US20020187056A1 - Rapid tyre inflation plant - Google Patents

Rapid tyre inflation plant Download PDF

Info

Publication number
US20020187056A1
US20020187056A1 US10/045,336 US4533601A US2002187056A1 US 20020187056 A1 US20020187056 A1 US 20020187056A1 US 4533601 A US4533601 A US 4533601A US 2002187056 A1 US2002187056 A1 US 2002187056A1
Authority
US
United States
Prior art keywords
pressure
inflation
valve
plant according
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/045,336
Inventor
Tullio Gonzaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Butler Engineering and Marketing SpA
Original Assignee
Butler Engineering and Marketing SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Butler Engineering and Marketing SpA filed Critical Butler Engineering and Marketing SpA
Assigned to BUTLER ENGINEERING & MARKETING S.R.L. reassignment BUTLER ENGINEERING & MARKETING S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GONZAGA, TULLIO
Publication of US20020187056A1 publication Critical patent/US20020187056A1/en
Priority to US10/444,515 priority Critical patent/US6857311B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/04Supplying air for tyre inflation
    • B60S5/043Supplying air for tyre inflation characterised by the inflation control means or the drive of the air pressure system
    • B60S5/046Supplying air for tyre inflation characterised by the inflation control means or the drive of the air pressure system using electrical or electronical means

Definitions

  • the present invention regards a rapid tyre inflation plant.
  • tyres are currently inflated using an inflation device (an inflation pistol provided with manometer), connected to a distribution network of compressed air. Inflation occurs by inserting air through a check valve for tyres that, as is well known, has a relatively small section for the passage of air, usually of about 3 mm 2 .
  • the main object of the present invention is to provide an inflation plant that makes it possible to fill a tyre in very brief time without dismantling the tyre valve's internal mechanism.
  • Another object of this invention is to provide structurally very simple inflation equipment that is both high performance and low in its production cost.
  • a rapid tyre inflation equipment or plant having a low pressure high flow inflating gas source and an inflation device, and being characterised in that it comprises a motor, a compressor driven by said motor and a control circuit for controlled feed of low pressure inflating gas from said inflating gas source to said compressor and for the feed of inflating gas at a relatively high flow and pressure to said inflation device.
  • the said motor comprises a turbine suitable for the exploitation of the energy derived from the inflating gas fed thereto at relatively high flow and low pressure from said inflation gas source by way of said control circuit.
  • FIG. 1 shows a diagrammatic view of a first embodiment of the plant in accordance with the present invention.
  • FIG. 2 shows a block diagram illustrating a second embodiment of the present invention.
  • a rapid tyre control inflation equipment or plant comprises a compressor C, a turbine T, an inflation device DG and a controlled tyre pressure transmission circuit CTP.
  • the controlled tyre pressure circuit CTP comprises a connection pipe 1 , from an inflation gas source (generally indicated as 2 , but not shown in detail in the drawings), that may be of any suitable type, for example a motor-driven compressor possibly with a pressurised compressed air tank, has an open/close valve, preferably activated by a pedal 4 .
  • Two ducts 5 and 6 come out of the connection pipe, one to a pressure comparison valve 8 and the other to a switching valve 9 .
  • the inflation gas source 2 is also directly connected by a duct 7 to a pressure reducer 10 , whose output, via a pipe 11 with a manometer 12 setting the inflation pressure, is connected to a first input 8 a of a pressure comparison valve 8 , which is designed to control the switching valve 9 , whose output 8 b is for this reason connected to a control circuit 9 a of the switching valve.
  • the pressure comparison valve 8 is arranged to control the switching valve 9 , which is directly supplied by the source 2 through the duct 6 , while, in its turn, this feeds along duct 13 both an input Ta to turbine T and an input Ca to the compressor O.
  • a second input 8 c of pressure comparison valve 8 by way of a duct 14 along which are connected in series a constrictor 15 and a fixed non adjustable pressure reducer 16 , is connected to a control manometer 21 , as will be explained in further detail below.
  • the duct 14 is in communication with the switching valve 9 by way of a pipe 17 with an interposed compensation tank 17 a .
  • a duct 18 branches off which is in communication with a discharge valve 19 , e.g. of a button type, whose working will be explained below.
  • the duct 13 Before the duct 13 reaches the input Ta to the turbine T, it has a coil section located in a heat exchanger 22 to absorb heat to preheat the compressed air from the source 2 before it enters the turbine T.
  • the preheating heat is provided by a length of duct 23 connected to the output Cb of the compressor C and directed to the inflation device DG of a tyre P that is to be filled.
  • the duct 23 by way of duct 14 a is in fluid communication with to the control manometer 21 and then through duct 14 , the pressure reducer 16 and the constrictor 15 and with an input 8 c of the pressure comparison valve 8 .
  • the output shaft Au of the turbine T is operatively directly connected to compressor C in order to activate this latter.
  • the turbine T has a discharge output Tb, preferably fitted with a silencer 24 .
  • the operator steps on the pedal 4 to open valve 3 and connect both the turbine T and the compressor C to the compressed air source 2 that supplies air at relatively low pressure.
  • the available flow in a normal compressed air source 2 in an inflation station is usually about 4000 N1/min at about 10 bar.
  • the pressure comparison valve 8 on the one side, through its input 8 a measures the preset inflation pressure through its own input while, on the other side, its input 8 c measures the actual pressure during filling, i.e. that present in the tyre itself P.
  • the pressure comparison valve 8 will keep the switching valve 9 open, and when this balance has been reached, with the preset pressure obtained, the switching valve is caused to be closed so the supply of compressed air is cut off both to the turbine T and to the compressor C.
  • a part of the air from the source 2 at about 10 bar is sent to the turbine T passing first through the heat exchanger 22 , where it is preheated to increase the performance efficiency of the turbine T.
  • the preheating heat is provided by the strongly compressed air, e.g. at 40 bar, coming from the compressor C, the temperature of the air having been markedly raised to as much as about as 150° C. as a result of its being compressed.
  • the energy required to activate the compressor C is supplied by the turbine T that is fed with a part of the compressed air coming from the source 2 , thus at the same pressure as that supplied to the compressor, thus having a compression factor of about 4 .
  • the turbine T like the compressor C, can be of any suitable type art, a microprocessor, a microprocessor access keyboard 32 and a control manometer 33 , this latter connected by a duct 34 with the output line 23 from the compressor C, to detect the actual inflating pressure.
  • the control unit 31 compares the actual inflating pressure and a preset maximum inflation pressure in the control unit's memory and locks the supply to line 13 when the actual inflating pressure reaches the preset value.
  • the whole inflation plant can be made of a suitable size and made suitably compact for mobile use or integrated with an inflation unit such as an inflation cage, a machine for the mounting and dismounting of tyres or similar devices and equipment.
  • an inflation unit such as an inflation cage, a machine for the mounting and dismounting of tyres or similar devices and equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Tires In General (AREA)
  • Manipulator (AREA)
  • Nozzles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dowels (AREA)
  • Ladders (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A rapid tire inflation plant comprising a low pressure high flow inflating gas source (2), an inflation device (DG), a motor (T), a compressor (C) driven by said motor and a control circuit arranged to control feed of low pressure inflating gas from said inflating gas source (2) to said compressor (C) and the feed of inflating gas at a relatively high flow and pressure to said inflation device (DG).

Description

    BACKGROUND OF THE INVENTION
  • The present invention regards a rapid tyre inflation plant. [0001]
  • Generally speaking tyres are currently inflated using an inflation device (an inflation pistol provided with manometer), connected to a distribution network of compressed air. Inflation occurs by inserting air through a check valve for tyres that, as is well known, has a relatively small section for the passage of air, usually of about 3 mm[0002] 2.
  • Given the available pressure gradient in normal compressed air distribution networks (with a maximum of 10 bar) and such a small section for air passage, the time taken to fully inflate a tyre is about 50 seconds for a car and ten minutes or more in the case of a road truck. In order to shorten the inflation times it has already been suggested to first dismantle the inner part of the check valve and then to reassemble it after inflation. With such an expedient the time taken to fill the tyre can be reduced to about 5 minutes but it is a very laborious process and in some cases may prejudice the proper working of the valve and thus compromise tyre safety, not least because it may result in possible pressure loss over a relatively short time. [0003]
  • So as to significantly reduce the inflation time, given that it is not possible to increase the section for the passage of air through the tyre check valve, it would be necessary to greatly increase the pressure of the filling gas (air, nitrogen or other inert gas), except for the fact that the limited energy available at the filling sites means it is not usually possible to obtain a sufficient pressure volume flow for the desired pressure. On the other hand, safety considerations rule out the use of a large, high capacity tank with a high internal pressure as the source of the compressed air upstream of the inflation system. [0004]
  • SUMMARY OF THE INVENTION
  • The main object of the present invention is to provide an inflation plant that makes it possible to fill a tyre in very brief time without dismantling the tyre valve's internal mechanism. [0005]
  • Another object of this invention is to provide structurally very simple inflation equipment that is both high performance and low in its production cost. [0006]
  • These and other objects that will better appear below are achieved, according to the present invention, by a rapid tyre inflation equipment or plant having a low pressure high flow inflating gas source and an inflation device, and being characterised in that it comprises a motor, a compressor driven by said motor and a control circuit for controlled feed of low pressure inflating gas from said inflating gas source to said compressor and for the feed of inflating gas at a relatively high flow and pressure to said inflation device. [0007]
  • Advantageously, the said motor comprises a turbine suitable for the exploitation of the energy derived from the inflating gas fed thereto at relatively high flow and low pressure from said inflation gas source by way of said control circuit.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further aspects and advantages of the present invention will better appear from the following detailed description of a presently preferred embodiment thereof, with reference to the accompanying drawings, in which: [0009]
  • FIG. 1 shows a diagrammatic view of a first embodiment of the plant in accordance with the present invention; and [0010]
  • FIG. 2 shows a block diagram illustrating a second embodiment of the present invention.[0011]
  • DESCRIPTION OF THE PREFERRED EMBODMENTS
  • In the accompanying drawings the same or similar parts are indicated with the same reference numerals. [0012]
  • With reference first to the embodiment shown in FIG. 1, a rapid tyre control inflation equipment or plant, comprises a compressor C, a turbine T, an inflation device DG and a controlled tyre pressure transmission circuit CTP. [0013]
  • The controlled tyre pressure circuit CTP comprises a [0014] connection pipe 1, from an inflation gas source (generally indicated as 2, but not shown in detail in the drawings), that may be of any suitable type, for example a motor-driven compressor possibly with a pressurised compressed air tank, has an open/close valve, preferably activated by a pedal 4. Two ducts 5 and 6 come out of the connection pipe, one to a pressure comparison valve 8 and the other to a switching valve 9.
  • The [0015] inflation gas source 2 is also directly connected by a duct 7 to a pressure reducer 10, whose output, via a pipe 11 with a manometer 12 setting the inflation pressure, is connected to a first input 8 a of a pressure comparison valve 8, which is designed to control the switching valve 9, whose output 8 b is for this reason connected to a control circuit 9 a of the switching valve. The pressure comparison valve 8 is arranged to control the switching valve 9, which is directly supplied by the source 2 through the duct 6, while, in its turn, this feeds along duct 13 both an input Ta to turbine T and an input Ca to the compressor O.
  • A [0016] second input 8 c of pressure comparison valve 8, by way of a duct 14 along which are connected in series a constrictor 15 and a fixed non adjustable pressure reducer 16, is connected to a control manometer 21, as will be explained in further detail below. At its length comprised between the constrictor 15 and the pressure reducer 16, the duct 14 is in communication with the switching valve 9 by way of a pipe 17 with an interposed compensation tank 17 a. In addition, from the duct 14 a duct 18 branches off which is in communication with a discharge valve 19, e.g. of a button type, whose working will be explained below.
  • Before the [0017] duct 13 reaches the input Ta to the turbine T, it has a coil section located in a heat exchanger 22 to absorb heat to preheat the compressed air from the source 2 before it enters the turbine T. The preheating heat is provided by a length of duct 23 connected to the output Cb of the compressor C and directed to the inflation device DG of a tyre P that is to be filled.
  • Downstream of the [0018] heat exchanger 22, the duct 23 by way of duct 14 a is in fluid communication with to the control manometer 21 and then through duct 14, the pressure reducer 16 and the constrictor 15 and with an input 8 c of the pressure comparison valve 8.
  • As is schematically indicated in FIG. 1, the output shaft Au of the turbine T is operatively directly connected to compressor C in order to activate this latter. The turbine T has a discharge output Tb, preferably fitted with a [0019] silencer 24.
  • The operation of the above described equipment is very simple and reliable. [0020]
  • Once the DG inflation device has been set up and connected to the usual inflation valve included with a tyre P, and the [0021] manometer 12 has been set at the desired pressure for the tyre type and performance rating, the operator steps on the pedal 4 to open valve 3 and connect both the turbine T and the compressor C to the compressed air source 2 that supplies air at relatively low pressure. The available flow in a normal compressed air source 2 in an inflation station is usually about 4000 N1/min at about 10 bar.
  • The [0022] pressure comparison valve 8, on the one side, through its input 8 a measures the preset inflation pressure through its own input while, on the other side, its input 8 c measures the actual pressure during filling, i.e. that present in the tyre itself P. As long as there is an imbalance between the two pressures, i.e. that set for the manometer 12 and that reached in the tyre P, the pressure comparison valve 8 will keep the switching valve 9 open, and when this balance has been reached, with the preset pressure obtained, the switching valve is caused to be closed so the supply of compressed air is cut off both to the turbine T and to the compressor C.
  • In practice this balance is obtained gradually in successive stages and, to ensure the [0023] switching valve 9 stays closed until the set inflation pressure is reached, the tank 17 acts as a compensation reservoir to make the working of the valve both precise and sensitive.
  • As has already been indicated, a part of the air from the [0024] source 2 at about 10 bar is sent to the turbine T passing first through the heat exchanger 22, where it is preheated to increase the performance efficiency of the turbine T. The preheating heat is provided by the strongly compressed air, e.g. at 40 bar, coming from the compressor C, the temperature of the air having been markedly raised to as much as about as 150° C. as a result of its being compressed.
  • The flow of compressed air from a typical inflation station is, as was stated earlier, about 4000 N1/min at 10 bar, while the flow that is required to obtain rapid inflation is of the order of 500 N1/min at 40 bar. The energy balance between available power in an inflation station is therefore W=4000 ×10=40,000 and that necessary for rapid inflation of W[0025] 1 =500×40=20,000 is decidedly favourable to the solution created by the present invention.
  • The energy required to activate the compressor C is supplied by the turbine T that is fed with a part of the compressed air coming from the [0026] source 2, thus at the same pressure as that supplied to the compressor, thus having a compression factor of about 4.
  • The turbine T, like the compressor C, can be of any suitable type art, a microprocessor, a [0027] microprocessor access keyboard 32 and a control manometer 33, this latter connected by a duct 34 with the output line 23 from the compressor C, to detect the actual inflating pressure.
  • The [0028] control unit 31 compares the actual inflating pressure and a preset maximum inflation pressure in the control unit's memory and locks the supply to line 13 when the actual inflating pressure reaches the preset value.
  • The whole inflation plant can be made of a suitable size and made suitably compact for mobile use or integrated with an inflation unit such as an inflation cage, a machine for the mounting and dismounting of tyres or similar devices and equipment. [0029]
  • The above described inflation plant may be modified in numerous ways to produce several variants within the ambit of the protection set forth in the claims that follow below. [0030]
  • Therefore, for example, in place of the T there could be an electric motor or motor of some other type. [0031]

Claims (10)

1. A rapid tyre inflation plant comprising a low pressure high flow inflating gas source, an inflation device, a motor, a compressor driven by said motor and a control circuit arranged to control feed of low pressure inflating gas from said inflating gas source to said compressor and the feed of inflating gas at a relatively high flow and pressure to said inflation device.
2. A plant according to claim 1, wherein said motor comprises a turbine suitable for the exploitation of energy deriving from the inflation gas supplied thereto from said control circuit at a relatively large flow and low pressure coming from the said inflation gas source.
3. A plant according to claim 2, comprising a heat exchanger designed to intercept the supply of inflation gas to said turbine and the supply of compressed inflation gas coming from said compressor.
4. A plant according to claim 1, wherein said control circuit comprises a comparator device designed to compare a preset threshold pressure with the actual inflating pressure and shut off the supply of inflation gas when the inflating pressure reaches a preset threshold pressure value.
5. A plant according to claim 4, wherein said comparator device comprises a three-input pressure comparing valve and an output arranged to communicate through a first input with said inflation gas source, a switching valve controlled by said comparing valve and communicating with the output of said pressure comparing valve, a threshold-pressure presetting manometer in fluid communication with a second input to said pressure comparing valve, and a manometer detecting the pressure in a tyre that is being inflated in controlled fluid communication with a third input to said pressure comparing valve.
6. A plant according to claim 5, characterised in that said manometer measuring the pressure in a tyre being inflated communicates with said third input of said pressure comparing valve by way of a pressure reducer, a constrictor connected in series, a compensation tank connected between said reducer said constrictor and said switching valve, and an adjustable pressure reducer between said inflation gas source and said preset pressure threshold manometer.
7. A plant according to claim 1, characterised in that said control circuit comprises a control unit including a microprocessor, a microprocessor access keyboard, a control manometer arranged to measure the pressure of the inflation gas at the compressor output, and a power actuator that can be controlled by said control unit and also having an electro-valve connected at its output with the input of said turbine and said compressor, whereas at its first input it communicates with said inflation gas source.
8. A plant according to any claim 7, characterised in that it comprises a silencer for the turbine output.
9. A plant according to claim 1, comprising a deflation valve connected to the said compressor output.
10. A plant according to claim 1, comprising a shut-off valve between said inflation gas source and said control circuit.
US10/045,336 2000-10-30 2001-10-23 Rapid tyre inflation plant Abandoned US20020187056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/444,515 US6857311B2 (en) 2000-10-30 2003-05-23 Rapid tire inflation plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2000VR000108A IT1314448B1 (en) 2000-10-30 2000-10-30 SYSTEM FOR RAPID TIRE INFLATION.
ITVR2000A000108 2000-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/444,515 Continuation-In-Part US6857311B2 (en) 2000-10-30 2003-05-23 Rapid tire inflation plant

Publications (1)

Publication Number Publication Date
US20020187056A1 true US20020187056A1 (en) 2002-12-12

Family

ID=11461901

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/045,336 Abandoned US20020187056A1 (en) 2000-10-30 2001-10-23 Rapid tyre inflation plant

Country Status (10)

Country Link
US (1) US20020187056A1 (en)
EP (1) EP1201518B1 (en)
JP (1) JP3936567B2 (en)
AT (1) ATE258860T1 (en)
DE (1) DE60101940T2 (en)
DK (1) DK1201518T3 (en)
ES (1) ES2215103T3 (en)
IT (1) IT1314448B1 (en)
PT (1) PT1201518E (en)
TR (1) TR200400696T4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050081973A1 (en) * 2002-01-11 2005-04-21 Messier-Bugatti Inflatable wheel assembly
CN102803920A (en) * 2009-06-17 2012-11-28 株式会社神户制钢所 Tire testing device's pneumatic circuit, tire testing device, and tire testing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556008B (en) * 2011-12-28 2014-01-15 浙江金刚汽车有限公司 Simple automobile tire automatic inflation device and inflation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811648A1 (en) * 1988-04-07 1989-10-26 Olaf Dipl Ing Kraschienski Air pump
JPH07127571A (en) * 1993-11-01 1995-05-16 Chugoku Yuki Service:Kk Device for collectively filling large tire with highly compressed air
US6067850A (en) * 1997-07-09 2000-05-30 Lang; Yu Fast and accurate tire pressure charge controller
IT1309368B1 (en) * 1999-07-30 2002-01-22 Butler Eng & Marketing PROCEDURE AND DEVICE TO CHANGE THE COMPOSITION OF A MIXTURE.
US6269691B1 (en) * 2000-03-17 2001-08-07 Equalaire Systems, Inc Automatic tire inflation system with booster pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050081973A1 (en) * 2002-01-11 2005-04-21 Messier-Bugatti Inflatable wheel assembly
US20070240803A1 (en) * 2002-01-11 2007-10-18 Messier-Bugatti Inflatable wheel assembly
CN102803920A (en) * 2009-06-17 2012-11-28 株式会社神户制钢所 Tire testing device's pneumatic circuit, tire testing device, and tire testing method

Also Published As

Publication number Publication date
JP2002193081A (en) 2002-07-10
DK1201518T3 (en) 2004-05-24
ATE258860T1 (en) 2004-02-15
ITVR20000108A0 (en) 2000-10-30
DE60101940D1 (en) 2004-03-11
IT1314448B1 (en) 2002-12-13
JP3936567B2 (en) 2007-06-27
PT1201518E (en) 2004-06-30
EP1201518B1 (en) 2004-02-04
ITVR20000108A1 (en) 2002-04-30
EP1201518A1 (en) 2002-05-02
DE60101940T2 (en) 2004-12-23
ES2215103T3 (en) 2004-10-01
TR200400696T4 (en) 2004-05-21

Similar Documents

Publication Publication Date Title
US6269691B1 (en) Automatic tire inflation system with booster pump
CA2111180C (en) Trailer detection control for vehicle central tire inflation system
AU653123B2 (en) Adaptive inflation control for vehicle central tire inflation system
US9028738B2 (en) Tire vulcanizer and tire vulcanizing method
US7051585B2 (en) Supply and tire pressure sensing apparatus and method
EP2121291B1 (en) Unit for repairing and inflating an inflatable article
US20020121323A1 (en) Tire pressure adjusting device
UA45501C2 (en) DEVICE AND METHOD FOR PRESSURE REGULATION IN VEHICLE TIRES
US6345970B1 (en) Hydraulic system for tire curing press
US6857311B2 (en) Rapid tire inflation plant
US5293910A (en) Pneumatic safety circuit for air inflation devices
US20020187056A1 (en) Rapid tyre inflation plant
EP3165383B1 (en) Vehicle air supply system
CN104385864B (en) Adjustable pressure type inflation and deflation method
NZ329569A (en) Electronic tyre inflation and pressure checking apparatus
JP2002193081A5 (en)
CN207648454U (en) Aircraft air charging system
US6145535A (en) Air priority valve for a compressed air supply system
CN207416085U (en) A kind of wind pressure automatic control system
CN214189197U (en) Centralized inflation and deflation system of pneumatic tyre roller
CN214137430U (en) Inert gas applied clamping force control device for tire vulcanizer
KR100397801B1 (en) Jack for vehicle
KR200241574Y1 (en) Jack for vehicle
CN114248479A (en) Inert gas applied mold clamping force control device for tire vulcanizer and control method thereof
EP0473648A1 (en) Improved pneumatic safety circuit for air inflation devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: BUTLER ENGINEERING & MARKETING S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GONZAGA, TULLIO;REEL/FRAME:012492/0743

Effective date: 20010502

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE