US20020189511A1 - Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor - Google Patents

Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor Download PDF

Info

Publication number
US20020189511A1
US20020189511A1 US09/864,354 US86435401A US2002189511A1 US 20020189511 A1 US20020189511 A1 US 20020189511A1 US 86435401 A US86435401 A US 86435401A US 2002189511 A1 US2002189511 A1 US 2002189511A1
Authority
US
United States
Prior art keywords
dioxin
wastes
hydrogen chloride
chloride gas
adsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/864,354
Inventor
Masuzo Murakami
Tetsuo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIINA KEIJI
ZEOLITE CHEMICAL INDUSTRIES Inc
Keiji Shiina
Original Assignee
Keiji Shiina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000359970A priority Critical patent/JP2001215007A/en
Priority to EP01112047A priority patent/EP1260765A1/en
Application filed by Keiji Shiina filed Critical Keiji Shiina
Priority to US09/864,354 priority patent/US20020189511A1/en
Assigned to ZEOLITE CHEMICAL INDUSTRIES, INC., SHIINA, KEIJI reassignment ZEOLITE CHEMICAL INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURAKAMI, MASUZO, MURAKAMI, TETSUO
Publication of US20020189511A1 publication Critical patent/US20020189511A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/70Blending
    • F23G2201/701Blending with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds

Definitions

  • the present invention relates to a method for burning wastes almost without generating dioxin, an inhibitor inhibiting generation of dioxin, and a method of producing such inhibitor.
  • the conventional dioxin removal technologies aim principally at removing or decreasing dioxin contained in the exhaust gas from that high temperature combustion gas.
  • the foregoing conventional inhibitors inhibiting generation of dioxin and the dissolving-burning (gasification/dissolution) technique have an effect of removing or decreasing dioxin in that exhaust gas.
  • many attempts have been hitherto proposed as: a technique or method of dechlorination reaction by adding potassium carbonate into a low oxygen atmosphere between a boiler and a cyclone (Japanese Unexamined Patent Application No. Hei 11-9959(1999)); that an exhaust gas from combustion gas in an incinerator is cooled to 220 to 230° C.
  • the conventional dioxin-generation inhibitors that utilize titanium oxide as the chief material are expensive to produce and need to be applied frequently, thereby wholly taking a great cost.
  • the device based on the dissolving-burning technique (gasification/dissolution oven) is about 10 times more expensive than ordinary incinerators for wastes, and hard to be made small-sized, so that it cannot be spread broadly.
  • the gasification/dissolution oven inevitably requires large quantities of wastes to be disposed of continuously, which has problems of collecting and transporting wastes broadly from various places and obtaining understanding, in this regard, of inhabitants near the transporting routes.
  • the inventor has studied minutely to solve those defects and succeeded in developing such a unique method of burning wastes that generation of dioxin discharged in the atmosphere is prevented at a quite low cost and dioxin in ashes from burnt wastes can be removed almost completely, and a dioxin-generation inhibitor for use in the unique wastes-burning method.
  • the present invention relates to a method for burning wastes with quite less generation of dioxin, a dioxin-generation inhibitor optimum for realizing the wastes-burning method, and a method of producing such inhibitor.
  • the present invention also relates to a method of producing RDF which has quite less generation of hydrogen chloride gas and dioxin.
  • the dioxin-generation inhibitor according to the present invention comprises a granular or powder material or a mixture of the same consisting as a main content an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas.
  • the inhibitor is spread over wastes being burnt so as to remove hydrogen chloride gas in the combustion gas, flying ashes and residual ashes, thereby inhibiting generation of dioxin.
  • FIG. 1 is a side view showing a small-sized incinerator for a small plant.
  • FIG. 2 is a plan view showing a scattering means assembled in the small-sized incinerator in FIG. 1.
  • FIG. 3 is a sectional view showing a principal part of a large incinerator mounting a scattering means.
  • FIG. 4 is a schematic diagram showing a structure of the dioxin-generation inhibitor according to the present invention.
  • the present invention quickly and surely removes halogen compounds (called hereunder “hydrogen chloride gas”, and being a source of generation of dioxin), such as hydrogen chloride gas and bromine chloride gas, being generated during burning wastes, in order to prevent generation of dioxin.
  • halogen chloride gas a source of generation of dioxin
  • hydrogen chloride gas and bromine chloride gas being generated during burning wastes, in order to prevent generation of dioxin.
  • Dioxin comprises benzene ring, chlorine (bromine) and oxygen and is produced from chemical reaction between chloride and organic substances in wastes under presence of heavy metal and heat of 200 to 600° C. It is well known that hydrogen chloride gas reacts with calcium oxide (quick lime) or calcium hydroxide (slaked lime) to become calcium chloride. Hence, most of the conventional dioxin-generation inhibitors are made of quick lime and slaked lime and take a long reaction time and cannot sufficiently capture hydrogen chloride gas that occurs in succession.
  • the inventors conceived under the circumstances a combination of quick lime or slaked lime with an adsorbing substance that quickly and surely catches and captures hydrogen chloride gas generated in succession during burning wastes and achieved the present invention.
  • the inventors developed various adsorbing substances excellent in rate of adsorbing hydrogen chloride gas and also shapes and methods of applying of the dioxin-generation inhibitor to be applied to wastes being burnt.
  • the dioxin-generation inhibitor according to the present invention does, as foregoing, comprise as the main contents an adsorbing substance that quickly and surely catches and captures hydrogen chloride gas and a reaction substance that reacts on hydrogen chloride gas to hold chlorine.
  • the reaction substance may employ calcium oxide (quick lime) or calcium hydroxide (slaked lime), or a mixture of the same.
  • the dioxin-generation inhibitor according to the present invention which is shaped into granules uses slaked lime for most of the reaction substance.
  • Table 1 shows the adsorbing rates of various substances. Measurement operation was carried out in such manner that 0.5 g of each specimen is placed in respective polypropylene containers each having a capacity of 3000 ml and a plug, followed by applying 2 ml of 99.999% hydrogen chloride gas to each container and plugging and leaving. Concentration of hydrogen chloride gas in the containers was measured by use of Kitagawa indicator tube at a time immediately after plugging, 10 minutes after application of hydrogen chloride gas, and 20 minutes after such application (Measured by: Himec Ltd., Chugoku district office).
  • the reason that the present invention attaches importance to the adsorbing rate with respect to the adsorbing substances is as follows. In detail, it takes about 5 to 10 seconds with more or less difference depending upon scales of incinerators that combustion gas changes to exhaust gas which is then discharged through a chimney to the atmosphere. In this course of process, the gases react on organic substances to produce dioxin. Hence, in case that it takes a minute to adsorb hydrogen chloride gas, in which time dioxin is generated, and residual hydrogen chloride gas is discharged in the atmosphere.
  • the activated coffee grounds are the used coffee material which already provided coffee and having about 50% water content and dried at 100 to 140° C. and comminuted under 100 mesh, more preferably, under 200 mesh, further preferably under 300 mesh since the adsorbing substances that are fine are superior in flotation. Also, since coffee grounds are more readily comminuted when having low water content, they are preferably dried to have 2% or less water content. Drying is carried out preferably at around 120 to 130° C., more preferably about 125° C. since drying at 100° C. or less takes long and drying at 140° C.
  • Used coffee grounds merely dried to 5 to 10% water content was poor in adsorbing rate in comparison with activated carbon.
  • Used tea leaves are dried and ground in the same manner as coffee grounds and are a little poor in adsorbing ability in comparison with coffee grounds, so that the used tea leaves need to be applied a little at a larger quantity.
  • coffee grounds when applied with lime (about 5 to 10 wt %) or having 5 to 10% water content can be advantageously ground as effectively or easily.
  • Fly ash is those discharged at a huge quantity from a thermal power plant or station or the like and is various in pH as 3 to 13 depending upon kinds of coal used and specific facilities of thermal power plant to thereby have or show separate adsorbing rates for adsorbing hydrogen chloride gas.
  • Fly ash in Table 1 shows the adsorbing ability of fly ash showing pH 10 (and CEC (cation exchange capacity) about 120 at maximum) provided by mixing various fly ashes having different pH values.
  • CEC cesation exchange capacity
  • fly ash in Table 1 is hard to be into practical use.
  • fly ash Activation of fly ash involves mixing fly ash with slaked lime, which water is added to and is agitated and left for 2 to 3 hours.
  • the mixing ratio of fly ash and slaked lime may be at discretion but the proportion of fly ash may be preferably more than slake lime, for example, fly ash of 60 to 80 wt % and slaked lime 20 to 40 wt %.
  • Precipitate in the mixture is then dried and comminuted under 100 to 200 mesh, more preferably, 300 mesh to obtain an excellent adsorbing substance that shows pH 12 to 13 and CEC 150 to 200 and is quite high in rate of adsorbing hydrogen chloride gas.
  • synthetic zeolite will be detailed.
  • An ordinary synthetic zeolite (synthetic zeolite 1 in Table 1) used for synthetic detergent or the like has the adsorbing rate that is only a little higher than the activated carbon and is therefore not so preferable for the present invention.
  • Another zeolite, the synthetic zeolite 2 (provided by Tosoh Corporation under tradename “Zeolum”) shows the adsorbing rate equivalent to those of the activated coffee grounds and activated fly ash.
  • the “Zeolum” is superior in adsorbing also hydrogen sulfide gas, sulfur dioxide or other gases as well as hydrogen chloride gas, but is problematic due to a high cost.
  • the dioxin-generation inhibitor according to the present invention adsorbs and holds immediately or quickly hydrogen chloride gas generated upon burning wastes and then causes the hydrogen chloride gas to react on slaked lime and/or quick lime and become extinct.
  • the dioxin-generation inhibitor according to the present invention is provided in such manner that 50 to 85 wt % of calcium compound (slaked lime, quick lime, etc.) is mixed with 50 to 15 wt % of adsorbing substance, followed by adding a proper amount of water to the mixture and making granulation and drying. More preferable mixing proportion is around 65 to 75wt % of calcium compound and around 35 to 25 wt % of adsorbing substance with which mixing proportion there can be provided a dioxin-generation inhibitor C in which an adsorbing substance A is covered at most of the outer surface with calcium compounds B smaller in granular diameter than the adsorbing substance A as seen in the schematic diagram of FIG. 4.
  • the actual or practical dioxin-generation inhibitors comprise a quite large number of the schematically shown dioxin-generation inhibitors C combined together.
  • the adsorbing substance A adsorbs hydrogen chloride gas contained in the gases in an instant or quickly.
  • the adsorbed hydrogen chloride gas then reacts on calcium compound B to make calcium chloride and be removed from the system of combustion gas and exhaust gas, whereby generation of dioxin on the basis of hydrogen chloride gas as a material is largely inhibited.
  • the method for burning wastes according to the present invention involves spreading the foregoing dioxin-generation inhibitor over wastes being burnt in which the powder material of the invention removes hydrogen chloride gas in the combustion gas and flying ashes and the granular material removes hydrogen chloride gas generated upon burning wastes and hydrogen chloride gas contained in residual ash.
  • the powder material of the invention removes hydrogen chloride gas in the combustion gas and flying ashes and the granular material removes hydrogen chloride gas generated upon burning wastes and hydrogen chloride gas contained in residual ash.
  • the powder material is fine, the higher its flowability becomes, so that the powder material can have higher efficiency of contacting with combustion gas and exhaust gas and achieve excellent efficiency of adsorbing hydrogen chloride gas.
  • the inhibitor according to the present invention adopts the mixture of the powder material and granular material whose mixing proportion may be about fifty-fifty.
  • the power material may be simply or readily provided by that the granular material (granulated product) is subjected to a granulator to be partly made powdery, or by that granular material is caused to undergo mechanical or thermal (i.e., combustion heat about 450° C.) stimulation or irritation in the incinerator to be partly made powdery.
  • a degradation agent may be added for excellent efficiency of degradation.
  • the powder material is provided by causing the granular material to be partly degraded into powder in the incinerator, it is needed to apply the inhibitor only comprising the granular material which application is easily carried out.
  • the efficiency of degradation is also required for the case that the granular material is subjected to the granulator or the case that the granular material mixed with wastes adsorbs effectively hydrogen chloride gas.
  • the degradation agent when added a little facilitates the efficiency of degradation.
  • the degradation agent may employ organic substances, particularly, ground product of plant, such as squeezed soybeans, used tea leaves, coffee grounds, or ground product of oyster's shell.
  • the degradation agent may be added about 3 to 10 wt %, preferably around 5 wt % with respect to a total of calcium compounds and the adsorbing substance. It is preferable to use a degradation agent whose granular diameter is about under 40 to 60 mesh since too small granular diameter provides poor efficiency of degradation.
  • the combustion gas referred to in the present invention is a high temperature gas generated upon wastes burning in a combustion chamber or zone.
  • Combustion exhaust gas (called herein or hereunder the “exhaust gas”) is the combustion gas taken out and discharged from the combustion chamber or zone.
  • the flying ashes is solid content or matter flying together with the combustion gas and/or exhaust gas. Also, the residual ash refers to a residue from combustion.
  • Disposing of wastes by use of fire involves burning wastes for disposal or making use of combustion as fuel.
  • the present invention is applicable to either case.
  • the present invention is also applicable to an extremely large-scale incinerator or combustion furnace of over several dozens to several hundreds tons of daily disposal, to a large or middle-sized incinerator or combustion furnace of about several dozens to several tons of daily disposal, or to a small or extremely small-sized incinerator or combustion furnace for a small scale plant or domestic use.
  • the present invention can be applied to the middle-sized or larger incinerator or combustion furnace merely by mounting a spreader to the conventional incinerator or combustion furnace without necessity of modification of the facilities or newly provision of expensive facilities, resulting in large reduction of cost.
  • the reason why the spreader is used here is that wastes are continuously supplied by a movable floor or the like, so that the inhibitor according to the present invention at an amount corresponding to wastes supplied per unit time is to be applied continuously.
  • the capacity of the spreader needs to correspond to a specific amount of wastes.
  • Spreading the inhibitor by the spreader is precisely aimed at wastes to be burnt.
  • the inhibitor of the present invention comprising only the powder material needs to be force-fed to a combustion point.
  • a small-sized incinerator or combustion furnace may be fabricated mounting a spreader on the outside and a scattering device at an upper part inside the furnace, so that hydrogen chloride gas is substantially completely removed. Furthermore, a small or extremely small-sized incinerator may burn wastes that previously mix with the inhibitor according to the present invention. Upon burning off a field or a bonfire, the inhibitor according to the present invention may be spread over wastes to largely reduce or decrease generation of dioxin.
  • RDF reuse derived fuel, provided by shattering wastes or refuse, and causing them to set hard, i.e., drying, compressing and forming them in a bar-like shape
  • RDF is a material obtained by that wastes or refuse containing thermoplastic resin, such as plastic film, is shattered and dried, and compressed and shaped into a solid matter in size of fingers. Since RDF has less water content and well-regulated shapes, they are suitable for solid fuel. RDF when burnt does generate dioxin “naturally” since RDF often contains vinyl chloride film in the material.
  • the inventors attempted to add the dioxin-generation inhibitor according to the present invention upon producing RDF and succeeded in manufacturing RDF that involves less generation of dioxin.
  • quick lime is added a little for drying (removing water content).
  • the inventors added the dioxin-generation inhibitor of the present invention in powdery state at an amount of 0.2 to 5 wt % with respect to dried wastes.
  • the loadings when less than 0.2 wt % shows less effect of removal of dioxin, and it takes much cost to have a problem in the aspect of cost and effect when the loadings is more than 5wt %.
  • a sufficient effect of removing dioxin can be provided at the loadings around 0.5 to 1.5wt %, particularly, around 0.7 to 1 wt %.
  • High reactive quicklime of 66 wt % (made by Ashidachi Lime Co., Ltd., containing CaO of 73%) used as the calcium compound was mixed with activated coffee grounds (under 200 mesh) of 19 wt % and activated fly ash of 9 wt % used as the adsorbing substance and shown in Table 1, and used tea leaves under 40 mesh of 5 wt % as the degradation agent, followed by adding water of 25 wt % and kneading, extrusion shaping into granules 2 mm ⁇ 5 mm, and drying the shaped granules at 120° C. to obtain the dioxin-generation inhibitor.
  • the resultant dioxin-generation inhibitor was spread to RDF (5 kg) burning in a small incinerator (or combustion furnace) 1 in FIG. 1.
  • the amount of spreading was 0.7wt % with respect to RDF.
  • the incinerator 1 shown in FIG. 1 is for use in a small-scale plant and comprises a spreader 2 at the outside of the furnace for feeding the dioxin-generation inhibitor into the furnace, and a scattering means 3 for scattering the inhibitor over wastes being burnt.
  • the capacity of the incinerator 1 is 1 m 3 .
  • the powder material removes hydrogen chloride gas in the combustion gas and flying ashes and the granular material removes hydrogen chloride gas in the residual ash, thereby inhibiting generation of dioxin.
  • FIG. 2 is a plan view of the scattering means 3 whose four blades 31 each twists at the middle.
  • RDF 5 kg was similarly burnt in the same incinerator as Example 1 without using the dioxin-generation inhibitor of the present invention.
  • Concentration of hydrogen chloride gas in the combustion gas was measured and shown to be 442.0 mg/m 3 as seen in Table 2.
  • dioxin-generation inhibitor causes generation of hydrogen chloride gas to be reduced to about 1 ⁇ 4 in a small incinerator for general domestic use.
  • a large-scale combustion furnace or incinerator 4 may carry out spreading of the dioxin-generation inhibitor over wastes being burnt on the wastes-burning/moving grid 5 by use of an inhibitor spreader 6 mounted on the outside as shown in FIG. 3.
  • the combustion furnace 4 having been being used may be enough to only mount the spreader 6 without necessity of modification, thereby being quite economical.
  • a manufacturing plant for RDF burns RDF partly for drying wastes material.
  • a combustion furnace used in this case may have substantially the structure shown in FIG. 3.
  • RDF accordinging to the present invention
  • RDF as conventional mixing and kneading lime of 2 wt % as conventionally were produced and burnt separately in the same large-scale combustion furnace for drying wastes to measure generated dioxin according to JIS K 0311-1999 method and gas chromatography mass analysis method.
  • Measurement results are as shown in Table 3 (Measurer: Bab-Hitachi Industrial Co.).
  • TABLE 3 Specimen Dioxin (ng-TEQ/m 3 )
  • the amount of generated dioxin from RDF according to the present invention was 0.063 ng-TEQ/m 3 (nanogram).
  • the value clears 1 nanogram provided in the already given Heisei 14 (2002) Regulation for the large-scale combustion furnaces and also 0.1 nanogram newly provided in Heisei 14 regulation.
  • the values provided in the regulation are 10 nanogram and 5 nanogram, respectively, and do not at all lead any problems.
  • concentration of dioxin contained in the residual ashes with the dioxin-generation inhibitor according to the present invention having been spread was about 1 ⁇ 4in comparison with the case not spreading the inhibitor.
  • concentration of dioxin in residual ash 6.6 nanogram according to a certain measurement result that in the comparative example in this invention is quite little. This is so inferred as resulting from using the RDF as wastes material in this Example and comparative example (to be noted here is that RDF mixes quicklime.).
  • the inhibitor for inhibiting generation of dioxin comprises an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas, as main contents, and a degradation agent additionally used when required, the mixture of these materials being granulated and dried.
  • the dioxin-generation inhibitor is superior in ability of adsorbing hydrogen chloride gas and is capable of largely reducing generation of dioxin contained in the combustion gas and residual gas, thereby making a great contribution to environmental sanitation.
  • the present invention can make use of industrial wastes as the adsorbing substance to thereby be excellent in the respect of saving resources while providing such advantage as being manufactured at a low cost and with a simple apparatus and technology.
  • the method for burning wastes according to the present invention involves spreading over wastes being burnt the dioxin-generation inhibitor that comprises a granular material, powder material or a mixture of the same, so that the powder material removes hydrogen chloride gas in combustion gas and flying ashes and the granular material removes hydrogen chloride gas in residual ash, whereby inhibiting generation of dioxin.
  • the dioxin-generation inhibitor according to the present invention can be used selectively correspondingly to the scale of incinerators and combustion furnaces to burn wastes or refuge.
  • the dioxin-generation inhibitor is also usable in burning off dead grass or a field or in a bonfire without use of incinerators or the like.
  • the present invention provides that concentration of dioxin contained in the exhaust gas can be largely reduced or decreased with a simple device (although hitherto realized at a quite high cost), and concentration of dioxin in the residual ashes is also largely decreased (which has been almost impossible conventionally), providing a good news to the serious environmental problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The invention provides a technology to largely decrease generation of dioxin in combustion ashes as well as exhaust gas by use of an ordinary combustion apparatus.
The invention spreads over wastes being burnt an inhibitor for inhibiting generation of dioxin that comprises as main contents an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas, and additionally a degradation agent when required, those mixed, granulated and dried, whereby a powder material removes hydrogen chloride gas in combustion gas and flying ashes and a granular material removes hydrogen chloride gas in residual ashes, thereby inhibiting generation of dioxin.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a method for burning wastes almost without generating dioxin, an inhibitor inhibiting generation of dioxin, and a method of producing such inhibitor. [0002]
  • 2. Prior Art [0003]
  • In order to decrease dioxin generated upon burning wastes, various inhibitors inhibiting generation of dioxin, such as resolvent catalyst containing titanium oxide, and an inhibitor for removing a precursor of dioxin, or hydrogen chloride, and various technologies of burning wastes by use of those inhibitors have been hitherto developed. Furthermore developed is a gasification and dissolution technology in which exhaust gas from high temperature combustion gas of burnt wastes in a combustion chamber or zone is to be burnt again at a temperature of 1000 to 1500° C. by making use of the fact that dioxin when burnt at a very high temperature of 1000 to 1500° C. is dissolved. [0004]
  • The conventional dioxin removal technologies aim principally at removing or decreasing dioxin contained in the exhaust gas from that high temperature combustion gas. The foregoing conventional inhibitors inhibiting generation of dioxin and the dissolving-burning (gasification/dissolution) technique have an effect of removing or decreasing dioxin in that exhaust gas. In this respect, many attempts have been hitherto proposed as: a technique or method of dechlorination reaction by adding potassium carbonate into a low oxygen atmosphere between a boiler and a cyclone (Japanese Unexamined Patent Application No. Hei 11-9959(1999)); that an exhaust gas from combustion gas in an incinerator is cooled to 220 to 230° C. and is subjected to spraying of calcium hydroxide and activated carbon, so that calcium hydroxide neutralizes acidic gas and activated carbon adsorbs dioxin and mercury (Japanese Unexamined Patent Application No. Hei 7-204432(1995)); that exhaust gas at a point during its treatment processes before becoming less than 400° C. is applied with an adsorbing/removing material for a precursor of dioxin (by making use of the fact that dioxin is unlikely to be produced at more than 400° C. while easily produced around 200 to 400° C.)(Japanese Unexamined Patent Application No. Hei 9-220438(1997)); that dioxin is adsorbed and removed from exhaust gas (Japanese Unexamined Patent Application No. Hei 10-128062(1998)); that an adsorbent for dioxin, such as acid clay, is blown on a flue in an incinerator (Japanese Unexamined Patent Application No. Hei 11-9963(1999)); that dioxin in exhaust gas is dissolved by use of catalyst containing titanium and others (Japanese Unexamined Patent Application Nos. Hei 2-35914(1990); Hei 3-8415(1991); Hei 4-265122(1992), and so on). [0005]
  • However, the conventional dioxin-generation inhibitors that utilize titanium oxide as the chief material are expensive to produce and need to be applied frequently, thereby wholly taking a great cost. And the device based on the dissolving-burning technique (gasification/dissolution oven) is about 10 times more expensive than ordinary incinerators for wastes, and hard to be made small-sized, so that it cannot be spread broadly. The gasification/dissolution oven inevitably requires large quantities of wastes to be disposed of continuously, which has problems of collecting and transporting wastes broadly from various places and obtaining understanding, in this regard, of inhabitants near the transporting routes. [0006]
  • Besides, those methods do substantially not remove dioxin in ashes from burnt wastes (residual ashes). The ashes from burnt wastes are disposed of merely in such manner as mixed with a setup agent (e.g., cement) to be solidified and buried in the ground. Recently, removal of dioxin in the exhaust gas from that high temperature combustion gas can be almost achieved in case that the cost is not a problem. But huge quantities of wastes are disposed of and burnt all over the world. Limitlessly preventing at a low cost the generation of dioxin discharged in the atmosphere from the burnt wastes is quite serious and important matter. Also, it is no exaggeration to say that there are not at all any other solutions for removal of dioxin in ashes from burnt wastes than the foregoing manner of burying solidified ashes in the ground. [0007]
  • The inventor has studied minutely to solve those defects and succeeded in developing such a unique method of burning wastes that generation of dioxin discharged in the atmosphere is prevented at a quite low cost and dioxin in ashes from burnt wastes can be removed almost completely, and a dioxin-generation inhibitor for use in the unique wastes-burning method. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a method for burning wastes with quite less generation of dioxin, a dioxin-generation inhibitor optimum for realizing the wastes-burning method, and a method of producing such inhibitor. [0009]
  • The present invention also relates to a method of producing RDF which has quite less generation of hydrogen chloride gas and dioxin. [0010]
  • The dioxin-generation inhibitor according to the present invention comprises a granular or powder material or a mixture of the same consisting as a main content an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas. The inhibitor is spread over wastes being burnt so as to remove hydrogen chloride gas in the combustion gas, flying ashes and residual ashes, thereby inhibiting generation of dioxin.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view showing a small-sized incinerator for a small plant. [0012]
  • FIG. 2 is a plan view showing a scattering means assembled in the small-sized incinerator in FIG. 1. [0013]
  • FIG. 3 is a sectional view showing a principal part of a large incinerator mounting a scattering means. [0014]
  • FIG. 4 is a schematic diagram showing a structure of the dioxin-generation inhibitor according to the present invention.[0015]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention quickly and surely removes halogen compounds (called hereunder “hydrogen chloride gas”, and being a source of generation of dioxin), such as hydrogen chloride gas and bromine chloride gas, being generated during burning wastes, in order to prevent generation of dioxin. [0016]
  • Dioxin comprises benzene ring, chlorine (bromine) and oxygen and is produced from chemical reaction between chloride and organic substances in wastes under presence of heavy metal and heat of 200 to 600° C. It is well known that hydrogen chloride gas reacts with calcium oxide (quick lime) or calcium hydroxide (slaked lime) to become calcium chloride. Hence, most of the conventional dioxin-generation inhibitors are made of quick lime and slaked lime and take a long reaction time and cannot sufficiently capture hydrogen chloride gas that occurs in succession. [0017]
  • The inventors conceived under the circumstances a combination of quick lime or slaked lime with an adsorbing substance that quickly and surely catches and captures hydrogen chloride gas generated in succession during burning wastes and achieved the present invention. For the purpose, the inventors developed various adsorbing substances excellent in rate of adsorbing hydrogen chloride gas and also shapes and methods of applying of the dioxin-generation inhibitor to be applied to wastes being burnt. [0018]
  • Next, the present invention will be detailed. The dioxin-generation inhibitor according to the present invention does, as foregoing, comprise as the main contents an adsorbing substance that quickly and surely catches and captures hydrogen chloride gas and a reaction substance that reacts on hydrogen chloride gas to hold chlorine. The reaction substance may employ calcium oxide (quick lime) or calcium hydroxide (slaked lime), or a mixture of the same. The dioxin-generation inhibitor according to the present invention which is shaped into granules uses slaked lime for most of the reaction substance. [0019]
  • Materials superior in rate of adsorbing are preferable for the adsorbing substance. Table 1 shows the adsorbing rates of various substances. Measurement operation was carried out in such manner that 0.5 g of each specimen is placed in respective polypropylene containers each having a capacity of 3000 ml and a plug, followed by applying 2 ml of 99.999% hydrogen chloride gas to each container and plugging and leaving. Concentration of hydrogen chloride gas in the containers was measured by use of Kitagawa indicator tube at a time immediately after plugging, 10 minutes after application of hydrogen chloride gas, and 20 minutes after such application (Measured by: Himec Ltd., Chugoku district office). Initial concentration of less than 0.1 in Table 1 indicates the fact that 30 ppm hydrogen chloride gas was wholly adsorbed in an instant. [0020]
    TABLE 1
    Concentration of hydrogen chloride gas
    (ppm)
    Specimen Initial 10 min after 20 min after
    Blanks 30 30  30
    Coffee grounds 10 4 under 0.1
    Activated coffee under 0.1 under 0.1 under 0.1
    grounds
    Fly ash
     3   0.3 under 0.1
    Activated fly ash under 0.1 under 0.1 under 0.1
    Used tea leaves under 0.1 under 0.1 under 0.1
    Activated carbon  5 2 under 0.1
    Squeezed soybeans 17 8 under 0.1
    Dolomite 12 12  under 0.1
    Synthetic zeolite 1  4   0.4 under 0.1
    Synthetic zeolite 2 under 0.1 under 0.1 under 0.1
  • The reason that the present invention attaches importance to the adsorbing rate with respect to the adsorbing substances is as follows. In detail, it takes about 5 to 10 seconds with more or less difference depending upon scales of incinerators that combustion gas changes to exhaust gas which is then discharged through a chimney to the atmosphere. In this course of process, the gases react on organic substances to produce dioxin. Hence, in case that it takes a minute to adsorb hydrogen chloride gas, in which time dioxin is generated, and residual hydrogen chloride gas is discharged in the atmosphere. [0021]
  • Next, explanation will be given upon those in Table 1 showing the initial concentration under 0.1. The activated coffee grounds are the used coffee material which already provided coffee and having about 50% water content and dried at 100 to 140° C. and comminuted under 100 mesh, more preferably, under 200 mesh, further preferably under 300 mesh since the adsorbing substances that are fine are superior in flotation. Also, since coffee grounds are more readily comminuted when having low water content, they are preferably dried to have 2% or less water content. Drying is carried out preferably at around 120 to 130° C., more preferably about 125° C. since drying at 100° C. or less takes long and drying at 140° C. causes the coffee grounds to have oil oozed out on the surface and become poor in ability of adsorbing hydrogen chloride gas. Used coffee grounds merely dried to 5 to 10% water content was poor in adsorbing rate in comparison with activated carbon. Used tea leaves are dried and ground in the same manner as coffee grounds and are a little poor in adsorbing ability in comparison with coffee grounds, so that the used tea leaves need to be applied a little at a larger quantity. Furthermore, coffee grounds when applied with lime (about 5 to 10 wt %) or having 5 to 10% water content can be advantageously ground as effectively or easily. [0022]
  • Fly ash is those discharged at a huge quantity from a thermal power plant or station or the like and is various in pH as 3 to 13 depending upon kinds of coal used and specific facilities of thermal power plant to thereby have or show separate adsorbing rates for adsorbing hydrogen chloride gas. Fly ash in Table 1 shows the adsorbing ability of fly ash showing pH 10 (and CEC (cation exchange capacity) about 120 at maximum) provided by mixing various fly ashes having different pH values. Thus, fly ash in Table 1 is hard to be into practical use. For the present invention, it is preferable to employ activated fly ash provided by activating freely selected fly ash. Activation of fly ash involves mixing fly ash with slaked lime, which water is added to and is agitated and left for 2 to 3 hours. The mixing ratio of fly ash and slaked lime may be at discretion but the proportion of fly ash may be preferably more than slake lime, for example, fly ash of 60 to 80 wt % and slaked lime 20 to 40 wt %. Precipitate in the mixture is then dried and comminuted under 100 to 200 mesh, more preferably, 300 mesh to obtain an excellent adsorbing substance that shows pH 12 to 13 and CEC 150 to 200 and is quite high in rate of adsorbing hydrogen chloride gas. [0023]
  • Next, synthetic zeolite will be detailed. An ordinary synthetic zeolite ([0024] synthetic zeolite 1 in Table 1) used for synthetic detergent or the like has the adsorbing rate that is only a little higher than the activated carbon and is therefore not so preferable for the present invention. Another zeolite, the synthetic zeolite 2 (provided by Tosoh Corporation under tradename “Zeolum”) shows the adsorbing rate equivalent to those of the activated coffee grounds and activated fly ash. The “Zeolum” is superior in adsorbing also hydrogen sulfide gas, sulfur dioxide or other gases as well as hydrogen chloride gas, but is problematic due to a high cost.
  • Other materials such as the activated carbon of coconut shell, squeezed soybeans, and dolomite show the concentration under 0.1 of hydrogen chloride gas 20 minutes after the gas-application but are not usable for the present invention that needs or requires quick adsorbing. Any other adsorbing materials than those shown in Table 1 that can show or have the same or equivalent adsorbing rate as the activated coffee grounds and activated fly ash can be fully applicable to the present invention provided that it can be preferably available at a low cost. Rice hull when carbonized shows a rather high adsorbing rate but takes trouble and time for carbonization. In case that an effective carbonizing method is available, rice hull can be usable for the present invention. Besides, wastes from agricultural products produced at a vast quantity, such as wheat hull or squeezed sugarcane, may be attempted to be given any treatment to achieve materials showing high adsorbing rate and convenience in the aspect of disposing of the wastes. [0025]
  • The dioxin-generation inhibitor according to the present invention adsorbs and holds immediately or quickly hydrogen chloride gas generated upon burning wastes and then causes the hydrogen chloride gas to react on slaked lime and/or quick lime and become extinct. In this respect, it is preferable to employ as calcium compound any materials having excellent efficiency of reaction on hydrogen chloride gas. [0026]
  • The dioxin-generation inhibitor according to the present invention is provided in such manner that 50 to 85 wt % of calcium compound (slaked lime, quick lime, etc.) is mixed with 50 to 15 wt % of adsorbing substance, followed by adding a proper amount of water to the mixture and making granulation and drying. More preferable mixing proportion is around 65 to 75wt % of calcium compound and around 35 to 25 wt % of adsorbing substance with which mixing proportion there can be provided a dioxin-generation inhibitor C in which an adsorbing substance A is covered at most of the outer surface with calcium compounds B smaller in granular diameter than the adsorbing substance A as seen in the schematic diagram of FIG. 4. The actual or practical dioxin-generation inhibitors comprise a quite large number of the schematically shown dioxin-generation inhibitors C combined together. When the inhibitor C mixes and contacts with combustion gas or exhaust gas, the adsorbing substance A adsorbs hydrogen chloride gas contained in the gases in an instant or quickly. The adsorbed hydrogen chloride gas then reacts on calcium compound B to make calcium chloride and be removed from the system of combustion gas and exhaust gas, whereby generation of dioxin on the basis of hydrogen chloride gas as a material is largely inhibited. [0027]
  • The method for burning wastes according to the present invention involves spreading the foregoing dioxin-generation inhibitor over wastes being burnt in which the powder material of the invention removes hydrogen chloride gas in the combustion gas and flying ashes and the granular material removes hydrogen chloride gas generated upon burning wastes and hydrogen chloride gas contained in residual ash. The more the powder material is fine, the higher its flowability becomes, so that the powder material can have higher efficiency of contacting with combustion gas and exhaust gas and achieve excellent efficiency of adsorbing hydrogen chloride gas. Hence, the inhibitor according to the present invention adopts the mixture of the powder material and granular material whose mixing proportion may be about fifty-fifty. The power material may be simply or readily provided by that the granular material (granulated product) is subjected to a granulator to be partly made powdery, or by that granular material is caused to undergo mechanical or thermal (i.e., combustion heat about 450° C.) stimulation or irritation in the incinerator to be partly made powdery. For this purpose, a degradation agent may be added for excellent efficiency of degradation. In case that the powder material is provided by causing the granular material to be partly degraded into powder in the incinerator, it is needed to apply the inhibitor only comprising the granular material which application is easily carried out. The efficiency of degradation is also required for the case that the granular material is subjected to the granulator or the case that the granular material mixed with wastes adsorbs effectively hydrogen chloride gas. [0028]
  • Next, the degradation agent will be explained. Granulated and dried products generally tend to tighten. Hence, the present invention provides the shape of granule that is easily degradable. A degradation agent when added a little facilitates the efficiency of degradation. The degradation agent may employ organic substances, particularly, ground product of plant, such as squeezed soybeans, used tea leaves, coffee grounds, or ground product of oyster's shell. The degradation agent may be added about 3 to 10 wt %, preferably around 5 wt % with respect to a total of calcium compounds and the adsorbing substance. It is preferable to use a degradation agent whose granular diameter is about under 40 to 60 mesh since too small granular diameter provides poor efficiency of degradation. [0029]
  • The combustion gas referred to in the present invention is a high temperature gas generated upon wastes burning in a combustion chamber or zone. Combustion exhaust gas (called herein or hereunder the “exhaust gas”) is the combustion gas taken out and discharged from the combustion chamber or zone. The flying ashes is solid content or matter flying together with the combustion gas and/or exhaust gas. Also, the residual ash refers to a residue from combustion. [0030]
  • Disposing of wastes by use of fire involves burning wastes for disposal or making use of combustion as fuel. The present invention is applicable to either case. The present invention is also applicable to an extremely large-scale incinerator or combustion furnace of over several dozens to several hundreds tons of daily disposal, to a large or middle-sized incinerator or combustion furnace of about several dozens to several tons of daily disposal, or to a small or extremely small-sized incinerator or combustion furnace for a small scale plant or domestic use. [0031]
  • The present invention can be applied to the middle-sized or larger incinerator or combustion furnace merely by mounting a spreader to the conventional incinerator or combustion furnace without necessity of modification of the facilities or newly provision of expensive facilities, resulting in large reduction of cost. The reason why the spreader is used here is that wastes are continuously supplied by a movable floor or the like, so that the inhibitor according to the present invention at an amount corresponding to wastes supplied per unit time is to be applied continuously. Hence, the capacity of the spreader needs to correspond to a specific amount of wastes. Spreading the inhibitor by the spreader is precisely aimed at wastes to be burnt. The inhibitor of the present invention comprising only the powder material needs to be force-fed to a combustion point. [0032]
  • A small-sized incinerator or combustion furnace may be fabricated mounting a spreader on the outside and a scattering device at an upper part inside the furnace, so that hydrogen chloride gas is substantially completely removed. Furthermore, a small or extremely small-sized incinerator may burn wastes that previously mix with the inhibitor according to the present invention. Upon burning off a field or a bonfire, the inhibitor according to the present invention may be spread over wastes to largely reduce or decrease generation of dioxin. [0033]
  • Next, the “RDF” (refuse derived fuel, provided by shattering wastes or refuse, and causing them to set hard, i.e., drying, compressing and forming them in a bar-like shape) will be explained. In detail, RDF is a material obtained by that wastes or refuse containing thermoplastic resin, such as plastic film, is shattered and dried, and compressed and shaped into a solid matter in size of fingers. Since RDF has less water content and well-regulated shapes, they are suitable for solid fuel. RDF when burnt does generate dioxin “naturally” since RDF often contains vinyl chloride film in the material. [0034]
  • Under the circumstance, the inventors attempted to add the dioxin-generation inhibitor according to the present invention upon producing RDF and succeeded in manufacturing RDF that involves less generation of dioxin. Conventionally, upon manufacturing RDF, quick lime is added a little for drying (removing water content). In place of quick lime, the inventors added the dioxin-generation inhibitor of the present invention in powdery state at an amount of 0.2 to 5 wt % with respect to dried wastes. The loadings when less than 0.2 wt % shows less effect of removal of dioxin, and it takes much cost to have a problem in the aspect of cost and effect when the loadings is more than 5wt %. A sufficient effect of removing dioxin can be provided at the loadings around 0.5 to 1.5wt %, particularly, around 0.7 to 1 wt %. [0035]
  • Preferred Embodiments of the Invention [0036]
  • EXAMPLE 1
  • High reactive quicklime of 66 wt % (made by Ashidachi Lime Co., Ltd., containing CaO of 73%) used as the calcium compound was mixed with activated coffee grounds (under 200 mesh) of 19 wt % and activated fly ash of 9 wt % used as the adsorbing substance and shown in Table 1, and used tea leaves under 40 mesh of 5 wt % as the degradation agent, followed by adding water of 25 wt % and kneading, extrusion shaping into [0037] granules 2 mm×5 mm, and drying the shaped granules at 120° C. to obtain the dioxin-generation inhibitor.
  • The resultant dioxin-generation inhibitor was spread to RDF (5 kg) burning in a small incinerator (or combustion furnace) 1 in FIG. 1. The amount of spreading was 0.7wt % with respect to RDF. The [0038] incinerator 1 shown in FIG. 1 is for use in a small-scale plant and comprises a spreader 2 at the outside of the furnace for feeding the dioxin-generation inhibitor into the furnace, and a scattering means 3 for scattering the inhibitor over wastes being burnt. The capacity of the incinerator 1 is 1 m3. The powder material removes hydrogen chloride gas in the combustion gas and flying ashes and the granular material removes hydrogen chloride gas in the residual ash, thereby inhibiting generation of dioxin. FIG. 2 is a plan view of the scattering means 3 whose four blades 31 each twists at the middle.
  • At a time when burning is stable, the combustion gas was taken through the measuring port to measure concentration of hydrogen chloride gas in the combustion gas and find that concentration was 118.2 mg/m[0039] 3 as shown in Table 2 (measured by Himec Ltd., Chugoku district office).
    TABLE 2
    Concentration of hydrogen chloride
    Specimen Gas (mg/m3)
    Example 1 118.2
    Comparative example 1 442.0
  • COMPARATIVE EXAMPLE 1
  • RDF (5 kg) was similarly burnt in the same incinerator as Example 1 without using the dioxin-generation inhibitor of the present invention. Concentration of hydrogen chloride gas in the combustion gas was measured and shown to be 442.0 mg/m[0040] 3 as seen in Table 2.
  • From the above, it will be appreciated that using the dioxin-generation inhibitor according to the present invention causes generation of hydrogen chloride gas to be reduced to about ¼ in a small incinerator for general domestic use. [0041]
  • EXAMPLE 2
  • A large-scale combustion furnace or incinerator [0042] 4 may carry out spreading of the dioxin-generation inhibitor over wastes being burnt on the wastes-burning/moving grid 5 by use of an inhibitor spreader 6 mounted on the outside as shown in FIG. 3. In this case, the combustion furnace 4 having been being used may be enough to only mount the spreader 6 without necessity of modification, thereby being quite economical.
  • A manufacturing plant for RDF burns RDF partly for drying wastes material. A combustion furnace used in this case may have substantially the structure shown in FIG. 3. RDF (according to the present invention) mixing and kneading the dioxin-generation inhibitor of the invention at a proportion of 1.5 wt % (with respect to dried wastes), and RDF (as conventional) mixing and kneading lime of 2 wt % as conventionally were produced and burnt separately in the same large-scale combustion furnace for drying wastes to measure generated dioxin according to JIS K 0311-1999 method and gas chromatography mass analysis method. Measurement results are as shown in Table 3 (Measurer: Bab-Hitachi Industrial Co.). [0043]
    TABLE 3
    Specimen Dioxin (ng-TEQ/m3)
    Example 2 0.063
    Comparative example 2 0.11
  • As shown in Table 3, the amount of generated dioxin from RDF according to the present invention was 0.063 ng-TEQ/m[0044] 3 (nanogram). The value clears 1 nanogram provided in the already given Heisei 14 (2002) Regulation for the large-scale combustion furnaces and also 0.1 nanogram newly provided in Heisei 14 regulation. Regarding small combustion furnaces for domestic use, the values provided in the regulation are 10 nanogram and 5 nanogram, respectively, and do not at all lead any problems.
  • COMPARATIVE EXAMPLE 2
  • The conventional RDF does not clear the newly provided Heisei 14 Regulation. In this comparative example, the dioxin-generation inhibitor was partly mixed, resulting in a possibility of a low value of generated dioxin deviated from an actual state. This could be inferred from the fact that measurement results of hydrogen chloride gas on the basis of specimens taken simultaneously with measurement of dioxin do not have definite difference as seen in Table 4, i.e., that there shows merely quite little difference in comparison with the measurement results of hydrogen chloride gas shown in Example 1 and the comparative example 1, and that the case in Table 4 has merely quite little difference between the examples in view of difference of dioxin concentration in residual ash described later referring to Example 3 and comparative example 3. The above inference is possibly explained also on the basis of such fact and any difference arising therefrom that Examples 1 and 3 employ a small-sized combustion furnace while Example 2 uses a large-scale combustion furnace. [0045]
    TABLE 4
    Concentration of hydrogen
    Specimen chloride gas (mg/m3/N)
    Example 2 3.9
    Comparative example 2 4.8
  • EXAMPLE 3
  • Measurement results of concentration of dioxin in residual ash taken in the burning test in Example 1 are shown in Table 5 (measured by: Bab-Hitachi Industrial Co.). [0046]
    TABLE 5
    Specimen Dioxin (ng-TEQ/m3)
    Example 3 0.033
    Comparative example 3 0.12
  • Toxicity equivalent concentration [0047]
  • COMPARATIVE EXAMPLE 3
  • Measurement result of concentration of dioxin in residual ash taken in the burning test in the comparative example 1 is also shown in Table 5. [0048]
  • As seen in Table 5, concentration of dioxin contained in the residual ashes with the dioxin-generation inhibitor according to the present invention having been spread was about ¼in comparison with the case not spreading the inhibitor. In view of concentration of dioxin in residual ash 6.6 nanogram according to a certain measurement result, that in the comparative example in this invention is quite little. This is so inferred as resulting from using the RDF as wastes material in this Example and comparative example (to be noted here is that RDF mixes quicklime.). [0049]
  • Effect of the Invention [0050]
  • As seen from the above, the inhibitor for inhibiting generation of dioxin according to the present invention comprises an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas, as main contents, and a degradation agent additionally used when required, the mixture of these materials being granulated and dried. [0051]
  • Hence, the dioxin-generation inhibitor is superior in ability of adsorbing hydrogen chloride gas and is capable of largely reducing generation of dioxin contained in the combustion gas and residual gas, thereby making a great contribution to environmental sanitation. Also, the present invention can make use of industrial wastes as the adsorbing substance to thereby be excellent in the respect of saving resources while providing such advantage as being manufactured at a low cost and with a simple apparatus and technology. [0052]
  • The method for burning wastes according to the present invention involves spreading over wastes being burnt the dioxin-generation inhibitor that comprises a granular material, powder material or a mixture of the same, so that the powder material removes hydrogen chloride gas in combustion gas and flying ashes and the granular material removes hydrogen chloride gas in residual ash, whereby inhibiting generation of dioxin. [0053]
  • The dioxin-generation inhibitor according to the present invention can be used selectively correspondingly to the scale of incinerators and combustion furnaces to burn wastes or refuge. The dioxin-generation inhibitor is also usable in burning off dead grass or a field or in a bonfire without use of incinerators or the like. [0054]
  • Hence, the present invention provides that concentration of dioxin contained in the exhaust gas can be largely reduced or decreased with a simple device (although hitherto realized at a quite high cost), and concentration of dioxin in the residual ashes is also largely decreased (which has been almost impossible conventionally), providing a good news to the serious environmental problem. [0055]

Claims (13)

What we claimed is:
1. A method for burning wastes almost without generating dioxin comprising
spreading over wastes being burnt
a mixture of a granular material and a powder material that comprise as main contents an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas, or a granular material comprising as the main contents the adsorbing substance and the reaction substance and partly easily degradable into a powder material by a mechanical or thermal stimulation,
whereby the powder material removes hydrogen chloride gas in combustion gas, exhaust gas and flying ashes and the granular material removes hydrogen chloride gas generated upon burning wastes and hydrogen chloride gas in residual ashes, thereby inhibiting generation of dioxin.
2. A method for burning wastes almost without generating dioxin comprising press feeding to a combustion point of wastes being burnt a powder material that comprises as main contents an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas, whereby removing hydrogen chloride gas generated upon burning wastes and inhibiting generation of dioxin.
3. A method for burning wastes almost without generating dioxin comprising previously mixing with wastes before burning operation
a granular material and/or a powder material that comprise as main contents an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas,
whereby removing hydrogen chloride gas in combustion gas, exhaust gas, flying ashes and residual ashes and inhibiting generation of dioxin.
4. A method for burning wastes almost without generating dioxin as set forth in claim 1, 2 or 3, wherein the adsorbing substance employs synthetic zeolite, fly ash, coffee grounds, used tea leaves or other wastes of plant, or any of these being activated, and the reaction substance employs at least one compound among calcium oxide and calcium hydroxide.
5. A method for burning wastes almost without generating dioxin as set forth in claim 1 or 3, wherein spreading over wastes being burnt at more than 450° C. an inhibitor for inhibiting generation of dioxin that comprises as main matters at least one compound among calcium oxide and calcium hydroxide and powder of an adsorbing substance superior in rate of adsorbing hydrogen chloride gas, such as synthetic zeolite, fly ash, coffee grounds, used tea leaves, other wastes of plant or any of these being activated, and additionally, a degradation agent, those materials being into granules and dried,
whereby causing the inhibitor to be partly degraded into a powder material.
6. A method for burning wastes almost without generating dioxin as set forth in claim 1, 2, 3, 4 or 5 wherein the dioxin-generation inhibitor is spread over wastes to be burnt at a proportion of 0.2 to 5 wt % or preferably of 0.5 to 1.5 wt % with respect to a weight of wastes when in dry state.
7. An inhibitor for inhibiting generation of dioxin comprising a mixture of a granular material and a powder material that composed of as main contents an adsorbing substance superior in rate of adsorbing hydrogen chloride gas and a reaction substance superior in reactivity with hydrogen chloride gas, or a granular material comprising as the main contents the adsorbing substance and the reaction substance and partly easily degradable into a powder material by a mechanical or thermal stimulation.
8. An inhibitor for inhibiting generation of dioxin as set forth in claim 7 wherein the adsorbing substance employs synthetic zeolite, fly ash, coffee grounds, used tea leaves or other wastes of plant, or any of these being activated, and the reaction substance employs at least one compound among calcium oxide and calcium hydroxide.
9. An inhibitor for inhibiting generation of dioxin as set forth in claim 7 or 8 wherein an organic matter or oyster shell powder as the degradation agent is added and the mixed materials are granulated and dried.
10. A method of producing a dioxin-generation inhibitor comprising the steps of mixing a powder of an adsorbing substance superior in rate of adsorbing hydrogen chloride gas, such as synthetic zeolite, fly ash, coffee grounds, used tea leaves, other wastes of plant or any of these being activated, and a powder of at least one compound among calcium oxide and calcium hydroxide, and adding a little amount of powder of an organic matter or oyster shell as a degradation agent when required, and then granulating and drying these mixed materials.
11. A method of producing a dioxin-generation inhibitor as set forth in claim 10 wherein the granules material after drying is subjected to a granulator to be partly made powdery.
12. A method of producing a RDF having less generation of dioxin comprising a process of adding to crushed wastes when crushed, compressed and made solid a mixture of a powder of an adsorbing substance superior in rate of adsorbing hydrogen chloride gas, such as synthetic zeolite, fly ash, coffee grounds, used tea leaves, other wastes of plant or any of these being activated, and a powder of at least one compound among calcium oxide and calcium hydroxide.
13. A method of producing a RDF having less generation of dioxin as set forth in claim 12 wherein the powder mixture is added at a proportion of 0.2 to 5 wt %, preferably 0.5 to 1.5 wt % with respect to a weight of wastes being dry.
US09/864,354 1999-11-25 2001-05-25 Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor Abandoned US20020189511A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000359970A JP2001215007A (en) 1999-11-25 2000-11-27 Refuse incineration method hardly generating dioxins and the like, dioxins and the like generation suppressing agent and its manufacturing method
EP01112047A EP1260765A1 (en) 1999-11-25 2001-05-23 Combustion additive to reduce dioxin emissions
US09/864,354 US20020189511A1 (en) 1999-11-25 2001-05-25 Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33509899 1999-11-25
JP2000359970A JP2001215007A (en) 1999-11-25 2000-11-27 Refuse incineration method hardly generating dioxins and the like, dioxins and the like generation suppressing agent and its manufacturing method
EP01112047A EP1260765A1 (en) 1999-11-25 2001-05-23 Combustion additive to reduce dioxin emissions
US09/864,354 US20020189511A1 (en) 1999-11-25 2001-05-25 Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor

Publications (1)

Publication Number Publication Date
US20020189511A1 true US20020189511A1 (en) 2002-12-19

Family

ID=27440127

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/864,354 Abandoned US20020189511A1 (en) 1999-11-25 2001-05-25 Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor

Country Status (3)

Country Link
US (1) US20020189511A1 (en)
EP (1) EP1260765A1 (en)
JP (1) JP2001215007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292339A (en) * 2013-06-24 2013-09-11 湖南科技大学 Comprehensive processing recycling process and device of bromine-contained high temperature flue gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107583417B (en) * 2017-08-31 2019-12-24 沈阳三聚凯特催化剂有限公司 Normal-temperature gas-phase dechlorinating agent and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243969A1 (en) * 1982-11-27 1984-05-30 Viessmann Werke Kg, 3559 Allendorf Process for flue gas desulphurisation and heating boiler therefor
DK155438C (en) * 1986-09-18 1989-08-14 Helweg Joergensen A S PROCEDURE FOR REDUCING DANGEROUS COMPONENTS IN ROEGGAS AND A PRODUCT FOR EXERCISING THE PROCEDURE
JP2633316B2 (en) 1988-07-22 1997-07-23 三井造船株式会社 Exhaust gas treatment method for waste incinerator
JPH0775656B2 (en) 1989-06-07 1995-08-16 正勝 平岡 Exhaust gas treatment method
JP2542290B2 (en) 1991-02-18 1996-10-09 正勝 平岡 Exhaust gas purification method
WO1993019141A1 (en) * 1992-03-26 1993-09-30 Märker Zementwerk Gmbh Process for reducing the pollutant content of crude gas from combustion plants
JPH07204432A (en) 1994-01-14 1995-08-08 Mitsubishi Heavy Ind Ltd Exhaust gas treatment method
KR0146503B1 (en) * 1995-07-31 1998-08-17 강박광 Polyfunctional granular molecular sieve composition
WO1997006876A1 (en) * 1995-08-11 1997-02-27 Solvay Alkali Gmbh Process for reducing the dioxin and furan content in waste gases from furnaces, and use of the filter dusts produced thereby
JP3379677B2 (en) 1996-02-16 2003-02-24 栗田工業株式会社 Inhibitor for dioxin formation in incinerator and method
JPH10128062A (en) 1996-10-25 1998-05-19 Kanegafuchi Chem Ind Co Ltd Waste gas treating agent for incineration equipment
DE19953418A1 (en) * 1999-11-06 2001-05-17 Gsf Forschungszentrum Umwelt Process for reducing the content of polychlorinated dibenzodioxins and furans in the waste gas from high-temperature chemical processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292339A (en) * 2013-06-24 2013-09-11 湖南科技大学 Comprehensive processing recycling process and device of bromine-contained high temperature flue gas

Also Published As

Publication number Publication date
EP1260765A1 (en) 2002-11-27
JP2001215007A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
CN109404916B (en) High-temperature melting harmless treatment process for waste incineration fly ash
US6883444B2 (en) Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
CA2445182C (en) Processes and systems for using biomineral by-products as a fuel and for nox removal at coal burning power plants
CN113332844A (en) Method for treating garbage by catalytic decomposition of dioxin
CN207313422U (en) A kind of innocuity disposal system of domestic sludge
US20020189511A1 (en) Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor
CN101700488A (en) Production method of special active carbon for adsorbing dioxin
JP2006007186A (en) Scavenger for heavy metals and separation/removal method for heavy metals
WO2007089046A1 (en) Coal/biomass composite fuel
JP3840494B2 (en) Recycling method of incineration ash
JP3537123B2 (en) Method for producing solid fuel from sewage sludge
CN101725989B (en) Retardant adding system for retarding generation of dioxins
TW508275B (en) Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and Method of producing the inhibitor
JPH08176567A (en) Production of solid fuel from waste and utilization of the same solid fuel
JP2003088724A (en) Powdery inhibitor of dioxins generation and hydrogen chloride removing agent
Shen et al. Effects of sulfur and calcium compounds on dioxin reduction in a fluidized bed combustor
CN1388338A (en) Method for producing hardly dioxine during firing wastes inhibitor for inhibiting generation of dioxine and process for producing the same inhibitor
JP2000093743A (en) Method for treating exhaust gas from refuse incinerator and treatment device
JPS6310698A (en) Method for making solid fuel composition and harmful waste inoxious
KR20020089926A (en) Method for burning wastes almost without generating dioxin, inhibitor of generating dioxin, and method of producing the inhibitor
JP3037688B1 (en) Dioxin adsorption removal method using porous fired body
Peng et al. Combustion of Sewage Sludge
JPH11290641A (en) High temperature removal of corrosive gas
JPH119963A (en) Agent to be blown to flue of incinerator and method for treating flue gas
JPH11169815A (en) Method for briquetting waste incineration ash

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIINA, KEIJI, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURAKAMI, MASUZO;MURAKAMI, TETSUO;REEL/FRAME:011853/0417

Effective date: 20010516

Owner name: ZEOLITE CHEMICAL INDUSTRIES, INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MURAKAMI, MASUZO;MURAKAMI, TETSUO;REEL/FRAME:011853/0417

Effective date: 20010516

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION