1998-12-16 2004-01-27 Robert W. Bellin Pager-based communications system
US20010010490A1 (en) * 1998-12-16 2001-08-02 Bellin Robert W. Pager-based communications system
US20080218588A1 (en) * 2000-10-11 2008-09-11 Stetten George Dewitt System for remote guidance by expert for imaging device
US8253779B2 (en) * 2000-10-11 2012-08-28 University of Pittsbugh—Of The Commonwealth System of Higher Education System for remote guidance by expert for imaging device
US20100260087A1 (en) * 2000-12-22 2010-10-14 Twitchell Jr Robert W Lprf device wake up using wireless tag
US20100130267A1 (en) * 2000-12-22 2010-05-27 Terahop Networks, Inc. Lprf device wake up using wireless tag
US7940736B2 (en) 2000-12-22 2011-05-10 Terahop Networks, Inc. Selective response to radio frequency (RF) transmissions by wireless two-way RF data communication device
US7940717B2 (en) 2000-12-22 2011-05-10 Terahop Networks, Inc. Selective wake-up of data packet radio component using common designation communication
US7940719B2 (en) 2000-12-22 2011-05-10 Terahop Networks, Inc. Automatic and dynamic changing of class in class-based networks
US8050625B2 (en) 2000-12-22 2011-11-01 Terahop Networks, Inc. Wireless reader tags (WRTs) with sensor components in asset monitoring and tracking systems
US8078139B2 (en) 2000-12-22 2011-12-13 Terahop Networks, Inc. Wireless data communications network system for tracking container
US8095070B2 (en) 2000-12-22 2012-01-10 Terahop Networks, Inc. Wireless reader tags (WRTS) with sensor components in asset monitoring and tracking systems
US8284741B2 (en) 2000-12-22 2012-10-09 Google Inc. Communications and systems utilizing common designation networking
US8204439B2 (en) 2000-12-22 2012-06-19 Google Inc. Wireless reader tags (WRTs) with sensor components in asset monitoring and tracking systems
US7746838B2 (en) 2000-12-22 2010-06-29 Terahop Networks, Inc. Logically distinct wireless data communication networks sharing gateway for communicating with external networks
US7742745B2 (en) 2000-12-22 2010-06-22 Terahop Networks, Inc. LPRF device wake up using wireless tag
US7830850B2 (en) 2000-12-22 2010-11-09 Terahop Networks, Inc. Class-switching in class-based data communcations network
US20070159999A1 (en) * 2000-12-22 2007-07-12 Terahop Networks, Inc. Intelligent node communication using network formation messages in a mobile Ad hoc network
US7742744B2 (en) 2000-12-22 2010-06-22 Terahop Networks, Inc. Screening transmissions for power level and object identifier in asset monitoring and tracking systems
US8331862B2 (en) 2000-12-22 2012-12-11 Google Inc. Radio frequency identification based networks
US8326226B2 (en) 2000-12-22 2012-12-04 Google Inc. Wake-up in class-based networking
US8315563B2 (en) 2000-12-22 2012-11-20 Google Inc. Wireless reader tags (WRTs) with sensor components in asset monitoring and tracking systems
US8315565B2 (en) 2000-12-22 2012-11-20 Google Inc. LPRF device wake up using wireless tag
US8301082B2 (en) 2000-12-22 2012-10-30 Google Inc. LPRF device wake up using wireless tag
US20080112377A1 (en) * 2000-12-22 2008-05-15 Terahop Networks, Inc. Radio frequency identification based networks
US20080112378A1 (en) * 2000-12-22 2008-05-15 Terahop Networks, Inc. Communications and systems utilizing common designation networking
US8280345B2 (en) 2000-12-22 2012-10-02 Google Inc. LPRF device wake up using wireless tag
US20080130536A1 (en) * 2000-12-22 2008-06-05 Terahop Networks, Inc. Method in a radio frequency addressable sensor for communicating sensor data to a wireless sensor reader
US20080143483A1 (en) * 2000-12-22 2008-06-19 Terahop Networks, Inc. Radio frequency identification based sensor
US20080142592A1 (en) * 2000-12-22 2008-06-19 Terahop Networks, Inc. Radio frequency identification based sensor reader
US20080150723A1 (en) * 2000-12-22 2008-06-26 Terahop Networks, Inc. Radio frequency identification based sensor
US20080151850A1 (en) * 2000-12-22 2008-06-26 Terahop Networks, Inc. Communications and systems utilizing common designation networking
US7733818B2 (en) 2000-12-22 2010-06-08 Terahop Networks, Inc. Intelligent node communication using network formation messages in a mobile Ad hoc network
US7941095B2 (en) 2000-12-22 2011-05-10 Terahop Networks, Inc. LPRF device wake up using wireless tag
US20100007470A1 (en) * 2000-12-22 2010-01-14 Terahop Networks, Inc. Lprf device wake up using wireless tag
US8218514B2 (en) 2000-12-22 2012-07-10 Google, Inc. Wireless data communications network system for tracking containers
US20090104902A1 (en) * 2000-12-22 2009-04-23 Terahop Networks, Inc. Class-switching in class-based data communcations network
US20090117950A1 (en) * 2000-12-22 2009-05-07 Terahop Networks, Inc. WIRELESS READER TAGS (WRTs) WITH SENSOR COMPONENTS IN ASSET MONITORING AND TRACKING SYSTEMS
US20090124302A1 (en) * 2000-12-22 2009-05-14 Terahop Networks, Inc. WIRELESS READER TAGS (WRTs) WITH SENSOR COMPONENTS IN ASSET MONITORING AND TRACKING SYSTEMS
US20090124303A1 (en) * 2000-12-22 2009-05-14 Terahop Networks, Inc. WIRELESS READER TAGS (WRTs) WITH SENSOR COMPONENTS IN ASSET MONITORING AND TRACKING SYSTEMS
US20090121841A1 (en) * 2000-12-22 2009-05-14 Terahop Networks, Inc. Screening transmissions for power level and object identifier in asset monitoring and tracking systems
US20090124304A1 (en) * 2000-12-22 2009-05-14 Terahop Networks, Inc. WIRELESS READER TAGS (WRTs) WITH SENSOR COMPONENTS IN ASSET MONITORING AND TRACKING SYSTEMS
US7535339B2 (en) 2000-12-22 2009-05-19 Terahop Networks, Inc. Radio frequency identification based sensor reader
US7538657B2 (en) 2000-12-22 2009-05-26 Terahop Networks, Inc. Radio frequency identification based sensor
US7538658B2 (en) 2000-12-22 2009-05-26 Terahop Networks, Inc. Method in a radio frequency addressable sensor for communicating sensor data to a wireless sensor reader
US7538656B2 (en) 2000-12-22 2009-05-26 Terahop Networks, Inc. Radio frequency identification based sensor
US20090161589A1 (en) * 2000-12-22 2009-06-25 Terahop Networks, Inc. Wake-up in class-based networking
US7830852B2 (en) 2000-12-22 2010-11-09 Terahop Networks, Inc. Automatic and dynamic changing of class in class-based asset tracking and monitoring systems
US20040147251A1 (en) * 2002-11-21 2004-07-29 Ntt Docomo, Inc. Communication terminal, value entity providing server, application delivery server, electronic procurement supporting method, and electronic procurement supporting program
US20060095273A1 (en) * 2003-03-11 2006-05-04 Koninklijke Philips Electronics N.V. Method , a system and a generator of a script for routing a script-oriented dialog between an operator of a call center and a customer
WO2004090661A3 (en) * 2003-04-08 2005-03-24 Medic4All A G A portable wireless gateway for remote medical examination
US20040266390A1 (en) * 2003-06-25 2004-12-30 Nokia Corporation Emergency response system
US7251470B2 (en) * 2003-06-25 2007-07-31 Nokia Corporation Emergency response system with personal emergency device
US20050085242A1 (en) * 2003-09-12 2005-04-21 Nec Corporation Data delivery apparatus, data delivery system, server, data delivery method, communication device, and electronic apparatus
CN100459539C (en) * 2003-09-23 2009-02-04 Ge医疗系统信息技术公司 Wireless subject monitoring system
FR2863433A1 (en) * 2003-12-04 2005-06-10 France Telecom METHOD AND DEVICE FOR PROCESSING ALERTS
EP1538581A1 (en) * 2003-12-04 2005-06-08 France Telecom Method and apparatus of processing alerts
EP1542031A1 (en) * 2003-12-09 2005-06-15 Nec Corporation System and method of offering data relating to a specific location of a device to a requesting terminal
WO2006012835A1 (en) * 2004-07-26 2006-02-09 Deutsche Telekom Ag Device for the mobile transmission of data
US20060064472A1 (en) * 2004-09-20 2006-03-23 Mirho Charles A Obtaining information for proximate devices
JP2008532340A (en) * 2004-11-24 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Telemetry monitoring system for patients by internet protocol
JP4898697B2 (en) * 2004-11-24 2012-03-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Telemetry monitoring system for patients by internet protocol
US20060276161A1 (en) * 2005-06-03 2006-12-07 Terahop Networks, Inc. Remote sensor interface (rsi) stepped wake-up sequence
US7650135B2 (en) 2005-06-03 2010-01-19 Terahop Networks, Inc. Remote sensor interface (RSI) stepped wake-up sequence
WO2006136876A1 (en) * 2005-06-22 2006-12-28 Vobio P/S Biometric control systems and associated methods of use
WO2007000021A1 (en) * 2005-06-28 2007-01-04 Vieo Systems Ip Pty Ltd Assistance call and monitoring system
US20070035403A1 (en) * 2005-08-12 2007-02-15 Krishna Sudhir S Method and system of personal healthcare management
US20090222671A1 (en) * 2005-10-25 2009-09-03 Burbank Jeffrey H Safety features for medical devices requiring assistance and supervision
US9024746B2 (en) 2005-10-25 2015-05-05 Nxstage Medical, Inc. Safety features for medical devices requiring assistance and supervision
US11783939B2 (en) 2005-10-25 2023-10-10 Nxstage Medical, Inc. Safety features for medical devices requiring assistance and supervision
US9375527B2 (en) 2005-10-25 2016-06-28 Nxstage Medical, Inc. Safety features for medical devices requiring assistance and supervision
US20070112603A1 (en) * 2005-11-01 2007-05-17 Fresenius Medical Care Holdings, Inc. Digital data entry methods and devices
US20070229287A1 (en) * 2006-01-07 2007-10-04 Morgan David W Method and apparatus for processing patient information
WO2007126360A1 (en) 2006-04-27 2007-11-08 Gambro Lundia Ab Remote controlled medical apparatus
US20080058740A1 (en) * 2006-08-29 2008-03-06 Sullivan Shawn J Sensing article for a home automation network
US7612670B2 (en) 2006-08-31 2009-11-03 Motorola, Inc. Method and apparatus for acquiring and establishing a deployable communication system
US20080061122A1 (en) * 2006-08-31 2008-03-13 Motorola, Inc. Method and apparatus for acquiring and establishing a deployable communication system
US20080057877A1 (en) * 2006-08-31 2008-03-06 Motorola, Inc. System and method to rapidly deploy one or more communication devices
US20080119757A1 (en) * 2006-11-21 2008-05-22 Suzanne Winter Temperature management system with wireless patient temperature sensor
US20090076856A1 (en) * 2007-09-19 2009-03-19 Fresenius Medical Care Holdings, Inc. Patient-specific content delivery methods and systems
US8543420B2 (en) 2007-09-19 2013-09-24 Fresenius Medical Care Holdings, Inc. Patient-specific content delivery methods and systems
US10265455B2 (en) * 2008-07-09 2019-04-23 Baxter International Inc. Dialysis system including wireless sensor data
US10272190B2 (en) * 2008-07-09 2019-04-30 Baxter International Inc. Renal therapy system including a blood pressure monitor
US10078438B2 (en) 2009-01-16 2018-09-18 Fresenius Care Holdings, Inc. Methods and apparatus for medical device cursor control and touchpad-based navigation
US8698741B1 (en) 2009-01-16 2014-04-15 Fresenius Medical Care Holdings, Inc. Methods and apparatus for medical device cursor control and touchpad-based navigation
US11481105B2 (en) 2009-01-16 2022-10-25 Fresenius Medical Care Holdings, Inc. Remote interfacing with a networked dialysis system
US10824326B2 (en) 2009-01-16 2020-11-03 Fresenius Medical Care Holdings, Inc. Remote interfacing with a networked dialysis system
US8010383B2 (en) * 2009-01-22 2011-08-30 International Business Machines Corporation Filtering medical information
US20100185460A1 (en) * 2009-01-22 2010-07-22 Sima Nadler Filtering Medical Information
US10194486B2 (en) 2009-02-05 2019-01-29 Google Llc Conjoined class-based networking
US8705523B2 (en) 2009-02-05 2014-04-22 Google Inc. Conjoined class-based networking
US10652953B2 (en) 2009-02-05 2020-05-12 Google Llc Conjoined class-based networking
US9907115B2 (en) 2009-02-05 2018-02-27 Google Llc Conjoined class-based networking
WO2010146206A1 (en) * 2009-06-16 2010-12-23 Crambo Wireless, S.A. Portable safety device, system and method
ES2351022A1 (en) * 2009-06-16 2011-01-31 Crambo Wireless S.A. Portable safety device, system and method
US20110063105A1 (en) * 2009-09-16 2011-03-17 Broadcom Corporation Emergency message relay
US10799117B2 (en) 2009-11-05 2020-10-13 Fresenius Medical Care Holdings, Inc. Patient treatment and monitoring systems and methods with cause inferencing
US8632485B2 (en) 2009-11-05 2014-01-21 Fresenius Medical Care Holdings, Inc. Patient treatment and monitoring systems and methods
US20110105979A1 (en) * 2009-11-05 2011-05-05 Fresenius Medical Care Holdings, Inc. Patient treatment and monitoring systems and methods
US10693760B2 (en) 2013-06-25 2020-06-23 Google Llc Fabric network
GB2526116B (en) * 2014-05-14 2017-06-28 Burrell Howard An emergency alarm system using fingerprint recognition
GB2526116A (en) * 2014-05-14 2015-11-18 Howard Burrell An emergency alarm system using fingerprint recognition
US20150350233A1 (en) * 2014-06-02 2015-12-03 Bastille Networks, Inc. Anomalous Behavior Detection Based on Behavioral Signatures
US9736175B2 (en) * 2014-06-02 2017-08-15 Bastille Networks, Inc. Anomalous behavior detection based on behavioral signatures
US9485266B2 (en) 2014-06-02 2016-11-01 Bastille Network, Inc. Security measures based on signal strengths of radio frequency signals
US9485267B2 (en) 2014-06-02 2016-11-01 Bastille Networks, Inc. Anomalous behavior detection using radio frequency fingerprints and access credentials
US20150351695A1 (en) * 2014-06-04 2015-12-10 Grandios Technologies, Llc Medical smartphone
US20150351698A1 (en) * 2014-06-04 2015-12-10 Grandios Technologies, Llc Health and medical smartphone
US9430928B2 (en) * 2014-07-01 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Power tool system
US20160005295A1 (en) * 2014-07-01 2016-01-07 Panasonic Intellectual Property Management Co., Ltd. Power tool system
CN105321310A (en) * 2014-07-07 2016-02-10 霍尼韦尔国际公司 System and method of communicating data from an alarm system to emergency services personnel
US11173548B2 (en) 2017-04-04 2021-11-16 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
CN110826030A (en) * 2019-11-08 2020-02-21 湖南长城医疗科技有限公司 Self-service software and related module authorization use method

Also Published As

Publication number Publication date
US20040027244A9 (en) 2004-02-12
US7088233B2 (en) 2006-08-08

Similar Documents

Publication Publication Date Title
US7138902B2 (en) Personal medical device communication system and method
US7088233B2 (en) Personal medical device communication system and method
WO2003024322A1 (en) Personal medical device communication system and method
EP1827214B1 (en) Mobile monitoring
CA2183859C (en) Patient care and communication system
US7103344B2 (en) Device with passive receiver
Movassaghi et al. Wireless body area networks: A survey
CN1849810B (en) System and method of providing emergency response to a user carrying a user device
CN104011764B (en) The system and method that patient in long distance control system identifies
US8882666B1 (en) Personal health monitoring and/or communication system
AU686201B2 (en) A system for identifying object location
US20030174049A1 (en) Wearable identification appliance that communicates with a wireless communications network such as bluetooth
US20020044043A1 (en) Patient care and communication system
US20040162035A1 (en) On line health monitoring
US20060220837A1 (en) Identification badge with wireless audio alert capabilities
JPH07504545A (en) Tracking and/or identification systems
JP2008522703A5 (en)
WO2009062194A1 (en) Proximity-sensor supporting multiple application services
CN209122213U (en) Medicinal intelligent bracelet and inpatient monitor system
WO2018077199A1 (en) Health monitoring device and method
US20020109595A1 (en) Personal alert device
KR100917247B1 (en) Communication system using of a smart card built-in zigbee communication module
KR20030058711A (en) Mobile-phone using medical diagnoses system and method thereof
Siebra et al. An embedded mobile deductive system for low cost health monitoring support
CN206602519U (en) Medical communication equipment and system

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROYAL THOUGHTS, LLC, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MENARD, RAYMOND J.;REEL/FRAME:013180/0961

Effective date: 20020726

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N V, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROYAL THOUGHTS, LLC;REEL/FRAME:022835/0910

Effective date: 20090119

Owner name: PHILIPS ELECTRONICS NORTH AMERICA CORPORATION, MAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N.V.;REEL/FRAME:022835/0945

Effective date: 20090614

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: PHILIPS NORTH AMERICA LLC, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:PHILIPS ELECTRONICS NORTH AMERICA CORPORATION;REEL/FRAME:049787/0521

Effective date: 20170301

IPR Aia trial proceeding filed before the patent and appeal board: inter partes review

Free format text: TRIAL NO: IPR2020-00783

Opponent name: FITBIT, INC.

Effective date: 20200408

IPR Aia trial proceeding filed before the patent and appeal board: inter partes review

Free format text: TRIAL NO: IPR2020-00910

Opponent name: GARMIN INTERNATIONAL, INC.,GARMIN USA, INC., ANDGARMIN LTD.

Effective date: 20200515

IPRC Trial and appeal board: inter partes review certificate

Kind code of ref document: K1

Free format text: INTER PARTES REVIEW CERTIFICATE; TRIAL NO. IPR2020-00783, APR. 8, 2020; TRIAL NO. IPR2020-00910, MAY 15, 2020 INTER PARTES REVIEW CERTIFICATE FOR PATENT 7,088,233, ISSUED AUG. 8, 2006, APPL. NO. 10/165,624, JUN. 7, 2002 INTER PARTES REVIEW CERTIFICATE ISSUED OCT. 26, 2023

Effective date: 20231026