US20020151698A1 - New synaptojanin isoform - Google Patents

New synaptojanin isoform Download PDF

Info

Publication number
US20020151698A1
US20020151698A1 US09/854,093 US85409301A US2002151698A1 US 20020151698 A1 US20020151698 A1 US 20020151698A1 US 85409301 A US85409301 A US 85409301A US 2002151698 A1 US2002151698 A1 US 2002151698A1
Authority
US
United States
Prior art keywords
antibody
nsyn
polypeptide
polynucleotide
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/854,093
Inventor
Preeti Lal
Y. Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Incyte Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Pharmaceuticals Inc filed Critical Incyte Pharmaceuticals Inc
Priority to US09/854,093 priority Critical patent/US20020151698A1/en
Assigned to INCYTE GENOMICS, INC. reassignment INCYTE GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAL, PREETI G., TANG, Y. TOM
Publication of US20020151698A1 publication Critical patent/US20020151698A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to nucleic acid and amino acid sequences of a new synaptojanin isoform and to the use of these sequences in the diagnosis, prevention, and treatment of cancer, and neurological and immune disorders.
  • Vesicle transport is the general process in eukaryotic cells by which proteins synthesized in the endoplasmic reticulum (ER) are transported via the Golgi network to the various compartments in the cell where they will function. Other proteins are transported to the cell surface by this process where they may be secreted (exocytosis). Such proteins include membrane bound receptors or other membrane proteins, neurotransmitters, hormones, and digestive enzymes.
  • the transport process uses a series of transport vesicles that shuttle a protein from one membrane-bound compartment (donor compartment) to another (acceptor compartment) until the protein reaches its proper destination (Rothman, J. E and Wieland, F. T. et al. (1996) 727:227-233).
  • Endocytosis is the reverse process by which cells internalize nutrients, solutes or small particles (pinocytosis) or large particles such as internalized receptors, viruses, bacteria, or bacterial toxins (phagocytosis).
  • Transport vesicles of various types are formed from specialized coated regions of membranes that bud off as coated vesicles with a distinctive cage of proteins surrounding the vesicle.
  • the nature of the protein coat defines the transport vesicle in terms of the types of molecules that are transported and their destination.
  • Clathrin-coated vesicles for example, selectively transport transmembrane receptors between the ER and the plasma membrane while coatomer-coated vesicles mediate non-selective transport of various molecules from the ER and the Golgi network.
  • Synaptic vesicles are a highly specialized type of transport vesicle that neurons use to secrete neurotransmitters at the neural synapse.
  • synaptic vesicle membranes are internalized and reused for further neurotransmitter release.
  • the process of synaptic vesicle recycling involves the interaction of various proteins, three of which are synaptojanin, dymanin, and amphiphysin (Ramjaun, A. R. and McPherson, P. S. (1999) J. Biol. Chem. 271:24856-24861).
  • Synaptojanin and dynamin were first identified as major Src homology 3 (SH3) domain-binding proteins in brain.
  • synaptojanin and dynamin both interact with the SH3 domains of amphiphysin, a nerve terminal protein that is implicated in synaptic vesicle endocytosis.
  • SH3 interactions may play a role in subcellular targeting of synaptojanin and dynamin to specific sites of synaptic vesicle endocytosis on the plasma membrane (Ramjaun et al. supra).
  • Synaptojanin is a 145 kDa protein that contains (1) a region in the N terminus that is homologous with various inositol phosphatases, and (2) a proline-rich C terminus containing numerous consensus sites for SH3 binding (McPherson, P. S. et al. (1996) Nature 379:353-357). Inositol polyphosphates are believed to play a role in endocytosis and in other aspects of membrane trafficking.
  • a proline-rich consensus sequence for SH3 binding is represented as Xp ⁇ PpXP; in which X is any amino acid residue, P is a conserved proline residue, and p and ⁇ (lower case) indicate a preference for proline and hydrophobic residues, respectively (Hongtao, Y. et al. (1994) Cell 76:933-945).
  • X any amino acid residue
  • P is a conserved proline residue
  • p and ⁇ lower case
  • the 170 kDa isoform results from the addition of a 28 kDa polypeptide to the C terminus of the 145 kDa isoform. This added 266 amino acid sequence is rich in proline residues and contains additional SH3 domain-binding consensus sequences.
  • the 28 kDa polypeptide is encoded by a second open reading frame (ORF) normally separated from a first ORF by a stop codon. Expression of the larger 170 kDa isoform is believed to result from alternative splicing of the cDNA which deletes the stop codon (McPherson et al. supra).
  • the invention features a substantially purified polypeptide, synaptojanin isoform (NSYN-1), having the amino acid sequence shown in SEQ ID NO:1, or fragments thereof.
  • the invention further provides an isolated and substantially purified polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or fragments thereof and a composition comprising said polynucleotide sequence.
  • the invention also provides a polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence encoding the amino acid sequence SEQ ID NO:1, or fragments of said polynucleotide sequence.
  • the invention further provides a polynucleotide sequence comprising the complement of the polynucleotide sequence encoding the amino acid sequence of SEQ ID NO:1, or fragments or variants of said polynucleotide sequence.
  • the invention also provides an isolated and purified sequence comprising SEQ ID NO.2 or variants thereof.
  • the invention provides a polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence of SEQ ID NO:2.
  • the invention also provides a polynucleotide sequence comprising the complement of SEQ ID NO:2, or fragments or variants thereof.
  • the present invention further provides an expression vector containing at least a fragment of any of the claimed polynucleotide sequences.
  • the expression vector containing the polynucleotide sequence is contained within a host cell.
  • the invention also provides a method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment thereof, the method comprising the steps of: a) culturing the host cell containing an expression vector containing at least a fragment of the polynucleotide sequence encoding NSYN-1 under conditions suitable for the expression of the polypeptide; and b) recovering the polypeptide from the host cell culture.
  • the invention also provides a pharmaceutical composition comprising a substantially purified NSYN-1 having the amino acid sequence of SEQ ID NO:1 in conjunction with a suitable pharmaceutical carrier.
  • the invention also provides a purified antagonist of the polypeptide of SEQ ID NO:1.
  • the invention provides a purified antibody which binds to a polypeptide comprising the amino acid sequence of SEQ ID NO:1.
  • the invention provides a purified agonist of the polypeptide of SEQ ID NO:1.
  • the invention also provides a method for treating or preventing a neurological disorder comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising purified NSYN-1.
  • the invention also provides a method for treating or preventing cancer comprising administering to a subject in need of such treatment an effective amount of a purified antagonist of NSYN-1.
  • the invention also provides a method for treating or preventing an immune disorder comprising administering to a subject in need of such treatment an effective amount of a purified antagonist of NSYN-1.
  • the invention also provides a method for detecting a polynucleotide which encodes NSYN-1 in a biological sample comprising the steps of: a) hybridizing the complement of the polynucleotide sequence which encodes SEQ ID NO:1 to nucleic acid material of a biological sample, thereby forming a hybridization complex; and b) detecting the hybridization complex, wherein the presence of the complex correlates with the presence of a polynucleotide encoding NSYN-1 in the biological sample.
  • the nucleic acid material of the biological sample is amplified by the polymerase chain reaction prior to hybridization.
  • FIGS. 1A, 1B, 1 C, 1 D, and 1 E show the amino acid sequence (SEQ ID NO:1) and nucleic acid sequence (SEQ ID NO:2) of NSYN-1.
  • the alignment was produced using MACDNASIS PRO software (Hitachi Software Engineering Co. Ltd. San Bruno, Calif.).
  • FIG. 2 shows the amino acid sequence alignments between NSYN-1 (SEQ ID NO:1), and the 28 kDa isoform of synaptojanin from rat (GI 1166576; SEQ ID NO:3), produced using the multisequence alignment program of DNASTAR software (DNASTAR Inc, Madison Wis.).
  • FIGS. 3A and 3B show the hydrophobicity plots for NSYN-1, SEQ ID NO: 1 and rat 28 kDa Syn (SEQ ID NO:3), respectively; the positive X axis reflects amino acid position, and the negative Y axis, hydrophobicity (MACDNASIS PRO software).
  • NSYN-1 refers to the amino acid sequences of substantially purified NSYN-1 obtained from any species, particularly mammalian, including bovine, ovine, porcine, murine, equine, and preferably human, from any source whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which, when bound to NSYN-1, increases or prolongs the duration of the effect of NSYN-1.
  • Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of NSYN-1.
  • an “allele” or “allelic sequence”, as used herein, is an alternative form of the gene encoding NSYN-1. Alleles may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
  • “Altered” nucleic acid sequences encoding NSYN-1 include those with deletions, insertions, or substitutions of different nucleotides resulting in a polynucleotide that encodes the same or a functionally equivalent NSYN-1. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding NSYN-1, and improper or unexpected hybridization to alleles, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding NSYN-1.
  • the encoded protein may also be “altered” and contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent NSYN-1.
  • Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the biological or immunological activity of NSYN-1 is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine, glycine and alanine, asparagine and glutamine, serine and threonine, and phenylalanine and tyrosine.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide, or protein sequence, and fragment thereof, and to naturally occurring or synthetic molecules. Fragments of NSYN-1 are preferably about 5 to about 15 amino acids in length and retain the biological activity or the immunological activity of NSYN-1. Where “amino acid sequence” is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, amino acid sequence, and like terms, are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.
  • Amplification refers to the production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction (PCR) technologies well known in the art (Dieffenbach, C. W. and G. S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y.).
  • PCR polymerase chain reaction
  • Antagonist refers to a molecule which, when bound to NSYN-1, decreases the amount or the duration of the effect of the biological or immunological activity of NSYN-1.
  • Antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecules which decrease the effect of NSYN-1.
  • the term “antibody” refers to intact molecules as well as fragments thereof, such as Fab, F(ab′) 2 , and Fv, which are capable of binding the epitopic determinant.
  • Antibodies that bind NSYN-1 polypeptides can be prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal can be derived from the translation of RNA or synthesized chemically and can be conjugated to a carrier protein, if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin and thyroglobulin, keyhole limpet hemocyanin. The coupled peptide is then used to immunize the animal (e.g., a mouse, a rat, or a rabbit).
  • antigenic determinant refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
  • antisense refers to any composition containing nucleotide sequences which are complementary to a specific DNA or RNA sequence.
  • the term “antisense strand” is used in reference to a nucleic acid strand that is complementary to the “sense” strand.
  • Antisense molecules include peptide nucleic acids and may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and block either transcription or translation. The designation “negative” is sometimes used in reference to the antisense strand, and “positive” is sometimes used in reference to the sense strand.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • immunologically active refers to the capability of the natural, recombinant, or synthetic NSYN-1, or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • complementarity refers to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing.
  • sequence “A-G-T” binds to the complementary sequence “T-C-A”.
  • Complementarity between two single-stranded molecules may be “partial”, in which only some of the nucleic acids bind, or it may be complete when total complementarity exists between the single stranded molecules.
  • the degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands and in the design and use of PNA molecules.
  • composition comprising a given polynucleotide sequence refers broadly to any composition containing the given polynucleotide sequence.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotide sequences encoding NSYN-1 (SEQ ID NO:1) or fragments thereof (e.g., SEQ ID NO:2 and fragments thereof) may be employed as hybridization probes.
  • the probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., SDS) and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCl
  • detergents e.g., SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, has been extended using XL-PCR (Applied Biosystems, Foster City Calif.) in the 5′ and/or the 3′ direction and resequenced, or has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly (e.g., GELVIEW Fragment Assembly system, GCG, Madison, Wis.). Some sequences have been both extended and assembled to produce the consensus sequence.
  • the term “correlates with expression of a polynucleotide”, as used herein, indicates that the detection of the presence of ribonucleic acid that is similar to SEQ ID NO:2 by northern analysis is indicative of the presence of mRNA encoding NSYN-1 in a sample and thereby correlates with expression of the transcript from the polynucleotide encoding the protein.
  • a “deletion”, as used herein, refers to a change in the amino acid or nucleotide sequence and results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to the chemical modification of a nucleic acid encoding or complementary to NSYN-1 or the encoded NSYN-1. Such modifications include, for example, replacement of hydrogen by an alkyl, acyl, or amino group.
  • a nucleic acid derivative encodes a polypeptide which retains the biological or immunological function of the natural molecule.
  • a derivative polypeptide is one which is modified by glycosylation, pegylation, or any similar process which retains the biological or immunological function of the polypeptide from which it was derived.
  • low stringency conditions are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction.
  • the absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence.
  • HACs Human artificial chromosomes
  • HACs are linear microchromosomes which may contain DNA sequences of 10K to 10M in size and contain all of the elements required for stable mitotic chromosome segregation and maintenance (Harrington, J. J. et al. (1997) Nat Genet. 15:345-355).
  • humanized antibody refers to antibody molecules in which amino acids have been replaced in the non-antigen binding regions in order to more closely resemble a human antibody, while still retaining the original binding ability.
  • hybridization refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.
  • hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions.
  • the two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration.
  • a hybridization complex may be formed in solution (e.g., C 0 t or R 0 t analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • An “insertion” or “addition”, as used herein, refers to a change in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, as compared to the naturally occurring molecule.
  • “Microarray” refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support.
  • modulate refers to a change in the activity of NSYN-1.
  • modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional or immunological properties of NSYN-1.
  • Nucleic acid sequence refers to an oligonucleotide, nucleotide, or polynucleotide, and fragments thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand.
  • “Fragments” are those nucleic acid sequences which are greater than 60 nucleotides than in length, and most preferably includes fragments that are at least 100 nucleotides or at least 1000 nucleotides, and at least 10,000 nucleotides in length.
  • oligonucleotide refers to a nucleic acid sequence of at least about 6 nucleotides to about 60 nucleotides, preferably about 15 to 30 nucleotides, and more preferably about 20 to 25 nucleotides, which can be used in PCR amplification or a hybridization assay, or a microarray.
  • oligonucleotide is substantially equivalent to the terms “amplimers”,“primers”, “oligomers”, and “probes”, as commonly defined in the art.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least five nucleotides in length linked to a peptide backbone of amino acid residues which ends in lysine. The terminal lysine confers solubility to the composition.
  • PNAs may be pegylated to extend their lifespan in the cell where they preferentially bind complementary single stranded DNA and RNA and stop transcript elongation (Nielsen, P. E. et al. (1993) Anticancer Drug Des. 8:53-63).
  • portion refers to fragments of that protein.
  • the fragments may range in size from five amino acid residues to the entire amino acid sequence minus one amino acid.
  • a protein “comprising at least a portion of the amino acid sequence of SEQ ID NO:1” encompasses the full-length NSYN-1 and fragments thereof.
  • sample is used in its broadest sense.
  • a biological sample suspected of containing nucleic acid encoding NSYN-1, or fragments thereof, or NSYN-1 itself may comprise a bodily fluid, extract from a cell, chromosome, organelle, or membrane isolated from a cell, a cell, genomic DNA, RNA, or cDNA(in solution or bound to a solid support, a tissue, a tissue print, and the like.
  • binding refers to that interaction between a protein or peptide and an agonist, an antibody and an antagonist. The interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) of the protein recognized by the binding molecule. For example, if an antibody is specific for epitope “A”, the presence of a protein containing epitope A (or free, unlabeled A) in a reaction containing labeled “A” and the antibody will reduce the amount of labeled A bound to the antibody.
  • stringent conditions refer to the conditions for hybridization as defined by the nucleic acid, salt, and temperature. These conditions are well known in the art and may be altered in order to identify or detect identical or related polynucleotide sequences. Numerous equivalent conditions comprising either low or high stringency depend on factors such as the length and nature of the sequence (DNA, RNA, base composition), nature of the target (DNA, RNA, base composition), milieu (in solution or immobilized on a solid substrate), concentration of salts and other components (e.g., formamide, dextran sulfate and/or polyethylene glycol), and temperature of the reactions (within a range from about 5° C. below the melting temperature of the probe to about 20° C. to 25° C. below the melting temperature). One or more factors be may be varied to generate conditions of either low or high stringency different from, but equivalent to, the above listed conditions.
  • substantially purified refers to nucleic or amino acid sequences that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated.
  • substitution refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.
  • Transformation describes a process by which exogenous DNA enters and changes a recipient cell. It may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment.
  • Such “transformed” cells include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. They also include cells which transiently express the inserted DNA or RNA for limited periods of time.
  • a “variant” of NSYN-1 refers to an amino acid sequence that is altered by one or more amino acids.
  • the variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant may have “nonconservative” changes, e.g., replacement of a glycine with a tryptophan.
  • the invention is based on the discovery of a new human synaptojanin isoform (hereinafter referred to as “NSYN-1”), the polynucleotides encoding NSYN-1, and the use of these compositions for the diagnosis, prevention, or treatment of cancer, and neurological and immune disorders.
  • NSYN-1 a new human synaptojanin isoform
  • Nucleic acids encoding the NSYN-1 of the present invention were first identified in Incyte Clone 367402 from the synovial tissue cDNA library (SYNORATO1) using a computer search for amino acid sequence alignments.
  • a consensus sequence, SEQ ID NO:2 was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 367401 (SYNORATO1), and 1238083 (LUNGTUT02).
  • the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in FIGS. 1A, 1B, 1 C, 1 D, and 1 E.
  • NSYN-1 is 305 amino acids in length and has three potential N-linked glycosylation sites at residues N 182 , N 247 , and N 259 representing potential membrane attachment sites.
  • the N-terminal 35-40 amino acid sequence in NSYN-1 may represent a unique signal peptide for targeting of the protein to a specific subcellular destination.
  • the presence of the signal peptide is further supported by the a potential myristoylation site at G 40 that may be exposed on removal of the signal peptide and provide an additional membrane attachment site.
  • Cysteine residues representing potential intramolecular disulfide bonding sites are found at C 104 , C 232 , and C 263 .
  • Various potential protein kinase phosphorylation sites are also present in NSYN-1 at S 48 (protein kinase A), S 163 , S 188 , T 215 , and T 249 (casein kinase II), S 139 , T 204 , S 267 , and T 303 (protein kinase C).
  • Four proline-rich, potential SH3 binding sequences are found in NSYN-1 at T 12 PPQPPP, P 106 TMPPIP, T 142 AAPGNP, and R 268 RPPPPP. As shown in FIG.
  • NSYN-1 has chemical and structural homology with the 28 kDa isoform of synaptojanin for rat, 28 kDa Syn (GI 1166576; SEQ ID NO:3).
  • NSYN-1 and 28 kDa Syn share 71% identity.
  • Three of the four potential SH3 binding domains found in NSYN-1 are found in rat 28 kDa Syn.
  • the rat 28 kDa Syn also shares two of the three cysteine residues found in NSYN-1(C 104 and C 263 ), and one of the N-linked glycosylation sites (N 259 ).
  • NSYN-1 differs from the rat Syn isoform primarily by the potential leader peptide in NSYN-1 and additional potential membrane binding sites.
  • FIGS. 3A and 3B NSYN-1 and rat 28 kDa Syn have rather similar hydrophobicity plots.
  • Northern analysis shows the expression of this sequence in various libraries, at least 32% of which are immortalized or cancerous, at least 28% involve brain or neural tissue, and at least 24% of which involve inflammation or the immune response. Of particular note is the expression of NSYN-1 in inflamed tissues (rheumatism and Crohn's disease) and epilepsy.
  • the invention also encompasses NSYN-1 variants.
  • a preferred NSYN-1 variant is one having at least 80%, and more preferably at least 90%, amino acid sequence identity to the NSYN-1 amino acid sequence (SEQ ID NO:1) and which retains at least one biological, immunological or other functional characteristic or activity of NSYN-1.
  • a most preferred NSYN-1 variant is one having at least 95% amino acid sequence identity to SEQ ID NO:1.
  • the invention also encompasses polynucleotides which encode NSYN-1. Accordingly, any nucleic acid sequence which encodes the amino acid sequence of NSYN-1 can be used to produce recombinant molecules which express NSYN-1. In a particular embodiment, the invention encompasses the polynucleotide comprising the nucleic acid sequence of SEQ ID NO:2 as shown in FIGS. 1A, 1B, 1 C, 1 D, and 1 E.
  • nucleotide sequences encoding NSYN-1 may be produced.
  • the invention contemplates each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence of naturally occurring NSYN-1, and all such variations are to be considered as being specifically disclosed.
  • nucleotide sequences which encode NSYN-1 and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring NSYN-1 under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding NSYN-1 or its derivatives possessing a substantially different codon usage. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of DNA sequences, or fragments thereof, which encode NSYN-1 and its derivatives, entirely by synthetic chemistry.
  • the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents that are well known in the art.
  • synthetic chemistry may be used to introduce mutations into a sequence encoding NSYN-1 or any fragment thereof.
  • polynucleotide sequences that are capable of hybridizing to the claimed nucleotide sequences, and in particular, those shown in SEQ ID NO:2, under various conditions of stringency as taught in Wahl, G. M. and S. L. Berger (1987; Methods Enzymol. 152:399-407) and Kimmel, A. R. (1987; Methods Enzymol. 152:507-511).
  • sequence preparation is automated with machines such as the MICROLAB 2200 system (Hamilton, Reno Nev.) and the DNA ENGINE thermal cycler (MJ Research, Watertown Mass.).
  • Machines commonly used for sequencing include the ABI PRISM 3700, 377 or 373 DNA sequencing systems (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (APB), and the like.
  • the nucleic acid sequences encoding NSYN-1 may be extended utilizing a partial nucleotide sequence and employing various methods known in the art to detect upstream sequences such as promoters and regulatory elements.
  • one method which may be employed, “restriction-site” PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, G. (1993) PCR Methods Applic. 2:318-322).
  • genomic DNA is first amplified in the presence of primer to a linker sequence and a primer specific to the known region.
  • the amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one.
  • Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
  • Inverse PCR may also be used to amplify or extend sequences using divergent primers based on a known region (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186).
  • the primers may be designed using commercially available software such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Madison, Minn.), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68°-72° C.
  • the method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.
  • Another method which may be used is capture PCR which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119).
  • capture PCR involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119).
  • multiple restriction enzyme digestions and ligations may also be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.
  • Another method which may be used to retrieve unknown sequences is that of Parker, J. D. et al. (1991; Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries to walk genomic DNA (Clontech, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions. When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Also, random-primed libraries are preferable, in that they will contain more sequences which contain the 5′ regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5′ non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g. GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems) and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode NSYN-1 may be used in recombinant DNA molecules to direct expression of NSYN-1, fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced, and these sequences may be used to clone and express NSYN-1.
  • NSYN-1-encoding nucleotide sequences possessing non-naturally occurring codons it may be advantageous to produce NSYN-1-encoding nucleotide sequences possessing non-naturally occurring codons.
  • codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
  • nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter NSYN-1 encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
  • site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.
  • natural, modified, or recombinant nucleic acid sequences encoding NSYN-1 may be ligated to a heterologous sequence to encode a fusion protein.
  • a heterologous sequence to encode a fusion protein.
  • a fusion protein may also be engineered to contain a cleavage site located between the NSYN-1 encoding sequence and the heterologous protein sequence, so that NSYN-1 may be cleaved and purified away from the heterologous moiety.
  • sequences encoding NSYN-1 may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) Nucl. Acids Symp. Ser. 7:215-223, Horn, T. et al. (1980) Nucl. Acids Symp. Ser. 7:225-232).
  • the protein itself may be produced using chemical methods to synthesize the amino acid sequence of NSYN-1, or a fragment thereof.
  • peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) Science 269:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer).
  • the newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, W H Freeman and Co., New York, N.Y.).
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).
  • the amino acid sequence of NSYN-1, or any part thereof may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
  • nucleotide sequences encoding NSYN-1 or functional equivalents may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
  • Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding NSYN-1 and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y.
  • a variety of expression vector/host systems may be utilized to contain and express sequences encoding NSYN-1. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • the invention is not limited by the host cell employed.
  • control elements are those non-translated regions of the vector—enhancers, promoters, 5′ and 3′ untranslated regions—which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Life Technologies) and the like may be used.
  • inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Life Technologies) and the like may be used.
  • the baculovirus polyhedrin promoter may be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO; and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) may be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding NSYN-1, vectors based on SV40 or EBV may be used with an appropriate selectable marker.
  • Promoters or enhancers derived from the genomes of plant cells e.g., heat shock, RUBISCO; and storage protein genes
  • plant viruses e.g., viral promoters or leader sequences
  • a number of expression vectors may be selected depending upon the use intended for NSYN-1.
  • vectors which direct high level expression of fusion proteins that are readily purified may be used.
  • Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding NSYN-1 may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of ⁇ -galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M.
  • pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST).
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione.
  • Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
  • yeast Saccharomvces cerevisiae
  • a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used.
  • constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH
  • sequences encoding NSYN-1 may be driven by any of a number of promoters.
  • viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311).
  • plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl.
  • An insect system may also be used to express NSYN-1.
  • Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera fruiperda cells or in Trichoplusia larvae.
  • the sequences encoding NSYN-1 may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter.
  • Successful insertion of NSYN-1 will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein.
  • the recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which NSYN-1 may be expressed (Engelhard, E. K. et al. (1994) Proc. Nat. Acad. Sci. 91:3224-3227).
  • a number of viral-based expression systems may be utilized.
  • sequences encoding NSYN-1 may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing NSYN-1 in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659).
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • RSV Rous sarcoma virus
  • HACs Human artificial chromosomes
  • HACs may also be employed to deliver larger fragments of DNA than can be contained and expressed in a plasmid.
  • HACs of 6 to 10M are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes.
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding NSYN-1.
  • Such signals include the ATG initiation codon and adjacent sequences.
  • sequences encoding NSYN-1, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed.
  • exogenous translational control signals including the ATG initiation codon should be provided.
  • the initiation codon should be in the correct reading frame to ensure translation of the entire insert.
  • Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).
  • a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a “prepro” form of the protein may also be used to facilitate correct insertion, folding and/or function.
  • Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; Bethesda, Md.) and may be chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • cell lines which stably express NSYN-1 may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media.
  • the purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type.
  • any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk ⁇ or aprt ⁇ cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad.
  • npt which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci.
  • marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed.
  • sequence encoding NSYN-1 is inserted within a marker gene sequence, transformed cells containing sequences encoding NSYN-1 can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding NSYN-1 under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • host cells which contain the nucleic acid sequence encoding NSYN-1 and express NSYN-1 may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.
  • polynucleotide sequences encoding NSYN-1 can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding NSYN-1.
  • Nucleic acid amplification based assays involve the use of oligonucleotides or oligomers based on the sequences encoding NSYN-1 to detect transformants containing DNA or RNA encoding NSYN-1.
  • NSYN-1 A variety of protocols for detecting and measuring the expression of NSYN-1, using either polyclonal or monoclonal antibodies specific for the protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • FACS fluorescence activated cell sorting
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on NSYN-1 is preferred, but a competitive binding assay may be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods a Laboratory Manual, APS Press, St Paul, Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216).
  • a wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays.
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding NSYN-1 include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide.
  • the sequences encoding NSYN-1, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 RNA polymerase
  • Suitable reporter molecules or labels include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding NSYN-1 may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell may be secreted or contained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode NSYN-1 may be designed to contain signal sequences which direct secretion of NSYN-1 through a prokaryotic or eukaryotic cell membrane.
  • Other constructions may be used to join sequences encoding NSYN-1 to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins.
  • Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.).
  • metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals
  • protein A domains that allow purification on immobilized immunoglobulin
  • the domain utilized in the FLAGS extension/affinity purification system Immunex Corp., Seattle, Wash.
  • cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen, San Diego, Calif.) between the purification domain and NSYN-1 may be used to facilitate purification.
  • One such expression vector provides for expression of a fusion protein containing NSYN-1 and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site.
  • the histidine residues facilitate purification on IMAC (immobilized metal ion affinity chromatography as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3: 263-281) while the enterokinase cleavage site provides a means for purifying NSYN-1 from the fusion protein.
  • IMAC immobilized metal ion affinity chromatography as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3: 263-281
  • the enterokinase cleavage site provides a means for purifying NSYN-1 from the fusion protein.
  • fragments of NSYN-1 may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) J. Am. Chem. Soc. 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using an ABI 43 1A peptide synthesizer (Applied Biosystems). Various fragments of NSYN-1 may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.
  • NSYN-1 Chemical and structural homology exists between NSYN-1 and a 28 kDa Syn isoform from rat (GI 1166576).
  • NSYN-1 is expressed in cancerous tissues, brain and neural tissues, and tissues associated with inflammation and the immune response Therefore, NSYN-1 appears to play a role in cancer, and neurological and immune disorders.
  • decreased expression or activity of NSYN-1 appears to be associated with neurological disorders, while increased expression or activity of NSYN-1 appears to be associated with cancer and immune disorders.
  • NSYN-1 or a fragment or derivative thereof may be administered to a subject to prevent or treat a neurological disorder.
  • disorders include, but are not limited to, akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, schizophrenia, and Tourette's disorder.
  • a vector capable of expressing NSYN-1, or a fragment or a derivative thereof may also be administered to a subject to prevent or treat a neurological disorder including, but not limited to, those described above.
  • an agonist which modulates the activity of NSYN-1 may also be administered to a subject to prevent or treat a neurological disorder including, but not limited to, those described above.
  • an antagonist of NSYN-1 may be administered to a subject to prevent or treat cancer.
  • Cancers may include, but are not limited to, adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma, and particularly cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.
  • an antibody which specifically binds NSYN-1 may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express NSYN-1.
  • an antagonist of NSYN-1 may be administered to a subject to prevent or treat an immune disorder.
  • disorders may include, but are not limited to, AIDS, Addison's disease, adult respiratory distress syndrome, allergies, anemia, asthma, atherosclerosis, bronchitis, cholecystitis, Crohn's disease, ulcerative colitis, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythema nodosum, atrophic gastritis, glomerulonephritis, gout, Graves' disease, hypereosinophilia, irritable bowel syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, rheumatoid arthritis, scler
  • a vector expressing the complement of the polynucleotide encoding NSYN-1 may be administered to a subject to prevent or treat cancer including, but not limited to, the types of cancer described above.
  • a vector expressing the complement of the polynucleotide encoding NSYN-1 may be administered to a subject to prevent or treat an immune disorder including, but not limited to, those described above.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of NSYN-1 may be produced using methods which are generally known in the art.
  • purified NSYN-1 may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind NSYN-1.
  • Antibodies to NSYN-1 may be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies, (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.
  • NSYN-1 any fragment or oligopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are especially preferable.
  • the oligopeptides, peptides, or fragments used to induce antibodies to NSYN-1 have an amino acid sequence consisting of at least five amino acids and more preferably at least 10 amino acids. It is also preferable that they are identical to a portion of the amino acid sequence of the natural protein, and they may contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of NSYN-1 amino acids may be fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule.
  • Monoclonal antibodies to NSYN-1 may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120).
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299).
  • Antibody fragments which contain specific binding sites for NSYN-1 may also be generated.
  • fragments include, but are not limited to, the F(ab′)2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab′)2 fragments.
  • Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W. D. et al. (1989) Science 254:1275-1281).
  • Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between NSYN-1 and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering NSYN-1 epitopes is preferred, but a competitive binding assay may also be employed (Maddox, supra).
  • the polynucleotides encoding NSYN-1, or any fragment or complement thereof may be used for therapeutic purposes.
  • the complement of the polynucleotide encoding NSYN-1 may be used in situations in which it would be desirable to block the transcription of the mRNA.
  • cells may be transformed with sequences complementary to polynucleotides encoding NSYN-1.
  • complementary molecules or fragments may be used to modulate NSYN-1 activity, or to achieve regulation of gene function.
  • sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding NSYN-1.
  • Expression vectors derived from retro viruses, adenovirus, herpes or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue or cell population. Methods which are well known to those skilled in the art can be used to construct vectors which will express nucleic acid sequence which is complementary to the polynucleotides of the gene encoding NSYN-1. These techniques are described both in Sambrook et al. (supra) and in Ausubel et al. (supra).
  • Genes encoding NSYN-1 can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide or fragment thereof which encodes NSYN-1. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector and even longer if appropriate replication elements are part of the vector system.
  • modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5′ or regulatory regions of the gene encoding NSYN-1 (signal sequence, promoters, enhancers, and introns). Oligonucleotides derived from the transcription initiation site, e.g., between positions ⁇ 10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using “triple helix” base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature (Gee, J.
  • the complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA.
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples which may be used include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding NSYN-1.
  • RNA target Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding NSYN-1. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
  • these cDNA constructs that synthesize complementary RNA constitutively or inducibly can be introduced into cell lines, cells, or tissues.
  • RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends of the molecule or the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections or polycationic amino polymers (Goldman, C. K. et al. (1997) Nature Biotechnology 15:462-66; incorporated herein by reference) may be achieved using methods which are well known in the art.
  • any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.
  • An additional embodiment of the invention relates to the administration of a pharmaceutical composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above.
  • Such pharmaceutical compositions may consist of NSYN-1, antibodies to NSYN-1, mimetics, agonists, antagonists, or inhibitors of NSYN-1.
  • the compositions may be administered alone or in combination with at least one other agent, such as stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water.
  • the compositions may be administered to a patient alone, or in combination with other agents, drugs or hormones.
  • compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, Pa.).
  • compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration.
  • Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
  • compositions for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen.
  • disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • suitable coatings such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
  • compositions which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
  • Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
  • the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
  • compositions suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Non-lipid polycationic amino polymers may also be used for delivery.
  • the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
  • the pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.
  • the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
  • compositions After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition.
  • labeling would include amount, frequency, and method of administration.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
  • the determination of an effective dose is well within the capability of those skilled in the art.
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models, usually mice, rabbits, dogs, or pigs.
  • the animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeutically effective dose refers to that amount of active ingredient, for example NSYN-1 or fragments thereof, antibodies of NSYN-1, agonists, antagonists or inhibitors of NSYN-1, which ameliorates the symptoms or condition.
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.
  • Pharmaceutical compositions which exhibit large therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
  • the exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.
  • Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
  • antibodies which specifically bind NSYN-1 may be used for the diagnosis of conditions or diseases characterized by expression of NSYN-1, or in assays to monitor patients being treated with NSYN-1, agonists, antagonists or inhibitors.
  • the antibodies useful for diagnostic purposes may be prepared in the same manner as those described above for therapeutics. Diagnostic assays for NSYN-1 include methods which utilize the antibody and a label to detect NSYN-1 in human body fluids or extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by joining them, either covalently or non-covalently, with a reporter molecule.
  • a wide variety of reporter molecules which are known in the art may be used, several of which are described above.
  • NSYN-1 A variety of protocols including ELISA, RIA, and FACS for measuring NSYN-1 are known in the art and provide a basis for diagnosing altered or abnormal levels of NSYN-1 expression.
  • Normal or standard values for NSYN-1 expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to NSYN-1 under conditions suitable for complex formation. The amount of standard complex formation may be quantified by various methods, but preferably by photometric means. Quantities of NSYN-1 expressed in subject samples, control and disease, from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.
  • the polynucleotides encoding NSYN-1 may be used for diagnostic purposes.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of NSYN-1 may be correlated with disease.
  • the diagnostic assay may be used to distinguish between absence, presence, and excess expression of NSYN-1, and to monitor regulation of NSYN-1 levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding NSYN-1 or closely related molecules, may be used to identify nucleic acid sequences which encode NSYN-1.
  • the specificity of the probe whether it is made from a highly specific region, e.g., 10 unique nucleotides in the 5′ regulatory region, or a less specific region, e.g., especially in the 3′ coding region, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low) will determine whether the probe identifies only naturally occurring sequences encoding NSYN-1, alleles, or related sequences.
  • Probes may also be used for the detection of related sequences, and should preferably contain at least 50% of the nucleotides from any of the NSYN-1 encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and derived from the nucleotide sequence of SEQ ID NO:2 or from genomic sequence including promoter, enhancer elements, and introns of the naturally occurring NSYN-1.
  • Means for producing specific hybridization probes for DNAs encoding NSYN-1 include the cloning of nucleic acid sequences encoding NSYN-1 or NSYN-1 derivatives into vectors for the production of mRNA probes.
  • vectors are known in the art, commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, radionuclides such as 32P or 35S, or enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotide sequences encoding NSYN-1 may be used for the diagnosis of conditions or disorders which are associated with expression of NSYN-1.
  • conditions or disorders include neurological disorders such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, schizophrenia, and Tourette's disorder; cancer such as cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus
  • polynucleotide sequences encoding NSYN-1 may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; or in dipstick, pin, ELISA assays or microarrays utilizing fluids or tissues from patient biopsies to detect altered NSYN-1 expression. Such qualitative or quantitative methods are well known in the art.
  • the nucleotide sequences encoding NSYN-1 may be useful in assays that detect activation or induction of various cancers, particularly those mentioned above.
  • the nucleotide sequences encoding NSYN-1 may be labeled by standard methods, and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value.
  • nucleotide sequences have hybridized with nucleotide sequences in the sample, and the presence of altered levels of nucleotide sequences encoding NSYN-1 in the sample indicates the presence of the associated disease.
  • assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or in monitoring the treatment of an individual patient.
  • a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, which encodes NSYN-1, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with those from an experiment where a known amount of a substantially purified polynucleotide is used. Standard values obtained from normal samples may be compared with values obtained from samples from patients who are symptomatic for disease. Deviation between standard and subject values is used to establish the presence of disease.
  • hybridization assays may be repeated on a regular basis to evaluate whether the level of expression in the patient begins to approximate that which is observed in the normal patient. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
  • oligonucleotides designed from the sequences encoding NSYN-1 may involve the use of PCR. Such oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably consist of two nucleotide sequences, one with sense orientation (5′->3′) and another with antisense (3′ ⁇ -5′), employed under optimized conditions for identification of a specific gene or condition. The same two oligomers, nested sets of oligomers, or even a degenerate pool of oligomers may be employed under less stringent conditions for detection and/or quantitation of closely related DNA or RNA sequences.
  • Methods which may also be used to quantitate the expression of NSYN-1 include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and standard curves onto which the experimental results are interpolated (Melby, P. C. et al. (1993) J. Immunol. Methods, 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236).
  • the speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • an oligonucleotide derived from any of the polynucleotide sequences described herein may be used as a target in a microarray.
  • the microarray can be used to monitor the expression level of large numbers of genes simultaneously (to produce a transcript image), and to identify genetic variants, mutations and polymorphisms. This information will be useful in determining gene function, understanding the genetic basis of disease, diagnosing disease, and in developing and monitoring the activity of therapeutic agents (Heller, R. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-55).
  • the microarray is prepared and used according to the methods described in PCT application WO95/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference.
  • the microarray is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support.
  • the oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray, it may be preferable to use oligonucleotides which are only 7-10 nucleotides in length.
  • the microarray may contain oligonucleotides which cover the known 5′, or 3′, sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence.
  • Polynucleotides used in the microarray may be oligonucleotides that are specific to a gene or genes of interest in which at least a fragment of the sequence is known or that are specific to one or more unidentified cDNAs which are common to a particular cell type, developmental or disease state.
  • oligonucleotides In order to produce oligonucleotides to a known sequence for a microarray, the gene of interest is examined using a computer algorithm which starts at the 5′ or more preferably at the 3′ end of the nucleotide sequence.
  • the algorithm identifies oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray.
  • the “pairs” will be identical, except for one nucleotide which preferably is located in the center of the sequence.
  • the second oligonucleotide in the pair serves as a control.
  • the number of oligonucleotide pairs may range from two to one million.
  • the oligomers are synthesized at designated areas on a substrate using a light-directed chemical process.
  • the substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.
  • an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application WO95/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference.
  • a “gridded” array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures.
  • An array such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536 or 6144 oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.
  • RNA or DNA from a biological sample is made into hybridization probes.
  • the mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA).
  • aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray so that the probe sequences hybridize to complementary oligonucleotides of the microarray. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence.
  • the scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray.
  • the biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations.
  • a detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large scale correlation studies on the sequences, mutations, variants, or polymorphisms among samples.
  • the nucleic acid sequences which encode NSYN-1 may also be used to generate hybridization probes which are useful for mapping the naturally occurring genomic sequence.
  • the sequences may be mapped to a particular chromosome, to a specific region of a chromosome or to artificial chromosome constructions, such as human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions or single chromosome cDNA libraries as reviewed in Price, C. M. (1993) Blood Rev. 7:127-134, and Trask, B. J. (1991) Trends Genet. 7:149-154.
  • Fluorescent in situ hybridization may be correlated with other physical chromosome mapping techniques and genetic map data. Examples of genetic map data can be found in various scientific journals or at Online Mendelian Inheritance in Man (OMIM). Correlation between the location of the gene encoding NSYN-1 on a physical chromosomal map and a specific disease, or predisposition to a specific disease, may help delimit the region of DNA associated with that genetic disease.
  • the nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier, or affected individuals.
  • In situ hybridization of chromosomal preparations and physical mapping techniques such as linkage analysis using established chromosomal markers may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms, or parts thereof, by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, for example, AT to 11q22-23 (Gatti, R. A. et al.
  • any sequences mapping to that area may represent associated or regulatory genes for further investigation.
  • the nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc. among normal, carrier, or affected individuals.
  • NSYN-1 in another embodiment, can be used for screening libraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes, between NSYN-1 and the agent being tested, may be measured.
  • Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the protein of interest as described in published PCT application WO84/03564.
  • NSYN-1 large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface.
  • the test compounds are reacted with NSYN-1, or fragments thereof, and washed.
  • Bound NSYN-1 is then detected by methods well known in the art.
  • Purified NSYN-1 can also be coated directly onto plates for use in the aforementioned drug screening techniques.
  • non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
  • nucleotide sequences which encode NSYN-1 may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • the SYNORAT01 cDNA library was constructed from total RNA from the synovium of a rheumatoid elbow.
  • the rheumatoid synovial tissue was obtained from UC Davis (lot #48) where it had been removed from a 51 year old Asian female and frozen.
  • the frozen tissue was ground in a mortar and pestle and lysed immediately in a buffer containing guanidinium isothiocyanate.
  • the lysate was extracted twice with phenol chloroform at pH 8.0 and centrifuged over a C 3 Cl cushion using an SW28 rotor in an L8-70M ultracentrifuge (Beckman Coulter, Fullerton Calif.).
  • RNA was precipitated using 0.3 M sodium acetate and 2.5 volumes of ethanol and resuspended in water.
  • the EcoRI adapted, double-stranded cDNA was then digested with XhoI restriction enzyme and fractionated on Sephacryl S400 to obtain sequences which exceeded 1000 bp in size.
  • the size selected cDNAs were inserted into the LAMBDAZAP vector system (Stratagene); and the vector, which contains the PBLUESCRIPT phagemid (Stratagene), was transformed into cells of E. coli, strain XL1-BLUEMRF (Stratagene).
  • the plasmid forms of individual cDNA clones were obtained by the in vivo excision process. Enzymes from both PBLUESCRIPT and a cotransformed f1 helper phage nicked the DNA, initiated new DNA synthesis, and created the smaller, single-stranded circular phagemid DNA molecules which contained the cDNA insert. The phagemid DNA was released, purified, and used to reinfect fresh host cells (SOLR, Stratagene). Presence of the phagemid which carries the gene for ⁇ -lactamase allowed transformed bacteria to grow on medium containing ampicillin.
  • Plasmid DNA was released from the cells and purified using the MINIPREP kit (Edge Biosystems, Gaithersburg Md.). This kit consists of a 96 well block with reagents for 960 purifications. The recommended protocol was employed except for the following changes: 1) the bacteria were cultured in 1 ml of sterile TERRIFIC BROTH (APB) with carbenicillin at 25 mg/l and glycerol at 0.4%; 2) after inoculation, the cells were cultured for 19 hours and then lysed with 0.3 ml of lysis buffer; and 3) following isopropanol precipitation, the plasmid DNA pellet was resuspended in 0.1 ml of distilled water. After the last step in the protocol, samples were transferred to a 96-well block for storage at 4C.
  • APB sterile TERRIFIC BROTH
  • the cDNAs were sequenced by the method of Sanger et al. (1975, J. Mol. Biol. 94:441f), using a Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.) in combination with the DNA ENGINE thermal cyclers (MJ Research) and Applied Biosystems 377 DNA Sequencing Systems; and the reading frame was determined.
  • nucleotide sequences of the Sequence Listing or amino acid sequences deduced from them were used as query sequences against databases such as GenBank, SwissProt, BLOCKS, and Pima II. These databases which contain previously identified and annotated sequences were searched for regions of homology (similarity) using BLAST, which stands for Basic Local Alignment Search Tool (Altschul, S. F. (1993) J. Mol. Evol. 36:290-300; Altschul et al. (1990) J. Mol. Biol. 215:403-410).
  • BLAST produces alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST is especially useful in determining exact matches or in identifying homologs which may be of prokaryotic (bacterial) or eukaryotic (animal, fungal or plant) origin. Other algorithms such as the one described in Smith R F and T F Smith (1992; Protein Engineering 5:35-51), incorporated herein by reference, can be used when dealing with primary sequence patterns and secondary structure gap penalties. As disclosed in this application, the sequences have lengths of at least 49 nucleotides, and no more than 12% uncalled bases (where N is recorded rather than A, C, G, or T).
  • Incyte nucleotide sequences were searched against the GenBank databases for primate (pri), rodent (rod), and mammalian sequences (mam), and deduced amino acid sequences from the same clones are searched against GenBank functional protein databases, mammalian (mamp), vertebrate (vrtp) and eukaryote (eukp), for homology.
  • GenBank functional protein databases mammalian (mamp), vertebrate (vrtp) and eukaryote (eukp), for homology.
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook et al., supra).
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1-2% error; and at 70, the match will be exact. Homologous molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.
  • the nucleic acid sequence of the Incyte Clone 367401 was used to design oligonucleotide primers for extending a partial nucleotide sequence to full length.
  • One primer was synthesized to initiate extension in the antisense direction, and the other was synthesized to extend sequence in the sense direction.
  • Primers were used to facilitate the extension of the known sequence “outward” generating amplicons containing new, unknown nucleotide sequence for the region of interest.
  • the initial primers were designed from the cDNA using OLIGO 4.06 (National Biosciences), or another appropriate program, to be about 22 to about 30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures of about 68° to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
  • Step 1 94° C. for 60 sec
  • Step 2 94° C. for 20 sec
  • Step 3 55° C. for 30 sec
  • Step 4 72° C. for 90 sec
  • Step 5 Repeat steps 2-4 for an additional 29 cycles
  • Step 6 72° C. for 180 sec
  • Step 7 4° C. (and holding)
  • nucleotide sequence of SEQ ID NO:2 is used to obtain 5′ regulatory sequences using the procedure above, oligonucleotides designed for 5′ extension, and an appropriate genomic library.
  • Hybridization probes derived from SEQ ID NO:2 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base-pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 (National Biosciences), labeled by combining 50 pmol of each oligomer and 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech) and T4 polynucleotide kinase (DuPont NEN, Boston, Mass.).
  • the labeled oligonucleotides are substantially purified with SEPHADEX G-25 superfine resin column (Amersham Pharmacia Biotech). A aliquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases (Ase I, Bgl II, Eco RI, Pst I, Xba 1, or Pvu II; DuPont NEN).
  • the DNA from each digest is fractionated on a 0.7 percent agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham, N.H.). Hybridization is carried out for 16 hours at 40° C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 ⁇ saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT AR film (Kodak, Rochester, N.Y.) is exposed to the blots in a Phosphoimager cassette (Molecular Dynamics, Sunnyvale, Calif.) for several hours, hybridization patterns are compared visually.
  • oligonucleotides for a microarray the nucleotide sequence described herein is examined using a computer algorithm which starts at the 3′ end of the nucleotide sequence.
  • the algorithm identifies oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that would interfere with hybridization.
  • the algorithm identifies 20 sequence-specific oligonucleotides of 20 nucleotides in length (20-mers). A matched set of oligonucleotides is created in which one nucleotide in the center of each sequence is altered.
  • a chemical coupling procedure and an ink jet device are used to synthesize oligomers on the surface of a substrate (Baldeschweiler, J. D. et al., PCT/WO95/25116, incorporated herein by reference).
  • a “gridded” array analogous to a dot (or slot) blot is used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures.
  • An array may be produced by hand or using available materials and machines and contain grids of 8 dots, 24 dots, 96 dots, 384 dots, 1536 dots or 6144 dots.
  • the microarray is washed to remove nonhybridized probes, and a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the micro-array.
  • Sequence complementary to the NSYN-1-encoding sequence, or any part thereof, is used to decrease or inhibit expression of naturally occurring NSYN-1.
  • oligonucleotides comprising from about 15 to about 30 base-pairs is described, essentially the same procedure is used with smaller or larger sequence fragments.
  • Appropriate oligonucleotides are designed using Oligo 4.06 software and the coding sequence of NSYN-1, SEQ ID NO:1.
  • a complementary oligonucleotide is designed from the most unique 5′ sequence and used to prevent promoter binding to the coding sequence.
  • a complementary oligonucleotide is designed to prevent ribosomal binding to the NSYN-1-encoding transcript.
  • NSYN-1 expression of NSYN-1 is accomplished by subcloning the cDNAs into appropriate vectors and transforming the vectors into host cells.
  • the cloning vector is also used to express NSYN-1 in E. coli. Upstream of the cloning site, this vector contains a promoter for ⁇ -galactosidase, followed by sequence containing the amino-terninal Met, and the subsequent seven residues of ⁇ -galactosidase. Immediately following these eight residues is a bacteriophage promoter useful for transcription and a linker containing a number of unique restriction sites.
  • Induction of an isolated, transformed bacterial strain with IPTG using standard methods produces a fusion protein which consists of the first eight residues of ⁇ -galactosidase, about 5 to 15 residues of linker, and the full length protein.
  • the signal residues direct the secretion of NSYN-1 into the bacterial growth media which can be used directly in the following assay for activity.
  • NSYN-1 activity is demonstrated by binding to a fluorescein-conjugated Src SH3 domain (Hongtao et al. supra).
  • NSYN-1 is coupled to polydimethylacrylamide resin beads using standard N-9-fluorenylmethyloxycarbonyl (Fmoc) chemistry techniques. Varying amounts of NSYN-1 coupled-beads are incubated in a suitable buffer containing 1% bovine serum albumin and fluorescein- conjugated Src SH3 (30 mM). Following the incubation, the beads are washed several times, and the amount of bound SH3 is determined by fluoresence microscopy. The amount of SH3 recovered is proportional to the activity of NSYN-1 in the assay.
  • NSYN-1 that is substantially purified using PAGE electrophoresis (Sambrook, supra), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
  • the amino acid sequence deduced from SEQ ID NO:2 is analyzed using DNASTAR software (DNASTAR Inc) to determine regions of high immunogenicity and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions, is described by Ausubel et al. (supra), and others.
  • the oligopeptides are 15 residues in length, synthesized using an Applied Biosystems Peptide Synthesizer Model 43 1A using fmoc-chemistry, and coupled to keyhole limpet hemocyanin (KLH, Sigma, St. Louis, Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS; Ausubel et al., supra).
  • KLH keyhole limpet hemocyanin
  • MBS N-maleimidobenzoyl-N-hydroxysuccinimide ester
  • Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant.
  • the resulting antisera are tested for antipeptide activity, for example, by binding the peptide to plastic, blocking with I% BSA, reacting with rabbit antisera, washing, and reacting with radio iodinated, goat anti-rabbit IgG.
  • Naturally occurring or recombinant NSYN-1 is substantially purified by immunoaffinity chromatography using antibodies specific for NSYN-1.
  • An immunoaffinity column is constructed by covalently coupling NSYN-1 antibody to an activated chromatographic resin, such as CNBr-activated Sepharose (Amersham Pharmacia Bioitech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
  • Media containing NSYN-1 is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of NSYN-1 (e.g., high ionic strength buffers in the presence of detergent).
  • the column is eluted under conditions that disrupt antibody/NSYN-1 binding (eg, a buffer of pH 2-3 or a high concentration of a chaotrope, such as urea or thiocyanate ion), and NSYN-1 is collected.

Abstract

The invention provides a human synaptojanin isoform (NSYN-1) and polynucleotides which identify and encode NSYN-1. The invention also provides expression vectors, host cells, agonists, antibodies and antagonists. The invention also provides methods for treating disorders associated with expression of NSYN-1.

Description

  • This application is a divisional application of U.S. application Ser. No. 08/904,234, filed Jul. 31, 1997, all of which application is hereby incorporated by reference herein.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to nucleic acid and amino acid sequences of a new synaptojanin isoform and to the use of these sequences in the diagnosis, prevention, and treatment of cancer, and neurological and immune disorders. [0002]
  • BACKGROUND OF THE INVENTION
  • Vesicle transport is the general process in eukaryotic cells by which proteins synthesized in the endoplasmic reticulum (ER) are transported via the Golgi network to the various compartments in the cell where they will function. Other proteins are transported to the cell surface by this process where they may be secreted (exocytosis). Such proteins include membrane bound receptors or other membrane proteins, neurotransmitters, hormones, and digestive enzymes. The transport process uses a series of transport vesicles that shuttle a protein from one membrane-bound compartment (donor compartment) to another (acceptor compartment) until the protein reaches its proper destination (Rothman, J. E and Wieland, F. T. et al. (1996) 727:227-233). Endocytosis is the reverse process by which cells internalize nutrients, solutes or small particles (pinocytosis) or large particles such as internalized receptors, viruses, bacteria, or bacterial toxins (phagocytosis). [0003]
  • Transport vesicles of various types are formed from specialized coated regions of membranes that bud off as coated vesicles with a distinctive cage of proteins surrounding the vesicle. The nature of the protein coat defines the transport vesicle in terms of the types of molecules that are transported and their destination. Clathrin-coated vesicles, for example, selectively transport transmembrane receptors between the ER and the plasma membrane while coatomer-coated vesicles mediate non-selective transport of various molecules from the ER and the Golgi network. Synaptic vesicles are a highly specialized type of transport vesicle that neurons use to secrete neurotransmitters at the neural synapse. Following secretion, the synaptic vesicle membranes are internalized and reused for further neurotransmitter release. The process of synaptic vesicle recycling involves the interaction of various proteins, three of which are synaptojanin, dymanin, and amphiphysin (Ramjaun, A. R. and McPherson, P. S. (1999) J. Biol. Chem. 271:24856-24861). Synaptojanin and dynamin were first identified as major Src homology 3 (SH3) domain-binding proteins in brain. In particular, synaptojanin and dynamin both interact with the SH3 domains of amphiphysin, a nerve terminal protein that is implicated in synaptic vesicle endocytosis. These SH3 interactions may play a role in subcellular targeting of synaptojanin and dynamin to specific sites of synaptic vesicle endocytosis on the plasma membrane (Ramjaun et al. supra). [0004]
  • Synaptojanin (Syn) is a 145 kDa protein that contains (1) a region in the N terminus that is homologous with various inositol phosphatases, and (2) a proline-rich C terminus containing numerous consensus sites for SH3 binding (McPherson, P. S. et al. (1996) Nature 379:353-357). Inositol polyphosphates are believed to play a role in endocytosis and in other aspects of membrane trafficking. A proline-rich consensus sequence for SH3 binding is represented as XpφPpXP; in which X is any amino acid residue, P is a conserved proline residue, and p and φ (lower case) indicate a preference for proline and hydrophobic residues, respectively (Hongtao, Y. et al. (1994) Cell 76:933-945). In addition to the 145 kDa isoform of Syn, a 170 kDa isoform of the protein has been identified (Ramjaun et al. supra; McPherson et al. supra). The 170 kDa isoform results from the addition of a 28 kDa polypeptide to the C terminus of the 145 kDa isoform. This added 266 amino acid sequence is rich in proline residues and contains additional SH3 domain-binding consensus sequences. The 28 kDa polypeptide is encoded by a second open reading frame (ORF) normally separated from a first ORF by a stop codon. Expression of the larger 170 kDa isoform is believed to result from alternative splicing of the cDNA which deletes the stop codon (McPherson et al. supra). [0005]
  • The presence of the 28 kDa sequence alters the properties of Syn in two important ways: 1) while the 145 kDa isoform is expressed almost exclusively in adult rat brain, the 170 kDa isoform is absent from adult brain and widely expressed in non-neuronal tissues; and 2) the 170 kDa isoform is more strongly membrane bound than the 145 kDa isoform. These properties may allow the 170 kDa isoform of Syn to play a unique and perhaps more general role in endocytosis (McPherson et al. supra). [0006]
  • The discovery of a new synaptojanin isoform and the polynucleotides encoding it satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention and treatment of cancer, and neurological and immune disorders. [0007]
  • SUMMARY OF THE INVENTION
  • The invention features a substantially purified polypeptide, synaptojanin isoform (NSYN-1), having the amino acid sequence shown in SEQ ID NO:1, or fragments thereof. [0008]
  • The invention further provides an isolated and substantially purified polynucleotide sequence encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or fragments thereof and a composition comprising said polynucleotide sequence. The invention also provides a polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence encoding the amino acid sequence SEQ ID NO:1, or fragments of said polynucleotide sequence. The invention further provides a polynucleotide sequence comprising the complement of the polynucleotide sequence encoding the amino acid sequence of SEQ ID NO:1, or fragments or variants of said polynucleotide sequence. [0009]
  • The invention also provides an isolated and purified sequence comprising SEQ ID NO.2 or variants thereof. In addition, the invention provides a polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence of SEQ ID NO:2. The invention also provides a polynucleotide sequence comprising the complement of SEQ ID NO:2, or fragments or variants thereof. [0010]
  • The present invention further provides an expression vector containing at least a fragment of any of the claimed polynucleotide sequences. In yet another aspect, the expression vector containing the polynucleotide sequence is contained within a host cell. [0011]
  • The invention also provides a method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment thereof, the method comprising the steps of: a) culturing the host cell containing an expression vector containing at least a fragment of the polynucleotide sequence encoding NSYN-1 under conditions suitable for the expression of the polypeptide; and b) recovering the polypeptide from the host cell culture. [0012]
  • The invention also provides a pharmaceutical composition comprising a substantially purified NSYN-1 having the amino acid sequence of SEQ ID NO:1 in conjunction with a suitable pharmaceutical carrier. [0013]
  • The invention also provides a purified antagonist of the polypeptide of SEQ ID NO:1. In one aspect the invention provides a purified antibody which binds to a polypeptide comprising the amino acid sequence of SEQ ID NO:1. [0014]
  • Still further, the invention provides a purified agonist of the polypeptide of SEQ ID NO:1. [0015]
  • The invention also provides a method for treating or preventing a neurological disorder comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising purified NSYN-1. [0016]
  • The invention also provides a method for treating or preventing cancer comprising administering to a subject in need of such treatment an effective amount of a purified antagonist of NSYN-1. [0017]
  • The invention also provides a method for treating or preventing an immune disorder comprising administering to a subject in need of such treatment an effective amount of a purified antagonist of NSYN-1. [0018]
  • The invention also provides a method for detecting a polynucleotide which encodes NSYN-1 in a biological sample comprising the steps of: a) hybridizing the complement of the polynucleotide sequence which encodes SEQ ID NO:1 to nucleic acid material of a biological sample, thereby forming a hybridization complex; and b) detecting the hybridization complex, wherein the presence of the complex correlates with the presence of a polynucleotide encoding NSYN-1 in the biological sample. In one aspect the nucleic acid material of the biological sample is amplified by the polymerase chain reaction prior to hybridization.[0019]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIGS. 1A, 1B, [0020] 1C, 1D, and 1E show the amino acid sequence (SEQ ID NO:1) and nucleic acid sequence (SEQ ID NO:2) of NSYN-1. The alignment was produced using MACDNASIS PRO software (Hitachi Software Engineering Co. Ltd. San Bruno, Calif.).
  • FIG. 2 shows the amino acid sequence alignments between NSYN-1 (SEQ ID NO:1), and the 28 kDa isoform of synaptojanin from rat (GI 1166576; SEQ ID NO:3), produced using the multisequence alignment program of DNASTAR software (DNASTAR Inc, Madison Wis.). [0021]
  • FIGS. 3A and 3B show the hydrophobicity plots for NSYN-1, SEQ ID NO: 1 and rat 28 kDa Syn (SEQ ID NO:3), respectively; the positive X axis reflects amino acid position, and the negative Y axis, hydrophobicity (MACDNASIS PRO software).[0022]
  • DESCRIPTION OF THE INVENTION
  • Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. [0023]
  • It must be noted that as used herein and in the appended claims, the singular forms “a”, “an” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a host cell” includes a plurality of such host cells, reference to the “antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth. [0024]
  • Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. [0025]
  • Definitions [0026]
  • NSYN-1, as used herein, refers to the amino acid sequences of substantially purified NSYN-1 obtained from any species, particularly mammalian, including bovine, ovine, porcine, murine, equine, and preferably human, from any source whether natural, synthetic, semi-synthetic, or recombinant. [0027]
  • The term “agonist”, as used herein, refers to a molecule which, when bound to NSYN-1, increases or prolongs the duration of the effect of NSYN-1. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of NSYN-1. [0028]
  • An “allele” or “allelic sequence”, as used herein, is an alternative form of the gene encoding NSYN-1. Alleles may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence. [0029]
  • “Altered” nucleic acid sequences encoding NSYN-1, as used herein, include those with deletions, insertions, or substitutions of different nucleotides resulting in a polynucleotide that encodes the same or a functionally equivalent NSYN-1. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding NSYN-1, and improper or unexpected hybridization to alleles, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding NSYN-1. The encoded protein may also be “altered” and contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent NSYN-1. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the biological or immunological activity of NSYN-1 is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine, glycine and alanine, asparagine and glutamine, serine and threonine, and phenylalanine and tyrosine. [0030]
  • “Amino acid sequence”, as used herein, refers to an oligopeptide, peptide, polypeptide, or protein sequence, and fragment thereof, and to naturally occurring or synthetic molecules. Fragments of NSYN-1 are preferably about 5 to about 15 amino acids in length and retain the biological activity or the immunological activity of NSYN-1. Where “amino acid sequence” is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, amino acid sequence, and like terms, are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule. [0031]
  • “Amplification”, as used herein, refers to the production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction (PCR) technologies well known in the art (Dieffenbach, C. W. and G. S. Dveksler (1995) [0032] PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y.).
  • The term “antagonist”, as used herein, refers to a molecule which, when bound to NSYN-1, decreases the amount or the duration of the effect of the biological or immunological activity of NSYN-1. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies or any other molecules which decrease the effect of NSYN-1. [0033]
  • As used herein, the term “antibody” refers to intact molecules as well as fragments thereof, such as Fab, F(ab′)[0034] 2, and Fv, which are capable of binding the epitopic determinant. Antibodies that bind NSYN-1 polypeptides can be prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal can be derived from the translation of RNA or synthesized chemically and can be conjugated to a carrier protein, if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin and thyroglobulin, keyhole limpet hemocyanin. The coupled peptide is then used to immunize the animal (e.g., a mouse, a rat, or a rabbit).
  • The term “antigenic determinant”, as used herein, refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants. An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody. [0035]
  • The term “antisense”, as used herein, refers to any composition containing nucleotide sequences which are complementary to a specific DNA or RNA sequence. The term “antisense strand” is used in reference to a nucleic acid strand that is complementary to the “sense” strand. Antisense molecules include peptide nucleic acids and may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and block either transcription or translation. The designation “negative” is sometimes used in reference to the antisense strand, and “positive” is sometimes used in reference to the sense strand. [0036]
  • The term “biologically active”, as used herein, refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, “immunologically active” refers to the capability of the natural, recombinant, or synthetic NSYN-1, or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies. [0037]
  • The terms “complementary” or “complementarity”, as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, the sequence “A-G-T” binds to the complementary sequence “T-C-A”. Complementarity between two single-stranded molecules may be “partial”, in which only some of the nucleic acids bind, or it may be complete when total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands and in the design and use of PNA molecules. [0038]
  • A “composition comprising a given polynucleotide sequence” as used herein refers broadly to any composition containing the given polynucleotide sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding NSYN-1 (SEQ ID NO:1) or fragments thereof (e.g., SEQ ID NO:2 and fragments thereof) may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., SDS) and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.). [0039]
  • “Consensus”, as used herein, refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, has been extended using XL-PCR (Applied Biosystems, Foster City Calif.) in the 5′ and/or the 3′ direction and resequenced, or has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly (e.g., GELVIEW Fragment Assembly system, GCG, Madison, Wis.). Some sequences have been both extended and assembled to produce the consensus sequence. [0040]
  • The term “correlates with expression of a polynucleotide”, as used herein, indicates that the detection of the presence of ribonucleic acid that is similar to SEQ ID NO:2 by northern analysis is indicative of the presence of mRNA encoding NSYN-1 in a sample and thereby correlates with expression of the transcript from the polynucleotide encoding the protein. [0041]
  • A “deletion”, as used herein, refers to a change in the amino acid or nucleotide sequence and results in the absence of one or more amino acid residues or nucleotides. [0042]
  • The term “derivative”, as used herein, refers to the chemical modification of a nucleic acid encoding or complementary to NSYN-1 or the encoded NSYN-1. Such modifications include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A nucleic acid derivative encodes a polypeptide which retains the biological or immunological function of the natural molecule. A derivative polypeptide is one which is modified by glycosylation, pegylation, or any similar process which retains the biological or immunological function of the polypeptide from which it was derived. [0043]
  • The term “homology”, as used herein, refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to using the functional term “substantially homologous.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or hybridization probe will compete for and inhibit the binding of a completely homologous sequence to the target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity). In the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence. [0044]
  • Human artificial chromosomes (HACs) are linear microchromosomes which may contain DNA sequences of 10K to 10M in size and contain all of the elements required for stable mitotic chromosome segregation and maintenance (Harrington, J. J. et al. (1997) Nat Genet. 15:345-355). [0045]
  • The term “humanized antibody”, as used herein, refers to antibody molecules in which amino acids have been replaced in the non-antigen binding regions in order to more closely resemble a human antibody, while still retaining the original binding ability. [0046]
  • The term “hybridization”, as used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing. [0047]
  • The term “hybridization complex”, as used herein, refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., C[0048] 0t or R0t analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • An “insertion” or “addition”, as used herein, refers to a change in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, as compared to the naturally occurring molecule. [0049]
  • “Microarray” refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. [0050]
  • The term “modulate”, as used herein, refers to a change in the activity of NSYN-1. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional or immunological properties of NSYN-1. [0051]
  • “Nucleic acid sequence”, as used herein, refers to an oligonucleotide, nucleotide, or polynucleotide, and fragments thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand. “Fragments” are those nucleic acid sequences which are greater than 60 nucleotides than in length, and most preferably includes fragments that are at least 100 nucleotides or at least 1000 nucleotides, and at least 10,000 nucleotides in length. [0052]
  • The term “oligonucleotide” refers to a nucleic acid sequence of at least about 6 nucleotides to about 60 nucleotides, preferably about 15 to 30 nucleotides, and more preferably about 20 to 25 nucleotides, which can be used in PCR amplification or a hybridization assay, or a microarray. As used herein, oligonucleotide is substantially equivalent to the terms “amplimers”,“primers”, “oligomers”, and “probes”, as commonly defined in the art. [0053]
  • “Peptide nucleic acid”, PNA as used herein, refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least five nucleotides in length linked to a peptide backbone of amino acid residues which ends in lysine. The terminal lysine confers solubility to the composition. PNAs may be pegylated to extend their lifespan in the cell where they preferentially bind complementary single stranded DNA and RNA and stop transcript elongation (Nielsen, P. E. et al. (1993) Anticancer Drug Des. 8:53-63). [0054]
  • The term “portion”, as used herein, with regard to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from five amino acid residues to the entire amino acid sequence minus one amino acid. Thus, a protein “comprising at least a portion of the amino acid sequence of SEQ ID NO:1” encompasses the full-length NSYN-1 and fragments thereof. [0055]
  • The term “sample”, as used herein, is used in its broadest sense. A biological sample suspected of containing nucleic acid encoding NSYN-1, or fragments thereof, or NSYN-1 itself may comprise a bodily fluid, extract from a cell, chromosome, organelle, or membrane isolated from a cell, a cell, genomic DNA, RNA, or cDNA(in solution or bound to a solid support, a tissue, a tissue print, and the like. [0056]
  • The terms “specific binding” or “specifically binding”, as used herein, refers to that interaction between a protein or peptide and an agonist, an antibody and an antagonist. The interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) of the protein recognized by the binding molecule. For example, if an antibody is specific for epitope “A”, the presence of a protein containing epitope A (or free, unlabeled A) in a reaction containing labeled “A” and the antibody will reduce the amount of labeled A bound to the antibody. [0057]
  • The terms “stringent conditions” or “stringency”, as used herein, refer to the conditions for hybridization as defined by the nucleic acid, salt, and temperature. These conditions are well known in the art and may be altered in order to identify or detect identical or related polynucleotide sequences. Numerous equivalent conditions comprising either low or high stringency depend on factors such as the length and nature of the sequence (DNA, RNA, base composition), nature of the target (DNA, RNA, base composition), milieu (in solution or immobilized on a solid substrate), concentration of salts and other components (e.g., formamide, dextran sulfate and/or polyethylene glycol), and temperature of the reactions (within a range from about 5° C. below the melting temperature of the probe to about 20° C. to 25° C. below the melting temperature). One or more factors be may be varied to generate conditions of either low or high stringency different from, but equivalent to, the above listed conditions. [0058]
  • The term “substantially purified”, as used herein, refers to nucleic or amino acid sequences that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated. [0059]
  • A “substitution”, as used herein, refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively. [0060]
  • “Transformation”, as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. It may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. Such “transformed” cells include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. They also include cells which transiently express the inserted DNA or RNA for limited periods of time. [0061]
  • A “variant” of NSYN-1, as used herein, refers to an amino acid sequence that is altered by one or more amino acids. The variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant may have “nonconservative” changes, e.g., replacement of a glycine with a tryptophan. Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNASTAR software. [0062]
  • The Invention [0063]
  • The invention is based on the discovery of a new human synaptojanin isoform (hereinafter referred to as “NSYN-1”), the polynucleotides encoding NSYN-1, and the use of these compositions for the diagnosis, prevention, or treatment of cancer, and neurological and immune disorders. [0064]
  • Nucleic acids encoding the NSYN-1 of the present invention were first identified in Incyte Clone 367402 from the synovial tissue cDNA library (SYNORATO1) using a computer search for amino acid sequence alignments. A consensus sequence, SEQ ID NO:2, was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 367401 (SYNORATO1), and 1238083 (LUNGTUT02). [0065]
  • In one embodiment, the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in FIGS. 1A, 1B, [0066] 1C, 1D, and 1E. NSYN-1 is 305 amino acids in length and has three potential N-linked glycosylation sites at residues N182, N247, and N259 representing potential membrane attachment sites. The N-terminal 35-40 amino acid sequence in NSYN-1 may represent a unique signal peptide for targeting of the protein to a specific subcellular destination. The presence of the signal peptide is further supported by the a potential myristoylation site at G40 that may be exposed on removal of the signal peptide and provide an additional membrane attachment site. Cysteine residues representing potential intramolecular disulfide bonding sites are found at C104, C232, and C263. Various potential protein kinase phosphorylation sites are also present in NSYN-1 at S48 (protein kinase A), S163, S188, T215, and T249 (casein kinase II), S139, T204, S267, and T303 (protein kinase C). Four proline-rich, potential SH3 binding sequences are found in NSYN-1 at T12PPQPPP, P106TMPPIP, T142AAPGNP, and R268RPPPPP. As shown in FIG. 2, NSYN-1 has chemical and structural homology with the 28 kDa isoform of synaptojanin for rat, 28 kDa Syn (GI 1166576; SEQ ID NO:3). In particular, NSYN-1 and 28 kDa Syn share 71% identity. Three of the four potential SH3 binding domains found in NSYN-1 are found in rat 28 kDa Syn. The rat 28 kDa Syn also shares two of the three cysteine residues found in NSYN-1(C104 and C263), and one of the N-linked glycosylation sites (N259). Three of the potential casein kinase II and three of the potential protein kinase C phosphorylation sites found in NSYN-1 are also found in the rat protein. NSYN-1 differs from the rat Syn isoform primarily by the potential leader peptide in NSYN-1 and additional potential membrane binding sites. As illustrated by FIGS. 3A and 3B, NSYN-1 and rat 28 kDa Syn have rather similar hydrophobicity plots. Northern analysis shows the expression of this sequence in various libraries, at least 32% of which are immortalized or cancerous, at least 28% involve brain or neural tissue, and at least 24% of which involve inflammation or the immune response. Of particular note is the expression of NSYN-1 in inflamed tissues (rheumatism and Crohn's disease) and epilepsy.
  • The invention also encompasses NSYN-1 variants. A preferred NSYN-1 variant is one having at least 80%, and more preferably at least 90%, amino acid sequence identity to the NSYN-1 amino acid sequence (SEQ ID NO:1) and which retains at least one biological, immunological or other functional characteristic or activity of NSYN-1. A most preferred NSYN-1 variant is one having at least 95% amino acid sequence identity to SEQ ID NO:1. [0067]
  • The invention also encompasses polynucleotides which encode NSYN-1. Accordingly, any nucleic acid sequence which encodes the amino acid sequence of NSYN-1 can be used to produce recombinant molecules which express NSYN-1. In a particular embodiment, the invention encompasses the polynucleotide comprising the nucleic acid sequence of SEQ ID NO:2 as shown in FIGS. 1A, 1B, [0068] 1C, 1D, and 1E.
  • It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of nucleotide sequences encoding NSYN-1, some bearing minimal homology to the nucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence of naturally occurring NSYN-1, and all such variations are to be considered as being specifically disclosed. [0069]
  • Although nucleotide sequences which encode NSYN-1 and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring NSYN-1 under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding NSYN-1 or its derivatives possessing a substantially different codon usage. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding NSYN-1 and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence. [0070]
  • The invention also encompasses production of DNA sequences, or fragments thereof, which encode NSYN-1 and its derivatives, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents that are well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding NSYN-1 or any fragment thereof. [0071]
  • Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed nucleotide sequences, and in particular, those shown in SEQ ID NO:2, under various conditions of stringency as taught in Wahl, G. M. and S. L. Berger (1987; Methods Enzymol. 152:399-407) and Kimmel, A. R. (1987; Methods Enzymol. 152:507-511). [0072]
  • Methods for DNA sequencing which are well known and generally available in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE, Taq DNA polymerase and thermostable T7 DNA polymerase (Amersham Pharmacia Biotech (APB), Piscataway N.J.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg Md.). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 system (Hamilton, Reno Nev.) and the DNA ENGINE thermal cycler (MJ Research, Watertown Mass.). Machines commonly used for sequencing include the ABI PRISM 3700, 377 or 373 DNA sequencing systems (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (APB), and the like. [0073]
  • The nucleic acid sequences encoding NSYN-1 may be extended utilizing a partial nucleotide sequence and employing various methods known in the art to detect upstream sequences such as promoters and regulatory elements. For example, one method which may be employed, “restriction-site” PCR, uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, G. (1993) PCR Methods Applic. 2:318-322). In particular, genomic DNA is first amplified in the presence of primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase. [0074]
  • Inverse PCR may also be used to amplify or extend sequences using divergent primers based on a known region (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186). The primers may be designed using commercially available software such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68°-72° C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. [0075]
  • Another method which may be used is capture PCR which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119). In this method, multiple restriction enzyme digestions and ligations may also be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR. [0076]
  • Another method which may be used to retrieve unknown sequences is that of Parker, J. D. et al. (1991; Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries to walk genomic DNA (Clontech, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions. When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Also, random-primed libraries are preferable, in that they will contain more sequences which contain the 5′ regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5′ non-transcribed regulatory regions. [0077]
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity may be converted to electrical signal using appropriate software (e.g. GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems) and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample. [0078]
  • In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode NSYN-1 may be used in recombinant DNA molecules to direct expression of NSYN-1, fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced, and these sequences may be used to clone and express NSYN-1. [0079]
  • As will be understood by those of skill in the art, it may be advantageous to produce NSYN-1-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence. [0080]
  • The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter NSYN-1 encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth. [0081]
  • In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding NSYN-1 may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of NSYN-1 activity, it may be useful to encode a chimeric NSYN-1 protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the NSYN-1 encoding sequence and the heterologous protein sequence, so that NSYN-1 may be cleaved and purified away from the heterologous moiety. [0082]
  • In another embodiment, sequences encoding NSYN-1 may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) Nucl. Acids Symp. Ser. 7:215-223, Horn, T. et al. (1980) Nucl. Acids Symp. Ser. 7:225-232). Alternatively, the protein itself may be produced using chemical methods to synthesize the amino acid sequence of NSYN-1, or a fragment thereof. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) Science 269:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer). [0083]
  • The newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, T. (1983) [0084] Proteins, Structures and Molecular Principles, W H Freeman and Co., New York, N.Y.). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra). Additionally, the amino acid sequence of NSYN-1, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
  • In order to express a biologically active NSYN-1, the nucleotide sequences encoding NSYN-1 or functional equivalents, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. [0085]
  • Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding NSYN-1 and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook, J. et al. (1989) [0086] Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y.
  • A variety of expression vector/host systems may be utilized to contain and express sequences encoding NSYN-1. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed. [0087]
  • The “control elements” or “regulatory sequences” are those non-translated regions of the vector—enhancers, promoters, 5′ and 3′ untranslated regions—which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Life Technologies) and the like may be used. The baculovirus polyhedrin promoter may be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO; and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) may be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding NSYN-1, vectors based on SV40 or EBV may be used with an appropriate selectable marker. [0088]
  • In bacterial systems, a number of expression vectors may be selected depending upon the use intended for NSYN-1. For example, when large quantities of NSYN-1 are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional [0089] E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding NSYN-1 may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
  • In the yeast, [0090] Saccharomvces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544.
  • In cases where plant expression vectors are used, the expression of sequences encoding NSYN-1 may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L. E. in McGraw Hill [0091] Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196.
  • An insect system may also be used to express NSYN-1. For example, in one such system, [0092] Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera fruiperda cells or in Trichoplusia larvae. The sequences encoding NSYN-1 may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of NSYN-1 will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which NSYN-1 may be expressed (Engelhard, E. K. et al. (1994) Proc. Nat. Acad. Sci. 91:3224-3227).
  • In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding NSYN-1 may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing NSYN-1 in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. [0093]
  • Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6 to 10M are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. [0094]
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding NSYN-1. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding NSYN-1, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162). [0095]
  • In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a “prepro” form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; Bethesda, Md.) and may be chosen to ensure the correct modification and processing of the foreign protein. [0096]
  • For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express NSYN-1 may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type. [0097]
  • Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk[0098] or aprt cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). Recently, the use of visible markers has gained popularity with such markers as anthocyanins, β glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).
  • Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding NSYN-1 is inserted within a marker gene sequence, transformed cells containing sequences encoding NSYN-1 can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding NSYN-1 under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well. [0099]
  • Alternatively, host cells which contain the nucleic acid sequence encoding NSYN-1 and express NSYN-1 may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein. [0100]
  • The presence of polynucleotide sequences encoding NSYN-1 can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding NSYN-1. Nucleic acid amplification based assays involve the use of oligonucleotides or oligomers based on the sequences encoding NSYN-1 to detect transformants containing DNA or RNA encoding NSYN-1. [0101]
  • A variety of protocols for detecting and measuring the expression of NSYN-1, using either polyclonal or monoclonal antibodies specific for the protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on NSYN-1 is preferred, but a competitive binding assay may be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; [0102] Serological Methods a Laboratory Manual, APS Press, St Paul, Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216).
  • A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding NSYN-1 include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding NSYN-1, or any fragments thereof may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits such as those provided by Amersham Pharmacia Biotech and Promega (Madison Wis.). Suitable reporter molecules or labels, which may be used for ease of detection, include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like. [0103]
  • Host cells transformed with nucleotide sequences encoding NSYN-1 may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode NSYN-1 may be designed to contain signal sequences which direct secretion of NSYN-1 through a prokaryotic or eukaryotic cell membrane. Other constructions may be used to join sequences encoding NSYN-1 to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen, San Diego, Calif.) between the purification domain and NSYN-1 may be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing NSYN-1 and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMAC (immobilized metal ion affinity chromatography as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3: 263-281) while the enterokinase cleavage site provides a means for purifying NSYN-1 from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453). [0104]
  • In addition to recombinant production, fragments of NSYN-1 may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) J. Am. Chem. Soc. 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using an ABI 43 1A peptide synthesizer (Applied Biosystems). Various fragments of NSYN-1 may be chemically synthesized separately and combined using chemical methods to produce the full length molecule. [0105]
  • Therapeutics [0106]
  • Chemical and structural homology exists between NSYN-1 and a 28 kDa Syn isoform from rat (GI 1166576). In addition, NSYN-1 is expressed in cancerous tissues, brain and neural tissues, and tissues associated with inflammation and the immune response Therefore, NSYN-1 appears to play a role in cancer, and neurological and immune disorders. In particular, decreased expression or activity of NSYN-1 appears to be associated with neurological disorders, while increased expression or activity of NSYN-1 appears to be associated with cancer and immune disorders. [0107]
  • Therefore, in one embodiment, NSYN-1 or a fragment or derivative thereof may be administered to a subject to prevent or treat a neurological disorder. Such disorders include, but are not limited to, akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, schizophrenia, and Tourette's disorder. [0108]
  • In another embodiment, a vector capable of expressing NSYN-1, or a fragment or a derivative thereof, may also be administered to a subject to prevent or treat a neurological disorder including, but not limited to, those described above. [0109]
  • In still another embodiment, an agonist which modulates the activity of NSYN-1 may also be administered to a subject to prevent or treat a neurological disorder including, but not limited to, those described above. [0110]
  • In another embodiment, an antagonist of NSYN-1 may be administered to a subject to prevent or treat cancer. Cancers may include, but are not limited to, adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, and teratocarcinoma, and particularly cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. In one aspect, an antibody which specifically binds NSYN-1 may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express NSYN-1. [0111]
  • In another embodiment, an antagonist of NSYN-1 may be administered to a subject to prevent or treat an immune disorder. Such disorders may include, but are not limited to, AIDS, Addison's disease, adult respiratory distress syndrome, allergies, anemia, asthma, atherosclerosis, bronchitis, cholecystitis, Crohn's disease, ulcerative colitis, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythema nodosum, atrophic gastritis, glomerulonephritis, gout, Graves' disease, hypereosinophilia, irritable bowel syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, and autoimmune thyroiditis; complications of cancer, hemodialysis, extracorporeal circulation; viral, bacterial, fungal, parasitic, protozoal, and helminthic infections and trauma. [0112]
  • In another embodiment, a vector expressing the complement of the polynucleotide encoding NSYN-1 may be administered to a subject to prevent or treat cancer including, but not limited to, the types of cancer described above. [0113]
  • In another embodiment, a vector expressing the complement of the polynucleotide encoding NSYN-1 may be administered to a subject to prevent or treat an immune disorder including, but not limited to, those described above. [0114]
  • In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects. [0115]
  • An antagonist of NSYN-1 may be produced using methods which are generally known in the art. In particular, purified NSYN-1 may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind NSYN-1. [0116]
  • Antibodies to NSYN-1 may be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies, (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use. [0117]
  • For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others, may be immunized by injection with NSYN-1 or any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and [0118] Corynebacterium parvum are especially preferable.
  • It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to NSYN-1 have an amino acid sequence consisting of at least five amino acids and more preferably at least 10 amino acids. It is also preferable that they are identical to a portion of the amino acid sequence of the natural protein, and they may contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of NSYN-1 amino acids may be fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule. [0119]
  • Monoclonal antibodies to NSYN-1 may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120). [0120]
  • In addition, techniques developed for the production of “chimeric antibodies”, the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce NSYN-1-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton D. R. (1991) Proc. Natl. Acad. Sci. 88:11120-3). [0121]
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299). [0122]
  • Antibody fragments which contain specific binding sites for NSYN-1 may also be generated. For example, such fragments include, but are not limited to, the F(ab′)2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab′)2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W. D. et al. (1989) Science 254:1275-1281). [0123]
  • Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between NSYN-1 and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering NSYN-1 epitopes is preferred, but a competitive binding assay may also be employed (Maddox, supra). [0124]
  • In another embodiment of the invention, the polynucleotides encoding NSYN-1, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding NSYN-1 may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding NSYN-1. Thus, complementary molecules or fragments may be used to modulate NSYN-1 activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments, can be designed from various locations along the coding or control regions of sequences encoding NSYN-1. [0125]
  • Expression vectors derived from retro viruses, adenovirus, herpes or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue or cell population. Methods which are well known to those skilled in the art can be used to construct vectors which will express nucleic acid sequence which is complementary to the polynucleotides of the gene encoding NSYN-1. These techniques are described both in Sambrook et al. (supra) and in Ausubel et al. (supra). [0126]
  • Genes encoding NSYN-1 can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide or fragment thereof which encodes NSYN-1. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector and even longer if appropriate replication elements are part of the vector system. [0127]
  • As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5′ or regulatory regions of the gene encoding NSYN-1 (signal sequence, promoters, enhancers, and introns). Oligonucleotides derived from the transcription initiation site, e.g., between positions −10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using “triple helix” base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature (Gee, J. E. et al. (1994) In: Huber, B. E. and B. I. Carr, [0128] Molecular and Immunolosic Approaches, Futura Publishing Co., Mt. Kisco, N.Y.). The complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples which may be used include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding NSYN-1. [0129]
  • Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. [0130]
  • Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding NSYN-1. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA constitutively or inducibly can be introduced into cell lines, cells, or tissues. [0131]
  • RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends of the molecule or the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases. [0132]
  • Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections or polycationic amino polymers (Goldman, C. K. et al. (1997) Nature Biotechnology 15:462-66; incorporated herein by reference) may be achieved using methods which are well known in the art. [0133]
  • Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans. [0134]
  • An additional embodiment of the invention relates to the administration of a pharmaceutical composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of NSYN-1, antibodies to NSYN-1, mimetics, agonists, antagonists, or inhibitors of NSYN-1. The compositions may be administered alone or in combination with at least one other agent, such as stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs or hormones. [0135]
  • The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means. [0136]
  • In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of [0137] Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, Pa.).
  • Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient. [0138]
  • Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate. [0139]
  • Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage. [0140]
  • Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers. [0141]
  • Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. [0142]
  • For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. [0143]
  • The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. [0144]
  • The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use. [0145]
  • After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of NSYN-1, such labeling would include amount, frequency, and method of administration. [0146]
  • Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art. [0147]
  • For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models, usually mice, rabbits, dogs, or pigs. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. [0148]
  • A therapeutically effective dose refers to that amount of active ingredient, for example NSYN-1 or fragments thereof, antibodies of NSYN-1, agonists, antagonists or inhibitors of NSYN-1, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration. [0149]
  • The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation. [0150]
  • Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. [0151]
  • Diagnostics [0152]
  • In another embodiment, antibodies which specifically bind NSYN-1 may be used for the diagnosis of conditions or diseases characterized by expression of NSYN-1, or in assays to monitor patients being treated with NSYN-1, agonists, antagonists or inhibitors. The antibodies useful for diagnostic purposes may be prepared in the same manner as those described above for therapeutics. Diagnostic assays for NSYN-1 include methods which utilize the antibody and a label to detect NSYN-1 in human body fluids or extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by joining them, either covalently or non-covalently, with a reporter molecule. A wide variety of reporter molecules which are known in the art may be used, several of which are described above. [0153]
  • A variety of protocols including ELISA, RIA, and FACS for measuring NSYN-1 are known in the art and provide a basis for diagnosing altered or abnormal levels of NSYN-1 expression. Normal or standard values for NSYN-1 expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to NSYN-1 under conditions suitable for complex formation. The amount of standard complex formation may be quantified by various methods, but preferably by photometric means. Quantities of NSYN-1 expressed in subject samples, control and disease, from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease. [0154]
  • In another embodiment of the invention, the polynucleotides encoding NSYN-1 may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of NSYN-1 may be correlated with disease. The diagnostic assay may be used to distinguish between absence, presence, and excess expression of NSYN-1, and to monitor regulation of NSYN-1 levels during therapeutic intervention. [0155]
  • In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding NSYN-1 or closely related molecules, may be used to identify nucleic acid sequences which encode NSYN-1. The specificity of the probe, whether it is made from a highly specific region, e.g., 10 unique nucleotides in the 5′ regulatory region, or a less specific region, e.g., especially in the 3′ coding region, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low) will determine whether the probe identifies only naturally occurring sequences encoding NSYN-1, alleles, or related sequences. [0156]
  • Probes may also be used for the detection of related sequences, and should preferably contain at least 50% of the nucleotides from any of the NSYN-1 encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and derived from the nucleotide sequence of SEQ ID NO:2 or from genomic sequence including promoter, enhancer elements, and introns of the naturally occurring NSYN-1. [0157]
  • Means for producing specific hybridization probes for DNAs encoding NSYN-1 include the cloning of nucleic acid sequences encoding NSYN-1 or NSYN-1 derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, radionuclides such as 32P or 35S, or enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like. [0158]
  • Polynucleotide sequences encoding NSYN-1 may be used for the diagnosis of conditions or disorders which are associated with expression of NSYN-1. Examples of such conditions or disorders include neurological disorders such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, schizophrenia, and Tourette's disorder; cancer such as cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and immune disorders such as AIDS, Addison's disease, adult respiratory distress syndrome, allergies, anemia, asthma, atherosclerosis, bronchitis, cholecystitis, Crohn's disease, ulcerative colitis, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythema nodosum, atrophic gastritis, glomerulonephritis, gout, Graves' disease, hypereosinophilia, irritable bowel syndrome, lupus erythematosus, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, rheumatoid arthritis, scleroderma, Sjögren's syndrome, and autoimmune thyroiditis. The polynucleotide sequences encoding NSYN-1 may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; or in dipstick, pin, ELISA assays or microarrays utilizing fluids or tissues from patient biopsies to detect altered NSYN-1 expression. Such qualitative or quantitative methods are well known in the art. [0159]
  • In a particular aspect, the nucleotide sequences encoding NSYN-1 may be useful in assays that detect activation or induction of various cancers, particularly those mentioned above. The nucleotide sequences encoding NSYN-1 may be labeled by standard methods, and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the biopsied or extracted sample is significantly altered from that of a comparable control sample, the nucleotide sequences have hybridized with nucleotide sequences in the sample, and the presence of altered levels of nucleotide sequences encoding NSYN-1 in the sample indicates the presence of the associated disease. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or in monitoring the treatment of an individual patient. [0160]
  • In order to provide a basis for the diagnosis of disease associated with expression of NSYN-1, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, which encodes NSYN-1, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with those from an experiment where a known amount of a substantially purified polynucleotide is used. Standard values obtained from normal samples may be compared with values obtained from samples from patients who are symptomatic for disease. Deviation between standard and subject values is used to establish the presence of disease. [0161]
  • Once disease is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to evaluate whether the level of expression in the patient begins to approximate that which is observed in the normal patient. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months. [0162]
  • With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer. [0163]
  • Additional diagnostic uses for oligonucleotides designed from the sequences encoding NSYN-1 may involve the use of PCR. Such oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably consist of two nucleotide sequences, one with sense orientation (5′->3′) and another with antisense (3′<-5′), employed under optimized conditions for identification of a specific gene or condition. The same two oligomers, nested sets of oligomers, or even a degenerate pool of oligomers may be employed under less stringent conditions for detection and/or quantitation of closely related DNA or RNA sequences. [0164]
  • Methods which may also be used to quantitate the expression of NSYN-1 include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and standard curves onto which the experimental results are interpolated (Melby, P. C. et al. (1993) J. Immunol. Methods, 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236). The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation. [0165]
  • In further embodiments, an oligonucleotide derived from any of the polynucleotide sequences described herein may be used as a target in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously (to produce a transcript image), and to identify genetic variants, mutations and polymorphisms. This information will be useful in determining gene function, understanding the genetic basis of disease, diagnosing disease, and in developing and monitoring the activity of therapeutic agents (Heller, R. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-55). [0166]
  • In one embodiment, the microarray is prepared and used according to the methods described in PCT application WO95/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. [0167]
  • The microarray is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray, it may be preferable to use oligonucleotides which are only 7-10 nucleotides in length. The microarray may contain oligonucleotides which cover the known 5′, or 3′, sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray may be oligonucleotides that are specific to a gene or genes of interest in which at least a fragment of the sequence is known or that are specific to one or more unidentified cDNAs which are common to a particular cell type, developmental or disease state. [0168]
  • In order to produce oligonucleotides to a known sequence for a microarray, the gene of interest is examined using a computer algorithm which starts at the 5′ or more preferably at the 3′ end of the nucleotide sequence. The algorithm identifies oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray. The “pairs” will be identical, except for one nucleotide which preferably is located in the center of the sequence. The second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support. [0169]
  • In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application WO95/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a “gridded” array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536 or 6144 oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation. [0170]
  • In order to conduct sample analysis using a microarray, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray so that the probe sequences hybridize to complementary oligonucleotides of the microarray. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large scale correlation studies on the sequences, mutations, variants, or polymorphisms among samples. [0171]
  • In another embodiment of the invention, the nucleic acid sequences which encode NSYN-1 may also be used to generate hybridization probes which are useful for mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome or to artificial chromosome constructions, such as human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions or single chromosome cDNA libraries as reviewed in Price, C. M. (1993) Blood Rev. 7:127-134, and Trask, B. J. (1991) Trends Genet. 7:149-154. [0172]
  • Fluorescent in situ hybridization (FISH as described in Verma et al. (1988) [0173] Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York, N.Y.) may be correlated with other physical chromosome mapping techniques and genetic map data. Examples of genetic map data can be found in various scientific journals or at Online Mendelian Inheritance in Man (OMIM). Correlation between the location of the gene encoding NSYN-1 on a physical chromosomal map and a specific disease, or predisposition to a specific disease, may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier, or affected individuals.
  • In situ hybridization of chromosomal preparations and physical mapping techniques such as linkage analysis using established chromosomal markers may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms, or parts thereof, by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, for example, AT to 11q22-23 (Gatti, R. A. et al. (1988) Nature 336:577-580), any sequences mapping to that area may represent associated or regulatory genes for further investigation. The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc. among normal, carrier, or affected individuals. [0174]
  • In another embodiment of the invention, NSYN-1, its catalytic or immunogenic fragments or oligopeptides thereof, can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes, between NSYN-1 and the agent being tested, may be measured. [0175]
  • Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the protein of interest as described in published PCT application WO84/03564. In this method, as applied to NSYN-1 large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with NSYN-1, or fragments thereof, and washed. Bound NSYN-1 is then detected by methods well known in the art. Purified NSYN-1 can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support. [0176]
  • In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding NSYN-1 specifically compete with a test compound for binding NSYN-1. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with NSYN-1. [0177]
  • In additional embodiments, the nucleotide sequences which encode NSYN-1 may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions. [0178]
  • The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention. [0179]
  • EXAMPLES
  • I SYNORAT01 cDNA Library Construction [0180]
  • The SYNORAT01 cDNA library was constructed from total RNA from the synovium of a rheumatoid elbow. The rheumatoid synovial tissue was obtained from UC Davis (lot #48) where it had been removed from a 51 year old Asian female and frozen. The frozen tissue was ground in a mortar and pestle and lysed immediately in a buffer containing guanidinium isothiocyanate. The lysate was extracted twice with phenol chloroform at pH 8.0 and centrifuged over a C[0181] 3Cl cushion using an SW28 rotor in an L8-70M ultracentrifuge (Beckman Coulter, Fullerton Calif.). RNA was precipitated using 0.3 M sodium acetate and 2.5 volumes of ethanol and resuspended in water.
  • RNA was DNase treated for 15 min at 37° C. before library construction. First strand cDNA synthesis was accomplished using an oligo d(T) primer/linker which also contained an XhoI restriction site. Second strand synthesis was performed using a combination of DNA polymerase I, [0182] E. coli ligase and RNase H, followed by the addition of an EcoRI adaptor to the blunt ended cDNA. The EcoRI adapted, double-stranded cDNA was then digested with XhoI restriction enzyme and fractionated on Sephacryl S400 to obtain sequences which exceeded 1000 bp in size. The size selected cDNAs were inserted into the LAMBDAZAP vector system (Stratagene); and the vector, which contains the PBLUESCRIPT phagemid (Stratagene), was transformed into cells of E. coli, strain XL1-BLUEMRF (Stratagene).
  • The plasmid forms of individual cDNA clones were obtained by the in vivo excision process. Enzymes from both PBLUESCRIPT and a cotransformed f1 helper phage nicked the DNA, initiated new DNA synthesis, and created the smaller, single-stranded circular phagemid DNA molecules which contained the cDNA insert. The phagemid DNA was released, purified, and used to reinfect fresh host cells (SOLR, Stratagene). Presence of the phagemid which carries the gene for β-lactamase allowed transformed bacteria to grow on medium containing ampicillin. [0183]
  • II Isolation and Sequencing of cDNA Clones [0184]
  • Plasmid DNA was released from the cells and purified using the MINIPREP kit (Edge Biosystems, Gaithersburg Md.). This kit consists of a 96 well block with reagents for 960 purifications. The recommended protocol was employed except for the following changes: 1) the bacteria were cultured in 1 ml of sterile TERRIFIC BROTH (APB) with carbenicillin at 25 mg/l and glycerol at 0.4%; 2) after inoculation, the cells were cultured for 19 hours and then lysed with 0.3 ml of lysis buffer; and 3) following isopropanol precipitation, the plasmid DNA pellet was resuspended in 0.1 ml of distilled water. After the last step in the protocol, samples were transferred to a 96-well block for storage at 4C. [0185]
  • The cDNAs were sequenced by the method of Sanger et al. (1975, J. Mol. Biol. 94:441f), using a Hamilton Micro Lab 2200 (Hamilton, Reno, Nev.) in combination with the DNA ENGINE thermal cyclers (MJ Research) and Applied Biosystems 377 DNA Sequencing Systems; and the reading frame was determined. [0186]
  • III Homology Searching of cDNA Clones and Their Deduced Proteins [0187]
  • The nucleotide sequences of the Sequence Listing or amino acid sequences deduced from them were used as query sequences against databases such as GenBank, SwissProt, BLOCKS, and Pima II. These databases which contain previously identified and annotated sequences were searched for regions of homology (similarity) using BLAST, which stands for Basic Local Alignment Search Tool (Altschul, S. F. (1993) J. Mol. Evol. 36:290-300; Altschul et al. (1990) J. Mol. Biol. 215:403-410). [0188]
  • BLAST produces alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST is especially useful in determining exact matches or in identifying homologs which may be of prokaryotic (bacterial) or eukaryotic (animal, fungal or plant) origin. Other algorithms such as the one described in Smith R F and T F Smith (1992; Protein Engineering 5:35-51), incorporated herein by reference, can be used when dealing with primary sequence patterns and secondary structure gap penalties. As disclosed in this application, the sequences have lengths of at least 49 nucleotides, and no more than 12% uncalled bases (where N is recorded rather than A, C, G, or T). [0189]
  • The BLAST approach, as detailed in Karlin, S. and S. F. Atschul (1993; Proc. Nat. Acad. Sci. 90:5873-5877) and incorporated herein by reference, searches for matches between a query sequence and a database sequence, to evaluate the statistical significance of any matches found, and to report only those matches which satisfy the user-selected threshold of significance. In this application, threshold was set at 10[0190] −25 for nucleotides and 10−14 for peptides.
  • Incyte nucleotide sequences were searched against the GenBank databases for primate (pri), rodent (rod), and mammalian sequences (mam), and deduced amino acid sequences from the same clones are searched against GenBank functional protein databases, mammalian (mamp), vertebrate (vrtp) and eukaryote (eukp), for homology. The relevant database for a particular match were reported as a Glxxx±p (where xxx is pri, rod, etc and if present, p=peptide). [0191]
  • IV Northern Analysis [0192]
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook et al., supra). [0193]
  • Analogous computer techniques using BLAST (Altschul, S. F. (1993) sunra; Altschul, S. F. et al. (1990) supra) are used to search for identical or related molecules in nucleotide databases such as GenBank or the LIFESEQ database (Incyte Genomics, Inc., Palo Alto, Calif.). This analysis is much faster than multiple, membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or homologous. [0194]
  • The basis of the search is the product score which is defined as:[0195]
  • % sequence identity ×% maximum BLAST score/100
  • The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1-2% error; and at 70, the match will be exact. Homologous molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules. [0196]
  • The results of northern analysis are reported as a list of libraries in which the transcript encoding NSYN-1 occurs. Abundance and percent abundance are also reported. Abundance directly reflects the number of times a particular transcript is represented in a cDNA library, and percent abundance is abundance divided by the total number of sequences examined in the cDNA library. [0197]
  • V Extension of NSYN-1 Encoding Polynucleotides [0198]
  • The nucleic acid sequence of the Incyte Clone 367401 was used to design oligonucleotide primers for extending a partial nucleotide sequence to full length. One primer was synthesized to initiate extension in the antisense direction, and the other was synthesized to extend sequence in the sense direction. Primers were used to facilitate the extension of the known sequence “outward” generating amplicons containing new, unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO 4.06 (National Biosciences), or another appropriate program, to be about 22 to about 30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures of about 68° to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided. [0199]
  • Selected human cDNA libraries (Life Technologies) were used to extend the sequence If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region. [0200]
  • High fidelity amplification was obtained by following the instructions for the XL-PCR kit ((Applied Biosystems) and thoroughly mixing the enzyme and reaction mix. Beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, PCR was performed using the DNA ENGINE thermal cycler (M.J. Research) and the following parameters: [0201]
    Step 1 94° C. for 1 min (initial denaturation)
    Step 2 65° C. for 1 min
    Step
    3 68° C. for 6 min
    Step 4 94° C. for 15 sec
    Step
    5 65° C. for 1 min
    Step 6 68° C. for 7 min
    Step 7 Repeat step 4-6 for 15 additional cycles
    Step
    8 94° C. for 15 sec
    Step
    9 65° C. for 1 min
    Step 10 68° C. for 7:15 min
    Step 11 Repeat step 8-10 for 12 cycles
    Step 12 72° C. for 8 min
    Step 13  4° C. (and holding)
  • A 5-10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6-0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK (QIAGEN Inc., Chatsworth, Calif.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning. [0202]
  • After ethanol precipitation, the products were redissolved in 13 μl of ligation buffer, 1 μl T4-DNA ligase (15 units) and 1 μl T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2-3 hours or overnight at 16° C. Competent [0203] E. coli cells (in 40 μl of appropriate media) were transformed with 3 μl of ligation mixture and cultured in 80 μl of SOC medium (Sambrook et al., supra). After incubation for one hour at 37° C., the E. coli mixture was plated on Luria Bertani (LB)-agar (Sambrook et al., supra) containing 2×Carb. The following day, several colonies were randomly picked from each plate and cultured in 150 μl of liquid LB/2×Carb medium placed in an individual well of an appropriate, commercially-available, sterile 96-well microtiter plate. The following day, 5 μl of each overnight culture was transferred into a non-sterile 96-well plate and after dilution 1:10 with water, 5 μl of each sample was transferred into a PCR array.
  • For PCR amplification, 18 μl of concentrated PCR reaction mix (3.3×) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions: [0204]
    Step 1 94° C. for 60 sec
    Step
    2 94° C. for 20 sec
    Step
    3 55° C. for 30 sec
    Step 4 72° C. for 90 sec
    Step
    5 Repeat steps 2-4 for an additional 29 cycles
    Step 6 72° C. for 180 sec
    Step 7  4° C. (and holding)
  • Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced. [0205]
  • In like manner, the nucleotide sequence of SEQ ID NO:2 is used to obtain 5′ regulatory sequences using the procedure above, oligonucleotides designed for 5′ extension, and an appropriate genomic library. [0206]
  • VI Labeling and Use of Individual Hybridization Probes [0207]
  • Hybridization probes derived from SEQ ID NO:2 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base-pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 (National Biosciences), labeled by combining 50 pmol of each oligomer and 250 μCi of [γ-[0208] 32P] adenosine triphosphate (Amersham Pharmacia Biotech) and T4 polynucleotide kinase (DuPont NEN, Boston, Mass.). The labeled oligonucleotides are substantially purified with SEPHADEX G-25 superfine resin column (Amersham Pharmacia Biotech). A aliquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases (Ase I, Bgl II, Eco RI, Pst I, Xba 1, or Pvu II; DuPont NEN).
  • The DNA from each digest is fractionated on a 0.7 percent agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham, N.H.). Hybridization is carried out for 16 hours at 40° C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1×saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT AR film (Kodak, Rochester, N.Y.) is exposed to the blots in a Phosphoimager cassette (Molecular Dynamics, Sunnyvale, Calif.) for several hours, hybridization patterns are compared visually. [0209]
  • VII Microarrays [0210]
  • To produce oligonucleotides for a microarray, the nucleotide sequence described herein is examined using a computer algorithm which starts at the 3′ end of the nucleotide sequence. The algorithm identifies oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that would interfere with hybridization. The algorithm identifies 20 sequence-specific oligonucleotides of 20 nucleotides in length (20-mers). A matched set of oligonucleotides is created in which one nucleotide in the center of each sequence is altered. This process is repeated for each gene in the microarray, and double sets of twenty 20 mers are synthesized and arranged on the surface of the silicon chip using a light-directed chemical process (Chee, M. et al., PCT/WO95/11995, incorporated herein by reference). [0211]
  • In the alternative, a chemical coupling procedure and an ink jet device are used to synthesize oligomers on the surface of a substrate (Baldeschweiler, J. D. et al., PCT/WO95/25116, incorporated herein by reference). In another alternative, a “gridded” array analogous to a dot (or slot) blot is used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array may be produced by hand or using available materials and machines and contain grids of 8 dots, 24 dots, 96 dots, 384 dots, 1536 dots or 6144 dots. After hybridization, the microarray is washed to remove nonhybridized probes, and a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the micro-array. [0212]
  • VIII Complementary Polynucleotides [0213]
  • Sequence complementary to the NSYN-1-encoding sequence, or any part thereof, is used to decrease or inhibit expression of naturally occurring NSYN-1. Although use of oligonucleotides comprising from about 15 to about 30 base-pairs is described, essentially the same procedure is used with smaller or larger sequence fragments. Appropriate oligonucleotides are designed using Oligo 4.06 software and the coding sequence of NSYN-1, SEQ ID NO:1. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5′ sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the NSYN-1-encoding transcript. [0214]
  • IX Expression of NSYN-1 [0215]
  • Expression of NSYN-1 is accomplished by subcloning the cDNAs into appropriate vectors and transforming the vectors into host cells. In this case, the cloning vector is also used to express NSYN-1 in [0216] E. coli. Upstream of the cloning site, this vector contains a promoter for β-galactosidase, followed by sequence containing the amino-terninal Met, and the subsequent seven residues of β-galactosidase. Immediately following these eight residues is a bacteriophage promoter useful for transcription and a linker containing a number of unique restriction sites.
  • Induction of an isolated, transformed bacterial strain with IPTG using standard methods produces a fusion protein which consists of the first eight residues of β-galactosidase, about 5 to 15 residues of linker, and the full length protein. The signal residues direct the secretion of NSYN-1 into the bacterial growth media which can be used directly in the following assay for activity. [0217]
  • X Demonstration of NSYN-1 Activity [0218]
  • NSYN-1 activity is demonstrated by binding to a fluorescein-conjugated Src SH3 domain (Hongtao et al. supra). NSYN-1 is coupled to polydimethylacrylamide resin beads using standard N-9-fluorenylmethyloxycarbonyl (Fmoc) chemistry techniques. Varying amounts of NSYN-1 coupled-beads are incubated in a suitable buffer containing 1% bovine serum albumin and fluorescein- conjugated Src SH3 (30 mM). Following the incubation, the beads are washed several times, and the amount of bound SH3 is determined by fluoresence microscopy. The amount of SH3 recovered is proportional to the activity of NSYN-1 in the assay. [0219]
  • XI Production of NSYN-1 Specific Antibodies [0220]
  • NSYN-1 that is substantially purified using PAGE electrophoresis (Sambrook, supra), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols. The amino acid sequence deduced from SEQ ID NO:2 is analyzed using DNASTAR software (DNASTAR Inc) to determine regions of high immunogenicity and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions, is described by Ausubel et al. (supra), and others. [0221]
  • Typically, the oligopeptides are 15 residues in length, synthesized using an Applied Biosystems Peptide Synthesizer Model 43 1A using fmoc-chemistry, and coupled to keyhole limpet hemocyanin (KLH, Sigma, St. Louis, Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS; Ausubel et al., supra). Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity, for example, by binding the peptide to plastic, blocking with I% BSA, reacting with rabbit antisera, washing, and reacting with radio iodinated, goat anti-rabbit IgG. [0222]
  • XII Purification of Naturally Occurring NSYN-1 Using Specific Antibodies [0223]
  • Naturally occurring or recombinant NSYN-1 is substantially purified by immunoaffinity chromatography using antibodies specific for NSYN-1. An immunoaffinity column is constructed by covalently coupling NSYN-1 antibody to an activated chromatographic resin, such as CNBr-activated Sepharose (Amersham Pharmacia Bioitech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions. [0224]
  • Media containing NSYN-1 is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of NSYN-1 (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/NSYN-1 binding (eg, a buffer of pH 2-3 or a high concentration of a chaotrope, such as urea or thiocyanate ion), and NSYN-1 is collected. [0225]
  • XIII Identification of Molecules Which Interact with NSYN-1 NSYN-1 or biologically active fragments thereof are labeled with [0226] 125I Bolton-Hunter reagent (Bolton et al. (1973) Biochem. J. 133: 529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled NSYN-1, washed and any wells with labeled NSYN-1 complex are assayed. Data obtained using different concentrations of NSYN-1 are used to calculate values for the number, affinity, and association of NSYN-1 with the candidate molecules.
  • All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims. [0227]
  • 1 2 2076 base pairs nucleic acid single linear cDNA CDS 32..1534 1 GGCACGAGAA TCTGGATCTC CCCTCCGTAT T ATG TCT GCA CTC CGA AGG AAA 52 Met Ser Ala Leu Arg Arg Lys 1 5 TTT GGG GAC GAT TAC CAG GTA GTG ACC ACT TCG TCC AGC GGT TCG GGC 100 Phe Gly Asp Asp Tyr Gln Val Val Thr Thr Ser Ser Ser Gly Ser Gly 10 15 20 TTG CAG CCC CAG GGG CCA GGA CAG GGC CCA CAG CAG CAG CTT GTA CCC 148 Leu Gln Pro Gln Gly Pro Gly Gln Gly Pro Gln Gln Gln Leu Val Pro 25 30 35 AAG AAG AAA CGG CAG CGG TTC GTG GAC AAG AAC GGT CGG TGC AAT GTG 196 Lys Lys Lys Arg Gln Arg Phe Val Asp Lys Asn Gly Arg Cys Asn Val 40 45 50 55 CAG CAC GGC AAC CTG GGC AGC GAG ACC AGT CGC TAC CTT TCC GAC CTC 244 Gln His Gly Asn Leu Gly Ser Glu Thr Ser Arg Tyr Leu Ser Asp Leu 60 65 70 TTC ACT ACC CTG GTG GAT CTC AAG TGG CGT TGG AAC CTC TTT ATC TTC 292 Phe Thr Thr Leu Val Asp Leu Lys Trp Arg Trp Asn Leu Phe Ile Phe 75 80 85 ATC CTC ACC TAC ACC GTG GCC TGG CTC TTC ATG GCG TCC ATG TGG TGG 340 Ile Leu Thr Tyr Thr Val Ala Trp Leu Phe Met Ala Ser Met Trp Trp 90 95 100 GTG ATC GCT TAT ACC CGG GGC GAC CTG AAC AAA GCC CAT GTC GGC AAC 388 Val Ile Ala Tyr Thr Arg Gly Asp Leu Asn Lys Ala His Val Gly Asn 105 110 115 TAC ACT CCC TGT GTG GCC AAT GTC TAT AAC TTC CCC TCT GCC TTC CTT 436 Tyr Thr Pro Cys Val Ala Asn Val Tyr Asn Phe Pro Ser Ala Phe Leu 120 125 130 135 TTC TTC ATC GAG ACC GAG GCC ACC ATC GGC TAT GGC TAC CGC TAC ATC 484 Phe Phe Ile Glu Thr Glu Ala Thr Ile Gly Tyr Gly Tyr Arg Tyr Ile 140 145 150 ACC GAC AAG TGC CCC GAG GGC ATC ATC CTT TTC CTT TTC CAG TCC ATC 532 Thr Asp Lys Cys Pro Glu Gly Ile Ile Leu Phe Leu Phe Gln Ser Ile 155 160 165 CTT GGC TCC ATC GTG GAC GCT TTC CTC ATC GGC TGC ATG TTC ATC AAG 580 Leu Gly Ser Ile Val Asp Ala Phe Leu Ile Gly Cys Met Phe Ile Lys 170 175 180 ATG TCC CAG CCC AAA AAG CGC GCC GAG ACC CTC ATG TTT AGC GAG CAT 628 Met Ser Gln Pro Lys Lys Arg Ala Glu Thr Leu Met Phe Ser Glu His 185 190 195 GCG GTT ATT TCC ATG AGG GAC GGA AAA CTC ACT CTC ATG TTC CGG GTG 676 Ala Val Ile Ser Met Arg Asp Gly Lys Leu Thr Leu Met Phe Arg Val 200 205 210 215 GGC AAC CTG CGC AAC AGC CAC ATG GTC TCC GCG CAG ATC CGC TGC AAG 724 Gly Asn Leu Arg Asn Ser His Met Val Ser Ala Gln Ile Arg Cys Lys 220 225 230 CTG CTC AAA TCT CGG CAG ACA CCT GAG GGT GAG TTT CTA CCC CTT GAC 772 Leu Leu Lys Ser Arg Gln Thr Pro Glu Gly Glu Phe Leu Pro Leu Asp 235 240 245 CAA CTT GAA CTG GAT GTA GGT TTT AGT ACA GGG GCA GAT CAA CTT TTT 820 Gln Leu Glu Leu Asp Val Gly Phe Ser Thr Gly Ala Asp Gln Leu Phe 250 255 260 CTT GTG TCC CCT CTC ACC ATT TGC CAC GTG ATC GAT GCC AAA AGC CCC 868 Leu Val Ser Pro Leu Thr Ile Cys His Val Ile Asp Ala Lys Ser Pro 265 270 275 TTT TAT GAC CTA TCC CAG CGA AGC ATG CAA ACT GAA CAG TTC GAG GTG 916 Phe Tyr Asp Leu Ser Gln Arg Ser Met Gln Thr Glu Gln Phe Glu Val 280 285 290 295 GTC GTC ATC CTG GAA GGC ATC GTG GAA ACC ACA GGG ATG ACT TGT CAA 964 Val Val Ile Leu Glu Gly Ile Val Glu Thr Thr Gly Met Thr Cys Gln 300 305 310 GCT CGA ACA TCA TAC ACC GAA GAT GAA GTT CTT TGG GGT CAT CGT TTT 1012 Ala Arg Thr Ser Tyr Thr Glu Asp Glu Val Leu Trp Gly His Arg Phe 315 320 325 TTC CCT GTA ATT TCT TTA GAA GAA GGA TTC TTT AAA GTC GAT TAC TCC 1060 Phe Pro Val Ile Ser Leu Glu Glu Gly Phe Phe Lys Val Asp Tyr Ser 330 335 340 CAG TTC CAT GCA ACC TTT GAA GTC CCC ACC CCT CCG TAC AGT GTG AAA 1108 Gln Phe His Ala Thr Phe Glu Val Pro Thr Pro Pro Tyr Ser Val Lys 345 350 355 GAG CAG GAA GAA ATG CTT CTC ATG TCT TCC CCT TTA ATA GCA CCA GCC 1156 Glu Gln Glu Glu Met Leu Leu Met Ser Ser Pro Leu Ile Ala Pro Ala 360 365 370 375 ATA ACC AAC AGC AAA GAA AGA CAC AAT TCT GTG GAG TGC TTA GAT GGA 1204 Ile Thr Asn Ser Lys Glu Arg His Asn Ser Val Glu Cys Leu Asp Gly 380 385 390 CTA GAT GAC ATT AGC ACA AAA CTT CCA TCG AAG CTG CAG AAA ATT ACG 1252 Leu Asp Asp Ile Ser Thr Lys Leu Pro Ser Lys Leu Gln Lys Ile Thr 395 400 405 GGG AGA GAA GAC TTT CCC AAA AAA CTC CTG AGG ATG AGT TCT ACA ACT 1300 Gly Arg Glu Asp Phe Pro Lys Lys Leu Leu Arg Met Ser Ser Thr Thr 410 415 420 TCA GAA AAA GCC TAT AGT TTG GGT GAT TTG CCC ATG AAA CTC CAA CGA 1348 Ser Glu Lys Ala Tyr Ser Leu Gly Asp Leu Pro Met Lys Leu Gln Arg 425 430 435 ATA AGT TCG GTT CCT GGC AAC TCT GAA GAA AAA CTG GTA TCT AAA ACC 1396 Ile Ser Ser Val Pro Gly Asn Ser Glu Glu Lys Leu Val Ser Lys Thr 440 445 450 455 ACC AAG ATG TTA TCA GAT CCC ATG AGC CAG TCT GTG GCC GAT TTG CCA 1444 Thr Lys Met Leu Ser Asp Pro Met Ser Gln Ser Val Ala Asp Leu Pro 460 465 470 CCG AAG CTT CAA AAG ATG GCT GGA GGA CCT ACC AGG ATG GAA GGG AAT 1492 Pro Lys Leu Gln Lys Met Ala Gly Gly Pro Thr Arg Met Glu Gly Asn 475 480 485 CTT CCA GCC AAA CTA AGA AAA ATG AAC TCT GAC CGC TTC ACA 1534 Leu Pro Ala Lys Leu Arg Lys Met Asn Ser Asp Arg Phe Thr 490 495 500 TAGCAAAACA CCCCATTAGG CATTATTTCA TGTTTTGATT TAGTTTTAGT CCAATATTTG 1594 GCTGATAAGA TAATCCTCCC CGGGAAATCT GAGAGGTCTA TCCCAGTCTG GCAAATTCAT 1654 CAGAGGACTC TTCATTGAAG TGTTGTTACT GTGTTGAACA TGAGTTACAA AGGGAGGACA 1714 TCATAAGAAA GCTAATAGTT GGCATGTATT ATCACATCAA GCATGCAATA ATGTGCAAAT 1774 TTTGCATTTA GTTTTCTGGC ATGATTTATA TATGGCATAT TTATATTGAA TATTCTGGAA 1834 AAATATATAA ATATATATTT GAAGTGGAGA TATTCTCCCC ATAATTTCTA ATATATGTAT 1894 TAAGCCAAAC ATGAGTGGAT AGCTTTCAGG GCACTAAAAT AATATACATG CATACATACA 1954 TACATGCATA TGCACAGACA CATACACACA CATACTCATA TATATAAAAC ATACCCATAC 2014 AAACATATAT ATCTAATAAA AATTGTGATG TTTTGTTCAA AAAAAAAAAA AAAAAACTCG 2074 AG 2076 501 amino acids amino acid linear protein 2 Met Ser Ala Leu Arg Arg Lys Phe Gly Asp Asp Tyr Gln Val Val Thr 1 5 10 15 Thr Ser Ser Ser Gly Ser Gly Leu Gln Pro Gln Gly Pro Gly Gln Gly 20 25 30 Pro Gln Gln Gln Leu Val Pro Lys Lys Lys Arg Gln Arg Phe Val Asp 35 40 45 Lys Asn Gly Arg Cys Asn Val Gln His Gly Asn Leu Gly Ser Glu Thr 50 55 60 Ser Arg Tyr Leu Ser Asp Leu Phe Thr Thr Leu Val Asp Leu Lys Trp 65 70 75 80 Arg Trp Asn Leu Phe Ile Phe Ile Leu Thr Tyr Thr Val Ala Trp Leu 85 90 95 Phe Met Ala Ser Met Trp Trp Val Ile Ala Tyr Thr Arg Gly Asp Leu 100 105 110 Asn Lys Ala His Val Gly Asn Tyr Thr Pro Cys Val Ala Asn Val Tyr 115 120 125 Asn Phe Pro Ser Ala Phe Leu Phe Phe Ile Glu Thr Glu Ala Thr Ile 130 135 140 Gly Tyr Gly Tyr Arg Tyr Ile Thr Asp Lys Cys Pro Glu Gly Ile Ile 145 150 155 160 Leu Phe Leu Phe Gln Ser Ile Leu Gly Ser Ile Val Asp Ala Phe Leu 165 170 175 Ile Gly Cys Met Phe Ile Lys Met Ser Gln Pro Lys Lys Arg Ala Glu 180 185 190 Thr Leu Met Phe Ser Glu His Ala Val Ile Ser Met Arg Asp Gly Lys 195 200 205 Leu Thr Leu Met Phe Arg Val Gly Asn Leu Arg Asn Ser His Met Val 210 215 220 Ser Ala Gln Ile Arg Cys Lys Leu Leu Lys Ser Arg Gln Thr Pro Glu 225 230 235 240 Gly Glu Phe Leu Pro Leu Asp Gln Leu Glu Leu Asp Val Gly Phe Ser 245 250 255 Thr Gly Ala Asp Gln Leu Phe Leu Val Ser Pro Leu Thr Ile Cys His 260 265 270 Val Ile Asp Ala Lys Ser Pro Phe Tyr Asp Leu Ser Gln Arg Ser Met 275 280 285 Gln Thr Glu Gln Phe Glu Val Val Val Ile Leu Glu Gly Ile Val Glu 290 295 300 Thr Thr Gly Met Thr Cys Gln Ala Arg Thr Ser Tyr Thr Glu Asp Glu 305 310 315 320 Val Leu Trp Gly His Arg Phe Phe Pro Val Ile Ser Leu Glu Glu Gly 325 330 335 Phe Phe Lys Val Asp Tyr Ser Gln Phe His Ala Thr Phe Glu Val Pro 340 345 350 Thr Pro Pro Tyr Ser Val Lys Glu Gln Glu Glu Met Leu Leu Met Ser 355 360 365 Ser Pro Leu Ile Ala Pro Ala Ile Thr Asn Ser Lys Glu Arg His Asn 370 375 380 Ser Val Glu Cys Leu Asp Gly Leu Asp Asp Ile Ser Thr Lys Leu Pro 385 390 395 400 Ser Lys Leu Gln Lys Ile Thr Gly Arg Glu Asp Phe Pro Lys Lys Leu 405 410 415 Leu Arg Met Ser Ser Thr Thr Ser Glu Lys Ala Tyr Ser Leu Gly Asp 420 425 430 Leu Pro Met Lys Leu Gln Arg Ile Ser Ser Val Pro Gly Asn Ser Glu 435 440 445 Glu Lys Leu Val Ser Lys Thr Thr Lys Met Leu Ser Asp Pro Met Ser 450 455 460 Gln Ser Val Ala Asp Leu Pro Pro Lys Leu Gln Lys Met Ala Gly Gly 465 470 475 480 Pro Thr Arg Met Glu Gly Asn Leu Pro Ala Lys Leu Arg Lys Met Asn 485 490 495 Ser Asp Arg Phe Thr 500

Claims (34)

What is claimed is:
1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
a) an amino acid sequence of SEQ ID NO:1,
b) a naturally occurring amino acid sequence having at least 95% sequence identity to an amino acid sequence of SEQ ID NO:1,
c) a biologically active fragment of an amino acid sequence of SEQ ID NO:1, and
d) an immunogenic fragment of an amino acid sequence of SEQ ID NO:1.3
2. An isolated polypeptide of claim 1, having a sequence of SEQ ID NO:1.
3. A composition comprising an effective amount of a polypeptide of claim 1 and an acceptable excipient.
4. A composition of claim 3, wherein the polypeptide has the sequence of SEQ ID NO:1.
5. An isolated polynucleotide encoding a polypeptide of claim 1.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 5.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A method for producing a polypeptide of claim 1, the method comprising:
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
b) recovering the polypeptide so expressed.
9. An isolated antibody which specifically binds to a polypeptide of claim 1.
10. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
a) a polynucleotide sequence of SEQ ID NO:2,
b) a naturally occurring polynucleotide sequence having at least 95% sequence identity to a polynucleotide sequence of SEQ ID NO:2,
c) a polynucleotide sequence complementary to a),
d) a polynucleotide sequence complementary to b), and
e) an RNA equivalent of a)-d).
11. An isolated polynucleotide comprising at least 60 contiguous nucleic acids of claim 10.
12. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:
a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
13. A method of claim 12, wherein the probe comprises at least 60 contiguous nucleotides.
14. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 10, the method comprising:
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
15. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
b) detecting agonist activity in the sample.
16. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
b) detecting antagonist activity in the sample.
17. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence of SEQ ID NO:2, the method comprising:
a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
b) detecting altered expression of the target polynucleotide, and
c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
18. A method for assessing toxicity of a test compound, said method comprising:
a) treating a biological sample containing nucleic acids with the test compound;
b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 10 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 8 or fragment thereof;
c) quantifying the amount of hybridization complex; and
d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
19. A diagnostic test for a condition or disease associated with the expression of NSYN-1 in a biological sample comprising the steps of:
a) combining the biological sample with an antibody of claim 9, under conditions suitable for the antibody to bind the polypeptide and form an antibody: polypeptide complex; and
b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
20. The antibody of claim 9, wherein the antibody is:
(a) a chimeric antibody;
(b) a single chain antibody;
(c) a Fab fragment;
(d) a F(ab′)2 fragment;
(e) a Fv fragment; or
(f) a humanized antibody.
21. A pharmaceutical composition comprising an antibody of claim 9 and a pharmaceutically acceptable excipient.
22. A method of diagnosing a condition or disease associated with the expression of NSYN-1 in a subject, comprising administering to said subject an effective amount of the pharmaceutical composition of claim 21.
23. A pharmaceutical composition of claim 21, wherein the antibody is labeled.
24. A method of diagnosing a condition or disease associated with the expression of NSYN-1 in a subject, comprising administering to said subject an effective amount of the pharmaceutical composition of claim 23.
25. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 9 comprising:
a) immunizing an animal with a polypeptide of SEQ ID NO:1 or an antigenically-effective fragment thereof under conditions to elicit an antibody response;
b) isolating animal antibodies; and
c) screening the isolated antibodies with the polypeptide thereby identifying a polyclonal antibody binds specifically to a polypeptide of SEQ ID NO:1.
26. An antibody produced by a method of claim 25.
27. A pharmaceutical composition comprising the antibody of claim 26 in conjunction with a suitable pharmaceutical carrier.
28. A method of making a monoclonal antibody with the specificity of the antibody of claim 9 comprising:
a) immunizing an animal with a polypeptide of SEQ ID NO:1 or an antigenically-effective fragment thereof under conditions to elicit an antibody response;
b) isolating antibody producing cells from the animal;
c) fusing the antibody producing cells with immortalized cells in culture to form monoclonal antibody-producing hybridoma cells;
d) culturing the hybridoma cells; and
e) isolating from the culture monoclonal antibodies which binds specifically to a polypeptide of SEQ ID NO:1.
29. A monoclonal antibody produced by a method of claim 28.
30. A pharmaceutical composition comprising the antibody of claim 29 in conjunction with a suitable pharmaceutical carrier.
31. The antibody of claim 9, wherein the antibody is produced by screening a Fab expression library.
32. The antibody of claim 9, wherein the antibody is produced by screening a recombinant immunoglobulin library.
33. A method for detecting a polypeptide of SEQ ID NO:1 in a sample comprising the steps of:
a) combining the antibody of claim 9 with a sample under conditions to allow specific binding; and
b) detecting specific binding, wherein specific binding indicates the presence of polypeptide of SEQ ID NO:1 in the sample.
34. A method of using an antibody to purify polypeptide of SEQ ID NO:1 from a sample, the method comprising:
a) combining the antibody of claim 9 with a sample under conditions to allow specific binding; and
b) separating the antibody from the protein, thereby obtaining purified polypeptide of SEQ ID NO:1.
US09/854,093 1997-07-31 2001-05-10 New synaptojanin isoform Abandoned US20020151698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/854,093 US20020151698A1 (en) 1997-07-31 2001-05-10 New synaptojanin isoform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/904,234 US6232459B1 (en) 1997-07-31 1997-07-31 Synaptojanin isoform
US09/854,093 US20020151698A1 (en) 1997-07-31 2001-05-10 New synaptojanin isoform

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/904,234 Division US6232459B1 (en) 1997-07-31 1997-07-31 Synaptojanin isoform

Publications (1)

Publication Number Publication Date
US20020151698A1 true US20020151698A1 (en) 2002-10-17

Family

ID=25418818

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/904,234 Expired - Fee Related US6232459B1 (en) 1997-07-31 1997-07-31 Synaptojanin isoform
US09/854,093 Abandoned US20020151698A1 (en) 1997-07-31 2001-05-10 New synaptojanin isoform

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/904,234 Expired - Fee Related US6232459B1 (en) 1997-07-31 1997-07-31 Synaptojanin isoform

Country Status (6)

Country Link
US (2) US6232459B1 (en)
EP (1) EP1002099A1 (en)
JP (1) JP2001512022A (en)
AU (1) AU8602198A (en)
CA (1) CA2298573A1 (en)
WO (1) WO1999006572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049848B1 (en) 2012-08-31 2015-06-09 Psr Dairy Genetics Llc Increased resistance to Enterobacteriaceae in bovines

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053469A2 (en) * 2000-01-21 2001-07-26 Incyte Genomics, Inc. Phosphatases
US6591352B2 (en) * 2001-05-31 2003-07-08 Intel Corporation Method and apparatus for executing firmware from a valid startup block
US6681768B2 (en) * 2001-06-22 2004-01-27 Sofotec Gmbh & Co. Kg Powder formulation disintegrating system and method for dry powder inhalers
JP2005507948A (en) * 2001-11-08 2005-03-24 デヴェロゲン アクチエンゲゼルシャフト フュア エントヴィックルングスビオローギッシェ フォルシュング Endophylline homologous proteins involved in the regulation of energy homeostasis

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022690A2 (en) 1995-12-08 1997-06-26 Chiron Corporation SIGNALING INOSITOL POLYPHOSPHATE 5-PHOSPHATASES (SIPs)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049848B1 (en) 2012-08-31 2015-06-09 Psr Dairy Genetics Llc Increased resistance to Enterobacteriaceae in bovines

Also Published As

Publication number Publication date
CA2298573A1 (en) 1999-02-11
AU8602198A (en) 1999-02-22
JP2001512022A (en) 2001-08-21
US6232459B1 (en) 2001-05-15
WO1999006572A1 (en) 1999-02-11
EP1002099A1 (en) 2000-05-24

Similar Documents

Publication Publication Date Title
US5849528A (en) Polynucleotides encoding a human S100 protein
US5888792A (en) ATP-dependent RNA helicase protein
US6313266B1 (en) Human nucleolin-like protein
US6210890B1 (en) Human peroxisomal thioesterase
US6399301B1 (en) Human phospholipase A2 protein
US6232440B1 (en) Annexin binding protein
US5874248A (en) Glutathione S-transferase homolog
US5962231A (en) Human glutathione-S-transferase
US6277373B1 (en) Phosphatidylinositol 4,5-bisphosphate 5-phosphatase
US20030077802A1 (en) Human PRL1 phosphatase
US5869259A (en) Carboxypeptidase inhibitor
US6232459B1 (en) Synaptojanin isoform
US5932420A (en) Polynucleotides encoding a human integral membrane protein
WO1999015659A2 (en) Human ubiquitin-conjugating enzymes
WO1999006558A1 (en) Human longevity-assurance protein homologs
US5958690A (en) Human TSC--22 Homolog
US5858714A (en) Human metaxin protein
US5840537A (en) cDNA encoding a vesicle transport protein
US7947804B1 (en) Vesicle trafficking proteins
US5869311A (en) Mitochondrial processing peptidase subunit
US5804419A (en) Calcium-binding phosphoprotein
US20030216311A1 (en) Maternally transcribed protein
US6077688A (en) Transducin beta-1 subunit
US20020132330A1 (en) Translational regulator

Legal Events

Date Code Title Description
AS Assignment

Owner name: INCYTE GENOMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAL, PREETI G.;TANG, Y. TOM;REEL/FRAME:012768/0218;SIGNING DATES FROM 20020215 TO 20020221

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION