US20020151516A1 - Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy - Google Patents

Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy Download PDF

Info

Publication number
US20020151516A1
US20020151516A1 US10/036,869 US3686901A US2002151516A1 US 20020151516 A1 US20020151516 A1 US 20020151516A1 US 3686901 A US3686901 A US 3686901A US 2002151516 A1 US2002151516 A1 US 2002151516A1
Authority
US
United States
Prior art keywords
ser
gly
thr
glu
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/036,869
Inventor
A. Mixson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP97112154A external-priority patent/EP0819758B1/en
Application filed by Individual filed Critical Individual
Priority to US10/036,869 priority Critical patent/US20020151516A1/en
Publication of US20020151516A1 publication Critical patent/US20020151516A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/195Chemokines, e.g. RANTES
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1758Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals p53
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/179Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2257Prolactin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/484Plasmin (3.4.21.7)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to delivery of antiangiogenic genes or nucleic acid encoding anti-angiogenic peptides to a tumor in vivo, and expression of the nucleic acid to inhibit tumoral growth.
  • Carrier:nucleic acid complexes are provided comprising nucleic acid encoding at least one anti-angiogenic protein or peptide, optionally together with further nucleic acid encoding a tumor suppressor protein. These complexes are useful in gene therapy for inhibition of tumor growth.
  • Vectors for carrying genes may be viral or non-viral.
  • replication-deficient retroviral vectors can efficiently transfect dividing cells.
  • Local intratumoral injection of retroviruses that contain a thymidine kinase transgene has been used successfully to affect regression of gliomas (Culver et al, Science, 256:1550-1552 (1992)).
  • adenoviral vectors can also transfect non-dividing cells, and their ability to cause insertional mutagenesis is greatly reduced. However, they can have the undesirable potential to activate the immune system in humans (Crystal, Science, 270:404-410, (1995). Attempts are underway to minimize the immunogenicity of the adenoviral vectors.
  • Non-viral vectors of DNA include primarily liposomes, peptides, proteins and polymers (Ledley, Current Opinion in Biotechnology, 5:626-636 (1994)). Of these, liposomes are currently the most common non-viral vectors of DNA.
  • the major advantage of liposomes over retroviruses is that DNA is not incorporated into the genome, and unlike adenoviral vectors, they are not immunogenic.
  • the major limitation of liposomes is that they are not as efficient as viral vectors in transfecting many cell types. Until recently, their medical utility was limited by their rapid uptake by phagocytic cells. Interest in liposomes as a vector has been increased by two technological advances.
  • Stealth liposomes have been developed which are more non-reactive and are not readily taken up by the reticuloendothelial system (RES).
  • RES reticuloendothelial system
  • Stealth liposomes are composed of lipids rich in oxygen in their head group (ethylene glycol or glycolipids) which provide a stearic barrier outside of the membrane.
  • head group ethylene glycol or glycolipids
  • Stealth liposomes remain in the blood for up to 100 times longer than conventional liposomes, and can thus increase pharmacological efficacy (Papahajopoulos, In: Stealth Liposomes , Ed., Lasic et al, CRC Press (1995); and Lasic et al, Science, 267:1275-76 (1995)).
  • stealth liposomes are still not particularly efficient in transfection of cells or as vectors for DNA.
  • the second significant advance in liposome technology has been the use of cationic liposomes complexed to negatively-charged DNA.
  • Cationic liposomes can condense DNA, and increase transfection yields several orders of magnitude.
  • the nucleic acids or oligonucleotides are not encapsulated, but are simply complexed with small unilamellar vesicles by electrostatic interactions.
  • the exact nature of the cationic liposome:DNA complex is not fully known, but intricate topological rearrangements of the cationic liposome:DNA complex may occur, including DNA condensation, liposome aggregation, and fusion.
  • This supramolecular complex can be added to cells in vitro, injected parenterally, or aerosolized for pulmonary applications (Lasic et al, Science, 267:1275-1276 (1995)). Further, the intravenous injection into mice of high concentrations of the CAT gene (100 ⁇ g or greater) complexed with cationic liposomes has been found to result in 40% transfection efficiency of well vascularized tissues, such as the spleen (Zhu et al, Science, 261:209-211 (1993)). Notwithstanding these advances, a major challenge of gene therapy remains the systemic delivery of transgenes to the tumor or peritumoral area that will effectively decrease the size of primary tumors and their metastases.
  • DNA complexes DNA complexes are that their 1 ⁇ 2 life in the blood stream is normally less than one hour (Allen et al, In: Liposome Technology -Vol. III, Ed., Gregoriadis G et al, CRC Press (1993); Li and Huang, J. of Liposome Research, 6:589 (1996).
  • liposomes can bind and transport RNA into cells.
  • the level of protein expression from transfected RNA is similar to the level of protein expressed from transfected DNA (Malone et al., Proc. Natl. Acad. Sci. USA 86:6077-6081 (1989).
  • Tumor suppressor genes are well-known in the art, and include the p53 gene (Baker et al, Science, 249:912-915 (1990)), the p21 gene (El-Deiry et al, Cell, 75:817-825 (1993); and Harper et al, Cell, 75:805-816 (1993)), and the rb gene (Bookstein et al, Science, 247:712-715 (1990)).
  • Mutations in the tumor suppressor gene p53 are known to occur in over 50% of human tumors, including metastatic breast cancer.
  • Various groups have found that reintroduction of the wild-type P53 by mediated transfer of a single copy of the p53 transgene into a variety of tumor cells, including breast cancer cells, results in a decrease in growth rate and/or attenuated tumor development once those transfected cells were implanted into nude mice (Wang et al, Oncogene, 8:279-288 (1993); Baker et al, Science, 249:912-915 (1990)); Bookstein et al, Science, 247:712-715 (1990); Cheng et al, Cancer Res., 52:222-226 (1992); Isaacs et al, Cancer Res., 51:4716-4720 (1991); Diller et al, Mol.
  • p53 coordinates multiple responses to DNA damage.
  • DNA damage results in an increase in the level of the p53 protein.
  • an important function of wild-type p53 function is to control the progression of cells from G1 to S phase.
  • p53 transcriptionally activates a p21 kd protein also known as WAF1 or CIP1
  • CDKs cyclin-dependent kinases
  • Proteins with anti-angiogenic activities are well-known and include: thrombospondin I (Kosfeld et al, J. Biol. Chem., 267:16230-16236 (1993); Tolsma et al, J. Cell Biol., 122:497-511 (1993); and Dameron et al, Science, 265:1582-1584 (1995)), IL-12 (Voest et al, J. Natl.
  • protamine Ingber et al, Nature, 348:555-557 (1990)
  • angiostatin O'Reilly et al, Cell, 79:315-328 (1994)
  • laminin Sakamoto et al, Cancer Res., 5:903-906 (1991)
  • endostatin O'Reilly et al., Cell, 88:277-285 (1997)
  • prolactin fragment Clapp et al, Endocrinol., 133:1292-1299 (1993)
  • Thrombospondin I (hereinafter “TSPI”) is a large trimeric glycoprotein composed of three identical 180 kd subunits (Lahav et al, Semin. Thromb. Hemostasis, 13:352-360 (1987)) linked by disulfide bonds (Lawer et al, J. Cell Biol., 103:1635-1648 (1986); and Lahav et al, Eur. J. Biochem., 145:151-156 (1984)). The majority of anti-angiogenic activity is found in the central stalk region of this protein (Tolsma et al, supra). There are at least two different structural domains within this central stalk region that inhibit neovascularization (Tolsma et al, supra).
  • TSPI Besides TSPI, there are six other proteins (fibronectin, laminin, platelet factor-4, angiostatin, endostatin and prolactin fragment) in which peptides have been isolated that inhibit angiogenesis.
  • fibronectin fibronectin, laminin, platelet factor-4, angiostatin, endostatin and prolactin fragment
  • F1K1 and analogues of the peptide somatostatin are known to inhibit angiogenesis.
  • Fibronectin is a major surface component of many normal cells, as well as a potent cell spreading factor. During transformation, the loss of cellular FN has been observed. Furthermore, the addition of fibronectin to transformed cells restores the normal phenotype. It has been found that either heparin-binding or cell-adhesion fragments from FN can inhibit experimental metastasis, suggesting that cell surface proteolyglycans are important in mediating the adhesion of metastatic tumor cells (McCarthy et al, J. Natl. Cancer Inst., 80:108-116 (1988)). It has also been found that FN and one of its peptides inhibits in vivo angiogenesis (Eijan et al, Mol. Biother., 3:38-40 (1991)).
  • Laminin is a major component of the basement membrane, and is known to have several biologically active sites that bind to endothelial and tumor cells.
  • Laminin is a cruciform molecule that is composed of three chains, an A Chain and two B chains. Several sites in laminin have been identified as cell binding domains. These sites promote cellular activities in vitro, such as cell spreading, migration, and cell differentiation. Two peptides from two sites of the laminin B1 chain are known to inhibit angiogenesis (Grant et al, Path. Res. Pract., 190:854-863 (1994)).
  • Platelet factor-4 is a platelet ⁇ -granule protein originally characterized by its high affinity for heparin. The protein is released from platelets during aggregation as a high molecular weight complex of a tetramer of the PF4 polypeptide and chondroitin sulfate, which dissociates at high ionic strength. PF4 has several biological properties including immunosuppression, chemotactic activity for neutrophils and monocytes as well as for fibroblasts, inhibition of bone resorption, and inhibition of angiogenesis. The angiostatic properties of human PF4 are associated with the carboxyl-terminal, heparin binding region of the molecule. A 12 amino acid synthetic peptide derived therefrom has been discovered to have marked angiostatic affects (Maione et al, Science, 247:77-79 (1990)).
  • Endostatin is a 20 kDa protein fragment of collagen XVIII. It has recently been found to be a potent inhibitor of tumor angiogenesis and tumor growth (O'Reilly et al., Cell, 88, 277-285, 1997).
  • somatostatin is not a protein, it is a naturally-occurring cyclic 14 amino acid peptide whose most-recognized function is the inhibition of growth hormone (GH) secretion.
  • GH growth hormone
  • Somatostatin is widely distributed in the brain, in which it fulfills a neuromodulatory role, and in several organs of the gastrointestinal tract, where it can act as a paracrine factor or as a true circulating factor.
  • the role played by the neuropeptide somatostatin also known as somatotropin release inhibitory factor (SRIF)
  • SRIF somatotropin release inhibitory factor
  • Recent investigations involving somatostatin receptors in normal and neoplastic human tissues suggest that the action is complex, and involves both direct and indirect mechanisms.
  • One of the anti-tumor mechanisms of these synthetic somatostatin analogues may be an anti-angiogenic effect (Woltering et al, J. Surg. Res., 50:245-50 (1990)).
  • the ability of native somatostatin and nine somatostatin analogues to inhibit angiogenesis were evaluated.
  • the most potent somatostatin analogue was found to be approximately twice as potent as the naturally-occurring somatostatin (Barrie et al, J. Surg. Res., 55:446-50 (1993)).
  • Angiostatin is a 38 kDa polypeptide fragment of plasminogen. Whereas plasminogen has no fibrinogenic activity, angiostatin has marked angiogenic activity (O'Rielly M S, et al Cell, 79:315-28 (1994)). Angiostatin was isolated when it was observed that the primary tumor suppressed metastases. That is, when the primary tumor was removed, the metastases grew. Administration of angiostatin blocks neo-vascularization and growth of metastases.
  • the Flk1 receptor is a receptor for vascular endothelial growth factor (VEGF).
  • VEGF vascular endothelial growth factor
  • FlK-1 is exclusively expressed on the surface of the endothelial cells. Once VEGF binds to the receptor, the Flk-1 receptor then homodimerizes to stimulate the endothelial cell to divide. If a mutant receptor of Flk-1 is transfected into the endothelial cells, the mutant receptor dimerizes with the wild-type Flk-1 receptor. In this endothelial transfected with the mutant Flk-1 receptor, VEGF is unable to stimulate the endothelial cells to divide.
  • Co-administration of a retrovirus carrying the Flk-1 cDNA inhibits tumor growth. This emphasizes that the receptor plays a critical role in the angiogenesis of solid tumors.
  • prolactin has been found to be antiangiogenic. Similar to plasminogen, prolactin is not anti-angiogenic but the prolactin fragment is a potent in vivo and in vitro inhibitor of angiogenesis (Clapp C. et al. Endocrinology. 133:1292-1299 (1993).
  • anti-angiogenic peptides can be useful anti-tumor agents, and interest in targeting genes toward the vasculature, there have been no published reports on effective in vivo gene therapy regimens utilizing anti-angiogenic DNA sequences.
  • An object of the invention is to deliver anti-angiogenic genes and/or nucleic acid encoding anti-angiogenic peptides to a tumor site in vivo, preferably by injection, whereby the nucleic acid is expressed to inhibit tumoral growth.
  • a further object of the present invention is to provide carrier complexes containing nucleic acid encoding anti-angiogenic peptides.
  • the carrier may be specifically targeted to the tumor and/or to the tumor vasculature.
  • the complexes are useful for providing anti-angiogenic gene therapy and inhibiting tumor growth in a subject.
  • a further object of the present invention is to provide carrier complexes containing nucleic acid encoding an anti-angiogenic gene or peptide, or DNA encoding more than one anti-angiogenic gene or peptide, and additionally nucleic acid encoding a tumor suppressor gene.
  • the carrier material comprises complexes of cationic polymer or cationic liposomes and nucleic acid encoding one or more antiangiogenic peptides, optionally with nucleic acid encoding a tumor suppressor gene.
  • the complexes are administered in a tumor-inhibiting effective amount to a patient, preferably by injection of the complexes.
  • FIG. 1 is a graph depicting the results of the experiment described in Example 8, infra, wherein complexes containing DNA encoding anti-angiogenic peptides were administered intratumorally.
  • FIG. 2 is a graph showing the results of in vitro transfection experiments into endothelial cells using cationic polymer carrier complexed with DNA encoding anti-angiogenic peptides, as described in Example 10.
  • a carrier:DNA complex comprising DNA encoding at least one anti-angiogenic gene or peptide and optionally additional nucleic acid encoding a tumor suppressor protein.
  • the nucleic acid may encode a full-length anti-angiogenic protein, or may encode a peptide having antiangiogenic activity, or a combination of nucleic acids.
  • complex refers to any hydrophobis and/or ionic interaction of nucleic acids with the viral or non-viral carriers.
  • viral:nucleic acid complexes can also be defined as incorporation of the nucleic acid within the viral shell and/or insertion of the nucleic acid within the viral genome.
  • Preferred carrier vehicles are liposomes, polymers, viruses (retroviruses, adenoviruses, and adeno-associated viruses, for example), viral shells, micelles, microspheres and the like. See, e.g. Nabel, E., Vectors for Gene Therapy, in Current Protocols in Human Genetics on CD-ROM, John Wiley and Sons (1997)
  • the carrier used in the invention is selected such that it can deliver the DNA in vivo to a tumor and/or the peritumoral area, including tumor vasculature, in a manner such that the DNA can be expressed.
  • Liposome carriers are known in the art. Reference is made to, for example, Liposome Technology, 2d Edition, CRC Press: Boca Raton (1983); and Stealth Liposomes, Lasic and Martin, Eds., CRC Press: Boca Raton (1995).
  • cationic lipids examples include 1,2-dioleolyl-sn-glycero-3-ethylphosphocholine (Avanti, Birmingham, Ala.), 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (Avanti, Birmingham, Ala.), and (2,3-diol-eyloxy)propyl-N,N,N-trimethylammonium chloride (DOTMA) (Syntex Corp., Palo Alto, Calif.).
  • DOTMA (2,3-diol-eyloxy)propyl-N,N,N-trimethylammonium chloride
  • the cationic lipids may be used in a mixture with dioleoylphosphatidylethanolamine (DOPE) (Avanti, Bimingham, Ala.).
  • DOPE dioleoylphosphatidylethanolamine
  • the amount of cationic lipid present in the mixture is generally in the range of from 100 to 40 mol %, preferably about 50 mol %.
  • the amount of DOPE present in the mixture is generally in the range of from 0 to 60 mol %, preferably about 50 mol %.
  • the liposomes may contain lipid derivatives of polyethylene glycol (PEG), referred to herein as “pegylated lipids”.
  • PEG polyethylene glycol
  • Components useful in creating pegylated lipids include, for example, 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol) 2000]. If pegylated lipid components are present, they are generally included in amounts of 0 to 10 mol %, preferably 1 to 5 mol %.
  • Cationic liposomes are prepared in a manner similar to other liposomes, for example, the cationic lipids with/or without DOPE are dissolved in a solvent, e.g., chloroform. The lipids are then dried in a round bottom flask overnight on a rotary evaporator. The resulting lipids are then hydrated with sterile water over a 1 hr period to form large multilamellar vesicle liposomes. To decrease the size of the liposomes, one may sonicate or pass the liposomes back and forth through a polycarbonate membrane. The DNA is then added to a solution containing the liposomes after their formation.
  • a solvent e.g., chloroform.
  • the lipids are then dried in a round bottom flask overnight on a rotary evaporator.
  • the resulting lipids are then hydrated with sterile water over a 1 hr period to form large multilamellar
  • Cationic polymer carriers useful in the context of this invention include polyethyleneimime (available from Avanti Lipids), polylysine (available from Sigma), polyhistidine (Sigma), and Superfect (available from Qiagen) or co-polymers of these carriers.
  • polyethyleneimime available from Avanti Lipids
  • polylysine available from Sigma
  • polyhistidine available from Sigma
  • Superfect available from Qiagen
  • Use of cationic polymer carriers for gene delivery in vitro and in vivo has been described in the literature, for example, by Goldman et al., Nature BioTechnology, 15:462 (1997).
  • mice are closely related to liposomes except they lack a bipolar membrane. They are made up of polar lipids, some of which can be the same cationic lipids utilized in liposomes. Similar to liposomes, micelles are known to transfect cells with plasmid DNA (Zhang Y P. Et al., Pharmaceutical Res. 14: 190-6, 1997; Labat-Moleur F. et al., Gene Therapy 3:1010-7, 1996).
  • viruses can deliver transgenes by regional intra-arterial and/or intratumoral injections. Construction of viral vector carrying transgenes has been extensively described and they have been used successfully in gene therapy. (Nable, E. In “Current Protocols in Human Genetics on CD-ROM”, John Wiley & Sons, Inc. 1997).
  • Ligands include antibodies, cell surface markers, viral peptides, and the like, which act to home the complexes to tumor vasculature or endothelial cells associated with tumor vasculature, or to tumor cells themselves, if a secreted form of the antiangiogenic DNA is delivered.
  • An antibody ligand may be an antibody or antibody fragment specific towards a tumor marker such as Her2, CEA, ferritin receptor, or a marker associated with tumor vasculature (integrins, tissue factor, or ⁇ -fibronectin isoform).
  • Antibodies or other ligands may be coupled to carriers such as liposomes and viruses, as is known in the art. See, e.g., Neri et al., Nature BioTechnology, 15:1271 (1997); Kirpotin, D. et al., Biochemistry 36:66 (1997) Cheng, Human Gene Therapy, 7:275 (1996); Pasqualini et al., Nature Biotechnology, 15:542 (1997); and Park et al., Proc. Am. Ass. Canc. Res. 38:342 (1997); Mori and Haung supra; and Nabel, supra.
  • psuedotyping of a retrovirus may be used to target a virus towards a particular cell. Marin et al., Mol. Med. Today, 3:396 (1997).
  • the complexes further include a tumor suppressor gene.
  • tumor suppressor genes include the p53 gene, the p21 gene (El-Deiry et al, supra; and Harper, supra), and the rb gene (Bookstein et al, supra).
  • the p53 gene is the currently preferred tumor suppressor gene.
  • anti-angiogenic protein or peptide encoded by the anti-angiogenic DNA is not critical to the present invention.
  • suitable peptides include:
  • thrombospondin I (TSPf) a fragment of thrombospondin I (TSPf) having the amino acid sequence shown in SEQUENCE ID NO: 1. This fragment is encoded by the DNA sequence (nucleotides 1013-1650 of the TSPI gene) shown in SEQUENCE ID NO: 2.
  • fibronectin inhibitor peptide having the amino acid sequence shown in SEQUENCE ID NO: 17, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 18.
  • angiostatin peptide having the amino acid sequence shown in SEQUENCE ID NO: 21, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 22.
  • xii) a concatamer of angiostatin peptide having the amino acid sequence shown in SEQUENCE ID NO: 23, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 24.
  • prolactin peptide having the amino acid sequence shown in SEQUENCE ID NO: 25, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 26.
  • the range of concatamers would be about 2 to about 66.
  • the maximum number of anti-angiogenic units for the TSPf is about 6, one can increase this concatameric number by deleting sequence less material to anti-angiogenic effects, such as the sequence shown in SEQUENCE ID NO: 29, where the corresponding amino acid sequence is shown in SEQUENCE NO: 30.
  • the concatameric number of the platelet factor-4 peptide, somatostatin inhibitor, angiostatin, and prolactin can be modified and increased.
  • concatamers consisting of two or more types of inhibitor could be more effective than homogenous concatamers.
  • heterogeneous concatamers of TSPI and the fibronectin inhibitors can be inserted into the same vector.
  • An example of such a heterogenous concatamer encoding DNA is shown in SEQUENCE ID NO: 31.
  • the peptide-encoding repeats of each sequence may be linked in blocks and/or randomly.
  • the heterogeneous concatamers need not be limited to only anti-angiogenic peptides.
  • the protein angiostatin or the large polypeptide fragment of prolactin can be modified with genes encoding anti-angiogenic peptides.
  • the concatameric number will vary depending on the number of nucleotide bases of the unit angiogenic inhibitor.
  • the ratio of large to small inhibitors is 0.1 to 0.9, preferably 1:1.
  • a translational start signal Met is included in the peptides as well as a transcriptional stop codon (TAA).
  • the SalI sites present in the above-sequences are a useful cloning tool for insertion of the DNA into a vector, for example BAP vector, which is known to be useful for expressing proteins efficiently in vivo from the ⁇ -actin promoter (Ray et al, Genes Dev., 5:2265-2273 (1991)).
  • Other restriction sites can be incorporated into the DNA for cloning into other vectors, as those in the art will readily appreciate.
  • plasmids with a simian viral promoter e.g., pZeoSV (Invitrogen); the CMV promoter, e.g., pcDNA3, pRc/CMV or pcDNA1 (Invitrogen); or the phosphoglycerate kinase (PGK) promoter (Abud et al., Developmental Genetics, 19:51 (1996).
  • Plasmids with a CMV promoter may contain an intron 5′ of the multiple cloning site (Zhu et al, supra) .
  • Plasmids containing the BGH terminator instead of the viral SV40 polyA terminator can also be employed in the present invention so as to increase the expression of the tumor suppressor gene and the anti-angiogenic peptide(s) in targeted cells.
  • the promoter can be a generalized promoter, such as the ⁇ -actin promoter, a simian viral promoter, or the CMV promoter, or a tissue specific promoter, such as the ⁇ -fetal protein promoter which is specific for liver (Kaneko et al, Cancer Res., 55:5283-5287 (1995), the tyrosinase promoter which is specific for melanoma cells (Hughes et al, Cancer Res., 55:3339-3345 (1995); or the enolase promoter which is specific for neurons (Andersen et al, Cell. Molec. Neurobiol., 13:503-515 (1993)).
  • a generalized promoter such as the ⁇ -actin promoter, a simian viral promoter, or the CMV promoter
  • a tissue specific promoter such as the ⁇ -fetal protein promoter which is specific for liver (Kaneko et al, Cancer Res., 55:5283-5287 (19
  • the plasmid vector may contain multiple promotors to enhance expression efficiency.
  • a plasmid vector may include IRES sequence (internal ribosome entry site) between different DNA coding sequences, allowing for the translation of more than one peptide from the same transcript. Coding sequences can be associated with secretory sequences in the vector to enhance expression levels.
  • the vector may comprise an extrachromosomal replicating vector.
  • RNA carries the coding sequence of antiangiogenic genes. See, e.g. Calos, TIG 12:463 (1996). These and other techniques to optimize expression are known to those in the art.
  • nucleic acid included in the complexes of the present invention is not critical, the amount of total nucleic acid administered in the complexes generally being in the range of about 0.005 to 0.32 ⁇ g/pM of carrier, preferably 0.045 to 0.08 ⁇ g/pM of carrier.
  • the nucleic acid encoding a tumor suppressor gene is generally present in an amount of from 0.0025 to 0.16 ⁇ g/ ⁇ M of carrier, preferably 0.028 to 0.04 ⁇ g/ ⁇ M of carrier.
  • the nucleic acid encoding an anti-angiogenic peptide is generally present in an amount from 0.0025 to 0.16 ⁇ g/ ⁇ M of carrier, preferably 0.028 to 0.04 ⁇ g/ ⁇ M of carrier.
  • the mole ratio of the nucleic acid encoding the tumor suppressor gene to the nucleic acid encoding the anti-angiogenic peptide is also variable. Generally, the mole ratio is between 1:5 to 5:1, preferably about 1 to 1.
  • the nucleic acid encoding the tumor suppressor gene and the anti-angiogenic peptide may be contained on the same vector or on separate vectors. Different nucleic acids encoding anti-angiogenic peptides may be provided on the same or different vectors within the complexes.
  • the above-described objects of the present invention have been met by a method for inhibiting tumor growth in a subject comprising administering to a tumor-bearing subject a carrier:nucleic acid complex comprising nucleic acid encoding an anti-angiogenic protein or peptide(s) with or without additional nucleic acid encoding a tumor suppressor gene.
  • the particular mode of administering the carrier:DNA complex of the present invention depends on various factors, but preferred modes include intravenous, subcutaneous or intratumoral injection. Intravenous injection is the preferred administration mode for distribution of the complex to the developing blood vessels of the tumor.
  • the amount of the carrier:nucleic acid to be administered will vary depending upon the age, weight, sex of the subject, as well as the tumor volume and rate of tumor growth in the subject. Generally, the amount of nucleic acid to be administered will be about 1 to 60 ⁇ g, preferably about 5 to 16 ⁇ g.
  • the coding region of the TSPI gene is known (GB Accession code-X14787).
  • the TSPI gene was inserted into the XbaI site of BAP vector (Ray et al, supra), producing TSPI vector, in which expression of the TSPI gene is controlled by the ⁇ -actin promoter.
  • TSPI cDNA and Bluescript plasmid (Promega) were digested with HindI and XbaI, and then the TSPI cDNA was ligated into Bluescript.
  • Bluescript containing the TSP cDNA and BAP vector were digested with SalI and BamHI, and TSPI cDNA inserted in the XbaI site of BAP vector. The correct orientation of the TSPI gene in BAP vector was confirmed by DNA sequencing.
  • TSPf vector is a vector containing a DNA fragment of the TSPI gene which has the two anti-angiogenic domains (nucleotides 992-1650) (Tolsma et al, supra), and a start codon and a stop codon.
  • the DNA fragment was prepared by PCR using thrombospondin I cDNA as template, and 100 pmoles of each of the following primers 5′-TAGGTCTAGAATGACTGAAGAGAACAAAGAG-3′ (SEQUENCE ID NO: 32) and 5′-ATGGTCTAGATTAGAGACGACTACGTTTCTG-3′ (SEQUENCE ID NO: 33) to amplify nucleotides 1013 to 1650 of the TSPI gene. Both primers contain XbaI sites (underlined), the first primer contains an ATG start codon (in bold), and the second primer contains a TTA stop codon (reverse orientation in bold).
  • TSPf The resulting 638 base pair fragment of the TSPI gene (hereinafter “TSPf”) encodes peptides that are known to be angiogenic inhibitors (Tolsma et al, supra).
  • the DNA fragment was purified, digested with XbaI, and the digested fragment inserted into the XbaI site of BAP vector such that the expression of the TSPf gene was controlled by the ⁇ -actin promoter (Ray et al, supra; and Lesoon-Wood et al, Human Gene Ther., 6:395-405 (1995)).
  • the correct orientation of the fragment in BAP vector was verified by digestion with BamHI, and confirmed by DNA sequencing.
  • the coding sequence of the p53 gene was cut from plasmid p1SVhp53c62 (Zakut-Houri et al, EMBO J., 4:1251-1255 (1985)) with XbaI, and inserted into the multiple cloning sites of pGEM3Z vector (Promega, Madison, Wis.). Digestion of the resulting vector with SalI and BamHI generated a 1900 bp fragment that was then inserted into the SalI and BamHI sites of BAP vector such that expression of the p53 gene was controlled by the ⁇ -actin promoter. The correct orientation of the p53 gene in BAP vector was confirmed by DNA sequencing.
  • Laminim peptide vector was prepared by annealing together the following two oligonucleotides: 5′-CTATCGTCGACATGTATATTGGTTCTCGTTAAGTCGACCTATC-3′ (SEQUENCE ID NO: 38) and 5′-GATAGGTCGACTTAACGAGAACCAATATACATGTCGACGATAG-3′ (SEQUENCE ID NO: 39),
  • Angiostatin vector was prepared by amplifying the angiostatin coding sequence of plasminogen cDNA using the following primers: 5′-AGTATCTAGAATGAGTGTATCTGTCACAATG-3′ (SEQUENCE ID NO: 40) and 5′-GAATTCTAGATCACCTATGAGGGGTTTGCTC-3′ (SEQUENCE ID NO: 41)
  • the resulting amplified fragment which contained a genetically engineered ATG start site and a TAA stop codon, was digested with XBAI, purified, and inserted into the XbaI site of BAP vector.
  • the plasmid was sequenced to verify correct orientation.
  • Laminin peptide concatamer vector was prepared by initially annealing the following two oligonucleotides: 5′-CTATCGTCGACATGTATATTGGTTCTCGTAAAAGATATATTGGTTCTCGTGGTAAAAGAGATATT GGTTCTCGTGGTAAAAGATAAGTOGACCTATC-3′ (SEQUENCE ID NO: 42) and 5′-GATAGGTCGACTTAT-3′ (SEQUENCE ID NO: 43).
  • the former oligonucleotide contains an anti-angiogenic fragment from laminin repeated four times, start and stop codons, as well as XbaI restrictions sites.
  • the annealed oligonucleotides were then extended with PFU (Stratagene), digested with SalI, and inserted into the SalI site of BAP vector. The plasmid was sequenced to verify correct orientation.
  • a DOTMA:DOPE liposome mixture is known to efficiently transfect endothelial cells in vitro (Tilkins et al, Focus, 16:117-119 (1994)). Accordingly, liposome:DNA complexes were prepared using DOTMA:DOPE, in a 1:1 ratio, essentially as described by Debs et al, J. Biol. Chem., 265:10189-10192 (1990).
  • Similar liposomes preparations can be prepared by mixing, at a 1:1 ratio, DOPE with other cationic lipids, such as, 1,2-dioleolyl-sn-glycero-3-ethylphophocholine, and 1,2-dimyristoyl-sn-glycero-3-ethylphophocholine.
  • a mixture of 400 nmoles of the DOTMA and DOPE were dried overnight on a rotary evaporator. Then, the lipids were rehydrated with 1.5 ml of water for 2 hrs. Next, the milky liposome preparation was sonicated with a bath sonicator until clear. The resulting liposome preparation was then passed through a 50 nm polycarbonate filter between 15 to 20 times with a LipsoFast-Basic extruder (Avestin, Ottawa, On).
  • the DNA (see following examples) was prepared with the maxi Qiagen kits (Qiagen Inc., Chatsworth, Calif.), and washed twice in 70% (v/v) ethanol. The DNA was then washed with distilled water or dialyzed against water for 24 hrs to removed any remaining salt.
  • mice were injected with 2.0 ⁇ 10 5 MDA-MB-435 tumor cells into the mammary fat pad using a stepper (Tridak) and a 27.5 g needle. Two weeks later, the mice whose tumors grew were divided into various treatment regimens, 18 mice per each regimen.
  • the treatment regimens were as follows: (1) untreated; (2) empty BAP vector; (3) TSPI vector alone; (4) TSPf vector alone; (5) p53 vector alone; (6) p53 vector+TSPI vector; and (7) p53 vector+TSPf vector.
  • mice received two intravenous injections, the first injection 14 days after the malignant cells had been implanted into the mice, and the second injection 24 days after the malignant cells had been implanted into the mice.
  • the first injection consisted of 200 pmoles of the liposomes complexed with 16 ⁇ g of total DNA.
  • the second injection consisted of 200 pmols of the liposomes complexed with 12.0 ⁇ g of total DNA.
  • the sizes of the tumors were measured 7 days after the second injection. The results are shown in Table 1 below.
  • the p53-treated group was found to be statistically different from the untreated group (p ⁇ 0.05) after 2 injections. However, the p53 treated group was not statistically different from the empty BAP vector group. This was similar to the results described by Lesoon-Wood et al, Human Gene Ther., 6:395-406 (1995), in which p53 was not statistically different from the empty BAP vector group until after 5 injections.
  • mice were injected with 2.0 ⁇ 10 5 MDA-MB-435 tumor cells into the mammary fat pad. Two weeks later, the mice whose tumors grew were divided into various treatment regimens, 12 mice per each regimen.
  • the treatment regimens were as follows: (1) empty BAP vector; (2) p53 vector alone, and (3) p53 vector+TSPf vector.
  • the mice were injected intravenously with 200 pmols of the liposomes complexed with 8.0 ⁇ g of total DNA. Subsequently, the mice were treated in the same manner with 200 pmols of the liposomes complexed with 12 ⁇ g of total DNA for the next 4 injections. Ten days elapsed between each injection.
  • Example 2 The experiment of Example 2 was repeated to confirm that BAP-TSPf complexed to liposomes effectively inhibited the growth of implanted tumors.
  • Five injections of the liposome:DNA complex was administered intravenously to three groups: 1) BAP, 2) TSPF, or 3) p53. Results are shown in Table 3.
  • Table 3 TABLE 3 Antitumor Effects of TSPf Putative Anti-tumor genes Tumor Size (mm 3 ) BAP 619 ⁇ 65 TSPf 386 ⁇ 35* P53 419 ⁇ 26*
  • mice injected with MDA-MB-435 tumor cells as described in Example 2 were treated as follows: (1) BAP vector; (2) TSPf vector alone; (3) laminin peptide vector alone; and (4) angiostatin vector alone.
  • the mice received 4 intravenous injections, the first injection being 10 days after the malignant cells had been implanted into the mice, and the remaining injections were thereafter 10 days apart.
  • the injections consisted of 200 pmols of the liposomes complexed with 12.5 ⁇ g of total DNA.
  • MCF7 cells (American Type Tissue Culture, Bethesda, Md.), which are a breast cancer cell line with two normal p53 alleles, were evaluated as described above except that 4.0 ⁇ 10 6 cells were injected into the mice and the third injection contained 12 ⁇ g of the DNA. Each injection was 10 days apart.
  • the most effective therapy against MCF7 was p53 and TSPI.
  • the significance level for the p53 +TSPf therapy was greater than for p53 alone when they were compared against either the untreated or the BAP groups.
  • the above experiment confirmed that p53 and TSPfI can decrease the MCF7 tumor more than the p53 treated or the untreated groups.
  • mice 4 ⁇ 10 5 MCF7 cells were injected bilaterally into the mammary fat pads of the 28 nude mice. After two weeks of growth, these mice were randomly divided into four groups: 1)empty vector, 2) p53, 3) p53+TSPf , and 4) untreated. The mice received one injection of 200 pmoles of liposomes complexed with 14 ugs of DNA, and the tumors from the various treatment groups were measured 10 days after the treatment. The results are shown in Table 6 below. TABLE 6 Putative Anti-tumor Genes Tumor Size (mm 3 ) Empty vector- 54.7 ⁇ 4.0 p53 45.5 ⁇ 5.0 p53 + TSPf 33.9 ⁇ 3.6* Untreated 61.9 ⁇ 8.3
  • mice were injected intravenously with 200 pmols of the liposomes complexed with 12.5 ⁇ gs of total DNA 6.25 ⁇ g of each vector when a combination was used. the mice then received 3 injections, each 10 days apart. The tumors were measured at the time of each injection and at the time of the last injection. The results are shown in Table 7 below.
  • Table 7 Putative Anti-tumor Genes Tumor Size (mm 3 ) BAP 345 ⁇ 23.5 Laminin peptide 280 ⁇ 32.4 Laminin peptide ⁇ p53 192 ⁇ 10.5*
  • the method of administration of the liposome:DNA complex is not critical. It has been found that intratumoral injections are effective. In an experiment involving intratumoral injection, 18 mice were injected with 3 ⁇ 10 5 C6 glioma cells (rat brain tumors) subcutaneously. Six days after the injections, the mice were separated into 3 groups: 1) BAP, 2)FLK-DN (a dominant negative receptor), and 3) angiostatin. After the second intratumoral injection, there was a statistical difference between the angiostatin and the BAP groups. See FIG. 1. Thus, the therapy of the invention is effective when complexes are administered intratumorally. The therapy is effective against tumors other than breast tumors.
  • the secretory angiostatin treatment group was more effective than the vector control or the angiostatin treatment group in reducing the size of the tumor. From this experiment, it is demonstrated that a secretory sequence inserted into the 5′ portion of the antiangiogenic inhibitor can increase its efficacy.
  • a cationic polymer (Superfect) was compared to cationic liposomes as carrier for transfecting endothelial cells in vitro with the CAT marker.
  • the cationic liposomes used for comparison to the polymer were DOSPER (Boerhinger), which of 14 lipids screened in vitro gave the best results.
  • 1 ⁇ 10 6 Huvec cells were placed into each well of a 6 well plate.
  • 25 uls of Superfect complexed with 2 ugs of DNA was added to each plate 24 hours after the initial seeding of the cells, and compared to plates to which had been added 2 ugs of DNA complexed with cationic liposomes.
  • mice were treated intravenously via the the tail vein with either the cationic liposome:BAP-p53/CMV-TSPf or Superfect:BAP-p53/CMV-TSPf. 9.5 ⁇ gs of DNA were complexed to Supefect (108 ⁇ g) or the cationic liposome (200 pmoles). The mice received only one dose of these therapies and their tumors were measured 10 days later. The mice tolerated both therapies without any apparent toxicity. The results are given in the table below. TABLE 10 Liposome Superfect Before Treatment 380 ⁇ 95# 384 ⁇ 86 After Treatment 525 ⁇ 80 403 ⁇ 72
  • the Superfect carrier appears to be superior to the liposome carrier even after one dose in these large tumors. There was only a minimal increase (5%) in the Superfect-treated group whereas there was a marked increase in the liposome-treated group (38%). When the growth of individual tumors were examined and compared to pre-treatment measurements, all 6 tumors in the liposome-treated group increased in their size. In contrast,4 of the 6 tumors in the Superfect group showed regression in their size compared to pre-treatment measurements.
  • mice injected with MDA-MB-435 tumor cells were treated as follows:
  • mice received 5 intravenous injections, the first injection being 10 days after the malignant cells had been implanted into the mice, and the remaining injections 10 days apart.
  • the injections consisted of 200 pmols of liposomes complexed with 12.5 ⁇ g of total vector DNA, with 6.25 ⁇ g of each vector when a combination was used. The results are shown in Table 12 below.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Carrier complexes comprising nucleic acid encoding an anti-angiogenic gene or peptide and optionally a further nucleic acid encoding a tumor suppressor protein are described. When administered to a subject bearing a tumor, the complexes can inhibit growth of the tumor.

Description

  • This application is a continuation in part of application Ser. No. 985,526, filed Dec. 5, 1997, which is a continuation in part of application Ser. No. 680,845, filed Jul. 16, 1996.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to delivery of antiangiogenic genes or nucleic acid encoding anti-angiogenic peptides to a tumor in vivo, and expression of the nucleic acid to inhibit tumoral growth. Carrier:nucleic acid complexes are provided comprising nucleic acid encoding at least one anti-angiogenic protein or peptide, optionally together with further nucleic acid encoding a tumor suppressor protein. These complexes are useful in gene therapy for inhibition of tumor growth. [0002]
  • BACKGROUND OF THE INVENTION
  • I. Gene Therapy [0003]
  • Development of gene therapy techniques is approaching clinical realization for the treatment of neoplastic and metabolic diseases. There remains substantial need for improvement both in the vector delivery systems for delivery of the transgene to target tissues, and the identification of genes most effective for anti-tumor therapy. [0004]
  • Vectors for carrying genes may be viral or non-viral. For example, replication-deficient retroviral vectors can efficiently transfect dividing cells. Local intratumoral injection of retroviruses that contain a thymidine kinase transgene has been used successfully to affect regression of gliomas (Culver et al, [0005] Science, 256:1550-1552 (1992)). Unlike retroviral vectors, adenoviral vectors can also transfect non-dividing cells, and their ability to cause insertional mutagenesis is greatly reduced. However, they can have the undesirable potential to activate the immune system in humans (Crystal, Science, 270:404-410, (1995). Attempts are underway to minimize the immunogenicity of the adenoviral vectors.
  • Non-viral vectors of DNA include primarily liposomes, peptides, proteins and polymers (Ledley, [0006] Current Opinion in Biotechnology, 5:626-636 (1994)). Of these, liposomes are currently the most common non-viral vectors of DNA. The major advantage of liposomes over retroviruses is that DNA is not incorporated into the genome, and unlike adenoviral vectors, they are not immunogenic. However, the major limitation of liposomes is that they are not as efficient as viral vectors in transfecting many cell types. Until recently, their medical utility was limited by their rapid uptake by phagocytic cells. Interest in liposomes as a vector has been increased by two technological advances. First, stearically stabilized (Stealth) liposomes have been developed which are more non-reactive and are not readily taken up by the reticuloendothelial system (RES). Stealth liposomes are composed of lipids rich in oxygen in their head group (ethylene glycol or glycolipids) which provide a stearic barrier outside of the membrane. As a result, Stealth liposomes remain in the blood for up to 100 times longer than conventional liposomes, and can thus increase pharmacological efficacy (Papahajopoulos, In: Stealth Liposomes, Ed., Lasic et al, CRC Press (1995); and Lasic et al, Science, 267:1275-76 (1995)). However, stealth liposomes are still not particularly efficient in transfection of cells or as vectors for DNA.
  • The second significant advance in liposome technology has been the use of cationic liposomes complexed to negatively-charged DNA. Cationic liposomes can condense DNA, and increase transfection yields several orders of magnitude. In the cationic liposome:DNA complex, the nucleic acids or oligonucleotides are not encapsulated, but are simply complexed with small unilamellar vesicles by electrostatic interactions. The exact nature of the cationic liposome:DNA complex is not fully known, but intricate topological rearrangements of the cationic liposome:DNA complex may occur, including DNA condensation, liposome aggregation, and fusion. This supramolecular complex can be added to cells in vitro, injected parenterally, or aerosolized for pulmonary applications (Lasic et al, [0007] Science, 267:1275-1276 (1995)). Further, the intravenous injection into mice of high concentrations of the CAT gene (100 μg or greater) complexed with cationic liposomes has been found to result in 40% transfection efficiency of well vascularized tissues, such as the spleen (Zhu et al, Science, 261:209-211 (1993)). Notwithstanding these advances, a major challenge of gene therapy remains the systemic delivery of transgenes to the tumor or peritumoral area that will effectively decrease the size of primary tumors and their metastases. Unlike the spleen and bone marrow, which are highly vascular and have a high capacity to filter macromolecules from the blood stream, most organs and tumors do not have this capacity, and the transfection efficiency of these tissues with liposomes is low (Marshall, Science, 269:1051-1055 (1995)). In addition, another limitation of cationic liposome: DNA complexes is that their ½ life in the blood stream is normally less than one hour (Allen et al, In: Liposome Technology-Vol. III, Ed., Gregoriadis G et al, CRC Press (1993); Li and Huang, J. of Liposome Research, 6:589 (1996). Sufficient transfection of the target cell by vectors carrying therapeutic genes has thus far been the rate-limiting step in gene therapy. In addition to DNA, liposomes can bind and transport RNA into cells. In fact, the level of protein expression from transfected RNA is similar to the level of protein expressed from transfected DNA (Malone et al., Proc. Natl. Acad. Sci. USA 86:6077-6081 (1989).
  • II. Tumor Suppressor Genes [0008]
  • Tumor suppressor genes are well-known in the art, and include the p53 gene (Baker et al, [0009] Science, 249:912-915 (1990)), the p21 gene (El-Deiry et al, Cell, 75:817-825 (1993); and Harper et al, Cell, 75:805-816 (1993)), and the rb gene (Bookstein et al, Science, 247:712-715 (1990)).
  • Mutations in the tumor suppressor gene p53 are known to occur in over 50% of human tumors, including metastatic breast cancer. Various groups have found that reintroduction of the wild-type P53 by mediated transfer of a single copy of the p53 transgene into a variety of tumor cells, including breast cancer cells, results in a decrease in growth rate and/or attenuated tumor development once those transfected cells were implanted into nude mice (Wang et al, [0010] Oncogene, 8:279-288 (1993); Baker et al, Science, 249:912-915 (1990)); Bookstein et al, Science, 247:712-715 (1990); Cheng et al, Cancer Res., 52:222-226 (1992); Isaacs et al, Cancer Res., 51:4716-4720 (1991); Diller et al, Mol. Cell. Biol., 10:5772-5781 (1990); Chen et al, Oncogene, 6:1799-1805 (1991); and Zou et al, Science, 263:526-529 (1994)). In addition, intratracheal injection of a retrovirus containing the p53 transgene has been shown to significantly inhibit the growth of lung tumors (Fujiwara et al, J. Natl. Cancer. Inst., 86:1458-1462 (1994)).
  • Systemic intravenous administration of a β-actin promoter-containing vector containing the p53 coding sequence complexed to cationic liposomes has been found to affect the tumor growth of a malignant line of breast cancer cells injected into nude mice (Lesoon-Wood et al, [0011] Proc. Am. Ass. Cancer Res., 36:421 (1995); and Lesoon-Wood et al, Human Gene Ther., 6:39-406 (1995)). Of the 15 tumors treated in this study, four of these tumors did not respond to treatment. Because of the unresponsiveness of these tumors, new therapies were sought in the present invention to more effectively decrease the size of these tumors.
  • p53 coordinates multiple responses to DNA damage. DNA damage results in an increase in the level of the p53 protein. Following DNA damage, an important function of wild-type p53 function is to control the progression of cells from G1 to S phase. Recently, several groups have found that p53 transcriptionally activates a p21 kd protein (also known as WAF1 or CIP1), an inhibitor of cyclin-dependent kinases (CDKs) (El-Deiry et al, supra; and Harper et al, supra). Inhibition of CDK activity is thought to block the release of the transcription factor E2F, and related transcription factors from the retinoblastoma protein RB, with consequent failure to activate transcription of genes required for S phase entry (Harper et al, supra; and Xiong et al, [0012] Nature, 366:701-704 (1993)). Evidence consistent with the model that pRb is a downstream effector of p53-induced G1 arrest has recently been reported (Dulic et al, Cell, 76:1013-1023 (1994)). Thus, p53 regulates cell cycle through two proteins: p21 and rb.
  • III. Anti-Angiogenic Proteins [0013]
  • Proteins with anti-angiogenic activities are well-known and include: thrombospondin I (Kosfeld et al, [0014] J. Biol. Chem., 267:16230-16236 (1993); Tolsma et al, J. Cell Biol., 122:497-511 (1993); and Dameron et al, Science, 265:1582-1584 (1995)), IL-12 (Voest et al, J. Natl. Cancer Inst., 87:581-586 (1995)), protamine (Ingber et al, Nature, 348:555-557 (1990)), angiostatin (O'Reilly et al, Cell, 79:315-328 (1994)), laminin (Sakamoto et al, Cancer Res., 5:903-906 (1991)), endostatin (O'Reilly et al., Cell, 88:277-285 (1997)), and a prolactin fragment (Clapp et al, Endocrinol., 133:1292-1299 (1993)). In addition, several anti-angiogenic peptides have been isolated from these proteins (Maione et al, Science, 247:77-79 (1990); Woltering et al, J. Surg. Res., 50:245-251 (1991); and Eijan et al, Mol. Biother., 3:38-40 (1991)).
  • Thrombospondin I (hereinafter “TSPI”) is a large trimeric glycoprotein composed of three identical 180 kd subunits (Lahav et al, [0015] Semin. Thromb. Hemostasis, 13:352-360 (1987)) linked by disulfide bonds (Lawer et al, J. Cell Biol., 103:1635-1648 (1986); and Lahav et al, Eur. J. Biochem., 145:151-156 (1984)). The majority of anti-angiogenic activity is found in the central stalk region of this protein (Tolsma et al, supra). There are at least two different structural domains within this central stalk region that inhibit neovascularization (Tolsma et al, supra).
  • Besides TSPI, there are six other proteins (fibronectin, laminin, platelet factor-4, angiostatin, endostatin and prolactin fragment) in which peptides have been isolated that inhibit angiogenesis. In addition, the dominant negative fragment of F1K1 and analogues of the peptide somatostatin are known to inhibit angiogenesis. [0016]
  • Fibronectin (FN) is a major surface component of many normal cells, as well as a potent cell spreading factor. During transformation, the loss of cellular FN has been observed. Furthermore, the addition of fibronectin to transformed cells restores the normal phenotype. It has been found that either heparin-binding or cell-adhesion fragments from FN can inhibit experimental metastasis, suggesting that cell surface proteolyglycans are important in mediating the adhesion of metastatic tumor cells (McCarthy et al, [0017] J. Natl. Cancer Inst., 80:108-116 (1988)). It has also been found that FN and one of its peptides inhibits in vivo angiogenesis (Eijan et al, Mol. Biother., 3:38-40 (1991)).
  • Laminin is a major component of the basement membrane, and is known to have several biologically active sites that bind to endothelial and tumor cells. Laminin is a cruciform molecule that is composed of three chains, an A Chain and two B chains. Several sites in laminin have been identified as cell binding domains. These sites promote cellular activities in vitro, such as cell spreading, migration, and cell differentiation. Two peptides from two sites of the laminin B1 chain are known to inhibit angiogenesis (Grant et al, [0018] Path. Res. Pract., 190:854-863 (1994)).
  • Platelet factor-4 (PF4) is a platelet α-granule protein originally characterized by its high affinity for heparin. The protein is released from platelets during aggregation as a high molecular weight complex of a tetramer of the PF4 polypeptide and chondroitin sulfate, which dissociates at high ionic strength. PF4 has several biological properties including immunosuppression, chemotactic activity for neutrophils and monocytes as well as for fibroblasts, inhibition of bone resorption, and inhibition of angiogenesis. The angiostatic properties of human PF4 are associated with the carboxyl-terminal, heparin binding region of the molecule. A 12 amino acid synthetic peptide derived therefrom has been discovered to have marked angiostatic affects (Maione et al, [0019] Science, 247:77-79 (1990)).
  • Endostatin is a 20 kDa protein fragment of collagen XVIII. It has recently been found to be a potent inhibitor of tumor angiogenesis and tumor growth (O'Reilly et al., Cell, 88, 277-285, 1997). [0020]
  • Although somatostatin is not a protein, it is a naturally-occurring cyclic 14 amino acid peptide whose most-recognized function is the inhibition of growth hormone (GH) secretion. Somatostatin is widely distributed in the brain, in which it fulfills a neuromodulatory role, and in several organs of the gastrointestinal tract, where it can act as a paracrine factor or as a true circulating factor. The role played by the neuropeptide somatostatin, also known as somatotropin release inhibitory factor (SRIF), in human cancer is not well understood. Recent investigations involving somatostatin receptors in normal and neoplastic human tissues suggest that the action is complex, and involves both direct and indirect mechanisms. One of the anti-tumor mechanisms of these synthetic somatostatin analogues may be an anti-angiogenic effect (Woltering et al, [0021] J. Surg. Res., 50:245-50 (1990)). In a recent study, the ability of native somatostatin and nine somatostatin analogues to inhibit angiogenesis were evaluated. The most potent somatostatin analogue was found to be approximately twice as potent as the naturally-occurring somatostatin (Barrie et al, J. Surg. Res., 55:446-50 (1993)).
  • Angiostatin is a 38 kDa polypeptide fragment of plasminogen. Whereas plasminogen has no fibrinogenic activity, angiostatin has marked angiogenic activity (O'Rielly M S, et al Cell, 79:315-28 (1994)). Angiostatin was isolated when it was observed that the primary tumor suppressed metastases. That is, when the primary tumor was removed, the metastases grew. Administration of angiostatin blocks neo-vascularization and growth of metastases. [0022]
  • The Flk1 receptor is a receptor for vascular endothelial growth factor (VEGF). FlK-1 is exclusively expressed on the surface of the endothelial cells. Once VEGF binds to the receptor, the Flk-1 receptor then homodimerizes to stimulate the endothelial cell to divide. If a mutant receptor of Flk-1 is transfected into the endothelial cells, the mutant receptor dimerizes with the wild-type Flk-1 receptor. In this endothelial transfected with the mutant Flk-1 receptor, VEGF is unable to stimulate the endothelial cells to divide. Co-administration of a retrovirus carrying the Flk-1 cDNA (Millauer B. et a., Nature, 367, 1994) inhibits tumor growth. This emphasizes that the receptor plays a critical role in the angiogenesis of solid tumors. [0023]
  • Finally, a 16 kd fragment of prolactin has been found to be antiangiogenic. Similar to plasminogen, prolactin is not anti-angiogenic but the prolactin fragment is a potent in vivo and in vitro inhibitor of angiogenesis (Clapp C. et al. Endocrinology. 133:1292-1299 (1993). [0024]
  • Despite the evidence that anti-angiogenic peptides can be useful anti-tumor agents, and interest in targeting genes toward the vasculature, there have been no published reports on effective in vivo gene therapy regimens utilizing anti-angiogenic DNA sequences. [0025]
  • The only transfected antiangiogenic gene that has been shown to inhibit tumor growth is full length thrombospondin I. In that study (Weinstat-Saslow et al, [0026] Cancer Research 54, 6504-6511, (1994)) tumor cells that expressed 15-fold higher levels of the thrombospondin I in vitro than baseline cells were implanted into mice. This transfected full length thrombospondin I was secreted from the tumor cells, and effectively reduced the tumor by 60%. Thus, this study determined that transfection of 100% of the tumor cells with a highly expressed and secreted antiangiogenic protein was able to reduce tumor size.
  • SUMMARY OF THE INVENTION
  • An object of the invention is to deliver anti-angiogenic genes and/or nucleic acid encoding anti-angiogenic peptides to a tumor site in vivo, preferably by injection, whereby the nucleic acid is expressed to inhibit tumoral growth. [0027]
  • A further object of the present invention is to provide carrier complexes containing nucleic acid encoding anti-angiogenic peptides. The carrier may be specifically targeted to the tumor and/or to the tumor vasculature. The complexes are useful for providing anti-angiogenic gene therapy and inhibiting tumor growth in a subject. [0028]
  • A further object of the present invention is to provide carrier complexes containing nucleic acid encoding an anti-angiogenic gene or peptide, or DNA encoding more than one anti-angiogenic gene or peptide, and additionally nucleic acid encoding a tumor suppressor gene. [0029]
  • In currently preferred embodiments, the carrier material comprises complexes of cationic polymer or cationic liposomes and nucleic acid encoding one or more antiangiogenic peptides, optionally with nucleic acid encoding a tumor suppressor gene. [0030]
  • The complexes are administered in a tumor-inhibiting effective amount to a patient, preferably by injection of the complexes.[0031]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph depicting the results of the experiment described in Example 8, infra, wherein complexes containing DNA encoding anti-angiogenic peptides were administered intratumorally. [0032]
  • FIG. 2 is a graph showing the results of in vitro transfection experiments into endothelial cells using cationic polymer carrier complexed with DNA encoding anti-angiogenic peptides, as described in Example 10.[0033]
  • DETAILED DESCRIPTION OF THE INVENTION
  • In one embodiment, the above-described objects of the present invention have been met by a carrier:DNA complex comprising DNA encoding at least one anti-angiogenic gene or peptide and optionally additional nucleic acid encoding a tumor suppressor protein. The nucleic acid may encode a full-length anti-angiogenic protein, or may encode a peptide having antiangiogenic activity, or a combination of nucleic acids. The term “complex” refers to any hydrophobis and/or ionic interaction of nucleic acids with the viral or non-viral carriers. In addition, viral:nucleic acid complexes can also be defined as incorporation of the nucleic acid within the viral shell and/or insertion of the nucleic acid within the viral genome. [0034]
  • Preferred carrier vehicles are liposomes, polymers, viruses (retroviruses, adenoviruses, and adeno-associated viruses, for example), viral shells, micelles, microspheres and the like. See, e.g. Nabel, E., Vectors for Gene Therapy, in Current Protocols in Human Genetics on CD-ROM, John Wiley and Sons (1997) The carrier used in the invention is selected such that it can deliver the DNA in vivo to a tumor and/or the peritumoral area, including tumor vasculature, in a manner such that the DNA can be expressed. [0035]
  • Liposome carriers are known in the art. Reference is made to, for example, Liposome Technology, 2d Edition, CRC Press: Boca Raton (1983); and Stealth Liposomes, Lasic and Martin, Eds., CRC Press: Boca Raton (1995). Examples of cationic lipids include 1,2-dioleolyl-sn-glycero-3-ethylphosphocholine (Avanti, Birmingham, Ala.), 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (Avanti, Birmingham, Ala.), and (2,3-diol-eyloxy)propyl-N,N,N-trimethylammonium chloride (DOTMA) (Syntex Corp., Palo Alto, Calif.). [0036]
  • The cationic lipids may be used in a mixture with dioleoylphosphatidylethanolamine (DOPE) (Avanti, Bimingham, Ala.). In the cationic liposome embodiment, the amount of cationic lipid present in the mixture is generally in the range of from 100 to 40 mol %, preferably about 50 mol %. The amount of DOPE present in the mixture is generally in the range of from 0 to 60 mol %, preferably about 50 mol %. [0037]
  • The liposomes may contain lipid derivatives of polyethylene glycol (PEG), referred to herein as “pegylated lipids”. Components useful in creating pegylated lipids include, for example, 1,2-diacyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol) 2000]. If pegylated lipid components are present, they are generally included in amounts of 0 to 10 mol %, preferably 1 to 5 mol %. [0038]
  • Cationic liposomes are prepared in a manner similar to other liposomes, for example, the cationic lipids with/or without DOPE are dissolved in a solvent, e.g., chloroform. The lipids are then dried in a round bottom flask overnight on a rotary evaporator. The resulting lipids are then hydrated with sterile water over a 1 hr period to form large multilamellar vesicle liposomes. To decrease the size of the liposomes, one may sonicate or pass the liposomes back and forth through a polycarbonate membrane. The DNA is then added to a solution containing the liposomes after their formation. [0039]
  • Cationic polymer carriers useful in the context of this invention include polyethyleneimime (available from Avanti Lipids), polylysine (available from Sigma), polyhistidine (Sigma), and Superfect (available from Qiagen) or co-polymers of these carriers. Use of cationic polymer carriers for gene delivery in vitro and in vivo has been described in the literature, for example, by Goldman et al., Nature BioTechnology, 15:462 (1997). [0040]
  • Stealth liposomes concentrate in solid tumors possibly due to their “leaky” vessels. Although stealth liposomes' uptake into cells is decreased due to the pegylation of their surface, this decrease is more than offset by their prolonged half-life in the circulation. Thus, pegylated liposomes are good carriers of DNA. Micelles are closely related to liposomes except they lack a bipolar membrane. They are made up of polar lipids, some of which can be the same cationic lipids utilized in liposomes. Similar to liposomes, micelles are known to transfect cells with plasmid DNA (Zhang Y P. Et al., Pharmaceutical Res. 14: 190-6, 1997; Labat-Moleur F. et al., Gene Therapy 3:1010-7, 1996). [0041]
  • As known in the art, there are potential problems with the intravenous injection of viral vectors. However, viruses can deliver transgenes by regional intra-arterial and/or intratumoral injections. Construction of viral vector carrying transgenes has been extensively described and they have been used successfully in gene therapy. (Nable, E. In “Current Protocols in Human Genetics on CD-ROM”, John Wiley & Sons, Inc. 1997). [0042]
  • Delivery of the complexes to a target in vivo can be enhanced by including a ligand in the complex having affinity for a specific cellular marker. Ligands include antibodies, cell surface markers, viral peptides, and the like, which act to home the complexes to tumor vasculature or endothelial cells associated with tumor vasculature, or to tumor cells themselves, if a secreted form of the antiangiogenic DNA is delivered. An antibody ligand may be an antibody or antibody fragment specific towards a tumor marker such as Her2, CEA, ferritin receptor, or a marker associated with tumor vasculature (integrins, tissue factor, or β-fibronectin isoform). Antibodies or other ligands may be coupled to carriers such as liposomes and viruses, as is known in the art. See, e.g., Neri et al., Nature BioTechnology, 15:1271 (1997); Kirpotin, D. et al., Biochemistry 36:66 (1997) Cheng, Human Gene Therapy, 7:275 (1996); Pasqualini et al., Nature Biotechnology, 15:542 (1997); and Park et al., Proc. Am. Ass. Canc. Res. 38:342 (1997); Mori and Haung supra; and Nabel, supra. Alternatively, psuedotyping of a retrovirus may be used to target a virus towards a particular cell. Marin et al., Mol. Med. Today, 3:396 (1997). [0043]
  • In a further embodiment, the complexes further include a tumor suppressor gene. Examples of such tumor suppressor genes include the p53 gene, the p21 gene (El-Deiry et al, supra; and Harper, supra), and the rb gene (Bookstein et al, supra). The p53 gene is the currently preferred tumor suppressor gene. [0044]
  • The particular anti-angiogenic protein or peptide encoded by the anti-angiogenic DNA is not critical to the present invention. Examples of suitable peptides include: [0045]
  • (i) a fragment of thrombospondin I (TSPf) having the amino acid sequence shown in SEQUENCE ID NO: 1. This fragment is encoded by the DNA sequence (nucleotides 1013-1650 of the TSPI gene) shown in SEQUENCE ID NO: 2. [0046]
  • ii) a concatamer of TSPf having the amino acid sequence of SEQUENCE ID NO: 3, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 4. [0047]
  • iii) laminin peptide having the amino acid sequence shown in SEQUENCE ID NO. 5, which is encoded by the DNA sequence shown in SEQUENCE ID NO. 6. [0048]
  • iv) a concatamer of the laminin sequence having the amino acid sequence shown in SEQUENCE ID NO: 7, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 8. [0049]
  • v) a peptide from platelet factor-4 having the amino acid sequence shown in SEQUENCE ID NO: 9, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 10. [0050]
  • vi) a concatamer of the platelet factor-4 peptide having the amino acid sequence shown in SEQUENCE ID NO: 11, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 12. [0051]
  • vii) a somatostatin inhibitor peptide having the amino acid sequence shown in SEQUENCE ID NO: 13, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 14. [0052]
  • viii) a concatamer of somatostatin inhibitor having the amino acid sequence shown in SEQUENCE ID NO: 15, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 16. [0053]
  • ix) fibronectin inhibitor peptide having the amino acid sequence shown in SEQUENCE ID NO: 17, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 18. [0054]
  • x) a concatamer of fibronectin inhibitor peptide having the amino acid sequence shown in SEQUENCE ID NO: 19, which is encoded by the DNA sequence shown in SEQUENCE ID NO. 20. [0055]
  • xi) angiostatin peptide having the amino acid sequence shown in SEQUENCE ID NO: 21, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 22. [0056]
  • xii) a concatamer of angiostatin peptide having the amino acid sequence shown in SEQUENCE ID NO: 23, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 24. [0057]
  • xiii) prolactin peptide having the amino acid sequence shown in SEQUENCE ID NO: 25, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 26. [0058]
  • xiv) a concatamer of prolactin peptide having the amino acid sequence shown in SEQUENCE ID NO. 27, which is encoded by the DNA sequence shown in SEQUENCE ID NO: 28. [0059]
  • xv) a peptide of Flk-1-DN having the sequence shown in SEQUENCE ID NO: 34, which is encoded by the DNA shown in SEQUENCE ID NO. 35. [0060]
  • xvi) a peptide of endostatin having the sequence shown in SEQUENCE ID NO: 36, which is encoded by the DNA shown in SEQUENCE ID NO: 37. [0061]
  • The above sequences are exemplary and not limiting on the scope of the invention. Certain domains of these fragments are known to have antiangiogenic activity, as reported in the literature. As will be apparent, some of these sequences are concatameric. Use of concatamers can increase the anti-angiogenic dosage level without changing the amount of vector necessary for delivery. The concatamers can extend up to approximately 4400 bases in length (the coding region of a large protein), and the number of concatamers possible will depend on the number of bases of a single anti-angiogenic peptide-encoding unit. As seen in the above examples, the concatamer repeats can be separated by intervening sequences. [0062]
  • For fibronectin, the range of concatamers would be about 2 to about 66. Although the maximum number of anti-angiogenic units for the TSPf is about 6, one can increase this concatameric number by deleting sequence less material to anti-angiogenic effects, such as the sequence shown in SEQUENCE ID NO: 29, where the corresponding amino acid sequence is shown in SEQUENCE NO: 30. In a similar manner, the concatameric number of the platelet factor-4 peptide, somatostatin inhibitor, angiostatin, and prolactin can be modified and increased. [0063]
  • Since more than one anti-angiogenic pathway exists, concatamers consisting of two or more types of inhibitor could be more effective than homogenous concatamers. For example, heterogeneous concatamers of TSPI and the fibronectin inhibitors can be inserted into the same vector. An example of such a heterogenous concatamer encoding DNA is shown in SEQUENCE ID NO: 31. In such heterogenous concatamers, the peptide-encoding repeats of each sequence may be linked in blocks and/or randomly. [0064]
  • The heterogeneous concatamers need not be limited to only anti-angiogenic peptides. For example, the protein angiostatin or the large polypeptide fragment of prolactin can be modified with genes encoding anti-angiogenic peptides. Again, the concatameric number will vary depending on the number of nucleotide bases of the unit angiogenic inhibitor. In a concatamer of large and small anti-angiogenic inhibitors, the ratio of large to small inhibitors is 0.1 to 0.9, preferably 1:1. [0065]
  • A translational start signal Met is included in the peptides as well as a transcriptional stop codon (TAA). [0066]
  • The SalI sites present in the above-sequences are a useful cloning tool for insertion of the DNA into a vector, for example BAP vector, which is known to be useful for expressing proteins efficiently in vivo from the β-actin promoter (Ray et al, Genes Dev., 5:2265-2273 (1991)). Other restriction sites can be incorporated into the DNA for cloning into other vectors, as those in the art will readily appreciate. [0067]
  • Other useful vectors for containing the DNA sequences include plasmids with a simian viral promoter, e.g., pZeoSV (Invitrogen); the CMV promoter, e.g., pcDNA3, pRc/CMV or pcDNA1 (Invitrogen); or the phosphoglycerate kinase (PGK) promoter (Abud et al., Developmental Genetics, 19:51 (1996). Plasmids with a CMV promoter may contain an intron 5′ of the multiple cloning site (Zhu et al, supra) . Plasmids containing the BGH terminator instead of the viral SV40 polyA terminator, e.g., pcDNA3, pRc/CMV, pRc/RSV (Norman et al, IBC's 5th Annual Meeting (1995); and Invitrogen vectors), can also be employed in the present invention so as to increase the expression of the tumor suppressor gene and the anti-angiogenic peptide(s) in targeted cells. [0068]
  • Expression of the DNA encoding the tumor suppressor protein and the DNA encoding the anti-angiogenic peptide can be achieved using a variety of promoters. For example, the promoter can be a generalized promoter, such as the β-actin promoter, a simian viral promoter, or the CMV promoter, or a tissue specific promoter, such as the α-fetal protein promoter which is specific for liver (Kaneko et al, [0069] Cancer Res., 55:5283-5287 (1995), the tyrosinase promoter which is specific for melanoma cells (Hughes et al, Cancer Res., 55:3339-3345 (1995); or the enolase promoter which is specific for neurons (Andersen et al, Cell. Molec. Neurobiol., 13:503-515 (1993)).
  • The plasmid vector may contain multiple promotors to enhance expression efficiency. Moreover, a plasmid vector may include IRES sequence (internal ribosome entry site) between different DNA coding sequences, allowing for the translation of more than one peptide from the same transcript. Coding sequences can be associated with secretory sequences in the vector to enhance expression levels. In another embodiment of the invention, the vector may comprise an extrachromosomal replicating vector. In a further embodiment, RNA carries the coding sequence of antiangiogenic genes. See, e.g. Calos, TIG 12:463 (1996). These and other techniques to optimize expression are known to those in the art. [0070]
  • The particular amount of nucleic acid included in the complexes of the present invention is not critical, the amount of total nucleic acid administered in the complexes generally being in the range of about 0.005 to 0.32 μg/pM of carrier, preferably 0.045 to 0.08 μg/pM of carrier. [0071]
  • The nucleic acid encoding a tumor suppressor gene is generally present in an amount of from 0.0025 to 0.16 μg/μM of carrier, preferably 0.028 to 0.04 μg/μM of carrier. The nucleic acid encoding an anti-angiogenic peptide is generally present in an amount from 0.0025 to 0.16 μg/μM of carrier, preferably 0.028 to 0.04 μg/μM of carrier. [0072]
  • The mole ratio of the nucleic acid encoding the tumor suppressor gene to the nucleic acid encoding the anti-angiogenic peptide is also variable. Generally, the mole ratio is between 1:5 to 5:1, preferably about 1 to 1. [0073]
  • The nucleic acid encoding the tumor suppressor gene and the anti-angiogenic peptide may be contained on the same vector or on separate vectors. Different nucleic acids encoding anti-angiogenic peptides may be provided on the same or different vectors within the complexes. [0074]
  • In another embodiment, the above-described objects of the present invention have been met by a method for inhibiting tumor growth in a subject comprising administering to a tumor-bearing subject a carrier:nucleic acid complex comprising nucleic acid encoding an anti-angiogenic protein or peptide(s) with or without additional nucleic acid encoding a tumor suppressor gene. [0075]
  • It is possible to treat different types of tumors. Examples of tumors which can be treated in accordance with the present invention include solid tumors, e.g., lung, colon, brain, breast and melanoma tumors. All of these tumors are very dependent on blood supply to sustain their growth. [0076]
  • The particular mode of administering the carrier:DNA complex of the present invention depends on various factors, but preferred modes include intravenous, subcutaneous or intratumoral injection. Intravenous injection is the preferred administration mode for distribution of the complex to the developing blood vessels of the tumor. [0077]
  • The amount of the carrier:nucleic acid to be administered will vary depending upon the age, weight, sex of the subject, as well as the tumor volume and rate of tumor growth in the subject. Generally, the amount of nucleic acid to be administered will be about 1 to 60 μg, preferably about 5 to 16 μg. [0078]
  • The following examples are provided for illustrative purposes and should not be construed as limiting the scope of the invention. [0079]
  • MATERIALS
  • Production of DNA Vectors [0080]
  • A. TSPI Vector [0081]
  • The coding region of the TSPI gene is known (GB Accession code-X14787). The TSPI gene was inserted into the XbaI site of BAP vector (Ray et al, supra), producing TSPI vector, in which expression of the TSPI gene is controlled by the β-actin promoter. [0082]
  • More specifically, TSPI cDNA and Bluescript plasmid (Promega) were digested with HindI and XbaI, and then the TSPI cDNA was ligated into Bluescript. Next, Bluescript containing the TSP cDNA and BAP vector were digested with SalI and BamHI, and TSPI cDNA inserted in the XbaI site of BAP vector. The correct orientation of the TSPI gene in BAP vector was confirmed by DNA sequencing. [0083]
  • B. TSPf Vector [0084]
  • TSPf vector is a vector containing a DNA fragment of the TSPI gene which has the two anti-angiogenic domains (nucleotides 992-1650) (Tolsma et al, supra), and a start codon and a stop codon. [0085]
  • The DNA fragment was prepared by PCR using thrombospondin I cDNA as template, and 100 pmoles of each of the following primers 5′-TAGGTCTAGAATGACTGAAGAGAACAAAGAG-3′ (SEQUENCE ID NO: 32) and 5′-ATGGTCTAGATTAGAGACGACTACGTTTCTG-3′ (SEQUENCE ID NO: 33) to amplify nucleotides 1013 to 1650 of the TSPI gene. Both primers contain XbaI sites (underlined), the first primer contains an ATG start codon (in bold), and the second primer contains a TTA stop codon (reverse orientation in bold). [0086]
  • The resulting 638 base pair fragment of the TSPI gene (hereinafter “TSPf”) encodes peptides that are known to be angiogenic inhibitors (Tolsma et al, supra). [0087]
  • After amplification, the DNA fragment was purified, digested with XbaI, and the digested fragment inserted into the XbaI site of BAP vector such that the expression of the TSPf gene was controlled by the β-actin promoter (Ray et al, supra; and Lesoon-Wood et al, [0088] Human Gene Ther., 6:395-405 (1995)). The correct orientation of the fragment in BAP vector was verified by digestion with BamHI, and confirmed by DNA sequencing.
  • C. p53 Vector [0089]
  • The coding sequence of the p53 gene was cut from plasmid p1SVhp53c62 (Zakut-Houri et al, [0090] EMBO J., 4:1251-1255 (1985)) with XbaI, and inserted into the multiple cloning sites of pGEM3Z vector (Promega, Madison, Wis.). Digestion of the resulting vector with SalI and BamHI generated a 1900 bp fragment that was then inserted into the SalI and BamHI sites of BAP vector such that expression of the p53 gene was controlled by the β-actin promoter. The correct orientation of the p53 gene in BAP vector was confirmed by DNA sequencing.
  • D. Laminim peptide vector was prepared by annealing together the following two oligonucleotides: [0091]
    5′-CTATCGTCGACATGTATATTGGTTCTCGTTAAGTCGACCTATC-3′ (SEQUENCE ID NO: 38) and
    5′-GATAGGTCGACTTAACGAGAACCAATATACATGTCGACGATAG-3′ (SEQUENCE ID NO: 39),
  • , which contain an anti-angiogenic fragment from laminin, start and stop codons, and XbaI restrictions sites. The annealed oligonucleotides were then digested with XbaI, and inserted into the XbaI site of BAP vector. The plasmid was sequenced to verify correct orientation. [0092]
  • E. Angiostatin vector was prepared by amplifying the angiostatin coding sequence of plasminogen cDNA using the following primers: [0093]
    5′-AGTATCTAGAATGAGTGTATCTGTCACAATG-3′ (SEQUENCE ID NO: 40) and
    5′-GAATTCTAGATCACCTATGAGGGGTTTGCTC-3′ (SEQUENCE ID NO: 41)
  • The resulting amplified fragment, which contained a genetically engineered ATG start site and a TAA stop codon, was digested with XBAI, purified, and inserted into the XbaI site of BAP vector. The plasmid was sequenced to verify correct orientation. [0094]
  • F. Laminin peptide concatamer vector was prepared by initially annealing the following two oligonucleotides: 5′-CTATCGTCGACATGTATATTGGTTCTCGTAAAAGATATATTGGTTCTCGTGGTAAAAGAGATATT GGTTCTCGTGGTAAAAGATAAGTOGACCTATC-3′ (SEQUENCE ID NO: 42) and 5′-GATAGGTCGACTTAT-3′ (SEQUENCE ID NO: 43). The former oligonucleotide contains an anti-angiogenic fragment from laminin repeated four times, start and stop codons, as well as XbaI restrictions sites. The annealed oligonucleotides were then extended with PFU (Stratagene), digested with SalI, and inserted into the SalI site of BAP vector. The plasmid was sequenced to verify correct orientation. [0095]
  • Preparation of Cationic Liposome:DNA Complexes [0096]
  • A DOTMA:DOPE liposome mixture is known to efficiently transfect endothelial cells in vitro (Tilkins et al, [0097] Focus, 16:117-119 (1994)). Accordingly, liposome:DNA complexes were prepared using DOTMA:DOPE, in a 1:1 ratio, essentially as described by Debs et al, J. Biol. Chem., 265:10189-10192 (1990). Similar liposomes preparations can be prepared by mixing, at a 1:1 ratio, DOPE with other cationic lipids, such as, 1,2-dioleolyl-sn-glycero-3-ethylphophocholine, and 1,2-dimyristoyl-sn-glycero-3-ethylphophocholine.
  • More specifically, a mixture of 400 nmoles of the DOTMA and DOPE were dried overnight on a rotary evaporator. Then, the lipids were rehydrated with 1.5 ml of water for 2 hrs. Next, the milky liposome preparation was sonicated with a bath sonicator until clear. The resulting liposome preparation was then passed through a 50 nm polycarbonate filter between 15 to 20 times with a LipsoFast-Basic extruder (Avestin, Ottawa, On). [0098]
  • The DNA (see following examples) was prepared with the maxi Qiagen kits (Qiagen Inc., Chatsworth, Calif.), and washed twice in 70% (v/v) ethanol. The DNA was then washed with distilled water or dialyzed against water for 24 hrs to removed any remaining salt. [0099]
  • About 400 pmols of the liposome preparation was gently mixed with between 10 to 35 μg of total DNA in an Eppendorf tube. This amount in each eppendorf tube was sufficient for two injections. The same amount of DNA was injected in the combination therapies as in the single treatment regimens. For example, if 16 μg of DNA in the combination therapy (8.0 μg of p53+8.0 μg of TSPf) was injected into each mouse of one group, then 16 μg of p53 was injected into each mouse of a second group. [0100]
  • EXAMPLE 1
  • The anti-angiogenic effects of carrier:DNA complexes were evaluated in mice containing MDA-MB-435 breast cancer tumors (American Type Tissue Culture, Bethesda, Md.), which are p53 deficient. [0101]
  • More specifically, after administering the anesthetic, Metofane, to 126 female athymic nude mice(NCI), the mice were injected with 2.0×10[0102] 5 MDA-MB-435 tumor cells into the mammary fat pad using a stepper (Tridak) and a 27.5 g needle. Two weeks later, the mice whose tumors grew were divided into various treatment regimens, 18 mice per each regimen. The treatment regimens were as follows: (1) untreated; (2) empty BAP vector; (3) TSPI vector alone; (4) TSPf vector alone; (5) p53 vector alone; (6) p53 vector+TSPI vector; and (7) p53 vector+TSPf vector. The mice received two intravenous injections, the first injection 14 days after the malignant cells had been implanted into the mice, and the second injection 24 days after the malignant cells had been implanted into the mice. The first injection consisted of 200 pmoles of the liposomes complexed with 16 μg of total DNA. The second injection consisted of 200 pmols of the liposomes complexed with 12.0 μg of total DNA. The sizes of the tumors were measured 7 days after the second injection. The results are shown in Table 1 below.
    TABLE 1
    Anti-tumor Effects of TSPI and TSPf
    Putative Anti-tumor DNA Tumor Size (mm3)
    Untreated 113.5 ± 6.41
    BAP 102.9 ± 6 .83
    TSPI 103.2 ± 8.96
    TSPf  89.4 ± 11.06
    p53  80.1 ± 12.7*
    p53 + TSPI  82.9 ± 6.95*
    p53 + TSPf  53.2 ± 8.37**
  • As shown in Table 1 above, the p53-treated group was found to be statistically different from the untreated group (p<0.05) after 2 injections. However, the p53 treated group was not statistically different from the empty BAP vector group. This was similar to the results described by Lesoon-Wood et al, [0103] Human Gene Ther., 6:395-406 (1995), in which p53 was not statistically different from the empty BAP vector group until after 5 injections.
  • However, p53 in combination with TSPf reduced tumors more effectively than p53 alone. After just 2 injections of this combination therapy, there was a 35% further reduction in tumor growth compared to p53 alone. The combination group was statistically different from both the untreated and the empty BAP vector groups (p<0.01). Although TSPf by itself was slightly less effective than p53, TSPf was, unexpectedly, substantially more effective than TSPI. In fact, the full length TSPI-treatment group had no more effect than either the empty vector or the untreated groups. This was unexpected for several reasons: 1) both the full length and the fragment of thrombospondin I contained the anti-angiogenic peptide, and 2) in a previous ex vivo study (Weinstat-Saslow et al, supra) full length thrombospondin I was effective in inhibiting tumor growth. [0104]
  • EXAMPLE 2
  • A second experiment was carried out to determine whether the combination therapy of p53 and TSPf was effective at lower dosages, and to confirm that the combination of p53 and TSPf reduced the tumor size significantly more than p53 alone. [0105]
  • More specifically, 36 mice were injected with 2.0×10[0106] 5 MDA-MB-435 tumor cells into the mammary fat pad. Two weeks later, the mice whose tumors grew were divided into various treatment regimens, 12 mice per each regimen. The treatment regimens were as follows: (1) empty BAP vector; (2) p53 vector alone, and (3) p53 vector+TSPf vector. The mice were injected intravenously with 200 pmols of the liposomes complexed with 8.0 μg of total DNA. Subsequently, the mice were treated in the same manner with 200 pmols of the liposomes complexed with 12 μg of total DNA for the next 4 injections. Ten days elapsed between each injection. The sizes of the tumors were measured before each injection and 7 days after the last injection. The results are shown in Table 2 below:
    TABLE 2
    Anti-tumor Effects of p53 and TSPf
    Putative Anti-tumor DNA Tumor Size (mm3)
    BAP 855 ± 345
    p53 616 ± 142
    p53 + TSPf  265 ± 133*
  • As shown in Table 2 above, the combination therapy with p53 and TSPf was statistically different from BAP, whereas the p53 alone treatment was not. This experiment confirmed that p53 and TSPf can be more effective than p53 alone. Furthermore, a different dosage regimen, without an initial booster dose of 16 μg of DNA as used in the experiment in Table 1, accentuated the difference between the combination treatment and the p53 alone treatments. [0107]
  • EXAMPLE 3
  • The experiment of Example 2 was repeated to confirm that BAP-TSPf complexed to liposomes effectively inhibited the growth of implanted tumors. Five injections of the liposome:DNA complex was administered intravenously to three groups: 1) BAP, 2) TSPF, or 3) p53. Results are shown in Table 3. [0108]
    TABLE 3
    Antitumor Effects of TSPf
    Putative Anti-tumor genes Tumor Size (mm3)
    BAP 619 ± 65
    TSPf  386 ± 35*
    P53  419 ± 26*
  • After five intravenous injections at a dose of 14.5 μg, the TSPf treatment gorup was statistically different form the BAP group. [0109]
  • EXAMPLE 4
  • An experiment was carried out to investigate the efficacy of complexes carrying DNA encoding anti-angiogenic peptide fragments of angiostatin and laminin. [0110]
  • 126 mice injected with MDA-MB-435 tumor cells as described in Example 2 were treated as follows: (1) BAP vector; (2) TSPf vector alone; (3) laminin peptide vector alone; and (4) angiostatin vector alone. The mice received 4 intravenous injections, the first injection being 10 days after the malignant cells had been implanted into the mice, and the remaining injections were thereafter 10 days apart. The injections consisted of 200 pmols of the liposomes complexed with 12.5 μg of total DNA. [0111]
  • The results are shown in Table 4 below. [0112]
    TABLE 4
    Putative anti-tumor DNA Tumor Size (mm3)
    BAP 194.7 ± 11.9
    TSPf 135.9 ± 119*
    Laminin peptide 126.4 ± 8.4*
    Angiostatin  95.2 ± 6.3*, **
  • As shown in Table 4 above, the cationic liposomes containing DNA encoding anti-angiogenic peptides (TSPf, laminin peptide and angiostatin) significantly inhibited tumor growth. [0113]
  • EXAMPLE 5
  • MCF7 cells (American Type Tissue Culture, Bethesda, Md.), which are a breast cancer cell line with two normal p53 alleles, were evaluated as described above except that 4.0×10[0114] 6 cells were injected into the mice and the third injection contained 12 μg of the DNA. Each injection was 10 days apart. Nine mice were injected with each of the following treatments except for regimen (1), in which 8 mice were treated: (1) untreated; (2) BAP; (3) p53; and (4) p53+TSP. The sizes of the tumors were measured 7 days after the third injection. The results are shown in Table 5 below.
    TABLE 5
    Effect of p53 and TSP. on MCF7s Cells
    Putative Anti-tumor Genes Tumor Size (mm3)
    Untreated 124.6 ± 7.3
    BAP   136 ± 16.8
    p53  83.1 ± 13.6*
    p53 + TSPf  69.0 ± 13**
  • As shown in Table 5 above, the most effective therapy against MCF7 was p53 and TSPI. The significance level for the p53 +TSPf therapy was greater than for p53 alone when they were compared against either the untreated or the BAP groups. The above experiment confirmed that p53 and TSPfI can decrease the MCF7 tumor more than the p53 treated or the untreated groups. [0115]
  • EXAMPLE 6
  • 4×10[0116] 5 MCF7 cells were injected bilaterally into the mammary fat pads of the 28 nude mice. After two weeks of growth, these mice were randomly divided into four groups: 1)empty vector, 2) p53, 3) p53+TSPf , and 4) untreated. The mice received one injection of 200 pmoles of liposomes complexed with 14 ugs of DNA, and the tumors from the various treatment groups were measured 10 days after the treatment. The results are shown in Table 6 below.
    TABLE 6
    Putative Anti-tumor Genes Tumor Size (mm3)
    Empty vector- 54.7 ± 4.0
    p53 45.5 ± 5.0
    p53 + TSPf 33.9 ± 3.6*
    Untreated 61.9 ± 8.3
  • As shown in Table 6 and previous tables, the additional reduction of the tumor by the combined use of p53 and TSPf compared to the use of p53 only, suggests that TSPf and p53 have different mechanisms of action. Although this does not preclude that the target of p53 is the vasculature of the tumor, the mechanism of inhibition of the tumor by p53 is uncertain at present. However, any mechanism of tumor inhibition by p53 and/or thrombospondin I must account for the low transfection efficiency of the tumor. Using a liposome complexed to a chloramphenicol acetyltransferase marker, it has been demonstrated that less than 5% of the tumor derived from MDA-MB-435 cells was transfected with the marker gene, and assuming similar transfection efficiency here, these favorable results were observed notwithstanding the very low level of transfection. [0117]
  • EXAMPLE 7
  • In a further experiment, it was determined that liposomes complexed to DNA encoding the laminin peptide can inhibit tumor growth. More specifically, after administering the anesthetic, Metofane, to 24 female athymic nude mice, the mice were injected with 3.0×10[0118] 5 MDA-MB-435 tumor cells into the mammary fat pad using a stepper and a 27.5 g needle. Two weeks later, the mice whose tumors grew were divided into various treatment regimens, 8 mice per each regimen. The treatment regimens were as follows: (1) BAP, (2) laminin, and (3) p53+laminin. The mice were injected intravenously with 200 pmols of the liposomes complexed with 12.5 μgs of total DNA 6.25 μg of each vector when a combination was used. the mice then received 3 injections, each 10 days apart. The tumors were measured at the time of each injection and at the time of the last injection. The results are shown in Table 7 below.
    TABLE 7
    Putative Anti-tumor Genes Tumor Size (mm3)
    BAP 345 ± 23.5
    Laminin peptide 280 ± 32.4
    Laminin peptide ± p53 192 ± 10.5*
  • As shown in Table 7 above, cationic liposomes containing a combination of DNAs encoding laminin peptide +p53 were more effective in reducing tumor growth than when DNA encoding the anti-angiogenic peptide was used alone. Thus, the addition of a tumor suppressor gene, p53, can enhance the anti-tumor effect of the anti-angiogenic peptide. [0119]
  • EXAMPLE 8
  • Although intravenous injection is preferred, the method of administration of the liposome:DNA complex is not critical. It has been found that intratumoral injections are effective. In an experiment involving intratumoral injection, 18 mice were injected with 3×10[0120] 5 C6 glioma cells (rat brain tumors) subcutaneously. Six days after the injections, the mice were separated into 3 groups: 1) BAP, 2)FLK-DN (a dominant negative receptor), and 3) angiostatin. After the second intratumoral injection, there was a statistical difference between the angiostatin and the BAP groups. See FIG. 1. Thus, the therapy of the invention is effective when complexes are administered intratumorally. The therapy is effective against tumors other than breast tumors.
  • EXAMPLE 9
  • It was also found that a liposome: secretory angiostatin construct can be more effective than the non-secreted analog. In this experiment, 24 nude mice were injected with 3×10[0121] 5 MDA-MB-435 cells. Two weeks later the mice were divided into three groups, and received the following therapies intravenously:1) liposome:BAP, 2) liposome:secreted angiostatin, and 3) liposome:angiostatin. The concentration of DNA injected into the mice was 14.5 ugs. The mice received one injection of the liposome:DNA complex and their tumors were measured 10 days after the injection.
    TABLE 8
    Efficacy of Secretory Angiostatin
    Therapeutic DNA Tumor Size (mm3)
    Angiostatin 28.8 ± 2.2
    Angiostatin-Secretory 18.6 ± 1.8*
    BAP 30.5 ± 3.3
  • As seen in table 8, the secretory angiostatin treatment group was more effective than the vector control or the angiostatin treatment group in reducing the size of the tumor. From this experiment, it is demonstrated that a secretory sequence inserted into the 5′ portion of the antiangiogenic inhibitor can increase its efficacy. [0122]
  • EXAMPLE 10
  • Further experiments indicate that cationic polymers can be useful as carriers in the present therapy, and can be the carriers of choice under certain conditions. [0123]
  • In the following example, a cationic polymer (Superfect) was compared to cationic liposomes as carrier for transfecting endothelial cells in vitro with the CAT marker. The cationic liposomes used for comparison to the polymer were DOSPER (Boerhinger), which of 14 lipids screened in vitro gave the best results. In this experiment, 1×10[0124] 6 Huvec cells were placed into each well of a 6 well plate. 25 uls of Superfect complexed with 2 ugs of DNA was added to each plate 24 hours after the initial seeding of the cells, and compared to plates to which had been added 2 ugs of DNA complexed with cationic liposomes. 36 hours after the transfection, the cells were lysed and the amount of CAT protein was assayed. The results are shown in Table 9.
    TABLE 9
    Vectors Activity (DPMs/Protein)
    Cationic liposomes 31.1 ± 7.2 
    with BAP
    Cationic liposomes 682 ± 129
    with CAT
    Superfect with BAP  21.4 ± 0.458
    Superfect with CAT  10816 ± 687* 
  • This experiment suggests that a cationic polymer are superior in the transfection of endothelial cells, which is significant since we have hypothesized that endothelial cells of the tumor are a primary target of the therapeutic gene. Similarly, it has been found in some cell lines that Superfect is a better transfection agent in vitro than cationic liposomes. [0125]
  • EXAMPLE 11
  • Since Superfect appeared to be superior to cationic liposomes in the transfection of endothelial cells in vitro, it was investigated whether Superfect complexed to a therapeutic gene would inhibit tumor growth compared to the corresponding liposome complex. This experiment was based on the hypothesis that the endothelial cells and not other cells are the primary target of these cationic vehicle:DNA complexes. In this experiment, six mice were injected with 2.5×10[0126] 5 MDA cells into the mammary fat pad bilaterally. These tumors were allowed to grow to a large size for 2 months. At this size, the tumor growth is rapidly increasing at an exponential rate and is more resistant to treatment compared to smaller tumors. The mice were treated intravenously via the the tail vein with either the cationic liposome:BAP-p53/CMV-TSPf or Superfect:BAP-p53/CMV-TSPf. 9.5 μgs of DNA were complexed to Supefect (108 μg) or the cationic liposome (200 pmoles). The mice received only one dose of these therapies and their tumors were measured 10 days later. The mice tolerated both therapies without any apparent toxicity. The results are given in the table below.
    TABLE 10
    Liposome Superfect
    Before Treatment 380 ± 95# 384 ± 86
    After Treatment 525 ± 80 403 ± 72
  • The Superfect carrier appears to be superior to the liposome carrier even after one dose in these large tumors. There was only a minimal increase (5%) in the Superfect-treated group whereas there was a marked increase in the liposome-treated group (38%). When the growth of individual tumors were examined and compared to pre-treatment measurements, all 6 tumors in the liposome-treated group increased in their size. In contrast,4 of the 6 tumors in the Superfect group showed regression in their size compared to pre-treatment measurements. [0127]
  • EXAMPLE 12
  • This experiment was carried out using concatamer DNA encoding anti-angiogenic peptides. Mice injected with MDA-MB-435 tumor cells were treated as follows: [0128]
  • (1) BAP vector; (2) laminin peptide concatamer alone; and (3) laminin peptide vector alone. The mice received 2 intravenous injections, the first injection being 10 days after the malignant cells had been implanted into the mice, and the [0129] second injection 10 days later. The injections consisted of 200 pmols of liposomes complexed with 12.5 μg of vector DNA. The results are shown in Table 11 below.
    TABLE 11
    Putative Anti-tumor DNA Tumor Size (mm3)
    BAP 86.8 ± 12.0
    Laminin peptide concatamer 63.9 ± 4.8 
    Laminin peptide 53.7 ± 3.0*
  • As shown in Table 11, complexes containing DNA encoding laminin concatamer or laminin peptide reduced tumor growth compared to the control (BAP vector). [0130]
  • EXAMPLE 13
  • To assess efficacy using a combination of DNAs encoding antiangiogenic peptides, mice injected with MDA-MB-435 tumor cells were treated as follows: [0131]
  • (1) BAP vector; (2) TSPf vector+angiostatin vector; (3) laminin peptide vector+TSPf vector; (4) laminin peptide vector+angiostatin vector; and (5) laminin peptide and FLK-DN receptor. The mice received 5 intravenous injections, the first injection being 10 days after the malignant cells had been implanted into the mice, and the remaining [0132] injections 10 days apart. The injections consisted of 200 pmols of liposomes complexed with 12.5 μg of total vector DNA, with 6.25 μg of each vector when a combination was used. The results are shown in Table 12 below.
    TABLE 12
    Putative anti-tumor DNA Tumor Size (mm3)
    BAP 626 ± 78
    TSPf + Angiostatin  296 ± 40*
    Laminin peptide + TSPf 461 ± 54
    Laminin peptide + Angiostatin 483 ± 46
    Laminin Peptide and F1K-DN 482 ± 21
  • As shown in Table 12, cationic liposomes containing combinations of DNA encoding anti-angiogenic peptides showed favorable inhibition of tumor growth. [0133]
  • While the invention has been described in detail and by reference to specific embodiments thereof, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. Documents cited herein are incorporated by reference to the extent relevant to practicing the invention. [0134]
  • 1 43 218 amino acids amino acid linear 1 Met Thr Glu Glu Asn Lys Glu Leu Ala Asn Glu Leu Arg Arg Pro Pro 1 5 10 15 Leu Cys Tyr His Asn Gly Val Gln Tyr Arg Asn Asn Glu Glu Trp Thr 20 25 30 Val Asp Ser Cys Thr Glu Cys His Cys Gln Asn Ser Val Thr Ile Cys 35 40 45 Lys Lys Val Ser Cys Pro Ile Met Pro Cys Ser Asn Ala Thr Val Pro 50 55 60 Asp Gly Glu Cys Cys Pro Arg Cys Trp Pro Ser Asp Ser Ala Asp Asp 65 70 75 80 Gly Trp Ser Pro Trp Ser Glu Trp Thr Ser Cys Ser Thr Ser Cys Gly 85 90 95 Asn Gly Ile Gln Gln Arg Gly Arg Ser Cys Asp Ser Leu Asn Asn Arg 100 105 110 Cys Glu Gly Ser Ser Val Gln Thr Arg Thr Cys His Ile Gln Glu Cys 115 120 125 Asp Lys Arg Phe Lys Gln Asp Gly Gly Trp Ser His Trp Ser Pro Trp 130 135 140 Ser Ser Cys Ser Val Thr Cys Gly Asp Gly Val Ile Thr Arg Ile Thr 145 150 155 160 Asn Leu Cys Ser Pro Ser Pro Gln Met Asn Gly Lys Pro Cys Glu Gly 165 170 175 Arg Glu Ala Glu Thr Lys Ala Cys Lys Lys Asp Ala Cys Pro Ile Asn 180 185 190 Gly Gly Trp Gly Pro Trp Ser Pro Trp Asp Ile Cys Ser Val Thr Cys 195 200 205 Gly Gly Gly Val Gln Lys Arg Ser Arg Leu 210 215 657 base pairs nucleic acid single linear 2 ATGACTGAAG AGAACAAAGA GTTGGCCAAT GAGCTGAGGC GGCCTCCCCT ATGCTATCAC 60 AACGGAGTTC AGTACAGAAA TAACGAGGAA TGGACTGTTG ATAGCTGCAC TGAGTGTCAC 120 TGTCAGAACT CAGTTACCAT CTGCAAAAAG GTGTCCTGCC CCATCATGCC CTGCTCCAAT 180 GCCACAGTTC CTGATGGAGA ATGCTGTCCT CGCTGTTGGC CCAGCGACTC TGCGGACGAT 240 GGCTGGTCTC CATGGTCCGA GTGGACCTCC TGTTCTACGA GCTGTGGCAA TGGAATTCAG 300 CAGCGCGGCC GCTCCTGCGA TAGCCTCAAC AACCGATGTG AGGGCTCCTC GGTCCAGACA 360 CGGACCTGCC ACATTCAGGA GTGTGACAAA AGATTTAAAC AGGATGGTGG CTGGAGCCAC 420 TGGTCCCCGT GGTCATCTTG TTCTGTGACA TGTGGTGATG GTGTGATCAC AAGGATCCGG 480 CTCTGCAACT CTCCCAGCCC CCAGATGAAT GGGAAACCCT GTGAAGGCGA AGCGCGGGAG 540 ACCAAAGCCT GCAAGAAAGA CGCCTGCCCC ATCAATGGAG GCTGGGGTCC TTGGTCACCA 600 TGGGACATCT GTTCTGTCAC CTGTGGAGGA GGGGTACAGA AACGTAGTCG TCTCTAA 657 441 amino acids amino acid linear 3 Met Thr Glu Glu Asn Lys Glu Leu Ala Asn Glu Leu Arg Arg Pro Pro 1 5 10 15 Leu Cys Tyr His Asn Gly Val Gln Tyr Arg Asn Asn Glu Glu Trp Thr 20 25 30 Asp Val Ser Cys Thr Glu Cys His Cys Gln Asn Ser Val Thr Ile Cys 35 40 45 Lys Lys Val Ser Cys Pro Ile Met Pro Cys Ser Asn Ala Thr Val Pro 50 55 60 Asp Gly Glu Cys Cys Pro Arg Cys Trp Pro Ser Asp Ser Ala Asp Asp 65 70 75 80 Trp Gly Ser Pro Trp Ser Glu Trp Thr Ser Cys Ser Thr Ser Cys Gly 85 90 95 Gly Asn Ile Gln Gln Arg Gly Arg Ser Cys Asp Ser Leu Asn Asn Arg 100 105 110 Cys Glu Gly Ser Ser Val Gln Thr Arg Thr Cys His Ile Gln Glu Cys 115 120 125 Asp Lys Arg Phe Lys Gln Asp Gly Gly Trp Ser His Trp Ser Pro Trp 130 135 140 Ser Ser Cys Ser Val Thr Cys Gly Asp Gly Val Ile Thr Arg Ile Thr 145 150 155 160 Leu Cys Asn Ser Pro Ser Pro Gln Met Asn Gly Lys Pro Cys Glu Gly 165 170 175 Glu Ala Arg Glu Thr Lys Ala Cys Lys Lys Asp Ala Cys Pro Ile Asn 180 185 190 Gly Gly Trp Gly Pro Trp Ser Pro Trp Asp Ile Cys Ser Val Thr Cys 195 200 205 Gly Gly Gly Val Gln Lys Arg Ser Arg Leu Cys Val Asp Ser Arg Met 210 215 220 Thr Glu Glu Asn Lys Glu Leu Ala Asn Glu Leu Arg Arg Pro Pro Leu 225 230 235 240 Cys Tyr His Asn Gly Val Gln Tyr Arg Asn Asn Glu Glu Trp Thr Val 245 250 255 Asp Ser Cys Thr Glu Cys His Cys Gln Asn Ser Val Thr Ile Cys Lys 260 265 270 Lys Val Ser Cys Pro Ile Met Pro Cys Ser Asn Ala Thr Val Pro Asp 275 280 285 Gly Glu Cys Cys Pro Arg Cys Trp Pro Ser Asp Ser Ala Asp Asp Gly 290 295 300 Trp Ser Pro Trp Ser Glu Trp Thr Ser Cys Ser Thr Ser Cys Gly Asn 305 310 315 320 Gly Ile Gln Gln Arg Gly Arg Ser Cys Asp Ser Leu Asn Asn Arg Cys 325 330 335 Glu Gly Ser Ser Val Gln Thr Arg Thr Cys His Ile Gln Glu Cys Asp 340 345 350 Lys Arg Phe Lys Gln Asp Gly Gly Trp Ser His Trp Ser Pro Trp Ser 355 360 365 Ser Cys Ser Val Thr Cys Gly Asp Gly Val Ile Thr Arg Ile Thr Leu 370 375 380 Cys Asn Ser Pro Ser Pro Gln Met Asn Gly Lys Pro Cys Glu Gly Glu 385 390 395 400 Ala Arg Glu Thr Lys Ala Cys Lys Lys Asp Ala Cys Pro Ile Asn Gly 405 410 415 Gly Trp Gly Pro Trp Ser Pro Trp Asp Ile Cys Ser Val Thr Cys Gly 420 425 430 Gly Gly Val Gln Lys Arg Ser Arg Leu 435 440 1326 base pairs nucleic acid single linear 4 ATGACTGAAG AGAACAAAGA GTTGGCCAAT GAGCTGAGGC GGCCTCCCCT ATGCTATCAC 60 AACGGAGTTC AGTACAGAAA TAACGAGGAA TGGACTGTTG ATAGCTGCAC TGAGTGTCAC 120 TGTCAGAACT CAGTTACCAT CTGCAAAAAG GTGTCCTGCC CCATCATGCC CTGCTCCAAT 180 GCCACAGTTC CTGATGGAGA ATGCTGTCCT CGCTGTTGGC CCAGCGACTC TGCGGACGAT 240 GGCTGGTCTC CATGGTCCGA GTGGACCTCC TGTTCTACGA GCTGTGGCAA TGGAATTCAG 300 CAGCGCGGCC GCTCCTGCGA TAGCCTCAAC AACCGATGTG AGGGCTCCTC GGTCCAGACA 360 CGGACCTGCC ACATTCAGGA GTGTGACAAA AGATTTAAAC AGGATGGTGG CTGGAGCCAC 420 TGGTCCCCGT GGTCATCTTG TTCTGTGACA TGTGGTGATG GTGTGATCAC AAGGATCCGG 480 CTCTGCAACT CTCCCAGCCC CCAGATGAAT GGGAAACCCT GTGAAGGCGA AGCGCGGGAG 540 ACCAAAGCCT GCAAGAAAGA CGCCTGCCCC ATCAATGGAG GCTGGGGTCC TTGGTCACCA 600 TGGGACATCT GTTCTGTCAC CTGTGGAGGA GGGGTACAGA AACGTAGTCG TCTCTGCGTC 660 GACTCTAGAA TGACTGAAGA GAACAAAGAG TTGGCCAATG AGCTGAGGCG GCCTCCCCTA 720 TGCTATCACA ACGGAGTTCA GTACAGAAAT AACGAGGAAT GGACTGTTGA TAGCTGCACT 780 GAGTGTCACT GTCAGAACTC AGTTACCATC TGCAAAAAGG TGTCCTGCCC CATCATGCCC 840 TGCTCCAATG CCACAGTTCC TGATGGAGAA TGCTGTCCTC GCTGTTGGCC CAGCGACTCT 900 GCGGACGATG GCTGGTCTCC ATGGTCCGAG TGGACCTCCT GTTCTACGAG CTGTGGCAAT 960 GGAATTCAGC AGCGCGGCCG CTCCTGCGAT AGCCTCAACA ACCGATGTGA GGGCTCCTCG 1020 GTCCAGACAC GGACCTGCCA CATTCAGGAG TGTGACAAAA GATTTAAACA GGATGGTGGC 1080 TGGAGCCACT GGTCCCCGTG GTCATCTTGT TCTGTGACAT GTGGTGATGG TGTGATCACA 1140 AGGATCCGGC TCTGCAACTC TCCCAGCCCC CAGATGAATG GGAAACCCTG TGAAGGCGAA 1200 GCGCGGGAGA CCAAAGCCTG CAAGAAAGAC GCCTGCCCCA TCAATGGAGG CTGGGGTCCT 1260 TGGTCACCAT GGGACATCTG TTCTGTCACC TGTGGAGGAG GGGTACAGAA ACGTAGTCGT 1320 CTCTAA 1326 6 amino acids amino acid linear 5 Met Tyr Ile Gly Ser Arg 1 5 33 base pairs nucleic acid single linear 6 GTCGACATGT ATATTGGTTC TCGTTAAGTC GAC 33 25 amino acids amino acid linear 7 Met Tyr Ile Gly Ser Arg Gly Lys Ser Tyr Ile Gly Ser Arg Gly Lys 1 5 10 15 Ser Tyr Ile Gly Ser Arg Gly Lys Ser 20 25 90 base pairs nucleic acid single linear 8 GTCGACATGT ATATTGGTTC TCGTGTAAAA GTTATATTGG TTCTCGTGGT AAAAGTTATA 60 TTGGTTCTCG TGGTAAAAGT TAAGTCGACC 90 13 amino acids amino acid linear 9 Met Leu Tyr Lys Lys Ile Ile Lys Lys Leu Leu Glu Ser 1 5 10 54 base pairs nucleic acid single linear 10 GTCGACATGC TTTATAAGAA GATCATCAAG AAGCTTCTTG AGAGTTAAGT CGAC 54 46 amino acids amino acid linear 11 Met Leu Tyr Lys Lys Ile Ile Lys Lys Leu Leu Glu Ser Gly Lys Ser 1 5 10 15 Leu Tyr Lys Lys Ile Ile Lys Lys Leu Leu Glu Ser Gly Lys Ser Leu 20 25 30 Tyr Lys Lys Ile Ile Lys Lys Leu Leu Glu Ser Gly Lys Ser 35 40 45 153 base pairs nucleic acid single linear 12 GTCGACATGC TTTATAAGAA GATCATCAAG AAGCTTCTTG AGAGTGGTAA AAGTCTTTAT 60 AAGAAGATCA TCAAGAAGCT TCTTGAGAGT GGTAAAAGTC TTTATAAGAA GATCATCAAG 120 AAGCTTCTTG AGAGTGGTAA AAGTTAAGTC GAC 153 9 amino acids amino acid linear 13 Met Phe Cys Tyr Trp Lys Val Cys Trp 1 5 42 base pairs nucleic acid single linear 14 GTCGACATGT TCTGTTATTG GAAGGTTTGT TGGTAAGTCG AC 42 34 amino acids amino acid linear 15 Met Phe Cys Tyr Trp Lys Val Cys Trp Gly Lys Ser Phe Cys Tyr Trp 1 5 10 15 Lys Val Cys Trp Gly Lys Ser Phe Cys Tyr Trp Lys Val Cys Trp Gly 20 25 30 Lys Ser 117 base pairs nucleic acid single linear 16 GTCGACATGT TCTGTTATTG GAAGGTTTGT TGGGGTAAAA GTTTCTGTTA TTGGAAGGTT 60 TGTTGGGGTA AAAGTTTCTG TTATTGGAAG GTTTGTTGGG GTAAAAGTTA AGTCGAC 117 5 amino acids amino acid linear 17 Met Gly Arg Gly Asp 1 5 30 base pairs nucleic acid single linear 18 GTCGACATGG GTCGTGGTGA TTAAGTCGAC 30 22 amino acids amino acid linear 19 Met Gly Arg Gly Asp Gly Lys Ser Gly Arg Gly Asp Gly Lys Ser Gly 1 5 10 15 Arg Gly Asp Gly Lys Ser 20 81 base pairs nucleic acid single linear 20 GTCGACATGG GTCGTGGTGA TGGTAAAAGT GGTCGTGGTG ATGGTAAAAG TGGTCGTGGT 60 GATGGTAAAA GTTAAGTCGA C 81 210 amino acids amino acid linear 21 Met Val Tyr Leu Ser Glu Cys Lys Thr Gly Ile Gly Asn Gly Tyr Arg 1 5 10 15 Gly Thr Met Ser Arg Thr Lys Ser Gly Val Ala Cys Gln Lys Trp Gly 20 25 30 Ala Thr Phe Pro His Val Pro Asn Tyr Ser Pro Ser Thr His Pro Asn 35 40 45 Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Glu Gln 50 55 60 Gly Pro Trp Cys Tyr Thr Thr Asp Pro Asp Lys Arg Tyr Asp Tyr Cys 65 70 75 80 Asn Ile Pro Glu Cys Glu Glu Glu Cys Met Tyr Cys Ser Gly Glu Lys 85 90 95 Tyr Glu Gly Lys Ile Ser Lys Thr Met Ser Gly Lys Asp Cys Gln Ala 100 105 110 Trp Asp Ser Gln Ser Pro His Ala His Gly Tyr Ile Pro Ala Lys Phe 115 120 125 Pro Ser Lys Asn Leu Lys Met Asn Tyr Cys His Asn Pro Asp Gly Glu 130 135 140 Pro Arg Pro Trp Cys Phe Thr Thr Asp Pro Thr Lys Arg Trp Glu Tyr 145 150 155 160 Cys Asp Ile Pro Arg Cys Thr Thr Pro Pro Pro Pro Pro Ser Pro Thr 165 170 175 Tyr Gln Cys Leu Lys Gly Arg Gly Glu Asn Tyr Arg Gly Thr Val Ser 180 185 190 Val Thr Val Ser Gly Lys Thr Cys Gln Arg Trp Ser Glu Gln Thr Pro 195 200 205 His Arg 210 645 base pairs nucleic acid single linear 22 GTCGACATGG TGTATCTGTC AGAATGTAAG ACCGGCATCG GCAACGGCTA CAGAGGAACC 60 ATGTCCAGGA CAAAGAGTGG TGTTGCCTGT CAAAAGTGGG GTGCCACGTT CCCCCACGTA 120 CCCAACTACT CTCCCAGTAC ACATCCCAAT GAGGGACTAG AAGAGAACTA CTGTAGGAAC 180 CCAGACAATG ATGAACAAGG GCCTTGGTGC TACACTACAG ATCCGGACAA GAGATATGAC 240 TACTGCAACA TTCCTGAATG TGAAGAGGAA TGCATGTACT GCAGTGGAGA AAAGTATGAG 300 GGCAAAATCT CCAAGACCAT GTCTGGACTT GACTGCCAGG CCTGGGATTC TCAGAGCCCA 360 CATGCTCATG GATACATCCC TGCCAAATTT CCAAGCAAGA ACCTGAAGAT GAATTATTGC 420 CACAACCCTG ACGGGGAGCC AAGGCCCTGG TGCTTCACAA CAGACCCCAC CAAACGCTGG 480 GAATACTGTG ACATCCCCCG CTGCACAACA CCCCCGCCCC CACCCAGCCC AACCTACCAA 540 TGTCTGAAAG GAAGAGGTGA AAATTACCGA GGGACCGTGT CTGTCACCGT GTCTGGGAAA 600 ACCTGTCAGC GCTGGAGTGA GCAAACCCCT CATAGGTGAG TCGAC 645 423 amino acids amino acid linear 23 Met Val Tyr Leu Ser Glu Cys Lys Thr Gly Ile Gly Asn Gly Tyr Arg 1 5 10 15 Gly Thr Met Ser Arg Thr Lys Ser Gly Val Ala Cys Gln Lys Trp Gly 20 25 30 Ala Thr Phe Pro His Val Pro Asn Tyr Ser Pro Ser Thr His Pro Asn 35 40 45 Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro Asp Asn Asp Glu Gln 50 55 60 Gly Pro Trp Cys Tyr Thr Thr Asp Pro Asp Lys Arg Tyr Asp Tyr Cys 65 70 75 80 Asn Ile Pro Glu Cys Glu Glu Glu Cys Met Tyr Cys Ser Gly Glu Lys 85 90 95 Tyr Glu Gly Lys Ile Ser Lys Thr Met Ser Gly Lys Asp Cys Gln Ala 100 105 110 Trp Asp Ser Gln Ser Pro His Ala His Gly Tyr Ile Pro Ala Lys Phe 115 120 125 Pro Ser Lys Asn Leu Lys Met Asn Tyr Cys His Asn Pro Asp Gly Glu 130 135 140 Pro Arg Pro Trp Cys Phe Thr Thr Asp Pro Thr Lys Arg Trp Glu Tyr 145 150 155 160 Cys Asp Ile Pro Arg Cys Thr Thr Pro Pro Pro Pro Pro Ser Pro Thr 165 170 175 Tyr Gln Cys Leu Lys Gly Arg Gly Glu Asn Tyr Arg Gly Thr Val Ser 180 185 190 Val Thr Val Ser Gly Lys Thr Cys Gln Arg Trp Ser Glu Gln Thr Pro 195 200 205 His Arg Gly Lys Ser Met Val Tyr Leu Ser Glu Cys Lys Thr Gly Ile 210 215 220 Gly Asn Gly Tyr Arg Gly Thr Met Ser Arg Thr Lys Ser Gly Val Ala 225 230 235 240 Cys Gln Lys Trp Gly Ala Thr Phe Pro His Val Pro Asn Tyr Ser Pro 245 250 255 Ser Thr His Pro Asn Glu Gly Leu Glu Glu Asn Tyr Cys Arg Asn Pro 260 265 270 Asp Asn Asp Glu Gln Gly Pro Trp Cys Tyr Thr Thr Asp Pro Asp Lys 275 280 285 Arg Tyr Asp Tyr Cys Asn Ile Pro Glu Cys Glu Glu Glu Cys Met Tyr 290 295 300 Cys Ser Gly Glu Lys Tyr Glu Gly Lys Ile Ser Lys Thr Met Ser Gly 305 310 315 320 Lys Asp Cys Gln Ala Trp Asp Ser Gln Ser Pro His Ala His Gly Tyr 325 330 335 Ile Pro Ala Lys Phe Pro Ser Lys Asn Leu Lys Met Asn Tyr Cys His 340 345 350 Asn Pro Asp Gly Glu Pro Arg Pro Trp Cys Phe Thr Thr Asp Pro Thr 355 360 365 Lys Arg Trp Glu Tyr Cys Asp Ile Pro Arg Cys Thr Thr Pro Pro Pro 370 375 380 Pro Pro Ser Pro Thr Tyr Gln Cys Leu Lys Gly Arg Gly Glu Asn Tyr 385 390 395 400 Arg Gly Thr Val Ser Val Thr Val Ser Gly Lys Thr Cys Gln Arg Trp 405 410 415 Ser Glu Gln Thr Pro His Arg 420 1284 base pairs nucleic acid single linear 24 GTCGACATGG TGTATCTGTC AGAATGTAAG ACCGGCATCG GCAACGGCTA CAGAGGAACC 60 ATGTCCAGGA CAAAGAGTGG TGTTGCCTGT CAAAAGTGGG GTGCCACGTT CCCCCACGTA 120 CCCAACTACT CTCCCAGTAC ACATCCCAAT GAGGGACTAG AAGAGAACTA CTGTAGGAAC 180 CCAGACAATG ATGAACAAGG GCCTTGGTGC TACACTACAG ATCCGGACAA GAGATATGAC 240 TACTGCAACA TTCCTGAATG TGAAGAGGAA TGCATGTACT GCAGTGGAGA AAAGTATGAG 300 GGCAAAATCT CCAAGACCAT GTCTGGACTT GACTGCCAGG CCTGGGATTC TCAGAGCCCA 360 CATGCTCATG GATACATCCC TGCCAAATTT CCAAGCAAGA ACCTGAAGAT GAATTATTGC 420 CACAACCCTG ACGGGGAGCC AAGGCCCTGG TGCTTCACAA CAGACCCCAC CAAACGCTGG 480 GAATACTGTG ACATCCCCCG CTGCACAACA CCCCCGCCCC CACCCAGCCC AACCTACCAA 540 TGTCTGAAAG GAAGAGGTGA AAATTACCGA GGGACCGTGT CTGTCACCGT GTCTGGGAAA 600 ACCTGTCAGC GCTGGAGTGA GCAAACCCCT CATAGGGGTA AAAGTATGGT GTATCTGTCA 660 GAATGTAAGA CCGGCATCGG CAACGGCTAC AGAGGAACCA TGTCCAGGAC AAAGAGTGGT 720 GTTGCCTGTC AAAAGTGGGG TGCCACGTTC CCCCACGTAC CCAACTACTC TCCCAGTACA 780 CATCCCAATG AGGGACTAGA AGAGAACTAC TGTAGGAACC CAGACAATGA TGAACAAGGG 840 CCTTGGTGCT ACACTACAGA TCCGGACAAG AGATATGACT ACTGCAACAT TCCTGAATGT 900 GAAGAGGAAT GCATGTACTG CAGTGGAGAA AAGTATGAGG GCAAAATCTC CAAGACCATG 960 TCTGGACTTG ACTGCCAGGC CTGGGATTCT CAGAGCCCAC ATGCTCATGG ATACATCCCT 1020 GCCAAATTTC CAAGCAAGAA CCTGAAGATG AATTATTGCC ACAACCCTGA CGGGGAGCCA 1080 AGGCCCTGGT GCTTCACAAC AGACCCCACC AAACGCTGGG AATACTGTGA CATCCCCCGC 1140 TGCACAACAC CCCCGCCCCC ACCCAGCCCA ACCTACCAAT GTCTGAAAGG AAGAGGTGAA 1200 AATTACCGAG GGACCGTGTC TGTCACCGTG TCTGGGAAAA CCTGTCAGCG CTGGAGTGAG 1260 CAAACCCCTC ATAGGTGAGT CGAC 1284 125 amino acids amino acid linear 25 Met Leu Pro Ile Cys Pro Gly Gly Ala Ala Arg Cys Gln Val Thr Leu 1 5 10 15 Arg Glu Leu Phe Asp Arg Ala Val Val Leu Ser His Tyr Ile His Asn 20 25 30 Leu Ser Ser Glu Met Phe Ser Glu Phe Glu Lys Arg Tyr Thr His Gly 35 40 45 Arg Gly Phe Ile Thr Lys Ala Ile Asn Ser Cys His Thr Ser Ser Leu 50 55 60 Ala Thr Pro Glu Asp Lys Glu Gln Ala Gln Gln Met Asn Gln Lys Asp 65 70 75 80 Phe Leu Ser Leu Ile Val Ser Ile Leu Arg Ser Trp Asn Glu Pro Leu 85 90 95 Tyr His Leu Val Thr Glu Val Arg Gly Met Gln Glu Ala Pro Gln Ala 100 105 110 Ile Leu Ser Lys Ala Val Glu Ile Glu Glu Gln Thr Lys 115 120 125 390 base pairs nucleic acid single linear 26 GTCGACATGT TGCCCATCTG TCCCGGCGGG GCTGCCCGAT GCCAGGTGAC CCTTCGAGAC 60 CTGTTTGACC GCGCCGTCGT CCTGTCCCAC TACATCCATA ACCTCTCCTC AGAAATGTTC 120 AGCGAATTCG ATAAACGGTA TACCCATGGC CGGGGGTTCA TTACCAAGGC CATCAACAGC 180 TGCCACACTT CTTCCCTTGC CACCCCCGAA GACAAGGAGC AAGCCCAACA GATGAATCAA 240 AAAGACTTTC TGAGCCTGAT AGTCAGCATA TTGCGATCCT GGAATGAGCC TCTGTATCAT 300 CTGGTCACGG AAGTACGTGG TATGCAAGAA GCCCCGGAGG CTATCCTATC CAAAGCTGTA 360 GAGATTGAGG AGCAAACCAA ATAAGTCGAC 390 253 amino acids amino acid linear 27 Met Leu Pro Ile Cys Pro Gly Gly Ala Ala Arg Cys Gln Val Thr Leu 1 5 10 15 Arg Glu Leu Phe Asp Arg Ala Val Val Leu Ser His Tyr Ile His Asn 20 25 30 Leu Ser Ser Glu Met Phe Ser Glu Phe Glu Lys Arg Tyr Thr His Gly 35 40 45 Arg Gly Phe Ile Thr Lys Ala Ile Asn Ser Cys His Thr Ser Ser Leu 50 55 60 Ala Thr Pro Glu Asp Lys Glu Gln Ala Gln Gln Met Asn Gln Lys Asp 65 70 75 80 Phe Leu Ser Leu Ile Val Ser Ile Leu Arg Ser Trp Asn Glu Pro Leu 85 90 95 Tyr His Leu Val Thr Glu Val Arg Gly Met Gln Glu Ala Pro Gln Ala 100 105 110 Ile Leu Ser Lys Ala Val Glu Ile Glu Glu Gln Thr Lys Gly Lys Ser 115 120 125 Met Leu Pro Ile Cys Pro Gly Gly Ala Ala Arg Cys Gln Val Thr Leu 130 135 140 Arg Glu Leu Phe Asp Arg Ala Val Val Leu Ser His Tyr Ile His Asn 145 150 155 160 Leu Ser Ser Glu Met Phe Ser Glu Phe Glu Lys Arg Tyr Thr His Gly 165 170 175 Arg Gly Phe Ile Thr Lys Ala Ile Asn Ser Cys His Thr Ser Ser Leu 180 185 190 Ala Thr Pro Glu Asp Lys Glu Gln Ala Gln Gln Met Asn Gln Lys Asp 195 200 205 Phe Leu Ser Leu Ile Val Ser Ile Leu Arg Ser Trp Asn Glu Pro Leu 210 215 220 Tyr His Leu Val Thr Glu Val Arg Gly Met Gln Glu Ala Pro Gln Ala 225 230 235 240 Ile Leu Ser Lys Ala Val Glu Ile Glu Glu Gln Thr Lys 245 250 771 base pairs nucleic acid single linear 28 GTCGACATGT TGCCCATCTG TCCCGGCGGG GCTGCCCGAT GCCAGGTGAC CCTTCGAGAC 60 CTGTTTGACC GCGCCGTCGT CCTGTCCCAC TACATCCATA ACCTCTCCTC AGAAATGTTC 120 AGCGAATTCG ATAAACGGTA TACCCATGGC CGGGGGTTCA TTACCAAGGC CATCAACAGC 180 TGCCACACTT CTTCCCTTGC CACCCCCGAA GACAAGGAGC AAGCCCAACA GATGAATCAA 240 AAAGACTTTC TGAGCCTGAT AGTCAGCATA TTGCGATCCT GGAATGAGCC TCTGTATCAT 300 CTGGTCACGG AAGTACGTGG TATGCAAGAA GCCCCGGAGG CTATCCTATC CAAAGCTGTA 360 GAGATTGAGG AGCAAACCGG TAAAAGTATG TTGCCCATCT GTCCCGGCGG GGCTGCCCGA 420 TGCCAGGTGA CCCTTCGAGA CCTGTTTGAC CGCGCCGTCG TCCTGTCCCA CTACATCCAT 480 AACCTCTCCT CAGAAATGTT CAGCGAATTC GATAAACGGT ATACCCATGG CCGGGGGTTC 540 ATTACCAAGG CCATCAACAG CTGCCACACT TCTTCCCTTG CCACCCCCGA AGACAAGGAG 600 CAAGCCCAAC AGATGAATCA AAAAGACTTT CTGAGCCTGA TAGTCAGCAT ATTGCGATCC 660 TGGAATGAGC CTCTGTATCA TCTGGTCACG GAAGTACGTG GTATGCAAGA AGCCCCGGAG 720 GCTATCCTAT CCAAAGCTGT AGAGATTGAG GAGCAAACCA AATAAGTCGA C 771 161 base pairs nucleic acid single linear 29 ATGCTGAGGC GGCCTCCCCT ATGCTATCAC AACGGAGTTC AGTACAGAAA TAACGGTAAA 60 AGATCCCCGT GGTCATCTTG TTCTGTGACA TGTGGTGATG GTGTGATGGT AAAAGAAGTG 120 GTACCCTGTA GACAAGACAG TGGACACCTC CTCCCCATTA A 161 63 amino acids amino acid linear 30 Met Leu Arg Arg Pro Pro Leu Cys Tyr His Asn Gly Val Gln Tyr Arg 1 5 10 15 Asn Asn Glu Glu Trp Thr Val Asp Ser Gly Lys Ser Ser Pro Trp Ser 20 25 30 Ser Cys Ser Val Thr Cys Gly Asp Gly Val Ile Thr Arg Ile Gly Lys 35 40 45 Ser Ser Pro Trp Asp Ile Cys Ser Val Thr Cys Gly Gly Gly Val 50 55 60 185 base pairs nucleic acid single linear 31 ATGCTGAGGC GGCCTCCCCT ATGCTATCAC AACGGAGTTC AGTACAGAAA TAACGGTAAA 60 AGATCCCCGT GGTCATCTTG TTCTGTGACA TGTGGTGATG GTGTGATGGT AAAAGAAGTG 120 GTACCCTGTA GACAAGACAG TGGACACCTC CTCCCCATTA TATTGGTTCT CGTGGTAAAA 180 GATAA 185 31 base pairs nucleic acid single linear 32 TAGGTCTAGA ATGACTGAAG AGAACAAAGA G 31 31 base pairs nucleic acid single linear 33 ATGGTCTAGA TTAGAGACGA CTACGTTTCT G 31 805 amino acids amino acid linear 34 Met Glu Ser Lys Ala Leu Leu Ala Val Ala Leu Trp Phe Cys Val Glu 1 5 10 15 Thr Arg Ala Ala Ser Val Gly Leu Pro Gly Asp Phe Leu His Pro Pro 20 25 30 Lys Leu Ser Thr Gln Lys Asp Ile Leu Thr Ile Leu Ala Asn Thr Thr 35 40 45 Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 50 55 60 Asn Ala Gln Arg Asp Ser Glu Glu Arg Val Leu Val Thr Glu Cys Gly 65 70 75 80 Gly Gly Asp Ser Ile Phe Cys Lys Thr Leu Thr Ile Pro Arg Val Val 85 90 95 Gly Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg Asp Val Asp Ile 100 105 110 Ala Ser Thr Val Tyr Val Tyr Val Arg Asp Tyr Arg Ser Pro Phe Ile 115 120 125 Ala Ser Val Ser Asp Gln His Gly Ile Val Tyr Ile Thr Glu Asn Lys 130 135 140 Asn Lys Thr Val Val Ile Pro Cys Arg Gly Ser Ile Ser Asn Leu Asn 145 150 155 160 Val Ser Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly 165 170 175 Asn Arg Ile Ser Trp Asp Ser Glu Ile Gly Phe Thr Leu Pro Ser Tyr 180 185 190 Met Ile Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp 195 200 205 Glu Thr Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg 210 215 220 Ile Tyr Asp Val Ile Leu Ser Pro Pro His Glu Ile Glu Leu Ser Ala 225 230 235 240 Gly Glu Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val 245 250 255 Gly Leu Asp Phe Thr Trp His Ser Pro Pro Ser Lys Ser His His Lys 260 265 270 Lys Ile Val Asn Arg Asp Val Lys Pro Phe Pro Gly Thr Val Ala Lys 275 280 285 Met Phe Lys Ser Thr Leu Thr Ile Glu Ser Val Thr Lys Ser Asp Gln 290 295 300 Gly Glu Tyr Thr Cys Val Ala Ser Ser Gly Arg Met Ile Lys Arg Asn 305 310 315 320 Arg Thr Phe Val Arg Val His Thr Lys Pro Phe Ile Ala Phe Gly Ser 325 330 335 Gly Met Lys Ser Leu Val Glu Ala Thr Val Gly Ser Gln Val Arg Ile 340 345 350 Pro Val Lys Tyr Leu Ser Tyr Pro Ala Pro Asp Ile Lys Trp Tyr Arg 355 360 365 Asn Gly Arg Pro Ile Glu Ser Asn Tyr Thr Met Ile Val Gly Asp Glu 370 375 380 Leu Thr Ile Met Glu Val Thr Glu Arg Asp Ala Gly Asn Tyr Thr Val 385 390 395 400 Ile Leu Thr Asn Pro Ile Ser Met Glu Lys Gln Ser His Met Val Ser 405 410 415 Leu Val Val Asn Val Pro Pro Gln Ile Gly Glu Lys Ala Leu Ile Ser 420 425 430 Pro Met Asp Ser Tyr Gly Tyr Gly Thr Met Gln Thr Leu Thr Cys Thr 435 440 445 Val Tyr Ala Asn Pro Pro Leu His His Ile Gln Trp Tyr Trp Gln Leu 450 455 460 Glu Glu Ala Cys Ser Tyr Arg Pro Gly Gln Thr Ser Pro Tyr Ala Cys 465 470 475 480 Lys Glu Trp Arg His Val Glu Asp Phe Gln Gly Gly Asn Lys Ile Glu 485 490 495 Val Thr Lys Asn Gln Tyr Ala Leu Ile Glu Gly Lys Asn Lys Thr Val 500 505 510 Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala Leu Tyr Lys Cys 515 520 525 lu Ala Ile Asn Lys Ala Gly Arg Gly Glu Arg Val Ile Ser Phe His 530 535 540 Val Ile Arg Gly Pro Glu Ile Thr Val Gln Pro Ala Ala Gln Pro Thr 545 550 555 560 Glu Gln Glu Ser Val Ser Leu Leu Cys Thr Ala Asp Arg Asn Thr Phe 565 570 575 Glu Asn Leu Thr Trp Tyr Lys Leu Gly Ser Gln Ala Thr Ser Val His 580 585 590 Met Gly Glu Ser Leu Thr Pro Val Cys Lys Asn Leu Asp Ala Leu Trp 595 600 605 Lys Leu Asn Gly Thr Met Phe Ser Asn Ser Thr Asn Asp Ile Leu Ile 610 615 620 Val Ala Phe Gln Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr Val Cys 625 630 635 640 Ser Ala Gln Asp Lys Lys Thr Lys Lys Arg His Cys Leu Val Lys Gln 645 650 655 Leu Ile Ile Leu Glu Arg Met Ala Pro Met Ile Thr Gly Asn Leu Glu 660 665 670 Asn Gln Thr Thr Thr Ile Gly Glu Thr Ile Glu Val Thr Cys Pro Ala 675 680 685 Ser Gly Asn Pro Thr Pro His Ile Thr Trp Phe Lys Asp Asn Glu Thr 690 695 700 Leu Val Glu Asp Ser Gly Ile Val Leu Arg Asp Gly Asn Arg Asn Leu 705 710 715 720 Thr Ile Arg Arg Val Arg Lys Glu Asp Gly Gly Leu Tyr Thr Cys Gln 725 730 735 Ala Cys Asn Val Leu Gly Cys Ala Arg Ala Glu Thr Leu Phe Ile Ile 740 745 750 Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Val Ile Ile Leu Val Gly 755 760 765 Thr Ala Val Ile Ala Met Phe Phe Trp Leu Leu Leu Val Ile Leu Val 770 775 780 Arg Thr Val Lys Arg Ala Asn Glu Gly Glu Leu Lys Thr Gly Tyr Leu 785 790 795 800 Ser Ile Val Met Asp 805 2431 base pairs nucleic acid single linear 35 AGACGTCATG GAGAGCAAGG CGCTGCTAGC TGTCGCTCTG TGGTTCTGCG TGGAGACCCG 60 AGCCGCCTCT GTGGGTTTGC CTGGCGATTT TCTCCATCCC CCCAAGCTCA GCACACAGAA 120 AGACATACTG ACAATTTTGG CAAATACAAC CCTTCAGATT ACTTGCAGGG GACAGCGGGA 180 CCTGGACTGG CTTTGGCCCA ATGCTCAGCG TGATTCTGAG GAAAGGGTAT TGGTGACTGA 240 ATGCGGCGGT GGTGACAGTA TCTTCTGCAA AACACTCACC ATTCCCAGGG TGGTTGGAAA 300 TGATACTGGA GCCTACAAGT GCTCGTACCG GGACGTCGAC ATAGCCTCCA CTGTTTATGT 360 CTATGTTCGA GATTACAGAT CACCATTCAT CGCCTCTGTC AGTGACCAGC ATGGCATCGT 420 GTACATCACC GAGAACAAGA ACAAAACTGT GGTGATCCCC TGCCGAGGGT CGATTTCAAA 480 CCTCAATGTG TCTCTTTGCG CTAGGTATCC AGAAAAGAGA TTTGTTCCGG ATGGAAACAG 540 AATTTCCTGG GACAGCGAGA TAGGCTTTAC TCTCCCCAGT TACATGATCA GCTATGCCGG 600 CATGGTCTTC TGTGAGGCAA AGATCAATGA TGAAACCTAT CAGTCTATCA TGTACATAGT 660 TGTGGTTGTA GGATATAGGA TTTATGATGT GATTCTGAGC CCCCCGCATG AAATTGAGCT 720 ATCTGCCGGA GAAAAACTTG TCTTAAATTG TACAGCGAGA ACAGAGCTCA ATGTGGGGCT 780 TGATTTCACC TGGCACTCTC CACCTTCAAA GTCTCATCAT AAGAAGATTG TAAACCGGGA 840 TGTGAAACCC TTTCCTGGGA CTGTGGCGAA GATGTTTTTG AGCACCTTGA CAATAGAAAG 900 TGTGACCAAG AGTGACCAAG GGGAATACAC CTGTGTAGCG TCCAGTGGAC GGATGATCAA 960 GAGAAATAGA ACATTTGTCC GAGTTCACAC AAAGCCTTTT ATTGCTTTCG GTAGTGGGAT 1020 GAAATCTTTG GTGGAAGCCA CAGTGGGCAG TCAAGTCCGA ATCCCTGTGA AGTATCTCAG 1080 TTACCCAGCT CCTGATATCA AATGGTACAG AAATGGAAGG CCCATTGAGT CCAACTACAC 1140 AATGATTGTT GGCGATGAAC TCACCATCAT GGAAGTGACT GAAAGAGATG CAGGAAACTA 1200 CACGGTCATC CTCACCAACC CCATTTCAAT GGAGAAACAG AGCCACATGG TCTCTCTGGT 1260 TGTGAATGTC CCACCCCAGA TCGGTGAGAA AGCCTTGATC TCGCCTATGG ATTCCTACCA 1320 GTATGGGACC ATGCAGACAT TGACATGCAC AGTCTACGCC AACCCTCCCC TGCACCACAT 1380 CCAGTGGTAC TGGCAGCTAG AAGAAGCCTG CTCCTACAGA CCCGGCCAAA CAAGCCCGTA 1440 TGCTTGTAAA GAATGGAGAC ACGTGGAGGA TTTCCAGGGG GGAAACAAGA TCGAAGTCAC 1500 CAAAAACCAA TATGCCCTGA TTGAAGGAAA AAACAAAACT GTAAGTACGC TGGTCATCCA 1560 AGCTGCCAAC GTGTCAGCGT TGTACAAATG TGAAGCCATC AACAAAGCGG GACGAGGAGA 1620 GAGGGTCATC TCCTTCCATG TGATCAGGGG TCCTGAAATT ACTGTGCAAC CTGCTGCCCA 1680 GCCAACTGAG CAGGAGAGTG TGTCCCTGTT GTGCACTGCA GACAGAAATA CGTTTGAGAA 1740 CCTCACGTGG TACAAGCTTG GCTCACAGGC AACATCGGTC CACATGGGCG AATCACTCAC 1800 ACCAGTTTGC AAGAACTTGG ATGCTCTTTG GAAACTGAAT GGCACCATGT TTTCTAACAG 1860 CACAAATGAC ATCTTGATTG TGGCATTTCA GAATGCCTCT CTGCAGGACC AAGGCGACTA 1920 TGTTTGCTCT GCTCAAGATA AGAAGACCAA GAAAAGACAT TGCCTGGTCA AACAGCTCAT 1980 CATCCTAGAG CGCATGGCAC CCATGATCAC CGGAAATCTG GAGAATCAGA CAACAACCAT 2040 TGGCGAGACC ATTGAAGTGA CTTGCCCAGC ATCTGGAAAT CCTACCCCAC ACATTACATG 2100 GTTCAAAGAC AACGAGACCC TGGTAGAAGA TTCAGGCATT GTACTGAGAG ATGGGAACCG 2160 GAACCTGACT ATCCGCAGGG TGAGGAAGGA GGATGGAGGC CTCTACACCT GCCAGGCCTG 2220 CAATGTCCTT GGCTGTGCAA GAGCGGAGAC GCTCTTCATA ATAGAAGGTG CCCAGGAAAA 2280 GACCAACTTG GAAGTCATTA TCCTCGTCGG CACTGCAGTG ATTGCCATGT TCTTCTGGCT 2340 CCTTCTTGTC ATTCTCGTAC GGACCGTTAA GCGGGCCAAT GAAGGGGAAC TGAAGACAGG 2400 CTACTTGTCT ATTGTCATGG ATTAAGACGT C 2431 185 amino acids amino acid linear 36 Met His Thr His Gln Asp Phe Gln Pro Val Leu His Leu Val Ala Leu 1 5 10 15 Asn Thr Pro Leu Ser Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe 20 25 30 Gln Cys Phe Asn Asn Ala Arg Val Gly Leu Ser Gly Thr Phe Arg Ala 35 40 45 Phe Leu Ser Ser Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala 50 55 60 Asp Arg Gly Ser Val Pro Ile Val Gln Asn Leu Arg Asp Glu Val Leu 65 70 75 80 Ser Pro Ser Trp Asp Ser Leu Phe Ser Gly Ser Gln Gly Gln Leu Gln 85 90 95 Pro Gly Ala Arg Ile Phe Ser Phe Asp Gly Arg Asp Val Leu Arg His 100 105 110 Pro Ala Trp Pro Gln Arg Ser Val Trp His Gly Ser Asp Pro Ser Gly 115 120 125 Arg Arg Leu Met Glu Ser Tyr Cys Glu Thr Trp Arg Thr Glu Thr Thr 130 135 140 Gly Ala Thr Gly Gln Ala Ser Ser Leu Leu Ser Gly Arg Leu Leu Glu 145 150 155 160 Gln Arg Ala Ala Ser Cys His Asp Ser Tyr Ile Val Leu Cys Ile Glu 165 170 175 Asn Ser Phe Met Thr Ser Phe Ser Arg 180 185 565 base pairs nucleic acid single linear 37 AGACGTCATG CATACTCATC AGGACTTTCA GCCAGTGCTC CACCTGGTGG CACTGAACAC 60 CCCCCTGTCT GGAGGCATGC GTGGTATCCG TGGAGCAGAT TTCCAGTGCT TCCAGCAAGC 120 CCGAGCCGTG GGGCTGTCGG GCACCTTCCG GGCTTTCCTG TCCTCTAGGC TGCAGGATCT 180 CTATAGCATC GTGCGCCGTG CTGACCGGGG GTCTGTGCCC ATCGTCAACC TGAAGGACGA 240 GGTGCTATCT CCCAGCTGGG ACTCCCTGTT TTCTGGCTCC CAGGGTCAAC TGCAACCCGG 300 GGCCCGCATC TTTTCTTTTG ACGGCAGAGA TGTCCTGAGA CACCCAGCCT GGCCGCAGAA 360 GAGCGTATGG CACGGCTCGG ACCCCAGTGG GCGGAGGCTG ATGGAGAGTT ACTGTGAGAC 420 ATGGCGAACT GAAACTACTG GGGCTACAGG TCAGGCCTCC TCCCTGCTGT CAGGCAGGCT 480 CCTGGAACAG AAAGCTGCGA GCTGCCACAA CAGCTACATC GTCCTGTGCA TTGAGAATAG 540 CTTCATGACC TCTTTCTCCA AATAG 565 43 base pairs nucleic acid single linear DNA (genomic) 38 CTATCGTCGA CATGTATATT GGTTCTCGTT AAGTCGACCT ATC 43 43 base pairs nucleic acid single linear DNA (genomic) 39 GATAGGTCGA CTTAACGAGA ACCAATATAC ATGTCGACGA TAG 43 31 base pairs nucleic acid single linear 40 AGTATCTAGA ATGAGTGTAT CTGTCACAAT G 31 31 base pairs nucleic acid single linear 41 GAATTCTAGA TCACCTATGA GGGGTTTGCT C 31 93 base pairs nucleic acid single linear 42 CTATCGTCGA CATGTATATT GGTTCTCGTA AAAGATATAT TGGTTCTCGT GGTAAAAGAG 60 ATGGTTCTCG TGGTAAAAGA TAAGTGACCT ATC 93 15 base pairs nucleic acid single linear 43 GATAGGTCGA CTTAT 15

Claims (20)

What is claimed is:
1. A carrier:nucleic acid complex comprising nucleic acid encoding at least one anti-angiogenic protein or peptide, the complex being delivered by injection whereby the anti-angiogenic nucleic acid is expressed to inhibit tumor growth.
2. The complex of claim 1, wherein the carrier is selected from the group consisting of liposomes, cationic polymers, micelles, microspheres, viruses, viral components, or combinations of such carriers.
3. The complex of claim 1, wherein the nucleic acid within the complex is comprised of DNA or RNA.
4. The complex of claim 1, wherein the complex additionally contains nucleic acid encoding a tumor suppressor protein.
5. The complex of claim 2, wherein the complex additionally contains nucleic acid encoding a tumor suppressor protein.
6. The complex of claim 3, wherein the tumor suppressor protein is p53.
7. The complex of claim 4, wherein the tumor suppressor protein is p53.
8. The complex of claim 1, additionally comprising a marker directing the complexes in vivo to a tumor or to tumor or peritumoral area.
9. The complex of claim 1, wherein the nucleic acid is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25; SEQ ID NO:27, SEQ ID NO:31; SEQ ID NO:35; and SEQ ID NO: 37.
10. The complex of claim 1, wherein the anti-angiogenic DNA is provided in a vector containing at least one promotor.
11. A method for inhibiting tumor growth in a subject bearing a tumor, which comprises administering to the subject nucleic acid encoding at least one anti-angiogenic protein or peptide in a carrier whereby nucleic acid is expressed and tumor growth is inhibited.
12. The method of claim 11, wherein the carrier is selected from the group consisting of liposomes, cationic polymers, micelles, microspheres, viruses, viral components, or combinations of such carriers.
13. The method of claim 11, which further comprises providing a DNA encoding a tumor suppressor protein on the carrier.
14. The method of claim 11, wherein the administration is by injection.
15. The method of claim 13, wherein the administration is by injection.
16. The method of claim 14, wherein the injection is intravenous injection.
17. The method of claim 15, wherein the injection is intravenous injection.
18. A method of inhibiting tumor growth in a subject bearing a tumor, which comprises injecting the subject with anti-angiogenic nucleic acid in a form in which the DNA is expressed in the tumor or a peritumoral area.
19. The method of claim 18, wherein nucleic acid encoding a tumor suppressor protein is additionally injected in a form which is expressed in the tumor or associated tumor vasculature.
20. The method of claim 18, wherein the injection is intravenous.
US10/036,869 1996-07-16 2001-11-29 Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy Abandoned US20020151516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/036,869 US20020151516A1 (en) 1996-07-16 2001-11-29 Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US68084596A 1996-07-16 1996-07-16
EP97112154A EP0819758B1 (en) 1996-07-16 1997-07-16 Cationic vehicle: DNA complexes and their use in gene therapy
EP97112154.6 1997-07-16
US08/985,526 US6080728A (en) 1996-07-16 1997-12-05 Carrier: DNA complexes containing DNA encoding anti-angiogenic peptides and their use in gene therapy
US50083800A 2000-02-10 2000-02-10
US10/036,869 US20020151516A1 (en) 1996-07-16 2001-11-29 Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US50083800A Continuation 1996-07-16 2000-02-10

Publications (1)

Publication Number Publication Date
US20020151516A1 true US20020151516A1 (en) 2002-10-17

Family

ID=25531564

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/985,526 Expired - Lifetime US6080728A (en) 1996-07-16 1997-12-05 Carrier: DNA complexes containing DNA encoding anti-angiogenic peptides and their use in gene therapy
US10/036,869 Abandoned US20020151516A1 (en) 1996-07-16 2001-11-29 Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/985,526 Expired - Lifetime US6080728A (en) 1996-07-16 1997-12-05 Carrier: DNA complexes containing DNA encoding anti-angiogenic peptides and their use in gene therapy

Country Status (3)

Country Link
US (2) US6080728A (en)
EP (1) EP0921193A1 (en)
JP (1) JPH11187886A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058308A1 (en) * 2002-12-23 2004-07-15 Board Of Regents The University Of Texas System An efficient non-viral gene/drug delivery system
US20080171025A1 (en) * 2004-11-17 2008-07-17 Archibald Mixson Highly Branched Hk Peptides as Effective Carriers of Sirna

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840262B2 (en) 1995-10-23 2006-11-01 ザ チルドレンズ メディカル センター コーポレイション Therapeutic anti-angiogenic compositions and methods
US6346510B1 (en) * 1995-10-23 2002-02-12 The Children's Medical Center Corporation Therapeutic antiangiogenic endostatin compositions
US6511477B2 (en) * 1997-03-13 2003-01-28 Biocardia, Inc. Method of drug delivery to interstitial regions of the myocardium
CN1177934C (en) * 1997-04-28 2004-12-01 阿文蒂斯药物股份有限公司 Adneovirus-mediated intratumoral delivery of angiogenesis antagonist for treatment of tumors
US6852691B1 (en) * 1997-12-08 2005-02-08 Beth Israel Deaconess Medical Center Anti-angiogenic peptides and methods of use thereof
US7157098B1 (en) * 1998-01-06 2007-01-02 Roman Perez-Soler Gene therapy of tumors using non-viral delivery system
AU5318299A (en) * 1998-07-27 2000-02-21 Valentis, Inc. Anti-angiogenesis plasmids and delivery systems, and methods of making and using the same
GB2342042A (en) * 1998-09-30 2000-04-05 Christopher Barry Wood Combination gene therapy using the p53 gene
AU7579600A (en) 1999-09-14 2001-04-17 Entremed, Inc Method of producing and purifying endostatintm protein
US7906103B2 (en) 2000-03-08 2011-03-15 Gerhard Graupner Methods and compositions for targeted drug delivery
US7122172B1 (en) 2000-03-08 2006-10-17 Gerhart Graupner Methods and compositions for targeted drug delivery
JP2003528610A (en) * 2000-03-29 2003-09-30 ベス・イスラエル・ディーコネス・メディカル・センター,インコーポレイテッド Antiangiogenic and antitumor properties of matin and other laminin domains
CA2421251A1 (en) 2000-09-05 2002-03-14 Karolinska Innovations Ab Recombinant endothelial cell growth inhibitors derived from a mammalian plasminogen
US20040009940A1 (en) * 2000-10-20 2004-01-15 Coleman Michael E. Gene delivery formulations and methods for treatment of ischemic conditions
DE60144338D1 (en) * 2000-10-20 2011-05-12 Vical Inc GENEFORM FORMULATIONS FOR THE TREATMENT OF ISCHEMIC CONDITIONS
US6652886B2 (en) 2001-02-16 2003-11-25 Expression Genetics Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents
US20060241067A1 (en) * 2002-06-25 2006-10-26 Varner Judith A Methods For inhibiting angiogenesis, cell migration, cell adhesion, and cell survival
US20040091465A1 (en) * 2002-06-26 2004-05-13 Zachary Yim Therapeutic antiangiogenic compositions and methods
DK2261249T3 (en) 2002-09-12 2015-02-16 Oncotherapy Science Inc KDR peptides and vaccines comprising the same
US20060234941A1 (en) 2005-04-15 2006-10-19 The Gov. Of The Usa As Represented By The Secretary Of The Dept. Of Health & Human Services Peptide epitopes of VEGFR-2/KDR that inhibit angiogenesis
DE602006009840D1 (en) * 2005-10-20 2009-11-26 Ghc Res Dev Corp USE OF PROLACTIN IN PROPHYLACTIC CANCER THERAPY
CA2629775A1 (en) * 2005-11-14 2007-05-24 Enterprise Partners Venture Capital Stem cell factor therapy for tissue injury
WO2007149493A2 (en) * 2006-06-22 2007-12-27 Immugen Inc Restoration of hearing loss
US20110028536A1 (en) * 2006-08-18 2011-02-03 Gjerset Ruth A Methods and compositions for topoisomerase i modulated tumor suppression
NZ579050A (en) * 2007-02-06 2012-10-26 Tai June Yoo Treatment and prevention of neurodegenerative diseases using gene therapy
WO2008112701A2 (en) * 2007-03-15 2008-09-18 The Mclean Hospital Corporation G-substrate for the treatment and prevention of parkinson's disease
US7838495B2 (en) * 2007-04-27 2010-11-23 University Of Maryland, Baltimore Compositions and methods of use of EPB1, and ErbB3 binding protein
TWI436775B (en) 2007-08-24 2014-05-11 Oncotherapy Science Inc Combination therapy for pancreatic cancer using an antigenic peptide and chemotherapeutic agent
TW201109029A (en) 2009-06-11 2011-03-16 Oncotherapy Science Inc Vaccine therapy for choroidal neovascularization
WO2013158664A2 (en) 2012-04-17 2013-10-24 Kythera Biopharmaceuticals, Inc. Use of engineered viruses to specifically kill senescent cells
CN109963597B (en) * 2016-11-10 2022-08-26 北京普罗吉生物科技发展有限公司 Pegylated endostatin analogs and uses thereof
GB201710973D0 (en) 2017-07-07 2017-08-23 Avacta Life Sciences Ltd Scaffold proteins
US20210047425A1 (en) 2019-08-12 2021-02-18 Purinomia Biotech, Inc. Methods and compositions for promoting and potentiating t-cell mediated immune responses through adcc targeting of cd39 expressing cells
WO2021074683A1 (en) 2019-10-16 2021-04-22 Avacta Life Sciences Limited Bispecific anti-pd-l1 and anti-fcrn polypeptides
WO2021074695A1 (en) 2019-10-16 2021-04-22 Avacta Life Sciences Limited PD-L1 INHIBITOR - TGFβ INHIBITOR BISPECIFIC DRUG MOIETIES.
GB202101299D0 (en) 2020-06-09 2021-03-17 Avacta Life Sciences Ltd Diagnostic polypetides and methods
WO2022234003A1 (en) 2021-05-07 2022-11-10 Avacta Life Sciences Limited Cd33 binding polypeptides with stefin a protein
TW202334196A (en) 2021-10-07 2023-09-01 英商阿法克塔生命科學有限公司 Pd-l1 binding polypeptides
TW202332694A (en) 2021-10-07 2023-08-16 英商阿凡克塔生命科學公司 Serum half-life extended pd-l1 binding polypeptides
WO2023218243A1 (en) 2022-05-12 2023-11-16 Avacta Life Sciences Limited Lag-3/pd-l1 binding fusion proteins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908777A (en) * 1995-06-23 1999-06-01 University Of Pittsburgh Lipidic vector for nucleic acid delivery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200397A (en) * 1990-02-22 1993-04-06 W. R. Grace & Co.-Conn. Use of peptide analogs of thrombospondin for the inhibition of angiogenic activity
CA2082804A1 (en) * 1990-07-27 1992-01-28 Theodore Maione Methods and compositions for treatment of angiogenic diseases
US6605712B1 (en) * 1990-12-20 2003-08-12 Arch Development Corporation Gene transcription and ionizing radiation: methods and compositions
WO1993016716A1 (en) * 1992-02-24 1993-09-02 Northwestern University Method and composition for inhibiting angiogenesis
US5411943A (en) * 1992-02-25 1995-05-02 Biomeasure, Inc. Hepatoma treatment with somatostatin analogs
US6177401B1 (en) * 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
US5631237A (en) * 1992-12-22 1997-05-20 Dzau; Victor J. Method for producing in vivo delivery of therapeutic agents via liposomes
US5814618A (en) * 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US5639725A (en) * 1994-04-26 1997-06-17 Children's Hospital Medical Center Corp. Angiostatin protein
CN1309833C (en) * 1994-04-26 2007-04-11 儿童医学中心公司 Angiostatin and method of use for inhibition of Angiogenesis
US5571797A (en) * 1994-05-11 1996-11-05 Arch Development Corporation Method of inducing gene expression by ionizing radiation
AU4608296A (en) * 1994-12-30 1996-07-31 Chiron Corporation Methods and compositions for treatment of solid tumors in vivo
DE69736692T2 (en) * 1996-07-16 2007-06-14 Archibald James Mixson Cationic vehicle: DNA complexes and their use in gene therapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908777A (en) * 1995-06-23 1999-06-01 University Of Pittsburgh Lipidic vector for nucleic acid delivery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058308A1 (en) * 2002-12-23 2004-07-15 Board Of Regents The University Of Texas System An efficient non-viral gene/drug delivery system
US20080171025A1 (en) * 2004-11-17 2008-07-17 Archibald Mixson Highly Branched Hk Peptides as Effective Carriers of Sirna
US7772201B2 (en) 2004-11-17 2010-08-10 “University of Maryland, Baltimore” Highly branched HK peptides as effective carriers of siRNA

Also Published As

Publication number Publication date
JPH11187886A (en) 1999-07-13
US6080728A (en) 2000-06-27
EP0921193A1 (en) 1999-06-09

Similar Documents

Publication Publication Date Title
US20020151516A1 (en) Carrier:nucleic acids complexes containing nucleic acids encoding anti-angiogenic peptides and their use in gene therapy
EP0819758B1 (en) Cationic vehicle: DNA complexes and their use in gene therapy
US20030165567A1 (en) Histidine copolymer and methods for using same
JP2002502608A (en) Vessel endothelial cell growth factor, a proangiogenic factor: a variant of VEGF
CN103906527A (en) Lipid nanoparticle compositions and methods for MRNA delivery
Zhang et al. Mammary gland expression of antibacterial peptide genes to inhibit bacterial pathogens causing mastitis
US20230390211A1 (en) Composition for increasing expression of blood coagulation factor gene, comprising core-shell structured microparticles as active ingredient
Blezinger et al. Intratracheal administration of interleukin 12 plasmid-cationic lipid complexes inhibits murine lung metastases
Xu et al. Optimizing drug delivery for enhancing therapeutic efficacy of recombinant human endostatin in cancer treatment
KR20160005333A (en) The use of sdf-1 to mitigate scar formation
JP2001526181A (en) Graft copolymers as gene transporters
Chen et al. Systemic gene therapy with p53 inhibits breast cancer: recent advances and therapeutic implications
Blezinger et al. Intravenous delivery of an endostatin gene complexed in cationic lipid inhibits systemic angiogenesis and tumor growth in murine models
JP2003250549A (en) Pharmaceutical preparation made from nk4 gene or recombinant nk4 protein
AU743335B2 (en) Non-invasive administration of adeno-associated viral vectors
EP1268798B1 (en) Anti-angiogenic properties of vascostatin and fragments or variants thereof
Tuong Nguyen Adeno-associated virus and other potential vectors for angiostatin and endostatin gene therapy
JPWO2020223362A5 (en)
EP1179061B1 (en) Methods for treating tumors using antiangiogenic compounds
US20080039382A1 (en) Compositions related to pleiotrophin methods and uses thereof
US20030073652A1 (en) Ex-vivo and in vivo factor XII gene therapy for hemophilia A and B
US20040077538A1 (en) Use of factor XIIa for treatment of hemophilia A and B and prevention of bleeding
JP2003522133A (en) Methods for achieving sustained transgene expression
Vranckx et al. 15 Gene Transfer of Growth Factors for Wound Repair
KR20160005021A (en) Sdf-1 delivery for treating ischemic tissue

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION