US20020162089A1 - Methods and systems for developing data flow programs - Google Patents
Methods and systems for developing data flow programs Download PDFInfo
- Publication number
- US20020162089A1 US20020162089A1 US10/007,766 US776601A US2002162089A1 US 20020162089 A1 US20020162089 A1 US 20020162089A1 US 776601 A US776601 A US 776601A US 2002162089 A1 US2002162089 A1 US 2002162089A1
- Authority
- US
- United States
- Prior art keywords
- nodes
- data
- blocks
- block
- dependency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformation of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/433—Dependency analysis; Data or control flow analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/31—Programming languages or programming paradigms
- G06F8/314—Parallel programming languages
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/448—Execution paradigms, e.g. implementations of programming paradigms
- G06F9/4494—Execution paradigms, e.g. implementations of programming paradigms data driven
Definitions
- This invention relates to the field of multiprocessor computer systems and, more particularly, to data driven processing of computer programs using a multiprocessor computer system.
- Multiprocessor computer systems include two or more processors that execute the instructions of a computer program. One processor executes a particular set of instructions while other processors execute different sets of instructions.
- Programs for data-driven computations can be represented by data flow graphs.
- An example data flow graph is illustrated in FIG. 1 for the calculation of the following expression:
- the data flow graph is a directed acyclic graph (“DAG”) whose nodes correspond to operators and arcs are pointers for forwarding data.
- DAG directed acyclic graph
- the graph demonstrates sequencing constraints (i.e., constraints with data dependencies) among instructions.
- serial computing system e.g., a uniprocessor system
- the first instruction must be executed first, but the second or third instruction can be executed second, because the result of the first instruction is required for either the second or third instruction, but neither the second nor the third requires the result of the other.
- the remainder of each sequence follows the rule that no instruction can be executed until its operands (or inputs) are available.
- Methods, systems, and articles of manufacture consistent with the present invention facilitate development (e.g., visualization, debugging and optimization) of new programs according to the data flow model.
- such methods, systems, and articles of manufacture include a development tool that implements a block dependency approach that allows an operator to define a memory region and divide the memory region into multiple blocks.
- Each block is associated with data (e.g., a matrix) needed by a function or other program operation, as well as code that operates on that data.
- a “block” refers to one or more data elements in memory and does not imply a particular shape (e.g., square or rectangular) for the data elements or their placement in the memory.
- a block refers to a portion of data in memory, but does not necessarily indicate the structure or arrangement of the data in the memory.
- the operator specifies any dependencies among the blocks, for example, a subsequent block may be specified dependent on an initial block. Such a dependency indicates that, before executing, the code associated with the subsequent block needs the code associated with the initial block to execute on the data associated with the initial block.
- the development tool facilitates development (including visualization, debugging, and optimization) of data flow programs using the block dependency approach outlined above.
- Methods, systems, and articles of manufacture consistent with the present invention overcome the shortcomings of the related art, for example, by providing a data flow program development tool.
- the development tool allows a programmer to visually identify data dependencies between code segments, observe the execution of a data flow program under development, insert breakpoints, and modify data block code and data assignments and dependencies.
- a programmer may more easily develop a new data flow program or convert a control flow program to the data flow paradigm.
- a method for developing data flow programs.
- the method includes dividing a memory area into blocks, assigning data to the blocks, and assigning code segments of a program to the blocks.
- the method further includes determining dependencies between blocks and displaying a graph representing the dependency relationship between the blocks.
- a method for developing data flow programs. The method dividing a memory area that extends over a data set into blocks, for each block in the memory area, associating data from the data set with the block, and for each block in the memory area, associating a code segment to the block. The method further includes maintaining data read and write information for each code segment, determining dependencies between data blocks based on the read and write information, and displaying a directed acyclic graph, the directed acyclic graph comprising nodes and arcs, each node representing at least one block, and each arc representing a dependency relationship between a first node and a second node.
- the method changes the presentation of the nodes and arcs to indicate unexecuted nodes using an unexecuted visualization, executing nodes using an executing visualization, executed nodes using an executed visualization, satisfied dependency arcs using a satisfied dependency visualization, and unsatisfied dependency arc using an unsatisfied dependency visualization.
- a data processing system for developing data flow programs.
- the data processing system includes a memory comprising a data flow development tool comprising instructions that associate data processed by a data flow program to blocks in memory, associate code segments of the data flow program to blocks, determine dependencies between blocks that give rise to an execution order for the blocks, and display a graph of nodes and arcs depicting dependency relationships between the blocks.
- the data processing system further includes a processing unit that runs the data flow development tool.
- a computer readable medium contains instructions that cause a data processing system to perform a method for developing data flow programs.
- the method includes dividing a memory area into blocks, assigning data to the blocks, and assigning code segments of a program to the blocks.
- the method further includes determining dependencies between blocks and displaying a graph representing the dependency relationship between the blocks.
- a computer readable medium is provided that is encoded with a data structure accessed by a data flow development tool run by a processor in a data processing system.
- the data structure includes nodes assigned to data processed by a data flow program and to code segments of the data flow program and dependencies between nodes.
- FIG. 1 depicts an example data flow graph for the calculation of an expression.
- FIG. 2 depicts a block diagram illustrating an example of a memory region.
- FIGS. 3A and 3B depict block diagrams illustrating an example of dependency relationships among the blocks of the memory region illustrated in FIG. 2.
- FIG. 4 depicts an example of a directed acyclic graph illustrating the dependency relationships shown in FIGS. 3A and 3B.
- FIG. 5 depicts a block diagram of an exemplary data processing system suitable for use with methods and systems consistent with the present invention.
- FIG. 6 depicts a flow chart of the steps performed by a data flow program development tool.
- FIG. 7 depicts an example of a queue reflecting an order of execution of memory region blocks by a data flow program.
- FIG. 8 depicts a block diagram of an exemplary multiprocessor computer system suitable for use with methods and systems consistent with the present invention.
- FIG. 9 depicts a flow chart of the steps performed during execution of a data flow program.
- FIGS. 10A, 10B, and 10 C depict block an execution cycle of a data flow program.
- FIG. 11 is an exemplary memory region containing a block with an array of elements.
- FIGS. 12A, 12B, 12 C, and 12 D illustrate the creation of dependencies between blocks.
- FIGS. 13 - 15 each shows three exemplary memory regions having blocks assigned to distribution groups.
- FIG. 16 illustrates a movement technique for assigning blocks to nodes.
- FIG. 17 depicts an example of a directed acyclic graph illustrating the dependency relationships shown in FIGS. 3A and 3B.
- FIG. 18 depicts a flow chart of the steps performed by the data flow program development tool for graphically presenting execution of a data flow program.
- FIGS. 19 - 25 depict the directed acyclic graph presented in FIG. 17 during the processing of the blocks in the directed acyclic graph.
- FIG. 26 depicts a flow diagram of the steps performed by the data flow program development tool when determining dependencies for a selected node.
- FIG. 27 depicts a flow diagram of the steps performed by the data flow program development tool when highlighting data affected by code segments.
- FIG. 28 depicts a flow diagram of the steps performed by the data flow program development tool when displaying the nodes executed by selected threads.
- FIG. 29 depicts a flow diagram of the steps performed by the data flow program development tool when stepping to a selected node.
- FIG. 30 depicts a flow diagram of the steps performed by the data flow program development tool when single stepping data flow program execution.
- FIG. 31 illustrates a flow diagram of the steps performed by the data flow program development tool when saving and replaying data flow program execution.
- FIG. 32 illustrates a flow diagram of the steps performed by the data flow program development tool when adding or deleting dependencies from a DAG.
- FIG. 33 illustrates a flow diagram of the steps performed by the data flow program development tool when setting and testing for breakpoints.
- FIG. 34 illustrates a DAG with a breakpoint.
- FIG. 35 illustrates a DAG after execution stopped by a breakpoint.
- Methods, systems, and articles of manufacture consistent with the present invention enable programmers to develop new data flow programs and to convert existing control flow programs to the data flow paradigm. To that end, the methods, systems, and articles of manufacture may implement a data flow program development tool.
- Data flow programs developed in accordance with the principles of the present invention may be executed on a multiprocessor computer system or a distributed computer system using the data flow model.
- the development tool may execute on the same or different data processing system from that used for executing the data flow program under development.
- the development tool facilitates dividing a memory region into blocks.
- Each block is associated with certain data and code, with dependencies specified between blocks.
- blocks that do not depend on one another can be executed in parallel, while blocks that do depend on one another await the completion of code execution and data manipulation of the block on which they depend.
- Dependencies are reflected as conceptual links between dependent blocks and the precursor blocks from which they depend.
- a dependent block is dependent on a precursor block when the dependent block needs the result of the precursor block in order for the dependent block to execute successfully.
- dependency relationships may be viewed graphically using a directed acyclic graph (“DAG”). Nodes in the graph correspond to blocks of the memory region, and thus the program code and data assigned to the blocks.
- DAG directed acyclic graph
- the code associated with the blocks is queued for processing in a multiprocessor data processing system, for example, by placing block pointers in a queue.
- Each processor may further execute multiple threads that can individually process blocks.
- the blocks are queued according to the dependency information associated with each block. Additional information may also affect the ordering of blocks in the queue, including priority information, and the like.
- the programmer may designate the number of threads available to process the blocks. For example, the programmer may designate two threads per processor. Each thread may, for example, maintain a program counter and temporary memory, as needed, to perform the code associated with the blocks.
- Each thread selects a block from the queue and executes the program code designated by the programmer for that block.
- the threads when available, select blocks and execute the associated program code. Threads select queued blocks for execution in a manner that reflects block dependency information. To that end, when an available thread selects a queued block for execution, the thread first examines the dependency information for that block. When the block or blocks from which the selected block depends have completed execution, then the thread can proceed to execute the program code for the selected block. Otherwise, the thread may enter a wait state until it can begin executing the program code for the selected block.
- the thread may select the next available block in the queue, based on any priority if appropriate, and examine that block to determine its status with respect to any blocks upon which it depends. Processing continues until the threads have completed executing the program code associated with all blocks in the queue. Note that while the multiprocessor data processing system may exist as a single physical unit, that the threads may be distributed over multiple processors across multiple data processing systems, for example, across a LAN or WAN network.
- a programmer specifies a memory region and divides the memory region into blocks using, for example, a graphical user interface component of the development tool.
- the development tool will generally be described in the context of developing a data flow program for matrix manipulation.
- the data element assigned to blocks may be scalars, structures, or any other type of data element.
- FIG. 2 shows an example of a memory region 200 that contains sixteen blocks arranged in a four-by-four matrix, with each block identified by a row number and column number.
- the block in the upper left corner of memory region 200 is labeled (1,1) indicating that it is located in the first row and the first column
- the block in the lower right hand corner of region 200 is labeled (4,4) indicating that it is located in the lower right corner.
- Each block contains a data set, such as a matrix or array of values or information, to be processed in accordance with certain program code.
- the memory region 200 may represent a 100 ⁇ 100 matrix of scalars, with each block representing a 25 ⁇ 25 subarray of the larger matrix.
- the memory region 200 and the blocks are shown are regular squares, the scalars need not be located contiguously in memory. Rather, the development tool presents the memory region 200 and the blocks to the programmer as shown in FIG. 2 as a user friendly view of the data that the data flow program will work with.
- the programmer After defining the memory region and dividing it into blocks, the programmer specifies a state for each block.
- the state of a block generally corresponds to the program code that the programmer assigns to that block.
- the assigned code is a portion of a program that the programmer intends to operate on the data in the block.
- the interface provides the programmer with a window or other input facility to provide the program code for a block and internally tracks the assignment of code to the blocks.
- the group of blocks 202 labeled (1,1), (2,1), (3,1), and (4,1) share a first state
- the group of blocks 204 labeled (1,2), (1,3), and (1,4) share a second state
- the group of blocks 206 labeled (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4) share a third state.
- the region 200 and the blocks 202 - 206 are shown as being uniform in size, in practice a memory region and blocks may have different shapes and sizes, hold different types of data, and be distributed in memory contiguously or non-contiguously.
- FIGS. 3A and 3B illustrate three examples of dependency relationships between blocks in the memory region 200 of FIG. 2.
- each of the blocks labeled (1,2), (1,3), and (1,4) are dependent on the blocks labeled (1,1), (2,1), (3,1), and (4,1).
- the blocks labeled (1,1), (2,1), (3,1), and (4,1) provide results needed by the blocks (1,2), (1,3), and (1,4).
- FIG. 3B illustrates dependencies among each of the blocks labeled (1,2), (1,3), and (1,4) and the blocks labeled (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4).
- the block labeled (1,2) is assigned data needed by the blocks in the same column labeled (2,2), (3,2), and (4,2)
- the block labeled (1,3) is assigned data needed the blocks in the same column labeled (2,3), (3,3), and (4,3)
- the block labeled (1,4) is assigned data needed by the blocks in the same column labeled (2,4), (3,4), and (4,4).
- FIGS. 3A and 3B illustrate examples of dependencies for the memory region 200 ; a programmer may, of course, specify many other dependencies as necessary to reflect the data processing structure of a data flow program under development.
- the development tool may also provide a dependency analysis component.
- the dependency analysis component examines program code to identify code that reads or writes specific data.
- the dependency analysis component may automatically insert dependencies between blocks when the programmer specifies the code to be assigned to each block.
- the development tool may build a separate step tree.
- the step tree is a data structure that represents program execution as a series of steps.
- the programmer adds steps to the tree, and specifies to the development tool which data objects that particular step reads or writes. For example, the programmer may use data read and data write identifiers (e.g., pointers or handles) to specify the data.
- the programmer further specifies a code section executed at that step. As steps are added, the step tree grows and maintains the order of the steps, and thus the order and dependencies for data objects needed by the code sections associated with the steps.
- the development tool may then parse the step tree to automatically extract block dependencies.
- FIG. 4 presents an example of a DAG 400 illustrating the dependency relationships shown in FIGS. 3 a and 3 b .
- the DAG 400 illustrates graphically that the processed data associated with all of the blocks sharing the first state is needed by the code associated with the blocks sharing the second state. In turn, the processed data associated with the blocks sharing the second state is needed by particular blocks that share the third state.
- the development tool may use the DAG 400 to order the blocks for processing as explained below.
- FIG. 5 depicts an exemplary data processing system 500 suitable for practicing methods and implementing systems consistent with the present invention.
- the data processing system 500 includes a computer system 510 connected to a network 570 , such as a Local Area Network, Wide Area Network, or the Internet.
- a network 570 such as a Local Area Network, Wide Area Network, or the Internet.
- the computer system 510 includes a main memory 520 , a secondary storage device 530 , a central processing unit (CPU) 540 , an input device 550 , and a video display 560 .
- the main memory 520 contains a data flow program development tool 522 and a data flow program 524 .
- the memory also holds a data flow DAG 526 and a step tree 528 .
- the data flow program development tool 522 provides the interface for designing and developing data flow programs, including programs that utilize control flow program code. Using display 560 , the development tool 522 enables programmers to design memory regions, such as region 200 of FIG. 2, and divide the regions into blocks with corresponding states.
- the tool further enables programmers to write program code to operate on each of the blocks using a multiprocessor computer system (see FIG. 7).
- the data flow program 524 represents a program designed in accordance with the data flow paradigm developed by the data flow tool 522 .
- the data flow program 524 includes, for example, information specifying a memory region, the blocks of the region, the program code associated with each block, and dependency relationships between the blocks.
- FIG. 6 is a flow chart of the process 600 performed by the development tool 522 interacting with programmers to construct data flow programs.
- the development tool 522 displays one or more windows that the programmer uses to construct a data flow program.
- the development tool 522 displays a window in which the programmer defines a memory region (step 610 ).
- the programmer uses the development tool 522 to divide the region into blocks (step 620 ).
- the programmer selects a block (step 640 ), identifies any other block(s) that influence the selected block's final state (in other words, block(s) upon which the selected block is dependent) (step 650 ), and specifies the program code for each block, for example, a portion of an existing control flow program (step 660 ).
- an existing control flow program may be converted to a data flow paradigm. Note, however, that the programmer may instead write new code for each block as part of the process of constructing a new data flow program.
- the programmer establishes the dependency relationships among the blocks by graphically linking them together (step 670 ).
- the programmer may add steps to the step tree, and instruct the development tool 522 to automatically extract dependencies.
- the development tool 522 first assists the programmer in defining a problem to be solved.
- the development tool 522 produces source files that can be compiled and run (step 675 ).
- the source files include code that (at run-time) produces in memory a DAG with the nodes and dependencies defined according to the steps set forth above.
- the nodes are placed on a queue (step 680 ). The nodes thus form the basis for parallel execution.
- the development tool 522 uses the dependency/link information to queue the blocks in a manner that reflects an acceptable order for processing. For example, a first block dependent upon a second block may be placed in the queue after the second block.
- the blocks may be queued in the manner shown in FIG. 7 with the blocks sharing the first state 202 , (1,1), (2,1), (3,1), and (4,1), queued before the blocks with the second state 204 , (1,2), (1,3), and (1,4), and followed by the blocks sharing the third state 206 , (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4).
- the data flow program under development may be executed in a multiprocessor data processing system.
- the multiprocessor data processing system may take many forms, ranging from a single multiprocessor desktop computer to network distributed computer systems with many nodes.
- FIG. 8 illustrates one implementation of a multiprocessor data processing system 810 .
- the data processing system 810 includes a network interface 820 that allows a programmer to transfer the data flow program from the development tool environment (e.g., FIG. 5) for execution in multiprocessor computer system 810 .
- the development tool 522 may execute on the same data processing system 810 on which the data flow program will execute.
- the data processing system 810 includes, shared memory 830 and multiple processors 840 a , 840 b , . . . 840 n .
- the number and type of processors may vary depending on the implementation.
- a Sun Microsystems HPC Server with a multiple processor configuration may be used as the data processing system.
- Processes execute independently on each of the processors in the data processing system 810 .
- a process in this context may include threads controlling execution of program code associated with a block of a data flow program developed using tool 522 .
- FIG. 9 the operation of a data flow program in accordance with the present invention will now be described with reference to the process 900 .
- Multiple threads are used to process the code associated with the blocks of the data flow program.
- the number of threads may vary depending on the implementation.
- the programmer may specify one thread per processor, or the data processing system 810 may determine the number of threads based on the number of available processors and an analysis of the data flow program.
- a thread determines whether there are any blocks in the queue (step 920 ). If so, the available thread selects a block from the queue for processing (step 930 ). Typically, the blocks are selected from the queue based on the order in which they were placed in the queue. If, however, a thread determines that a selected block is dependent upon a block associated with code that has not yet been executed (step 940 ), the thread skips the selected block (step 950 ). Otherwise, when the block dependencies for the selected block have been satisfied (step 940 ), the thread uses an assigned processor to execute the program code associated with the selected block (step 960 ). Processing generally continues until the threads have executed the code associated with each block in the queue (step 920 ).
- FIGS. 10 a - c illustrate a portion of the queue of FIG. 7, including the first five blocks of the memory region 200 queued for processing.
- each thread processes a selected block using one of the processors.
- the thread attempts to execute the next available block in the queue, in this case, the block labeled (1,2).
- the thread does not proceed to execute because the block labeled (1,2) is dependent upon the final state of other blocks still being executed, namely, blocks (2,1), (3,1), and (4,1).
- FIG. 10 c a thread can continue processing with block (1,2). Instead of remaining idle, a thread may skip ahead to process other queued blocks when the dependency relationships for those queued blocks are met. Also, although FIG. 10 shows four threads and four processors, more or fewer threads or processors may be used depending upon the particular implementation.
- the user may supply while developing a data flow program.
- the user may further specify the memory regions by inputting into the development tool 522 the following control flow variables and parameters:
- Type Corresponds to the data type of the elements of the memory region, for example, integer, real, and the like.
- Size A size for each dimension of the memory region.
- Grid A size for each dimension of the blocks in a memory region.
- Leading dimension The size of the first dimension of matrices (when a memory region is larger than the matrix it holds).
- the program code that performs steps on the blocks may be able to access and manipulate the elements of a block.
- the program code may benefit from information concerning the matrices or sub-matrices stored in one or more blocks.
- Macros allow the programmer to write program code that will perform steps on the blocks at each node in the DAG.
- the macros access specific elements and attributes of a block in a memory region. Taking a block in a memory region as an argument, the macro may return for instance, the number of rows or columns in the block, or the number of rows or columns in the memory region.
- FIG. 11 shows an exemplary memory region 1100 with blocks having elements arranged in a 10 ⁇ 10 fashion. Given this memory region 1100 with a block 1102 located as shown on the figure, the following macros evaluate for this block 1102 as shown in the following table: Macro Value #ROW(A) 3 #COL(A) 2 #AROW(A) 21 #ACOL(A) 11 #NROWS(A) 10 #NCOLS(A) 10 #ANROWS(A) 40 #ANCOLS(A) 40 #GROWS(A) 10 #GCOLS(A) 10
- recursive program codes may be used in which the process repeatedly applies over a smaller region. In this case, the recursion stops when a base case is reached and the region becomes so small that there is not enough left to repeat the process.
- Specific program code can be associated with a recursive process that will only be executed for the base case. For example, assume that a recursive process is defined that moves over one block column and down one block row at each level of recursion. The following recursive macros evaluate at each level as shown in the following table: Recursive Level Macro Level 1 Level 2 Level 3 #RECROW(A,1) 1 11 21 #RECCOL(A,6) 6 16 26
- the programmer may designate program code as sub-DAG program code.
- the sub-DAG designation instructs the development tool 522 to build a sub-DAG for the code associated with a particular node.
- any node in a DAG have, underlying, another DAG specifically directed to the code associated with that node.
- the programmer may develop parallelism across a whole application, or inside smaller pieces of code.
- the programmer may view the resulting hierarchy of DAGs by inputting to the development tool 522 one or more DAGs that the development tool 522 should display.
- dependencies are specified manually or automatically between blocks and denote which blocks need to be executed before other blocks.
- the dependencies determine the connections between nodes in a DAG representing execution order.
- several blocks in a memory region depend on several other blocks in the same memory region.
- the development tool 522 further provides an input option that a programmer may use to quickly denote dependencies between multiple blocks.
- FIG. 12A shows a programmer denoting a parent block 1202 for a set of blocks 1204 (or state) using a development tool 522 user interface (e.g., responsive to mouse and keyboard input).
- the parent block 1202 represents the starting upper left corner of a set of parent blocks to be designated. Then the programmer specifies whether the dependency on the parent block 1202 is fixed or free with respect to row and column.
- FIGS. 12 B-D illustrate different combinations of fixed and free designations given an exemplary dependent set of blocks 1204 . If the programmer designates the dependency as fixed, all blocks in the dependent set of blocks 1204 depend on the processing of the parent block 1202 (FIG. 12A). If the dependency is free with respect to row, the block that is depended on varies as row location in the dependent set of blocks 1204 varies (from the upper left block) (FIG. 12B). Similarly, if the dependency is free with respect to column, the block that is depended on varies as column location in the dependent set of blocks 1204 varies (from the upper left block) (FIG. 12C).
- the development tool 522 allows a programmer to quickly manually designate multiple block dependencies.
- the development tool 522 may provide either or both of a “distribution” mechanism and a “movement” mechanism.
- distributed the development tool 522 permits the programmer to assign certain types of “distributions” to sets of blocks in a memory region.
- the distributions then control the manner in which blocks are assigned to nodes in a DAG.
- the distributions may be used to flexibly group different blocks into a single node and consequently allow different parallel processing approaches to be used for execution of a problem.
- the programmer may first select 9 threads to operate on 9 nodes, one for each value in the resulting matrix. However, the programmer, as an alternate approach, may select 3 threads to process 3 nodes, one for each column in the resulting matrix. In the alternate approach, a node will contain more blocks but the data flow program will use less threads. The varying distributions give the programmer flexibility in testing different parallel processing techniques.
- the programmer selects a rectangular area of the memory region to identify a set of blocks.
- the distributions optionally control on which blocks macros operate.
- the development tool 522 may support two main categories of distributions: primary and secondary. The difference between primary and secondary distributions is that the development tool 522 may, if selected by the programmer, restrict macros to operate on blocks in primary distributions but not on blocks in secondary distributions.
- the primary distribution generally determines how many nodes there will be in the DAG for data flow program under development. For a set of blocks that the programmer designates as a secondary distributions, the development tool adds each block in the set of blocks to the same node of the DAG.
- Distributions may be categorized as “primary single”, “secondary multiple row,” “secondary multiple column,” “secondary all,” and “multiple” (either primary or secondary).
- Primary single distributions control how many DAG nodes are created. If a primary single distribution is present in a memory region, the development tool 522 will create one DAG node for each block in the distribution. Each block in a primary single distribution will enter its own node; no two blocks of a given primary single distribution will share the same node. The development tool 522 will also assign each block in additional primary single distributions (e.g., in additional memory regions) to the nodes in the DAG as well.
- the development tool 522 determines which block in the additional distribution is added to a DAG node through a process that can be conceptualized as visually placing the additional distribution over the primary single distribution.
- the block in the additional distribution that is in place over a primary single distribution block is added to the node containing that primary single distribution block.
- Secondary distributions include secondary multiple row, secondary multiple column, and secondary all distributions. When a block in a secondary multiple row distribution is added to a node, then all of the blocks in the row of that block are also added to the node. Similarly, for secondary multiple column distributions, the each block in the column is added. In secondary all distributions, when a block in the distribution is added to a node, every block in the distribution is added to the node.
- Multiple distributions may be primary or secondary. If the primary single distribution is larger than the multiple distribution, then blocks from the multiple distribution are added to nodes in a process that may be conceptualized as iteratively placing the multiple distribution over the primary distribution and shifting until the multiple distribution has covered the whole primary distribution. At each iteration, a multiple distribution block that is over a primary distribution block is entered into the same node containing the primary distribution block.
- Distributions may also have a transpose attribute.
- the transpose attribute indicates that the distribution is transposed before the overlaying process is applied.
- FIG. 13 shows exemplary memory regions used in a matrix multiplication problem involving three 2-dimensional memory regions, A, B, and C. Assume that each memory region has row and column sizes such that the memory regions are divided into square blocks as shown in FIG. 13.
- the development tool 522 establishes a node in a DAG for each of the nine blocks.
- the development tool 522 adds the rows of A and columns of B to nodes as explained above. For example, when the C(1,1) block is added to the node, the A(1,1) and B(1,1) blocks are also added. Because the A(1,1) block is in a secondary multiple row distribution, all of the blocks in that row are also added to the same node. Similarly, because the B(1,1) block is in a secondary multiple column distribution, all of the blocks in that column are added to the same node.
- the resulting nodes that the development tool 522 creates are shown in the table below.
- the ordered pair specifies the row and column of each block added, and the hyphen (“-”) specifies a range of rows or columns when more than one block is added from a distribution.
- FIG. 14 shows primary A and B distributions created for the same matrix multiply problem.
- the distributions shown in FIG. 14 result in the following 9 nodes: Node Blocks Added Node 1 C(1,1), A(1,1), B(1,1), A(1,2-3), B(2-3,1) Node 2 C(1,2), A(1,1), B(1,2), A(1,2-3), B(2-3,2) Node 3 C(1,3), A(1,1), B(1,3), A(1,2-3), B(2-3,3) Node 4 C(2,1), A(2,1), B(1,1), A(2,2-3), B(2-3,1) Node 5 C(2,2), A(2,1), B(1,2), A(2,2-3), B(2-3,2) Node 6 C(2,3), A(2,1), B(1,3), A(2,2-3), B(2-3,3) Node 7 C(3,1), A(3,1), B(1,1), A(3,2-3), B(2-3,1) Node 8 C(3,2)
- the program code that executes on each node may be represented by a FORTRAN function, MATRIX_MULTIPLY, that takes as arguments the location, number of rows, and number of columns of the three matrices A, B, and C, respectively.
- MATRIX_MULTIPLY A(#AROW(A),1),#NROWS(A),#ANCOLS(A), $ B(1,#ACOL(B)),#ANROWS(B),#NCOLS(B), $ C(#AROW(C),#ACOL(C)),#NROWS(C),#NCOLS(C))
- FIG. 15A shows another allocation of distributions for the matrix multiplication problem in which the programmer has determined that each thread will process a column of blocks in C.
- the development tool 522 creates three nodes because there are three blocks in the primary single distribution.
- each block over a primary single distribution block is added to the same node as that primary distribution block, along with the additional block in the same column of the multiple column distribution.
- the block B(2,1) of the secondary multiple column distribution of B is conceptually positioned over C(1,1).
- the development tool 522 adds the block B(2,1) to the node containing C(1,1).
- block B(2,1) is part of a multiple column distribution
- the block B(2,2) in the same column as B(2,1) is also added to the node containing C(1,1).
- all blocks from A are added to that node because all the blocks of A are designated as a secondary all distribution.
- FIG. 15B shows another example where the transpose of B is to be multiplied by A to form C.
- the transpose attribute explained above allows several of the allocations from the previous example to be reused, with modifications to the memory area B as shown in FIG. 15B.
- the development tool 522 also supports a “movement” mechanism for adding blocks in a memory area to nodes in a DAG.
- a “movement” mechanism for adding blocks in a memory area to nodes in a DAG.
- FIG. 16 that figure shows three examples of the movement mechanism on a memory area M: a row movement 1602 , a column movement 1604 , and a combination movement 1606 .
- the programmer first draws (or specifies using another input mechanism such as a keyboard) the selection 1608 shown in FIG. 16.
- the development tool 522 then moves the selection 1608 across the memory area M until the leading edge of the selection 1608 hits a boundary of the memory area.
- the development tool 522 adds the blocks covered by the selection 1608 to a node in the DAG.
- the development tool 522 adds three nodes to the DAG.
- the programmer first draws the selection 1610 shown in FIG. 16.
- the development tool 522 then moves the selection 1610 across the memory area M until the leading edge of the selection 1608 hits a boundary of the memory area. At each position, the development tool 522 adds the blocks covered by the selection 1610 to a node in the DAG. Thus, for the row movement 1608 , the development tool 522 adds three nodes to the DAG.
- the combination movement 1606 operates in the same fashion.
- the development tool 522 moves the selection 1612 over the memory area M until the leading edge of the selection 1612 hits a boundary in each direction of movement.
- the development tool 522 creates four DAG nodes, each associated with four blocks.
- Methods and systems consistent with the present invention also provide visualization support for developing data flow programs.
- the development tool 522 supports the visual representation and presentation of: code segments as one or more nodes in a DAG, attributes that signify that a code segment has already executed, is currently executing, or has not yet begun executing, dependencies of a code segment on other code segments with an attribute that signifies whether the dependency has been met, the portions of one or more data structures that are effected by a code segment, and nodes that a selected thread has executed.
- FIG. 17 depicts a DAG 1700 illustrating the dependency relationships corresponding to FIGS. 3A and 3B.
- the DAG 1700 illustrates graphically that the data associated with the blocks sharing the first state 1702 are needed for processing by each of the blocks sharing the second state 1704 .
- the data associated with the blocks sharing the second state 1704 are needed by the groups of blocks that share the third state 1706 .
- the development tool 522 represents an unexecuted code segment as a diamond-shaped node, an executing code segment as a square node, and an executed code segment as a circular node.
- the development tool 522 also represents an unmet dependency as a dashed arc and a satisfied dependency as a bolded, solid arc.
- any change in representation of the nodes and arcs e.g., a change in shape, color, shading, animation, sound, and the like
- the nodes and arcs used in the methods, systems, and articles of manufacture consistent with the present invention are not limited to those illustrated.
- the development tool 522 generally presents an unexecuted node using an unexecuted visualization, an executing node using an executing visualization, and an executed node using an executed visualization, while representing arcs with an unsatisfied dependency visualization or a satisfied dependency visualization.
- FIG. 18 depicts a flow chart of the steps performed by the data flow program development tool 522 for visualization of the state of the code segments on the DAG.
- the development tool 522 receives an indication to run the program (step 1802 ).
- the next step performed by the development tool 522 is to wait until a processor is available (step 1804 ).
- the development tool 522 selects a block and its associated code from the queue (step 1806 ).
- the development tool 522 then checks to determine whether all of the dependencies for the selected block are met (step 1808 ). If all of the dependencies for the selected block of code are met, the development tool 522 executes the selected block on the processor (step 1810 ).
- the development tool 522 continues to search for a block of code that does have all of its dependencies met.
- the program adapts to different environments (e.g., machine load, number of threads, and the like) by executing the code segments that are ready.
- the development tool 522 can execute code segments that become ready sooner than the originally selected code segment.
- the development tool 522 modifies the node for the selected block to indicate that the code is executing (step 1812 ). Assuming there are three threads running in parallel, three code segments can be executed simultaneously.
- three of the nodes 1902 , 1904 and 1906 on the DAG 1900 are square nodes to indicate that the code segments represented by the nodes are executing.
- the next step performed by the development tool 522 is to wait until the execution of the block is complete (step 1814 ).
- the development tool 522 modifies the node of the selected block to indicate that the execution is complete (step 1816 ).
- the development tool 522 also modifies the appearance of any dependency arcs out of the selected block to indicate that the dependency has been met (step 1818 ).
- the development tool 522 displays the node 1902 as a circular node 2002 (see the DAG 2000 in FIG. 20).
- the development tool 522 displays the arcs 2010 , 2012 , and 2014 out of node 2002 as bolded, solid arcs 2010 , 2012 , and 2014 to indicate that the dependencies out of the node 2002 have been met.
- the development tool 522 determines whether there are any more blocks on the queue awaiting execution (step 1820 ). If there are no more blocks, the processing ends. If there are more blocks available, the development tool 522 continues processing at step 1804 . Returning to the example depicted in FIG. 20, because the code segment represented by node 2002 is no longer executing, a thread or processor becomes available. Thus, the development tool 522 selects the next block (represented by node 2008 ) from the queue. Since all dependencies for the selected block are met, the development tool 522 executes the selected block, and represents the node 2008 as a square node to indicate that the code is executing. Meanwhile, the code segments represented by nodes 2004 and 2006 continue to execute.
- the development tool 522 After the execution of the next code segment associated with a block assigned to node 2004 , the development tool 522 represents the node 2004 as a circular node 2104 (see FIG. 21). The development tool 522 also modifies the arcs 2110 , 2112 , and 2114 to indicate that the dependencies from the code segment associated with a block assigned to node 2104 have been met. As shown in FIG. 21, the code segments represented by nodes 2102 and 2104 have been executed, while the code segments represented by nodes 2106 and 2108 are still executing. Because a processor has become available, the tool 522 selects the next block from the queue. This block is represented by node 2116 .
- the execution of the code segments represented by nodes 2202 , 2204 , 2206 , and 2208 are complete (see DAG 2200 depicted in FIG. 22). Also, at this point, three threads or processors are available and the development tool 522 continues to check the queue for code segments ready to execute. Thus, the development tool 522 selects and executes the code segments for blocks in the queue represented by nodes 2210 , 2212 and 2214 .
- the development tool 522 After execution of the code segment associated with the block represented by node 2210 , the development tool 522 displays the node as a circular node 2310 (see the DAG 2300 shown in FIG. 23). At this point, the code segments associated with blocks represented by nodes 2302 , 2304 , 2306 , 2308 , and 2310 have been executed. In addition, the development tool 522 represents the dependencies out of node 2310 as solid, bolded arcs 2318 , 2320 , and 2322 to indicate that these dependencies are met. The development tool 522 then selects the next code segment from the queue associated with a block represented by node 2316 .
- the development tool 522 determines that all dependencies for the selected node are met, begins execution of the code associated with the selected node, and represents the selected node as a square node 2316 to indicate that the code segment is executing. Similarly, when the execution of the code segments associated with blocks represented by nodes 2312 and 2314 is also complete, the nodes 2402 , 2404 , 2406 , 2408 , 2410 , 2412 , and 2414 , depicted in FIG. 24, indicate that the execution of these code segments is complete. At this point, all dependencies in the DAG 2400 are met. DAG 2500 in FIG. 25 illustrates the state of all nodes and dependencies after all code segments have been executed and all dependencies have been met.
- Methods and systems consistent with the present invention allow a programmer to view the dependencies of a code segment on other code segments.
- the development tool 522 may use different representations for a dependency that has been met and a dependency that has not been yet (as explained above).
- the dependency view allows a programmer to quickly ascertain the impact of changes to the DAG on other nodes in the DAG.
- FIG. 26 depicts a flow chart of the steps performed by the data flow program development tool 522 to display the dependencies of a selected code segment.
- the neighboring DAG portion 2602 illustrates graphically the operation of the development tool 522 .
- the development tool 522 determines a selected block of code through keyboard or mouse input, as examples (step 2604 ).
- the selected block of code is generally associated with a block and a node in the DAG.
- the development tool 522 may optionally modify the appearance of the associated node in the DAG (step 2606 ).
- the associated node may change in appearance from a diamond to a square, become bolded, change its line style, and the like.
- the development tool 522 continues to trace arcs back through the DAG (step 2608 ). As development tool 522 finds new dependencies the dependencies are highlighted for the programmer. When there are no arcs left to explore, the processing ends.
- the development tool 522 may also present to the programmer portions of data that are affected by a code segment. For example, the development tool 522 may show a view of the elements of a data structure, the elements of an array, and the like. As the data flow program executes, the development tool 522 highlights the data that one or more code segments currently executing are modifying.
- FIG. 27 that figure presents a flow diagram 2700 of the steps performed by the development tool 522 when presenting to the programmer portions of data that a code segment effects.
- the development tool 522 determines the selected data for monitoring (step 2702 ).
- the programmer has selected, using the dashed selector box, a data element associated with the node.
- the programmer has selected the matrix M.
- the development tool 522 provides a graphical representation of the matrix M (step 2704 ). As shown in the node view 2705 , the matrix is shown with boxes representing its constituent elements M 1 , M 2 , M 3 , and M 4 .
- the development tool 522 monitors for reads and/or writes to the selected data as threads execute code segments associated with DAG nodes (step 2706 ). When the development tool 522 detects that the selected data has been affected by a code segment, the development tool 522 highlights or otherwise modifies the graphical representation so that the programmer can observe which parts of the selected data are changing. For example, in the node view 2709 , the development tool 522 has cross-hatched elements M 1 and M 4 to show that an executing code segment is reading or writing to those elements.
- An additional visualization option available to the programmer is the thread path view.
- the development tool 522 provides the programmer with a display that shows, for each thread selected by the programmer, the set of nodes executed by those threads.
- FIG. 28 that figure presents a flow diagram 2800 of the steps performed by the development tool 522 when presenting to the programmer a thread path view.
- the development tool 522 determines the threads selected by the programmer (in this instance using a radio button selection) (step 2802 ).
- the selection box 2803 the programmer has selected, thread 2 and thread 3 .
- the development tool 522 displays the nodes executed by the selected threads.
- the thread path view 2805 shows that thread 2 executed nodes (1,1), (1,2), (2,2), and (2,3), and that thread 3 executed nodes (3,3) and (3,4).
- the development tool 522 may present the thread path view by highlighting nodes on a DAG in correspondence with colors, line styles, and the like assigned to threads.
- the thread path view indicates which threads executed which nodes.
- the development tool 522 may maintain execution information during data flow program execution that is useful for presenting the thread path view.
- the execution information may include, as examples, a time stamp, thread identification, node identification, and the like.
- the development tool 522 also provides debugging functions.
- the debugging functions respond to debugging commands that include, as examples, the ability to step to a point in data space, the ability to single step in data space (step debugging commands), the ability to add breakpoints (breakpoint debugging commands), the ability to save program execution information for later replay (replay debugging commands), and the ability to add or delete block dependencies (dependency modification debugging commands).
- FIG. 29 presents a flow diagram 2900 of the steps performed by the development tool when allowing the programmer to step to a point in data space.
- the development tool 522 obtains from the programmer an indication (e.g., a mouse click on a DAG node, keyboard input, or the like) of the next node that the programmer wants the development tool 522 to process (step 2902 ).
- the development tool 522 then optionally highlights the selected node and determines the dependencies for the selected node (steps 2904 and 2906 ).
- the development tool 522 before the development tool 522 executes the code for the selected node, the development tool 522 first satisfies the dependencies for the selected node (step 2908 ). Once the dependencies for the selected node are satisfied, the development tool 522 executes the code for the selected node (step 2910 ). Processing then stops and the programmer may review the results obtained by execution of the selected node.
- FIG. 30 that figure illustrates a flow diagram 3000 of the steps performed by the development tool 522 when allowing the programmer to single step the execution of a data flow program.
- the development tool 522 pauses execution of the data flow program and waits for an indication from the programmer to perform a single step (steps 3002 and 3004 ).
- the development tool 522 selects and executes code for the next node in the queue (step 3006 ). Processing then stops and the programmer may review the results obtained by execution of the selected node.
- FIG. 31 that figure illustrates a flow diagram 3100 of the steps performed by the development tool 522 when allowing the programmer to save and replay program execution information.
- the development tool 522 pauses execution of the data flow program and outputs DAG status information to secondary storage (e.g., a file) (steps 3102 and 3104 ).
- the DAG status information provides a history of execution of DAG nodes which the development tool 522 may use to replay (e.g., visually on a display) execution of nodes over time.
- the development tool 522 may save, as examples, the DAG structure, node timestamps of execution, breakpoints, thread identifications for executed nodes, dependency status, programmer selected step points, ordering of nodes in the queue, and the like as DAG status information.
- the development tool 522 when the development tool 522 receives a replay indication from the programmer, the development tool 522 loads DAG status information from the secondary storage (steps 3106 and 3108 ). The development tool 522 may then replay node execution (e.g., by presenting a visual representation of a DAG over time) by highlighting (or displaying as text output) the execution of nodes in the DAG over time (step 3110 ).
- FIG. 32 that figure illustrates a flow diagram 3200 of the steps performed by the development tool 522 when allowing the programmer to add or delete dependencies.
- the development tool 522 pauses execution of the data flow program and receives an indication of a dependency to add or delete (steps 3202 and 3204 ).
- FIG. 32 shows the programmer using a pointer to specify deletion of dependency 3206 (from node (1,1) to node (1,2)), while adding a dependency 3208 (from node (1,3) to node (1,2)).
- the development tool 522 adds or deletes the specified dependencies and enqueues the blocks for processing (steps 3210 and 3212 ). Execution continues using the newly added or removed dependencies (step 3214 ).
- the programmer when faced with incorrect execution of a data flow program under development may investigate the cause of the problem, find that a dependency is missing, and add the dependency. Similarly, the programmer may find that a dependency is not in fact necessary and delete the dependency to investigate whether performance improves.
- the development tool also supports breakpoints.
- the development tool provides 1) one point, 2) none after, 3) all before, and 4) task node breakpoints specified on nodes.
- a “one point” breakpoint halts execution of the data flow program when the specified node is selected for execution.
- a “none after” breakpoint halts execution when a thread selects for execution any node in the DAG after the specified node.
- An “all before” breakpoint halts execution when all nodes before the specified node complete execution (note that some nodes after the specified node may also complete, depending on the order of node execution).
- a “task node” breakpoint halts execution when a thread selects a node for execution that is associated with code that performs a designated task (e.g., a matrix multiplication). Breakpoints may be used in combination on the same node, for example, a “one point” breakpoint may be used with a “none after” breakpoint or an “all before” breakpoint, or both.
- FIG. 33 that figure illustrates a flow diagram 3300 of the steps performed by the development tool 522 when setting and checking breakpoints.
- the development tool 522 receives a node and breakpoint type indication, and in response sets the breakpoint for the node (steps 3302 and 3304 ). Then, during execution of the data flow program, the development tool 522 monitors for breakpoint conditions to be met (step 3306 ). When the development tool 522 determines that the conditions for any particular breakpoint are met, the development tool 522 halts the data flow program (step 3308 ).
- the development tool 522 may display the progress of the data flow program, including breakpoints to the programmer.
- the DAG 3400 illustrates that the programmer has selected node (1,3) as a “one point” breakpoint.
- threads first execute nodes (1,1), (2,1), (3,1), and (4,1).
- a thread selects and executes node (1,2).
- the specified breakpoint still has not been reached.
- the development tool 522 recognizes that the “one point” breakpoint has been reached, and halts execution of the data flow program.
- FIG. 35 shows the state of the DAG when the breakpoint is reached (with circular nodes representing executed nodes).
- the pseudocode ‘C’ structure shown in Table 1 may be used to represent a node in the DAG: TABLE 1 typedef struct final_dag_node ⁇ long doneflag; /* clear when node has been processed */ long takenflag; /* set when claimed by a thread */ long process; /* process index */ long nregions; /* number of regions */ nodeRegion *regions; /* the regions for this node */ long numdepend; /* number of dependency groups */ struct dependency_group *depend; /* pointers to dependency group */ long recursion_level; /* level this node is at */ struct final_dag_node *parent; /* parent if in a subdag */ struct final_dag_node *next; /* link to next node in the queue */ long endflag; /*set for nodes with no dependents *
- the node structure includes the process (which identifies what task to do), the data regions that will be acted on, the data dependencies which point at the nodes that are needed before this node can execute, and additional status fields.
- An exemplary pseudocode ‘C’ structure shown in Table 2 may be used to define data assigned to blocks: TABLE 2 typedef struct node_regions ⁇ long ndims; /* number of dimensions */ long start[MAX_DIMENSIONS]; /* starting index */ long end[MAX_DIMENSIONS]; /* ending index */ objectSize *osize; /*pointer to size object */ ⁇ nodeRegion;
- Dependencies may be stored in groups as illustrated as shown by the pseudocode ‘C’ structure in Table 3. Each group may include an array of pointers to nodes that the node in question is dependent on. TABLE 3 typedef struct dependency_group ⁇ long ndeps; /* number of dependencies */ FinalDagNode **depend; /* pointers to nodes in dependencies */ struct dependency_group *next; /* link to next group in for the node*/ ⁇ DependencyGroup;
- Methods, systems, and articles of manufacture consistent with the present invention enable a programmer to easily develop data flow programs and to convert existing control flow programs according to the data flow model.
- the interface facilitates the development of a data flow program for execution in a multiprocessor environment.
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Devices For Executing Special Programs (AREA)
- Debugging And Monitoring (AREA)
- Stored Programmes (AREA)
Abstract
Methods, systems, and articles of manufacture consistent with the present invention provide a development tool that enables computer programmers to design and develop a data flow program for execution in a multiprocessor computer system. The tool allows the programmer to define a region divided into multiple blocks, wherein each block is associated with data operated on by code segments of the data flow program. The development tool also maintains dependencies among the blocks, each dependency indicating a relationship between two blocks that indicates that the portion of the program associated with a first block of the relationship needs the resultant data provided by the portions of the program associated with a second block of the relationship. The development tool supports several visualization steps, including displaying a directed acyclic graph representing the nodes and the dependencies.
Description
- This application is related to the following pending patent applications, and is a Continuation-in-Part of Ser. No. 09/244,138:
- U.S. patent application Ser. No. 09/244,137, entitled “Method, Apparatus, and Article of Manufacture for Developing and Executing Data Flow Programs,” attorney docket no. 06502-0222-00000, and filed on Feb. 4, 2001.
- U.S. patent application Ser. No. 09/244,138 entitled “Method Apparatus, and Article of Manufacture for Developing and Executing Data Flow Programs, and Optimizing User Input Specifications”, attorney docket no. 06502-0223-00000, filed Feb. 4, 2001.
- The entirety of each application is incorporated herein by reference.
- This invention relates to the field of multiprocessor computer systems and, more particularly, to data driven processing of computer programs using a multiprocessor computer system.
- Multiprocessor computer systems include two or more processors that execute the instructions of a computer program. One processor executes a particular set of instructions while other processors execute different sets of instructions.
- Fast computer systems, like multiprocessor computer systems, have stimulated the rapid growth of a new way of performing scientific research. The broad classical branches of theoretical science and experimental science have been joined by computational science. Computational scientists simulate on supercomputers phenomena too complex to be reliably predicted by theory and too dangerous or expensive to be reproduced in a laboratory. Successes in computational science have caused demand for supercomputing resources to rise sharply in recent years.
- During this time, multiprocessor computer systems, also referred to as “parallel computers,” have evolved from experimental designs in laboratories to become the everyday tools of computational scientists who need the most advanced computing resources to solve their problems. Several factors have stimulated this evolution. It is not only that the speed of light and the effectiveness of heat dissipation impose physical limits on the speed of a single processor. It is also that the cost of advanced single-processor computers increases more rapidly than their power. And price/performance ratios become more favorable if the required computational power can be found from existing resources instead of purchased. This factor has caused many sites to use existing workstation networks, originally purchased to do modest computational chores, as “SCAN”s (SuperComputers At Night) by utilizing the workstation network as a parallel computer. This scheme has proven so successful, and the cost effectiveness of individual workstations has increased so rapidly, that networks of workstations have been purchased to be dedicated to parallel jobs that used to run on more expensive supercomputers. Thus, considerations of both peak performance and price/performance are pushing large-scale computing in the direction of parallelism. Despite these advances, parallel computing has not yet achieved widespread adoption.
- The biggest obstacle to the adoption of parallel computing and its benefits in economy and power is the problem of inadequate software. The programmer of a program implementing a parallel algorithm for an important computational science problem may find the current software environment to be more of an obstruction than smoothing the path to use of the very capable, cost-effective hardware available. This is because computer programmers generally follow a “control flow” model when developing programs, including programs for execution by multiprocessor computer systems. According to this model, the computer executes a program's instructions sequentially (i.e., in series from the first instruction to the last instruction) as controlled by a program counter. Although this approach tends to simplify the program development process, it is inherently slow.
- For example, when the program counter reaches a particular instruction in a program that requires the result of another instruction or set of instructions, the particular instruction is said to be “dependent” on the result and the processor cannot execute that instruction until the result is available. Moreover, executing programs developed under the control flow model on multiprocessing computer systems results in a significant waste of resources because of these dependencies. For example, a first processor executing one set of instructions in the control flow program may have to wait for some time until a second processor completes execution of another set of instructions, the result of which is required by the first processor to perform its set of instructions. Wait-time translates into an unacceptable waste of computing resources in that at least one of the processors is idle the whole time while the program is running.
- To better exploit parallelism in a program some scientists have suggested use of a “data flow” model in place of the control flow model. The basic concept of the data flow model is to enable the execution of an instruction whenever its required operands become available, and thus, no program counters are needed in data-driven computations. Instruction initiation depends on data availability, independent of the physical location of an instruction in the program. In other words, instructions in a program are not ordered. The execution simply follows the data dependency constraints.
- Programs for data-driven computations can be represented by data flow graphs. An example data flow graph is illustrated in FIG. 1 for the calculation of the following expression:
- z=(x+y)*2
- When, for example, x is 5 and y is 3, the result z is 16. As shown graphically in the figure, z is dependent on the result of the sum of x and y. The data flow graph is a directed acyclic graph (“DAG”) whose nodes correspond to operators and arcs are pointers for forwarding data. The graph demonstrates sequencing constraints (i.e., constraints with data dependencies) among instructions.
- For example, in a conventional computer, program analysis is often done (i) when a program is compiled to yield better resource utilization and code optimization, and (ii) at run time to reveal concurrent arithmetic logic activities for higher system throughput. For instance, consider the following sequence of instructions:
- 1. P=X+Y
- 2. Q=P/Y
- 3. R=X*P
- 4. S=R−Q
- 5. T=R*P
- 6. U=S/T
- The following five computational sequences of these instructions are permissible to guarantee the integrity of the result when executing the instructions on a serial computing system (e.g., a uniprocessor system):
- 1, 2, 3, 4, 5, 6
- 1, 3, 2, 4, 5, 6
- 1, 2, 3, 5, 4, 6
- 1, 3, 2, 5, 4, 6
- 1, 3, 5, 2, 4, 6
- For example, the first instruction must be executed first, but the second or third instruction can be executed second, because the result of the first instruction is required for either the second or third instruction, but neither the second nor the third requires the result of the other. The remainder of each sequence follows the rule that no instruction can be executed until its operands (or inputs) are available.
- In a multiprocessor computer system with two processors, however, it is possible to perform the six operations in four steps (instead of six) with the first
processor computing step 1, followed by both processors simultaneously computingsteps processor computing step 6. This is an obvious improvement over the uniprocessor approach because execution time is reduced. - Using data flow as a method of parallelization will thus extract the maximum amount of parallelism from a system. Most source code, however, is in a control form, which is difficult and clumsy to parallelize efficiently for all types of problems.
- It is therefore desirable to provide a facility for programmers to more easily develop, visualize, debug, and optimize data flow programs and to convert existing control flow programs into data flow programs for execution on multiprocessor computer systems.
- Methods, systems, and articles of manufacture consistent with the present invention facilitate development (e.g., visualization, debugging and optimization) of new programs according to the data flow model. According to one aspect of the present invention, such methods, systems, and articles of manufacture, as embodied and broadly described herein, include a development tool that implements a block dependency approach that allows an operator to define a memory region and divide the memory region into multiple blocks. Each block is associated with data (e.g., a matrix) needed by a function or other program operation, as well as code that operates on that data. It is noted that a “block” refers to one or more data elements in memory and does not imply a particular shape (e.g., square or rectangular) for the data elements or their placement in the memory. In other words, a block refers to a portion of data in memory, but does not necessarily indicate the structure or arrangement of the data in the memory. Additionally, the operator specifies any dependencies among the blocks, for example, a subsequent block may be specified dependent on an initial block. Such a dependency indicates that, before executing, the code associated with the subsequent block needs the code associated with the initial block to execute on the data associated with the initial block. As will be explained in detail below, the development tool facilitates development (including visualization, debugging, and optimization) of data flow programs using the block dependency approach outlined above.
- Methods, systems, and articles of manufacture consistent with the present invention overcome the shortcomings of the related art, for example, by providing a data flow program development tool. The development tool allows a programmer to visually identify data dependencies between code segments, observe the execution of a data flow program under development, insert breakpoints, and modify data block code and data assignments and dependencies. Thus, a programmer may more easily develop a new data flow program or convert a control flow program to the data flow paradigm.
- In accordance with methods consistent with the present invention, a method is provided for developing data flow programs. The method includes dividing a memory area into blocks, assigning data to the blocks, and assigning code segments of a program to the blocks. The method further includes determining dependencies between blocks and displaying a graph representing the dependency relationship between the blocks.
- In accordance with methods consistent with the present invention, a method is provided for developing data flow programs. The method dividing a memory area that extends over a data set into blocks, for each block in the memory area, associating data from the data set with the block, and for each block in the memory area, associating a code segment to the block. The method further includes maintaining data read and write information for each code segment, determining dependencies between data blocks based on the read and write information, and displaying a directed acyclic graph, the directed acyclic graph comprising nodes and arcs, each node representing at least one block, and each arc representing a dependency relationship between a first node and a second node. As threads execute code segments, the method changes the presentation of the nodes and arcs to indicate unexecuted nodes using an unexecuted visualization, executing nodes using an executing visualization, executed nodes using an executed visualization, satisfied dependency arcs using a satisfied dependency visualization, and unsatisfied dependency arc using an unsatisfied dependency visualization.
- In accordance with systems consistent with the present invention, a data processing system is provided for developing data flow programs. The data processing system includes a memory comprising a data flow development tool comprising instructions that associate data processed by a data flow program to blocks in memory, associate code segments of the data flow program to blocks, determine dependencies between blocks that give rise to an execution order for the blocks, and display a graph of nodes and arcs depicting dependency relationships between the blocks. The data processing system further includes a processing unit that runs the data flow development tool.
- In accordance with articles of manufacture consistent with the present invention, a computer readable medium is provided. The computer readable medium contains instructions that cause a data processing system to perform a method for developing data flow programs. The method includes dividing a memory area into blocks, assigning data to the blocks, and assigning code segments of a program to the blocks. The method further includes determining dependencies between blocks and displaying a graph representing the dependency relationship between the blocks.
- In accordance with articles of manufacture consistent with the present invention, a computer readable medium is provided that is encoded with a data structure accessed by a data flow development tool run by a processor in a data processing system. The data structure includes nodes assigned to data processed by a data flow program and to code segments of the data flow program and dependencies between nodes.
- Other apparatus, methods, features and advantages of the present invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying drawings.
- FIG. 1 depicts an example data flow graph for the calculation of an expression.
- FIG. 2 depicts a block diagram illustrating an example of a memory region.
- FIGS. 3A and 3B depict block diagrams illustrating an example of dependency relationships among the blocks of the memory region illustrated in FIG. 2.
- FIG. 4 depicts an example of a directed acyclic graph illustrating the dependency relationships shown in FIGS. 3A and 3B.
- FIG. 5 depicts a block diagram of an exemplary data processing system suitable for use with methods and systems consistent with the present invention.
- FIG. 6 depicts a flow chart of the steps performed by a data flow program development tool.
- FIG. 7 depicts an example of a queue reflecting an order of execution of memory region blocks by a data flow program.
- FIG. 8 depicts a block diagram of an exemplary multiprocessor computer system suitable for use with methods and systems consistent with the present invention.
- FIG. 9 depicts a flow chart of the steps performed during execution of a data flow program.
- FIGS. 10A, 10B, and10C depict block an execution cycle of a data flow program.
- FIG. 11 is an exemplary memory region containing a block with an array of elements.
- FIGS. 12A, 12B,12C, and 12D illustrate the creation of dependencies between blocks.
- FIGS.13-15 each shows three exemplary memory regions having blocks assigned to distribution groups.
- FIG. 16 illustrates a movement technique for assigning blocks to nodes.
- FIG. 17 depicts an example of a directed acyclic graph illustrating the dependency relationships shown in FIGS. 3A and 3B.
- FIG. 18 depicts a flow chart of the steps performed by the data flow program development tool for graphically presenting execution of a data flow program.
- FIGS.19-25 depict the directed acyclic graph presented in FIG. 17 during the processing of the blocks in the directed acyclic graph.
- FIG. 26 depicts a flow diagram of the steps performed by the data flow program development tool when determining dependencies for a selected node.
- FIG. 27 depicts a flow diagram of the steps performed by the data flow program development tool when highlighting data affected by code segments.
- FIG. 28 depicts a flow diagram of the steps performed by the data flow program development tool when displaying the nodes executed by selected threads.
- FIG. 29 depicts a flow diagram of the steps performed by the data flow program development tool when stepping to a selected node.
- FIG. 30 depicts a flow diagram of the steps performed by the data flow program development tool when single stepping data flow program execution.
- FIG. 31 illustrates a flow diagram of the steps performed by the data flow program development tool when saving and replaying data flow program execution.
- FIG. 32 illustrates a flow diagram of the steps performed by the data flow program development tool when adding or deleting dependencies from a DAG.
- FIG. 33 illustrates a flow diagram of the steps performed by the data flow program development tool when setting and testing for breakpoints.
- FIG. 34 illustrates a DAG with a breakpoint.
- FIG. 35 illustrates a DAG after execution stopped by a breakpoint.
- Reference will now be made in detail to an implementation consistent with the present invention as illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings and the following description to refer to the same or like parts. Certain aspects of the present invention are summarized below before turning to Figures.
- Methods, systems, and articles of manufacture consistent with the present invention enable programmers to develop new data flow programs and to convert existing control flow programs to the data flow paradigm. To that end, the methods, systems, and articles of manufacture may implement a data flow program development tool.
- Data flow programs developed in accordance with the principles of the present invention may be executed on a multiprocessor computer system or a distributed computer system using the data flow model. The development tool may execute on the same or different data processing system from that used for executing the data flow program under development.
- Generally, the development tool facilitates dividing a memory region into blocks. Each block is associated with certain data and code, with dependencies specified between blocks. As will be explained in more detail below, blocks that do not depend on one another can be executed in parallel, while blocks that do depend on one another await the completion of code execution and data manipulation of the block on which they depend.
- Dependencies are reflected as conceptual links between dependent blocks and the precursor blocks from which they depend. A dependent block is dependent on a precursor block when the dependent block needs the result of the precursor block in order for the dependent block to execute successfully. As will be shown below, dependency relationships may be viewed graphically using a directed acyclic graph (“DAG”). Nodes in the graph correspond to blocks of the memory region, and thus the program code and data assigned to the blocks.
- During execution, the code associated with the blocks is queued for processing in a multiprocessor data processing system, for example, by placing block pointers in a queue. Each processor may further execute multiple threads that can individually process blocks. In one implementation, the blocks are queued according to the dependency information associated with each block. Additional information may also affect the ordering of blocks in the queue, including priority information, and the like.
- The programmer may designate the number of threads available to process the blocks. For example, the programmer may designate two threads per processor. Each thread may, for example, maintain a program counter and temporary memory, as needed, to perform the code associated with the blocks.
- Each thread, in turn, selects a block from the queue and executes the program code designated by the programmer for that block. As long as there are blocks in the queue, the threads, when available, select blocks and execute the associated program code. Threads select queued blocks for execution in a manner that reflects block dependency information. To that end, when an available thread selects a queued block for execution, the thread first examines the dependency information for that block. When the block or blocks from which the selected block depends have completed execution, then the thread can proceed to execute the program code for the selected block. Otherwise, the thread may enter a wait state until it can begin executing the program code for the selected block.
- Alternatively, the thread may select the next available block in the queue, based on any priority if appropriate, and examine that block to determine its status with respect to any blocks upon which it depends. Processing continues until the threads have completed executing the program code associated with all blocks in the queue. Note that while the multiprocessor data processing system may exist as a single physical unit, that the threads may be distributed over multiple processors across multiple data processing systems, for example, across a LAN or WAN network.
- The description below provides a detailed explanation of the methods, systems, and articles of manufacture consistent with the present invention.
- At the beginning of the design and development process, a programmer specifies a memory region and divides the memory region into blocks using, for example, a graphical user interface component of the development tool. Below, the development tool will generally be described in the context of developing a data flow program for matrix manipulation. However, it is noted that the data element assigned to blocks may be scalars, structures, or any other type of data element.
- FIG. 2 shows an example of a
memory region 200 that contains sixteen blocks arranged in a four-by-four matrix, with each block identified by a row number and column number. For example, the block in the upper left corner ofmemory region 200 is labeled (1,1) indicating that it is located in the first row and the first column, and the block in the lower right hand corner ofregion 200 is labeled (4,4) indicating that it is located in the lower right corner. Each block contains a data set, such as a matrix or array of values or information, to be processed in accordance with certain program code. As an example, thememory region 200 may represent a 100×100 matrix of scalars, with each block representing a 25×25 subarray of the larger matrix. Although thememory region 200 and the blocks are shown are regular squares, the scalars need not be located contiguously in memory. Rather, the development tool presents thememory region 200 and the blocks to the programmer as shown in FIG. 2 as a user friendly view of the data that the data flow program will work with. - After defining the memory region and dividing it into blocks, the programmer specifies a state for each block. The state of a block generally corresponds to the program code that the programmer assigns to that block. In other words, the assigned code is a portion of a program that the programmer intends to operate on the data in the block. The interface provides the programmer with a window or other input facility to provide the program code for a block and internally tracks the assignment of code to the blocks.
- In the
example region 200, the group ofblocks 202 labeled (1,1), (2,1), (3,1), and (4,1) share a first state, the group ofblocks 204 labeled (1,2), (1,3), and (1,4) share a second state, and the group ofblocks 206 labeled (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4) share a third state. Although theregion 200 and the blocks 202-206 are shown as being uniform in size, in practice a memory region and blocks may have different shapes and sizes, hold different types of data, and be distributed in memory contiguously or non-contiguously. - Next, the programmer specifies dependency relationships between the blocks. A dependency relationship exists when the code associated with a first block is dependent upon the result or final state of the data assigned to a second block. Thus, the code assigned to the first block needs to wait for execution of the code assigned to the second block. FIGS. 3A and 3B illustrate three examples of dependency relationships between blocks in the
memory region 200 of FIG. 2. As shown in FIG. 3A, each of the blocks labeled (1,2), (1,3), and (1,4) are dependent on the blocks labeled (1,1), (2,1), (3,1), and (4,1). Thus, the blocks labeled (1,1), (2,1), (3,1), and (4,1) provide results needed by the blocks (1,2), (1,3), and (1,4). - Similarly, FIG. 3B illustrates dependencies among each of the blocks labeled (1,2), (1,3), and (1,4) and the blocks labeled (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4). As shown, the block labeled (1,2) is assigned data needed by the blocks in the same column labeled (2,2), (3,2), and (4,2); the block labeled (1,3) is assigned data needed the blocks in the same column labeled (2,3), (3,3), and (4,3); and the block labeled (1,4) is assigned data needed by the blocks in the same column labeled (2,4), (3,4), and (4,4). FIGS. 3A and 3B illustrate examples of dependencies for the
memory region 200; a programmer may, of course, specify many other dependencies as necessary to reflect the data processing structure of a data flow program under development. - Note also that the development tool may also provide a dependency analysis component. The dependency analysis component examines program code to identify code that reads or writes specific data. Thus, the dependency analysis component may automatically insert dependencies between blocks when the programmer specifies the code to be assigned to each block. To that end, the development tool may build a separate step tree.
- The step tree is a data structure that represents program execution as a series of steps. The programmer adds steps to the tree, and specifies to the development tool which data objects that particular step reads or writes. For example, the programmer may use data read and data write identifiers (e.g., pointers or handles) to specify the data. The programmer further specifies a code section executed at that step. As steps are added, the step tree grows and maintains the order of the steps, and thus the order and dependencies for data objects needed by the code sections associated with the steps. The development tool may then parse the step tree to automatically extract block dependencies.
- The development tool constructs a DAG using the dependency information. FIG. 4 presents an example of a
DAG 400 illustrating the dependency relationships shown in FIGS. 3a and 3 b. TheDAG 400 illustrates graphically that the processed data associated with all of the blocks sharing the first state is needed by the code associated with the blocks sharing the second state. In turn, the processed data associated with the blocks sharing the second state is needed by particular blocks that share the third state. The development tool may use theDAG 400 to order the blocks for processing as explained below. - FIG. 5 depicts an exemplary
data processing system 500 suitable for practicing methods and implementing systems consistent with the present invention. Thedata processing system 500 includes acomputer system 510 connected to anetwork 570, such as a Local Area Network, Wide Area Network, or the Internet. - The
computer system 510 includes amain memory 520, asecondary storage device 530, a central processing unit (CPU) 540, aninput device 550, and avideo display 560. Themain memory 520 contains a data flowprogram development tool 522 and adata flow program 524. The memory also holds adata flow DAG 526 and astep tree 528. The data flowprogram development tool 522 provides the interface for designing and developing data flow programs, including programs that utilize control flow program code. Usingdisplay 560, thedevelopment tool 522 enables programmers to design memory regions, such asregion 200 of FIG. 2, and divide the regions into blocks with corresponding states. The tool further enables programmers to write program code to operate on each of the blocks using a multiprocessor computer system (see FIG. 7). - The
data flow program 524 represents a program designed in accordance with the data flow paradigm developed by thedata flow tool 522. Thedata flow program 524 includes, for example, information specifying a memory region, the blocks of the region, the program code associated with each block, and dependency relationships between the blocks. - Although aspects of one implementation are depicted as being stored in
memory 520, one skilled in the art will appreciate that all or part of systems and methods consistent with the present invention may be stored on or read from other computer-readable media, such as secondary storage devices, like hard disks, floppy disks, and CD-ROM; a carrier wave received from a network such as the Internet; or other forms of ROM or RAM. Finally, although specific components ofdata processing system 500 have been described, one skilled in the art will appreciate that a data processing system suitable for use with methods and systems consistent with the present invention may contain additional or different components. - FIG. 6 is a flow chart of the
process 600 performed by thedevelopment tool 522 interacting with programmers to construct data flow programs. After a programmer initiates execution of thedevelopment tool 522, thedevelopment tool 522 displays one or more windows that the programmer uses to construct a data flow program. First, thedevelopment tool 522 displays a window in which the programmer defines a memory region (step 610). The programmer uses thedevelopment tool 522 to divide the region into blocks (step 620). - As long as there are blocks in a region to be processed (step630), the programmer selects a block (step 640), identifies any other block(s) that influence the selected block's final state (in other words, block(s) upon which the selected block is dependent) (step 650), and specifies the program code for each block, for example, a portion of an existing control flow program (step 660). In this manner, an existing control flow program may be converted to a data flow paradigm. Note, however, that the programmer may instead write new code for each block as part of the process of constructing a new data flow program.
- After all of the blocks have been processed (
steps 640 to 660), the programmer establishes the dependency relationships among the blocks by graphically linking them together (step 670). Alternatively or additionally, as explained above, the programmer may add steps to the step tree, and instruct thedevelopment tool 522 to automatically extract dependencies. In other words, with the steps described above, thedevelopment tool 522 first assists the programmer in defining a problem to be solved. Subsequently, thedevelopment tool 522 produces source files that can be compiled and run (step 675). The source files include code that (at run-time) produces in memory a DAG with the nodes and dependencies defined according to the steps set forth above. During run-time, the nodes are placed on a queue (step 680). The nodes thus form the basis for parallel execution. - The
development tool 522 uses the dependency/link information to queue the blocks in a manner that reflects an acceptable order for processing. For example, a first block dependent upon a second block may be placed in the queue after the second block. For the example shown in FIGS. 2-4, the blocks may be queued in the manner shown in FIG. 7 with the blocks sharing thefirst state 202, (1,1), (2,1), (3,1), and (4,1), queued before the blocks with thesecond state 204, (1,2), (1,3), and (1,4), and followed by the blocks sharing thethird state 206, (2,2), (2,3), (2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4). - As noted above, the data flow program under development may be executed in a multiprocessor data processing system. The multiprocessor data processing system may take many forms, ranging from a single multiprocessor desktop computer to network distributed computer systems with many nodes. FIG. 8 illustrates one implementation of a multiprocessor
data processing system 810. - The
data processing system 810 includes anetwork interface 820 that allows a programmer to transfer the data flow program from the development tool environment (e.g., FIG. 5) for execution inmultiprocessor computer system 810. Alternatively, thedevelopment tool 522 may execute on the samedata processing system 810 on which the data flow program will execute. - The
data processing system 810 includes, sharedmemory 830 andmultiple processors data processing system 810. A process in this context may include threads controlling execution of program code associated with a block of a data flow program developed usingtool 522. - Turning next to FIG. 9, the operation of a data flow program in accordance with the present invention will now be described with reference to the
process 900. Multiple threads are used to process the code associated with the blocks of the data flow program. The number of threads may vary depending on the implementation. As examples, the programmer may specify one thread per processor, or thedata processing system 810 may determine the number of threads based on the number of available processors and an analysis of the data flow program. - If a thread is available to process the code associated with a block (step910), the thread determines whether there are any blocks in the queue (step 920). If so, the available thread selects a block from the queue for processing (step 930). Typically, the blocks are selected from the queue based on the order in which they were placed in the queue. If, however, a thread determines that a selected block is dependent upon a block associated with code that has not yet been executed (step 940), the thread skips the selected block (step 950). Otherwise, when the block dependencies for the selected block have been satisfied (step 940), the thread uses an assigned processor to execute the program code associated with the selected block (step 960). Processing generally continues until the threads have executed the code associated with each block in the queue (step 920).
- In a manner consistent with operation of the
process 900, the FIGS. 10a-c illustrate a portion of the queue of FIG. 7, including the first five blocks of thememory region 200 queued for processing. As shown in FIG. 10a, each thread processes a selected block using one of the processors. In this example, there are four threads and four processors. When a thread completes processing (shown for example in FIG. 10b where a thread completes program execution of the block labeled (1,1)), the thread attempts to execute the next available block in the queue, in this case, the block labeled (1,2). However, the thread does not proceed to execute because the block labeled (1,2) is dependent upon the final state of other blocks still being executed, namely, blocks (2,1), (3,1), and (4,1). - Once execution of the program code for the above-noted blocks has completed, as shown in FIG. 10c, a thread can continue processing with block (1,2). Instead of remaining idle, a thread may skip ahead to process other queued blocks when the dependency relationships for those queued blocks are met. Also, although FIG. 10 shows four threads and four processors, more or fewer threads or processors may be used depending upon the particular implementation.
- The following description sets forth additional specifications the user may supply while developing a data flow program. In one implementation, the user may further specify the memory regions by inputting into the
development tool 522 the following control flow variables and parameters: - Name: A unique name
- Kind: Determines whether the memory region is an input to the problem, an output, input and output, or temporary space used only during evaluation of the problem.
- Type: Corresponds to the data type of the elements of the memory region, for example, integer, real, and the like.
- Dimensions: 0 for a scalar, 1 for a vector, 2 for a matrix. Higher dimensions may also be used.
- Size: A size for each dimension of the memory region.
- Grid: A size for each dimension of the blocks in a memory region.
- Leading dimension: The size of the first dimension of matrices (when a memory region is larger than the matrix it holds).
- In some applications under development, it may be useful for the program code that performs steps on the blocks to be able to access and manipulate the elements of a block. For example, when program code performs matrix manipulation operations, the program code may benefit from information concerning the matrices or sub-matrices stored in one or more blocks. Macros allow the programmer to write program code that will perform steps on the blocks at each node in the DAG. The macros access specific elements and attributes of a block in a memory region. Taking a block in a memory region as an argument, the macro may return for instance, the number of rows or columns in the block, or the number of rows or columns in the memory region. The following table lists several exemplary macros that the programmer may apply in program code and that will act on a block in a memory region:
Macro Description #AROW(OBJ) evaluates to the absolute row of the first element in the block, the true index #ACOL(OBJ) evaluates to the absolute column of the first element in the block #NROWS(OBJ) the number of rows in the block #NCOLS(OBJ) the number of columns in the block #ANROWS(OBJ) the number of rows of elements in the memory region #ANCOLS(OBJ) the number of columns of elements in the memory region #GROWS(OBJ) the number of rows of elements per block #GCOLS(OBJ) the number of columns of elements per block #RECROW Converts INDEX, and absolute index based on the (OBJ,INDEX) current level of recursion and converts it to a true absolute index #RECCOL Converts INDEX, and absolute index based on the (OBJ,INDEX) current level of recursion and converts it to a true absolute index - FIG. 11 shows an
exemplary memory region 1100 with blocks having elements arranged in a 10×10 fashion. Given thismemory region 1100 with ablock 1102 located as shown on the figure, the following macros evaluate for thisblock 1102 as shown in the following table:Macro Value #ROW(A) 3 #COL(A) 2 #AROW(A) 21 #ACOL(A) 11 #NROWS(A) 10 #NCOLS(A) 10 #ANROWS(A) 40 #ANCOLS(A) 40 #GROWS(A) 10 #GCOLS(A) 10 - It should be noted that recursive program codes may be used in which the process repeatedly applies over a smaller region. In this case, the recursion stops when a base case is reached and the region becomes so small that there is not enough left to repeat the process. Specific program code can be associated with a recursive process that will only be executed for the base case. For example, assume that a recursive process is defined that moves over one block column and down one block row at each level of recursion. The following recursive macros evaluate at each level as shown in the following table:
Recursive Level Macro Level 1 Level 2Level 3#RECROW(A,1) 1 11 21 #RECCOL(A,6) 6 16 26 - Additionally, the programmer may designate program code as sub-DAG program code. The sub-DAG designation instructs the
development tool 522 to build a sub-DAG for the code associated with a particular node. In other words, any node in a DAG have, underlying, another DAG specifically directed to the code associated with that node. Thus, the programmer may develop parallelism across a whole application, or inside smaller pieces of code. The programmer may view the resulting hierarchy of DAGs by inputting to thedevelopment tool 522 one or more DAGs that thedevelopment tool 522 should display. - As stated previously, dependencies are specified manually or automatically between blocks and denote which blocks need to be executed before other blocks. The dependencies, in turn, determine the connections between nodes in a DAG representing execution order. Often, several blocks in a memory region depend on several other blocks in the same memory region. Although in most instances automatic specification of dependencies (using the step tree explained above) is suitable, the
development tool 522 further provides an input option that a programmer may use to quickly denote dependencies between multiple blocks. - FIG. 12A, for example, shows a programmer denoting a
parent block 1202 for a set of blocks 1204 (or state) using adevelopment tool 522 user interface (e.g., responsive to mouse and keyboard input). In this implementation, theparent block 1202 represents the starting upper left corner of a set of parent blocks to be designated. Then the programmer specifies whether the dependency on theparent block 1202 is fixed or free with respect to row and column. - FIGS.12B-D illustrate different combinations of fixed and free designations given an exemplary dependent set of
blocks 1204. If the programmer designates the dependency as fixed, all blocks in the dependent set ofblocks 1204 depend on the processing of the parent block 1202 (FIG. 12A). If the dependency is free with respect to row, the block that is depended on varies as row location in the dependent set ofblocks 1204 varies (from the upper left block) (FIG. 12B). Similarly, if the dependency is free with respect to column, the block that is depended on varies as column location in the dependent set ofblocks 1204 varies (from the upper left block) (FIG. 12C). If the dependency is free with respect to row and column, the block that is depended on varies as location in the dependent set of blocks varies (FIG. 12D). Through this method of designating dependencies, thedevelopment tool 522 allows a programmer to quickly manually designate multiple block dependencies. - For the purposes of assigning blocks to nodes in a DAG, the
development tool 522 may provide either or both of a “distribution” mechanism and a “movement” mechanism. With regard first to “distributions”, thedevelopment tool 522 permits the programmer to assign certain types of “distributions” to sets of blocks in a memory region. The distributions then control the manner in which blocks are assigned to nodes in a DAG. The distributions may be used to flexibly group different blocks into a single node and consequently allow different parallel processing approaches to be used for execution of a problem. - For example, given that the result of a 3×3 matrix multiply problem is a 3×3 matrix, the programmer may first select 9 threads to operate on 9 nodes, one for each value in the resulting matrix. However, the programmer, as an alternate approach, may select 3 threads to process 3 nodes, one for each column in the resulting matrix. In the alternate approach, a node will contain more blocks but the data flow program will use less threads. The varying distributions give the programmer flexibility in testing different parallel processing techniques.
- To designate a distribution, the programmer selects a rectangular area of the memory region to identify a set of blocks. In addition to determining the allocation of blocks to nodes, the distributions optionally control on which blocks macros operate. To this end, the
development tool 522 may support two main categories of distributions: primary and secondary. The difference between primary and secondary distributions is that thedevelopment tool 522 may, if selected by the programmer, restrict macros to operate on blocks in primary distributions but not on blocks in secondary distributions. The primary distribution generally determines how many nodes there will be in the DAG for data flow program under development. For a set of blocks that the programmer designates as a secondary distributions, the development tool adds each block in the set of blocks to the same node of the DAG. - Distributions may be categorized as “primary single”, “secondary multiple row,” “secondary multiple column,” “secondary all,” and “multiple” (either primary or secondary). Primary single distributions control how many DAG nodes are created. If a primary single distribution is present in a memory region, the
development tool 522 will create one DAG node for each block in the distribution. Each block in a primary single distribution will enter its own node; no two blocks of a given primary single distribution will share the same node. Thedevelopment tool 522 will also assign each block in additional primary single distributions (e.g., in additional memory regions) to the nodes in the DAG as well. - For all other types of distributions, the
development tool 522 determines which block in the additional distribution is added to a DAG node through a process that can be conceptualized as visually placing the additional distribution over the primary single distribution. The block in the additional distribution that is in place over a primary single distribution block is added to the node containing that primary single distribution block. - Secondary distributions include secondary multiple row, secondary multiple column, and secondary all distributions. When a block in a secondary multiple row distribution is added to a node, then all of the blocks in the row of that block are also added to the node. Similarly, for secondary multiple column distributions, the each block in the column is added. In secondary all distributions, when a block in the distribution is added to a node, every block in the distribution is added to the node.
- Multiple distributions may be primary or secondary. If the primary single distribution is larger than the multiple distribution, then blocks from the multiple distribution are added to nodes in a process that may be conceptualized as iteratively placing the multiple distribution over the primary distribution and shifting until the multiple distribution has covered the whole primary distribution. At each iteration, a multiple distribution block that is over a primary distribution block is entered into the same node containing the primary distribution block.
- Distributions may also have a transpose attribute. The transpose attribute indicates that the distribution is transposed before the overlaying process is applied.
- FIG. 13 shows exemplary memory regions used in a matrix multiplication problem involving three 2-dimensional memory regions, A, B, and C. Assume that each memory region has row and column sizes such that the memory regions are divided into square blocks as shown in FIG. 13. The operation A*B=C can be performed in parallel using several different approaches. First, consider an approach in which each block of C is written by a different thread. A block in C is formed by multiplying the blocks in the corresponding row of A by the corresponding column of blocks in B. In this example, the dashed lines represent the distributions created by the user.
- For the 3×3 case depicted in FIG. 13, since C has a primary single distribution, the
development tool 522 establishes a node in a DAG for each of the nine blocks. In response to the secondary multiple row distribution on A and the multiple column distribution on B, thedevelopment tool 522 adds the rows of A and columns of B to nodes as explained above. For example, when the C(1,1) block is added to the node, the A(1,1) and B(1,1) blocks are also added. Because the A(1,1) block is in a secondary multiple row distribution, all of the blocks in that row are also added to the same node. Similarly, because the B(1,1) block is in a secondary multiple column distribution, all of the blocks in that column are added to the same node. - The resulting nodes that the
development tool 522 creates are shown in the table below. In the table, the ordered pair specifies the row and column of each block added, and the hyphen (“-”) specifies a range of rows or columns when more than one block is added from a distribution.Node Blocks Added Node 1 C(1,1), A(1,1-3), B(1-3,1) Node 2 C(1,2), A(1,1-3), B(1-3,2) Node 3 C(1,3), A(1,1-3), B(1-3,3) Node 4 C(2,1), A(2,1-3), B(1-3,1) Node 5 C(2,2), A(2,1-3), B(1-3,2) Node 6 C(2,3), A(2,1-3), B(1-3,3) Node 7 C(3,1), A(3,1-3), B(1-3,1) Node 8 C(3,2), A(3,1-3), B(1-3,2) Node 9 C(3,3), A(3,1-3), B(1-3,3) - FIG. 14 shows primary A and B distributions created for the same matrix multiply problem. The distributions shown in FIG. 14 result in the following 9 nodes:
Node Blocks Added Node 1 C(1,1), A(1,1), B(1,1), A(1,2-3), B(2-3,1) Node 2 C(1,2), A(1,1), B(1,2), A(1,2-3), B(2-3,2) Node 3 C(1,3), A(1,1), B(1,3), A(1,2-3), B(2-3,3) Node 4 C(2,1), A(2,1), B(1,1), A(2,2-3), B(2-3,1) Node 5 C(2,2), A(2,1), B(1,2), A(2,2-3), B(2-3,2) Node 6 C(2,3), A(2,1), B(1,3), A(2,2-3), B(2-3,3) Node 7 C(3,1), A(3,1), B(1,1), A(3,2-3), B(2-3,1) Node 8 C(3,2), A(3,1), B(1,2), A(3,2-3), B(2-3,2) Node 9 C(3,3), A(3,1), B(1,3), A(3,2-3), B(2-3,3) - As an example, the program code that executes on each node may be represented by a FORTRAN function, MATRIX_MULTIPLY, that takes as arguments the location, number of rows, and number of columns of the three matrices A, B, and C, respectively.
CALL MATRIX_MULTIPLY (A(#AROW(A),1),#NROWS(A),#ANCOLS(A), $ B(1,#ACOL(B)),#ANROWS(B),#NCOLS(B), $ C(#AROW(C),#ACOL(C)),#NROWS(C),#NCOLS(C)) - FIG. 15A shows another allocation of distributions for the matrix multiplication problem in which the programmer has determined that each thread will process a column of blocks in C. In this case, the
development tool 522 creates three nodes because there are three blocks in the primary single distribution. As explained above, when the multiple column distributions are laid over the primary single distribution, each block over a primary single distribution block is added to the same node as that primary distribution block, along with the additional block in the same column of the multiple column distribution. In the example shown in FIG. 15, for example, the block B(2,1) of the secondary multiple column distribution of B is conceptually positioned over C(1,1). Thus, thedevelopment tool 522 adds the block B(2,1) to the node containing C(1,1). Furthermore, because block B(2,1) is part of a multiple column distribution, the block B(2,2) in the same column as B(2,1) is also added to the node containing C(1,1). Also note that when thedevelopment tool 522 adds a block from A to a node, all blocks from A are added to that node because all the blocks of A are designated as a secondary all distribution.Node Blocks Added Node 1 C(1,1), B(1,1), A(1-3,1-3), C(2-3,1), B(2-3,1) Node 2 C(1,2), B(1,2), A(1-3,1-3), C(2-3,2), B(2-3,2) Node 3 C(1,3), B(1,3), A(1-3,1-3), C(2-3,3), B(2-3,3) - The following program code may be used to execute the multiplication:
CALL MATRIX_MULTIPLY (A(1,1),#ANROWS(A),#ANCOLS(A), $ B(1,#ACOL(B)),#ANROWS(B),#NCOLS(B), $ C(1,#ACOL(C),#ANROWS(C),#NCOLS(C)) - FIG. 15B shows another example where the transpose of B is to be multiplied by A to form C. The transpose attribute explained above allows several of the allocations from the previous example to be reused, with modifications to the memory area B as shown in FIG. 15B.
- As noted above, the
development tool 522 also supports a “movement” mechanism for adding blocks in a memory area to nodes in a DAG. Turning next to FIG. 16, that figure shows three examples of the movement mechanism on a memory area M: arow movement 1602, acolumn movement 1604, and acombination movement 1606. - With regard to the
row movement 1608, the programmer first draws (or specifies using another input mechanism such as a keyboard) theselection 1608 shown in FIG. 16. Thedevelopment tool 522 then moves theselection 1608 across the memory area M until the leading edge of theselection 1608 hits a boundary of the memory area. At each position, thedevelopment tool 522 adds the blocks covered by theselection 1608 to a node in the DAG. Thus, for therow movement 1608, thedevelopment tool 522 adds three nodes to the DAG. - Similarly, with regard to the
column movement 1604, the programmer first draws the selection 1610 shown in FIG. 16. Thedevelopment tool 522 then moves the selection 1610 across the memory area M until the leading edge of theselection 1608 hits a boundary of the memory area. At each position, thedevelopment tool 522 adds the blocks covered by the selection 1610 to a node in the DAG. Thus, for therow movement 1608, thedevelopment tool 522 adds three nodes to the DAG. - The
combination movement 1606 operates in the same fashion. In particular, thedevelopment tool 522 moves theselection 1612 over the memory area M until the leading edge of theselection 1612 hits a boundary in each direction of movement. Thus, the for thecombination movement 1606, thedevelopment tool 522 creates four DAG nodes, each associated with four blocks. - Methods and systems consistent with the present invention also provide visualization support for developing data flow programs. As will be explained in more detail below, the
development tool 522 supports the visual representation and presentation of: code segments as one or more nodes in a DAG, attributes that signify that a code segment has already executed, is currently executing, or has not yet begun executing, dependencies of a code segment on other code segments with an attribute that signifies whether the dependency has been met, the portions of one or more data structures that are effected by a code segment, and nodes that a selected thread has executed. - For example, FIG. 17 depicts a
DAG 1700 illustrating the dependency relationships corresponding to FIGS. 3A and 3B. TheDAG 1700 illustrates graphically that the data associated with the blocks sharing thefirst state 1702 are needed for processing by each of the blocks sharing thesecond state 1704. In turn, the data associated with the blocks sharing thesecond state 1704 are needed by the groups of blocks that share thethird state 1706. - In this embodiment, the
development tool 522 represents an unexecuted code segment as a diamond-shaped node, an executing code segment as a square node, and an executed code segment as a circular node. Thedevelopment tool 522 also represents an unmet dependency as a dashed arc and a satisfied dependency as a bolded, solid arc. One skilled in the art, however, will recognize that any change in representation of the nodes and arcs (e.g., a change in shape, color, shading, animation, sound, and the like), may be used to represent the nodes and arcs in different states. Thus, the nodes and arcs used in the methods, systems, and articles of manufacture consistent with the present invention are not limited to those illustrated. Rather, thedevelopment tool 522 generally presents an unexecuted node using an unexecuted visualization, an executing node using an executing visualization, and an executed node using an executed visualization, while representing arcs with an unsatisfied dependency visualization or a satisfied dependency visualization. - FIG. 18 depicts a flow chart of the steps performed by the data flow
program development tool 522 for visualization of the state of the code segments on the DAG. Initially, thedevelopment tool 522 receives an indication to run the program (step 1802). The next step performed by thedevelopment tool 522 is to wait until a processor is available (step 1804). When a processor becomes available, thedevelopment tool 522 selects a block and its associated code from the queue (step 1806). Thedevelopment tool 522 then checks to determine whether all of the dependencies for the selected block are met (step 1808). If all of the dependencies for the selected block of code are met, thedevelopment tool 522 executes the selected block on the processor (step 1810). If all of the dependencies for the selected block are not met, then thedevelopment tool 522 continues to search for a block of code that does have all of its dependencies met. As a result, the program adapts to different environments (e.g., machine load, number of threads, and the like) by executing the code segments that are ready. Thus, rather than continuing to wait on an originally selected code segment until it is ready to execute, thedevelopment tool 522 can execute code segments that become ready sooner than the originally selected code segment. When the selected block is executed, thedevelopment tool 522 modifies the node for the selected block to indicate that the code is executing (step 1812). Assuming there are three threads running in parallel, three code segments can be executed simultaneously. - Thus, as shown in FIG. 19, three of the
nodes DAG 1900 are square nodes to indicate that the code segments represented by the nodes are executing. - The next step performed by the
development tool 522 is to wait until the execution of the block is complete (step 1814). After the execution of the code segment is complete, thedevelopment tool 522 modifies the node of the selected block to indicate that the execution is complete (step 1816). Thedevelopment tool 522 also modifies the appearance of any dependency arcs out of the selected block to indicate that the dependency has been met (step 1818). Thus, after the execution ofnode 1902 inDAG 1900 is complete, thedevelopment tool 522 displays thenode 1902 as a circular node 2002 (see theDAG 2000 in FIG. 20). In addition, thedevelopment tool 522 displays thearcs node 2002 as bolded,solid arcs node 2002 have been met. - Next, the
development tool 522 determines whether there are any more blocks on the queue awaiting execution (step 1820). If there are no more blocks, the processing ends. If there are more blocks available, thedevelopment tool 522 continues processing atstep 1804. Returning to the example depicted in FIG. 20, because the code segment represented bynode 2002 is no longer executing, a thread or processor becomes available. Thus, thedevelopment tool 522 selects the next block (represented by node 2008) from the queue. Since all dependencies for the selected block are met, thedevelopment tool 522 executes the selected block, and represents thenode 2008 as a square node to indicate that the code is executing. Meanwhile, the code segments represented bynodes - After the execution of the next code segment associated with a block assigned to
node 2004, thedevelopment tool 522 represents thenode 2004 as a circular node 2104 (see FIG. 21). Thedevelopment tool 522 also modifies thearcs node 2104 have been met. As shown in FIG. 21, the code segments represented bynodes nodes tool 522 selects the next block from the queue. This block is represented bynode 2116. - As depicted in the
DAG 2100 shown in FIG. 21, two of the dependencies for the block associated withnode 2116, represented by arcs out ofnodes development tool 522 does not begin execution of the code segment associated with the block for node 2116 (and its shape remains a diamond). Rather, thedevelopment tool 522 continues to check the queue for code segments that are ready to execute. However, the only code segments ready to execute are in fact currently executing (2106 and 2108). Thus, one thread is idle while one thread executesnode 2106 and one thread executesnode 2108. When the threads finish, the execution of the code segments represented bynodes DAG 2200 depicted in FIG. 22). Also, at this point, three threads or processors are available and thedevelopment tool 522 continues to check the queue for code segments ready to execute. Thus, thedevelopment tool 522 selects and executes the code segments for blocks in the queue represented bynodes - After execution of the code segment associated with the block represented by
node 2210, thedevelopment tool 522 displays the node as a circular node 2310 (see theDAG 2300 shown in FIG. 23). At this point, the code segments associated with blocks represented bynodes development tool 522 represents the dependencies out ofnode 2310 as solid, bolded arcs 2318, 2320, and 2322 to indicate that these dependencies are met. Thedevelopment tool 522 then selects the next code segment from the queue associated with a block represented bynode 2316. Thedevelopment tool 522 determines that all dependencies for the selected node are met, begins execution of the code associated with the selected node, and represents the selected node as asquare node 2316 to indicate that the code segment is executing. Similarly, when the execution of the code segments associated with blocks represented bynodes nodes DAG 2400 are met.DAG 2500 in FIG. 25 illustrates the state of all nodes and dependencies after all code segments have been executed and all dependencies have been met. - Methods and systems consistent with the present invention allow a programmer to view the dependencies of a code segment on other code segments. The
development tool 522 may use different representations for a dependency that has been met and a dependency that has not been yet (as explained above). The dependency view allows a programmer to quickly ascertain the impact of changes to the DAG on other nodes in the DAG. - FIG. 26 depicts a flow chart of the steps performed by the data flow
program development tool 522 to display the dependencies of a selected code segment. The neighboringDAG portion 2602 illustrates graphically the operation of thedevelopment tool 522. Initially, thedevelopment tool 522 determines a selected block of code through keyboard or mouse input, as examples (step 2604). The selected block of code is generally associated with a block and a node in the DAG. Thus, thedevelopment tool 522 may optionally modify the appearance of the associated node in the DAG (step 2606). As examples, the associated node may change in appearance from a diamond to a square, become bolded, change its line style, and the like. - The
development tool 522 continues to trace arcs back through the DAG (step 2608). Asdevelopment tool 522 finds new dependencies the dependencies are highlighted for the programmer. When there are no arcs left to explore, the processing ends. - The
development tool 522 may also present to the programmer portions of data that are affected by a code segment. For example, thedevelopment tool 522 may show a view of the elements of a data structure, the elements of an array, and the like. As the data flow program executes, thedevelopment tool 522 highlights the data that one or more code segments currently executing are modifying. - Turning next to FIG. 27, that figure presents a flow diagram2700 of the steps performed by the
development tool 522 when presenting to the programmer portions of data that a code segment effects. Thedevelopment tool 522 determines the selected data for monitoring (step 2702). Thus, as shown in thenode view 2703, the programmer has selected, using the dashed selector box, a data element associated with the node. In particular, the programmer has selected the matrix M. - Subsequently, the
development tool 522 provides a graphical representation of the matrix M (step 2704). As shown in thenode view 2705, the matrix is shown with boxes representing its constituent elements M1, M2, M3, and M4. Thedevelopment tool 522 monitors for reads and/or writes to the selected data as threads execute code segments associated with DAG nodes (step 2706). When thedevelopment tool 522 detects that the selected data has been affected by a code segment, thedevelopment tool 522 highlights or otherwise modifies the graphical representation so that the programmer can observe which parts of the selected data are changing. For example, in thenode view 2709, thedevelopment tool 522 has cross-hatched elements M1 and M4 to show that an executing code segment is reading or writing to those elements. - An additional visualization option available to the programmer is the thread path view. When the programmer selects the thread path view, the
development tool 522 provides the programmer with a display that shows, for each thread selected by the programmer, the set of nodes executed by those threads. As a result, the programmer can ascertain which threads are under or over utilized, for example, and experiment with modifications to the data flow program that allow the data flow program to perform better. - Turning to FIG. 28, that figure presents a flow diagram2800 of the steps performed by the
development tool 522 when presenting to the programmer a thread path view. Thedevelopment tool 522 determines the threads selected by the programmer (in this instance using a radio button selection) (step 2802). Thus, as shown in theselection box 2803, the programmer has selected,thread 2 andthread 3. - Subsequently, the
development tool 522 displays the nodes executed by the selected threads. For example, the thread path view 2805 shows thatthread 2 executed nodes (1,1), (1,2), (2,2), and (2,3), and thatthread 3 executed nodes (3,3) and (3,4). Alternatively, thedevelopment tool 522 may present the thread path view by highlighting nodes on a DAG in correspondence with colors, line styles, and the like assigned to threads. - The thread path view indicates which threads executed which nodes. To that end, the
development tool 522 may maintain execution information during data flow program execution that is useful for presenting the thread path view. The execution information may include, as examples, a time stamp, thread identification, node identification, and the like. - As noted above, the
development tool 522 also provides debugging functions. The debugging functions respond to debugging commands that include, as examples, the ability to step to a point in data space, the ability to single step in data space (step debugging commands), the ability to add breakpoints (breakpoint debugging commands), the ability to save program execution information for later replay (replay debugging commands), and the ability to add or delete block dependencies (dependency modification debugging commands). - FIG. 29 presents a flow diagram2900 of the steps performed by the development tool when allowing the programmer to step to a point in data space. The
development tool 522 obtains from the programmer an indication (e.g., a mouse click on a DAG node, keyboard input, or the like) of the next node that the programmer wants thedevelopment tool 522 to process (step 2902). Thedevelopment tool 522 then optionally highlights the selected node and determines the dependencies for the selected node (steps 2904 and 2906). - In other words, before the
development tool 522 executes the code for the selected node, thedevelopment tool 522 first satisfies the dependencies for the selected node (step 2908). Once the dependencies for the selected node are satisfied, thedevelopment tool 522 executes the code for the selected node (step 2910). Processing then stops and the programmer may review the results obtained by execution of the selected node. - Turning next to FIG. 30, that figure illustrates a flow diagram3000 of the steps performed by the
development tool 522 when allowing the programmer to single step the execution of a data flow program. Thedevelopment tool 522 pauses execution of the data flow program and waits for an indication from the programmer to perform a single step (steps 3002 and 3004). When thedevelopment tool 522 receives the indication, thedevelopment tool 522 selects and executes code for the next node in the queue (step 3006). Processing then stops and the programmer may review the results obtained by execution of the selected node. - With regard next to FIG. 31, that figure illustrates a flow diagram3100 of the steps performed by the
development tool 522 when allowing the programmer to save and replay program execution information. Thedevelopment tool 522 pauses execution of the data flow program and outputs DAG status information to secondary storage (e.g., a file) (steps 3102 and 3104). The DAG status information provides a history of execution of DAG nodes which thedevelopment tool 522 may use to replay (e.g., visually on a display) execution of nodes over time. To that end, thedevelopment tool 522 may save, as examples, the DAG structure, node timestamps of execution, breakpoints, thread identifications for executed nodes, dependency status, programmer selected step points, ordering of nodes in the queue, and the like as DAG status information. - Thus, when the
development tool 522 receives a replay indication from the programmer, thedevelopment tool 522 loads DAG status information from the secondary storage (steps 3106 and 3108). Thedevelopment tool 522 may then replay node execution (e.g., by presenting a visual representation of a DAG over time) by highlighting (or displaying as text output) the execution of nodes in the DAG over time (step 3110). - With regard next to FIG. 32, that figure illustrates a flow diagram3200 of the steps performed by the
development tool 522 when allowing the programmer to add or delete dependencies. Thedevelopment tool 522 pauses execution of the data flow program and receives an indication of a dependency to add or delete (steps 3202 and 3204). For example, FIG. 32 shows the programmer using a pointer to specify deletion of dependency 3206 (from node (1,1) to node (1,2)), while adding a dependency 3208 (from node (1,3) to node (1,2)). - In response, the
development tool 522 adds or deletes the specified dependencies and enqueues the blocks for processing (steps 3210 and 3212). Execution continues using the newly added or removed dependencies (step 3214). Thus, the programmer, when faced with incorrect execution of a data flow program under development may investigate the cause of the problem, find that a dependency is missing, and add the dependency. Similarly, the programmer may find that a dependency is not in fact necessary and delete the dependency to investigate whether performance improves. - As noted above, the development tool also supports breakpoints. In one implementation, the development tool provides 1) one point, 2) none after, 3) all before, and 4) task node breakpoints specified on nodes. A “one point” breakpoint halts execution of the data flow program when the specified node is selected for execution. A “none after” breakpoint halts execution when a thread selects for execution any node in the DAG after the specified node. An “all before” breakpoint halts execution when all nodes before the specified node complete execution (note that some nodes after the specified node may also complete, depending on the order of node execution). A “task node” breakpoint halts execution when a thread selects a node for execution that is associated with code that performs a designated task (e.g., a matrix multiplication). Breakpoints may be used in combination on the same node, for example, a “one point” breakpoint may be used with a “none after” breakpoint or an “all before” breakpoint, or both.
- With reference next to FIG. 33, that figure illustrates a flow diagram3300 of the steps performed by the
development tool 522 when setting and checking breakpoints. Thedevelopment tool 522 receives a node and breakpoint type indication, and in response sets the breakpoint for the node (steps 3302 and 3304). Then, during execution of the data flow program, thedevelopment tool 522 monitors for breakpoint conditions to be met (step 3306). When thedevelopment tool 522 determines that the conditions for any particular breakpoint are met, thedevelopment tool 522 halts the data flow program (step 3308). - The
development tool 522 may display the progress of the data flow program, including breakpoints to the programmer. For example, as shown in FIG. 34, theDAG 3400 illustrates that the programmer has selected node (1,3) as a “one point” breakpoint. During execution, threads first execute nodes (1,1), (2,1), (3,1), and (4,1). A thread then selects and executes node (1,2). At this point, the specified breakpoint still has not been reached. However, assuming that the next thread selects node (1,3) for execution, thedevelopment tool 522 recognizes that the “one point” breakpoint has been reached, and halts execution of the data flow program. FIG. 35 shows the state of the DAG when the breakpoint is reached (with circular nodes representing executed nodes). - In one embodiment, the pseudocode ‘C’ structure shown in Table 1 may be used to represent a node in the DAG:
TABLE 1 typedef struct final_dag_node { long doneflag; /* clear when node has been processed */ long takenflag; /* set when claimed by a thread */ long process; /* process index */ long nregions; /* number of regions */ nodeRegion *regions; /* the regions for this node */ long numdepend; /* number of dependency groups */ struct dependency_group *depend; /* pointers to dependency group */ long recursion_level; /* level this node is at */ struct final_dag_node *parent; /* parent if in a subdag */ struct final_dag_node *next; /* link to next node in the queue */ long endflag; /*set for nodes with no dependents */ long level; /* depth of dag calls */ struct final_dag_node *preferred; /* link to the preffred next node */ long pref_priority; /* the priority to assign to the preferred node */ } FinalDagNode; - Note that the node structure includes the process (which identifies what task to do), the data regions that will be acted on, the data dependencies which point at the nodes that are needed before this node can execute, and additional status fields.
- An exemplary pseudocode ‘C’ structure shown in Table 2 may be used to define data assigned to blocks:
TABLE 2 typedef struct node_regions { long ndims; /* number of dimensions */ long start[MAX_DIMENSIONS]; /* starting index */ long end[MAX_DIMENSIONS]; /* ending index */ objectSize *osize; /*pointer to size object */ }nodeRegion; - Dependencies may be stored in groups as illustrated as shown by the pseudocode ‘C’ structure in Table 3. Each group may include an array of pointers to nodes that the node in question is dependent on.
TABLE 3 typedef struct dependency_group { long ndeps; /* number of dependencies */ FinalDagNode **depend; /* pointers to nodes in dependencies */ struct dependency_group *next; /* link to next group in for the node*/ } DependencyGroup; - Methods, systems, and articles of manufacture consistent with the present invention enable a programmer to easily develop data flow programs and to convert existing control flow programs according to the data flow model. By permitting programmers to define memory regions and divide them into blocks with corresponding states (each related to particular control flow program instructions), the interface facilitates the development of a data flow program for execution in a multiprocessor environment.
- The foregoing description of an implementation of the invention has been presented for purposes of illustration and description. It is not exhaustive and does not limit the invention to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practicing of the invention. For example, the described implementation includes software but the present invention may be implemented as a combination of hardware and software or in hardware alone. The invention may be implemented with both object-oriented and non-object-oriented programming systems. The claims and their equivalents define the scope of the invention.
Claims (26)
1. A method in a data processing system for developing a data flow program comprising code segments that operate on data in memory, the method comprising the steps of:
dividing the memory into blocks;
assigning at least a portion of the data and at least one code segment to each block;
determining whether dependencies exist among the blocks such that a first block depends on data assigned to a second block; and
displaying a graph comprising the blocks and the determined dependencies.
2. A method according to claim 1 , wherein the step of displaying comprises the step of displaying a graph comprising nodes assigned to the blocks and dependency arcs representing the determined dependencies.
3. A method according to claim 2 , wherein the step of displaying further comprises the step of presenting the dependency arcs using a satisfied dependency visualization when the determined dependency is satisfied, and presenting the dependency arcs using an unsatisfied dependency visualization when the determined dependency is unsatisfied.
4. A method according to claim 2 , further comprising the steps of:
receiving a node selection specifying a selected one of the nodes;
determining unmet dependencies for the selected node; and
displaying in a visually distinctive manner the unmet dependencies in the graph.
5. A method according to claim 2 , further comprising the steps of:
providing for execution of the code segments using threads;
receiving a thread selection specifying at least one of the threads; and
displaying nodes executed by the at least one thread.
6. A method according to claim 1 , wherein the nodes include executed nodes and unexecuted nodes, and wherein the step of displaying further comprises the step of displaying the unexecuted nodes using an unexecuted visualization and the executed nodes using an executed visualization.
7. A method according to claim 1 , wherein the data includes a data structure, and wherein the step of displaying further comprises the step of:
facilitating visualization of at least a portion of the data structure accessed by at least one of the code segments by graphically presenting at least a portion of the data structure and accentuating the portion of the data structure accessed by the at least one code segment.
8. A method in a data processing system for developing a data flow program comprising code segments distributed between memory blocks, the method comprising the steps of:
representing the data flow program as a graph comprising nodes and node dependencies between the nodes; and
displaying the graph to facilitate visualization of the data flow program.
9. A method according to claim 8 , wherein the nodes include executed nodes and unexecuted nodes, and wherein the step of displaying comprises the step of displaying the unexecuted nodes with an unexecuted visualization and displaying the executed nodes with an executed visualization.
10. A method according to claim 9 , wherein the nodes include executing nodes, and wherein the step of displaying comprises the step of displaying the executing nodes with an executing visualization.
11. A method according to claim 8 , wherein the node dependencies include satisfied dependencies and unsatisfied dependencies, and wherein the step of displaying comprises the steps of displaying the unsatisfied dependencies using an unsatisfied dependency visualization, and displaying the satisfied dependencies using a satisfied dependency visualization.
12. A computer-readable medium containing instructions that cause a data processing system to perform a method for developing a data flow program comprising code segments that operate on data in memory, the method comprising the steps of:
dividing the memory into blocks;
assigning at least a portion of the data and at least one code segment to each block;
determining a dependency imparted by a first block depending on data assigned to a second block; and
displaying a graph comprising the blocks and the determined dependency.
13. A computer-readable medium according to claim 12 , wherein the step of displaying comprises the step of displaying a graph comprising nodes assigned to the blocks and a dependency arc representing the determined dependency.
14. A computer-readable medium according to claim 12 , wherein the step of displaying further comprises the step of presenting the dependency arc using a satisfied dependency visualization when the determined dependency is satisfied, and presenting the dependency arc using an unsatisfied dependency visualization when the determined dependency is unsatisfied.
15. A computer-readable medium according to claim 13 , further comprising the steps of:
receiving a node selection specifying a selected node;
determining unmet dependencies for the selected node; and
highlighting in the graph the unmet dependencies.
16. A computer-readable medium according to claim 13 , further comprising the steps of:
providing for execution of the code segments using threads;
receiving a thread selection specifying at least one of the threads; and
displaying nodes executed by the at least one thread.
17. A computer-readable medium according to claim 12 , wherein the nodes include executed nodes and unexecuted nodes, and wherein the step of displaying further comprises the step of presenting the unexecuted nodes using an unexecuted visualization and the executed nodes using an executed visualization.
18. A computer-readable medium according to claim 12 , wherein the data includes a data structure, and wherein the step of displaying further comprises the step of:
facilitating visualization of at least a portion of the data structure accessed by at least one of the code segments by graphically presenting at least a portion of the data structure and accentuating the portion of the data structure accessed by the at least one code segment.
19. A method in a data processing system for developing a data flow program comprising code segments that operate on data in a memory, the method comprising the steps of:
dividing into blocks the memory that stores the data;
for each block, assigning at least a portion of the data to the block and assigning at least one of the code segments to the block;
storing data read and data write identifiers for each code segment, the data read and data write identifiers identifying at least a portion of the data read or written by the code segment;
determining whether dependencies exist among the blocks such that a first block depends on data assigned to a second block using the read and write identifiers;
generating a directed acyclic graph comprising nodes and arcs between the nodes by assigning the blocks to the nodes and by assigning the dependencies to the arcs;
displaying the directed acyclic graph;
initiating execution of the code segments;
while the code segments are executing,
determining which nodes in the graph are unexecuted nodes and which nodes in the graph are executed nodes; and
displaying the unexecuted nodes in a manner visually distinctive from the executed nodes.
20. A data processing system comprising:
a memory comprising a data flow program and a data flow development tool that associates data processed by the data flow program to blocks in the memory, associates code segments of the data flow program to at least one of the blocks, determines dependencies between the blocks, and displays a graph comprising nodes and arcs depicting the dependencies between the blocks; and
a processor that runs the data flow development tool.
21. The data processing system of claim 20 , wherein the nodes comprise executed nodes and unexecuted nodes, and wherein the executed nodes are displayed using an executed node visualization and the unexecuted nodes are displayed using an unexecuted node visualization.
22. The data processing system of claim 20 , wherein the arcs comprise satisfied dependency arcs and unsatisfied dependency arcs, and wherein the satisfied dependency arcs are displayed using a satisfied dependency visualization and the unsatisfied dependency arcs are displayed using an unsatisfied dependency visualization.
23. A data processing system for developing a data flow program comprising code segments that operate on data in memory, the data processing system comprising:
means for apportioning a memory into regions and associating the data and the code segments with the regions;
means for determining dependencies between the regions; and
means for displaying a graph of nodes that are assigned regions, and arcs depicting the dependencies between the regions.
24. A computer readable memory device encoded with a data structure accessed by a data flow development tool run by a processor in a system, the data structure comprising:
nodes assigned to data processed by a data flow program and to code segments of the data flow program; and
dependencies between nodes, wherein the development tool accesses the data structure to provide a visualization of the data flow program.
25. A computer readable memory device according to claim 24 , wherein the data structure further comprises:
a processed flag that indicates whether at least one of the nodes is executed or unexecuted.
26. A computer readable memory device according to claim 24 , wherein the data structure further comprises:
a taken flag that indicates whether at least one of the nodes has been claimed by a thread.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/007,766 US20020162089A1 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/244,138 US6378066B1 (en) | 1999-02-04 | 1999-02-04 | Method, apparatus, and article of manufacture for developing and executing data flow programs, and optimizing user input specifications |
US10/007,766 US20020162089A1 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/244,138 Continuation-In-Part US6378066B1 (en) | 1999-02-04 | 1999-02-04 | Method, apparatus, and article of manufacture for developing and executing data flow programs, and optimizing user input specifications |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020162089A1 true US20020162089A1 (en) | 2002-10-31 |
Family
ID=22921512
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/244,138 Expired - Lifetime US6378066B1 (en) | 1999-02-04 | 1999-02-04 | Method, apparatus, and article of manufacture for developing and executing data flow programs, and optimizing user input specifications |
US10/007,766 Abandoned US20020162089A1 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
US10/010,426 Abandoned US20040015929A1 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
US10/005,783 Expired - Lifetime US7065634B2 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
US11/379,684 Abandoned US20060206869A1 (en) | 1999-02-04 | 2006-04-21 | Methods and systems for developing data flow programs |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/244,138 Expired - Lifetime US6378066B1 (en) | 1999-02-04 | 1999-02-04 | Method, apparatus, and article of manufacture for developing and executing data flow programs, and optimizing user input specifications |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/010,426 Abandoned US20040015929A1 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
US10/005,783 Expired - Lifetime US7065634B2 (en) | 1999-02-04 | 2001-11-08 | Methods and systems for developing data flow programs |
US11/379,684 Abandoned US20060206869A1 (en) | 1999-02-04 | 2006-04-21 | Methods and systems for developing data flow programs |
Country Status (3)
Country | Link |
---|---|
US (5) | US6378066B1 (en) |
EP (1) | EP1026585A3 (en) |
JP (1) | JP2000285084A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080079724A1 (en) * | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Description language for structured graphs |
US20080082644A1 (en) * | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Distributed parallel computing |
US20080098375A1 (en) * | 2006-09-29 | 2008-04-24 | Microsoft Corporation | Runtime optimization of distributed execution graph |
US20080222114A1 (en) * | 2007-03-09 | 2008-09-11 | Ghost Inc. | Efficient directed acyclic graph representation |
US20100325187A1 (en) * | 2006-06-16 | 2010-12-23 | Norbert Juffa | Efficient matrix multiplication on a parallel processing device |
US7912889B1 (en) * | 2006-06-16 | 2011-03-22 | Nvidia Corporation | Mapping the threads of a CTA to the elements of a tile for efficient matrix multiplication |
US20110154294A1 (en) * | 2009-12-23 | 2011-06-23 | Cormack Christopher J | Relational Modeling for Performance Analysis of Multi-Core Processors |
US20120060145A1 (en) * | 2010-09-02 | 2012-03-08 | Honeywell International Inc. | Auto-generation of concurrent code for multi-core applications |
US20120180033A1 (en) * | 2011-01-12 | 2012-07-12 | David Amos Brown | System and Methodology for Autonomous, Value-Centric, Architectural, Software Programming |
US20130074037A1 (en) * | 2011-09-15 | 2013-03-21 | You-Know Solutions LLC | Analytic engine to parallelize serial code |
US20130111438A1 (en) * | 2010-07-20 | 2013-05-02 | Hitachi, Ltd. | Software Maintenance Supporting Device and Electronic Control Device Verified by the Same |
US8990511B2 (en) | 2007-11-01 | 2015-03-24 | Nec Corporation | Multiprocessor, cache synchronization control method and program therefor |
US20150261881A1 (en) * | 2014-03-14 | 2015-09-17 | Concurrent, Inc. | Logical data flow mapping rules for (sub) graph isomorphism in a cluster computing environment |
US11341599B2 (en) | 2017-09-15 | 2022-05-24 | Fujifilm Business Innovation Corp. | Image processing apparatus, image processing method, and computer readable medium storing image processing program |
Families Citing this family (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3280332B2 (en) * | 1998-07-10 | 2002-05-13 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Method and apparatus for performing versioning on loop, method and apparatus for collecting information on array range check in basic block, method for changing information on array range check, method for optimizing array range check, array range Method of generating code for checking, unnecessary array range check removal method and apparatus, method of selecting array range check, method of changing array range check, collection method of array range check, and handling judgment of array range check Method |
US7260817B2 (en) * | 1999-07-09 | 2007-08-21 | International Business Machines Corporation | Method using array range check information for generating versioning code before a loop for execution |
JP2000207223A (en) * | 1999-01-12 | 2000-07-28 | Matsushita Electric Ind Co Ltd | Method and device for program processing for parallel processings, recording medium with program performing program processing for parallel processing recorded therein, and recording medium with instruction sequence for parallel processing recorded therein |
US6581102B1 (en) * | 1999-05-27 | 2003-06-17 | International Business Machines Corporation | System and method for integrating arbitrary isochronous processing algorithms in general media processing systems |
US6671876B1 (en) * | 1999-10-28 | 2003-12-30 | Lucent Technologies Inc. | Monitoring of software operation for improving computer program performance |
US20030188300A1 (en) * | 2000-02-18 | 2003-10-02 | Patrudu Pilla G. | Parallel processing system design and architecture |
JP3810631B2 (en) * | 2000-11-28 | 2006-08-16 | 富士通株式会社 | Recording medium on which information processing program is recorded |
US7877286B1 (en) | 2000-12-20 | 2011-01-25 | Demandtec, Inc. | Subset optimization system |
US9773250B2 (en) * | 2000-12-20 | 2017-09-26 | International Business Machines Corporation | Product role analysis |
US7660734B1 (en) | 2000-12-20 | 2010-02-09 | Demandtec, Inc. | System for creating optimized promotion event calendar |
US7694302B1 (en) * | 2001-04-05 | 2010-04-06 | Network Appliance, Inc. | Symmetric multiprocessor synchronization using migrating scheduling domains |
US7178137B1 (en) | 2001-04-05 | 2007-02-13 | Network Appliance, Inc. | Automatic verification of scheduling domain consistency |
US20030005408A1 (en) * | 2001-07-02 | 2003-01-02 | Pradeep Tumati | System and method for creating software modifiable without halting its execution |
US20030121024A1 (en) * | 2001-12-13 | 2003-06-26 | Microsoft Corporation | System and method for building a runtime image from components of a software program |
US7543281B2 (en) * | 2002-07-22 | 2009-06-02 | National Instruments Corporation | Disabling and conditionally compiling graphical code in a graphical program |
US7069543B2 (en) * | 2002-09-11 | 2006-06-27 | Sun Microsystems, Inc | Methods and systems for software watchdog support |
US7093166B2 (en) * | 2002-10-08 | 2006-08-15 | Dell Products L.P. | Method and apparatus for testing physical memory in an information handling system under conventional operating systems |
US7225429B2 (en) * | 2003-06-12 | 2007-05-29 | International Business Machines Corporation | Breakpoint groups based on control flow |
US7373640B1 (en) | 2003-07-31 | 2008-05-13 | Network Appliance, Inc. | Technique for dynamically restricting thread concurrency without rewriting thread code |
US7937691B2 (en) | 2003-09-30 | 2011-05-03 | International Business Machines Corporation | Method and apparatus for counting execution of specific instructions and accesses to specific data locations |
US7373637B2 (en) | 2003-09-30 | 2008-05-13 | International Business Machines Corporation | Method and apparatus for counting instruction and memory location ranges |
US7395527B2 (en) | 2003-09-30 | 2008-07-01 | International Business Machines Corporation | Method and apparatus for counting instruction execution and data accesses |
US8381037B2 (en) | 2003-10-09 | 2013-02-19 | International Business Machines Corporation | Method and system for autonomic execution path selection in an application |
US7421681B2 (en) | 2003-10-09 | 2008-09-02 | International Business Machines Corporation | Method and system for autonomic monitoring of semaphore operation in an application |
US7840949B2 (en) * | 2003-11-03 | 2010-11-23 | Ramal Acquisition Corp. | System and method for data transformation using dataflow graphs |
US7257657B2 (en) * | 2003-11-06 | 2007-08-14 | International Business Machines Corporation | Method and apparatus for counting instruction execution and data accesses for specific types of instructions |
US7392370B2 (en) * | 2004-01-14 | 2008-06-24 | International Business Machines Corporation | Method and apparatus for autonomically initiating measurement of secondary metrics based on hardware counter values for primary metrics |
US7290255B2 (en) * | 2004-01-14 | 2007-10-30 | International Business Machines Corporation | Autonomic method and apparatus for local program code reorganization using branch count per instruction hardware |
US7526757B2 (en) | 2004-01-14 | 2009-04-28 | International Business Machines Corporation | Method and apparatus for maintaining performance monitoring structures in a page table for use in monitoring performance of a computer program |
US7293164B2 (en) * | 2004-01-14 | 2007-11-06 | International Business Machines Corporation | Autonomic method and apparatus for counting branch instructions to generate branch statistics meant to improve branch predictions |
US7895382B2 (en) | 2004-01-14 | 2011-02-22 | International Business Machines Corporation | Method and apparatus for qualifying collection of performance monitoring events by types of interrupt when interrupt occurs |
US7415705B2 (en) * | 2004-01-14 | 2008-08-19 | International Business Machines Corporation | Autonomic method and apparatus for hardware assist for patching code |
US8171480B2 (en) * | 2004-01-27 | 2012-05-01 | Network Appliance, Inc. | Method and apparatus for allocating shared resources to process domains according to current processor utilization in a shared resource processor |
US7296130B2 (en) * | 2004-03-22 | 2007-11-13 | International Business Machines Corporation | Method and apparatus for providing hardware assistance for data access coverage on dynamically allocated data |
US7421684B2 (en) | 2004-03-22 | 2008-09-02 | International Business Machines Corporation | Method and apparatus for autonomic test case feedback using hardware assistance for data coverage |
US8135915B2 (en) * | 2004-03-22 | 2012-03-13 | International Business Machines Corporation | Method and apparatus for hardware assistance for prefetching a pointer to a data structure identified by a prefetch indicator |
US7480899B2 (en) | 2004-03-22 | 2009-01-20 | International Business Machines Corporation | Method and apparatus for autonomic test case feedback using hardware assistance for code coverage |
US7526616B2 (en) * | 2004-03-22 | 2009-04-28 | International Business Machines Corporation | Method and apparatus for prefetching data from a data structure |
US7299319B2 (en) * | 2004-03-22 | 2007-11-20 | International Business Machines Corporation | Method and apparatus for providing hardware assistance for code coverage |
US7673293B2 (en) * | 2004-04-20 | 2010-03-02 | Hewlett-Packard Development Company, L.P. | Method and apparatus for generating code for scheduling the execution of binary code |
US7797676B2 (en) * | 2004-04-20 | 2010-09-14 | International Business Machines Corporation | Method and system for switching between prototype and real code production in a graphical call flow builder |
US7353488B1 (en) * | 2004-05-27 | 2008-04-01 | Magma Design Automation, Inc. | Flow definition language for designing integrated circuit implementation flows |
US7725874B2 (en) * | 2004-08-13 | 2010-05-25 | National Instruments Corporation | Combination structure nodes for a graphical program |
US7979870B1 (en) | 2004-12-08 | 2011-07-12 | Cadence Design Systems, Inc. | Method and system for locating objects in a distributed computing environment |
US8806490B1 (en) | 2004-12-08 | 2014-08-12 | Cadence Design Systems, Inc. | Method and apparatus for managing workflow failures by retrying child and parent elements |
US8108878B1 (en) * | 2004-12-08 | 2012-01-31 | Cadence Design Systems, Inc. | Method and apparatus for detecting indeterminate dependencies in a distributed computing environment |
US8244854B1 (en) | 2004-12-08 | 2012-08-14 | Cadence Design Systems, Inc. | Method and system for gathering and propagating statistical information in a distributed computing environment |
US7882505B2 (en) * | 2005-03-25 | 2011-02-01 | Oracle America, Inc. | Method and apparatus for switching between per-thread and per-processor resource pools in multi-threaded programs |
US7689867B2 (en) * | 2005-06-09 | 2010-03-30 | Intel Corporation | Multiprocessor breakpoint |
US7813910B1 (en) | 2005-06-10 | 2010-10-12 | Thinkvillage-Kiwi, Llc | System and method for developing an application playing on a mobile device emulated on a personal computer |
US8589140B1 (en) * | 2005-06-10 | 2013-11-19 | Wapp Tech Corp. | System and method for emulating and profiling a frame-based application playing on a mobile device |
EP1752874A1 (en) * | 2005-07-19 | 2007-02-14 | Alcatel | Adaptive evolutionary computer software product |
US8347293B2 (en) * | 2005-10-20 | 2013-01-01 | Network Appliance, Inc. | Mutual exclusion domains to perform file system processes on stripes |
US7376758B2 (en) * | 2005-11-04 | 2008-05-20 | Sun Microsystems, Inc. | I/O dependency graphs |
US8701091B1 (en) | 2005-12-15 | 2014-04-15 | Nvidia Corporation | Method and system for providing a generic console interface for a graphics application |
US9081609B2 (en) * | 2005-12-21 | 2015-07-14 | Xerox Corporation | Image processing system and method employing a threaded scheduler |
US9858579B1 (en) | 2006-02-28 | 2018-01-02 | International Business Machines Corporation | Plan tuning engine |
US9785951B1 (en) * | 2006-02-28 | 2017-10-10 | International Business Machines Corporation | Scalable tuning engine |
US8452981B1 (en) * | 2006-03-01 | 2013-05-28 | Nvidia Corporation | Method for author verification and software authorization |
US7891012B1 (en) * | 2006-03-01 | 2011-02-15 | Nvidia Corporation | Method and computer-usable medium for determining the authorization status of software |
US7739267B2 (en) * | 2006-03-10 | 2010-06-15 | International Business Machines Corporation | Classification and sequencing of mixed data flows |
US7689576B2 (en) * | 2006-03-10 | 2010-03-30 | International Business Machines Corporation | Dilation of sub-flow operators in a data flow |
US7689582B2 (en) * | 2006-03-10 | 2010-03-30 | International Business Machines Corporation | Data flow system and method for heterogeneous data integration environments |
US9361137B2 (en) * | 2006-03-10 | 2016-06-07 | International Business Machines Corporation | Managing application parameters based on parameter types |
US20070245225A1 (en) * | 2006-04-18 | 2007-10-18 | Nally Martin P | System and method for translating between a global view of a system process and a set of interacting processes |
US7849446B2 (en) * | 2006-06-09 | 2010-12-07 | Oracle America, Inc. | Replay debugging |
US8963932B1 (en) | 2006-08-01 | 2015-02-24 | Nvidia Corporation | Method and apparatus for visualizing component workloads in a unified shader GPU architecture |
US8436864B2 (en) * | 2006-08-01 | 2013-05-07 | Nvidia Corporation | Method and user interface for enhanced graphical operation organization |
US8607151B2 (en) * | 2006-08-01 | 2013-12-10 | Nvidia Corporation | Method and system for debugging a graphics pipeline subunit |
US8436870B1 (en) | 2006-08-01 | 2013-05-07 | Nvidia Corporation | User interface and method for graphical processing analysis |
US7778800B2 (en) * | 2006-08-01 | 2010-08-17 | Nvidia Corporation | Method and system for calculating performance parameters for a processor |
US8639558B2 (en) * | 2006-09-25 | 2014-01-28 | International Business Machines Corporation | Providing markdown item pricing and promotion calendar |
US8099725B2 (en) * | 2006-10-11 | 2012-01-17 | International Business Machines Corporation | Method and apparatus for generating code for an extract, transform, and load (ETL) data flow |
CN101192193A (en) * | 2006-11-27 | 2008-06-04 | 国际商业机器公司 | Method and system for accomplishing observation point |
US8046745B2 (en) * | 2006-11-30 | 2011-10-25 | International Business Machines Corporation | Method to examine the execution and performance of parallel threads in parallel programming |
US8160999B2 (en) * | 2006-12-13 | 2012-04-17 | International Business Machines Corporation | Method and apparatus for using set based structured query language (SQL) to implement extract, transform, and load (ETL) splitter operation |
US8219518B2 (en) * | 2007-01-09 | 2012-07-10 | International Business Machines Corporation | Method and apparatus for modelling data exchange in a data flow of an extract, transform, and load (ETL) process |
US7860905B2 (en) * | 2007-04-24 | 2010-12-28 | Microsoft Corporation | Systems and methods for modularizing data flows |
US7860904B2 (en) * | 2007-04-24 | 2010-12-28 | Microsoft Corporation | Standalone execution of incomplete data flows |
US8156473B2 (en) * | 2007-06-01 | 2012-04-10 | Sap Ag | Model oriented debugging |
US9035957B1 (en) | 2007-08-15 | 2015-05-19 | Nvidia Corporation | Pipeline debug statistics system and method |
US20090055805A1 (en) * | 2007-08-24 | 2009-02-26 | International Business Machines Corporation | Method and System for Testing Software |
US7765500B2 (en) * | 2007-11-08 | 2010-07-27 | Nvidia Corporation | Automated generation of theoretical performance analysis based upon workload and design configuration |
US8301755B2 (en) * | 2007-12-14 | 2012-10-30 | Bmc Software, Inc. | Impact propagation in a directed acyclic graph |
US8051164B2 (en) * | 2007-12-14 | 2011-11-01 | Bmc Software, Inc. | Impact propagation in a directed acyclic graph having restricted views |
US8321841B2 (en) * | 2008-01-08 | 2012-11-27 | International Business Machines Corporation | Validation framework for service oriented architecture (SOA) application adoption |
US20090204946A1 (en) * | 2008-02-12 | 2009-08-13 | International Business Machines Corporation | Intelligent software code updater |
US9043774B2 (en) * | 2008-02-12 | 2015-05-26 | William G. Bently | Systems and methods for information flow analysis |
JP5194914B2 (en) * | 2008-03-18 | 2013-05-08 | 株式会社リコー | Image processing apparatus, image processing apparatus display method and program |
US8448002B2 (en) * | 2008-04-10 | 2013-05-21 | Nvidia Corporation | Clock-gated series-coupled data processing modules |
US9772887B2 (en) * | 2008-06-02 | 2017-09-26 | Microsoft Technology Learning, LLC | Composable and cancelable dataflow continuation passing |
US8255884B2 (en) * | 2008-06-06 | 2012-08-28 | International Business Machines Corporation | Optimized scalar promotion with load and splat SIMD instructions |
US20090327995A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Annotation-aided code generation in library-based replay |
US8135942B2 (en) * | 2008-08-28 | 2012-03-13 | International Business Machines Corpration | System and method for double-issue instructions using a dependency matrix and a side issue queue |
US20100153928A1 (en) * | 2008-12-16 | 2010-06-17 | Microsoft Corporation | Developing and Maintaining High Performance Network Services |
US9135948B2 (en) | 2009-07-03 | 2015-09-15 | Microsoft Technology Licensing, Llc | Optical medium with added descriptor to reduce counterfeiting |
CN101859330B (en) * | 2009-04-09 | 2012-11-21 | 辉达公司 | Method for verifying integrated circuit effectiveness models |
KR101572879B1 (en) | 2009-04-29 | 2015-12-01 | 삼성전자주식회사 | Dynamic parallel system and method for parallel application program |
US8689231B2 (en) * | 2009-06-30 | 2014-04-01 | Sap Ag | System and method for ordering tasks with complex interrelationships |
US8177663B2 (en) * | 2009-07-23 | 2012-05-15 | WM. T. Burnett IP, LLP | Golf club with interchangeable faces and weights |
US8522210B1 (en) * | 2009-12-29 | 2013-08-27 | Cadence Design Systems, Inc. | Detecting indexing errors in declarative languages |
US8479167B1 (en) | 2009-12-29 | 2013-07-02 | Cadence Design Systems, Inc. | Detecting indexing errors in declarative languages |
US9111031B2 (en) * | 2010-04-16 | 2015-08-18 | Salesforce.Com, Inc. | Method and system for simulating and analyzing code execution in an on-demand service environment |
US8627331B1 (en) | 2010-04-30 | 2014-01-07 | Netapp, Inc. | Multi-level parallelism of process execution in a mutual exclusion domain of a processing system |
US8732670B1 (en) | 2010-06-29 | 2014-05-20 | Ca, Inc. | Ensuring determinism during programmatic replay in a virtual machine |
US8516307B2 (en) * | 2010-08-27 | 2013-08-20 | Sap Ag | Execution layer debugger |
US20120102469A1 (en) * | 2010-10-22 | 2012-04-26 | International Business Machines Corporation | Deterministic application breakpoint halting by logically relating breakpoints in a graph |
US20120117546A1 (en) * | 2010-11-08 | 2012-05-10 | International Business Machines Corporation | Run-time Module Interdependency Verification |
US9430204B2 (en) | 2010-11-19 | 2016-08-30 | Microsoft Technology Licensing, Llc | Read-only communication operator |
US20120131559A1 (en) * | 2010-11-22 | 2012-05-24 | Microsoft Corporation | Automatic Program Partition For Targeted Replay |
US9507568B2 (en) | 2010-12-09 | 2016-11-29 | Microsoft Technology Licensing, Llc | Nested communication operator |
US8607203B1 (en) * | 2010-12-17 | 2013-12-10 | Amazon Technologies, Inc. | Test automation framework using dependency injection |
US9395957B2 (en) * | 2010-12-22 | 2016-07-19 | Microsoft Technology Licensing, Llc | Agile communication operator |
US9195810B2 (en) * | 2010-12-28 | 2015-11-24 | Microsoft Technology Licensing, Llc | Identifying factorable code |
US8671397B2 (en) * | 2011-09-27 | 2014-03-11 | International Business Machines Corporation | Selective data flow analysis of bounded regions of computer software applications |
US8887138B2 (en) | 2012-05-25 | 2014-11-11 | Telefonaktiebolaget L M Ericsson (Publ) | Debugging in a dataflow programming environment |
US9323315B2 (en) | 2012-08-15 | 2016-04-26 | Nvidia Corporation | Method and system for automatic clock-gating of a clock grid at a clock source |
US8850371B2 (en) | 2012-09-14 | 2014-09-30 | Nvidia Corporation | Enhanced clock gating in retimed modules |
US9519568B2 (en) | 2012-12-31 | 2016-12-13 | Nvidia Corporation | System and method for debugging an executing general-purpose computing on graphics processing units (GPGPU) application |
US8954546B2 (en) | 2013-01-25 | 2015-02-10 | Concurix Corporation | Tracing with a workload distributor |
US20130232433A1 (en) * | 2013-02-01 | 2013-09-05 | Concurix Corporation | Controlling Application Tracing using Dynamic Visualization |
US9256969B2 (en) | 2013-02-01 | 2016-02-09 | Microsoft Technology Licensing, Llc | Transformation function insertion for dynamically displayed tracer data |
US9323863B2 (en) | 2013-02-01 | 2016-04-26 | Microsoft Technology Licensing, Llc | Highlighting of time series data on force directed graph |
US8997063B2 (en) | 2013-02-12 | 2015-03-31 | Concurix Corporation | Periodicity optimization in an automated tracing system |
US20130283281A1 (en) | 2013-02-12 | 2013-10-24 | Concurix Corporation | Deploying Trace Objectives using Cost Analyses |
US9021447B2 (en) | 2013-02-12 | 2015-04-28 | Concurix Corporation | Application tracing by distributed objectives |
US8924941B2 (en) | 2013-02-12 | 2014-12-30 | Concurix Corporation | Optimization analysis using similar frequencies |
US8843901B2 (en) | 2013-02-12 | 2014-09-23 | Concurix Corporation | Cost analysis for selecting trace objectives |
WO2014142820A1 (en) * | 2013-03-13 | 2014-09-18 | Intel Corporation | Visualizing recorded executions of multi-threaded software programs for performance and correctness |
US20130219372A1 (en) | 2013-03-15 | 2013-08-22 | Concurix Corporation | Runtime Settings Derived from Relationships Identified in Tracer Data |
US9575874B2 (en) | 2013-04-20 | 2017-02-21 | Microsoft Technology Licensing, Llc | Error list and bug report analysis for configuring an application tracer |
WO2014176313A1 (en) | 2013-04-23 | 2014-10-30 | Ab Initio Technology Llc | Controlling tasks performed by a computing system |
US9471456B2 (en) | 2013-05-15 | 2016-10-18 | Nvidia Corporation | Interleaved instruction debugger |
US8990777B2 (en) | 2013-05-21 | 2015-03-24 | Concurix Corporation | Interactive graph for navigating and monitoring execution of application code |
US9734040B2 (en) | 2013-05-21 | 2017-08-15 | Microsoft Technology Licensing, Llc | Animated highlights in a graph representing an application |
US20140189650A1 (en) * | 2013-05-21 | 2014-07-03 | Concurix Corporation | Setting Breakpoints Using an Interactive Graph Representing an Application |
US9280841B2 (en) | 2013-07-24 | 2016-03-08 | Microsoft Technology Licensing, Llc | Event chain visualization of performance data |
US9292415B2 (en) | 2013-09-04 | 2016-03-22 | Microsoft Technology Licensing, Llc | Module specific tracing in a shared module environment |
EP3069267A4 (en) | 2013-11-13 | 2017-09-27 | Microsoft Technology Licensing, LLC | Software component recommendation based on multiple trace runs |
CN105765528B (en) | 2013-11-13 | 2019-09-24 | 微软技术许可有限责任公司 | Method, system and medium with the application execution path trace that configurable origin defines |
US20160259641A1 (en) * | 2013-12-16 | 2016-09-08 | Hewlett Packard Enterprise Development Lp | Tagging a program code portion |
GB2536921A (en) * | 2015-03-31 | 2016-10-05 | Fujitsu Ltd | Apparatus, program, and method for updating cache memory |
JP6489985B2 (en) * | 2015-09-24 | 2019-03-27 | ルネサスエレクトロニクス株式会社 | Program development support apparatus and program development support software |
US10318251B1 (en) | 2016-01-11 | 2019-06-11 | Altair Engineering, Inc. | Code generation and simulation for graphical programming |
US10297053B1 (en) * | 2016-05-10 | 2019-05-21 | Pixar | Scalable multi-threaded evaluation of vectorized data flow graphs |
US10996989B2 (en) | 2016-06-13 | 2021-05-04 | International Business Machines Corporation | Flexible optimized data handling in systems with multiple memories |
US10891326B2 (en) | 2017-01-05 | 2021-01-12 | International Business Machines Corporation | Representation of a data analysis using a flow graph |
US10388039B2 (en) | 2017-05-31 | 2019-08-20 | International Business Machines Corporation | Accelerating data-driven scientific discovery |
US10521208B2 (en) * | 2017-06-23 | 2019-12-31 | Microsoft Technology Licensing, Llc. | Differentiated static analysis for dynamic code optimization |
CN107391136B (en) * | 2017-07-21 | 2020-11-06 | 众安信息技术服务有限公司 | Programming system and method based on stream |
US10691304B1 (en) * | 2018-10-22 | 2020-06-23 | Tableau Software, Inc. | Data preparation user interface with conglomerate heterogeneous process flow elements |
LU101480B1 (en) * | 2019-11-18 | 2021-05-18 | Luxembourg Inst Science & Tech List | Data preprocessing for a supervised machine learning process |
CN111538714B (en) * | 2020-04-24 | 2023-10-17 | 咪咕文化科技有限公司 | Instruction execution method and device, electronic equipment and storage medium |
US11836518B2 (en) * | 2020-12-17 | 2023-12-05 | Wave Computing, Inc. | Processor graph execution using interrupt conservation |
US11461297B1 (en) | 2021-06-09 | 2022-10-04 | T-Mobile Usa, Inc. | Ensuring database integrity using a data flow in a graph, such as for use by a wireless telecommunications service provider |
US12032994B1 (en) | 2021-10-18 | 2024-07-09 | Tableau Software, LLC | Linking outputs for automatic execution of tasks |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5038348A (en) * | 1988-07-01 | 1991-08-06 | Sharp Kabushiki Kaisha | Apparatus for debugging a data flow program |
US5165036A (en) * | 1989-01-31 | 1992-11-17 | Sharp Kabushiki Kaisha | Parallel processing development system with debugging device includes facilities for schematically displaying execution state of data driven type processor |
US5535318A (en) * | 1992-04-30 | 1996-07-09 | Ricoh Company, Ltd. | Debugging system for a hierarchically structured page description language |
US5539907A (en) * | 1994-03-01 | 1996-07-23 | Digital Equipment Corporation | System for monitoring computer system performance |
US5541849A (en) * | 1990-04-06 | 1996-07-30 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of timing parameters |
US5737750A (en) * | 1994-08-31 | 1998-04-07 | Hewlett-Packard Company | Partitioned single array cache memory having first and second storage regions for storing non-branch and branch instructions |
US5802375A (en) * | 1994-11-23 | 1998-09-01 | Cray Research, Inc. | Outer loop vectorization |
US5870763A (en) * | 1997-03-10 | 1999-02-09 | Microsoft Corporation | Database computer system with application recovery and dependency handling read cache |
US5887174A (en) * | 1996-06-18 | 1999-03-23 | International Business Machines Corporation | System, method, and program product for instruction scheduling in the presence of hardware lookahead accomplished by the rescheduling of idle slots |
US5963972A (en) * | 1997-02-24 | 1999-10-05 | Digital Equipment Corporation | Memory architecture dependent program mapping |
US5999192A (en) * | 1996-04-30 | 1999-12-07 | Lucent Technologies Inc. | Interactive data exploration apparatus and methods |
US6175957B1 (en) * | 1997-12-09 | 2001-01-16 | International Business Machines Corporation | Method of, system for, and computer program product for providing efficient utilization of memory hierarchy through code restructuring |
US6226787B1 (en) * | 1999-01-25 | 2001-05-01 | Hewlett-Packard Company | Visualization method and system for dynamically displaying operations of a program |
US6282707B1 (en) * | 1998-02-16 | 2001-08-28 | Nec Corporation | Program transformation method and program transformation system |
US6286135B1 (en) * | 1997-03-26 | 2001-09-04 | Hewlett-Packard Company | Cost-sensitive SSA-based strength reduction algorithm for a machine with predication support and segmented addresses |
US6330008B1 (en) * | 1997-02-24 | 2001-12-11 | Torrent Systems, Inc. | Apparatuses and methods for monitoring performance of parallel computing |
US6349363B2 (en) * | 1998-12-08 | 2002-02-19 | Intel Corporation | Multi-section cache with different attributes for each section |
US6408430B2 (en) * | 1998-09-03 | 2002-06-18 | Lucent Technologies, Inc. | Interactive software testing system and method |
US6490673B1 (en) * | 1998-11-27 | 2002-12-03 | Matsushita Electric Industrial Co., Ltd | Processor, compiling apparatus, and compile program recorded on a recording medium |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0138535A3 (en) * | 1983-10-13 | 1987-01-28 | British Telecommunications Plc | Visual display logic simulation system |
JPS60101644A (en) * | 1983-11-07 | 1985-06-05 | Masahiro Sowa | Parallel processing computer |
US5021947A (en) * | 1986-03-31 | 1991-06-04 | Hughes Aircraft Company | Data-flow multiprocessor architecture with three dimensional multistage interconnection network for efficient signal and data processing |
US5396627A (en) * | 1987-11-06 | 1995-03-07 | Hitachi, Ltd. | Method of producing object program based on interprocedural dataflow analysis of a source program |
EP0473714A1 (en) | 1989-05-26 | 1992-03-11 | Massachusetts Institute Of Technology | Parallel multithreaded data processing system |
GB9123271D0 (en) | 1991-11-02 | 1991-12-18 | Int Computers Ltd | Data processing system |
US5742793A (en) | 1991-12-18 | 1998-04-21 | Intel Corporation | Method and apparatus for dynamic memory management by association of free memory blocks using a binary tree organized in an address and size dependent manner |
US5666296A (en) * | 1991-12-31 | 1997-09-09 | Texas Instruments Incorporated | Method and means for translating a data-dependent program to a data flow graph with conditional expression |
IL100598A0 (en) * | 1992-01-06 | 1992-09-06 | Univ Bar Ilan | Dataflow computer |
JPH06180676A (en) * | 1992-12-11 | 1994-06-28 | Toshiba Corp | Computer system |
US5675790A (en) | 1993-04-23 | 1997-10-07 | Walls; Keith G. | Method for improving the performance of dynamic memory allocation by removing small memory fragments from the memory pool |
US5519866A (en) | 1993-06-28 | 1996-05-21 | Taligent, Inc. | Method and apparatus of incrementally linking components of a modeled computer program |
US5325533A (en) | 1993-06-28 | 1994-06-28 | Taligent, Inc. | Engineering system for modeling computer programs |
US5500881A (en) | 1993-07-12 | 1996-03-19 | Digital Equipment Corporation | Language scoping for modular, flexible, concise, configuration descriptions |
US5748961A (en) | 1993-07-12 | 1998-05-05 | Digital Equipment Corporation | Efficient method and apparatus for compiling and linking modules of computer code in a large software system |
US5963975A (en) | 1994-04-19 | 1999-10-05 | Lsi Logic Corporation | Single chip integrated circuit distributed shared memory (DSM) and communications nodes |
US5613063A (en) | 1994-07-01 | 1997-03-18 | Digital Equipment Corporation | Method and apparatus for checking validity of memory operations |
US5689712A (en) | 1994-07-27 | 1997-11-18 | International Business Machines Corporation | Profile-based optimizing postprocessors for data references |
DE59410112D1 (en) | 1994-09-19 | 2002-06-06 | Siemens Ag | Memory management system of a computer system |
US5675802A (en) | 1995-03-31 | 1997-10-07 | Pure Atria Corporation | Version control system for geographically distributed software development |
US5581696A (en) | 1995-05-09 | 1996-12-03 | Parasoft Corporation | Method using a computer for automatically instrumenting a computer program for dynamic debugging |
US6101525A (en) | 1995-05-19 | 2000-08-08 | Emc Corporation | Method and apparatus for shared memory cleanup |
US6016474A (en) | 1995-09-11 | 2000-01-18 | Compaq Computer Corporation | Tool and method for diagnosing and correcting errors in a computer program |
US5784698A (en) | 1995-12-05 | 1998-07-21 | International Business Machines Corporation | Dynamic memory allocation that enalbes efficient use of buffer pool memory segments |
US5850554A (en) | 1995-12-29 | 1998-12-15 | Intel Corporation | Compiler tool set for efficiently generating and easily managing multiple program versions of different types |
US5867649A (en) * | 1996-01-23 | 1999-02-02 | Multitude Corporation | Dance/multitude concurrent computation |
US5978892A (en) | 1996-05-03 | 1999-11-02 | Digital Equipment Corporation | Virtual memory allocation in a virtual address space having an inaccessible gap |
US5787480A (en) | 1996-07-17 | 1998-07-28 | Digital Equipment Corporation | Lock-up free data sharing |
US5905488A (en) | 1996-10-11 | 1999-05-18 | Xerox Corporation | Local inking with gray pixels |
US6044438A (en) | 1997-07-10 | 2000-03-28 | International Business Machiness Corporation | Memory controller for controlling memory accesses across networks in distributed shared memory processing systems |
US5872977A (en) | 1997-08-08 | 1999-02-16 | International Business Machines Corporation | Object-oriented method and apparatus for creating a makefile |
US5974536A (en) | 1997-08-14 | 1999-10-26 | Silicon Graphics, Inc. | Method, system and computer program product for profiling thread virtual memory accesses |
GB9717718D0 (en) | 1997-08-22 | 1997-10-29 | Philips Electronics Nv | Memory management with compaction of data blocks |
US5991893A (en) | 1997-08-29 | 1999-11-23 | Hewlett-Packard Company | Virtually reliable shared memory |
US6018793A (en) | 1997-10-24 | 2000-01-25 | Cirrus Logic, Inc. | Single chip controller-memory device including feature-selectable bank I/O and architecture and methods suitable for implementing the same |
JP2001142922A (en) * | 1999-11-15 | 2001-05-25 | Matsushita Electric Ind Co Ltd | Design method for semiconductor integrated circuit device |
US20030005407A1 (en) * | 2000-06-23 | 2003-01-02 | Hines Kenneth J. | System and method for coordination-centric design of software systems |
US6662278B1 (en) * | 2000-09-22 | 2003-12-09 | Intel Corporation | Adaptive throttling of memory acceses, such as throttling RDRAM accesses in a real-time system |
-
1999
- 1999-02-04 US US09/244,138 patent/US6378066B1/en not_active Expired - Lifetime
-
2000
- 2000-02-03 EP EP00400305A patent/EP1026585A3/en not_active Withdrawn
- 2000-02-04 JP JP2000026991A patent/JP2000285084A/en active Pending
-
2001
- 2001-11-08 US US10/007,766 patent/US20020162089A1/en not_active Abandoned
- 2001-11-08 US US10/010,426 patent/US20040015929A1/en not_active Abandoned
- 2001-11-08 US US10/005,783 patent/US7065634B2/en not_active Expired - Lifetime
-
2006
- 2006-04-21 US US11/379,684 patent/US20060206869A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5038348A (en) * | 1988-07-01 | 1991-08-06 | Sharp Kabushiki Kaisha | Apparatus for debugging a data flow program |
US5165036A (en) * | 1989-01-31 | 1992-11-17 | Sharp Kabushiki Kaisha | Parallel processing development system with debugging device includes facilities for schematically displaying execution state of data driven type processor |
US5541849A (en) * | 1990-04-06 | 1996-07-30 | Lsi Logic Corporation | Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including estimation and comparison of timing parameters |
US5535318A (en) * | 1992-04-30 | 1996-07-09 | Ricoh Company, Ltd. | Debugging system for a hierarchically structured page description language |
US5539907A (en) * | 1994-03-01 | 1996-07-23 | Digital Equipment Corporation | System for monitoring computer system performance |
US5737750A (en) * | 1994-08-31 | 1998-04-07 | Hewlett-Packard Company | Partitioned single array cache memory having first and second storage regions for storing non-branch and branch instructions |
US5802375A (en) * | 1994-11-23 | 1998-09-01 | Cray Research, Inc. | Outer loop vectorization |
US5999192A (en) * | 1996-04-30 | 1999-12-07 | Lucent Technologies Inc. | Interactive data exploration apparatus and methods |
US5887174A (en) * | 1996-06-18 | 1999-03-23 | International Business Machines Corporation | System, method, and program product for instruction scheduling in the presence of hardware lookahead accomplished by the rescheduling of idle slots |
US5963972A (en) * | 1997-02-24 | 1999-10-05 | Digital Equipment Corporation | Memory architecture dependent program mapping |
US6330008B1 (en) * | 1997-02-24 | 2001-12-11 | Torrent Systems, Inc. | Apparatuses and methods for monitoring performance of parallel computing |
US5870763A (en) * | 1997-03-10 | 1999-02-09 | Microsoft Corporation | Database computer system with application recovery and dependency handling read cache |
US6286135B1 (en) * | 1997-03-26 | 2001-09-04 | Hewlett-Packard Company | Cost-sensitive SSA-based strength reduction algorithm for a machine with predication support and segmented addresses |
US6175957B1 (en) * | 1997-12-09 | 2001-01-16 | International Business Machines Corporation | Method of, system for, and computer program product for providing efficient utilization of memory hierarchy through code restructuring |
US6282707B1 (en) * | 1998-02-16 | 2001-08-28 | Nec Corporation | Program transformation method and program transformation system |
US6408430B2 (en) * | 1998-09-03 | 2002-06-18 | Lucent Technologies, Inc. | Interactive software testing system and method |
US6490673B1 (en) * | 1998-11-27 | 2002-12-03 | Matsushita Electric Industrial Co., Ltd | Processor, compiling apparatus, and compile program recorded on a recording medium |
US6349363B2 (en) * | 1998-12-08 | 2002-02-19 | Intel Corporation | Multi-section cache with different attributes for each section |
US6226787B1 (en) * | 1999-01-25 | 2001-05-01 | Hewlett-Packard Company | Visualization method and system for dynamically displaying operations of a program |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8589468B2 (en) | 2006-06-16 | 2013-11-19 | Nvidia Corporation | Efficient matrix multiplication on a parallel processing device |
US20100325187A1 (en) * | 2006-06-16 | 2010-12-23 | Norbert Juffa | Efficient matrix multiplication on a parallel processing device |
US7912889B1 (en) * | 2006-06-16 | 2011-03-22 | Nvidia Corporation | Mapping the threads of a CTA to the elements of a tile for efficient matrix multiplication |
US20080082644A1 (en) * | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Distributed parallel computing |
US20080098375A1 (en) * | 2006-09-29 | 2008-04-24 | Microsoft Corporation | Runtime optimization of distributed execution graph |
US7844959B2 (en) | 2006-09-29 | 2010-11-30 | Microsoft Corporation | Runtime optimization of distributed execution graph |
US20080079724A1 (en) * | 2006-09-29 | 2008-04-03 | Microsoft Corporation | Description language for structured graphs |
US8201142B2 (en) | 2006-09-29 | 2012-06-12 | Microsoft Corporation | Description language for structured graphs |
US20080222114A1 (en) * | 2007-03-09 | 2008-09-11 | Ghost Inc. | Efficient directed acyclic graph representation |
US8990511B2 (en) | 2007-11-01 | 2015-03-24 | Nec Corporation | Multiprocessor, cache synchronization control method and program therefor |
US8826234B2 (en) * | 2009-12-23 | 2014-09-02 | Intel Corporation | Relational modeling for performance analysis of multi-core processors |
US20110154294A1 (en) * | 2009-12-23 | 2011-06-23 | Cormack Christopher J | Relational Modeling for Performance Analysis of Multi-Core Processors |
US20130111438A1 (en) * | 2010-07-20 | 2013-05-02 | Hitachi, Ltd. | Software Maintenance Supporting Device and Electronic Control Device Verified by the Same |
US9170805B2 (en) * | 2010-07-20 | 2015-10-27 | Hitachi, Ltd. | Software maintenance supporting device for analyzing relationships between variables |
US8661424B2 (en) * | 2010-09-02 | 2014-02-25 | Honeywell International Inc. | Auto-generation of concurrent code for multi-core applications |
US20120060145A1 (en) * | 2010-09-02 | 2012-03-08 | Honeywell International Inc. | Auto-generation of concurrent code for multi-core applications |
US20120180033A1 (en) * | 2011-01-12 | 2012-07-12 | David Amos Brown | System and Methodology for Autonomous, Value-Centric, Architectural, Software Programming |
US20130074037A1 (en) * | 2011-09-15 | 2013-03-21 | You-Know Solutions LLC | Analytic engine to parallelize serial code |
US9003383B2 (en) * | 2011-09-15 | 2015-04-07 | You Know Solutions, LLC | Analytic engine to parallelize serial code |
US20150261881A1 (en) * | 2014-03-14 | 2015-09-17 | Concurrent, Inc. | Logical data flow mapping rules for (sub) graph isomorphism in a cluster computing environment |
US9665660B2 (en) * | 2014-03-14 | 2017-05-30 | Xplenty Ltd. | Logical data flow mapping rules for (sub) graph isomorphism in a cluster computing environment |
US11341599B2 (en) | 2017-09-15 | 2022-05-24 | Fujifilm Business Innovation Corp. | Image processing apparatus, image processing method, and computer readable medium storing image processing program |
Also Published As
Publication number | Publication date |
---|---|
US20060206869A1 (en) | 2006-09-14 |
US7065634B2 (en) | 2006-06-20 |
US6378066B1 (en) | 2002-04-23 |
EP1026585A3 (en) | 2006-04-26 |
US20020157086A1 (en) | 2002-10-24 |
JP2000285084A (en) | 2000-10-13 |
EP1026585A2 (en) | 2000-08-09 |
US20040015929A1 (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7065634B2 (en) | Methods and systems for developing data flow programs | |
US6389587B1 (en) | User interface for developing and executing data flow programs and methods, apparatus, and articles of manufacture for optimizing the execution of data flow programs | |
US6449711B1 (en) | Method, apparatus, and article of manufacture for developing and executing data flow programs | |
Zuo et al. | Improving high level synthesis optimization opportunity through polyhedral transformations | |
US10896112B2 (en) | Visualization tool for parallel dependency graph evaluation | |
JP5209059B2 (en) | Source code processing method, system, and program | |
JPH04337843A (en) | Program operation display method | |
US8578389B1 (en) | Method and system for merging directed acyclic graphs representing data flow codes | |
US8701098B2 (en) | Leveraging multicore systems when compiling procedures | |
Plevyak et al. | Type directed cloning for object-oriented programs | |
Rover et al. | Visualizing the performance of SPMD and data-parallel programs | |
US11556357B1 (en) | Systems, media, and methods for identifying loops of or implementing loops for a unit of computation | |
Kitajima et al. | Modelling parallel program behaviour in ALPES | |
Campos et al. | On data parallelism code restructuring for HLS targeting FPGAs | |
Paredes et al. | Exploiting parallelism and vectorisation in breadth-first search for the Intel xeon phi | |
CN109117124A (en) | A kind of function programming method of more return values | |
Browne et al. | Visual programming and parallel computing | |
Smyk et al. | Global application states monitoring applied to graph partitioning optimization | |
JPH03135630A (en) | Instruction scheduling system | |
JPH02236638A (en) | Register allocation managing system | |
Ginsberg | An automotive engineer's guide to the effective use of scalar, vector, and parallel computers | |
Kitajima et al. | Andes: Evaluating mapping strategies with synthetic programs | |
Dyer et al. | VIEWMASTER-a system for building image processing programs | |
Du | n Intentional Approach to Parallel Programming | |
Di Martino et al. | High performance cloud: A mapreduce and GPGPU based hybrid approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUN MICROSYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEWIS, BRAD R.;BOUCHER, MICHAEL L.;HORTON, NOAH;REEL/FRAME:012986/0206;SIGNING DATES FROM 20011107 TO 20011108 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |