US20020131547A1 - Scintillator arrays for radiation detectors and methods for making same - Google Patents

Scintillator arrays for radiation detectors and methods for making same Download PDF

Info

Publication number
US20020131547A1
US20020131547A1 US09/681,301 US68130101A US2002131547A1 US 20020131547 A1 US20020131547 A1 US 20020131547A1 US 68130101 A US68130101 A US 68130101A US 2002131547 A1 US2002131547 A1 US 2002131547A1
Authority
US
United States
Prior art keywords
rods
scintillator
accordance
methylcellulose
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/681,301
Other versions
US6448566B1 (en
Inventor
Robert Riedner
David Hoffman
Richard Ruzga
Eti Ganin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/681,301 priority Critical patent/US6448566B1/en
Assigned to GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC reassignment GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETI GANIN, RICHARD J. RUZGA, ROBERT J. RIEDNER, DAVID M. HOFFMAN
Application granted granted Critical
Publication of US6448566B1 publication Critical patent/US6448566B1/en
Publication of US20020131547A1 publication Critical patent/US20020131547A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • This invention relates generally to methods for making scintillator arrays used in radiation detectors, and to the scintillator arrays made from these methods.
  • an x-ray source projects a fan-shaped beam which is collimated to lie within an X-Y plane of a Cartesian coordinate system and generally referred to as the “imaging plane”.
  • the x-ray beam passes through the object being imaged, such as a patient.
  • the beam after being attenuated by the object, impinges upon an array of radiation detectors.
  • the intensity of the attenuated beam radiation received at the detector array is dependent upon the attenuation of the x-ray beam by the object.
  • Each detector element of the array produces a separate electrical signal that is a measurement of the beam attenuation at the detector location.
  • the attenuation measurements from all the detectors are acquired separately to produce a transmission profile.
  • the x-ray source and the detector array are rotated with a gantry within the imaging plane and around the object to be imaged so that the angle at which the x-ray beam intersects the object constantly changes.
  • a group of x-ray attenuation measurements, i.e., projection data, from the detector array at one gantry angle is referred to as a “view”.
  • a “scan” of the object comprises a set of views made at different gantry angles, or view angles, during one revolution of the x-ray source and detector.
  • the projection data is processed to construct an image that corresponds to a two dimensional slice taken through the object.
  • CT numbers integers called “CT numbers” or “Hounsfield units”, which are used to control the brightness of a corresponding pixel on a cathode ray tube display.
  • Detectors of CT and other types of x-ray imaging systems utilize scintillation detectors having pixelated scintillator arrays. It would therefore be desirable to provide simplified, inexpensive methods for making such arrays, and to provide inexpensive, pixelated scintillator arrays for CT and other imaging applications.
  • one embodiment of the present invention is a method for making a scintillator array.
  • the method includes extruding a mixture of a scintillator powder and a binder into rods; laminating the extruded rods with a sinterable reflector material; and sintering the laminated rods and reflector material into a scintillator block.
  • Scintillator array embodiments of the present invention are useful in many types of pixelated radiation detectors, such as those used in computed tomography systems.
  • FIG. 1 is a pictorial view of a CT imaging system.
  • FIG. 2 is a block schematic diagram of the system illustrated in FIG. 1.
  • FIG. 3 is a flow chart illustrating two different method embodiments of the present inventive method for making a scintillator array.
  • FIG. 4 is a flow chart illustrating another embodiment of the present invention for making a scintillator array.
  • FIG. 5 is a simplified perspective representation of a scintillator block of the present invention during one stage of its fabrication.
  • a computed tomograph (CT) imaging system 10 is shown as including a gantry 12 representative of a “third generation” CT scanner.
  • Gantry 12 has an x-ray source 14 that projects a beam of x-rays 16 toward a radiation detector array 18 on the opposite side of gantry 12 .
  • Detector array 18 is formed by detector elements 20 which together sense the projected x-rays that pass through an object 22 , for example a medical patient.
  • Detector array 18 may be fabricated in a single slice or multi-slice configuration.
  • detector elements 20 comprise sintered scintillator elements.
  • Each scintillator element produces light in response to x-ray radiation, which is converted to an electrical signal by a sensing region of a semiconductor array optically coupled thereto.
  • Each detector element 20 produces an electrical signal that represents the intensity of an impinging x-ray beam on that detector element and hence the attenuation of the beam as it passes through patient 22 at a corresponding angle.
  • gantry 12 and the components mounted thereon rotate about a center of rotation 24 .
  • Control mechanism 26 includes an x-ray controller 28 that provides power and timing signals to x-ray source 14 and a gantry motor controller 30 that controls the rotational speed and position of gantry 12 .
  • a data acquisition system (DAS) 32 in control mechanism 26 samples analog data from detector elements 20 and converts the data to digital signals for subsequent processing.
  • An image reconstructor 34 receives sampled and digitized x-ray data from DAS 32 and performs high speed image reconstruction. The reconstructed image is applied as an input to a computer 36 which stores the image in a mass storage device 38 .
  • DAS data acquisition system
  • Computer 36 also receives commands and scanning parameters from an operator via console 40 that has a keyboard.
  • An associated cathode ray tube display 42 allows the operator to observe the reconstructed image and other data from computer 36 .
  • the operator supplied commands and parameters are used by computer 36 to provide control signals and information to DAS 32 , x-ray controller 28 and gantry motor controller 30 .
  • computer 36 operates a table motor controller 44 which controls a motorized table 46 to position patient 22 in gantry 12 . Particularly, table 46 moves portions of patient 22 through gantry opening 48 .
  • a scintillator precursor is prepared by mixing 10 a temporary organic binder or gel with a scintillator powder.
  • Suitable organic binders include organic binders or gels used in ceramic molding, such as polyethylene glycol, methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
  • Suitable scintillator powders include gadolinium oxysulfide (GdOS), Lumex ((YGd) 2 O 3 ), cadmium tungstate (CdWO 4 ), GGG (Gd 3 Ga 5 O 12 garnet), bismuth germanate (BGO, Bi 4 Ge 3 O 12 ) and mixtures thereof.
  • GdOS gadolinium oxysulfide
  • Lumex (YGd) 2 O 3 )
  • CdWO 4 cadmium tungstate
  • GGG Gd 3 Ga 5 O 12 garnet
  • BGO, Bi 4 Ge 3 O 12 bismuth germanate
  • the scintillator precursor is partially solidified or dried to make a flexible “cake,” that is extruded 12 through a die or multiple dies to make a square or round rod.
  • the rods are then cut to a length dependent upon the embodiment.
  • the cut parts are then assembled 14 into an array with sheets, laminates or layers that comprise a low melting point or easily dissolvable sacrificial material. Suitable materials for such sheets, laminates or layers include any low melting point polymer sheet coated with adhesive, such as polyester films, MYLAR® and polycarbonate films.
  • the sheet, laminate, or layer forms a separator between individual scintillator elements or pixels. In one embodiment, the entire separator is made of a sacrificial material.
  • the scintillator structure is also supported 16 , for example, by bonding conforming plates at cut ends or faces of the scintillators to hold extrusions in place during subsequent operations.
  • the sacrificial layer is removed 18 , for example, by heating the structure to a temperature at which the sacrificial layer material melts away. In one embodiment, the sacrificial layer is entirely burned out. In another embodiment, the sacrificial layer is removed by a solvent. The precursor material that remains is sintered 20 at an appropriate sintering temperature to form a scintillator array.
  • the gap left by the sacrifical layer is filled 22 with a reflective material which separates each scintillator array into individual channels or pixels.
  • a reflective material include titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and barium sulfate (BaSO 4 ) powders, and mixtures thereof.
  • TiO 2 titanium dioxide
  • Al 2 O 3 aluminum oxide
  • BaSO 4 barium sulfate
  • the rods are laminated 14 with a material that is not removed (or not completely removed) when the rods are sintered 28 .
  • conforming plates are then applied 30 to the ends of the rods and the laminate material is then removed 32 . Removal 32 of the laminate forming the sacrificial layers is accomplished, for example, by use of heat or a solvent.
  • the gaps left by removal of the sacrificial laminate material are then filled 22 , the conforming plates are removed 24 , and the resulting structure cut or sliced into sections 26 , as in an embodiment described above[0009]
  • the separator layer serves as a permanent part of the array
  • there are no gaps to fill with reflector so the extruded and sintered array is simply diced into a thickness appropriate for the desired application. More particularly, and referring to FIG. 4, powder and binder are mixed 10 and extruded 12 into rods, as in the embodiments of FIG. 3.
  • the rods are then laminated (i.e., coated and joined) 34 with a sinterable reflector material.
  • Suitable sinterable reflector materials include, for example, titanium dioxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and barium sulfate (BaSO 4 ) powders, and other high temperature inorganic reflectors capable of surviving the scintillator sintering temperature, as well as mixtures of sinterable reflector materials.
  • TiO 2 titanium dioxide
  • Al 2 O 3 aluminum oxide
  • BaSO 4 barium sulfate
  • FIG. 5 is a simplified view of one embodiment of a “laminated” scintillator block 40 comprising a plurality of rods 42 of extruded scintillator material, a sheet of sacrificial laminate material 44 , and additional sacrificial material 46 .
  • FIG. 5 shows only four rods 42 , it is illustrative of embodiments having a larger number of rods 42 .
  • Extruded rods 42 comprising a scintillator powder and an organic binder are assembled with elongate axes parallel to one another.
  • rods 42 have a square cross-section transverse to their elongate (extruded) dimension, having been extruded through a square die.
  • Laminate 40 is assembled using sacrificial materials 44 and 46 .
  • rods 42 are assembled parallel to one another, in layers 48 parallel to one another, using a sheet 44 of laminate material between layers 48 .
  • sheet 44 has adhesive properties (e.g., it is coated with an adhesive) so that rods 42 adhere to sheet 44 .
  • rods 42 are dipped in a sacrificial adhesive (not shown) to adhere rods 42 to sheet 44 .
  • a liquid or solid (e.g., powdered) sacrificial material 46 is applied between rods 42 in each layer.
  • the embodiment described herein is scalable, so that laminated block 40 embodiments of the present invention can comprise any number of layers 48 , and a layer 48 can comprise any number of blocks 42 .
  • Opposite faces 50 , 52 of rods 42 are then joined or bonded to conforming plates 54 (only one of which is shown in FIG. 5).
  • opposite faces 50 and 52 of rods 48 are flat and parallel to one another, so conforming plates 54 are also flat and parallel to one another.
  • Sacrificial laminate sheets 44 and additional sacrificial material 46 are removed by heating or by dissolution in a solvent. However, because rods 42 are bonded to conforming plates 54 at faces 50 and 52 , rods 42 maintain their separation from one another, and gaps remain where sacrificial laminate sheets 44 and additional sacrificial material 46 is removed. The luminescent powder comprising rods 42 is then sintered in the rods by further heating. Gaps between rods 42 are then filled with a reflector material. Conforming plates 54 are removed, and the resulting scintillator block 40 is sliced in a direction perpendicular to the length of rods 42 and parallel to faces 50 and 52 . Each slice is useful as a scintillator assembly for a detector array.
  • a sacrificial material 46 is applied by dipping each rod 42 into a sacrificial material 46 .
  • no sacrificial laminate material 44 is required. Instead, sacrificial material 46 separates rods 42 both within layers 48 and between layers 48 .
  • rods 42 are sintered prior to removal of sacrificial material 46 , or 44 and 46 . After sintering, sacrificial material 46 , or 44 and 46 is removed and the resulting gaps filled with a reflector material (not shown in FIG. 5). Conforming plates 54 are removed and the resulting scintillator assembly 40 is diced into sections as above.
  • rods 42 are assembled into an array 40 using a sinterable reflector material (not shown in FIG. 5) instead of sacrificial laminate material 44 and additional laminate material 46 .
  • the sinterable reflector material is provided in the form of a sheet, a coating (e.g., a liquid), or a powder.
  • Rods 42 of sintillator powder mixture and the reflector material are then sintered together, so that there is no gap filling required, and thus, no conforming plates 54 are required.
  • the resulting sintered assembly 40 is simply sliced into sections using cuts perpendicular to the direction of the rods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

To provide simpler, more efficient methods for making scintillator arrays, one embodiment of the present invention is a method for making a scintillator array. The method includes extruding a mixture of a scintillator powder and a binder into rods; laminating the extruded rods with a sinterable reflector material; and sintering the laminated rods and reflector material into a scintillator block. Scintillator array embodiments of the present invention are useful in many types of pixelated radiation detectors, such as those used in computed tomography systems.

Description

    BACKGROUND OF INVENTION
  • This invention relates generally to methods for making scintillator arrays used in radiation detectors, and to the scintillator arrays made from these methods. [0001]
  • In at least one known computed tomography (CT) imaging system configuration, an x-ray source projects a fan-shaped beam which is collimated to lie within an X-Y plane of a Cartesian coordinate system and generally referred to as the “imaging plane”. The x-ray beam passes through the object being imaged, such as a patient. The beam, after being attenuated by the object, impinges upon an array of radiation detectors. The intensity of the attenuated beam radiation received at the detector array is dependent upon the attenuation of the x-ray beam by the object. Each detector element of the array produces a separate electrical signal that is a measurement of the beam attenuation at the detector location. The attenuation measurements from all the detectors are acquired separately to produce a transmission profile. [0002]
  • In known third generation CT systems, the x-ray source and the detector array are rotated with a gantry within the imaging plane and around the object to be imaged so that the angle at which the x-ray beam intersects the object constantly changes. A group of x-ray attenuation measurements, i.e., projection data, from the detector array at one gantry angle is referred to as a “view”. A “scan” of the object comprises a set of views made at different gantry angles, or view angles, during one revolution of the x-ray source and detector. In an axial scan, the projection data is processed to construct an image that corresponds to a two dimensional slice taken through the object. One method for reconstructing an image from a set of projection data is referred to in the art as the filtered back projection technique. This process converts the attenuation measurements from a scan into integers called “CT numbers” or “Hounsfield units”, which are used to control the brightness of a corresponding pixel on a cathode ray tube display. [0003]
  • Detectors of CT and other types of x-ray imaging systems utilize scintillation detectors having pixelated scintillator arrays. It would therefore be desirable to provide simplified, inexpensive methods for making such arrays, and to provide inexpensive, pixelated scintillator arrays for CT and other imaging applications. [0004]
  • SUMMARY OF INVENTION
  • To provide simpler, more efficient methods for making scintillator arrays, one embodiment of the present invention is a method for making a scintillator array. The method includes extruding a mixture of a scintillator powder and a binder into rods; laminating the extruded rods with a sinterable reflector material; and sintering the laminated rods and reflector material into a scintillator block. Scintillator array embodiments of the present invention are useful in many types of pixelated radiation detectors, such as those used in computed tomography systems.[0005]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a pictorial view of a CT imaging system. [0006]
  • FIG. 2 is a block schematic diagram of the system illustrated in FIG. 1. [0007]
  • FIG. 3 is a flow chart illustrating two different method embodiments of the present inventive method for making a scintillator array. [0008]
  • FIG. 4 is a flow chart illustrating another embodiment of the present invention for making a scintillator array. [0009]
  • FIG. 5 is a simplified perspective representation of a scintillator block of the present invention during one stage of its fabrication. [0010]
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1 and 2, a computed tomograph (CT) [0011] imaging system 10 is shown as including a gantry 12 representative of a “third generation” CT scanner. Gantry 12 has an x-ray source 14 that projects a beam of x-rays 16 toward a radiation detector array 18 on the opposite side of gantry 12. Detector array 18 is formed by detector elements 20 which together sense the projected x-rays that pass through an object 22, for example a medical patient. Detector array 18 may be fabricated in a single slice or multi-slice configuration. In one embodiment of the present invention, and as described below, detector elements 20 comprise sintered scintillator elements. Each scintillator element produces light in response to x-ray radiation, which is converted to an electrical signal by a sensing region of a semiconductor array optically coupled thereto. Each detector element 20 produces an electrical signal that represents the intensity of an impinging x-ray beam on that detector element and hence the attenuation of the beam as it passes through patient 22 at a corresponding angle. During a scan to acquire x-ray projection data, gantry 12 and the components mounted thereon rotate about a center of rotation 24.
  • Rotation of [0012] gantry 12 and the operation of x-ray source 14 are governed by a control mechanism 26 of CT system 10. Control mechanism 26 includes an x-ray controller 28 that provides power and timing signals to x-ray source 14 and a gantry motor controller 30 that controls the rotational speed and position of gantry 12. A data acquisition system (DAS) 32 in control mechanism 26 samples analog data from detector elements 20 and converts the data to digital signals for subsequent processing. An image reconstructor 34 receives sampled and digitized x-ray data from DAS 32 and performs high speed image reconstruction. The reconstructed image is applied as an input to a computer 36 which stores the image in a mass storage device 38.
  • [0013] Computer 36 also receives commands and scanning parameters from an operator via console 40 that has a keyboard. An associated cathode ray tube display 42 allows the operator to observe the reconstructed image and other data from computer 36. The operator supplied commands and parameters are used by computer 36 to provide control signals and information to DAS 32, x-ray controller 28 and gantry motor controller 30. In addition, computer 36 operates a table motor controller 44 which controls a motorized table 46 to position patient 22 in gantry 12. Particularly, table 46 moves portions of patient 22 through gantry opening 48.
  • In one embodiment of the present invention and referring to FIG. 3, a scintillator precursor is prepared by mixing [0014] 10 a temporary organic binder or gel with a scintillator powder. Suitable organic binders include organic binders or gels used in ceramic molding, such as polyethylene glycol, methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof. Suitable scintillator powders include gadolinium oxysulfide (GdOS), Lumex ((YGd)2O3), cadmium tungstate (CdWO4), GGG (Gd3Ga5O12 garnet), bismuth germanate (BGO, Bi4 Ge3 O12) and mixtures thereof.
  • The scintillator precursor is partially solidified or dried to make a flexible “cake,” that is extruded [0015] 12 through a die or multiple dies to make a square or round rod. The rods are then cut to a length dependent upon the embodiment. The cut parts are then assembled 14 into an array with sheets, laminates or layers that comprise a low melting point or easily dissolvable sacrificial material. Suitable materials for such sheets, laminates or layers include any low melting point polymer sheet coated with adhesive, such as polyester films, MYLAR® and polycarbonate films. The sheet, laminate, or layer forms a separator between individual scintillator elements or pixels. In one embodiment, the entire separator is made of a sacrificial material.
  • In one embodiment, the scintillator structure is also supported [0016] 16, for example, by bonding conforming plates at cut ends or faces of the scintillators to hold extrusions in place during subsequent operations. After building the structure, the sacrificial layer is removed 18, for example, by heating the structure to a temperature at which the sacrificial layer material melts away. In one embodiment, the sacrificial layer is entirely burned out. In another embodiment, the sacrificial layer is removed by a solvent. The precursor material that remains is sintered 20 at an appropriate sintering temperature to form a scintillator array.
  • After sintering and removal of the sacrificial layer, the gap left by the sacrifical layer is filled [0017] 22 with a reflective material which separates each scintillator array into individual channels or pixels. Examples of suitable reflective materials include titanium dioxide (TiO2), aluminum oxide (Al2O3), and barium sulfate (BaSO4) powders, and mixtures thereof. The conforming plates are then removed 24 and the long scintillator array is diced or cut 26 into thinner arrays suitable for the desired application.
  • In one embodiment, after preparing [0018] 10 the precursor material, extruding 12 the cake, the rods are laminated 14 with a material that is not removed (or not completely removed) when the rods are sintered 28. Thus, it is not necessary to use conforming plates to hold the laminated structure together during sintering. After sintering 28, conforming plates are then applied 30 to the ends of the rods and the laminate material is then removed 32. Removal 32 of the laminate forming the sacrificial layers is accomplished, for example, by use of heat or a solvent. The gaps left by removal of the sacrificial laminate material are then filled 22, the conforming plates are removed 24, and the resulting structure cut or sliced into sections 26, as in an embodiment described above[0009] In embodiments in which the separator layer serves as a permanent part of the array, there are no gaps to fill with reflector, so the extruded and sintered array is simply diced into a thickness appropriate for the desired application. More particularly, and referring to FIG. 4, powder and binder are mixed 10 and extruded 12 into rods, as in the embodiments of FIG. 3. The rods are then laminated (i.e., coated and joined) 34 with a sinterable reflector material. Suitable sinterable reflector materials include, for example, titanium dioxide (TiO2), aluminum oxide (Al2O3), and barium sulfate (BaSO4) powders, and other high temperature inorganic reflectors capable of surviving the scintillator sintering temperature, as well as mixtures of sinterable reflector materials. The rods and reflector material are then heated and sintered 36 in one operation, leaving a sintillator block that can simply be sliced 38 into sections of desired dimensions.
  • FIG. 5 is a simplified view of one embodiment of a “laminated” [0019] scintillator block 40 comprising a plurality of rods 42 of extruded scintillator material, a sheet of sacrificial laminate material 44, and additional sacrificial material 46. Although FIG. 5 shows only four rods 42, it is illustrative of embodiments having a larger number of rods 42.
  • [0020] Extruded rods 42 comprising a scintillator powder and an organic binder are assembled with elongate axes parallel to one another. In FIG. 5, rods 42 have a square cross-section transverse to their elongate (extruded) dimension, having been extruded through a square die. However, other embodiments utilize round rods or rods having other geometrical shapes. Laminate 40 is assembled using sacrificial materials 44 and 46. For example, rods 42 are assembled parallel to one another, in layers 48 parallel to one another, using a sheet 44 of laminate material between layers 48. In one embodiment, sheet 44 has adhesive properties (e.g., it is coated with an adhesive) so that rods 42 adhere to sheet 44. In another embodiment, rods 42 are dipped in a sacrificial adhesive (not shown) to adhere rods 42 to sheet 44. A liquid or solid (e.g., powdered) sacrificial material 46 is applied between rods 42 in each layer. Although not shown in FIG. 5, the embodiment described herein is scalable, so that laminated block 40 embodiments of the present invention can comprise any number of layers 48, and a layer 48 can comprise any number of blocks 42. Opposite faces 50, 52 of rods 42 are then joined or bonded to conforming plates 54 (only one of which is shown in FIG. 5). In one embodiment, opposite faces 50 and 52 of rods 48 are flat and parallel to one another, so conforming plates 54 are also flat and parallel to one another.
  • [0021] Sacrificial laminate sheets 44 and additional sacrificial material 46 are removed by heating or by dissolution in a solvent. However, because rods 42 are bonded to conforming plates 54 at faces 50 and 52, rods 42 maintain their separation from one another, and gaps remain where sacrificial laminate sheets 44 and additional sacrificial material 46 is removed. The luminescent powder comprising rods 42 is then sintered in the rods by further heating. Gaps between rods 42 are then filled with a reflector material. Conforming plates 54 are removed, and the resulting scintillator block 40 is sliced in a direction perpendicular to the length of rods 42 and parallel to faces 50 and 52. Each slice is useful as a scintillator assembly for a detector array.
  • In one embodiment, a [0022] sacrificial material 46 is applied by dipping each rod 42 into a sacrificial material 46. In this embodiment, no sacrificial laminate material 44 is required. Instead, sacrificial material 46 separates rods 42 both within layers 48 and between layers 48.
  • In one embodiment, [0023] rods 42 are sintered prior to removal of sacrificial material 46, or 44 and 46. After sintering, sacrificial material 46, or 44 and 46 is removed and the resulting gaps filled with a reflector material (not shown in FIG. 5). Conforming plates 54 are removed and the resulting scintillator assembly 40 is diced into sections as above.
  • In yet another embodiment, after extrusion of [0024] rods 42, rods 42 are assembled into an array 40 using a sinterable reflector material (not shown in FIG. 5) instead of sacrificial laminate material 44 and additional laminate material 46. For example, the sinterable reflector material is provided in the form of a sheet, a coating (e.g., a liquid), or a powder. Rods 42 of sintillator powder mixture and the reflector material are then sintered together, so that there is no gap filling required, and thus, no conforming plates 54 are required. The resulting sintered assembly 40 is simply sliced into sections using cuts perpendicular to the direction of the rods.
  • While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims. [0025]

Claims (25)

1. A method for making a scintillator array comprising:
extruding a mixture of a scintillator powder and a binder into rods;
laminating the extruded rods with a sinterable reflector material; and
sintering the laminated rods and reflector material into a scintillator block.
2. A method in accordance with claim 1 and further comprising slicing the scintillator block into sections.
3. A method in accordance with claim 1 wherein the sinterable reflector comprises a reflector material powder selected from the group consisting of titanium dioxide, aluminum oxide, barium sulfate, and mixtures thereof.
4. A method in accordance with claim 1 wherein the binder is an organic binder.
5. A method in accordance with claim 1 wherein the binder is selected from the group consisting of polyethylene glycol, methylcellulose, ethylhydroxy ethylcellulose, hydroxybuty methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
6. A method in accordance with claim 1 wherein the scintillator powder is selected from the group consisting of gadolinium oxysulfide, Lumex ((YGd)2O3), cadmium tungstate, GGG (Gd3Ga5O12 garnet), bismuth germanate and mixtures thereof.
7. A method for making a scintillator array comprising:
extruding a mixture of a scintillator powder and a binder into rods;
laminating the extruded rods with a sacrificial material;
supporting the laminated, extruded rods;
removing the laminated material between the supported rods;
sintering the supported rods; and
filling gaps between the sintered rods with a reflective material to form a scintillator array.
8. A method in accordance with claim 7 wherein the rods have faces at opposite ends, and supporting the laminated, extruded rods comprises bonding conforming plates at opposite ends of the rods.
9. A method in accordance with claim 7 and further comprising slicing the scintillator block into sections.
10. A method in accordance with claim 7 wherein the reflector comprises a powder selected from the group consisting of titanium dioxide, aluminum oxide, barium sulfate, and mixtures thereof.
11. A method in accordance with claim 7 wherein the binder is an organic binder.
12. A method in accordance with claim 7 wherein the binder is selected from the group consisting of polyethylene glycol, methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
13. A method in accordance with claim 7 wherein the scintillator powder is selected from the group consisting of gadolinium oxysulfide, Lumex ((YGd)2O3), cadmium tungstate, GGG (Gd3Ga5O12 garnet), bismuth germanate and mixtures thereof.
14. A method for making a scintillator array comprising:
extruding a mixture of a scintillator powder and a binder into rods;
laminating the extruded rods with a sacrificial material;
sintering the laminated, extruded rods;
supporting the sintered, laminated rods;
removing the laminated material between the supported rods; and
filling gaps between the supported rods with reflective material to form a scintillator block.
15. A method in accordance with claim 14 wherein the rods have faces at opposite ends, and supporting the laminated, extruded rods comprises bonding conforming plates at opposite ends of the rods.
16. A method in accordance with claim 14 and further comprising slicing the scintillator block into sections.
17. A method in accordance with claim 14 wherein the reflector comprises a powder selected from the group consisting of titanium dioxide, aluminum oxide, barium sulfate, and mixtures thereof.
18. A method in accordance with claim 14 wherein the binder is an organic binder.
19. A method in accordance with claim 14 wherein the binder is selected from the group consisting of polyethylene glycol, methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
20. A method in accordance with claim 14 wherein the scintillator powder is selected from the group consisting of gadolinium oxysulfide, Lumex ((YGd)2O3), cadmium tungstate, GGG (Gd3Ga5O12 garnet), bismuth germanate and mixtures thereof.
21. A scintillator array comprising a plurality of parallel sintered rods and a reflective material disposed between said parallel sintered rods.
22. A scintillator array in accordance with claim 21 wherein said parallel sintered rods comprise a scintillator powder selected from the group consisting of gadolinium oxysulfide, Lumex ((YGd)2O3), cadmium tungstate, GGG (Gd3Ga5O12 garnet), bismuth germanate and mixtures thereof.
23. A scintillator array in accordance with claim 21 wherein said reflective material between said parallel sintered rods is also sintered.
24. A scintillator array in accordance with claim 23 wherein said sintered reflective material comprises a powder selected from the group consisting of titanium dioxide, aluminum oxide, barium sulfate, and mixtures thereof.
25. A computed tomographic imaging system comprising:
a rotating gantry;
a detector array on said rotating gantry; and
an x-ray source on said rotating gantry opposite said detector array and configured to direct a radiation beam through an object towards said detector array;
said detector array comprising a plurality of sintered scintillator elements that produce light in response to x-ray radiation, and said detector array configured to convert said light to electrical signals to represent an intensity of said x-ray beam.
US09/681,301 2001-03-15 2001-03-15 Scintillator arrays for radiation detectors and methods for making same Expired - Fee Related US6448566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/681,301 US6448566B1 (en) 2001-03-15 2001-03-15 Scintillator arrays for radiation detectors and methods for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/681,301 US6448566B1 (en) 2001-03-15 2001-03-15 Scintillator arrays for radiation detectors and methods for making same

Publications (2)

Publication Number Publication Date
US6448566B1 US6448566B1 (en) 2002-09-10
US20020131547A1 true US20020131547A1 (en) 2002-09-19

Family

ID=24734691

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/681,301 Expired - Fee Related US6448566B1 (en) 2001-03-15 2001-03-15 Scintillator arrays for radiation detectors and methods for making same

Country Status (1)

Country Link
US (1) US6448566B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104348A1 (en) * 2002-12-03 2004-06-03 Bross Alan D. Systems and methods for detecting x-rays
US20040104500A1 (en) * 2002-12-03 2004-06-03 Bross Alan D. Extruded plastic scintillator including inorganic powders
US20040104347A1 (en) * 2002-12-03 2004-06-03 Bross Alan D. Systems and methods for detecting nuclear radiation in the presence of backgrounds
US6927397B2 (en) 2002-12-03 2005-08-09 Universities Research Association, Inc. Systems and methods for detecting neutrons
WO2013019331A1 (en) * 2011-07-29 2013-02-07 Carestream Health,Inc. Patterned radiation-sensing thermo-plastic composite panels
WO2013077979A1 (en) * 2011-11-21 2013-05-30 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive
WO2013106127A1 (en) * 2012-01-09 2013-07-18 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive
US8853652B2 (en) 2011-11-21 2014-10-07 Carestream Health, Inc. Laminated storage phosphor panel with thermally-sensitive adhesive and methods of making thereof
US20180064407A1 (en) * 2016-09-06 2018-03-08 General Electric Company Direct Attached Tungsten 3-D Printed Collimator To Scintillator Array
CN108682473A (en) * 2011-06-28 2018-10-19 锐珂牙科技术顶阔有限公司 Radiation sensitive thermoplastic composite panel
US10451750B2 (en) * 2014-11-28 2019-10-22 Forschungszentrum Jülich GmbH Scintillation detector with a high count rate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519313B2 (en) * 2001-05-30 2003-02-11 General Electric Company High-Z cast reflector compositions and method of manufacture
WO2003083513A1 (en) * 2002-03-28 2003-10-09 Kabushiki Kaisha Toshiba X-ray detector
US20040140431A1 (en) * 2003-01-21 2004-07-22 Cti Pet Systems, Inc. Multi-application highly reflective grid array
US6859514B2 (en) * 2003-03-14 2005-02-22 Ge Medical Systems Global Technology Company Llc CT detector array with uniform cross-talk
US6898265B1 (en) 2003-11-20 2005-05-24 Ge Medical Systems Global Technology Company, Llc Scintillator arrays for radiation detectors and methods of manufacture
US7187748B2 (en) * 2003-12-30 2007-03-06 Ge Medical Systems Global Technology Company, Llc Multidetector CT imaging method and apparatus with reducing radiation scattering
US7282713B2 (en) * 2004-06-10 2007-10-16 General Electric Company Compositions and methods for scintillator arrays
US7145149B2 (en) * 2004-09-21 2006-12-05 Los Alamos National Security, Llc Flexible composite radiation detector
JP2008518224A (en) * 2004-10-29 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ GOS ceramic scintillation fiber optic X-ray imaging plate for use in medical DF and RF imaging and CT
US7329875B2 (en) * 2004-11-23 2008-02-12 General Electric Company Detector array for imaging system and method of making same
US7525094B2 (en) * 2005-12-21 2009-04-28 Los Alamos National Security, Llc Nanocomposite scintillator, detector, and method
US8866089B2 (en) 2011-12-30 2014-10-21 Saint-Gobain Ceramics & Plastics, Inc. Scintillator pixel array
CN112540395A (en) * 2020-12-04 2021-03-23 清远先导材料有限公司 Scintillation crystal array and method of assembling and disassembling the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL80333A (en) 1985-12-30 1991-01-31 Gen Electric Radiation detector employing solid state scintillator material and preparation methods therefor
US4783596A (en) 1987-06-08 1988-11-08 General Electric Company Solid state scintillator and treatment therefor
EP0360886A1 (en) * 1988-09-26 1990-04-04 Siemens Aktiengesellschaft X-ray detector
US5057692A (en) 1990-06-29 1991-10-15 General Electric Company High speed, radiation tolerant, CT scintillator system employing garnet structure scintillators
US6245184B1 (en) 1997-11-26 2001-06-12 General Electric Company Method of fabricating scintillators for computed tomograph system
US6137857A (en) 1997-11-26 2000-10-24 General Electric Company Scalable detector for computed tomograph system
US6115448A (en) 1997-11-26 2000-09-05 General Electric Company Photodiode array for a scalable multislice scanning computed tomography system
US6173031B1 (en) 1997-11-26 2001-01-09 General Electric Company Detector modules for computed tomograph system
US6134292A (en) 1998-07-13 2000-10-17 General Electric Company Methods and apparatus for reducing z-axis non-uniformity artifacts

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104348A1 (en) * 2002-12-03 2004-06-03 Bross Alan D. Systems and methods for detecting x-rays
US20040104500A1 (en) * 2002-12-03 2004-06-03 Bross Alan D. Extruded plastic scintillator including inorganic powders
US20040104347A1 (en) * 2002-12-03 2004-06-03 Bross Alan D. Systems and methods for detecting nuclear radiation in the presence of backgrounds
US6909098B2 (en) 2002-12-03 2005-06-21 Universities Research Association Inc. Systems and methods for detecting nuclear radiation in the presence of backgrounds
US6927397B2 (en) 2002-12-03 2005-08-09 Universities Research Association, Inc. Systems and methods for detecting neutrons
US7038211B2 (en) 2002-12-03 2006-05-02 Universities Research Association, Inc. Systems and methods for detecting x-rays
US7067079B2 (en) 2002-12-03 2006-06-27 Universities Research Association, Inc. Extruded plastic scintillator including inorganic powders
CN108682473A (en) * 2011-06-28 2018-10-19 锐珂牙科技术顶阔有限公司 Radiation sensitive thermoplastic composite panel
US8502170B2 (en) 2011-07-29 2013-08-06 Carestream Health, Inc. Patterned radiation-sensing thermoplastic composite panels
US9069086B2 (en) 2011-07-29 2015-06-30 Carestream Health, Inc. Patterned radiation-sensing thermoplastic composite panels
WO2013019331A1 (en) * 2011-07-29 2013-02-07 Carestream Health,Inc. Patterned radiation-sensing thermo-plastic composite panels
WO2013077979A1 (en) * 2011-11-21 2013-05-30 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive
US8629402B2 (en) 2011-11-21 2014-01-14 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive and methods of making thereof
CN103946723A (en) * 2011-11-21 2014-07-23 卡尔斯特里姆保健公司 X-ray imaging panel with thermally-sensitive adhesive
US8853652B2 (en) 2011-11-21 2014-10-07 Carestream Health, Inc. Laminated storage phosphor panel with thermally-sensitive adhesive and methods of making thereof
WO2013106127A1 (en) * 2012-01-09 2013-07-18 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive
US9223034B2 (en) 2012-01-09 2015-12-29 Carestream Health, Inc. X-ray imaging panel with thermally-sensitive adhesive and methods of making thereof
US10451750B2 (en) * 2014-11-28 2019-10-22 Forschungszentrum Jülich GmbH Scintillation detector with a high count rate
US20180064407A1 (en) * 2016-09-06 2018-03-08 General Electric Company Direct Attached Tungsten 3-D Printed Collimator To Scintillator Array
US10408947B2 (en) * 2016-09-06 2019-09-10 General Electric Company Direct attached tungsten 3-D printed collimator to scintillator array

Also Published As

Publication number Publication date
US6448566B1 (en) 2002-09-10

Similar Documents

Publication Publication Date Title
US6448566B1 (en) Scintillator arrays for radiation detectors and methods for making same
US7224766B2 (en) CT detector array having non-pixelated scintillator array
US6087665A (en) Multi-layered scintillators for computed tomograph systems
EP3376507B1 (en) Ceramic scintillator array, method for manufacturing same, radiation detector and radiation detection device
EP3396679B1 (en) Ceramic scintillator array, x-ray detector, and x-ray inspection device
JPH11231060A (en) Scintillator for computer-operated tomographic device and its manufacture
JP4274839B2 (en) X-ray detector scintillator, manufacturing method thereof, X-ray detector and X-ray CT apparatus using the same
US6993110B2 (en) Collimator for imaging systems and methods for making same
US7098460B2 (en) Monolithic structure for x-ray CT collimator
JP4678924B2 (en) Radiation detector and X-ray diagnostic apparatus using the same
US6904304B2 (en) CT detector reflector useful in detector scintillator array
EP4307016A1 (en) Scintillator array, and radiation detector and radiation inspecting device employing same
EP4053244A1 (en) Scintilltor array, method for manufacturing scintillator array, radiation detector, and radiation inspection device
EP4060682A1 (en) Scintillator array, scintillator array manufacturing method, radiation detector, and radiation detection device
De Assis et al. Microfocus radiography producing microtomography
JP2001145623A (en) X-ray ct device and method for x-ray tomography
JPH02241439A (en) Computer tomograph

Legal Events

Date Code Title Description
AS Assignment

Owner name: GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROBERT J. RIEDNER;DAVID M. HOFFMAN;RICHARD J. RUZGA;AND OTHERS;REEL/FRAME:011488/0886;SIGNING DATES FROM 20010309 TO 20010313

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100910