US20020130205A1 - Fuel injector assembly - Google Patents
Fuel injector assembly Download PDFInfo
- Publication number
- US20020130205A1 US20020130205A1 US10/152,415 US15241502A US2002130205A1 US 20020130205 A1 US20020130205 A1 US 20020130205A1 US 15241502 A US15241502 A US 15241502A US 2002130205 A1 US2002130205 A1 US 2002130205A1
- Authority
- US
- United States
- Prior art keywords
- inner housing
- passage
- valve
- valve stem
- magnetically permeable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/166—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0614—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
- F02M51/0667—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
- F02M51/0671—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
- F02M51/0682—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/004—Joints; Sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/14—Arrangements of injectors with respect to engines; Mounting of injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/168—Assembling; Disassembling; Manufacturing; Adjusting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/80—Fuel injection apparatus manufacture, repair or assembly
- F02M2200/8076—Fuel injection apparatus manufacture, repair or assembly involving threaded members
Definitions
- the present invention relates to valves. More particularly, the present invention is directed to electronically-actuatable valves adapted for controlling the injection of a fuel into an engine.
- Many conventional engines of all fuel types including gasoline and diesel typically employ a fuel injector for supplying known quantities of fuel to each combustion chamber at precise times during the engine cycle.
- a fuel injector assembly is mounted on the engine cylinder head of a combustion chamber. The fuel injector functions to open and close the fuel pump supply line to each engine cylinder head when commanded to do so by an electrical signal from the engine control computer.
- One type of conventional fuel injector is a one-piece electro-mechanical assembly having a housing, a spring-loaded armature of magnetically permeable material and an electromagnetic coil adjacent the armature that is axially positioned within a fuel supply passage.
- the housing surrounds both the armature and coil.
- the electrical wires must pass through this housing without leakage and must be electrically isolated from the housing.
- One disadvantage of this type of conventional fuel injector is that it is difficult to accommodate all of the components of the fuel injector within the limited amount of space available in a reciprocating, opposed cylinder aircraft engine.
- the minimum diameter of space for a fuel injector is less than 0.75 inches.
- Fuel injectors used in automotive applications occupy a space with a diameter of about 1.25 inches.
- sufficient room is not available within the aircraft engine envelope to accommodate the available automotive-type fuel injector components and also to provide for installation and removal of the fuel injector components from the engine cylinder head port.
- the present invention provides a valve having an inner housing with an outlet port, a stopper member movably supported within the inner housing, a central housing member received within the inner housing and a magnetic flux that travels in a loop though the inner housing and the stopper member such that the magnetic flux urges the stopper member from a closed position, wherein the stopper member blocks the outlet port to an opened position.
- the present invention further provides a valve having an inner housing of magnetically permeable material, a stopper member of magnetically permeable material, a central housing member of non-magnetically permeable material and an electrically-energizeable coil adjacent the inner housing, wherein the central housing member acts as a shunt such that the magnetic flux created by the coil bypasses the central housing member and travels through the stopper member.
- the present invention further provides a fuel injector having an inner housing of magnetically permeable material with a valve passage and an outlet port, a valve stem movably received with the valve passage between a closed position, wherein the valve stem blocks the outlet port and an opened position, a biaser in contact with the valve stem, and an electrically-energizeable coil extending around at least a portion of the central housing member and adjacent the inner housing such that upon an application of current to the electrically-energizeable coil, a magnetic flux is established within the magnetically permeable materials of the inner housing and the valve stem to cause the valve stem to move to the opened position.
- the inner housing of the fuel injector may be releasably connected to a cylinder head of an engine such as an aircraft engine.
- the present invention further provides a two-part electromechanical valve having an electrical assembly and a fluid handling assembly, wherein these two separate assemblies provide a sealing arrangement that isolates the electrical components from the fluid that is passing through the valve.
- the electrical assembly includes a magnetically permeable cover with an opening for receiving an electrical supply cable, a bobbin inserted inside the cover, potting material contained within the cover and an electrically-energizeable coil wound around the bobbin and able to be electrically connected to the electrical supply cable.
- the fluid handling assembly includes a housing having a fluid passage that receives a stopper member and the fluid handling assembly is releasably connected to the electrical assembly using a connector.
- the present invention further provides a method of injecting fuel into an engine comprising attaching an inner housing of a fuel injector to an engine, wherein the inner housing is made of magnetically permeable material with an outlet port and a passage, and the fuel injector further comprises a stopper member of magnetically permeable material and a central housing member of non-magnetically permeable material, and wherein the stopper member is received within the inner housing, and the central housing member is received within the inner housing and adjacent the stopper member; transporting fuel into the passage; supplying fuel to the passage; and creating a magnetic flux through the inner housing and the stopper member such that the magnetic flux urges the stopper member from a closed position, wherein it blocks the outlet port, to an opened position.
- FIG. 1 a is a cross-sectional view of a fuel injector of the present invention, wherein the valve stem is in the closed position;
- FIG. 1 b is a cross-sectional view of the fuel injector shown in FIG. 1 a , wherein the valve stem is in the opened position;
- FIG. 2 is an enlarged cross-sectional view of the inner housing and the central housing member of the fuel injector shown in FIG. 1 a ;
- FIG. 3 is an enlarged cross-sectional view of the valve stem, the fluid conduit supporter structure and the spring of the fuel injector shown in FIG. 1 a ;
- FIG. 4 is an enlarged cross-sectional view of the electrical supply assembly of the fuel injector shown in FIG. 1 a ;
- FIG. 5 is an enlarged cross-sectional view of the spherical union and connector of the fuel injector shown in FIG. 1 a ;
- FIG. 6 is a schematic of an internal combustion engine assembly employing the fuel injector of the present invention.
- FIGS. 1 a and 1 b illustrate cross-sectional views of a fuel injector 10 which employs the present invention, wherein the valve stem 18 or stop member of the fuel injector 10 is shown in its closed position and open position, respectively.
- the fuel injector 10 substantially comprises a fluid handling assembly 12 and an electrical supply assembly 13 .
- the fluid handling assembly 12 includes an inner housing 14 (valve housing), a central housing member 16 , a valve stem 18 , a spring 20 and a fluid supply conduit supporter 22 .
- the electrical supply assembly 13 includes a cover 24 with a cap member 26 , a bobbin 28 , an electromagnetic coil 30 ′, potting material 32 and an electrical supply cable 34 .
- the fluid handling assembly 12 is releasably connected to the electrical supply assembly 13 by a nut 36 .
- FIG. 2 is an enlarged cross-sectional view of the inner housing 14 and the central housing member 16 of the fuel injector 10 of the present invention shown in FIG. 1 a .
- the inner housing 14 has a first end portion 38 and a second end portion 40 .
- the first end portion 38 has a first passage 41 therein and the second end portion 40 has a second passage 41 ′ therein.
- the first end portion 38 has a nozzle portion 44 with an outlet port 46 and a seat portion 48 that communicates with the first passage 41 therein.
- the seat portion 48 is substantially conical shaped; however, alternative configurations can be used.
- the outer surface of the nozzle portion 44 has threads 50 which are adapted to engage a threaded cylinder head 52 of an engine, shown in FIGS. 1 a and 1 b .
- the first end portion 38 is provided with a hexagonal shoulder 54 to permit wrenching of the inner housing 14 into the engine cylinder head 52 .
- the outer surface of the second end portion 40 has threads 56 for threadably receiving the nut 36 thereon, as shown in FIGS. 1 a and 1 b .
- the inner housing 14 is made of stainless steel C40 alloy which is a magnetically permeable material.
- the term “magnetically permeable material” means any material that the magnetic flux preferentially conducts within rather than the surrounding air. Specifically, Carpenter Technology high permeability 49 alloy can be used. Other magnetically permeable materials can be used to manufacture the inner housing 14 such as Carpenter Technology stainless steel 430F or other ferritic steels.
- the central housing member 16 is a substantially tubular member having two end surfaces 39 and a passage 17 extending therethrough.
- the central housing member 16 is received between the first end portion 38 and the second end portion 40 of the inner housing 14 such that passage 17 is coaxially aligned on axis A-A with the first passage 41 and the second passage 41 ′ to form a continuous passageway 42 . See FIG. 2.
- the central housing member 16 is fixedly connected to the first and second end portions 38 and 40 at its end surfaces 39 by conventional inertial welds 43 .
- the inertial welds 43 are produced by holding one of the two parts being joined stationary and rotating the other part with a machine spindle.
- one end 39 of the central housing member 16 is abutted against a corresponding end of the first end portion 38 such that the passage 17 is coaxially aligned with the passage 41 . Thereafter, a rotational force is applied to either the first end portion 38 or the central housing member 16 while retaining the adjacent member stationary.
- a rotational force is applied to either the first end portion 38 or the central housing member 16 while retaining the adjacent member stationary.
- the central housing member 16 is manufactured from 304 stainless steel which is a readily and widely available and is a non-magnetically permeable material.
- non-magnetically permeable material means material that magnetic flux has no preference for conducting within rather than air.
- Other non-magnetically permeable materials can be used for the central housing member 16 such as 303 stainless steel or 304L stainless steel or martensitic steels or non-ferrous materials.
- FIG. 3 is an enlarged cross-sectional view of the valve stem 18 , the fluid supply conduit supporter 22 and the spring 20 of the fuel injector 10 of the present invention, as shown in FIG. 1 a .
- the valve stem 18 is a substantially tubular member having a conical nose portion 57 , an inlet port 58 and two outlet ports 60 which communicate with a duct 62 that extends generally along the centerline of the valve stem 18 .
- the duct 62 has a large-diameter section 63 , a small-diameter section 65 and a ledge 64 formed between the large-diameter and small-diameter sections 63 and 65 .
- the ledge 64 is substantially perpendicular to the centerline of the duct 62 .
- the spring 20 extends within the large-diameter section 63 of the duct 62 and contacts the ledge 64 .
- the spring 20 is made from 303 stainless steel and exhibits approximately one pound (1 lb.) to one and one-quarter pounds (1.25 lbs.) force. It has been discovered that such spring biasing force serves to overcome external forces, such as engine vibration forces, to thereby prevent the inadvertent opening of the fuel injector 10 . However, other suitable biasing forces may be employed. Although not illustrated, any number of biasers can be used in place of the spring 20 which meet the size constraints of the present invention.
- the valve stem 18 is movably received within the passage 42 of the inner housing 14 and central housing member 16 , as shown in FIGS. 1 a and 1 b .
- the valve stem 18 is manufactured from Carpenter Technology high permeability 49 alloy, which is a magnetically permeable material. Other magnetically permeable materials can be used to manufacture the valve stem 18 such as ferritic steels.
- the fluid supply conduit supporter 22 is substantially tubular-shaped and defines an inlet port 66 and an outlet port 68 , wherein the shape of the inlet port 66 is frustro-conical.
- a duct 70 extends along the centerline of the fluid supply conduit supporter 22 and has a small-diameter section 72 and a large-diameter section 74 .
- the duct 70 is in fluid communication with the inlet port 66 and the outlet port 68 .
- a ledge 76 is formed at the junction of the small-diameter section 72 and the large-diameter section 74 .
- the spring 20 extends between and engages the valve stem ledge 64 and the supporter ledge 76 .
- the end of the supporter 22 adjacent the inlet port 66 has a flange 78 formed thereon.
- the supporter 22 is received within passage 42 and is fixedly connected relative to the inner housing 14 and the central member housing 16 such that the flange 78 abuts the second end portion 40 of the inner housing 14 .
- the supporter 22 is formed of Carpenter Technology 49 alloy, which is a magnetically permeable material.
- the supporter 22 can be formed of a variety of magnetically permeable materials such as ferritic steels.
- the materials selected for the invention were chosen for their magnetic permeability and corrosion resistant properties. Many magnetically permeable materials are not corrosion resistant.
- the supporter 22 and the second end portion 40 of the inner housing 14 can be a unitary member.
- FIG. 4 is an enlarged cross-sectional view of the electrical supply assembly 13 of the fuel injector 10 of the present invention, shown in FIG. 1 a .
- the electrical supply assembly 13 includes a cover 24 , a cap member 26 , a bobbin 28 , potting material 32 , an electromagnetic coil 30 ′ and an electrical supply cable 34 .
- the bobbin 28 , the cover 24 and the cap member 26 form an electrical housing, designated generally as 96 .
- the cover 24 may be configured, as shown in FIG. 4, with a cup-shaped cross-section. In this embodiment, the cover 24 is fabricated from 430 stainless steel. However, other materials such as ferritic steels may be employed. As can be seen in FIG.
- the cover 24 has a side portion 82 and a bottom portion 80 that has an aperture 90 extending therethrough.
- the cap member 26 includes a wall member 93 that is attached to the side portion 82 of the cover 24 by a weld and a cable-receiving portion 95 .
- the cap member 26 is made from the same materials as the cover 24 .
- An opening 87 is provided through the cap member 26 .
- Cap member 26 may also receive the electrical supply cable 34 .
- the electrical supply assembly 13 includes a bobbin 28 that is fabricated from nylon or other plastic insulator materials.
- the bobbin 28 has a cylindrical center portion 86 and a flange 88 extending substantially perpendicularly from each end of the cylindrical center portion 86 .
- the cylindrical center portion 86 defines a passage 84 that extends therethrough.
- a conductor 30 such as high temperature insulated copper magnetic wire is wound around the cylindrical center portion 86 of the bobbin 28 between the flanges 88 thereof to form the electromagnetic coil 30 ′.
- the conductor 30 is a standard, maximum rated, high temperature wire that is capable of withstanding 200° F. continuously.
- Conductors which meet NEMA STD MW-1000, MW-73-C/A, MW 35-C/A and Federal Spec. J-W-1177/14B(K), such as model GP/MR-200 manufactured by Essex Group, Inc.; model Armored Poly Thermaleze, APTZ manufactured by Phelps Dodge Magnetic Wire Co.; model Therm Amid, TAI manufactured by Rea Magnet Wire Co.; model Omega Klad II, OKII, manufactured by Westinghouse Electric Co.; and model Daitherm-3, DT-3 manufactured by Optec D. D. USA, Inc. may be successfully employed.
- a total of approximately 51.94 feet of the conductor 30 is wrapped around the cylindrical center portion 86 .
- a current of 3.54 amps is passed through the conductor 30 , a magnetic flux of approximately 1368 ampere-turns is established by the electromagnetic coil 30 ′.
- an electrical supply cable 34 is attached to the electromagnetic coil 30 ′.
- the electrical supply cable 34 has a metal braided exterior layer 101 , a shield 103 , a metal conduit 105 and a conductor portion 109 .
- the conductor portion 109 is made from stranded copper wire.
- the bobbin 28 and the coil 30 ′ are installed in the cover 24 , such that the passage 84 extending through the center portion 86 of the bobbin 28 is coaxially aligned with the opening 90 in the cover 24 along axis B-B.
- the insulating conduit 105 and the conductor 109 extends through the cable-receiving portion 95 in the wall portion 93 of the cap member 26 , as shown in FIG. 4.
- the conductor 109 is soldered, welded, or otherwise electrically attached to the two leads of the coil 30 ′ and a commercially available retainer ring 99 is used to affix the cable to the cap member 26 by placing the ring 99 around the cable-receiving portion 95 and crimping it in a known manner.
- the conductor 109 and the coil 30 ′ are sealed, as shown in FIG. 4, in a potting material 32 .
- the potting material 32 is a high dielectric, insulating potting material such as epoxy resin that eliminates arcing and sparking between the coil 30 ′ and the conductor 109 .
- Thermoset 300 Resin and APC Lab Project WO82198-6 can be used.
- the bobbin 28 , the electromagnetic coil 30 ′, the conductor 109 and potting material 32 are received within the cover 24 , such that the passage 84 is coaxially aligned with opening 90 in the cover 24 . Thereafter, the cap member 26 is affixed to the walls 82 of the cover 24 by laser welding or other method of controlled penetration.
- the electrical supply cable 34 is connected to the electrical housing 96 by positioning the braided exterior layer 101 between the metal ring 99 and the tube portion 95 and crimping the metal ring 99 around the braided exterior layer 101 .
- An alternate method of shield termination can also be employed by inserting the shield 103 into tube 83 and securing the shield 103 with a silver filled epoxy to achieve electrical conductivity. It will be appreciated that the potting material 32 fills the space remaining in the electrical housing 96 such that the potting material 32 surrounds the electromagnetic coil 30 ′ and the electrical supply cable 34 within the electrical housing 96 .
- FIG. 5 is an enlarged cross-sectional view of the spherical union 100 and the connector 102 of the fuel injector 10 of the present invention, as shown in FIG. 1 a .
- the spherical union 100 and the connector 102 join a fuel supply conduit 104 to the support inlet port 66 and also fixedly connect the supporter 22 to the inner housing 14 and the central housing member 16 , as shown in FIGS. 1 a and 1 b .
- the spherical union 100 has a spherical head portion 106 , a shoulder 107 , a tubular body 108 and a channel 110 which receives the fuel supply conduit 104 .
- the fuel supply conduit 104 is fixedly connected to the spherical union 100 by brazing.
- the connector 102 is a hex nut with internal threads 112 which mate with the threads 56 of the inner housing 14 , as shown in FIG. 1 a .
- the head portion 106 is received within the supporter inlet port 66 .
- the connector 102 is then slid over the tubular body 108 of the spherical union 100 and threaded onto threads 56 until the spherical union shoulder 107 engages the connector shoulder 114 .
- the head portion 106 is spherical such that when the supporter inlet port 66 receives the spherical head portion 106 and the connector 102 fully engages the threads 56 , a fluid tight connection is made between the fuel supply conduit 104 and the fluid supply conduit supporter 22 .
- the flange 78 of the supporter 22 is fixedly held in place relative to the inner housing 14 between the inner housing 14 and the connector 102 .
- the flange 78 is wedged between the spherical union 100 and the inner housing 14 .
- the fuel supply conduit 104 , the connector 102 and the spherical union 100 are metal. In general, metals are used for most of the components of the fuel injector 10 to minimize static that may cause electronic instrumentation to malfunction.
- FIG. 6 is a schematic view of an internal combustion engine system 120 employing the fuel injector 10 of the present invention.
- the internal combustion engine system 120 depicted in that Figure includes a fuel supply conduit 104 , a pump 124 and a plurality of individual cylinder heads 52 connected to combustion chambers 127 .
- a fuel injector 10 is connected to and between each of the plurality of engine cylinder heads 52 and the fuel supply conduit 104 .
- the fuel injector 10 is assembled in the following manner.
- the threaded nozzle portion 44 is threaded onto mating threads in the engine cylinder head 52 .
- the electrical supply assembly 13 is slid over the fluid handing assembly 12 such that the inner housing 14 and central housing member 16 extend through the cover aperture 90 , the bobbin passage 84 and the cap member opening 87 .
- the electrical supply assembly 13 is releasably retained on the fluid handling assembly 12 by nut 36 .
- the nut 36 is threaded onto the threads 56 of the inner housing first end portion 40 until the nut 36 contacts the cap member 26 .
- the fuel supply conduit 104 is attached to the fluid handling assembly 12 by inserting the head portion 106 into the supporter inlet port 66 .
- the connector 102 is then slid over the tubular body 108 of the spherical union 100 and threaded onto threads 56 until the spherical union shoulder 107 engages the connector shoulder 114 . Because the fuel injector 10 of the present invention can be installed onto the engine cylinder head 52 by rotating the fluid handling assembly 12 into the engine cylinder head 52 and subsequently installing the electrical supply assembly 13 onto the fluid handling assembly 12 without rotation of the fuel injector 10 , the present invention is especially well suited for use in engine applications wherein fuel injector space is limited.
- the fuel is pumped through the fuel supply conduit 104 to the fuel injector 10 where the fuel is injected in a measured amount and at desired times through the engine cylinder heads 52 to the combustion chamber 127 .
- the fuel injector 10 is in the closed position, as shown in FIG 1 a , the conical nose portion 57 is received within the seat portion 48 , fuel is prevented from passing through the outlet port 46 into the combustion chamber 127 .
- an electrical current is supplied to the electromagnetic coil 30 ′ to create a magnetic flux A, shown in FIGS. 1 a and 1 b .
- the electrical current is regulated by a controller 135 , shown in FIG. 6, wherein the controller 135 can be the controller described in U.S. patent application Ser. Nos. 09/268,181 and 09/268,173, entitled Automatic Aircraft Engine Fuel Mixture Optimization and System and Method for Ignition Spark Energy Optimization, respectively, and being filed concurrently with this application, the entire disclosures of which are heareby incorporated by reference herein.
- the magnetic flux A travels through the cover 24 , the cap member 26 , the nut 36 , along the supporter 22 and the valve stem 18 , through the first end portion 38 of the inner housing 14 and back to the cover 24 to create a closed loop, as shown in FIGS. 1 a and 1 b .
- the cover 24 , the cap member 26 , the nut 36 , the supporter 22 , the valve stem 18 and the inner housing 14 are all made of magnetically permeable material to support the establishment of the flux therein.
- the magnetic flux A does not travel through the central housing member 16 because it consists of non-magnetically permeable material.
- the central housing member 16 acts as a magnetic break to force the flux to pass through the supporter 22 and valve stem 18 .
- the magnetic flux force will urge the valve stem 18 towards the supporter 22 (i.e., in the “D” direction, as shown in FIG. 1 b .) in order to permit fuel to flow through the outlet port 46 and into the combustion chamber 127 .
- the magnetic flux force starts to decay and the spring and hydraulic forces become the dominant forces and move the valve stem 18 in the “C” direction into sealing contact with the seat portion 48 .
- the flux path defined by the inner housing 14 , the valve stem 18 , the supporter 22 , the cover 24 , the nut 36 , and the cap member 26 exhibits enhanced efficiency which enables the necessary magnetic flux force to be achieved using a small overall fuel injector 10 with an outer diameter of, for example, approximately 0.75 inches. Therefore, the fuel injector 10 of the present invention can be used in an engine design having space limitations, such as aircraft engines.
- the electrical supply assembly 13 can be quickly detached from the fluid handling assembly 12 , the fluid handing assembly 12 can be conveniently attached to the engine cylinder head 52 by a threaded connection. That is, the fluid handling assembly 12 can be screwed into the cylinder head 52 before the fuel supply conduit 104 and the electrical supply assembly 13 are attached.
- the electrical supply assembly 13 and the fluid supply conduit 104 can be attached thereto in the above-described manners.
- this arrangement permits the fuel injector 10 to be quickly attached and detached from engine cylinder head 52 .
- the fluid handling assembly 12 needs to be replaced, it can be quickly replaced without requiring replacement of the electrical supply assembly 13 .
- the electrical supply assembly 13 need to be replaced, it can be quickly replaced without replacing the fluid handling assembly 12 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
A fuel injector. In one embodiment, the fuel injector includes an inner housing having an outlet port and a flow passage therein which is in fluid communication with the outlet port. The flow passage has a tapered end portion and a constant and continuous cross-section for the remaining length thereof. The fuel injector may also include a valve stem movably received in the flow passage. The valve stem has a cross-section conforming in shape to the passage, and the valve stem is selectively movable between a closed position wherein the valve stem blocks the outlet port and an open position. The fuel injector may also include an electrical coil assembly removably affixed to the inner housing.
Description
- This application is a continuation of U.S. patent application Ser. No. 09/268,601 filed on Mar. 15, 1999.
- 1. Field of the Invention
- The present invention relates to valves. More particularly, the present invention is directed to electronically-actuatable valves adapted for controlling the injection of a fuel into an engine.
- 2. Description of the Background
- Many conventional engines of all fuel types including gasoline and diesel typically employ a fuel injector for supplying known quantities of fuel to each combustion chamber at precise times during the engine cycle. Typically, a fuel injector assembly is mounted on the engine cylinder head of a combustion chamber. The fuel injector functions to open and close the fuel pump supply line to each engine cylinder head when commanded to do so by an electrical signal from the engine control computer.
- One type of conventional fuel injector is a one-piece electro-mechanical assembly having a housing, a spring-loaded armature of magnetically permeable material and an electromagnetic coil adjacent the armature that is axially positioned within a fuel supply passage. The housing surrounds both the armature and coil. The electrical wires must pass through this housing without leakage and must be electrically isolated from the housing. When this fuel injector is unenergized, the valve is closed and the armature is held against a valve seat by spring and hydraulic forces to prevent fuel from entering the engine cylinder head. As an electrical current is passed through the electromagnetic coil, a magnetic field is created. When the force from the magnetic field becomes sufficient to overcome the hydraulic and spring forces, the armature will be urged away from the valve seat and fuel will pass through the engine cylinder head to the combustion chamber. When the electrical energy is no longer supplied to the electromagnetic coil, the magnetic force starts to decay and the spring and hydraulic forces then become dominant and move the armature against the valve seat to the closed position.
- One disadvantage of this type of conventional fuel injector is that it is difficult to accommodate all of the components of the fuel injector within the limited amount of space available in a reciprocating, opposed cylinder aircraft engine. In many aircraft engine arrangements, for example, the minimum diameter of space for a fuel injector is less than 0.75 inches. Fuel injectors used in automotive applications occupy a space with a diameter of about 1.25 inches. Thus, sufficient room is not available within the aircraft engine envelope to accommodate the available automotive-type fuel injector components and also to provide for installation and removal of the fuel injector components from the engine cylinder head port.
- Existing fuel injector assembly internal designs are also complicated by the need to connect electrical signals across internal fuel to air barriers, together with requiring the means to operate the internal electromagnetic components in a fuel wetted environment. The sealing arrangements needed to address this problem, besides impacting size and weight, also preclude separate replacement of electrical and fluid handling elements within the assembly. Therefore, the entire assembly must be discarded in the event of a single failure in either element. Such one-piece construction also prevents the desirable use of a threaded port for installation to the engine cylinder head or inlet manifold, because it would not be practical to rotate the complete assembly.
- Yet another disadvantage with conventional fuel injectors is that the electromagnetic coil and electrical supply cable are located within the same unit as the fuel passageway. Thus, the electromagnetic coil and the electrical supply cable are susceptible to decay caused by fuel and fuel vapor. As such, coil wire insulation material has to be carefully selected so as to not break down in the presence of fuel or fuel vapors should internal seepage occur despite such sealing arrangements. Such requirements place restrictions on the overall assembly design which result in injector assemblies that are difficult to accommodate within the engine envelope due to their physical size. It also requires that the electrical coil and connection structure be an integral, non-removable part of the injector assembly housing. Such condition also necessitates injector installation to the engine as a complete assembly, not permitting the use of a threaded installation port.
- Accordingly, there is a need for a fuel injector that is compact and that can be easily installed and removed from an engine.
- The need also exists for a fuel injector that has an electromagnetic coil and an electrical supply cable that can be readily separated from the mechanical valve components of the fuel injector, such that the mechanical portion of the valve can be replaced without also replacing the valve's electrical component or the electrical components can be replaced without also replacing the mechanical portion of the valve.
- Yet another need exists for a fuel injector assembly that can be readily attached to the cylinder head of an engine by a threaded port arrangement.
- Still another need exists for injecting a fuel into the combustion chamber of an engine that does not require the use of prior bulky fuel injectors which lead to increased engine weight and engine size.
- The present invention provides a valve having an inner housing with an outlet port, a stopper member movably supported within the inner housing, a central housing member received within the inner housing and a magnetic flux that travels in a loop though the inner housing and the stopper member such that the magnetic flux urges the stopper member from a closed position, wherein the stopper member blocks the outlet port to an opened position.
- The present invention further provides a valve having an inner housing of magnetically permeable material, a stopper member of magnetically permeable material, a central housing member of non-magnetically permeable material and an electrically-energizeable coil adjacent the inner housing, wherein the central housing member acts as a shunt such that the magnetic flux created by the coil bypasses the central housing member and travels through the stopper member.
- The present invention further provides a fuel injector having an inner housing of magnetically permeable material with a valve passage and an outlet port, a valve stem movably received with the valve passage between a closed position, wherein the valve stem blocks the outlet port and an opened position, a biaser in contact with the valve stem, and an electrically-energizeable coil extending around at least a portion of the central housing member and adjacent the inner housing such that upon an application of current to the electrically-energizeable coil, a magnetic flux is established within the magnetically permeable materials of the inner housing and the valve stem to cause the valve stem to move to the opened position. The inner housing of the fuel injector may be releasably connected to a cylinder head of an engine such as an aircraft engine.
- The present invention further provides a two-part electromechanical valve having an electrical assembly and a fluid handling assembly, wherein these two separate assemblies provide a sealing arrangement that isolates the electrical components from the fluid that is passing through the valve. The electrical assembly includes a magnetically permeable cover with an opening for receiving an electrical supply cable, a bobbin inserted inside the cover, potting material contained within the cover and an electrically-energizeable coil wound around the bobbin and able to be electrically connected to the electrical supply cable. The fluid handling assembly includes a housing having a fluid passage that receives a stopper member and the fluid handling assembly is releasably connected to the electrical assembly using a connector.
- The present invention further provides a method of injecting fuel into an engine comprising attaching an inner housing of a fuel injector to an engine, wherein the inner housing is made of magnetically permeable material with an outlet port and a passage, and the fuel injector further comprises a stopper member of magnetically permeable material and a central housing member of non-magnetically permeable material, and wherein the stopper member is received within the inner housing, and the central housing member is received within the inner housing and adjacent the stopper member; transporting fuel into the passage; supplying fuel to the passage; and creating a magnetic flux through the inner housing and the stopper member such that the magnetic flux urges the stopper member from a closed position, wherein it blocks the outlet port, to an opened position.
- Other details, objects and advantages of the present invention will become more apparent with the following description of the present invention.
- For the present invention to be understood and readily practiced, the present invention will be described in conjunction with the following Figures wherein:
- FIG. 1 a is a cross-sectional view of a fuel injector of the present invention, wherein the valve stem is in the closed position;
- FIG. 1b is a cross-sectional view of the fuel injector shown in FIG. 1a, wherein the valve stem is in the opened position;
- FIG. 2 is an enlarged cross-sectional view of the inner housing and the central housing member of the fuel injector shown in FIG. 1a;
- FIG. 3 is an enlarged cross-sectional view of the valve stem, the fluid conduit supporter structure and the spring of the fuel injector shown in FIG. 1a;
- FIG. 4 is an enlarged cross-sectional view of the electrical supply assembly of the fuel injector shown in FIG. 1a;
- FIG. 5 is an enlarged cross-sectional view of the spherical union and connector of the fuel injector shown in FIG. 1a; and
- FIG. 6 is a schematic of an internal combustion engine assembly employing the fuel injector of the present invention.
- The present invention will be described below in terms of a fuel injector. It should be noted that describing the present invention in terms of a fuel injector is for illustrative purposes and the advantages of the present invention may be realized using other structures and technologies that have a need for a valve configuration, wherein the valve configuration is compact, provides for easy installation, removal and servicing as well as provides a high integrity mechanical separation of the electrical components from the fluid passing through the valve.
- It is to be further understood that the Figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, other elements and/or descriptions thereof found in a typical fuel injector. Those of ordinary skill in the art will recognize that other elements may be desirable in order to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
- FIGS. 1a and 1 b illustrate cross-sectional views of a
fuel injector 10 which employs the present invention, wherein thevalve stem 18 or stop member of thefuel injector 10 is shown in its closed position and open position, respectively. Thefuel injector 10 substantially comprises afluid handling assembly 12 and anelectrical supply assembly 13. Thefluid handling assembly 12 includes an inner housing 14 (valve housing), acentral housing member 16, avalve stem 18, aspring 20 and a fluidsupply conduit supporter 22. Theelectrical supply assembly 13 includes acover 24 with acap member 26, abobbin 28, anelectromagnetic coil 30′, pottingmaterial 32 and anelectrical supply cable 34. Thefluid handling assembly 12 is releasably connected to theelectrical supply assembly 13 by anut 36. - FIG. 2 is an enlarged cross-sectional view of the
inner housing 14 and thecentral housing member 16 of thefuel injector 10 of the present invention shown in FIG. 1a. Theinner housing 14 has afirst end portion 38 and asecond end portion 40. Thefirst end portion 38 has afirst passage 41 therein and thesecond end portion 40 has asecond passage 41′ therein. Thefirst end portion 38 has anozzle portion 44 with anoutlet port 46 and aseat portion 48 that communicates with thefirst passage 41 therein. Theseat portion 48 is substantially conical shaped; however, alternative configurations can be used. The outer surface of thenozzle portion 44 hasthreads 50 which are adapted to engage a threadedcylinder head 52 of an engine, shown in FIGS. 1a and 1 b. In addition, thefirst end portion 38 is provided with ahexagonal shoulder 54 to permit wrenching of theinner housing 14 into theengine cylinder head 52. - The outer surface of the
second end portion 40 hasthreads 56 for threadably receiving thenut 36 thereon, as shown in FIGS. 1a and 1 b. Theinner housing 14 is made of stainless steel C40 alloy which is a magnetically permeable material. As used herein, the term “magnetically permeable material” means any material that the magnetic flux preferentially conducts within rather than the surrounding air. Specifically, Carpenter Technology high permeability 49 alloy can be used. Other magnetically permeable materials can be used to manufacture theinner housing 14 such as Carpenter Technology stainless steel 430F or other ferritic steels. - The
central housing member 16 is a substantially tubular member having twoend surfaces 39 and apassage 17 extending therethrough. Thecentral housing member 16 is received between thefirst end portion 38 and thesecond end portion 40 of theinner housing 14 such thatpassage 17 is coaxially aligned on axis A-A with thefirst passage 41 and thesecond passage 41′ to form acontinuous passageway 42. See FIG. 2. Thecentral housing member 16 is fixedly connected to the first andsecond end portions first end portion 38 to thecentral housing member 16, oneend 39 of thecentral housing member 16 is abutted against a corresponding end of thefirst end portion 38 such that thepassage 17 is coaxially aligned with thepassage 41. Thereafter, a rotational force is applied to either thefirst end portion 38 or thecentral housing member 16 while retaining the adjacent member stationary. Those of ordinary skill in the art will appreciate that, as the rotating member abuts the stationary member heat is generated therebetween which results in the welding together of the member. That is, energy for theweld 43 is supplied by the kinetic energy stored in the rotating part. Thecentral housing member 16 is manufactured from 304 stainless steel which is a readily and widely available and is a non-magnetically permeable material. As used herein, the term “non-magnetically permeable material” means material that magnetic flux has no preference for conducting within rather than air. Other non-magnetically permeable materials can be used for thecentral housing member 16 such as 303 stainless steel or 304L stainless steel or martensitic steels or non-ferrous materials. - FIG. 3 is an enlarged cross-sectional view of the
valve stem 18, the fluidsupply conduit supporter 22 and thespring 20 of thefuel injector 10 of the present invention, as shown in FIG. 1a. The valve stem 18 is a substantially tubular member having aconical nose portion 57, aninlet port 58 and twooutlet ports 60 which communicate with aduct 62 that extends generally along the centerline of thevalve stem 18. Theduct 62 has a large-diameter section 63, a small-diameter section 65 and a ledge 64 formed between the large-diameter and small-diameter sections duct 62. Thespring 20 extends within the large-diameter section 63 of theduct 62 and contacts the ledge 64. Thespring 20 is made from 303 stainless steel and exhibits approximately one pound (1 lb.) to one and one-quarter pounds (1.25 lbs.) force. It has been discovered that such spring biasing force serves to overcome external forces, such as engine vibration forces, to thereby prevent the inadvertent opening of thefuel injector 10. However, other suitable biasing forces may be employed. Although not illustrated, any number of biasers can be used in place of thespring 20 which meet the size constraints of the present invention. The valve stem 18 is movably received within thepassage 42 of theinner housing 14 andcentral housing member 16, as shown in FIGS. 1a and 1 b. The valve stem 18 is manufactured from Carpenter Technology high permeability 49 alloy, which is a magnetically permeable material. Other magnetically permeable materials can be used to manufacture thevalve stem 18 such as ferritic steels. - The fluid
supply conduit supporter 22 is substantially tubular-shaped and defines aninlet port 66 and anoutlet port 68, wherein the shape of theinlet port 66 is frustro-conical. Aduct 70 extends along the centerline of the fluidsupply conduit supporter 22 and has a small-diameter section 72 and a large-diameter section 74. Theduct 70 is in fluid communication with theinlet port 66 and theoutlet port 68. Aledge 76 is formed at the junction of the small-diameter section 72 and the large-diameter section 74. When the fluidsupply conduit supporter 22 is coaxially aligned with thevalve stem 18, as shown in FIG. 3, and an end of thespring 20 is received within the large-diameter section 74 of thesupporter 22, thespring 20 extends between and engages the valve stem ledge 64 and thesupporter ledge 76. The end of thesupporter 22 adjacent theinlet port 66 has aflange 78 formed thereon. As can be seen in FIGS. 1a and 1 b, thesupporter 22 is received withinpassage 42 and is fixedly connected relative to theinner housing 14 and thecentral member housing 16 such that theflange 78 abuts thesecond end portion 40 of theinner housing 14. Thesupporter 22 is formed of Carpenter Technology 49 alloy, which is a magnetically permeable material. However, thesupporter 22 can be formed of a variety of magnetically permeable materials such as ferritic steels. The materials selected for the invention were chosen for their magnetic permeability and corrosion resistant properties. Many magnetically permeable materials are not corrosion resistant. Although not illustrated, thesupporter 22 and thesecond end portion 40 of theinner housing 14 can be a unitary member. - FIG. 4 is an enlarged cross-sectional view of the
electrical supply assembly 13 of thefuel injector 10 of the present invention, shown in FIG. 1a. Theelectrical supply assembly 13 includes acover 24, acap member 26, abobbin 28, pottingmaterial 32, anelectromagnetic coil 30′ and anelectrical supply cable 34. Thebobbin 28, thecover 24 and thecap member 26 form an electrical housing, designated generally as 96. Thecover 24 may be configured, as shown in FIG. 4, with a cup-shaped cross-section. In this embodiment, thecover 24 is fabricated from 430 stainless steel. However, other materials such as ferritic steels may be employed. As can be seen in FIG. 4, thecover 24 has aside portion 82 and abottom portion 80 that has anaperture 90 extending therethrough. Thecap member 26 includes awall member 93 that is attached to theside portion 82 of thecover 24 by a weld and a cable-receivingportion 95. Thecap member 26 is made from the same materials as thecover 24. Anopening 87 is provided through thecap member 26.Cap member 26 may also receive theelectrical supply cable 34. - As also can be seen in FIG. 4, the
electrical supply assembly 13 includes abobbin 28 that is fabricated from nylon or other plastic insulator materials. Thebobbin 28 has acylindrical center portion 86 and aflange 88 extending substantially perpendicularly from each end of thecylindrical center portion 86. Thecylindrical center portion 86 defines apassage 84 that extends therethrough. In this embodiment, aconductor 30 such as high temperature insulated copper magnetic wire is wound around thecylindrical center portion 86 of thebobbin 28 between theflanges 88 thereof to form theelectromagnetic coil 30′. Theconductor 30 is a standard, maximum rated, high temperature wire that is capable of withstanding 200° F. continuously. Conductors, which meet NEMA STD MW-1000, MW-73-C/A, MW 35-C/A and Federal Spec. J-W-1177/14B(K), such as model GP/MR-200 manufactured by Essex Group, Inc.; model Armored Poly Thermaleze, APTZ manufactured by Phelps Dodge Magnetic Wire Co.; model Therm Amid, TAI manufactured by Rea Magnet Wire Co.; model Omega Klad II, OKII, manufactured by Westinghouse Electric Co.; and model Daitherm-3, DT-3 manufactured by Optec D. D. USA, Inc. may be successfully employed. In one embodiment, wherein the outer diameter of thecylindrical center portion 86 is approximately 0.369 and the outer diameter of each of theflanges 88 is approximately 0.640 and the distance between theflanges 88 is approximately 0.560, a total of approximately 51.94 feet of theconductor 30 is wrapped around thecylindrical center portion 86. Those of ordinary skill in the art will appreciate that when a current of 3.54 amps is passed through theconductor 30, a magnetic flux of approximately 1368 ampere-turns is established by theelectromagnetic coil 30′. - Referring further to FIG. 4, an
electrical supply cable 34 is attached to theelectromagnetic coil 30′. In this embodiment, theelectrical supply cable 34 has a metal braidedexterior layer 101, ashield 103, ametal conduit 105 and aconductor portion 109. Theconductor portion 109 is made from stranded copper wire. Thebobbin 28 and thecoil 30′ are installed in thecover 24, such that thepassage 84 extending through thecenter portion 86 of thebobbin 28 is coaxially aligned with theopening 90 in thecover 24 along axis B-B. The insulatingconduit 105 and theconductor 109 extends through the cable-receivingportion 95 in thewall portion 93 of thecap member 26, as shown in FIG. 4. Theconductor 109 is soldered, welded, or otherwise electrically attached to the two leads of thecoil 30 ′ and a commerciallyavailable retainer ring 99 is used to affix the cable to thecap member 26 by placing thering 99 around the cable-receivingportion 95 and crimping it in a known manner. Theconductor 109 and thecoil 30 ′ are sealed, as shown in FIG. 4, in apotting material 32. The pottingmaterial 32 is a high dielectric, insulating potting material such as epoxy resin that eliminates arcing and sparking between thecoil 30′ and theconductor 109. For example, Thermoset 300 Resin and APC Lab Project WO82198-6 can be used. - The
bobbin 28, theelectromagnetic coil 30′, theconductor 109 andpotting material 32 are received within thecover 24, such that thepassage 84 is coaxially aligned with opening 90 in thecover 24. Thereafter, thecap member 26 is affixed to thewalls 82 of thecover 24 by laser welding or other method of controlled penetration. As noted above, theelectrical supply cable 34 is connected to theelectrical housing 96 by positioning the braidedexterior layer 101 between themetal ring 99 and thetube portion 95 and crimping themetal ring 99 around the braidedexterior layer 101. An alternate method of shield termination can also be employed by inserting theshield 103 intotube 83 and securing theshield 103 with a silver filled epoxy to achieve electrical conductivity. It will be appreciated that the pottingmaterial 32 fills the space remaining in theelectrical housing 96 such that the pottingmaterial 32 surrounds theelectromagnetic coil 30′ and theelectrical supply cable 34 within theelectrical housing 96. - FIG. 5 is an enlarged cross-sectional view of the
spherical union 100 and theconnector 102 of thefuel injector 10 of the present invention, as shown in FIG. 1a. Thespherical union 100 and theconnector 102 join afuel supply conduit 104 to thesupport inlet port 66 and also fixedly connect thesupporter 22 to theinner housing 14 and thecentral housing member 16, as shown in FIGS. 1a and 1 b. Thespherical union 100 has aspherical head portion 106, ashoulder 107, atubular body 108 and achannel 110 which receives thefuel supply conduit 104. Thefuel supply conduit 104 is fixedly connected to thespherical union 100 by brazing. Theconnector 102 is a hex nut withinternal threads 112 which mate with thethreads 56 of theinner housing 14, as shown in FIG. 1a. Thehead portion 106 is received within thesupporter inlet port 66. Theconnector 102 is then slid over thetubular body 108 of thespherical union 100 and threaded ontothreads 56 until thespherical union shoulder 107 engages theconnector shoulder 114. Thehead portion 106 is spherical such that when thesupporter inlet port 66 receives thespherical head portion 106 and theconnector 102 fully engages thethreads 56, a fluid tight connection is made between thefuel supply conduit 104 and the fluidsupply conduit supporter 22. By threading theconnector 102 onto thethreads 56 of theinner housing 14, theflange 78 of thesupporter 22 is fixedly held in place relative to theinner housing 14 between theinner housing 14 and theconnector 102. Specifically, theflange 78 is wedged between thespherical union 100 and theinner housing 14. Thefuel supply conduit 104, theconnector 102 and thespherical union 100 are metal. In general, metals are used for most of the components of thefuel injector 10 to minimize static that may cause electronic instrumentation to malfunction. - FIG. 6 is a schematic view of an internal
combustion engine system 120 employing thefuel injector 10 of the present invention. The internalcombustion engine system 120 depicted in that Figure includes afuel supply conduit 104, apump 124 and a plurality ofindividual cylinder heads 52 connected tocombustion chambers 127. Afuel injector 10 is connected to and between each of the plurality ofengine cylinder heads 52 and thefuel supply conduit 104. - Referring to FIGS. 1a, 1 b and 6, the
fuel injector 10 is assembled in the following manner. The threadednozzle portion 44 is threaded onto mating threads in theengine cylinder head 52. Theelectrical supply assembly 13 is slid over thefluid handing assembly 12 such that theinner housing 14 andcentral housing member 16 extend through thecover aperture 90, thebobbin passage 84 and thecap member opening 87. Theelectrical supply assembly 13 is releasably retained on thefluid handling assembly 12 bynut 36. Thenut 36 is threaded onto thethreads 56 of the inner housingfirst end portion 40 until thenut 36 contacts thecap member 26. - The
fuel supply conduit 104 is attached to thefluid handling assembly 12 by inserting thehead portion 106 into thesupporter inlet port 66. Theconnector 102 is then slid over thetubular body 108 of thespherical union 100 and threaded ontothreads 56 until thespherical union shoulder 107 engages theconnector shoulder 114. Because thefuel injector 10 of the present invention can be installed onto theengine cylinder head 52 by rotating thefluid handling assembly 12 into theengine cylinder head 52 and subsequently installing theelectrical supply assembly 13 onto thefluid handling assembly 12 without rotation of thefuel injector 10, the present invention is especially well suited for use in engine applications wherein fuel injector space is limited. - In operation, the fuel is pumped through the
fuel supply conduit 104 to thefuel injector 10 where the fuel is injected in a measured amount and at desired times through theengine cylinder heads 52 to thecombustion chamber 127. When thefuel injector 10 is in the closed position, as shown in FIG 1 a, theconical nose portion 57 is received within theseat portion 48, fuel is prevented from passing through theoutlet port 46 into thecombustion chamber 127. Those of ordinary skill in the art will appreciate that, when thecoil 30′ of thefuel injector 10 is unenergized, thespring 20 and the fluid pressure of the fuel within the valve stem 18 biases thevalve stem 18 in the direction represented by arrow “C” such that a substantially fluid-tight seal is established between thenose portion 57 of thevalve stem 18 and theseat portion 48. When thevalve stem 18 is in its opened position, as shown in FIG. 1b, the fuel can flow out of theoutlet ports 60 of thevalve stem 18 and through theoutlet port 46 of theinner housing 14 into thecombustion chamber 127. - To open the
fuel injector 10, an electrical current is supplied to theelectromagnetic coil 30′ to create a magnetic flux A, shown in FIGS. 1a and 1 b. The electrical current is regulated by acontroller 135, shown in FIG. 6, wherein thecontroller 135 can be the controller described in U.S. patent application Ser. Nos. 09/268,181 and 09/268,173, entitled Automatic Aircraft Engine Fuel Mixture Optimization and System and Method for Ignition Spark Energy Optimization, respectively, and being filed concurrently with this application, the entire disclosures of which are heareby incorporated by reference herein. The magnetic flux A travels through thecover 24, thecap member 26, thenut 36, along thesupporter 22 and thevalve stem 18, through thefirst end portion 38 of theinner housing 14 and back to thecover 24 to create a closed loop, as shown in FIGS. 1a and 1 b. Thecover 24, thecap member 26, thenut 36, thesupporter 22, thevalve stem 18 and theinner housing 14 are all made of magnetically permeable material to support the establishment of the flux therein. However, the magnetic flux A does not travel through thecentral housing member 16 because it consists of non-magnetically permeable material. Thus, thecentral housing member 16 acts as a magnetic break to force the flux to pass through thesupporter 22 andvalve stem 18. When the forces created by the magnetic flux A become sufficient to overcome the hydraulic and spring forces in the “C” direction, the magnetic flux force will urge thevalve stem 18 towards the supporter 22 (i.e., in the “D” direction, as shown in FIG. 1b.) in order to permit fuel to flow through theoutlet port 46 and into thecombustion chamber 127. Once the electrical current is no longer supplied to theelectromagnetic coil 30′, the magnetic flux force starts to decay and the spring and hydraulic forces become the dominant forces and move thevalve stem 18 in the “C” direction into sealing contact with theseat portion 48. - The flux path defined by the
inner housing 14, thevalve stem 18, thesupporter 22, thecover 24, thenut 36, and thecap member 26, exhibits enhanced efficiency which enables the necessary magnetic flux force to be achieved using a smalloverall fuel injector 10 with an outer diameter of, for example, approximately 0.75 inches. Therefore, thefuel injector 10 of the present invention can be used in an engine design having space limitations, such as aircraft engines. In addition, because theelectrical supply assembly 13 can be quickly detached from thefluid handling assembly 12, thefluid handing assembly 12 can be conveniently attached to theengine cylinder head 52 by a threaded connection. That is, thefluid handling assembly 12 can be screwed into thecylinder head 52 before thefuel supply conduit 104 and theelectrical supply assembly 13 are attached. After thefluid handling assembly 12 is connected securely and without leakage to theengine cylinder head 52, theelectrical supply assembly 13 and thefluid supply conduit 104 can be attached thereto in the above-described manners. Thus, this arrangement permits thefuel injector 10 to be quickly attached and detached fromengine cylinder head 52. In addition, should thefluid handling assembly 12 needs to be replaced, it can be quickly replaced without requiring replacement of theelectrical supply assembly 13. Similarly, should theelectrical supply assembly 13 need to be replaced, it can be quickly replaced without replacing thefluid handling assembly 12. - Those of ordinary skill in the art will recognize, however, that many modifications and variations of the present invention may be implemented without departing from the spirit and scope of the present invention. The foregoing description and the following claims are intended to cover such modifications and variations.
Claims (15)
1. A valve, comprising:
an inner housing having an outlet port and an inner passage that has a tapered end portion and a constant and continuous cross-section for the remaining length thereof;
a stopper member movably supported within said inner housing, the stopper member having a cross-section conforming in shape to the inner passage;
a central housing member received within said inner housing and adjacent to at least a portion of said stopper member; and
means for producing a magnetic flux that travels in a loop though said inner housing and said stopper member such that said loop bypasses said central housing member and urges said stopper member from a closed position, wherein said stopper member blocks said outlet port to an opened position, wherein said means for producing a magnetic flux is an electrically-energizeable coil adjacent to and removable from said inner housing, and wherein at least a portion of said inner housing comprises a magnetically permeable material, and at least a portion of said stopper member comprises a magnetically permeable material.
2. A valve, comprising:
a housing having a central portion of non-magnetically permeable material between two end portions of magnetically permeable material, said housing having an outlet port therein and an inner passage, wherein the inner passage has a tapered end portion and a constant and continuous cross-section for the remaining length thereof;
a valve assembly having a body conforming to the shape of the inner passage of the housing, the valve assembly comprising:
a tubular valve stem of magnetically permeable material movably supported within said inner housing;
a tubular supply conduit supporter of magnetically permeable material; and
a biaser extending between and within the valve stem and the supply conduit supporter; and
an electrically-energizeable coil adjacent said housing.
3. A fuel injector, comprising:
an inner housing having an outlet port and a flow passage therein which is in fluid communication with said outlet port, and wherein the flow passage has a tapered end portion and a constant and continuous cross-section for the remaining length thereof;
a valve stem movably received in said flow passage, the valve stem having a cross-section conforming in shape to said flow passage, the valve stem being selectively movable between a closed position wherein said valve stem blocks said outlet port and an open position; and
an electrical coil assembly removably affixed to said inner housing.
4. The fuel injector of claim 3 , wherein said electrical coil assembly comprises:
a cover assembly having an opening therethrough for receiving a portion of said inner housing therein;
a bobbin having a central body portion with a passage extending therethrough, said bobbin received within said cover assembly such that said passage is coaxially aligned with said cover assembly opening to enable said portion of said inner housing to extend thorough said passageway;
a first conductor wound around said bobbin to form a coil;
a second conductor attached to said coil and extending out of said cover to communicate with a source of electrical current;
an end cap affixed to said cover assembly to substantially enclose said bobbin and said coil within said cover assembly; and
a potting material received within said cover assembly and extending around at least a portion of said coil and said second conductor.
5. The fuel injector of claim 4 , wherein said inner housing has a first threaded portion thereon, and wherein said cover assembly is removably retained on said inner housing by a threaded component threadably received on said first threaded portion.
6. The fuel injector of claim 3 , wherein said inner housing has an exterior threaded portion thereon adapted to threadably engage internal attachment threads in a portion of an engine to removably affix said inner housing thereto.
7. An engine comprising:
an engine block defining at least one combustion chamber;
an inner housing removably attached to said engine block and corresponding to one said combustion chamber, said inner housing having a valve passage therethrough and an outlet port communicating with said valve passage and said corresponding combustion chamber, and wherein the flow passage has a tapered end portion and a constant and continuous cross-section for the remaining length thereof;
a valve stem movably received within said valve passage, the valve stem having a cross-section conforming in shape to said flow passage, said valve stem being selectively movable between a closed position, wherein said valve stem blocks said outlet port and an opened position;
a biaser having a portion received in said valve stem for biasing said valve stem to said closed position; and
an electrically-energizeable coil removably attached to said inner housing such that upon an application of current to said electrically-energizeable coil, said valve stem is moved to said opened position.
8. The engine of claim 7 , wherein said engine block has a threaded port therein for threadably attaching a portion of said inner housing thereto.
9. The engine of claim 7 , wherein said inner housing and said valve stem are fabricated from magnetically permeable material, and wherein said engine further comprises a central housing member of non-magnetically permeable material, said central housing portion having a passage therethrough forming a portion of said valve passage.
10. A method of injecting fuel into a combustion chamber of an engine comprising:
attaching an inner housing of a fuel injector to the engine, wherein the inner housing has magnetically permeable portions and a non-magnetically permeable portion between the magnetically permeable portions and defines a valve passage therein that is in fluid communication with an outlet port in the inner housing, the valve passage has a tapered end portion and a constant and continuous cross-section for the remaining length thereof, the fuel injector further including a valve stem of magnetically permeable material that is movably received within the valve passage and has a cross-section that conforms in shape to said valve passage and substantially fills the valve passage and that is selectively movable within the valve passage between a closed position wherein the valve stem blocks the outlet port in the inner housing and an open position, and wherein fuel introduced into the valve passage is permitted to flow through the outlet port and into the combustion chamber;
supplying fuel to the valve passage; and
creating a magnetic flux through the magnetically permeable portions of the inner housing and the valve stem to urge the valve stem from a closed position to an opened position, wherein the fuel is permitted to flow into the combustion chamber through the valve passage and outlet port.
11. The method of claim 10 , further comprising the step of attaching the inner housing to a central housing member such that both the inner housing and the central housing member define the valve passage.
12. The method of claim 11 , wherein the inner housing is attached to the central housing member by inertial welding.
13. The method of claim 11 , wherein the inner housing is attached to the central housing member by inertial welding along the entire thickness of each of the inner housing and the central housing.
14. A method of injecting fuel into a combustion chamber of an engine comprising:
attaching an inner housing of a fuel injector to the engine, wherein the inner housing has magnetically permeable portions and a non-magnetically permeable portion between the magnetically permeable portions and defines a valve passage therein that is in fluid communication with an outlet port in the inner housing, and wherein the valve passage has a tapered end portion and a constant and continuous cross-section for the remaining length thereof, the fuel injector further including a valve stem of magnetically permeable material that is selectively movable within the valve passage between a closed position wherein the valve stem blocks the outlet port in the inner housing and an open position and wherein the valve stem has a cross-section that conforms in shape to the valve passage, and wherein fuel introduced into the valve passage is permitted to flow through the outlet port and into the combustion chamber;
removably affixing an electrical coil assembly to the inner housing;
supplying fuel to the valve passage; and
creating a magnetic flux through the magnetically permeable portions of the inner housing and the valve stem to urge the valve stem from a closed position to an opened position, wherein the fuel is permitted to flow into the combustion chamber through the valve passage and the outlet port.
15. The method according to claim 14 , further comprising:
removing the electrical coil assembly from the inner housing when the electrical coil assembly is inoperable;
attaching a second electrical assembly to the inner housing; and
creating a magnetic flux through the magnetically permeable portions of the inner housing and the valve stem to urge the valve stem from a closed position to an opened position, wherein the fuel is permitted to flow into the combustion chamber through the valve passage and the outlet port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/152,415 US20020130205A1 (en) | 1999-03-15 | 2002-05-21 | Fuel injector assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/268,601 US6409102B1 (en) | 1999-03-15 | 1999-03-15 | Fuel injector assembly |
US10/152,415 US20020130205A1 (en) | 1999-03-15 | 2002-05-21 | Fuel injector assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/268,601 Continuation US6409102B1 (en) | 1999-03-15 | 1999-03-15 | Fuel injector assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020130205A1 true US20020130205A1 (en) | 2002-09-19 |
Family
ID=23023706
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/268,601 Expired - Lifetime US6409102B1 (en) | 1999-03-15 | 1999-03-15 | Fuel injector assembly |
US10/152,415 Abandoned US20020130205A1 (en) | 1999-03-15 | 2002-05-21 | Fuel injector assembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/268,601 Expired - Lifetime US6409102B1 (en) | 1999-03-15 | 1999-03-15 | Fuel injector assembly |
Country Status (3)
Country | Link |
---|---|
US (2) | US6409102B1 (en) |
AU (1) | AU3528000A (en) |
WO (1) | WO2000055491A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1548271A1 (en) * | 2003-12-22 | 2005-06-29 | Siemens Aktiengesellschaft | A fuel system |
US20050218249A1 (en) * | 2004-03-30 | 2005-10-06 | Denso Corporation | Electro-magnetic driver and fuel injection valve using the same |
US20100242916A1 (en) * | 2009-03-30 | 2010-09-30 | Hitachi, Ltd | Fuel system for a direct injection engine |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE489575T1 (en) * | 2001-10-13 | 2010-12-15 | Willet Internat Ltd | MAGNETIC VALVE |
US7252249B2 (en) * | 2002-02-22 | 2007-08-07 | Delphi Technologies, Inc. | Solenoid-type fuel injector assembly having stabilized ferritic stainless steel components |
DE102004058803A1 (en) * | 2004-12-07 | 2006-06-08 | Robert Bosch Gmbh | Injector |
JP2006233887A (en) * | 2005-02-25 | 2006-09-07 | Denso Corp | Fuel injection valve |
JP2007016774A (en) * | 2005-06-07 | 2007-01-25 | Denso Corp | Fuel injection valve and its manufacturing method |
US7182603B1 (en) | 2005-12-20 | 2007-02-27 | Ford Global Technologies, Llc | Electronic valve actuator electrical connector |
US8973895B2 (en) * | 2010-02-10 | 2015-03-10 | Tenneco Automotive Operating Company Inc. | Electromagnetically controlled injector having flux bridge and flux break |
US9683472B2 (en) | 2010-02-10 | 2017-06-20 | Tenneco Automotive Operating Company Inc. | Electromagnetically controlled injector having flux bridge and flux break |
WO2011100337A2 (en) * | 2010-02-10 | 2011-08-18 | Tenneco Automotive Operating Company Inc. | Pressure swirl flow injector with reduced flow variability and return flow |
WO2012170894A1 (en) * | 2011-06-10 | 2012-12-13 | Quick Connectors, Inc. | System for continuous electrical well cable feed-through for a wellhead and method of installation |
US8701389B2 (en) * | 2011-12-06 | 2014-04-22 | Tenneco Automotive Operating Company Inc. | Reagent injector control system |
US8978364B2 (en) | 2012-05-07 | 2015-03-17 | Tenneco Automotive Operating Company Inc. | Reagent injector |
US8910884B2 (en) | 2012-05-10 | 2014-12-16 | Tenneco Automotive Operating Company Inc. | Coaxial flow injector |
JP5857980B2 (en) * | 2013-02-06 | 2016-02-10 | 株式会社日本自動車部品総合研究所 | solenoid valve |
JP6266123B2 (en) * | 2014-10-28 | 2018-01-24 | 三菱電機株式会社 | Fuel injection valve |
US10704444B2 (en) | 2018-08-21 | 2020-07-07 | Tenneco Automotive Operating Company Inc. | Injector fluid filter with upper and lower lip seal |
KR102228300B1 (en) * | 2019-11-14 | 2021-03-16 | 주식회사 현대케피코 | Fuel injector |
CN112427809A (en) * | 2020-09-30 | 2021-03-02 | 浙江翱腾智能科技股份有限公司 | Welding method for high-pressure fuel pump |
US11939940B2 (en) | 2021-10-04 | 2024-03-26 | Billet Machine And Fabrication, Inc. | Fuel injector |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3665601A (en) * | 1969-07-22 | 1972-05-30 | Connecting Devices Inc | Method of making a connector |
US3704833A (en) * | 1971-02-17 | 1972-12-05 | Fred O Wheat | Solenoid valve assembly |
US3731881A (en) * | 1972-02-24 | 1973-05-08 | Bowmar Instrument Corp | Solenoid valve with nozzle |
US4314863A (en) * | 1979-10-31 | 1982-02-09 | Fansteel Inc. | Stainless steel castings |
US4643359A (en) | 1985-03-19 | 1987-02-17 | Allied Corporation | Mini injector valve |
JPH02277958A (en) * | 1988-12-29 | 1990-11-14 | Yamaha Motor Co Ltd | High-pressure fuel injection device of engine |
JPH03156165A (en) * | 1989-11-09 | 1991-07-04 | Yamaha Motor Co Ltd | Feeder takeout structure of high-pressure fuel injection device |
US5301874A (en) * | 1990-05-26 | 1994-04-12 | Robert Bosch Gmbh | Adjusting sleeve for an electromagnetically actuatable valve |
DE4018256A1 (en) * | 1990-06-07 | 1991-12-12 | Bosch Gmbh Robert | ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE |
DE4131535A1 (en) * | 1991-09-21 | 1993-03-25 | Bosch Gmbh Robert | ELECTROMAGNETICALLY OPERATED INJECTION VALVE |
RU2125180C1 (en) * | 1992-12-21 | 1999-01-20 | Трэнском Гэс Текнолоджи ПТИ Лтд. | Fluid medium supply injector |
EP0683862B1 (en) * | 1993-12-09 | 1998-06-10 | Robert Bosch Gmbh | Electromagnetic valve |
JP2979467B2 (en) * | 1996-05-10 | 1999-11-15 | 株式会社ケーヒン | Electromagnetic fuel injection valve |
JPH11132127A (en) * | 1996-11-13 | 1999-05-18 | Denso Corp | Fuel injection valve and assembling method thereof |
US5944262A (en) * | 1997-02-14 | 1999-08-31 | Denso Corporation | Fuel injection valve and its manufacturing method |
DE19712590A1 (en) * | 1997-03-26 | 1998-10-01 | Bosch Gmbh Robert | Electromagnetically actuated valve |
US5915591A (en) | 1997-09-10 | 1999-06-29 | Illinois Tool Works Inc. | Electric solenoid valve for hot melt adhesive and method therefor |
US6071355A (en) * | 1997-12-15 | 2000-06-06 | Suratt; Ted L. | Method for cleaning a transmission |
-
1999
- 1999-03-15 US US09/268,601 patent/US6409102B1/en not_active Expired - Lifetime
-
2000
- 2000-03-13 WO PCT/US2000/006637 patent/WO2000055491A1/en active Application Filing
- 2000-03-13 AU AU35280/00A patent/AU3528000A/en not_active Abandoned
-
2002
- 2002-05-21 US US10/152,415 patent/US20020130205A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1548271A1 (en) * | 2003-12-22 | 2005-06-29 | Siemens Aktiengesellschaft | A fuel system |
US20050218249A1 (en) * | 2004-03-30 | 2005-10-06 | Denso Corporation | Electro-magnetic driver and fuel injection valve using the same |
US20100242916A1 (en) * | 2009-03-30 | 2010-09-30 | Hitachi, Ltd | Fuel system for a direct injection engine |
US7980226B2 (en) * | 2009-03-30 | 2011-07-19 | Hitachi, Ltd | Fuel system for a direct injection engine |
Also Published As
Publication number | Publication date |
---|---|
US6409102B1 (en) | 2002-06-25 |
WO2000055491A1 (en) | 2000-09-21 |
AU3528000A (en) | 2000-10-04 |
WO2000055491A9 (en) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6409102B1 (en) | Fuel injector assembly | |
EP0561859B1 (en) | Fuel injector | |
US7201136B2 (en) | Direct injection of fuels in internal combustion engines | |
US6062200A (en) | Motor fuel dispenser | |
CN101660473B (en) | Electromagnetic actuator | |
EP1196707B1 (en) | High pressure solenoid pilot valve | |
US4455982A (en) | Electromagnetically actuatable valve | |
US5465911A (en) | Angled terminal/coil design for small diameter fuel injector | |
US6561167B2 (en) | Air assist fuel injectors | |
JP4329737B2 (en) | Fuel injection valve | |
US6176441B1 (en) | In-cylinder fuel injection valve | |
US6402057B1 (en) | Air assist fuel injectors and method of assembling air assist fuel injectors | |
US9033264B2 (en) | Fuel injector and method for assembling a fuel injector | |
JP2002110419A (en) | Coil device | |
US4394974A (en) | Fuel injector valve | |
JPH08334077A (en) | Fuel injection device | |
US11767926B2 (en) | Fuel injection device | |
CA2414220C (en) | High pressure solenoid pilot valve | |
JP2665252B2 (en) | Fuel supply device | |
JP3219959B2 (en) | Fuel injection device | |
JPH07151044A (en) | Cylinder direct injection integrated with ignition plug | |
JPH08261107A (en) | Fuel injection device | |
JPH08240168A (en) | Fuel injection device | |
AU1008701A (en) | Direct injection of fuels in internal combustion engines | |
JPH08261106A (en) | Fuel injection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |