US20020189780A1 - Fluxing agent for metal cast joining - Google Patents

Fluxing agent for metal cast joining Download PDF

Info

Publication number
US20020189780A1
US20020189780A1 US09/766,023 US76602301A US2002189780A1 US 20020189780 A1 US20020189780 A1 US 20020189780A1 US 76602301 A US76602301 A US 76602301A US 2002189780 A1 US2002189780 A1 US 2002189780A1
Authority
US
United States
Prior art keywords
flux
aluminum
component
joining
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/766,023
Other versions
US6474397B1 (en
Inventor
Ronald Gunkel
Larry Podey
Thomas Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Alcoa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcoa Inc filed Critical Alcoa Inc
Priority to US09/766,023 priority Critical patent/US6474397B1/en
Assigned to ALCOA INC. reassignment ALCOA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUNKEL, RONALD W., PODEY, LARRY L., MEYER, THOMAS N.
Application granted granted Critical
Publication of US6474397B1 publication Critical patent/US6474397B1/en
Publication of US20020189780A1 publication Critical patent/US20020189780A1/en
Assigned to U.S. DEPARTMENT OF ENERGY reassignment U.S. DEPARTMENT OF ENERGY CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: ALCOA, INC
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0081Casting in, on, or around objects which form part of the product pretreatment of the insert, e.g. for enhancing the bonding between insert and surrounding cast metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts

Definitions

  • the present invention relates to a fluxing agent for a metal cast/joint, more particularly, to a method for flux joining aluminum components in a mold.
  • Casting processes have been developed to reduce costs and improve repeatability as well as consistency of the assemblies. Casting processes typically eliminate the number of parts and reduce the assembly steps of fabricating a large structure.
  • the method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component.
  • the flux preferably includes aluminum fluoride and alumina.
  • a particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF 3 , and about 10 wt. % Al 2 O 3 .
  • the flux is preferably coated on the surface to be joined in a thickness of about 5 to 20 g/m 2 .
  • the surface of the component to be coated with flux Prior to placing in a mold, the surface of the component to be coated with flux is roughened to enhance adhesion of flux and metal thereto.
  • Components suitable for use with the present invention include castings, extrusions or sheets of AA 6000 series wrought aluminum alloys.
  • the molten aluminum alloy may be an Al—Mg—Si casting aluminum alloy.
  • the present invention includes a process for joining aluminum components.
  • This process provides for joining of a component, such as a cast component (casting), an extruded member (extrusion) and sheet product, by directly casting a cast member in place onto the component.
  • a cast joint reduces the cost associated with producing large aluminum structural assemblies.
  • the components joined by cast joining may be made to less stringent tolerances, thereby eliminating the machining operations used to guarantee consistent fit and welds gaps. Costly assembly fixtures and other equipment such as welding power sources are not necessary. The labor of conventional welding processes is greatly reduced.
  • the cast joining process of the present invention enables joints to be formed at locations where welding and other prior techniques are difficult to achieve.
  • the present invention includes the steps of 1) coating at least one surface of an aluminum alloy component with flux, 2) placing the flux coated component in a mold, 3) filling the mold with molten aluminum alloy and 4) allowing the molten metal to solidify whereby the molten metal solidifies as a casting on the component.
  • the flux distributes itself closely between the surface of the component and metal to be joined, typically via capillary action.
  • the liquidus of the flux is preferably less than the solidus of the metal of the component being joined.
  • the flux removes oxides on the surface of the component and oxygen in the atmosphere adjacent the surfaces being joined.
  • the flux must begin to melt at a temperature low enough to minimize oxidation of the parts, be essentially molten at the time that the molten metal contacts the component to be joined, flow over both the surface to be joined and the molten metal to shield the component and the molten metal from oxidation, penetrate oxide films present on the component to be joined, and lower the surface tension between the solid metal of the component and the liquid (molten) metal to promote wetting.
  • the flux used in the present invention is preferably non-corrosive, non-hygroscopic, and generates minimal fumes during cast joining.
  • a preferred flux for practicing the method of the present invention is a cesium fluoride composition.
  • the flux preferably includes CsF, AlF 3 , and Al 2 O 3 , more preferably, about 60 wt. % CsF, about 30 wt. % AlF 3 , and about 10 wt. % Al 2 O 3 .
  • the flux of the present invention may be provided in a carrier such as water or alcohol and may be applied by dipping, brushing, spraying, or the like.
  • the flux is preferably coated on the surface to be joined in a thickness of about 5 to 20 g/m 2 .
  • the surface of the component to be joined is roughened, such as by shot blasting, glass bead blasting, and cleaning with a wire brush.
  • the surface may also be cleaned with a mild caustic etch solution and washed with acetone.
  • Components which may be joined via the method of the present invention may be formed from a metal which has a solidus above the liquidus of the molten (casting) metal.
  • Suitable metals for the components to be joined include aluminum alloys such as Aluminum Association (AA) alloys of the 6000 series, preferably AA 6061.
  • the solidus of AA 6061 is 1140° F., and the liquidus of AA 6061 is 1205° F.
  • the molten metal may be a casting alloy containing Al, Mg and Si, preferably AA A356.
  • the solidus of AA A356 is 1007° F.
  • the liquidus of A356 is 1135° F.
  • Extrusions of AA 6061 tube with 1 inch outside diameter and 1 ⁇ 8 inch thick wall were coated with a flux containing about 60 wt. % CsF, about 30 wt. % AlF 3 , and about 10 wt. % Al 2 O 3 and placed in sand molds each having a cavity for forming a circular flange on the extrusion.
  • Molten casting alloy A356 was injected into the molds and allowed to solidify to form a circular flange on the exterior of the extrusion.
  • Tensile test evaluations were made of the joint between each extrusion and flange. The strength of the cast joints was compared to two flange castings TIG welded onto an extrusion.
  • Molten casting alloy A356 was injected into the mold and allowed to solidify to form a rectangular flange (6 inches wide, 4.75 inches long, 0.625 inch thick) on the exterior of the extrusion with a cylindrical section (0.25 inch thick wall) extending from the rectangular flange and surrounding the extrusion.
  • DAS dendrite arm spacing
  • BOND/NO BOND DAS (MICRONS) 920 1 No Bond 16.03 920 3 Bond 32.39 931 2 Bond 27.00 931 3 No Bond 14.01 939 1 No Bond 14.68 939 5 Bond 28.70 954 2 Bond 22.67 954 8 No Bond 14.50
  • the solidus and liquidus of both the extrusion alloy and the casting alloy as well as the melting temperature of the flux are critical to the cast joining process of the present invention.
  • the brazing temperature is preferably about 70° F. less than the solidus temperature of the metal component.
  • the temperature of an extrusion of AA 6061 should be about 1070° F. and the temperature of the casting of A356 should be in excess of 1135° F. for ideal bonding conditions. If the cast metal is greater than 1140° F., the threat of melting the AA 6061 extrusions exists.
  • the temperature of the molten cast metal lowers as the molten metal enters and fills the mold.
  • the temperature of the extrusion increases as the mold is filling. As the temperature of the cast metal drops, the percentage of solid increases and if the temperature is too low, no bonding will take place.
  • the amount of flux is also important for achieving good cast joining. Excess flux results in a line of gas porosity at the interface between the casting and the extrusion. A flux layer of about 5-20 g/m 2 thick is preferred. Excess oxygen will consume the flux, therefore, flux usage may depend to a degree on casting and mold design. Application of flux to a rough surface finish can result in excess flux.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF3, and about 10 wt. % Al2O3.

Description

    RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application Serial No. 60/177,153 filed Jan. 20, 2000 entitled “Fluxing Agent for Metal Cast Joining”.[0001]
  • [0002] This invention was made with government support under Contract No. 86X-SU545C awarded by the Department of Energy. The government has certain rights in this invention.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • The present invention relates to a fluxing agent for a metal cast/joint, more particularly, to a method for flux joining aluminum components in a mold. [0004]
  • 2. Prior Art [0005]
  • The fabrication of large aluminum structures has traditionally been in an assembly process wherein an assortment of parts are joined together by welding, riveting, bolting, adhesive bonding or the like. Each of these processes are labor intensive and are often difficult to accomplish for the geometries of certain components. For example, welding of components to form a large structure is problematic because the components must be made to stringent tolerances to ensure proper mating between the components, machining operations to achieve these tolerances must be carefully controlled to achieve consistent component fit and size of the welds. The assembly fixtures, welding power sources and welding process steps are costly. [0006]
  • One alternative to assembling numerous parts has been casting. Casting processes have been developed to reduce costs and improve repeatability as well as consistency of the assemblies. Casting processes typically eliminate the number of parts and reduce the assembly steps of fabricating a large structure. [0007]
  • Casting of molten metal onto an extruded aluminum member is disclosed, for example, in U.S. Pat. No. 5,273,099. A flux including potassium and fluorine is applied to the extruded aluminum member. Molten aluminum alloy is poured into a mold containing the flux coated aluminum member. Upon solidification, a joint forms between the cast aluminum and the flux coated aluminum member. While potassium and fluoride base fluxes may be used to cast join aluminum components, the strengths of the bonds between the components have been insufficient. [0008]
  • Accordingly, a need remains for a flux for cast joining aluminum components with a metallurgical bond that has the strength of a brazed or soldered joint. [0009]
  • SUMMARY OF THE INVENTION
  • This need is met by the method of the present invention of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF[0010] 3, and about 10 wt. % Al2O3. The flux is preferably coated on the surface to be joined in a thickness of about 5 to 20 g/m2. Prior to placing in a mold, the surface of the component to be coated with flux is roughened to enhance adhesion of flux and metal thereto. Components suitable for use with the present invention include castings, extrusions or sheets of AA 6000 series wrought aluminum alloys. The molten aluminum alloy may be an Al—Mg—Si casting aluminum alloy.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention includes a process for joining aluminum components. This process provides for joining of a component, such as a cast component (casting), an extruded member (extrusion) and sheet product, by directly casting a cast member in place onto the component. A cast joint reduces the cost associated with producing large aluminum structural assemblies. The components joined by cast joining may be made to less stringent tolerances, thereby eliminating the machining operations used to guarantee consistent fit and welds gaps. Costly assembly fixtures and other equipment such as welding power sources are not necessary. The labor of conventional welding processes is greatly reduced. In addition, the cast joining process of the present invention enables joints to be formed at locations where welding and other prior techniques are difficult to achieve. [0011]
  • The present invention includes the steps of 1) coating at least one surface of an aluminum alloy component with flux, 2) placing the flux coated component in a mold, 3) filling the mold with molten aluminum alloy and 4) allowing the molten metal to solidify whereby the molten metal solidifies as a casting on the component. The flux distributes itself closely between the surface of the component and metal to be joined, typically via capillary action. The liquidus of the flux is preferably less than the solidus of the metal of the component being joined. The flux removes oxides on the surface of the component and oxygen in the atmosphere adjacent the surfaces being joined. Hence, the flux must begin to melt at a temperature low enough to minimize oxidation of the parts, be essentially molten at the time that the molten metal contacts the component to be joined, flow over both the surface to be joined and the molten metal to shield the component and the molten metal from oxidation, penetrate oxide films present on the component to be joined, and lower the surface tension between the solid metal of the component and the liquid (molten) metal to promote wetting. [0012]
  • The flux used in the present invention is preferably non-corrosive, non-hygroscopic, and generates minimal fumes during cast joining. A preferred flux for practicing the method of the present invention is a cesium fluoride composition. The flux preferably includes CsF, AlF[0013] 3, and Al2O3, more preferably, about 60 wt. % CsF, about 30 wt. % AlF3, and about 10 wt. % Al2O3.
  • The flux of the present invention may be provided in a carrier such as water or alcohol and may be applied by dipping, brushing, spraying, or the like. The flux is preferably coated on the surface to be joined in a thickness of about 5 to 20 g/m[0014] 2. Preferably, the surface of the component to be joined is roughened, such as by shot blasting, glass bead blasting, and cleaning with a wire brush. The surface may also be cleaned with a mild caustic etch solution and washed with acetone.
  • Components which may be joined via the method of the present invention may be formed from a metal which has a solidus above the liquidus of the molten (casting) metal. Suitable metals for the components to be joined include aluminum alloys such as Aluminum Association (AA) alloys of the 6000 series, preferably AA 6061. The solidus of AA 6061 is 1140° F., and the liquidus of AA 6061 is 1205° F. The molten metal may be a casting alloy containing Al, Mg and Si, preferably AA A356. The solidus of AA A356 is 1007° F., and the liquidus of A356 is 1135° F. [0015]
  • Although the invention has been described generally above, the particular examples give additional illustration of the product and process steps typical of the present invention.[0016]
  • EXAMPLES Example 1
  • Extrusions of AA 6061 tube with 1 inch outside diameter and ⅛ inch thick wall were coated with a flux containing about 60 wt. % CsF, about 30 wt. % AlF[0017] 3, and about 10 wt. % Al2O3 and placed in sand molds each having a cavity for forming a circular flange on the extrusion. Molten casting alloy A356 was injected into the molds and allowed to solidify to form a circular flange on the exterior of the extrusion. Tensile test evaluations were made of the joint between each extrusion and flange. The strength of the cast joints was compared to two flange castings TIG welded onto an extrusion. The assemblies were bolted to a fixture on the lower side of a tensile test machine and held in grips on the upper side of the machine. All assemblies were pulled until failure. All failures occurred in the extrusion. None of the cast joints pulled apart. The tensile strength of the extrusion at the failure was in line with the properties for the welded assemblies (samples 7 and 8) as set forth in Table 1.
    TABLE 1
    Ultimate Tensile Test (Sand Cast Joints)
    SAMPLE LOAD (lbs.) AREA (sq. in.) UTS (ksi) UTS (Mpa)
    1 4900 0.345 14.26 98.33
    2 4872 0.345 14.18 97.77
    3 4854 0.345 14.13 97.43
    4 4766 0.345 13.87 95.64
    5 4736 0.345 13.78 95.02
    6 4640 0.345 13.50 93.09
    7 (welded) 5540 0.345 16.12 111.15
    8 (welded) 7764 0.345 22.60 155.83
  • The extrusions of the two welded samples (examples 7 and 8) exhibited higher ultimate tensile strengths than the extrusions of the cast joined samples (1-6), and this is believed to be due to the impact of heat on the extrusion during casting. [0018]
  • Example 2
  • An extrusion of 2.5 inches outside diameter AA alloy 6061 with ¼ inch wall thickness was stainless steel shot-blasted. Flux containing about 60 wt. % CsF, about 30 wt. % AlF[0019] 3, and about 10 wt. % Al2O3 was brushed on the extrusion and allowed to dry. The flux coated extrusion was placed in a permanent mold. The permanent mold defined a rectangular flange casting cavity surrounding a cylindrical extrusion. Molten casting alloy A356 was injected into the mold and allowed to solidify to form a rectangular flange (6 inches wide, 4.75 inches long, 0.625 inch thick) on the exterior of the extrusion with a cylindrical section (0.25 inch thick wall) extending from the rectangular flange and surrounding the extrusion.
  • The dendrite arm spacing (DAS) of two samples each from four different castings were evaluated. One sample was taken at random in an area with good metallurgical bond and one sample was taken from an area with no metallurgical bond. Large DAS (average 27.7 microns) was evident in areas with good metallurgical bonds and smaller DAS (average 14.8) was found in the areas where there was no bond as set forth in Table 2. The smallest DAS noted in the bonded area was 22.67 microns and the largest DAS in a no bond area was 16.03 microns. [0020]
    TABLE 2
    Dendrite Arm Spacing vs. Bond or No Bond
    SAMPLE I.D. BOND/NO BOND DAS (MICRONS)
    920 1 No Bond 16.03
    920 3 Bond 32.39
    931 2 Bond 27.00
    931 3 No Bond 14.01
    939 1 No Bond 14.68
    939 5 Bond 28.70
    954 2 Bond 22.67
    954 8 No Bond 14.50
  • The solidus and liquidus of both the extrusion alloy and the casting alloy as well as the melting temperature of the flux are critical to the cast joining process of the present invention. The brazing temperature is preferably about 70° F. less than the solidus temperature of the metal component. For example, the temperature of an extrusion of AA 6061 should be about 1070° F. and the temperature of the casting of A356 should be in excess of 1135° F. for ideal bonding conditions. If the cast metal is greater than 1140° F., the threat of melting the AA 6061 extrusions exists. The temperature of the molten cast metal lowers as the molten metal enters and fills the mold. On the other hand, the temperature of the extrusion increases as the mold is filling. As the temperature of the cast metal drops, the percentage of solid increases and if the temperature is too low, no bonding will take place. [0021]
  • The amount of flux is also important for achieving good cast joining. Excess flux results in a line of gas porosity at the interface between the casting and the extrusion. A flux layer of about 5-20 g/m[0022] 2 thick is preferred. Excess oxygen will consume the flux, therefore, flux usage may depend to a degree on casting and mold design. Application of flux to a rough surface finish can result in excess flux.
  • It will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed in the foregoing description. Such modifications are to be considered as included within the following claims unless the claims, by their language, expressly state otherwise. Accordingly, the particular embodiments described in detail herein are illustrative only and are not limiting to the scope of the invention which is to be given the fall breadth of the appended claims and any and all equivalents thereof. [0023]

Claims (10)

We claim:
1. A method of joining an aluminum cast member to an aluminum component comprising the steps of:
coating a surface of an aluminum component with flux comprising cesium fluoride;
placing the flux coated component in a mold;
filling the mold with molten aluminum alloy; and
allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component.
2. The method of claim 1 wherein the flux further comprises aluminum fluoride and alumina.
3. The method of claim 2 wherein the flux comprises about 60 wt. % CsF, about 30 wt. % AlF3, and about 10 wt. % Al2O3.
4. The method of claim 1 wherein the surface of the component to be coated with flux is roughened.
5. The method of claim 1 wherein the aluminum component comprises an AA 6000 series aluminum alloy.
6. The method of claim 5 wherein the aluminum component comprises AA 6061.
7. The method of claim 1 wherein the molten aluminum alloy component comprises a casting alloy comprising Al, Mg and Si.
8. The method of claim 7 wherein the casting alloy comprises AA A356.
9. The method of claim 1 wherein the aluminum component comprises an extrusion, a casting or a sheet product.
10. The method of claim 1 wherein the flux is preferably coated on the surface at a thickness of about 5 to 20 μm2.
US09/766,023 2000-01-20 2001-01-19 Fluxing agent for metal cast joining Expired - Fee Related US6474397B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/766,023 US6474397B1 (en) 2000-01-20 2001-01-19 Fluxing agent for metal cast joining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17715300P 2000-01-20 2000-01-20
US09/766,023 US6474397B1 (en) 2000-01-20 2001-01-19 Fluxing agent for metal cast joining

Publications (2)

Publication Number Publication Date
US6474397B1 US6474397B1 (en) 2002-11-05
US20020189780A1 true US20020189780A1 (en) 2002-12-19

Family

ID=26872986

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/766,023 Expired - Fee Related US6474397B1 (en) 2000-01-20 2001-01-19 Fluxing agent for metal cast joining

Country Status (1)

Country Link
US (1) US6474397B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101528A1 (en) * 2006-03-07 2007-09-13 Ks Aluminium-Technologie Ag Mold release layer for casting nonferrous metals
JP2021088000A (en) * 2021-03-01 2021-06-10 日本軽金属株式会社 Insert casting method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955748B2 (en) * 2002-07-16 2005-10-18 Honeywell International Inc. PVD target constructions comprising projections
SE527138C2 (en) 2003-07-08 2005-12-27 Xcounter Ab Scanning-based detection of ionizing radiation for tomosynthesis
CN100354061C (en) * 2005-12-16 2007-12-12 中国铝业股份有限公司 Fusion casting and welding method for aluminum parent metal
US20080023527A1 (en) * 2006-07-11 2008-01-31 Gerhard Brenninger Method of permanently joining components formed from metallic materials
JP5520152B2 (en) * 2009-07-31 2014-06-11 株式会社神戸製鋼所 Flux-cored wire for dissimilar material welding, dissimilar material laser welding method and dissimilar material MIG welding method
CN104070153A (en) * 2013-03-28 2014-10-01 通用汽车环球科技运作有限责任公司 Surface treatment for improving bonding effect during bimetal casting
US9770757B2 (en) * 2015-08-13 2017-09-26 GM Global Technology Operations LLC Method of making sound interface in overcast bimetal components

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3465423A (en) 1965-10-14 1969-09-09 Gen Electric Process of making aluminum bonded stainless steel article
JPS5339928A (en) 1976-09-24 1978-04-12 Kubota Ltd Sprayed material for copy casting
JPS6133752A (en) 1984-07-26 1986-02-17 Toyota Central Res & Dev Lab Inc Production of composite aluminum member
DE3511542A1 (en) 1985-03-29 1986-10-02 Kolbenschmidt AG, 7107 Neckarsulm COMPOSITE CASTING PROCESS
JPS63242459A (en) * 1987-03-30 1988-10-07 Hokkaido Method for joining molten metal with different metal using thermal sprayed film
US5076344A (en) 1989-03-07 1991-12-31 Aluminum Company Of America Die-casting process and equipment
US5273099A (en) * 1989-05-18 1993-12-28 Aisin Seiki Kabushiki Kaisha Composite aluminum member joining process
JPH0763866B2 (en) * 1989-12-01 1995-07-12 株式会社豊田中央研究所 Brazing flux
JPH04304333A (en) 1991-03-25 1992-10-27 Aluminum Co Of America <Alcoa> Composite material made by using aluminum or its alloy as matrix and method for improving the wetting of the reinforcement with the matrix and the bonding between them
US5333668A (en) 1991-12-09 1994-08-02 Reynolds Metals Company Process for creation of metallurgically bonded inserts cast-in-place in a cast aluminum article
US5293923A (en) 1992-07-13 1994-03-15 Alabi Muftau M Process for metallurgically bonding aluminum-base inserts within an aluminum casting
US5429173A (en) 1993-12-20 1995-07-04 General Motors Corporation Metallurgical bonding of metals and/or ceramics
DE19634504A1 (en) * 1996-08-27 1997-12-04 Daimler Benz Ag Manufacture of blank of a light-metal component to be incorporated into a light-metal casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101528A1 (en) * 2006-03-07 2007-09-13 Ks Aluminium-Technologie Ag Mold release layer for casting nonferrous metals
US20090050288A1 (en) * 2006-03-07 2009-02-26 Manfred Laudenklos Form release layer for the casting nonferrous metals
US8403024B2 (en) 2006-03-07 2013-03-26 Ks Aluminium-Technologie Gmbh Form release layer for the casting nonferrous metals
JP2021088000A (en) * 2021-03-01 2021-06-10 日本軽金属株式会社 Insert casting method

Also Published As

Publication number Publication date
US6474397B1 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US5755374A (en) Method of brazing
US6913184B2 (en) Alloy composition and method for low temperature fluxless brazing
KR101184173B1 (en) Aluminium alloy strip for welding
US7451906B2 (en) Products for use in low temperature fluxless brazing
JP2648021B2 (en) Method for brazing metal members and mixture for brazing
US6474397B1 (en) Fluxing agent for metal cast joining
CN112518121A (en) Laser welding method for medium-thickness dissimilar aluminum alloy material
JP4614223B2 (en) Dissimilar material joining material and dissimilar material joining method
JP2006224147A (en) Method for joining different materials and filler metal therefor
JPH11156584A (en) Filler metal for aluminum alloy welding, and welding method for aluminum alloy element using it
JP7210259B2 (en) Aluminum bonded body, manufacturing method thereof, and brazing sheet used for aluminum bonded body
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
JP4635796B2 (en) Brazing method for aluminum alloy castings and brazed liquid-cooled parts
JPH11199958A (en) Aluminum alloy composite material for heat exchanger, and its production
JPH01107971A (en) Joining method for aluminum alloy shape
JPH11254127A (en) Method for brazing copper and aluminum
JP2006150442A (en) Aluminum alloy brazing wire, and brazing method of aluminum alloy casting, and brazed liquid-cooled part
JPS60133971A (en) Brazing method of stainless steel material and al material
JP3434999B2 (en) Heat exchanger excellent in brazing property and method for manufacturing the heat exchanger
JP2008093714A (en) Brazed body of stainless steel material and aluminum alloy material, and brazing method
JP2006326621A (en) Solder material wire for soldering aluminum alloy
JPH0615110B2 (en) One-sided welding method
JPH0694076B2 (en) Welding method of aluminum alloy clad material
JP2878435B2 (en) Joining method of titanium material and copper material
JPS5893564A (en) Brazing method for aluminum heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCOA INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUNKEL, RONALD W.;PODEY, LARRY L.;MEYER, THOMAS N.;REEL/FRAME:012250/0693;SIGNING DATES FROM 20010124 TO 20010307

AS Assignment

Owner name: U.S. DEPARTMENT OF ENERGY, DISTRICT OF COLUMBIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ALCOA, INC;REEL/FRAME:014015/0356

Effective date: 20030612

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141105