US20020156206A1 - Process for controlling the MWD of a broad/bimodal resin in a single reactor - Google Patents
Process for controlling the MWD of a broad/bimodal resin in a single reactor Download PDFInfo
- Publication number
- US20020156206A1 US20020156206A1 US10/122,861 US12286102A US2002156206A1 US 20020156206 A1 US20020156206 A1 US 20020156206A1 US 12286102 A US12286102 A US 12286102A US 2002156206 A1 US2002156206 A1 US 2002156206A1
- Authority
- US
- United States
- Prior art keywords
- catalyst
- transition metal
- silica
- metallocene
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2282—Unsaturated compounds used as ligands
- B01J31/2295—Cyclic compounds, e.g. cyclopentadienyls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/122—Metal aryl or alkyl compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/128—Mixtures of organometallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/14—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
- B01J31/143—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1616—Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/02—Carriers therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/46—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/48—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/49—Hafnium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65904—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/943—Polymerization with metallocene catalysts
Definitions
- the invention relates to a dual-catalyst system for, and a catalytic preparation of, bimodal molecular weight distribution polymers and copolymers of ethylene, produced in one reactor.
- a make-up catalyst catalyst one
- a bimetallic catalyst catalyst two
- the bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin, in which there are at least two components; one of the two components has a higher molecular weight (referred herein as HMW) than another of the two components, which is referred herein as LMW, low molecular weight (component).
- HMW molecular weight
- LMW low molecular weight
- the bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two metals of the catalyst producing the HMW/LMW components.
- the make-up catalyst consisting of a single metal component, is added in proportion necessary to make-up the deficiencies in the amount of the HMW/LMW component produced by the bimetallic catalyst.
- the type of make-up catalyst added depends on whether increase of the HMW or LMW component produced by the bimetallic catalyst is sought.
- a make-up catalyst of at least one metallic component of the bimetallic catalyst is used to control the weight fraction of the HMW component in the broad or bimodal molecular weight distribution olefin resin product.
- the final product is essentially a gel-free intimate mixture of these two components because of the close proximity of the two metal sites.
- the weight fraction of the HMW/ LMW components in the final product is fixed by the relative concentration of the two metal species in the bimetallic catalyst. It is often desirable to change the weight fraction of either the HMW or LMW components produced by bimetallic catalyst in the single reactor. Reformulation of the bimetallic catalyst offers one mode of operation, to change the relative weight fraction of one of the two components produced by such a catalyst. In accordance with the invention, time consuming reformulation procedure(s) are eliminated by employing a make-up stream of the pure component such that the desired composition of the HMW/LMW component is achieved.
- the polymer In the absence of the bimetallic catalyst, (i.e.) cofeeding one catalyst containing only the titanium (HMW) metal and a second catalyst containing only the zirconium (LMW) metal, the polymer will essentially be a physical mixture of the two components and severe restrictions will have to be placed on the allowable weight fraction of the two components for producing a gel free product with acceptable level of fines (less than 6 percent of the polymer) in the reactor.
- HMW titanium
- LMW zirconium
- the invention relates to a catalyst and a catalytic preparation of bimodal molecular weight distribution polymers and copolymers of ethylene, in one reactor.
- a make-up catalyst and a bimetallic catalyst are used simultaneously to control the proportion of different weight fractions in broad or bimodal molecular weight distribution polyolefin resin product.
- the invention relates to a catalyst system comprising (a) a bimetallic catalyst and (b) a make-up catalyst.
- the catalyst system comprises greater than 50 weight percent of the bimetallic catalyst. It is important to have the bimetallic catalyst as the primary catalyst supply to minimize gel formation.
- the bimetallic catalyst contains two transition metals or two different transition metal compounds, each having different hydrogen characteristics.
- each of the two sources of transition metal in the bimetallic catalyst will produce a different molecular weight component under identical olefin polymerization conditions.
- the LMW component is produced by the Zr site while the HMW component is produced by the Ti site.
- the bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two transition metal catalyst components producing the HMW/LMW components.
- the product of olefin polymerization in the presence of such a catalyst will comprise at least two fractions each of different molecular weight, and one having a relatively high molecular weight (hereinafter HMW) relative to a second fraction of relatively lower molecular weight (LMW).
- HMW relatively high molecular weight
- LMW relatively lower molecular weight
- the weight fraction of the HMW/LMW components in the final product is fixed by the relative concentration of the two metal species in the bimetallic catalyst.
- the make-up catalyst consists of a single metal component of the two components constituting the bimetallic catalyst; it is added in proportion necessary to increase either the amount of the HMW or the LMW component.
- the identity of the transition metal in the make-up catalyst added depends on whether increase of the HMW or of the LMW component produced by the bimetallic catalyst is sought.
- the make-up catalyst (b) is added, for example, as a make-up stream of the pure catalyst components such that the desired composition of the HMW/LMW components is achieved.
- a pure Ti catalyst can be co-fed if the HMW component weight fraction needs to be increased.
- a zirconium based (zirconocene) catalyst is co-fed to increase the LMW component weight fraction.
- the present invention is directed to a process for producing product, in a single reactor, wherein the product comprises ethylene polymers or copolymers of ethylene with one or more C 3 -C 10 alpha-olefins, wherein the product is characterized by broad or bimodal molecular weight distribution, wherein the process comprises:
- the catalyst A comprises a supported catalyst which is formed from at least two different transition metal compounds of different hydrogen responses
- one of the at least two different transition metal compounds provides, under olefin polymerization conditions, a polymerization product of relatively high molecular weight
- a) and b) is provided as a metallocene of a transition metal selected from the group consisting of Zr and Hf;
- the catalyst B) comprises a support matrix formed from only one of the at least two transition metal compounds a) and b) so that catalyst B) comprises only a single transition metal component, so that:
- catalyst B) comprises the a) as the single transition metal component
- the cofeeding of the catalyst B) results in an increase in the polymerization product of the relatively high molecular weight
- a mixed catalyst system comprising catalyst A) and catalyst B) is formed, wherein the mixed catalyst system can comprise greater than 50 weight percent of catalyst A).
- the catalyst A) can comprise an aluminum alkyl non-oxygen containing cocatalyst, and a dry, anhydrous, support containing composition comprising an activated metallocene compound of a transition metal and a non-metallocene transition metal, wherein the aluminum alkyl cocatalyst activates the non-metallocene transition metal; wherein the support is the reaction product of (1) silica having OH groups,, impregnated with R m MgR′ n , wherein each of R and R′ is alkyl of 4 to 10 carbon atoms, wherein R m MgR′ n is present in an amount to provide a R m MgR′ n :OH molar ratio of 0.5:1 to 4:1; and (2) an organic alcohol reagent providing alkoxy groups having a formula R′′O—, wherein R′′ is an alkyl of 1 to 12 carbons; the alkoxy groups being effective to displace R and R′ of the R m MgR
- the reaction product can be formed by (i) providing a slurry of a non-polar solvent and a solid porous silica having -OH groups; (ii) impregnating the silica, with R m MgR′ n , to form an intermediate (ii), wherein the Mg:—OH groups ratio is less than 2, wherein each of the R and R′ is alkyl of 4 to 10 carbon atoms and is the same or different, wherein the R m MgR′ n , is soluble in the non-polar solvent; (iii) treating the intermediate (ii) with an amount of R′′OH, which amount is effective to provide a R′′OH:R m MgR n molar ratio of 0.5 to 2.0 to form a product
- the process can further include, after (iii), (vi) treating the product of (iii) with TiCl 4 to form a titanium containing intermediate; and (v) combining the titanium containing intermediate with the cocatalyst.
- the non-metallocene transition metal can be titanium.
- the non-metallocene transition metal can comprise a non-metallocene transition metal compound of titanium tetrachloride.
- the cocatalyst can be trimethylaluminum.
- the metallocene transition metal can be provided as a compound which has the formula Cp x MA y B z , wherein Cp is cyclopentadienyl unsubstituted or substituted by alkyl of 1 to 6 carbon atoms; x is at least 1; each of A and B is halogen or alkyl of 1 to 8 carbon atoms, and y plus z is 3 or less provided that X+y+Z is equal to the valence of M, which is selected from the group consisting of titanium, zirconium and hafnium.
- the metallocene transition metal can be provided as a compound which has the formula Cp x MA y B z , wherein Cp is cyclopentadienyl unsubstituted or substituted by alkyl or alkylene of 1 to 6 carbon atoms; x is at least 1; each of A and B is halogen or alkyl of 1 to 8 carbon atoms, and y plus z is 3 or less provided that x+y+z is equal to the valence of M, which is selected from the group consisting of titanium, zirconium and hafnium.
- the metallocene compound can be selected from the group consisting of bis-(cyclopentadienyl) zirconium dichloride and bis-(n butylcyclopentadienyl) zirconium dichloride.
- the metallocene compound can be activated with a solution of methylalumoxane; wherein the silica has a pore volume in the range of 1.0 cm 3 /g to 4.0 cm 3 /g; wherein the solution has a volume which is equal to the total pore volume.
- the catalyst B) can be in the form of particles wherein the particles have a particle size in the range of 1 to 500 ⁇ m, wherein the particles comprise silica, a transition metal and aluminum, wherein the ratio of aluminum to transition metal ranges from about 70 to 350; wherein the silica is amorphous and porous and has a pore volume of 0.1 to 3.5 cm 3 /g; wherein the silica has a concentration of silanol groups wherein the concentration of silanol groups is at least 0.7 mmol per gram of silica; wherein a solution of a mixture comprising bis (n-butylcyclopentadienyl) zirconium dichloride and alumoxane, provides the transition metal and the aluminum; wherein the solution has a maximum volume equal to the total pore volume of the silica, and wherein the solution is employed to impregnate the silica having the concentration of silanol groups.
- the alumoxane can have a formula (a) or (b) wherein:
- (a) is R—(Al(R)—O) n —AlR 2 for oligomeric, linear alumoxanes, and
- (b) is (—Al(R)—O—) m for oligomeric cyclic alumoxane
- n 1-40
- m is 3-40
- R comprises a C 1 -C 8 alkyl group.
- the alumoxane can be methylalumoxane (MAO).
- the mixture can provide an Al:Zr mole ratio of 100 to 350, or an Al-Zr mole ratio of 100 to 200.
- the particles can be characterized by a particle size ranging from 1 to 250 ⁇ m.
- the concentration of silanol groups can be greater than 0.7 and up to about 2.5 mmol per gram of silica, or from about 1.7 and up to about 1.9 mmol per gram of silica.
- the mixture can provide an Al:Zr ratio (elemental 25 basis) of 100 to 200.
- the at least two different transition metal compounds can include Zr and Ti, and the catalyst A) can include Zr and Ti, and the catalyst B) can include Zr.
- the catalyst B) can provide monomodal polymer component in an amount comprising 1 to 30 weight percent of the product.
- the figure is a gel permeation chromatogram of polyethylene produced with sample which is a plot of weight fraction vs. molecular weight;
- the unbroken line is a graph of a bimodal molecular weight polymer produced with a bimetallic catalyst in the absence of a make-up catalyst of the invention.
- the broken line is a graph of the bimodal molecular weight distribution product produced with the bimetallic catalyst plus a make-up catalyst.
- the weight fraction of the HMW component should be in the range of 0.10 to 0.90.
- Another measurable property of the bimodal products is flow index, (FI or I 21, measured at 190° C. in accordance with ASTM D-1238, Condition F.)
- the FI of the bimodal molecular weight distribution product is in the range of 2 to 100.
- the major component (A) of the catalyst system comprises a carrier and two different sources of transition metal (zirconium, hafnium, titanium and vanadium), and may be referred to as a bimetallic catalyst.
- the major component is alone effective to polymerize ethylene, under ethylene polymerization conditions, to produce bimodal molecular weight distribution resin. This major component is more than 50 weight percent of the catalyst system of this invention. Because of the different hydrogen response of each of the two sources of transition metal in the bimetallic catalyst, each will produce a different molecular weight component under identical olefin polymerization conditions.
- the metal of highest hydrogen response will be present in the catalyst in amounts of 0.2 to 0.6 weight percent preferably 0.3 to 0.5 of the bimetallic catalyst; in preferred embodiments below that metal is zirconium.
- the metal of lowest hydrogen response will be present in amounts in the catalyst of 0.5 to 3.0 preferably 0.8 to 2.0 weight percent; in preferred embodiments below that metal is titanium.
- This major component catalyst of the catalyst system of the invention is catalytically effective to produce bimodal molecular weight distribution product containing 100.35 to 0.75 weight percent of the high molecular weight component, HMW.
- Catalyst component A contains at least two transition metals.
- one is in the form of a metallocene and one transition metal in the form of a non-metallocene, have an activity of at least about about 1000 g polymer/g catalyst or about 50 kg polymer/g of each transition metal.
- the catalyst component A requires a cocatalyst comprising an aluminum alkyl compound, such as a trialkyl aluminum, free of alumoxane and free of water, or oxygen-containing oligomers and polymers of the aluminum alkyl compound, and a catalyst precursor comprising a carrier, an alumoxane and at least one metallocene; in one embodiment the catalysts further include a non-metallocene transition metal source.
- an aluminum alkyl compound such as a trialkyl aluminum, free of alumoxane and free of water, or oxygen-containing oligomers and polymers of the aluminum alkyl compound
- a catalyst precursor comprising a carrier, an alumoxane and at least one metallocene
- the catalysts further include a non-metallocene transition metal source.
- the carrier material is a solid, particulate, porous, preferably inorganic material, such as an oxide of silicon and/or of aluminum.
- the carrier material is used in the form of a dry powder having an average particle size of from about 1 micron to about 500 ⁇ m, preferably from about 10 ⁇ m to about 250 ⁇ m.
- the surface area of the carrier is at least about 3 square meters per gram (m 2 /g), and preferably at least about 50 m 2 /g up to about 350 m 2 /g.
- the carrier material should be dry, that is, free of absorbed water. Drying of the carrier material can be effected by heating at about 100° C. to about 1000° C., preferably at about 600° C.
- the carrier is silica
- it is heated to at least 200° C., preferably about 200° C. to about 850° C. and most preferably at about 600° C.
- the carrier material must have at least some active hydroxyl (OH) groups to produce the catalyst composition of this invention.
- the carrier is silica which, prior to the use thereof in the first catalyst synthesis step, has been dehydrated by fluidizing it with nitrogen and heating at about 600° C. for about 16 hours to achieve a surface hydroxyl group concentration of about 0.7 millimoles per gram (mmol/g).
- the silica is in the form of spherical particles, e.g., as obtained by a spray-drying process. As procured, these silicas are not calcined; and this must be dehydrated, as indicated above.
- the catalyst synthesis thereof is undertaken under inert conditions, in the absence of water and of oxygen.
- the carrier is dispersed in solvent to form a slurry.
- the carrier material having said (OH) groups, is slurried in a non-polar solvent and the resulting slurry is contacted with at least one organomagnesium compound having the empirical formula below.
- the slurry of the carrier material in the solvent is prepared by introducing the carrier into the solvent, preferably while stirring, and heating the mixture to about 25 to about 70° C., preferably to about 40 to about 60° C. Temperatures here are critical with respect to the non-metallocene transition metal which is subsequently added; that is temperatures in this slurry of about 90° C. or higher may result in deactivation of the transition metal added subsequently. Accordingly, all catalyst precursor synthesis steps are conducted below 90° C. The slurry is then contacted with the aforementioned organomagnesium compound, while the heating is continued as indicated.
- the organomagnesium compound has the empirical formula
- R and R′ are the same or different C 2 -C 12 alkyl groups, preferably C 4 -C 10 alkyl groups, more preferably C 4 -C 8 alkyl groups, and most preferably both R and R′ are mostly butyl groups, and m and n are each 0, 1 or 2, providing that m +n is equal to the valence of Mg.
- Suitable non-polar solvents are materials in which all of the reactants used herein, i.e., the organomagnesium compound, and the transition metal compound, are at least partially soluble and which are liquid under suitable reaction conditions.
- Preferred non-polar solvents are alkanes, such as isopentane, isohexane, n-hexane, n-heptane, octane, nonane, and decane, although a variety of other materials including cycloalkanes, such as cyclohexane, aromatics, such as benzene, toluene and ethylbenzene, may also be employed.
- the most preferred non-polar solvent is isopentane.
- the non-polar solvent should be purified, such as by percolation through silica gel and/or molecular sieves, to remove traces of water, oxygen, polar compounds, and other materials capable of adversely affecting catalyst activity.
- catalyst component A it is important to add only such an amount of the organomagnesium compound that will be deposited—physically or chemically—onto the support since any excess of the organomagnesium compound in the solution may react with other synthesis chemicals and precipitate outside of the support.
- the carrier drying temperature affects the number of sites on the carrier available for the organomagnesium compound—the higher the drying temperature the lower the number of sites.
- the exact molar ratio of the organomagnesium compound to the hydroxyl groups will vary and must be determined on a case-by-case basis to assure that only so much of the organomagnesium compound is added to the solution as will be deposited onto the support without leaving any excess of the organomagnesium compound in the solution. Furthermore, it is believed that the molar amount of the organomagnesium compound deposited onto the support is greater than the molar content of the hydroxyl groups on the support. Thus, the molar ratios given below are intended only as an approximate guideline and the exact amount of the organomagnesium compound in this embodiment must be controlled by the functional limitation discussed above, i.e., it must not be greater than that which can be deposited onto the support.
- the amount of the organomagnesium compound which is not greater than that deposited onto the support can be determined in any conventional manner, e.g., by adding the organomagnesium compound to the slurry of the carrier in the solvent, while stirring the slurry, until the organomagnesium compound is detected as a solution in the solvent.
- the amount of the organomagnesium compound added to the slurry is such that the molar ratio of Mg to the hydroxyl groups (OH) on the solid carrier is about 0.5:1 to about 4:1, preferably about 0.8:1 to about 3:1, more preferably about 0.9:1 to about 2:1 and most preferably about 1:1.
- the organomagnesium compound dissolves in the non-polar solvent to form a solution from which the organomagnesium compound is deposited onto the carrier.
- the organomagnesium treated support is contacted with an organic alcohol reagent (R′′OH) containing R′′O— groups which are reactive or capable of displacing alkyl groups on the magnesium.
- R′′OH organic alcohol reagent
- the amount of this organic alcohol reagent is effective to provide a R′′OH:Mg ratio of 0.5 to 2.0, preferably 0.8 to 1.5.
- the alkyl group in the organic alcohol reagent can contain 2 to 12 carbon atoms, preferably 2 to 8; in the embodiments below, it is an alkyl containing 2 to 4 carbon atoms, particularly of 4 carbon atoms (butyl).
- the inclusion of the alcohol reagent step in the catalyst synthesis of the invention produces a catalyst which, relative to the absence of this step, is much more active, requires much less non-metallocene transition metal (e.g. titanium), and is much more active with respect to the final catalyst composition produced by the addition of the metallocene-transition metal component.
- the slurry is contacted with a non-metallocene transition metal compound, free of substituted or unsubstituted cyclopentadienyl groups.
- the slurry temperature must be maintained at about 25 to about 70° C., preferably to about 40 to about 60° C. As noted above, temperatures in this slurry of about 90° C. or greater may result in deactivation of the non-metallocene transition metal.
- Suitable non-metallocene transition metal compounds used herein are compounds of metals of Groups 4, and 5, of the Periodic Chart of the Elements, as published by Chemical and Engineering News, 63(5), 27, 1985, providing that such compounds are soluble in the non-polar solvents.
- Non-limiting examples of such compounds are titanium and vanadium halides, e.g., titanium tetrachloride, TiCl 4 , vanadium tetrachloride, VCl 4 , vanadium oxytrichloride, VOC1 3 , titanium and vanadium alkoxides, wherein the alkoxide moiety has a branched or unbranched alkyl radical of 1 to about 20 carbon atoms, preferably 1 to about 6 carbon atoms.
- the preferred transition metal compounds are titanium compounds, preferably tetravalent titanium compounds.
- the most preferred titanium compound is titanium tetrachloride.
- the amount of titanium or vanadium, in non-metallocene form ranges from a Ti/Mg molar ratio of 0.3 to 1.0, preferably from 0.50 to 0.80.
- transition metal compounds may also be used and generally no restrictions are imposed on the transition metal compounds which may be included. Any transition metal compound that may be used alone may also be used in conjunction with other transition metal compounds.
- the slurry solvent is removed by evaporation or filtering to obtain a free-flowing powder.
- incorporation of a metallocene can be undertaken.
- the metallocene is activated with an alumoxane.
- Metallocene compound(s) has the formula Cp x MA y B z in which Cp is an unsubstituted or substituted cyclopentadienyl group, M is zirconium or hafnium and A and B belong to the group including a halogen atom, hydrogen or an alkyl group.
- the preferred transition metal atom M is zirconium.
- the Cp group is an unsubstituted, a mono- or a polysubstituted cyclopentadienyl group: and x is at least 1.
- the substituents on the cyclopentadienyl group can be preferably straight-chain C 1 -C 6 alkyl groups.
- the cyclopentadienyl group can be also a part of a bicyclic or a tricyclic moiety such as indenyl, tetrahydroindenyl, fluorenyl or a partially hydrogenated fluorenyl group, as well as a part of a substituted bicyclic or tricyclic moiety.
- the cyclopentadienyl groups can be also bridged by polymethylene or dialkylsilane groups, such as —CH 2 —, —CH 2 —CH 2 —, —CR′R′′— and —CR′R′′—CR′R′′— where R′ and R′′ are short alkyl groups or hydrogen, —Si (CH 3 ) 2 —, Si(CH 3 ) 2 —CH 2 —CH 2 —Si(CH 3 ) 2 — and similar bridge groups.
- polymethylene or dialkylsilane groups such as —CH 2 —, —CH 2 —CH 2 —, —CR′R′′— and —CR′R′′—CR′R′′— where R′ and R′′ are short alkyl groups or hydrogen, —Si (CH 3 ) 2 —, Si(CH 3 ) 2 —CH 2 —CH 2 —Si(CH 3 ) 2 — and similar bridge groups.
- a and B substituents in the above formula of the metallocene compound are halogen atoms, they belong to the group of fluorine, chlorine, bromine or iodine; and y+z is 3 or less, provided that x+y+z equals the valence of M.
- substituents A and B in the above formula of the metallocene compound are alkyl groups, they are preferably straight-chain or branched C 1 -C 8 alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, n-hexyl or n-octyl.
- Suitable metallocene compounds include
- metallocenes include bis(cyclopentadienyl)zirconium dichloride,
- the alumoxane can be impregnated into the carrier at any stage of the process of catalyst preparation.
- the amount of Al, provided by alumoxane is sufficient to provide an Al:transition metal (provided by metallocene) mole ratio ranging from 50 to 500, preferably 75 to 300.
- the class of alumoxanes comprises oligomeric linear and/or cyclic alkylalumoxanes represented by the formula: R—(Al(R)—O) n —AlR 2 for oligomeric, linear alumoxanes and (—Al(R)—O—) m for oligomeric cyclic alumoxane, wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C 1 -C 8 alkyl group and preferably methyl, methyl alumoxane (MAO).
- MAO is a mixture of oligomers with a very wide distribution of molecular weights and usually with an average molecular weight of about 1200. MAO is typically kept in solution in toluene.
- Incorporation of the activated metallocene component onto the carrier can be accomplished in various ways. Incorporation of either or both the alumoxane and metallocene compound can be into the slurry resulting from the addition, i.e. after the addition, of the non-metallocene transition metal.
- the carrier slurry can be stripped of solvent, after the addition of the non-metallocene transition metal. compound, to form a free-flowing powder.
- the free flowing powder can then be impregnated by determining the pore volume of the carrier and providing an alumoxane (or metallocene-alumoxane) solution in a volume equal to or less than the total pore volume of the carrier, and recovering a dry catalyst precursor.
- the resulting free-flowing powder referred to herein as a catalyst precursor, is combined with an activator (sometimes referred as a cocatalyst).
- the volume of the solution comprising a solid alumoxane and a solvent therefore can vary.
- one of the controlling factors in the alumoxane incorporation into the carrier material is the pore volume of the silica.
- the process of impregnating the carrier material is by infusion of the alumoxane solution, without forming a slurry of the carrier material, such as silica, in the alumoxane solution.
- the volume of the solution of the alumoxane is sufficient to fill the pores of the carrier material without forming a slurry in which the volume of the solution exceeds the pore volume of the silica; accordingly and preferably, the maximum volume of the alumoxane solution is, does not exceed, the total pore volume of the carrier material sample. That maximum volume of the alumoxane solution insures that no slurry of silica is formed. Accordingly, if the pore volume of the carrier material is 1.65cm 3 /g, then the volume of alumoxane will be equal to or less than 1.65 cm 3 /gram of carrier material. As a result of this proviso, the impregnated carrier material will appear dry immediatedly following impregnation although the pores of the carrier will be filled with inter alia solvent.
- Solvent may be removed from the alumoxane impregnated pores of the carrier material by heating and/or under a positive pressure induced by an inert gas, such as nitrogen. If employed, the conditions in this step are controlled to reduce, if not to eliminate, agglomeration of impregnated carrier particles and/or crosslinking of the alumoxane.
- solvent can be removed by evaporation effected at relatively low elevated temperatures of above about 40° C. and below about 50° C. to obviate agglomeration of catalyst particles and crosslinking of the alumoxane.
- solvent can be removed by evaporation at relatively higher temperatures than that defined by the range above 40° C. and below about 50° C., very short heating times must be employed to obviate agglomeration of catalyst particles and crosslinking of the alumoxane.
- the metallocene is added to the solution of the alumoxane prior to impregnating the carrier with the solution.
- the maximum volume of the alumoxane solution also including the metallocene is the total pore volume of the carrier material sample.
- the mole ratio of alumoxane provided aluminum, expressed as Al, to metallocene metal expressed as M (e.g. Zr), ranges from 50 to 500, preferably 75 to 300, and most preferably 90 to 200.
- An added advantage of the present invention is that this Al:Zr ratio can be directly controlled.
- the alumoxane and metallocene compound are mixed together at a temperature of about 20 to 80° C., for 0.1 to 6.0 hours, prior to use in the infusion step.
- the solvent for the metallocene and alumoxane can be appropriate solvents, such as aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, cyclic ethers or esters, preferably it is toluene.
- the catalyst component formed from the organomagnesium compound, the non-metallocene transition metal and the activated metallocene, is activated with a cocatalyst, which is an alkyl aluminum compound, free of water and free of oxygen-containing oligomers.
- the cocatalyst can be a trialkylaluminum, free of an alumoxane.
- trimethylaluminum (TMA) is the cocatalyst or activator.
- TMA trimethylaluminum
- the amount of the TMA activator is sufficient to give an Al:Ti molar ratio of about 10:1 to about 1000:1, preferably about 15:1 to about 300:1, and most preferably about 20:1 to about 100:1.
- the cocatalyst or activator is fed to e.g., a fluid bed reactor for polymerizations and copolymerizations of ethylene in the absence of alumoxane solution.
- the make-up component, component (B), of the catalyst system of the invention comprises one of those two different sources of transition metal, which are contained in the major component of the catalyst system; it is effective to increase the amount of one of the two molecular weight components, HMW or LMW; and to alter the overall polymer FI and MFR. In embodiments below, it is effective to increase FI and MFR.
- the make-up component of the catalyst system comprises only 1.0% to 50%, preferably 1% to 30% of the catalyst system. It produces a monomodal molecular weight polymer component.
- the make-up catalyst will provide monomodal polymer component in amount comprising 1 to 30 weight percent of the ultimate resin product.
- the make-up catalyst of the invention comprises a carrier, an alumoxane and at least one metallocene. It is free-flowing and particulate in form comprising dry powder particles having a particle size of from about 1 ⁇ m to about 250 ⁇ m, preferably from about 10 ⁇ m to about 150 ⁇ m.
- the catalyst which contains only one transition metal in the form of a metallocene has an activity of at least about 200 kg polymer/g of transition metals.
- the alumoxane and metallocene loading on the carrier is such that the amount of aluminum, (elemental basis) provided by the alumoxane, on the carrier ranges from 1 to 40 weight percent, preferably from 5 to 30 weight percent, and most preferably from 5 to 15 weight percent.
- the optimum MAO loading (Al) is in the range of 3 to 15 mmol (Al) per gram of silica carrier; if a silica carrier is overloaded with MAO, the catalyst activity is lower and the catalyst particles agglomerate with attendant problems of transferring the catalyst.
- the amount of metallocene on the carrier ranges, on a transition metal elemental basis, from 0.001 to 10 weight percent, preferably from 0.05 to 0.5, and most preferably from 0.10 to 0.3 weight percent.
- the patio of Al:Zr (on an elemental basis) in the catalyst can range from 25 to 10,000, usually within the range of from 70 to 980 but preferably from about 70 to 350 or 100 to 350, and most preferably from 100 to 200.
- the carrier material is a solid, particulate, porous, preferably inorganic material, such as an oxide of silicon and/or of aluminum.
- the carrier is silica in the form of spherical particles, e.g., as obtained by a spray-drying process.
- the carrier material is used in the form of a dry powder having a particle size of from about 1 micron to about 500 ⁇ m, preferably from about 1 ⁇ m to about 250 ⁇ m, and most preferably about 10 ⁇ m to about 150 ⁇ m.
- the final catalyst containing carrier material may be sieved to insure elimination of large catalyst particles. Presently, elimination of catalyst particles that have a particle size of greater than 500 ⁇ m is envisaged.
- the surface area of the carrier is at least about 3 square meters per gram (m 2 /g), preferably, 5 to 500 square meters per gram (m 2 /g) and most preferably at least about 50 m 2 /g up to about 350 m 2 /g.
- the pore volume of the carrier will range from 0.1 to 5 cm 3 /g, preferably from 0.1 to 3.5 cm 3 /g.
- the carrier material should be dry, that is, free of absorbed water.
- the carrier is silica, which contains [OH] groups.
- the carrier material must have at least some active hydroxyl (OH) groups to produce the catalyst composition of this invention.
- the hydroxyl group concentration will be at least about 0.7 mmol/g silica.
- the hydroxyl group concentration of the silica will range from 1.6 to 2.5 mmol/g silica. This range is favored by lower drying, dehydration and/or calcination temperatures.
- silica hydroxyl groups are detectable by IR spectroscopy. Quantitative determinations of the hydroxyl concentration on silica are made by contacting a silica sample with methylmagnesium iodide and measuring methane evolution (by pressure determination).
- Dehydration of silica material can be effected by heating at about 100° C. to about 600° C., preferably from about 150° C. to about 300° C. and most preferably at about 250° C.
- silica dehydrated at 600° C. will have a surface hydroxyl concentration of about 0.7 mmol per gram (mmol/g) of silica.
- Silica dehydrated at 800° C. will be a silica with 0.5 mmol of silica hydroxy groups per gram silica.
- the amount of hydroxyl groups, in mmoles/gram silica can be affected by the dehydration temperatures used to condition the silica.
- the dehydration temperatures of about 250° C. increase the amount of reactive hydroxyl groups available for contact with the solution of alumoxane and metallocene, relative to the silica heat treated, for dehydration purposes, to 600° C.
- the catalyst made with the silica subjected to dehydration temperatures of 250° C. is more active than a catalyst produced with the silica subjected to drying temperatures of 600° C.
- preferred dehydration and/or calcination temperatures are below 400° C., more preferably below 300° C., and most preferably at about 250° C.
- the silica used in embodiments of the invention will contain a silanol (OH) concentration of greater than 0.7 mmol OH per gram silica; preferably it will contain greater than 0.7 mmol up to 2.5 mmol OH per gram of silica. In preferred embodiments, the concentration ranges from 1.6 to 1.9 mmol/g silica.
- OH silanol
- catalysts of the invention all catalyst components can be dissolved with alumoxane and impregnated into the carrier. Catalyst preparation is undertaken under anhydrous conditions and in the absence of oxygen. In a unique process, the carrier material is impregnated with alumoxane, preferably methylalumoxane (MAO), in a process described below.
- alumoxane preferably methylalumoxane (MAO)
- the class of alumoxanes comprises oligomeric linear and/or cyclic alkylalumoxanes represented by the formula: R—(Al(R)—O) n —AlR 2 for oligomeric, linear alumoxanes and (—Al(R)—O—) m for oligomeric cyclic alumoxane, wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C 1 -C 8 alkyl group and preferably methyl.
- MAO is a mixture of oligomers with a very wide distribution of molecular weights and usually with an average molecular weight of about 1200. MAO is typically kept in solution in toluene.
- the volume of the solution comprising an alumoxane and a solvent therefor can vary, depending on the catalyst sought to be produced.
- one of the controlling factors in the alumoxane incorporation into the carrier material is the pore volume of the silica.
- the process of impregnating the carrier material is by infusion of the alumoxane solution, without forming a slurry of the carrier material, such as silica, in the alumoxane solution. This is undertaken with agitation.
- the volume of the solution of the alumoxane is sufficient to fill the pores of the carrier material without forming a slurry in which the volume of the solution exceeds the pore volume of the silica; accordingly and preferably, the maximum volume of the alumoxane solution is, does not exceed, the total pore volume of the carrier material sample. That maximum volume of the alumoxane solution insures that no slurry of silica in solvent is formed in this step.
- the pore volume of the carrier material is 1.65 cm 3 /g
- the volume of alumoxane will be equal to or less than 1.65 cm 3 /g of carrier material.
- the maximum volume of solution (of metallocene and alumoxane) will equal the total pore volume of the carrier, e.g. silica, which is the pore volume in, e.g., cm 3 /g, times the total weight of the carrier used.
- the impregnated carrier material will appear dry immediatedly following impregnation, although the pores of the carrier may be filled with inter alia solvent.
- the solution volume can be up to 30% greater than the total pore volume of the silica with the result(s) that no slurry of the silica is formed and that the silica remains mostly dry in appearance.
- the preferred solvent for the alumoxane e.g. methylalumoxane, is toluene.
- Solvent may be removed from the alumoxane impregnated pores of the carrier material by heating and/or under a vacuum or purged with heating in an inert gas, such as nitrogen. If elevated temperature is employed, the temperature conditions in this step are controlled to reduce, if not to eliminate, agglomeration of impregnated carrier particles and/or crosslinking of the alumoxane.
- solvent can be removed by evaporation effected at relatively low elevated temperatures of above about 40° and below about 50° to obviate agglomeration of catalyst particles and crosslinking of the alumoxane. Preferably drying is undertaken at 45° C. or less for 5 to 7 hours.
- the metallocene is added to the solution of the alumoxane prior to impregnating the carrier with the solution.
- the maximum volume of the alumoxane solution also containing the metallocene is the total pore volume of the carrier material sample.
- the molar ratio of aluminum provided by alumoxane, expressed as Al, to metallocene metal expressed as M (e.g. Zr), ranges from 50 to 500, preferably 75 to 300, and most preferably 100 to 200.
- An added advantage of the present invention is that this Al:Zr ratio can be directly controlled.
- the alumoxane and metallocene compound are mixed together at ambient temperature for 0.1 to 6.0 hours, prior to use in the infusion step.
- the solvent for the metallocene and alumoxane can be appropriate solvents, such as aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, cyclic ethers or esters; preferably it is toluene.
- the metallocene compound has the formula Cp m MA n B p in which Cp is an unsubstituted or substituted cyclopentadienyl group, M is zirconium or hafnium and A and B belong to the group including a halogen atom, hydrogen or an alkyl group.
- the preferred transition metal atom M is zirconium.
- the Cp group is an unsubstituted, a mono- or a polysubstituted cyclopentadienyl group.
- the substituents on the cyclopentadienyl group can be preferably straight-or branched chain C 1 -C 6 alkyl groups.
- the cyclopentadienyl group can be also a part of a bicyclic or a tricyclic moiety such as indenyl, tetrahydroindenyl, fluorenyl or a partially hydrogenated fluorenyl group, as well as a part of a substituted bicyclic or tricyclic moiety.
- the cyclopentadienyl groups can be also bridged by polymethylene or dialkylsilane groups, such as —CH 2 —, —CH 2 —CH 2 —, —CR′R′′— and —CR′R′′—CR′R′′— where R′ and R′′ are short alkyl groups or hydrogen, —Si(CH 3 ) 2 —, Si(CH 3 ) 2 —CH 2 —CH 2 —Si(CH 3 ) 2 — and similar bridge groups.
- polymethylene or dialkylsilane groups such as —CH 2 —, —CH 2 —CH 2 —, —CR′R′′— and —CR′R′′—CR′R′′— where R′ and R′′ are short alkyl groups or hydrogen, —Si(CH 3 ) 2 —, Si(CH 3 ) 2 —CH 2 —CH 2 —Si(CH 3 ) 2 — and similar bridge groups.
- a and B substituents in the above formula of the metallocene compound are halogen atoms, they belong to the group of fluorine, chlorine, bromine or iodine.
- substituents A and B in the above formula of the metallocene compound are alkyl groups, they are preferably straight-chain or branched C1-C 8 alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, n-hexyl or n-octyl.
- Suitable metallocene compounds include
- metallocenes include
- Alpha-olefins are polymerized with the catalyst system of the present invention by any suitable process.
- Such processes include polymerizations carried out in suspension, in solution or in the gas phase. Gas phase polymerization reactions are preferred, e.g., those taking place in stirred bed reactors and, especially, fluidized bed reactors.
- the polymerization is carried out at relatively low temperatures, e.g., from about 30 to about 105° C.
- polymerization pressures are less than 10,000 psi, preferably less than 1000 psi, and most preferably in the range of 100 to 350 psi.
- a particularly desirable method for producing polyethylene polymers according to the present invention is in a fluid bed reactor.
- a reactor and means for operating it are described by Nowlin et al, U.S. Pat. No. 4,481,301, the entire contents of all of which are incorporated herein by reference.
- the polymer produced in such a reactor contains the catalyst particles because the catalyst is not separated from the polymer.
- the molecular weight of the polymer may be controlled in a known manner, e.g., by using hydrogen. With the catalysts produced according to the present invention, molecular weight may be suitably controlled with hydrogen when the polymerization is carried out at relatively low temperatures, e.g., from about 30 to about 105° C. This control of molecular weight may be evidenced by measurable positive change in melt index (12) of the polymer produced.
- the catalyst system of the invention can be introduced, separately, via two catalyst feeders or a mixture thereof can be fed to the reactor.
- the mixed catalyst can be fed through the catalyst port of the reactor as a mixture or through separate catalyst ports. The latter gives the best control of HMW/LMW composition in the final bimodal or broad PE product
- the polyolefin resin products of the invention can be low density products of densities of less than 0.94 g/cm 3 .
- the products are high density products with densities of greater than about 0.94.
- the products are broad or bimodal molecular weight distribution products which contain 0.10 to 0.90, preferably 0.30 to 0.70 most preferably 0.50 to 0.65 weight percent of the high molecular weight component.
- the film products exhibit excellent Dart Drop Impact (DDI) as measured by ASTM D 1709.
- the products exhibit Dart Drop Impact (DDI) in the range of 150 to 800 g, preferably from 300 to 800 g and most preferably from 400 to 800 g for nominal 1 mil gauge film.
- the resins resulting from the process of the invention exhibit FI of 2 to 100, depending upon product application.
- the FI is a measure of a resin's viscosity which relates to its processability. Increase in resin FI means lower viscosity which improves processability.
- properties There is generally a trade-off with properties. Typically, as FI increases, properties deteriorate. For most product applications, there is an optimum FI for maximized processability and properties, which also depends upon MWD.
- Ethylene polymers as well as copolymers of ethylene with one or more C 3 -C 10 alpha-olefins, can be produced in accordance with the invention.
- copolymers having two monomeric units are possible as well as terpolymers having three monomeric units.
- Particular examples of such polymers include ethylene/1-butene copolymers, ethylene/1-hexene copolymers and ethylene/4-methyl-1-pentene copolymers.
- Example 2 illustrates the effect of cofeeding a bimetallic catalyst product in Example 2 with and without a cofeed of the catalyst produced in Example 3.
- the results of Example 4 are summarized in Table I.
- Example 2 This example illustrates the effect of cofeeding a bimetallic catalyst product in Example 2 with and without a cofeed of the catalyst produced in Example 3.
- the polymerization conditions were similar to Example 4, except for the presence of isopentane.
- the results of Example 5 are summarized in Table II.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
A make-up catalyst of at least one metallic component of a bimetallic catalyst component is used in conjunction with a bimetallic catalyst to control the proportion of weight fractions in broad or bimodal molecular weight distribution olefin resin product. The bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two catalyst components producing the HMW/LMW components. The make-up catalyst consisting of a single metal component is added in proportion necessary to make-up the deficiencies in the amount of the HMW/LMW component. The type of make-up catalyst added depends on whether increase of the HMW or LMW component produced by te bimetallic catalyst is sought.
Description
- This application is a continuation of Application No. 08/444,989, filed May 19, 1995, which is a divisional of Application No. 08/303,269, filed Sep. 8, 1994, the disclosures of which are expressly incorporated by reference herein in their entireties.
- This application is related to Application No. 08/814,526, filed March 10, 1997, now allowed, which is a continuation of the above-noted Application No. 08/303,269.
- The invention relates to a dual-catalyst system for, and a catalytic preparation of, bimodal molecular weight distribution polymers and copolymers of ethylene, produced in one reactor. A make-up catalyst (catalyst one) and a bimetallic catalyst (catalyst two) are used to control the proportion of different weight fractions in broad or bimodal molecular weight distribution olefin resin product. The bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin, in which there are at least two components; one of the two components has a higher molecular weight (referred herein as HMW) than another of the two components, which is referred herein as LMW, low molecular weight (component). The bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two metals of the catalyst producing the HMW/LMW components.
- The make-up catalyst, consisting of a single metal component, is added in proportion necessary to make-up the deficiencies in the amount of the HMW/LMW component produced by the bimetallic catalyst. The type of make-up catalyst added depends on whether increase of the HMW or LMW component produced by the bimetallic catalyst is sought. A make-up catalyst of at least one metallic component of the bimetallic catalyst is used to control the weight fraction of the HMW component in the broad or bimodal molecular weight distribution olefin resin product.
- In U.S. Pat. No. 5,032,562, a bimetallic catalyst system is described that produces broad or bimodal molecular weight distribution polyethylene resins in a single reactor. The LMW component is produced by the Zr site while the HMW component is produced by the Ti site.
- The final product is essentially a gel-free intimate mixture of these two components because of the close proximity of the two metal sites.
- In that product, the weight fraction of the HMW/ LMW components in the final product is fixed by the relative concentration of the two metal species in the bimetallic catalyst. It is often desirable to change the weight fraction of either the HMW or LMW components produced by bimetallic catalyst in the single reactor. Reformulation of the bimetallic catalyst offers one mode of operation, to change the relative weight fraction of one of the two components produced by such a catalyst. In accordance with the invention, time consuming reformulation procedure(s) are eliminated by employing a make-up stream of the pure component such that the desired composition of the HMW/LMW component is achieved. In the absence of the bimetallic catalyst, (i.e.) cofeeding one catalyst containing only the titanium (HMW) metal and a second catalyst containing only the zirconium (LMW) metal, the polymer will essentially be a physical mixture of the two components and severe restrictions will have to be placed on the allowable weight fraction of the two components for producing a gel free product with acceptable level of fines (less than 6 percent of the polymer) in the reactor.
- The invention relates to a catalyst and a catalytic preparation of bimodal molecular weight distribution polymers and copolymers of ethylene, in one reactor. A make-up catalyst and a bimetallic catalyst are used simultaneously to control the proportion of different weight fractions in broad or bimodal molecular weight distribution polyolefin resin product. The invention relates to a catalyst system comprising (a) a bimetallic catalyst and (b) a make-up catalyst. The catalyst system comprises greater than 50 weight percent of the bimetallic catalyst. It is important to have the bimetallic catalyst as the primary catalyst supply to minimize gel formation. The bimetallic catalyst contains two transition metals or two different transition metal compounds, each having different hydrogen characteristics. Because of the different hydrogen response of each of the two sources of transition metal in the bimetallic catalyst, each will produce a different molecular weight component under identical olefin polymerization conditions. In preferred embodiments below, the LMW component is produced by the Zr site while the HMW component is produced by the Ti site.
- The bimetallic catalyst produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two transition metal catalyst components producing the HMW/LMW components. Thus the product of olefin polymerization in the presence of such a catalyst will comprise at least two fractions each of different molecular weight, and one having a relatively high molecular weight (hereinafter HMW) relative to a second fraction of relatively lower molecular weight (LMW).
- In that product, the weight fraction of the HMW/LMW components in the final product is fixed by the relative concentration of the two metal species in the bimetallic catalyst. The make-up catalyst consists of a single metal component of the two components constituting the bimetallic catalyst; it is added in proportion necessary to increase either the amount of the HMW or the LMW component. The identity of the transition metal in the make-up catalyst added depends on whether increase of the HMW or of the LMW component produced by the bimetallic catalyst is sought. The make-up catalyst (b) is added, for example, as a make-up stream of the pure catalyst components such that the desired composition of the HMW/LMW components is achieved. In preferred embodiments below, a pure Ti catalyst can be co-fed if the HMW component weight fraction needs to be increased. In preferred embodiments below, a zirconium based (zirconocene) catalyst is co-fed to increase the LMW component weight fraction.
- The present invention is directed to a process for producing product, in a single reactor, wherein the product comprises ethylene polymers or copolymers of ethylene with one or more C3-C10 alpha-olefins, wherein the product is characterized by broad or bimodal molecular weight distribution, wherein the process comprises:
- contacting a feed selected from the group consisting of ethylene, C3-C10 alpha-olefins, and admixtures thereof, with catalyst A) and catalyst B), under olefin polymerization conditions;
- the catalyst A) comprises a supported catalyst which is formed from at least two different transition metal compounds of different hydrogen responses,
- wherein a) one of the at least two different transition metal compounds provides, under olefin polymerization conditions, a polymerization product of relatively high molecular weight, and
- wherein b) a second of the at least two different transition metal compounds, under identical polymerization conditions, provides a second polymerization product of lower molecular weight relative to the product of relatively high molecular weight;
- wherein at least one of a) and b) is provided as a metallocene of a transition metal selected from the group consisting of Zr and Hf; and
- cofeeding the catalyst B) in the presence of the catalyst A);
- the catalyst B) comprises a support matrix formed from only one of the at least two transition metal compounds a) and b) so that catalyst B) comprises only a single transition metal component, so that:
- when catalyst B) comprises the a) as the single transition metal component, the cofeeding of the catalyst B) results in an increase in the polymerization product of the relatively high molecular weight, and
- wherein, when B) comprises the b) as the single transition metal component, the cofeeding of the second catalyst B) results in an increase in the polymerization product of the lower molecular weight; and
- recovering the product.
- A mixed catalyst system comprising catalyst A) and catalyst B) is formed, wherein the mixed catalyst system can comprise greater than 50 weight percent of catalyst A).
- The catalyst A) can comprise an aluminum alkyl non-oxygen containing cocatalyst, and a dry, anhydrous, support containing composition comprising an activated metallocene compound of a transition metal and a non-metallocene transition metal, wherein the aluminum alkyl cocatalyst activates the non-metallocene transition metal; wherein the support is the reaction product of (1) silica having OH groups,, impregnated with RmMgR′n, wherein each of R and R′ is alkyl of 4 to 10 carbon atoms, wherein RmMgR′n is present in an amount to provide a RmMgR′n:OH molar ratio of 0.5:1 to 4:1; and (2) an organic alcohol reagent providing alkoxy groups having a formula R″O—, wherein R″ is an alkyl of 1 to 12 carbons; the alkoxy groups being effective to displace R and R′ of the RmMgR′n, and wherein the reagent is used in an amount effective to provide an alcohol/Mg molar ratio of 0.5 to 2.0. Each of R and R′ can be alkyl of 4 to 8 carbon atoms. Moreover, each of R and R′ can be butyl. R″ can be an alkyl of 2 to 8 carbons, and R″O— can be provided as an alcohol.
- The reaction product can be formed by (i) providing a slurry of a non-polar solvent and a solid porous silica having -OH groups; (ii) impregnating the silica, with RmMgR′n, to form an intermediate (ii), wherein the Mg:—OH groups ratio is less than 2, wherein each of the R and R′ is alkyl of 4 to 10 carbon atoms and is the same or different, wherein the RmMgR′n, is soluble in the non-polar solvent; (iii) treating the intermediate (ii) with an amount of R″OH, which amount is effective to provide a R″OH:RmMgRnmolar ratio of 0.5 to 2.0 to form a product The process can further include, after (iii), (vi) treating the product of (iii) with TiCl4 to form a titanium containing intermediate; and (v) combining the titanium containing intermediate with the cocatalyst.
- The non-metallocene transition metal can be titanium.
- The non-metallocene transition metal can comprise a non-metallocene transition metal compound of titanium tetrachloride.
- The cocatalyst can be trimethylaluminum.
- The metallocene transition metal can be provided as a compound which has the formula CpxMAyBz, wherein Cp is cyclopentadienyl unsubstituted or substituted by alkyl of 1 to 6 carbon atoms; x is at least 1; each of A and B is halogen or alkyl of 1 to 8 carbon atoms, and y plus z is 3 or less provided that X+y+Z is equal to the valence of M, which is selected from the group consisting of titanium, zirconium and hafnium.
- The metallocene transition metal can be provided as a compound which has the formula CpxMAyBz, wherein Cp is cyclopentadienyl unsubstituted or substituted by alkyl or alkylene of 1 to 6 carbon atoms; x is at least 1; each of A and B is halogen or alkyl of 1 to 8 carbon atoms, and y plus z is 3 or less provided that x+y+z is equal to the valence of M, which is selected from the group consisting of titanium, zirconium and hafnium.
- The metallocene compound can be selected from the group consisting of bis-(cyclopentadienyl) zirconium dichloride and bis-(n butylcyclopentadienyl) zirconium dichloride.
- The metallocene compound can be activated with a solution of methylalumoxane; wherein the silica has a pore volume in the range of 1.0 cm3/g to 4.0 cm3/g; wherein the solution has a volume which is equal to the total pore volume.
- The catalyst B) can be in the form of particles wherein the particles have a particle size in the range of 1 to 500 μm, wherein the particles comprise silica, a transition metal and aluminum, wherein the ratio of aluminum to transition metal ranges from about 70 to 350; wherein the silica is amorphous and porous and has a pore volume of 0.1 to 3.5 cm3/g; wherein the silica has a concentration of silanol groups wherein the concentration of silanol groups is at least 0.7 mmol per gram of silica; wherein a solution of a mixture comprising bis (n-butylcyclopentadienyl) zirconium dichloride and alumoxane, provides the transition metal and the aluminum; wherein the solution has a maximum volume equal to the total pore volume of the silica, and wherein the solution is employed to impregnate the silica having the concentration of silanol groups.
- The alumoxane can have a formula (a) or (b) wherein:
- (a) is R—(Al(R)—O)n—AlR2 for oligomeric, linear alumoxanes, and
- (b) is (—Al(R)—O—)m for oligomeric cyclic alumoxane,
- wherein:
- n is 1-40,
- m is 3-40, and
- R comprises a C1-C8 alkyl group.
- The alumoxane can be methylalumoxane (MAO).
- The mixture can provide an Al:Zr mole ratio of 100 to 350, or an Al-Zr mole ratio of 100 to 200. The particles can be characterized by a particle size ranging from 1 to 250 μm. The concentration of silanol groups can be greater than 0.7 and up to about 2.5 mmol per gram of silica, or from about 1.7 and up to about 1.9 mmol per gram of silica. The mixture can provide an Al:Zr ratio (elemental 25 basis) of 100 to 200.
- The at least two different transition metal compounds can include Zr and Ti, and the catalyst A) can include Zr and Ti, and the catalyst B) can include Zr.
- The catalyst B) can provide monomodal polymer component in an amount comprising 1 to 30 weight percent of the product.
- The figure is a gel permeation chromatogram of polyethylene produced with sample which is a plot of weight fraction vs. molecular weight; the unbroken line is a graph of a bimodal molecular weight polymer produced with a bimetallic catalyst in the absence of a make-up catalyst of the invention. The broken line is a graph of the bimodal molecular weight distribution product produced with the bimetallic catalyst plus a make-up catalyst.
-
- Smaller MFR values indicate relatively narrow molecular weight distribution polymers.
- The major component (A) of the catalyst system, a bimetallic catalyst, comprises a carrier and two different sources of transition metal (zirconium, hafnium, titanium and vanadium), and may be referred to as a bimetallic catalyst. The major component is alone effective to polymerize ethylene, under ethylene polymerization conditions, to produce bimodal molecular weight distribution resin. This major component is more than 50 weight percent of the catalyst system of this invention. Because of the different hydrogen response of each of the two sources of transition metal in the bimetallic catalyst, each will produce a different molecular weight component under identical olefin polymerization conditions. In embodiments below, the metal of highest hydrogen response will be present in the catalyst in amounts of 0.2 to 0.6 weight percent preferably 0.3 to 0.5 of the bimetallic catalyst; in preferred embodiments below that metal is zirconium. The metal of lowest hydrogen response will be present in amounts in the catalyst of 0.5 to 3.0 preferably 0.8 to 2.0 weight percent; in preferred embodiments below that metal is titanium. This major component catalyst of the catalyst system of the invention is catalytically effective to produce bimodal molecular weight distribution product containing 100.35 to 0.75 weight percent of the high molecular weight component, HMW.
- Catalyst component A contains at least two transition metals. Preferably, one is in the form of a metallocene and one transition metal in the form of a non-metallocene, have an activity of at least about about 1000 g polymer/g catalyst or about 50 kg polymer/g of each transition metal.
- The catalyst component A requires a cocatalyst comprising an aluminum alkyl compound, such as a trialkyl aluminum, free of alumoxane and free of water, or oxygen-containing oligomers and polymers of the aluminum alkyl compound, and a catalyst precursor comprising a carrier, an alumoxane and at least one metallocene; in one embodiment the catalysts further include a non-metallocene transition metal source.
- The carrier material is a solid, particulate, porous, preferably inorganic material, such as an oxide of silicon and/or of aluminum. The carrier material is used in the form of a dry powder having an average particle size of from about 1 micron to about 500 μm, preferably from about 10 μm to about 250 μm. The surface area of the carrier is at least about 3 square meters per gram (m2/g), and preferably at least about 50 m2/g up to about 350 m2/g. The carrier material should be dry, that is, free of absorbed water. Drying of the carrier material can be effected by heating at about 100° C. to about 1000° C., preferably at about 600° C. When the carrier is silica, it is heated to at least 200° C., preferably about 200° C. to about 850° C. and most preferably at about 600° C. The carrier material must have at least some active hydroxyl (OH) groups to produce the catalyst composition of this invention.
- In the most preferred embodiment, the carrier is silica which, prior to the use thereof in the first catalyst synthesis step, has been dehydrated by fluidizing it with nitrogen and heating at about 600° C. for about 16 hours to achieve a surface hydroxyl group concentration of about 0.7 millimoles per gram (mmol/g). The silica of the most preferred embodiment is a high surface area, amorphous silica (surface area =300 m2/g; pore volume of about 1.65 cm3/g), and it is a material marketed under the tradenames of Davison 952 or Davison 955 by the Davison Chemical Division of W.R. Grace and Company. The silica is in the form of spherical particles, e.g., as obtained by a spray-drying process. As procured, these silicas are not calcined; and this must be dehydrated, as indicated above.
- The catalyst synthesis thereof is undertaken under inert conditions, in the absence of water and of oxygen. The carrier is dispersed in solvent to form a slurry.
- The carrier material, having said (OH) groups, is slurried in a non-polar solvent and the resulting slurry is contacted with at least one organomagnesium compound having the empirical formula below. The slurry of the carrier material in the solvent is prepared by introducing the carrier into the solvent, preferably while stirring, and heating the mixture to about 25 to about 70° C., preferably to about 40 to about 60° C. Temperatures here are critical with respect to the non-metallocene transition metal which is subsequently added; that is temperatures in this slurry of about 90° C. or higher may result in deactivation of the transition metal added subsequently. Accordingly, all catalyst precursor synthesis steps are conducted below 90° C. The slurry is then contacted with the aforementioned organomagnesium compound, while the heating is continued as indicated.
- The organomagnesium compound has the empirical formula
- RmMg R′n.
- where R and R′ are the same or different C2-C12 alkyl groups, preferably C4-C10 alkyl groups, more preferably C4-C8 alkyl groups, and most preferably both R and R′ are mostly butyl groups, and m and n are each 0, 1 or 2, providing that m +n is equal to the valence of Mg.
- Suitable non-polar solvents are materials in which all of the reactants used herein, i.e., the organomagnesium compound, and the transition metal compound, are at least partially soluble and which are liquid under suitable reaction conditions. Preferred non-polar solvents are alkanes, such as isopentane, isohexane, n-hexane, n-heptane, octane, nonane, and decane, although a variety of other materials including cycloalkanes, such as cyclohexane, aromatics, such as benzene, toluene and ethylbenzene, may also be employed. The most preferred non-polar solvent is isopentane. Prior to use, the non-polar solvent should be purified, such as by percolation through silica gel and/or molecular sieves, to remove traces of water, oxygen, polar compounds, and other materials capable of adversely affecting catalyst activity.
- In the most preferred embodiment of the synthesis of catalyst component A it is important to add only such an amount of the organomagnesium compound that will be deposited—physically or chemically—onto the support since any excess of the organomagnesium compound in the solution may react with other synthesis chemicals and precipitate outside of the support. The carrier drying temperature affects the number of sites on the carrier available for the organomagnesium compound—the higher the drying temperature the lower the number of sites. Thus, the exact molar ratio of the organomagnesium compound to the hydroxyl groups will vary and must be determined on a case-by-case basis to assure that only so much of the organomagnesium compound is added to the solution as will be deposited onto the support without leaving any excess of the organomagnesium compound in the solution. Furthermore, it is believed that the molar amount of the organomagnesium compound deposited onto the support is greater than the molar content of the hydroxyl groups on the support. Thus, the molar ratios given below are intended only as an approximate guideline and the exact amount of the organomagnesium compound in this embodiment must be controlled by the functional limitation discussed above, i.e., it must not be greater than that which can be deposited onto the support. If greater than that amount is added to the solvent, the excess may react with the non-metallocene transition metal compound, thereby forming a precipitate outside of the support which is detrimental in the synthesis of our catalyst and must be avoided. The amount of the organomagnesium compound which is not greater than that deposited onto the support can be determined in any conventional manner, e.g., by adding the organomagnesium compound to the slurry of the carrier in the solvent, while stirring the slurry, until the organomagnesium compound is detected as a solution in the solvent.
- For example, for the silica carrier heated at about 600° C., the amount of the organomagnesium compound added to the slurry is such that the molar ratio of Mg to the hydroxyl groups (OH) on the solid carrier is about 0.5:1 to about 4:1, preferably about 0.8:1 to about 3:1, more preferably about 0.9:1 to about 2:1 and most preferably about 1:1. The organomagnesium compound dissolves in the non-polar solvent to form a solution from which the organomagnesium compound is deposited onto the carrier.
- It is also possible to add such an amount of the organomagesium compound which is in excess of that which will be deposited onto the support, and then remove, e.g., by filtration and washing, any excess of the organomagnesium compound. However, this alternative is less desirable than the most preferred embodiment described above.
- The organomagnesium treated support is contacted with an organic alcohol reagent (R″OH) containing R″O— groups which are reactive or capable of displacing alkyl groups on the magnesium. The amount of this organic alcohol reagent is effective to provide a R″OH:Mg ratio of 0.5 to 2.0, preferably 0.8 to 1.5.
- Contact of the silica supported magnesium compound, with the organic alcohol reagent is undertaken in the slurry. Contact is undertaken at a temperature ranging from 25° C. to 80° C., preferably 40° C. to 60° C.
- The alkyl group in the organic alcohol reagent can contain 2 to 12 carbon atoms, preferably 2 to 8; in the embodiments below, it is an alkyl containing 2 to 4 carbon atoms, particularly of 4 carbon atoms (butyl). The inclusion of the alcohol reagent step in the catalyst synthesis of the invention produces a catalyst which, relative to the absence of this step, is much more active, requires much less non-metallocene transition metal (e.g. titanium), and is much more active with respect to the final catalyst composition produced by the addition of the metallocene-transition metal component.
- After the addition of the organic alcohol reagent to the slurry is completed, the slurry is contacted with a non-metallocene transition metal compound, free of substituted or unsubstituted cyclopentadienyl groups. The slurry temperature must be maintained at about 25 to about 70° C., preferably to about 40 to about 60° C. As noted above, temperatures in this slurry of about 90° C. or greater may result in deactivation of the non-metallocene transition metal. Suitable non-metallocene transition metal compounds used herein are compounds of metals of Groups 4, and 5, of the Periodic Chart of the Elements, as published by Chemical and Engineering News, 63(5), 27, 1985, providing that such compounds are soluble in the non-polar solvents. Non-limiting examples of such compounds are titanium and vanadium halides, e.g., titanium tetrachloride, TiCl4, vanadium tetrachloride, VCl4, vanadium oxytrichloride, VOC13, titanium and vanadium alkoxides, wherein the alkoxide moiety has a branched or unbranched alkyl radical of 1 to about 20 carbon atoms, preferably 1 to about 6 carbon atoms. The preferred transition metal compounds are titanium compounds, preferably tetravalent titanium compounds. The most preferred titanium compound is titanium tetrachloride. The amount of titanium or vanadium, in non-metallocene form ranges from a Ti/Mg molar ratio of 0.3 to 1.0, preferably from 0.50 to 0.80.
- Mixtures of such non-metallocene transition metal compounds may also be used and generally no restrictions are imposed on the transition metal compounds which may be included. Any transition metal compound that may be used alone may also be used in conjunction with other transition metal compounds.
- After the addition of the non-metallocene transition metal compound is complete, the slurry solvent is removed by evaporation or filtering to obtain a free-flowing powder. Next, incorporation of a metallocene can be undertaken. The metallocene is activated with an alumoxane.
- Metallocene compound(s) has the formula CpxMAyBz in which Cp is an unsubstituted or substituted cyclopentadienyl group, M is zirconium or hafnium and A and B belong to the group including a halogen atom, hydrogen or an alkyl group. In the above formula of the metallocene compound, the preferred transition metal atom M is zirconium. In the above formula of the metallocene compound, the Cp group is an unsubstituted, a mono- or a polysubstituted cyclopentadienyl group: and x is at least 1. The substituents on the cyclopentadienyl group can be preferably straight-chain C1-C6 alkyl groups. The cyclopentadienyl group can be also a part of a bicyclic or a tricyclic moiety such as indenyl, tetrahydroindenyl, fluorenyl or a partially hydrogenated fluorenyl group, as well as a part of a substituted bicyclic or tricyclic moiety. In the case when x in the above formula of the metallocene compound is equal to 2, the cyclopentadienyl groups can be also bridged by polymethylene or dialkylsilane groups, such as —CH2—, —CH2—CH2—, —CR′R″— and —CR′R″—CR′R″— where R′ and R″ are short alkyl groups or hydrogen, —Si (CH3)2—, Si(CH3)2—CH2—CH2—Si(CH3)2— and similar bridge groups. If the A and B substituents in the above formula of the metallocene compound are halogen atoms, they belong to the group of fluorine, chlorine, bromine or iodine; and y+z is 3 or less, provided that x+y+z equals the valence of M. If the substituents A and B in the above formula of the metallocene compound are alkyl groups, they are preferably straight-chain or branched C1-C8 alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, n-hexyl or n-octyl.
- Suitable metallocene compounds include
- bis(cyclopentadienyl)metal dihalides,
- bis(cyclopentadienyl)metal hydridohalides,
- bis(cyclopentadienyl)metal monoalkyl monohalides,
- bis(cyclopentadienyl)metal dialkyls and bis(indenyl)metal dihalides wherein the metal is zirconium or hafnium, halide groups are preferably chlorine and the alkyl groups are C1-C6 alkyls. Illustrative, but non-limiting examples of metallocenes include bis(cyclopentadienyl)zirconium dichloride,
- bis(cyclopentadienyl)hafnium dichloride,
- bis(cyclopentadienyl)zirconium dimethyl,
- bis(cyclopentadienyl)hafnium dimethyl,
- bis(cyclopentadienyl)zirconium hydridochloride,
- bis(cyclopentadienyl)hafnium hydridochloride,
- bis(n-butylcyclopentadienyl)zirconium dichloride,
- bis(n-butylcyclopentadienyl)hafnium dichloride,
- bis(n-butylcyclopentadienyl)zirconium dimethyl,
- bis(n-butylcyclopentadienyl)hafnium dimethyl,
- bis(n-butylcyclopentadienyl)zirconium hydridochloride,
- bis(n-butylcyclopentadienyl)hafnium hydridochloride,
- bis(dimethylcyclopentadienyl) zirconium dichloride,
- bis(pentamethylcyclopentadienyl)zirconium dichloride,
- bis(pentamethylcyclopentadienyl)hafnium dichloride,
- cyclopentadienyl-zirconium trichloride, bis(indenyl)zirconium dichloride,
- bis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and ethylene-[bis(4,5,6,7-tetrahydro-1-indenyl)] zirconium dichloride. The metallocene compounds utilized within, the embodiment of this art can be used as crystalline solids, as solutions in aromatic hydrocarbons or in a supported form.
- The alumoxane can be impregnated into the carrier at any stage of the process of catalyst preparation. In this embodiment, the amount of Al, provided by alumoxane, is sufficient to provide an Al:transition metal (provided by metallocene) mole ratio ranging from 50 to 500, preferably 75 to 300.
- The class of alumoxanes comprises oligomeric linear and/or cyclic alkylalumoxanes represented by the formula: R—(Al(R)—O)n—AlR2 for oligomeric, linear alumoxanes and (—Al(R)—O—)m for oligomeric cyclic alumoxane, wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C1-C8 alkyl group and preferably methyl, methyl alumoxane (MAO). MAO is a mixture of oligomers with a very wide distribution of molecular weights and usually with an average molecular weight of about 1200. MAO is typically kept in solution in toluene.
- Incorporation of the activated metallocene component onto the carrier can be accomplished in various ways. Incorporation of either or both the alumoxane and metallocene compound can be into the slurry resulting from the addition, i.e. after the addition, of the non-metallocene transition metal.
- Alternatively, and in accordance with the unique method of infusion of alumoxane into the pores of the carrier, the carrier slurry can be stripped of solvent, after the addition of the non-metallocene transition metal. compound, to form a free-flowing powder. The free flowing powder can then be impregnated by determining the pore volume of the carrier and providing an alumoxane (or metallocene-alumoxane) solution in a volume equal to or less than the total pore volume of the carrier, and recovering a dry catalyst precursor. The resulting free-flowing powder, referred to herein as a catalyst precursor, is combined with an activator (sometimes referred as a cocatalyst).
- The volume of the solution comprising a solid alumoxane and a solvent therefore can vary. In a preferred embodiment, of alumoxane incorporation into the carrier, one of the controlling factors in the alumoxane incorporation into the carrier material is the pore volume of the silica. In this preferred embodiment, the process of impregnating the carrier material is by infusion of the alumoxane solution, without forming a slurry of the carrier material, such as silica, in the alumoxane solution. The volume of the solution of the alumoxane is sufficient to fill the pores of the carrier material without forming a slurry in which the volume of the solution exceeds the pore volume of the silica; accordingly and preferably, the maximum volume of the alumoxane solution is, does not exceed, the total pore volume of the carrier material sample. That maximum volume of the alumoxane solution insures that no slurry of silica is formed. Accordingly, if the pore volume of the carrier material is 1.65cm3/g, then the volume of alumoxane will be equal to or less than 1.65 cm3/gram of carrier material. As a result of this proviso, the impregnated carrier material will appear dry immediatedly following impregnation although the pores of the carrier will be filled with inter alia solvent.
- Solvent may be removed from the alumoxane impregnated pores of the carrier material by heating and/or under a positive pressure induced by an inert gas, such as nitrogen. If employed, the conditions in this step are controlled to reduce, if not to eliminate, agglomeration of impregnated carrier particles and/or crosslinking of the alumoxane. In this step, solvent can be removed by evaporation effected at relatively low elevated temperatures of above about 40° C. and below about 50° C. to obviate agglomeration of catalyst particles and crosslinking of the alumoxane. Although solvent can be removed by evaporation at relatively higher temperatures than that defined by the range above 40° C. and below about 50° C., very short heating times must be employed to obviate agglomeration of catalyst particles and crosslinking of the alumoxane.
- In a preferred embodiment, the metallocene is added to the solution of the alumoxane prior to impregnating the carrier with the solution. Again, as noted above, the maximum volume of the alumoxane solution also including the metallocene is the total pore volume of the carrier material sample. The mole ratio of alumoxane provided aluminum, expressed as Al, to metallocene metal expressed as M (e.g. Zr), ranges from 50 to 500, preferably 75 to 300, and most preferably 90 to 200. An added advantage of the present invention is that this Al:Zr ratio can be directly controlled. In a preferred embodiment the alumoxane and metallocene compound are mixed together at a temperature of about 20 to 80° C., for 0.1 to 6.0 hours, prior to use in the infusion step. The solvent for the metallocene and alumoxane can be appropriate solvents, such as aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, cyclic ethers or esters, preferably it is toluene.
- The catalyst component formed from the organomagnesium compound, the non-metallocene transition metal and the activated metallocene, is activated with a cocatalyst, which is an alkyl aluminum compound, free of water and free of oxygen-containing oligomers.
- The cocatalyst can be a trialkylaluminum, free of an alumoxane. Preferably, trimethylaluminum (TMA) is the cocatalyst or activator. The amount of the TMA activator is sufficient to give an Al:Ti molar ratio of about 10:1 to about 1000:1, preferably about 15:1 to about 300:1, and most preferably about 20:1 to about 100:1.
- Moreover, in accordance with the invention, the cocatalyst or activator is fed to e.g., a fluid bed reactor for polymerizations and copolymerizations of ethylene in the absence of alumoxane solution.
- The make-up component, component (B), of the catalyst system of the invention comprises one of those two different sources of transition metal, which are contained in the major component of the catalyst system; it is effective to increase the amount of one of the two molecular weight components, HMW or LMW; and to alter the overall polymer FI and MFR. In embodiments below, it is effective to increase FI and MFR. The make-up component of the catalyst system comprises only 1.0% to 50%, preferably 1% to 30% of the catalyst system. It produces a monomodal molecular weight polymer component. The make-up catalyst will provide monomodal polymer component in amount comprising 1 to 30 weight percent of the ultimate resin product.
- The make-up catalyst of the invention comprises a carrier, an alumoxane and at least one metallocene. It is free-flowing and particulate in form comprising dry powder particles having a particle size of from about 1 μm to about 250 μm, preferably from about 10 μm to about 150 μm. The catalyst which contains only one transition metal in the form of a metallocene has an activity of at least about 200 kg polymer/g of transition metals. The alumoxane and metallocene loading on the carrier is such that the amount of aluminum, (elemental basis) provided by the alumoxane, on the carrier ranges from 1 to 40 weight percent, preferably from 5 to 30 weight percent, and most preferably from 5 to 15 weight percent. The optimum MAO loading (Al) is in the range of 3 to 15 mmol (Al) per gram of silica carrier; if a silica carrier is overloaded with MAO, the catalyst activity is lower and the catalyst particles agglomerate with attendant problems of transferring the catalyst.
- In the make-up catalyst the amount of metallocene on the carrier ranges, on a transition metal elemental basis, from 0.001 to 10 weight percent, preferably from 0.05 to 0.5, and most preferably from 0.10 to 0.3 weight percent. Accordingly the patio of Al:Zr (on an elemental basis) in the catalyst can range from 25 to 10,000, usually within the range of from 70 to 980 but preferably from about 70 to 350 or 100 to 350, and most preferably from 100 to 200.
- The carrier material is a solid, particulate, porous, preferably inorganic material, such as an oxide of silicon and/or of aluminum. In the most preferred embodiment, the carrier is silica in the form of spherical particles, e.g., as obtained by a spray-drying process. The carrier material is used in the form of a dry powder having a particle size of from about 1 micron to about 500 μm, preferably from about 1 μm to about 250 μm, and most preferably about 10 μm to about 150 μm. The final catalyst containing carrier material may be sieved to insure elimination of large catalyst particles. Presently, elimination of catalyst particles that have a particle size of greater than 500 μm is envisaged. Preferably, elimination of particles of greater than 250 μm particle size, and, most preferably, elimination of particles of greater than 150 μm particle size is undertaken. Sieving of the material is preferably undertaken after impregnation of the carrier with with the metallocene and the alumoxane. This is highly desirable when this catalyst component contains only one transition metal in the form of a metallocene and is used to form narrow molecular weight distribution polymer, to reduce and/or to eliminate gels in the final polyolefin product and to eliminate reactor hot spots, thereby to insure reactor continuity, particularly in the gas phase fluid bed process.
- The surface area of the carrier is at least about 3 square meters per gram (m2/g), preferably, 5 to 500 square meters per gram (m2/g) and most preferably at least about 50 m2/g up to about 350 m2/g. The pore volume of the carrier will range from 0.1 to 5 cm3/g, preferably from 0.1 to 3.5 cm3/g. The carrier material should be dry, that is, free of absorbed water.
- Preferably, the carrier is silica, which contains [OH] groups. The carrier material must have at least some active hydroxyl (OH) groups to produce the catalyst composition of this invention. The hydroxyl group concentration will be at least about 0.7 mmol/g silica. Preferably, the hydroxyl group concentration of the silica will range from 1.6 to 2.5 mmol/g silica. This range is favored by lower drying, dehydration and/or calcination temperatures.
- The silica hydroxyl (herein silanol, silica hydroxyl is used interchangeably) groups are detectable by IR spectroscopy. Quantitative determinations of the hydroxyl concentration on silica are made by contacting a silica sample with methylmagnesium iodide and measuring methane evolution (by pressure determination).
- Dehydration of silica material can be effected by heating at about 100° C. to about 600° C., preferably from about 150° C. to about 300° C. and most preferably at about 250° C.
- By comparison, silica dehydrated at 600° C. (for about 16 hours) will have a surface hydroxyl concentration of about 0.7 mmol per gram (mmol/g) of silica. Silica dehydrated at 800° C. will be a silica with 0.5 mmol of silica hydroxy groups per gram silica. The silica of the most preferred embodiment is a high surface area, amorphous silica (surface area=300 m2/gm; pore volume of 1.65 cm3/gm), and it is a material marketed under the tradenames of Davison 952 or Davison 955 by the Davison Chemical Division of W. R. Grace and Company. As purchased, the silicas are not dehydrated and must be dehydrated prior to use.
- The amount of hydroxyl groups, in mmoles/gram silica can be affected by the dehydration temperatures used to condition the silica. The dehydration temperatures of about 250° C. increase the amount of reactive hydroxyl groups available for contact with the solution of alumoxane and metallocene, relative to the silica heat treated, for dehydration purposes, to 600° C. Thus it has been found that the catalyst made with the silica subjected to dehydration temperatures of 250° C. is more active than a catalyst produced with the silica subjected to drying temperatures of 600° C. Accordingly, preferred dehydration and/or calcination temperatures are below 400° C., more preferably below 300° C., and most preferably at about 250° C. Accordingly, the silica used in embodiments of the invention will contain a silanol (OH) concentration of greater than 0.7 mmol OH per gram silica; preferably it will contain greater than 0.7 mmol up to 2.5 mmol OH per gram of silica. In preferred embodiments, the concentration ranges from 1.6 to 1.9 mmol/g silica.
- To form catalysts of the invention, all catalyst components can be dissolved with alumoxane and impregnated into the carrier. Catalyst preparation is undertaken under anhydrous conditions and in the absence of oxygen. In a unique process, the carrier material is impregnated with alumoxane, preferably methylalumoxane (MAO), in a process described below. The class of alumoxanes comprises oligomeric linear and/or cyclic alkylalumoxanes represented by the formula: R—(Al(R)—O)n—AlR2 for oligomeric, linear alumoxanes and (—Al(R)—O—)m for oligomeric cyclic alumoxane, wherein n is 1-40, preferably 10-20, m is 3-40, preferably 3-20 and R is a C1-C8 alkyl group and preferably methyl. MAO is a mixture of oligomers with a very wide distribution of molecular weights and usually with an average molecular weight of about 1200. MAO is typically kept in solution in toluene.
- The volume of the solution comprising an alumoxane and a solvent therefor can vary, depending on the catalyst sought to be produced. In a preferred embodiment of alumoxane incorporation into the carrier, one of the controlling factors in the alumoxane incorporation into the carrier material is the pore volume of the silica. In this preferred embodiment, the process of impregnating the carrier material is by infusion of the alumoxane solution, without forming a slurry of the carrier material, such as silica, in the alumoxane solution. This is undertaken with agitation. The volume of the solution of the alumoxane is sufficient to fill the pores of the carrier material without forming a slurry in which the volume of the solution exceeds the pore volume of the silica; accordingly and preferably, the maximum volume of the alumoxane solution is, does not exceed, the total pore volume of the carrier material sample. That maximum volume of the alumoxane solution insures that no slurry of silica in solvent is formed in this step. By way of example, if the pore volume of the carrier material is 1.65 cm3/g, then the volume of alumoxane will be equal to or less than 1.65 cm3/g of carrier material. Thus, the maximum volume of solution (of metallocene and alumoxane) will equal the total pore volume of the carrier, e.g. silica, which is the pore volume in, e.g., cm3/g, times the total weight of the carrier used. As a result of this provision, the impregnated carrier material will appear dry immediatedly following impregnation, although the pores of the carrier may be filled with inter alia solvent. However, it has been noted that the solution volume can be up to 30% greater than the total pore volume of the silica with the result(s) that no slurry of the silica is formed and that the silica remains mostly dry in appearance. The preferred solvent for the alumoxane, e.g. methylalumoxane, is toluene.
- Solvent may be removed from the alumoxane impregnated pores of the carrier material by heating and/or under a vacuum or purged with heating in an inert gas, such as nitrogen. If elevated temperature is employed, the temperature conditions in this step are controlled to reduce, if not to eliminate, agglomeration of impregnated carrier particles and/or crosslinking of the alumoxane. In this step, solvent can be removed by evaporation effected at relatively low elevated temperatures of above about 40° and below about 50° to obviate agglomeration of catalyst particles and crosslinking of the alumoxane. Preferably drying is undertaken at 45° C. or less for 5 to 7 hours. Although solvent can be removed by evaporation at relatively higher temperatures than that defined by the range above 40° and below about 50° C., very short heating times must be employed to obviate agglomeration of catalyst particles and crosslinking of the alumoxane, with reduction of catalyst activity. Accordingly, an active catalyst has been produced at evaporation temperature of 110° C. (at extremely short heating times), whereas at 45° C., drying can be undertaken for periods of 24 hours.
- In a preferred embodiment, the metallocene is added to the solution of the alumoxane prior to impregnating the carrier with the solution. Again the maximum volume of the alumoxane solution also containing the metallocene is the total pore volume of the carrier material sample. The molar ratio of aluminum provided by alumoxane, expressed as Al, to metallocene metal expressed as M (e.g. Zr), ranges from 50 to 500, preferably 75 to 300, and most preferably 100 to 200. An added advantage of the present invention is that this Al:Zr ratio can be directly controlled. In a preferred embodiment the alumoxane and metallocene compound are mixed together at ambient temperature for 0.1 to 6.0 hours, prior to use in the infusion step. The solvent for the metallocene and alumoxane can be appropriate solvents, such as aromatic hydrocarbons, halogenated aromatic hydrocarbons, ethers, cyclic ethers or esters; preferably it is toluene.
- The metallocene compound has the formula CpmMAnBp in which Cp is an unsubstituted or substituted cyclopentadienyl group, M is zirconium or hafnium and A and B belong to the group including a halogen atom, hydrogen or an alkyl group. In the above formula of the metallocene compound, the preferred transition metal atom M is zirconium. In the above formula of the metallocene compound, the Cp group is an unsubstituted, a mono- or a polysubstituted cyclopentadienyl group. The substituents on the cyclopentadienyl group can be preferably straight-or branched chain C1-C6 alkyl groups. The cyclopentadienyl group can be also a part of a bicyclic or a tricyclic moiety such as indenyl, tetrahydroindenyl, fluorenyl or a partially hydrogenated fluorenyl group, as well as a part of a substituted bicyclic or tricyclic moiety. In the case when m in the above formula of the metallocene compound is equal to 2, the cyclopentadienyl groups can be also bridged by polymethylene or dialkylsilane groups, such as —CH2—, —CH2—CH2—, —CR′R″— and —CR′R″—CR′R″— where R′ and R″ are short alkyl groups or hydrogen, —Si(CH3)2—, Si(CH3)2—CH2—CH2—Si(CH3)2— and similar bridge groups. If the A and B substituents in the above formula of the metallocene compound are halogen atoms, they belong to the group of fluorine, chlorine, bromine or iodine. If the substituents A and B in the above formula of the metallocene compound are alkyl groups, they are preferably straight-chain or branched C1-C8 alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, n-hexyl or n-octyl.
- Suitable metallocene compounds include
- bis(cyclopentadienyl)metal dihalides,
- bis(cyclopentadienyl)metal hydridohalides,
- bis(cyclopentadienyl)metal monoalkyl monohalides,
- bis(cyclopentadienyl)metal dialkyls and bis(indenyl)metal dihalides wherein the metal is zirconium or hafnium, halide groups are preferably chlorine and the alkyl groups are C1-C6 alkyls. Illustrative, but non-limiting examples of metallocenes include
- bis(cyclopentadienyl)zirconium dichloride,
- bis(cyclopentadienyl)hafnium dichloride,
- bis(cyclopentadienyl)zirconium dimethyl,
- bis(cyclopentadienyl)hafnium dimethyl,
- bis(cyclopentadienyl)zirconium hydridochloride,
- bis(cyclopentadienyl)hafnium hydridochloride,
- bis(n-butylcyclopentadienyl)zirconium dichloride,
- bis(n-butylcyclopentadienyl)hafnium dichloride,
- bis(n-butylcyclopentadienyl)zirconium dimethyl,
- bis(n-butylcyclopentadienyl)hafnium dimethyl,
- bis(n-butylcyclopentadienyl)zirconium hydridochloride,
- bis(n-butylcyclopentadienyl)hafnium hydridochloride,
- bis(dimethylcyclopentadienyl)zirconium dichloride,
- bis(pentamethylcyclopentadienyl)zirconium dichloride,
- bis(pentamethylcyclopentadienyl)hafnium dichloride,
- cyclopentadienyl-zirconium trichloride, bis(indenyl)zirconium dichloride,
- bis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride, and ethylene-[bis(4,5,6,7-tetrahydro-1-indenyl)] zirconium dichloride. The metallocene compounds utilized within the embodiment of this art can be used as crystalline solids, as solutions in aromatic hydrocarbons or in a supported form.
- The Process Conditions
- Alpha-olefins are polymerized with the catalyst system of the present invention by any suitable process. Such processes include polymerizations carried out in suspension, in solution or in the gas phase. Gas phase polymerization reactions are preferred, e.g., those taking place in stirred bed reactors and, especially, fluidized bed reactors. The polymerization is carried out at relatively low temperatures, e.g., from about 30 to about 105° C. Preferably, polymerization pressures are less than 10,000 psi, preferably less than 1000 psi, and most preferably in the range of 100 to 350 psi.
- A particularly desirable method for producing polyethylene polymers according to the present invention is in a fluid bed reactor. Such a reactor and means for operating it are described by Nowlin et al, U.S. Pat. No. 4,481,301, the entire contents of all of which are incorporated herein by reference. The polymer produced in such a reactor contains the catalyst particles because the catalyst is not separated from the polymer. The molecular weight of the polymer may be controlled in a known manner, e.g., by using hydrogen. With the catalysts produced according to the present invention, molecular weight may be suitably controlled with hydrogen when the polymerization is carried out at relatively low temperatures, e.g., from about 30 to about 105° C. This control of molecular weight may be evidenced by measurable positive change in melt index (12) of the polymer produced.
- When a fluid bed reactor is employed, the catalyst system of the invention can be introduced, separately, via two catalyst feeders or a mixture thereof can be fed to the reactor. The mixed catalyst can be fed through the catalyst port of the reactor as a mixture or through separate catalyst ports. The latter gives the best control of HMW/LMW composition in the final bimodal or broad PE product
- Products
- The polyolefin resin products of the invention can be low density products of densities of less than 0.94 g/cm3. Preferably, the products are high density products with densities of greater than about 0.94. The products are broad or bimodal molecular weight distribution products which contain 0.10 to 0.90, preferably 0.30 to 0.70 most preferably 0.50 to 0.65 weight percent of the high molecular weight component.
- The film products exhibit excellent Dart Drop Impact (DDI) as measured by ASTM D 1709. The products exhibit Dart Drop Impact (DDI) in the range of 150 to 800 g, preferably from 300 to 800 g and most preferably from 400 to 800 g for nominal 1 mil gauge film.
- The resins resulting from the process of the invention exhibit FI of 2 to 100, depending upon product application. The FI is a measure of a resin's viscosity which relates to its processability. Increase in resin FI means lower viscosity which improves processability. However, there is generally a trade-off with properties. Typically, as FI increases, properties deteriorate. For most product applications, there is an optimum FI for maximized processability and properties, which also depends upon MWD.
- Ethylene polymers, as well as copolymers of ethylene with one or more C3-C10 alpha-olefins, can be produced in accordance with the invention. Thus, copolymers having two monomeric units are possible as well as terpolymers having three monomeric units. Particular examples of such polymers include ethylene/1-butene copolymers, ethylene/1-hexene copolymers and ethylene/4-methyl-1-pentene copolymers.
- Catalysts
- Catalyst Example 1
- (A) Titanium Catalyst Component Preparation. 541 grams of Davison grade 955 (600° C. calcination temperature) silica was weighed into a two-gallon stainless steel autoclave containing a stirring paddle. Next, ca. 4.8 liters of dry isopentane was added to the autoclave and the stirring rate was set at 100 rpm. The temperature of the silica/isopentane slurry was 54-58° C. Next, 546 ml of dibutylmagnesium (0.713 mmol/ml) was added to the slurry. The contents of the autoclave were stirred for 60 minutes. Then, 42.8 ml of neat 1-butanol were added and stirring was continued for one hour. Finally, 21.4 mls of titanium tetrachloride was added to the autoclave and stirring continued for 60 minutes. After this time, all solvents were removed by evaporation under a nitrogen purge. Catalyst yield was 496 grams of a white free-flowing powder. Ti found 1.45 wt. %; Mg found 1.41 wt. %.
- Catalyst Example 2
- Preparation of Bimetallic Catalyst Solution B: 15.97 grams of (BuCp)2ZrCl2 was transferred to a one-liter bottle and 846 ml of a 4.67 Molar (13.7 wt. % Al) solution of methylalumoxane were added. The bottle was shaken for about one minute to form a yellow solution which was transferred into a 1.5 liter stainless steel hoke bomb and used immediately as described below.
- Under an inert atmosphere, 465 grams of the titanium-containing catalyst described above in Example 1 was added to a 2-gallon, glass-reactor vessel containing a helical stirrer to agitate the catalyst powder and a temperature jacket which was set at about 30° C. The stirrer was set at 125 rpm. Then, the contents of the hoke bomb (solution B) was added to the titanium-containing catalyst in approximately 5-10 ml aliquots every 30-60 seconds over a 45 minute period. The total volume of solution (B) used was such that the titanium containing catalyst always appeared “dry” during the entire addition time. However, during this addition time, the white titanium-containing catalyst turned a dark brown color. After the addition of solution (B) was complete, the jacket temperature was set at 45° C. and the residual toluene was removed with a nitrogen purge for 5 hrs. After this time the catalyst was a dark brown free-flowing powder. Analytical results: Mg, 0.86 wt. %; Ti, 0.91 wt. %; Al, 13.0 wt. % and Zr, 0.45 wt. %.
- Make-Up Catalyst Preparation:
- 493 g of silica (Davison 955), dehydrated at 25.0° C., reacted with a solution of 6.986 g of (n-butylCp)2ZrC12 dissolved in 670 grams of MAO in toluene as described in Example 2. The MAO solution contained 13.7 wt. % Al. The Al/Zr ratio was 200:1. The catalyst was dried under flowing N2 at 45° C. for 5 hours, and was sieved to remove any particles larger than 150 microns. The catalyst contained 9.2 wt. % Al and 0.17 wt. % Zr.
- This example illustrates the effect of cofeeding a bimetallic catalyst product in Example 2 with and without a cofeed of the catalyst produced in Example 3. The polymerization was conducted in the fluid bed reactor under the following conditions: reactor temperature of 95° C., ethylene partial pressure of 190-195 psig, H2/C2 ratio of 0.009-.011, C6 =/C2 ==0.013, and TMA level of 240-245 ppm. The results of Example 4 are summarized in Table I.
- The increase in FI and MFR in Resin B of Table I is a direct result of the increase in the weight fraction of the LMW component produced by cofeeding both the catalysts of Examples 2 and 3. The attached GPC figure also shows this increase. In addition, the resultant increase in the LMW weight fraction is accomplished without creating excessive fines (<6%) in the reactor.
TABLE I Results of Example 4 Catalyst Feed Resin Example 2 Example 3 Density FI MFR % Fines A 100% 0% .947 10.0 85 0.7 B 78% 22% .950 26.4 121 4.2 - This example illustrates the effect of cofeeding a bimetallic catalyst product in Example 2 with and without a cofeed of the catalyst produced in Example 3. The polymerization conditions were similar to Example 4, except for the presence of isopentane. The fluid bed reactor conditions are as follows: reactor temperature of 95° C., ethylene partial pressure of 190-195 psig, H2/C2 ratio of 0.009-0.011, C6=/C2==0.013, isopentane/C2==0.16, and TMA level of 150-200 ppm. The results of Example 5 are summarized in Table II.
- The increase in FI and MFR in Resin C of Table II is a direct result of the increase in the weight fraction of the LMW component produced by cofeeding both the catalysts of Examples 2 and 3. Comparing the catalyst feed rates of the catalyst of Example 3 for Resin D (Table II) and Resin B (Table I) shows that the activity of the catalyst is higher in the presence of isopentane. In addition, the resin fines level is lower in the presence of isopentane.
TABLE II Results of Example 5 Catalyst Feed Resin Example 2 Example 3 Density FI MFR % Fines C 100% 0% .947 8 80 0.5 D 95% 5% .950 19.2 113 1.2
Claims (37)
1. A process for producing product, in a single reactor, wherein said product comprises ethylene polymers or copolymers of ethylene with one or more C3-C10 alpha-olefins, wherein said product is characterized by broad or bimodal molecular weight distribution, wherein the process comprises:
contacting a feed selected from the group consisting of ethylene, C3-C10 alpha-olefins, and admixtures thereof, with catalyst A) and catalyst B), under olefin polymerization conditions;
the catalyst A) comprises a supported catalyst which is formed from at least two different transition metal compounds of different hydrogen responses,
wherein a) one of said at least two different transition metal compounds provides, under olefin polymerization conditions, a polymerization product of relatively high molecular weight, and
wherein b) a second of said at least two different transition metal compounds, under identical polymerization conditions, provides a second polymerization product of lower molecular weight relative to said product of relatively high molecular weight;
wherein at least one of a) and b) is provided as a metallocene of a transition metal selected from the group consisting of Zr and Hf; and
cofeeding the catalyst B) in the presence of the catalyst A);
the catalyst B) comprises a support matrix formed from only one of said at least two transition metal compounds a) and b) so that catalyst B) comprises only a single transition metal component, so that:
when catalyst B) comprises said a) as the single transition metal component, the cofeeding of said catalyst B) results in an increase in said polymerization product of said relatively high molecular weight, and
wherein, when B) comprises said b) as the single transition metal component, the cofeeding of said second catalyst B) results in an increase in said polymerization product of said lower molecular weight; and
recovering said product.
2. The process of claim 1 , wherein a mixed catalyst system comprising catalyst A) and catalyst B) is formed, wherein the mixed catalyst system comprises greater than 50 weight percent of catalyst A).
3. The process of claim 2 , wherein catalyst A) comprises:
an aluminum alkyl non-oxygen containing cocatalyst, and
a dry, anhydrous, support containing composition comprising an activated metallocene compound of a transition metal and a non-metallocene transition metal,
wherein said aluminum alkyl cocatalyst activates said non-metallocene transition metal;
wherein the support is the reaction product of (1) silica having OH groups,, impregnated with RmMgR′n, wherein each of R and R′ is alkyl of 4 to 10 carbon atoms,
wherein RmMgR′n is present in an amount to provide a RmMgR′n:OH molar ratio of 0.5:1 to 4:1;
and (2) an organic alcohol reagent providing alkoxy groups having a formula R′O—, wherein R″ is an alkyl of 1 to 12 carbons; said alkoxy groups being effective to displace R and R′ of said RmMgR′n, and
wherein said reagent is used in an amount effective to provide an alcohol/Mg molar ratio of 0.5 to 2.0.
4. The process of claim 3 , wherein each of R and R′ is alkyl of 4 to 8 carbon atoms.
5. The process of claim 3 , wherein each of R and R′ is butyl.
6. The process of claim 3 , wherein each of R and R′ contains 4 carbon atoms.
7. The process of claim 3 , wherein R″ is an alkyl of 2 to 8 carbons.
8. The process of claim 3 , wherein R″O— is provided as an alcohol.
9. The process of claim 3 , wherein the reaction product is formed by
(i) providing a slurry of a non-polar solvent and a solid porous silica having —OH groups;
(ii) impregnating said silica, with RmMgR′n, to form an intermediate (ii), wherein the Mg:—OH groups ratio is less than 2, wherein each of said R and R′ is alkyl of 4 to 10 carbon atoms and is the same or different, wherein said RmMgR′n, is soluble in said non-polar solvent;
(iii) treating the intermediate (ii) with an amount of R″OH, which amount is effective to provide a R″OH:RmMgRn molar ratio of 0.5 to 2.0 to form a product.
10. The process of claim 9 , wherein the non-metallocene transition metal is titanium.
11. The process of claim 10 , wherein the non-metallocene transition metal comprises a non-metallocene transition metal compound of titanium tetrachloride.
12. The process of claim 11 , which further includes, after (iii), (vi) treating the product of (iii) with TiCl4 to form a titanium containing intermediate; and
(v) combining the titanium containing intermediate with said cocatalyst.
13. The process of claim 12 , wherein the cocatalyst is trimethylaluminum.
14. The process of claim 3 , wherein the metallocene transition metal is provided as a compound which has the formula CpxMAyBz, wherein Cp is cyclopentadienyl unsubstituted or substituted by alkyl of 1 to 6 carbon atoms; x is at least 1; each of A and B is halogen or alkyl of 1 to 8 carbon atoms, and y plus z is 3 or less provided that x+y+z is equal to the valence of M, which is selected from the group consisting of titanium, zirconium and hafnium.
15. The process of claim 3 , wherein the metallocene transition metal is provided as a compound which has the formula CpxMAyBz, wherein Cp is cyclopentadienyl unsubstituted or substituted by alkyl or alkylene of 1 to 6 carbon atoms; x is at least 1; each of A and B is halogen or alkyl of 1 to 8 carbon atoms, and y plus z is 3 or less provided that x+y+z is equal to the valence of M, which is selected from the group consisting of titanium, zirconium and hafnium.
16. The process of claim 15 , wherein the metallocene compound is selected from the group consisting of bis(cyclopentadienyl) zirconium dichloride and bis(n butylcyclopentadienyl) zirconium dichloride.
17. The process of claim 15 , wherein the metallocene compound is activated with a solution of methylalumoxane; wherein the silica has a pore volume in the range of 1.0 cm3/g to 4.0 cm3/g; wherein the solution has a volume which is equal to the 5 total pore volume.
18. The process of claim 3 , wherein catalyst B) is in the form of particles wherein said particles have a particle size in the range of 1 to 500 μm.
wherein said particles comprise silica, a transition metal and aluminum, wherein the ratio of aluminum to transition metal ranges from about 70 to 350; wherein said silica is amorphous and porous and has a pore volume of 0.1 to 3.5 cm3/g; wherein said silica has a concentration of silanol groups wherein the concentration of silanol groups is at least 0.7 mmol per gram of silica;
wherein a solution of a mixture comprising bis(n-butylcyclopentadienyl) zirconium dichloride and alumoxane, provides said transition metal and said aluminum; wherein said solution has a maximum volume equal to the total pore volume of said silica, and wherein said solution is employed to impregnate said silica having said concentration of silanol groups.
19. The process of claim 18 , wherein said alumoxane has a formula (a) or (b), wherein:
(a) is R—(Al(R)—O)n—AlR2 for oligomeric, linear alumoxanes, and
(b) is (—Al(R)—O—)m for oligomeric cyclic alumoxane, wherein:
n is 1-40,
m is 3-40, and
R comprises a C1-C8 alkyl group.
20. The process of claim 18 , wherein the alumoxane is methylalumoxane (MAO).
21. The process of claim 19 , wherein said mixture provides an Al:Zr mole ratio of 100 to 350.
22. The process of claim 21 , wherein said mixture provides an Al-Zr mole ratio of 100 to 200.
23. The process of claim 19 , wherein the particles are characterized by a particle size ranging from 1 to 250 μm.
24. The process of claim 18 , wherein the concentration of silanol groups is greater than 0.7 and up to about 2.5 mmol per gram of silica.
25. The process of claim 18 , wherein the concentration of silanol groups is from about 1.7 and up to about 1.9 mmol per gram of silica.
26. The process of claim 18 , wherein said mixture provides an Al:Zr ratio (elemental basis) of 100 to 200.
27. The process of claim 3 , wherein catalyst B) is in the form of particles wherein said particles have a particle size in the range of 1 to 500 μm
wherein said particles comprise silica, a transition metal and aluminum, wherein the ratio of aluminum to transition metal ranges from about 70 to 350;
wherein said silica is amorphous and porous and has a pore volume of 0.1 to 3.5 cm3/gm; wherein said silica has a concentration of silanol groups wherein the concentration of silanol groups is at least 0.7 mmol per gram of silica;
wherein a solution of a mixture of (tetrahydroindenyl) zirconium dichloride and aluminoxane, provides said transition metal and said aluminum;
wherein the solution has a maximum volume equal to the total pore volume of said silica, and wherein said solution is employed to impregnate said silica having said concentration of silanol groups.
28. The process of claim 27 , wherein said alumoxane has a formula (a) or (b), wherein:
(a) is R—(Al(R) —O)n—AlR2 for oligomeric, linear alumoxanes, and
(b) is (—Al(R)—O—)m for oligomeric cyclic alumoxane, wherein:
n is 1-40,
m is 3-40, and
R comprises a C1-C8 alkyl group.
29. The process of claim 27 , wherein the alumoxane is methylalumoxane (MAO).
30. The process of claim 28 , wherein said mixture provides an Al:Zr mole ratio of 100 to 350.
31. The process of claim 30 , wherein said mixture provides an Al:Zr mole ratio of 100 to 200.
32. The process of claim 28 , wherein the particles are characterized by a particle size ranging from 1 to 250 μm.
33. The process of claim 27 , wherein the concentration of silanol groups is greater than 0.7 and up to about 2.5 mmol per gram of silica.
34. The process of claim 27 , wherein the concentration of silanol groups is from about 1.7 and up to about 1.9 mmol per gram of silica.
35. The process of claim 27 , wherein said mixture provides an Al:Zr ratio (elemental basis) of 100. to 200.
36. The process of claim 2 , wherein said at least two different transition metal compounds include Zr and Ti, and said catalyst A) includes Zr and Ti, and said catalyst B) includes Zr.
37. The process of claim 2 , wherein said catalyst B) provides monomodal polymer component in an amount comprising 1 to 30 weight percent of the product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/122,861 US20020156206A1 (en) | 1994-09-08 | 2002-04-15 | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30326994A | 1994-09-08 | 1994-09-08 | |
US44498995A | 1995-05-19 | 1995-05-19 | |
US10/122,861 US20020156206A1 (en) | 1994-09-08 | 2002-04-15 | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US44498995A Continuation | 1994-09-08 | 1995-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020156206A1 true US20020156206A1 (en) | 2002-10-24 |
Family
ID=23171286
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/814,526 Expired - Lifetime US6410474B1 (en) | 1994-09-08 | 1997-03-10 | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
US10/122,861 Abandoned US20020156206A1 (en) | 1994-09-08 | 2002-04-15 | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
US10/142,102 Expired - Fee Related US6569963B2 (en) | 1994-09-08 | 2002-05-09 | Process for controlling the MWD of a broad or bimodal resin in a single reactor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/814,526 Expired - Lifetime US6410474B1 (en) | 1994-09-08 | 1997-03-10 | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/142,102 Expired - Fee Related US6569963B2 (en) | 1994-09-08 | 2002-05-09 | Process for controlling the MWD of a broad or bimodal resin in a single reactor |
Country Status (10)
Country | Link |
---|---|
US (3) | US6410474B1 (en) |
EP (1) | EP0779837B1 (en) |
JP (3) | JPH10505622A (en) |
KR (1) | KR100388716B1 (en) |
CN (1) | CN1078596C (en) |
AU (1) | AU698111B2 (en) |
DE (1) | DE69522004T2 (en) |
ES (1) | ES2160713T3 (en) |
WO (1) | WO1996007478A1 (en) |
ZA (1) | ZA957091B (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143854A (en) * | 1993-08-06 | 2000-11-07 | Exxon Chemical Patents, Inc. | Polymerization catalysts, their production and use |
KR100388716B1 (en) * | 1994-09-08 | 2003-11-28 | 엑손모빌 오일 코포레이션 | Catalytic Control of Resin with Wide or Dual Molecular Weight Distribution in a Single Reactor |
DE69907785T2 (en) | 1998-03-09 | 2004-02-12 | Basell Poliolefine Italia S.P.A. | Multi-stage process for olefin polymerization |
GB9806407D0 (en) * | 1998-03-25 | 1998-05-20 | Bp Chem Int Ltd | Novel polymer compositions |
CN1091451C (en) * | 1998-10-06 | 2002-09-25 | 中国石油化工集团公司 | Catalyst for synthesis of polyolefine with wide or two-peak molecular weight distribution and its preparation |
CN1107082C (en) * | 1998-12-25 | 2003-04-30 | 中国石油化工集团公司 | Catalyst for synthesizing polyolefine with wide or double molecular weight distribution and its preparation |
ATE236934T1 (en) | 1999-02-22 | 2003-04-15 | Borealis Tech Oy | OLEFIN POLYMERIZATION PROCESS |
US6274684B1 (en) | 1999-10-22 | 2001-08-14 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US6300439B1 (en) | 1999-11-08 | 2001-10-09 | Univation Technologies, Llc | Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process |
US6462149B1 (en) * | 2000-09-22 | 2002-10-08 | Union Carbide Chemicals & Plastics Technology Corporation | Control of resin split in single-reactor manufacture of bimodal polyolefins |
MY137183A (en) | 2001-03-16 | 2009-01-30 | Dow Global Technologies Inc | Method of making interpolymers and products made therefrom |
KR20050033542A (en) * | 2001-11-30 | 2005-04-12 | 엑손모빌 케미칼 패턴츠 인코포레이티드 | Method of making mixed ziegler-natta/metallocene catalysts |
BR0311703B1 (en) | 2002-06-04 | 2013-11-19 | Polymer composition, tube making method, polymerization process and tube | |
US6875828B2 (en) * | 2002-09-04 | 2005-04-05 | Univation Technologies, Llc | Bimodal polyolefin production process and films therefrom |
US6884748B2 (en) * | 2002-09-04 | 2005-04-26 | Univation Technologies, Llc | Process for producing fluorinated catalysts |
US6753390B2 (en) | 2002-09-04 | 2004-06-22 | Univation Technologies, Llc | Gas phase polymerization process |
CN1319995C (en) * | 2002-09-27 | 2007-06-06 | 尤尼威蒂恩技术有限责任公司 | Reactor wall coating and processes for forming same |
GB0222990D0 (en) | 2002-10-04 | 2002-11-13 | E2V Tech Uk Ltd | Solid state imaging device |
US7199072B2 (en) * | 2002-12-31 | 2007-04-03 | Univation Technologies, Llc | Process of producing a supported mixed catalyst system and polyolefins therefrom |
US7172987B2 (en) | 2002-12-31 | 2007-02-06 | Univation Technologies, Llc | Bimetallic catalyst, method of polymerization and bimodal polyolefins therefrom |
JP4343231B2 (en) * | 2003-10-15 | 2009-10-14 | ユニベーション・テクノロジーズ・エルエルシー | Polymerization method and control of polymer composition properties |
US6828395B1 (en) | 2003-10-15 | 2004-12-07 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
US7238756B2 (en) * | 2003-10-15 | 2007-07-03 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
US7410926B2 (en) * | 2003-12-30 | 2008-08-12 | Univation Technologies, Llc | Polymerization process using a supported, treated catalyst system |
US20060155082A1 (en) * | 2005-01-10 | 2006-07-13 | Mcdaniel Max P | Process for producing polymers |
US7592395B2 (en) * | 2006-08-01 | 2009-09-22 | Exxonmobil Chemical Patents Inc. | Multimodal polyethylene for use in single piece beverage bottle caps and closures |
US20090287522A1 (en) * | 2008-05-16 | 2009-11-19 | Tetsuro Motoyama | To-Do List Representation In The Database Of A Project Management System |
WO2011050566A1 (en) * | 2009-10-26 | 2011-05-05 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and uses thereof |
JP5670460B2 (en) | 2009-10-26 | 2015-02-18 | 中国石油化工股▲ふん▼有限公司 | Supported nonmetallocene catalyst, process for its production and use thereof |
WO2011057469A1 (en) | 2009-11-13 | 2011-05-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst and preparation method and uses thereof |
WO2011057468A1 (en) | 2009-11-13 | 2011-05-19 | 中国石油化工股份有限公司 | Supported non-metallocene catalyst, preparation method and application thereof |
CA2713042C (en) | 2010-08-11 | 2017-10-24 | Nova Chemicals Corporation | Method of controlling polymer architecture |
CN103509138A (en) * | 2012-06-27 | 2014-01-15 | 大林产业株式会社 | Olefin polymerization catalyst composition as well as olefin polymerization method using olefin polymerization catalyst composition |
CA2783494C (en) | 2012-07-23 | 2019-07-30 | Nova Chemicals Corporation | Adjusting polymer composition |
US8940842B2 (en) * | 2012-09-24 | 2015-01-27 | Chevron Phillips Chemical Company Lp | Methods for controlling dual catalyst olefin polymerizations |
US8957168B1 (en) | 2013-08-09 | 2015-02-17 | Chevron Phillips Chemical Company Lp | Methods for controlling dual catalyst olefin polymerizations with an alcohol compound |
EP3237458B1 (en) | 2014-12-22 | 2022-06-22 | SABIC Global Technologies B.V. | Process for transitioning between incompatible catalysts |
EP3535301A1 (en) * | 2016-11-03 | 2019-09-11 | ExxonMobil Chemical Patents Inc. | Multi-component catalyst composition supply system and process for producing polymers |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3798202A (en) * | 1971-10-12 | 1974-03-19 | Phillips Petroleum Co | Polyolefin production |
US4210559A (en) | 1978-10-30 | 1980-07-01 | Standard Oil Company (Indiana) | Catalyst for the preparation of polyalpha-olefins having broad molecular weight distributions |
US4285834A (en) * | 1979-12-31 | 1981-08-25 | The Dow Chemical Company | Dual, independently supported catalyst mixtures |
US4356111A (en) | 1980-10-20 | 1982-10-26 | The Dow Chemical Company | High efficiency catalyst containing titanium and zirconium for polymerizing olefins |
CA1168212A (en) | 1981-01-31 | 1984-05-29 | Alexander Johnstone | Polymerisation catalyst |
US4518751A (en) | 1981-06-05 | 1985-05-21 | Idemitsu Kosan Company Limited | Process for the production of polyethylene |
US4481301A (en) | 1981-12-04 | 1984-11-06 | Mobil Oil Corporation | Highly active catalyst composition for polymerizing alpha-olefins |
US4396533A (en) | 1982-01-27 | 1983-08-02 | Bp Chemicals Limited | Polymerization catalyst |
US4530914A (en) | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4937299A (en) | 1983-06-06 | 1990-06-26 | Exxon Research & Engineering Company | Process and catalyst for producing reactor blend polyolefins |
NO164547C (en) | 1983-06-06 | 1990-10-17 | Exxon Research Engineering Co | CATALYST SYSTEM AND A POLYMING PROCESS USING THE SYSTEM. |
US5324800A (en) * | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US4935474A (en) | 1983-06-06 | 1990-06-19 | Exxon Research & Engineering Company | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4656151A (en) | 1985-07-15 | 1987-04-07 | National Distillers And Chemical Corporation | Intermetallic compound |
US4701432A (en) | 1985-11-15 | 1987-10-20 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
US5124418A (en) | 1985-11-15 | 1992-06-23 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
NL8600045A (en) | 1986-01-11 | 1987-08-03 | Stamicarbon | CATALYST SYSTEM FOR HIGH TEMPERATURE (CO) POLYMERIZATION OF ETHENE. |
US4659685A (en) * | 1986-03-17 | 1987-04-21 | The Dow Chemical Company | Heterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound |
US5077255A (en) | 1986-09-09 | 1991-12-31 | Exxon Chemical Patents Inc. | New supported polymerization catalyst |
NL8700321A (en) | 1987-02-11 | 1988-09-01 | Stamicarbon | CATALYST SYSTEM FOR HIGH TEMPERATURE (CO) POLYMERIZATION OF ETHENE. |
US5064797A (en) | 1987-04-03 | 1991-11-12 | Phillips Petroleum Company | Process for producing polyolefins and polyolefin catalysts |
US4939217A (en) | 1987-04-03 | 1990-07-03 | Phillips Petroleum Company | Process for producing polyolefins and polyolefin catalysts |
US5198400A (en) * | 1987-05-20 | 1993-03-30 | Quantum Chemical Corporation | Mixed chromium catalysts and polymerizations utilizing same |
US5408015A (en) * | 1987-12-29 | 1995-04-18 | Mobil Oil Corporation | Mixed chromium catalyst,and alkene and alkyl aluminum hydride-modified ziegler catalyst for multimodal HDPE |
JPH02189305A (en) * | 1989-01-19 | 1990-07-25 | Showa Denko Kk | Polymerization of olefin |
US5001099A (en) | 1989-10-25 | 1991-03-19 | Quantum Chemical Corporation | Polymerization catalyst |
US5155187A (en) | 1989-10-25 | 1992-10-13 | Quantum Chemical Corporation | Polymerization method |
US5032562A (en) * | 1989-12-27 | 1991-07-16 | Mobil Oil Corporation | Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution |
US5120696A (en) | 1989-12-29 | 1992-06-09 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for the polymerization of olefins |
US5145818A (en) | 1989-12-29 | 1992-09-08 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for the polymerization of olefins |
US5266544A (en) * | 1989-12-29 | 1993-11-30 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst and process for the polymerization of olefins |
JP2678947B2 (en) * | 1990-03-02 | 1997-11-19 | 日本石油株式会社 | Method for producing polyolefin |
IT1240613B (en) | 1990-03-26 | 1993-12-17 | Enichem Anic Spa | SUPPORTED CATALYST FOR THE POLYMERIZATION AND COPOLYMERIZATION OF OLEFINICALLY UNSATURATED COMPOUNDS, AND PROCEDURE OF (CO) POLYMERIZATION USING THE SAME |
JP2807571B2 (en) | 1990-04-18 | 1998-10-08 | 三井化学株式会社 | Solid catalyst for olefin polymerization and olefin polymerization method |
US5064767A (en) * | 1990-06-21 | 1991-11-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carboxyl-terminal protein sequencing method and kit |
US5237025A (en) * | 1990-10-09 | 1993-08-17 | Phillips Petroleum Company | Process for making bimodal polyolefins using two independent particulate catalysts |
IT1247109B (en) * | 1991-02-28 | 1994-12-12 | Montedipe Srl | PROCEDURE FOR THE PREPARATION OF A SOLID COMPONENT OF CATALYST FOR THE CO POLYMERIZATION OF ETHYLENE. |
DE69226564T3 (en) | 1991-05-20 | 2004-04-08 | Mitsui Chemicals, Inc. | Catalyst and process for olefin polymerization |
EP0516458B2 (en) * | 1991-05-31 | 2007-12-19 | Mitsui Chemicals, Inc. | Olefin polymerization solid catalyst, olefin polymerization catalyst and olefin polymerization |
US5155079A (en) * | 1991-06-07 | 1992-10-13 | Quantum Chemical Corporation | Multiple site olefin polymerization catalysts |
CA2077744C (en) * | 1991-09-30 | 2003-04-15 | Edwar Shoukri Shamshoum | Homogeneous-heterogeneous catalyst system for polyolefins |
US5332706A (en) * | 1992-12-28 | 1994-07-26 | Mobil Oil Corporation | Process and a catalyst for preventing reactor fouling |
US5399540A (en) * | 1993-02-12 | 1995-03-21 | Quantum Chemical Corporation | ZR/V multi-site olefin polymerization catalyst |
US5444133A (en) | 1993-04-22 | 1995-08-22 | Occidental Chemical Corporation | Process for producing polyethylene |
US5643846A (en) | 1993-04-28 | 1997-07-01 | Fina Technology, Inc. | Process for a isotactic/syndiotactic polymer blend in a single reactor |
US5372980A (en) * | 1993-06-03 | 1994-12-13 | Polysar | Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers |
ES2141833T3 (en) * | 1993-08-06 | 2000-04-01 | Exxon Chemical Patents Inc | POLYMERIZATION CATALYSTS, THEIR PRODUCTION AND USE. |
US5614456A (en) * | 1993-11-15 | 1997-03-25 | Mobil Oil Corporation | Catalyst for bimodal molecular weight distribution ethylene polymers and copolymers |
US5624877A (en) * | 1994-02-25 | 1997-04-29 | Phillips Petroleum Company | Process for producing polyolefins |
IT1269931B (en) * | 1994-03-29 | 1997-04-16 | Spherilene Srl | COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE |
US5442018A (en) | 1994-04-01 | 1995-08-15 | Union Carbide Chemicals & Plastics Technology Corporation | Ethylene polymerization using a titanium and vanadium catalyst system in staged reactors |
IT1270070B (en) * | 1994-07-08 | 1997-04-28 | Spherilene Srl | COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE |
IT1273660B (en) * | 1994-07-20 | 1997-07-09 | Spherilene Srl | PROCEDURE FOR THE PREPARATION OF AMORPHOUS PROPYLENE POLYMERS |
KR100388716B1 (en) * | 1994-09-08 | 2003-11-28 | 엑손모빌 오일 코포레이션 | Catalytic Control of Resin with Wide or Dual Molecular Weight Distribution in a Single Reactor |
US5525678A (en) * | 1994-09-22 | 1996-06-11 | Mobil Oil Corporation | Process for controlling the MWD of a broad/bimodal resin produced in a single reactor |
US6051525A (en) * | 1997-07-14 | 2000-04-18 | Mobil Corporation | Catalyst for the manufacture of polyethylene with a broad or bimodal molecular weight distribution |
US6001766A (en) * | 1997-12-24 | 1999-12-14 | Mobil Oil Corporation | Bimetallic catalysts for ethylene polymerization reactions activated with paraffin-soluble alkylalumoxanes |
US6136747A (en) * | 1998-06-19 | 2000-10-24 | Union Carbide Chemicals & Plastics Technology Corporation | Mixed catalyst composition for the production of olefin polymers |
-
1995
- 1995-08-16 KR KR1019970701446A patent/KR100388716B1/en not_active IP Right Cessation
- 1995-08-16 JP JP8509513A patent/JPH10505622A/en not_active Withdrawn
- 1995-08-16 DE DE69522004T patent/DE69522004T2/en not_active Expired - Fee Related
- 1995-08-16 CN CN95195015A patent/CN1078596C/en not_active Expired - Fee Related
- 1995-08-16 AU AU32452/95A patent/AU698111B2/en not_active Ceased
- 1995-08-16 WO PCT/US1995/010521 patent/WO1996007478A1/en active IP Right Grant
- 1995-08-16 ES ES95928848T patent/ES2160713T3/en not_active Expired - Lifetime
- 1995-08-16 EP EP95928848A patent/EP0779837B1/en not_active Expired - Lifetime
- 1995-08-29 ZA ZA9507091A patent/ZA957091B/en unknown
-
1997
- 1997-03-10 US US08/814,526 patent/US6410474B1/en not_active Expired - Lifetime
-
2002
- 2002-04-15 US US10/122,861 patent/US20020156206A1/en not_active Abandoned
- 2002-05-09 US US10/142,102 patent/US6569963B2/en not_active Expired - Fee Related
-
2006
- 2006-09-28 JP JP2006265356A patent/JP2007023294A/en active Pending
-
2007
- 2007-11-28 JP JP2007307379A patent/JP2008063589A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR970705437A (en) | 1997-10-09 |
EP0779837A4 (en) | 1998-03-04 |
EP0779837B1 (en) | 2001-08-01 |
JP2007023294A (en) | 2007-02-01 |
US6569963B2 (en) | 2003-05-27 |
JPH10505622A (en) | 1998-06-02 |
US20020173601A1 (en) | 2002-11-21 |
KR100388716B1 (en) | 2003-11-28 |
US6410474B1 (en) | 2002-06-25 |
ZA957091B (en) | 1997-02-24 |
AU3245295A (en) | 1996-03-27 |
CN1157582A (en) | 1997-08-20 |
DE69522004T2 (en) | 2001-11-15 |
AU698111B2 (en) | 1998-10-22 |
EP0779837A1 (en) | 1997-06-25 |
DE69522004D1 (en) | 2001-09-06 |
CN1078596C (en) | 2002-01-30 |
JP2008063589A (en) | 2008-03-21 |
ES2160713T3 (en) | 2001-11-16 |
WO1996007478A1 (en) | 1996-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6410474B1 (en) | Process for controlling the MWD of a broad/bimodal resin in a single reactor | |
US5525678A (en) | Process for controlling the MWD of a broad/bimodal resin produced in a single reactor | |
US5614456A (en) | Catalyst for bimodal molecular weight distribution ethylene polymers and copolymers | |
US5332706A (en) | Process and a catalyst for preventing reactor fouling | |
US5602067A (en) | Process and a catalyst for preventing reactor fouling | |
US6995109B2 (en) | Method of making a bimetallic catalyst with higher activity | |
US6740617B2 (en) | One pot preparation of bimetallic catalysts for ethylene 1-olefin copolymerization | |
EP0729387B1 (en) | Catalyst composition for use in the polymerization and copolymerization of ethylene | |
US6486089B1 (en) | Bimetallic catalyst for ethylene polymerization reactions with uniform component distribution | |
CA2296303A1 (en) | Catalyst for the manufacture of polyethylene with a broad or bimodal molecular weight distribution | |
EP0690878B2 (en) | Process for forming a granular resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |