US20020124582A1 - Condensate overflow safety switch - Google Patents
Condensate overflow safety switch Download PDFInfo
- Publication number
- US20020124582A1 US20020124582A1 US09/861,551 US86155101A US2002124582A1 US 20020124582 A1 US20020124582 A1 US 20020124582A1 US 86155101 A US86155101 A US 86155101A US 2002124582 A1 US2002124582 A1 US 2002124582A1
- Authority
- US
- United States
- Prior art keywords
- tubular structure
- contacts
- face
- open
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 69
- 235000014676 Phragmites communis Nutrition 0.000 claims abstract description 40
- 238000001816 cooling Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 230000000630 rising effect Effects 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 8
- 230000011664 signaling Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 15
- 238000009877 rendering Methods 0.000 abstract description 2
- 239000003570 air Substances 0.000 description 20
- 230000007246 mechanism Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000010865 sewage Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 244000273256 Phragmites communis Species 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/22—Means for preventing condensation or evacuating condensate
- F24F13/222—Means for preventing condensation or evacuating condensate for evacuating condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/14—Collecting or removing condensed and defrost water; Drip trays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/64—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
- G01F23/72—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
- G01F23/74—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means for sensing changes in level only at discrete points
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H36/00—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
- H01H36/02—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding actuated by movement of a float carrying a magnet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/30—Condensation of water from cooled air
Definitions
- the present invention relates to electrical condensate overflow safety switches. It is particularly directed to a device having an electrical float switch for de-activating air handling units, namely, air conditioning and refrigeration units, and/or activating an alarm signal.
- the activating/de-activating actions occur in the event a condensate drain line occludes in order to prevent or warn of potential drain pan overflows that could cause water damage to a building structure.
- the present invention provides an easy-to-install system either as original equipment at the initial installation of the air-handling units or as a retrofit.
- evaporator coil to dehumidify and cool ambient air in dwellings, climate controlled storage spaces, workspaces, and the like.
- the evaporator coil is frequently located indoors, often above the occupied areas of the building that it serves. Since the coil is colder than the air being conditioned, it condenses water liquid continuously while in operation. This condensate water liquid is typically collected in a drain pan, usually positioned under the coil, with the drain pan having one or more outlet ports for attaching a drainpipe for outflow of the condensate.
- the condensate water liquid drains through one or more of these outlets and generally through a drainpipe out of or away from the building.
- the drain pan, pan outlets and drainpipe including any U-shaped trap, which may be provided to create a fluid seal between the airs on opposite sides of the trap, often become occluded by algae, mold, mildew, dirt, etc. This occlusion may result in pan overflows that can cause water damage to building ceilings, walls, flooring and associated building components, which necessitate costly repairs.
- U.S. Pat. No. 4,393,128, to Young et al. discloses a sewage back-up alarm unit for placement in an existing sewer line connecting a residence to a sewage collection system. It discloses electrical conductors extending into the interior of the connection element for detection of the rise of sewage into the unit whereby an alarm is emitted when the liquid rises to a level corresponding to sufficient voltage to complete the circuit and sound an alarm such that a human can initiate action to preclude sewage back up.
- the alarm system relies not only on metal strips subject to coating with sewage and corrosion from sewage contaminants which will reduce the accuracy of readings for initiating the alarm, but requires human intervention should a backup actually exist.
- FIG. 3 reflects a float having an upper face contact 21 which upon upward movement by rising water liquid within switch housing, connects a pair of housing contacts on the lower face of the closed end of the switch housing, resulting in alarm activation and air handling unit de-activation.
- the housing is vented. The system does not recognize the ambient atmospheric as a corrosion source for the housing contacts, which reduces the reliability of the alarm and shut off.
- U.S. Pat. No. 5,028,910 to Meachum et al discloses a drain overflow alarm for a washing machine drain.
- the device discloses a float disposed in a vertical drain line offset from the main washing machine drain line connected to the sewer, the float moving vertically upon liquid backup to interrupt the flow of electric current to the washing machine.
- the upper surface of the float has spaced float contacts that rise upward upon water back up to contact with fixed contacts on the downward facing inner, causing the interruption of the flow of electric current to the washing machine.
- the float may be provided with an internal magnet so as to be able to act as part of a magnetic reed switch, no other elements were described in the alternative.
- the system relies only on metal contacts subject to corrosion from sewage gases and contaminants as well as moisture, the combination of elements fails to recognize requirements of reliability to insure preclusion of overflow.
- U.S. Pat. No. 5,069,042 to Stuchlik discloses a cleanable condensate U-shaped trap that can be used in the condensate drainage tubing of an air-cooling system.
- the condensate trap is designed so that any blockage existing in the trap can be easily detected and removed; for example, using a flexible brush that can be inserted through a U-shaped tube that forms part of the trap.
- a mechanical switching mechanism, including a float, is disclosed in a portion of the trap.
- the switching mechanism is arranged so that when liquid collects in the trap due to a blockage in the trap, or in the tubing located downstream of the trap; the float rises so as to cause a mechanical switch to shut off the air-cooling system and/or trigger an alarm.
- the metal linkage components and electrical contacts are exposed to ambient air. The system does not recognize the ambient atmospheric as a corrosion source for the linkage and contacts, which reduces the reliability of the shut off and the alarm.
- U.S. Pat. No. 5,522,229 to Stuchlik discloses a blockade detector in the drain line of an air cooling system, the detector extending from a drain tube portion of the drain line into the air handler drain pan, to determine the presence of liquid at a certain level.
- a two prong liquid sensor probe is located at least partially in the drain tube, and includes a probe end that extends from the drain tube inlet end into the drain pan, when attached to the drain pan. The liquid sensor probe detects the undesired accumulation of liquid in the drain pan caused by a blockage in the drain pan, in the drain tube, or in any other portion of the drainage tubing.
- a control circuit generates an output signal when excess liquid is present at the probe end of the liquid sensor, so as to sound an alarm and/or turn off the air-cooling device.
- the drain tube is provided with an access port for a cleaning device to clean the drain pan outlet, the drain tube, and a U-shaped trap.
- the system relies on metal contacts exposed to contaminated liquid fostering corrosion that will reduce the accuracy of readings for initiating the alarm or interrupting the system.
- U.S. Pat. No. 5,621,393 to Urich discloses a fill-level test and measuring device that serves as an overfilling prevention means for a liquids container, particularly to corrosive media containers; the device allowing remote-controlled monitoring of its operability by permitting lifting of the float without being supported by buoyancy.
- the float slides upward on a slide tube, either as a result of action by the individual monitor or due to rise of liquid level. There appears to be no indication of automatic intake cut-off upon reaching a certain predetermined fill level.
- U.S. Pat. No. 6,154,144 to Johnson discloses an automatic shutoff overflow controller comprising a circuit which engages between a source of power and a water liquid processing device; the controller, sensing an undesirably high water liquid level in the device, shutting off the device and producing an audible warning that such condition exists.
- An object of the invention is creating a condensate overflow safety switch that is characterized by simple mechanical and electrical design, compactness, low manufacturing complexity, and high operational reliability.
- Another object of the present invention is to provide a safety switch having compact switch means sealed from environmental contamination.
- a further object of the present invention is to affect, in the situation where an occlusion has occurred in the drain line fluidwise connected to the drain pan, an interruption to operation of the air-cooling means; producing condensate in the drain pan, or activating an audible, visual or electronic alarm indicating the presence of such occlusion.
- the present invention includes a T-shaped or L-shaped (right angle or curved) tubular structure, which can be connected fluidwise to a drain pan.
- the tubular structure mounts a reliable float switch to detect the existence of a predetermined level of liquid therein, which correlates with the level of water liquid in the drain pan. Presuming that the correlation approximates 1:1 and that an occlusion exists such that the liquid in the drain pan cannot drain, the predetermined level is set below the lowest level at which liquid would overflow the low point of the upper edge of the pan, or out of an orifice which was not provided with a drain line.
- the float switch comprises a hollow tube or rod containing a reed switch sealed therein with wires extending though the seal, the hollow tube being surrounded by an annular float body containing an annular magnet disposed between the longitudinal midpoint of the float body and one of the longitudinal ends of the float body; the float body being mounted about the tube such that it ascends to and descends from the predetermined level in response to the liquid level in the tubular structure.
- the reed switch includes contacts that are biased toward contact and can be connected to an electrical circuit of the air handler electrical control unit, preferably the thermostat electrical circuit, or to an alarm circuit.
- the float body is mounted about the tube with the magnet in the portion thereof facing toward the liquid and the reed switch is connected to an electrical circuit of the air handler electrical control unit.
- the reed switch is connected to an electrical circuit of the air handler electrical control unit.
- the float body when the reed switch is connected to an alarm circuit, the float body is mounted about the hollow tube with the magnet in the portion thereof in close proximity to the reed switch contacts, thereby causing the reed switch to open.
- the condensate causes the float body to ascend past the reed switch until the condensate reaches a predetermined level, the magnetic field has reduced influence on the reeds of the reed switch.
- the reeds which are biased to close, close thereby closing an electrical alarm circuit to activate an alarm notifying of a possible occlusion to condensate liquid draining from the drain pan. After any occlusion is cleared and resolved, the level of the liquid in the tubular structure will descend causing the float to descend with the resultant opening of the contacts of the reed switch thereby deactivating the alarm circuit.
- the float switch is mounted within an opening of the tubular structure via a mounting cap that can be removed from the structure for maintenance and inspection.
- the hollow tube containing the reed switch and mounting the float body with annular magnet therein can be adjusted closer or farther from the mounting cap, enabling the float body to be positioned at various depths within the tubular structure.
- the inner and outer diameters of the openings of the tubular structure may vary in size.
- the closure caps and mounting cap of the tubular structure may vary in construction, shape and materials; the materials varying from a plastic (opaque, translucent or transparent), to metal.
- the size, shape, and material of the tubular T-shaped body or L-shaped body may vary similarly to those of the closure caps and mounting cap.
- the switch can be positioned in the primary condensate drain line, on the primary or any auxiliary drain line outlet on the primary drain pan, on the auxiliary drain pan outlet (when present), or in the auxiliary drain pan drain (when present).
- the device of the T-shaped embodiment can be positioned at a slope from vertical to horizontal, facilitating installation in small spaces and drain lines that run at various angles.
- the L-shaped embodiment may be small in size, thereby facilitating positioning on outlets in small spaces and precludes the need for a plug on auxiliary drain outlets.
- FIG. 1 is a diagrammatic view of an air-cooling system incorporating the condensate overflow safety switch of the present invention
- FIG. 2 is an exploded, isometric view of one embodiment of the condensate overflow safety switch of the present invention
- FIG. 3 is an isometric view of the L-shaped tubular structure of another embodiment of the condensate overflow safety switch of the present invention.
- FIGS. 4 a - 4 c are isometric views of the caps for the open ends of the tubular structure.
- FIGS. 5 a - 5 b are schematic views of the overflow switch mounted in the T-shaped and L-shaped tubular structure, respectively.
- FIG. 1 illustrates an air-cooling system including a condensate overflow safety switch device 100 according to the present invention.
- the cooling system includes air-cooling means 102 , which can be, for example, an air conditioning unit or other air-handling unit.
- the air-cooling means 102 is operatively associated with an air handler means 104 that includes heat exchange coils 106 which carry a cold material for cooling warm air conveyed to the air handler means 104 through duct 108 . Cooled air is conveyed away from air handler means 104 through duct 110 .
- Air-cooling means 102 is controlled by, for example, a thermostat 120 that is electrically connected to air-cooling means 102 via a circuit 122 .
- An embodiment of the present invention provides overflow switch assembly 124 operatively associated with device 100 . Overflow switch assembly 124 opens circuit 122 when liquid in device 100 rises to a predetermined level due to clogging of device 100 and/or drain line 116 .
- FIG. 1 shows the use of both device 100 and 101 ′, either can be removed with circuit 122 being associated with the remaining device by methods known to one skilled in the art.
- each can alternatively activate an alarm circuit 123 .
- FIG. 2 shows a first embodiment of the condensate overflow safety device 100 .
- Device 100 includes a T-shaped tubular structure 1 having first, second and third open ends 2 a , 2 b , and 2 c .
- the first end 2 a is attached to an outlet tubing 10 extending from drain pan 112 so as to be in connection fluidwise with the drain pan 112 .
- Either of end 2 b or end 2 c receives an overflow switch assembly 124 .
- the overflow switch assembly 124 has the following described elements:
- a mounting cap 21 has an inner surface 22 and an outer surface 23 with an aperture 24 therebetween.
- a hollow tube 25 having an open end portion 26 and a closed end portion 27 with a stepped outer surface 28 extending therebetween.
- a reed switch 29 having longitudinally disposed electrical contacts and connecting insulating wires 30 is disposed within the hollow tube 25 .
- a sealing material 31 for example plastic or epoxy, isolates and disposes the reed switch 29 within the hollow tube 25 , the wires 30 extending therethrough for connecting to circuit 122 or an alarm circuit 123 .
- the open end portion 26 is received into the aperture 24 for attachment to the mounting cap 21 by a depth attachment means 31 , in this case by a nut engageable to threads 32 on the surface 28 .
- the depth attachment means 31 may be comprised of any known means of affixing the hollow tube 25 to the mounting cap 21 .
- An upper arcuate stopper mechanism 33 is engaged onto the hollow tube inward from the inner surface 22 .
- a removable arcuate stopper mechanism 34 is engaged onto the surface 28 of the hollow tube 25 , adjacent the closed end portion 27 .
- An annular float body 35 having a first end face 36 and a second end face 37 is mounted for slidable movement along the hollow tube 25 containing the reed switch 29 .
- an annular magnet 38 is disposed closer to first end face 36 than to second end face 37 .
- the float body is mounted with the first end face 36 facing toward arcuate stopper mechanism 34 .
- the float body 35 is mounted with the second end face 37 facing toward stopper mechanism 34 .
- a closure cap 39 is insertable and attachable by known means, for example, friction fit or adhesive, within any of the first, second, and third open ends 2 a , 2 b , and 2 c , which does not otherwise receive drain tubing, drain line, drain outlet, or mounting cap 21 .
- the mounting cap 21 and the closure cap 39 may be of similar design, though in its preferred embodiment, the counting cap 21 has an aperture 24 therein, whereas closure cap 39 would not necessarily have such an aperture.
- FIG. 3 shows a second embodiment of the condensate overflow safety switch 100 ′.
- Switch 100 ′ includes an L-shaped tubular structure 1 ′ having first and second open ends 2 a and 2 b .
- the first end 2 a is attached to an outlet tubing 118 extending from drain pan 112 so as to be in connection fluidwise with the drain pan 112 .
- the overflow switch assembly 124 and mounting cap 21 are common to those shown in the embodiment of FIG. 2 and, thus their description is incorporated herein by reference.
- FIGS. 4 a , 4 b , and 4 c show three examples of the closure cap 39 .
- FIG. 4 a shows a cup-shaped cap 39 to fit within an open end of the tubular structure 1 .
- FIG. 4 b shows a mounting cap 39 shaped to fit over the lip of and surround an open end of the tubular structure 1 .
- FIG. 4 c shows a mounting cap 39 designed to fit within an open end of the tubular structure 1 .
- the elements shown in FIGS. 2, 3, and 4 a - 4 c with the exception of the reed switch 29 , wires 30 , stopper mechanism 33 and 34 and annular magnet 38 , which normally require metal content for optimizing performance, the elements can be made of metal, plastic, PVC or other comparable material.
- the overall construction of the float body must insure buoyancy thereof Regarding the plastic material, it can be transparent, translucent or opaque.
- the T-shaped tubular structure 1 and the L-shaped tubular structure 1 ′ may measure 3 to 4 inches in length.
- the T-shaped tubular structure 1 is from 2 to 3 inches from the open end 2 b to the opposite bottom.
- the segments that form the T-shaped body may vary in internal or external diameter, but are generally from 1 ⁇ 2 to 3 inches in diameter.
- the inner and outer surface of the segments that form the tubular body may vary in shape to aid in engaging the float assembly and to affixing to the switch mounting cap, to an end closure cap, to the drain line, or to the drain pan outlet.
- the device 100 can be inclined such that the central axis A of the hollow tube 25 can be disposed at an angle ⁇ up to substantially 45 degrees from the vertical while maintaining continued operability (FIG. 5 a ).
- the central axis A of the hollow tube 25 can be disposed at an angle ⁇ ′ up to substantially 20 degrees to the vertical while maintaining continued operability (FIG. 5 b ).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Level Indicators Using A Float (AREA)
Abstract
Description
- The present application is a continuation-in-part of U.S. patent application Ser. No. 09/798,951 filed Mar. 6, 2001.
- 1. Field of the Invention
- The present invention relates to electrical condensate overflow safety switches. It is particularly directed to a device having an electrical float switch for de-activating air handling units, namely, air conditioning and refrigeration units, and/or activating an alarm signal. The activating/de-activating actions occur in the event a condensate drain line occludes in order to prevent or warn of potential drain pan overflows that could cause water damage to a building structure. The present invention provides an easy-to-install system either as original equipment at the initial installation of the air-handling units or as a retrofit.
- 2. Descriptions of the Related Art
- Many residential and commercial air conditioning and refrigeration units employ an evaporator coil to dehumidify and cool ambient air in dwellings, climate controlled storage spaces, workspaces, and the like. The evaporator coil is frequently located indoors, often above the occupied areas of the building that it serves. Since the coil is colder than the air being conditioned, it condenses water liquid continuously while in operation. This condensate water liquid is typically collected in a drain pan, usually positioned under the coil, with the drain pan having one or more outlet ports for attaching a drainpipe for outflow of the condensate. The condensate water liquid drains through one or more of these outlets and generally through a drainpipe out of or away from the building. The drain pan, pan outlets and drainpipe, including any U-shaped trap, which may be provided to create a fluid seal between the airs on opposite sides of the trap, often become occluded by algae, mold, mildew, dirt, etc. This occlusion may result in pan overflows that can cause water damage to building ceilings, walls, flooring and associated building components, which necessitate costly repairs.
- In recognition of damages resulting from overflow of liquid drain lines and containers, pre-existing efforts have been made to alert users of those drain lines and containers of potential blockage or overflow situations.
- U.S. Pat. No. 4,393,128, to Young et al. discloses a sewage back-up alarm unit for placement in an existing sewer line connecting a residence to a sewage collection system. It discloses electrical conductors extending into the interior of the connection element for detection of the rise of sewage into the unit whereby an alarm is emitted when the liquid rises to a level corresponding to sufficient voltage to complete the circuit and sound an alarm such that a human can initiate action to preclude sewage back up. The alarm system relies not only on metal strips subject to coating with sewage and corrosion from sewage contaminants which will reduce the accuracy of readings for initiating the alarm, but requires human intervention should a backup actually exist.
- U.S. Pat. No. 4,937,559 to Meachum et al discloses an air conditioner drain blockage alarm having a float switch within which activates an alarm and a shut off circuit when a potential overflow event is detected. FIG. 3 reflects a float having an
upper face contact 21 which upon upward movement by rising water liquid within switch housing, connects a pair of housing contacts on the lower face of the closed end of the switch housing, resulting in alarm activation and air handling unit de-activation. The housing is vented. The system does not recognize the ambient atmospheric as a corrosion source for the housing contacts, which reduces the reliability of the alarm and shut off. - U.S. Pat. No. 5,028,910 to Meachum et al discloses a drain overflow alarm for a washing machine drain. The device discloses a float disposed in a vertical drain line offset from the main washing machine drain line connected to the sewer, the float moving vertically upon liquid backup to interrupt the flow of electric current to the washing machine. The upper surface of the float has spaced float contacts that rise upward upon water back up to contact with fixed contacts on the downward facing inner, causing the interruption of the flow of electric current to the washing machine. While alluding that the float may be provided with an internal magnet so as to be able to act as part of a magnetic reed switch, no other elements were described in the alternative. Thus, as the system relies only on metal contacts subject to corrosion from sewage gases and contaminants as well as moisture, the combination of elements fails to recognize requirements of reliability to insure preclusion of overflow.
- U.S. Pat. No. 5,069,042 to Stuchlik discloses a cleanable condensate U-shaped trap that can be used in the condensate drainage tubing of an air-cooling system. The condensate trap is designed so that any blockage existing in the trap can be easily detected and removed; for example, using a flexible brush that can be inserted through a U-shaped tube that forms part of the trap. A mechanical switching mechanism, including a float, is disclosed in a portion of the trap. The switching mechanism is arranged so that when liquid collects in the trap due to a blockage in the trap, or in the tubing located downstream of the trap; the float rises so as to cause a mechanical switch to shut off the air-cooling system and/or trigger an alarm. The metal linkage components and electrical contacts are exposed to ambient air. The system does not recognize the ambient atmospheric as a corrosion source for the linkage and contacts, which reduces the reliability of the shut off and the alarm.
- U.S. Pat. No. 5,522,229 to Stuchlik discloses a blockade detector in the drain line of an air cooling system, the detector extending from a drain tube portion of the drain line into the air handler drain pan, to determine the presence of liquid at a certain level. A two prong liquid sensor probe is located at least partially in the drain tube, and includes a probe end that extends from the drain tube inlet end into the drain pan, when attached to the drain pan. The liquid sensor probe detects the undesired accumulation of liquid in the drain pan caused by a blockage in the drain pan, in the drain tube, or in any other portion of the drainage tubing. A control circuit generates an output signal when excess liquid is present at the probe end of the liquid sensor, so as to sound an alarm and/or turn off the air-cooling device. The drain tube is provided with an access port for a cleaning device to clean the drain pan outlet, the drain tube, and a U-shaped trap. The system relies on metal contacts exposed to contaminated liquid fostering corrosion that will reduce the accuracy of readings for initiating the alarm or interrupting the system.
- U.S. Pat. No. 5,621,393 to Urich discloses a fill-level test and measuring device that serves as an overfilling prevention means for a liquids container, particularly to corrosive media containers; the device allowing remote-controlled monitoring of its operability by permitting lifting of the float without being supported by buoyancy. The float slides upward on a slide tube, either as a result of action by the individual monitor or due to rise of liquid level. There appears to be no indication of automatic intake cut-off upon reaching a certain predetermined fill level.
- U.S. Pat. No. 6,154,144 to Johnson discloses an automatic shutoff overflow controller comprising a circuit which engages between a source of power and a water liquid processing device; the controller, sensing an undesirably high water liquid level in the device, shutting off the device and producing an audible warning that such condition exists.
- In order to design an effective condensate safety switch device for preventing structural damage to building components from condensate water liquid overflows; it is necessary to provide a system and/or a safety switch that senses condensate drain line occlusion and either 1) stops the generation of condensate liquid until the cause of the drain occlusion can be remedied, or 2) activates an alarm indicating the occurrence of such occlusion.
- An object of the invention is creating a condensate overflow safety switch that is characterized by simple mechanical and electrical design, compactness, low manufacturing complexity, and high operational reliability.
- Another object of the present invention is to provide a safety switch having compact switch means sealed from environmental contamination.
- A further object of the present invention is to affect, in the situation where an occlusion has occurred in the drain line fluidwise connected to the drain pan, an interruption to operation of the air-cooling means; producing condensate in the drain pan, or activating an audible, visual or electronic alarm indicating the presence of such occlusion.
- To achieve the foregoing and other objects, and to overcome the limitations set forth above, a condensate overflow safety switch is provided. The present invention includes a T-shaped or L-shaped (right angle or curved) tubular structure, which can be connected fluidwise to a drain pan. The tubular structure mounts a reliable float switch to detect the existence of a predetermined level of liquid therein, which correlates with the level of water liquid in the drain pan. Presuming that the correlation approximates 1:1 and that an occlusion exists such that the liquid in the drain pan cannot drain, the predetermined level is set below the lowest level at which liquid would overflow the low point of the upper edge of the pan, or out of an orifice which was not provided with a drain line.
- The float switch comprises a hollow tube or rod containing a reed switch sealed therein with wires extending though the seal, the hollow tube being surrounded by an annular float body containing an annular magnet disposed between the longitudinal midpoint of the float body and one of the longitudinal ends of the float body; the float body being mounted about the tube such that it ascends to and descends from the predetermined level in response to the liquid level in the tubular structure. The reed switch includes contacts that are biased toward contact and can be connected to an electrical circuit of the air handler electrical control unit, preferably the thermostat electrical circuit, or to an alarm circuit. The float body is mounted about the tube with the magnet in the portion thereof facing toward the liquid and the reed switch is connected to an electrical circuit of the air handler electrical control unit. As the liquid causes it to ascend, as the magnet becomes orthogonally adjacent to the reed switch contacts; its magnetic field would cause the contacts to separate, which would open the circuit rendering inoperative the system producing the condensate collected in the drain pan. After the occlusion is cleared and resolved, the condensate will drain from the drain pan to reduce the liquid level in the drain pan and correspondingly reduce the liquid level in the tubular structure. With the decrease of the liquid in the tubular structure to a level below the predetermined level; the float switch will descend and the reed switch will close, allowing the system producing the condensate to operate.
- On the other hand, when the reed switch is connected to an alarm circuit, the float body is mounted about the hollow tube with the magnet in the portion thereof in close proximity to the reed switch contacts, thereby causing the reed switch to open. As the condensate causes the float body to ascend past the reed switch until the condensate reaches a predetermined level, the magnetic field has reduced influence on the reeds of the reed switch. As a result, the reeds, which are biased to close, close thereby closing an electrical alarm circuit to activate an alarm notifying of a possible occlusion to condensate liquid draining from the drain pan. After any occlusion is cleared and resolved, the level of the liquid in the tubular structure will descend causing the float to descend with the resultant opening of the contacts of the reed switch thereby deactivating the alarm circuit.
- The float switch is mounted within an opening of the tubular structure via a mounting cap that can be removed from the structure for maintenance and inspection. The hollow tube containing the reed switch and mounting the float body with annular magnet therein can be adjusted closer or farther from the mounting cap, enabling the float body to be positioned at various depths within the tubular structure. The inner and outer diameters of the openings of the tubular structure may vary in size. The closure caps and mounting cap of the tubular structure may vary in construction, shape and materials; the materials varying from a plastic (opaque, translucent or transparent), to metal. Likewise the size, shape, and material of the tubular T-shaped body or L-shaped body may vary similarly to those of the closure caps and mounting cap. In conclusion, the switch can be positioned in the primary condensate drain line, on the primary or any auxiliary drain line outlet on the primary drain pan, on the auxiliary drain pan outlet (when present), or in the auxiliary drain pan drain (when present).
- The device of the T-shaped embodiment can be positioned at a slope from vertical to horizontal, facilitating installation in small spaces and drain lines that run at various angles. The L-shaped embodiment may be small in size, thereby facilitating positioning on outlets in small spaces and precludes the need for a plug on auxiliary drain outlets.
- The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements and wherein:
- FIG. 1 is a diagrammatic view of an air-cooling system incorporating the condensate overflow safety switch of the present invention;
- FIG. 2 is an exploded, isometric view of one embodiment of the condensate overflow safety switch of the present invention;
- FIG. 3 is an isometric view of the L-shaped tubular structure of another embodiment of the condensate overflow safety switch of the present invention;
- FIGS. 4a-4 c are isometric views of the caps for the open ends of the tubular structure; and
- FIGS. 5a-5 b are schematic views of the overflow switch mounted in the T-shaped and L-shaped tubular structure, respectively.
- FIG. 1 illustrates an air-cooling system including a condensate overflow
safety switch device 100 according to the present invention. The cooling system includes air-cooling means 102, which can be, for example, an air conditioning unit or other air-handling unit. The air-cooling means 102 is operatively associated with an air handler means 104 that includes heat exchange coils 106 which carry a cold material for cooling warm air conveyed to the air handler means 104 throughduct 108. Cooled air is conveyed away from air handler means 104 throughduct 110. As the air is cooled, liquid in the air condenses and is removed from the air to fall into adrain pan 112 from which it may outflow away from air handler means 104 through a primarydrain pan outlet 114 viadevice 100 to adrain line 116, or it may outflow through secondarydrain pan outlet 118. Air-cooling means 102 is controlled by, for example, athermostat 120 that is electrically connected to air-cooling means 102 via acircuit 122. An embodiment of the present invention providesoverflow switch assembly 124 operatively associated withdevice 100.Overflow switch assembly 124 openscircuit 122 when liquid indevice 100 rises to a predetermined level due to clogging ofdevice 100 and/ordrain line 116. In this manner, air cooling means 102 is rendered inoperative whendevice 100 and/ordrain line 116 is clogged, to prevent the production of any further condensation and thus prevent the overflow of liquid and the damage associated therewith. Likewise, another embodiment of the present invention comprises adevice 100′, which is attached to thesecondary outlet 118, havingoverflow switch assembly 124 which similarly opens circuit 1124 when liquid indevice 100′ rises to a predetermined level to render air cooling means 102 inoperative. It is to be noted thatdevice 100 anddevice 100′ are interchangeable by methods known to one skilled in the art. While FIG. 1 shows the use of bothdevice 100 and 101′, either can be removed withcircuit 122 being associated with the remaining device by methods known to one skilled in the art. Further, it is to be noted that rather than overflowswitch assembly 124de-activating circuit 122, each can alternatively activate analarm circuit 123. - FIG. 2 shows a first embodiment of the condensate
overflow safety device 100.Device 100 includes a T-shapedtubular structure 1 having first, second and third open ends 2 a, 2 b, and 2 c. The first end 2 a is attached to an outlet tubing 10 extending fromdrain pan 112 so as to be in connection fluidwise with thedrain pan 112. Either of end 2 b or end 2 c receives anoverflow switch assembly 124. - The
overflow switch assembly 124 has the following described elements: A mountingcap 21 has aninner surface 22 and anouter surface 23 with anaperture 24 therebetween. Ahollow tube 25 having anopen end portion 26 and aclosed end portion 27 with a steppedouter surface 28 extending therebetween. Areed switch 29 having longitudinally disposed electrical contacts and connecting insulatingwires 30 is disposed within thehollow tube 25. A sealingmaterial 31, for example plastic or epoxy, isolates and disposes thereed switch 29 within thehollow tube 25, thewires 30 extending therethrough for connecting tocircuit 122 or analarm circuit 123. Theopen end portion 26 is received into theaperture 24 for attachment to the mountingcap 21 by a depth attachment means 31, in this case by a nut engageable tothreads 32 on thesurface 28. (However, is within the scope of the invention that the depth attachment means 31 may be comprised of any known means of affixing thehollow tube 25 to the mountingcap 21.) An upperarcuate stopper mechanism 33 is engaged onto the hollow tube inward from theinner surface 22. And a removable arcuate stopper mechanism 34 is engaged onto thesurface 28 of thehollow tube 25, adjacent theclosed end portion 27. Anannular float body 35 having a first end face 36 and asecond end face 37 is mounted for slidable movement along thehollow tube 25 containing thereed switch 29. Within thefloat body 35, an annular magnet 38 is disposed closer to first end face 36 than tosecond end face 37. When the wires 36 are connected tocircuit 122, the float body is mounted with the first end face 36 facing toward arcuate stopper mechanism 34. When the wires 36 are connected to alarmcircuit 123, thefloat body 35 is mounted with thesecond end face 37 facing toward stopper mechanism 34. - A
closure cap 39 is insertable and attachable by known means, for example, friction fit or adhesive, within any of the first, second, and third open ends 2 a, 2 b, and 2 c, which does not otherwise receive drain tubing, drain line, drain outlet, or mountingcap 21. The mountingcap 21 and theclosure cap 39 may be of similar design, though in its preferred embodiment, the countingcap 21 has anaperture 24 therein, whereasclosure cap 39 would not necessarily have such an aperture. - FIG. 3 shows a second embodiment of the condensate
overflow safety switch 100′. Switch 100′ includes an L-shapedtubular structure 1′ having first and second open ends 2 a and 2 b. The first end 2 a is attached to anoutlet tubing 118 extending fromdrain pan 112 so as to be in connection fluidwise with thedrain pan 112. Theoverflow switch assembly 124 and mountingcap 21 are common to those shown in the embodiment of FIG. 2 and, thus their description is incorporated herein by reference. - FIGS. 4a, 4 b, and 4 c show three examples of the
closure cap 39. FIG. 4a shows a cup-shapedcap 39 to fit within an open end of thetubular structure 1. FIG. 4b shows a mountingcap 39 shaped to fit over the lip of and surround an open end of thetubular structure 1. FIG. 4c shows a mountingcap 39 designed to fit within an open end of thetubular structure 1. - As to the above-described elements shown in FIGS. 2, 3, and4 a-4 c, with the exception of the
reed switch 29,wires 30,stopper mechanism 33 and 34 and annular magnet 38, which normally require metal content for optimizing performance, the elements can be made of metal, plastic, PVC or other comparable material. However, of course, the overall construction of the float body must insure buoyancy thereof Regarding the plastic material, it can be transparent, translucent or opaque. - As to the dimensions of the elements above-described and shown in FIGS. 2, 3 and4 a-4 c, they may vary as required by the circumstances of the environment in which they are applied. However, in usual circumstances, the T-shaped
tubular structure 1 and the L-shapedtubular structure 1′ may measure 3 to 4 inches in length. The T-shapedtubular structure 1 is from 2 to 3 inches from the open end 2 b to the opposite bottom. The segments that form the T-shaped body may vary in internal or external diameter, but are generally from ½ to 3 inches in diameter. The inner and outer surface of the segments that form the tubular body may vary in shape to aid in engaging the float assembly and to affixing to the switch mounting cap, to an end closure cap, to the drain line, or to the drain pan outlet. - In operation, with respect to the embodiments of
device 100 ordevice 100′ attached in fluidwise connection to an outlet of thedrain pan 112, when either device or thedrain line 116 clogs, the condensate liquid in the drain pipe, drain line, or drain pan backs up; causing afloat body 35 inside either device 100 (T-shaped body) ordevice 100′ (L-shaped body) to ascend; causing either 1) thereed switch 30 to open thecircuit 122, preferably the thermostat circuit, thereby shutting off the refrigerant circulation in the air cooling means 102, retarding the generation of additional condensate water liquid, and hindering overflow from thedrain pan 122, or 2) thereed switch 30 to close thecircuit 123, thereby causing an alarm to signal the existence of a potential overflow situation. Additionally, in use, when the mountingcap 21 andassembly 124 are mounted on thedevice 100. thedevice 100 can be inclined such that the central axis A of thehollow tube 25 can be disposed at an angle Θ up to substantially 45 degrees from the vertical while maintaining continued operability (FIG. 5a). Likewise, when the mountingcap 21 andassembly 124 are mounted ondevice 100′, the central axis A of thehollow tube 25 can be disposed at an angle Θ′ up to substantially 20 degrees to the vertical while maintaining continued operability (FIG. 5b). - In the invention being thus described it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as the departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art; such as variations in dimension and shape, intended to be included within the scope of the above description.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/861,551 US6442955B1 (en) | 2001-03-06 | 2001-05-22 | Condensate overflow safety switch |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79895101A | 2001-03-06 | 2001-03-06 | |
US09/861,551 US6442955B1 (en) | 2001-03-06 | 2001-05-22 | Condensate overflow safety switch |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US79895101A Continuation-In-Part | 2001-03-06 | 2001-03-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
US6442955B1 US6442955B1 (en) | 2002-09-03 |
US20020124582A1 true US20020124582A1 (en) | 2002-09-12 |
Family
ID=25174663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/861,551 Expired - Lifetime US6442955B1 (en) | 2001-03-06 | 2001-05-22 | Condensate overflow safety switch |
Country Status (1)
Country | Link |
---|---|
US (1) | US6442955B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060082947A1 (en) * | 2004-10-20 | 2006-04-20 | Omron Healthcare Co., Ltd. | Electronic clinical thermometer |
US7191606B1 (en) * | 2005-04-29 | 2007-03-20 | Dwyer Kenneth W | Drain trap alarm |
GB2455091A (en) * | 2007-11-28 | 2009-06-03 | John Anthony Brooks | Liquid capture apparatus and failure detection system for an air conditioning unit |
US8028438B2 (en) * | 2004-07-02 | 2011-10-04 | Aqualizer, Llc | Moisture condensation control system |
US20110265508A1 (en) * | 2007-08-07 | 2011-11-03 | David Piccione | Coil with built-in segmented pan comprising primary and auxiliary drain pans and method |
GB2497140A (en) * | 2011-12-02 | 2013-06-05 | Adey Holdings 2008 Ltd | Boiler condensate drain monitoring apparatus |
US20150090349A1 (en) * | 2013-09-27 | 2015-04-02 | Diversitech Corporation | Condensate Overflow Detection Device |
CN104615160A (en) * | 2014-12-24 | 2015-05-13 | 安徽华润金蟾药业股份有限公司 | Liquid level detection device and method for production and concentration process of traditional Chinese medicinal granules |
US10458730B2 (en) * | 2018-01-19 | 2019-10-29 | Therma-Stor LLC | Drainage system for a dehumidification system |
EP3510328A4 (en) * | 2016-09-08 | 2020-04-15 | Schneider Electric IT Corporation | System and method for removing condensate from a cooling unit |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7009125B1 (en) * | 2002-08-21 | 2006-03-07 | Rodolfo Hernandez-Zelaya | Electrical fluid activated switch |
US7315250B1 (en) * | 2002-08-21 | 2008-01-01 | Rodolfo Hernandez-Zelaya | Electrical fluid activated switch |
US6976367B2 (en) * | 2003-12-30 | 2005-12-20 | Spanger Gerald S | Condensate overflow prevention apparatus |
US20050166613A1 (en) * | 2004-02-02 | 2005-08-04 | Oakner Stuart P. | Drain pan overflow safety switch |
US6992259B1 (en) * | 2005-02-19 | 2006-01-31 | Christopher Ralph Cantolino | Multi-purpose condensate switch |
US7191649B1 (en) | 2005-11-14 | 2007-03-20 | Gregory Coogle | Water level sensor |
US7821411B1 (en) | 2006-02-09 | 2010-10-26 | Diversitech Corporation | Safety device for monitoring a conduit |
US7614662B2 (en) * | 2006-05-05 | 2009-11-10 | Spanger Gerald S | Pipe fitting with orientation indicator |
US7857004B2 (en) * | 2007-12-31 | 2010-12-28 | Steven L. Pearson | Automated condensate drain line cleaning system, method, and kit |
US8887392B1 (en) | 2011-11-09 | 2014-11-18 | The Rectorseal Corporation | Apparatus and methods for connecting a drain pan overflow sensor to a ductless mini-split HVAC system |
US9123230B2 (en) | 2012-05-21 | 2015-09-01 | Frank T. Rogers | Sewer backup alarm |
US9217577B2 (en) * | 2012-10-19 | 2015-12-22 | Msd Research, Inc. | Drain line access device with interior overflow safety switch |
US20140338758A1 (en) * | 2012-10-19 | 2014-11-20 | Msd Research, Inc. | Drain line access device |
US20140116070A1 (en) * | 2012-10-27 | 2014-05-01 | Michael J. Hubble | Leakage minimization system and method for packaged terminal air conditioners and heat pumps |
BR112015029774B1 (en) | 2013-05-31 | 2022-05-17 | Dayco Ip Holdings, Llc | Valve featuring a duct, a backlash |
US9574677B2 (en) | 2013-05-31 | 2017-02-21 | Dayco Ip Holdings, Llc | Solenoid-powered gate valve |
EP3039319B1 (en) | 2013-08-30 | 2018-10-10 | Dayco IP Holdings, LLC | Sprung gate valves movable by a solenoid actuator |
WO2015073554A2 (en) | 2013-11-12 | 2015-05-21 | Dayco Ip Holdings, Llc | Diesel engine fluid coolant system having a solenoid-powered gate valve |
US10221867B2 (en) | 2013-12-10 | 2019-03-05 | Dayco Ip Holdings, Llc | Flow control for aspirators producing vacuum using the venturi effect |
BR112016013346B1 (en) | 2013-12-11 | 2021-11-16 | Dayco Ip Holdings, Llc | MAGNETIC ACTUATOR AND CASING ASSEMBLY |
US9359750B1 (en) | 2014-11-12 | 2016-06-07 | Thomas Perez | Method and apparatus for cleaning and clearing P-trap systems |
US9599246B2 (en) | 2015-08-05 | 2017-03-21 | Dayco Ip Holdings, Llc | Magnetically actuated shut-off valve |
WO2017136848A1 (en) * | 2016-02-04 | 2017-08-10 | Haws Corporation | Integrated water detection sensor |
US10281171B2 (en) * | 2016-11-14 | 2019-05-07 | Haier Us Appliance Solutions, Inc. | Water heater appliance |
CN107192112A (en) * | 2017-06-12 | 2017-09-22 | 珠海格力电器股份有限公司 | Water pan, drainage subassembly and dehumidifier |
US11749478B1 (en) * | 2019-06-03 | 2023-09-05 | Diversitech Corporation | Magnetic latching float switch |
US11830691B1 (en) * | 2019-06-03 | 2023-11-28 | Diversitech Corporation | Latching magnetic float switch |
EP4047282A1 (en) * | 2021-02-19 | 2022-08-24 | Hoval Aktiengesellschaft | Fuel container condensate discharge device |
CN113834209B (en) * | 2021-08-31 | 2022-09-23 | 珠海格力电器股份有限公司 | Drainage device and dehumidifier with same |
US20230228451A1 (en) * | 2022-01-14 | 2023-07-20 | Trane International Inc. | Method of commissioning an hvac system |
US12117191B2 (en) | 2022-06-24 | 2024-10-15 | Trane International Inc. | Climate control system with improved leak detector |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4392128A (en) | 1980-10-09 | 1983-07-05 | Young Jack W | Sewage back-up alarm |
US4937559A (en) | 1989-08-21 | 1990-06-26 | Meacham Huey W | Air conditioner drain blockage alarm |
US5028910A (en) | 1989-12-08 | 1991-07-02 | Meacham Huey W | Drain overflow alarm |
US5069042A (en) | 1990-04-13 | 1991-12-03 | Stuchlik Iii Charles F | Cleanable condensate trap |
US5898376A (en) * | 1993-08-10 | 1999-04-27 | Webb; R. Michael | Modular overfill alarm assembly for vented storage tanks |
DE9413499U1 (en) | 1994-08-22 | 1994-10-27 | Unimeß Meßtechnische Geräte GmbH, 61239 Ober-Mörlen | Level measuring device, in particular overfill protection for a liquid tank |
US5522229A (en) | 1994-11-03 | 1996-06-04 | Stuchlik, Iii; Charles F. | Blockage detector |
US5699049A (en) * | 1995-06-28 | 1997-12-16 | Difiore; Dante | Monitoring system for non-pressurized conduit |
US5627523A (en) * | 1996-06-03 | 1997-05-06 | Power Paragon Inc. | Liquid level sensor device |
US6154144A (en) | 1998-08-05 | 2000-11-28 | Johnson; Stephen | Auto shutoff overflow controller |
-
2001
- 2001-05-22 US US09/861,551 patent/US6442955B1/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8028438B2 (en) * | 2004-07-02 | 2011-10-04 | Aqualizer, Llc | Moisture condensation control system |
US20060082947A1 (en) * | 2004-10-20 | 2006-04-20 | Omron Healthcare Co., Ltd. | Electronic clinical thermometer |
US7191606B1 (en) * | 2005-04-29 | 2007-03-20 | Dwyer Kenneth W | Drain trap alarm |
US8869548B2 (en) * | 2007-08-07 | 2014-10-28 | Aspen Manufacturing, LLC. | Coil with built-in segmented pan comprising primary and auxiliary drain pans and method |
US20110265508A1 (en) * | 2007-08-07 | 2011-11-03 | David Piccione | Coil with built-in segmented pan comprising primary and auxiliary drain pans and method |
GB2455091A (en) * | 2007-11-28 | 2009-06-03 | John Anthony Brooks | Liquid capture apparatus and failure detection system for an air conditioning unit |
GB2497140A (en) * | 2011-12-02 | 2013-06-05 | Adey Holdings 2008 Ltd | Boiler condensate drain monitoring apparatus |
GB2497140B (en) * | 2011-12-02 | 2017-11-01 | Adey Holdings 2008 Ltd | Condensate drain monitoring apparatus |
US20150090349A1 (en) * | 2013-09-27 | 2015-04-02 | Diversitech Corporation | Condensate Overflow Detection Device |
US9249981B2 (en) * | 2013-09-27 | 2016-02-02 | Diversitech Corporation | Condensate overflow detection device |
CN104615160A (en) * | 2014-12-24 | 2015-05-13 | 安徽华润金蟾药业股份有限公司 | Liquid level detection device and method for production and concentration process of traditional Chinese medicinal granules |
EP3510328A4 (en) * | 2016-09-08 | 2020-04-15 | Schneider Electric IT Corporation | System and method for removing condensate from a cooling unit |
US11060757B2 (en) | 2016-09-08 | 2021-07-13 | Schneider Electric It Corporation | System and method for removing condensate from a cooling unit |
US10458730B2 (en) * | 2018-01-19 | 2019-10-29 | Therma-Stor LLC | Drainage system for a dehumidification system |
Also Published As
Publication number | Publication date |
---|---|
US6442955B1 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6442955B1 (en) | Condensate overflow safety switch | |
US6976367B2 (en) | Condensate overflow prevention apparatus | |
US20090064698A1 (en) | Condensate liquid pumping system | |
US9243947B2 (en) | Drain pan level monitoring system | |
US5522229A (en) | Blockage detector | |
US7191606B1 (en) | Drain trap alarm | |
US4633673A (en) | Emergency shutoff for air conditioners | |
US5069042A (en) | Cleanable condensate trap | |
US7191649B1 (en) | Water level sensor | |
US7821411B1 (en) | Safety device for monitoring a conduit | |
US20020000093A1 (en) | Air conditioner condensation pan overflow protection | |
US20190337027A1 (en) | Self cleaning condensate drain pressure trap | |
US5965814A (en) | Freeze/overflow detector with deactivating mechanism | |
US20050166613A1 (en) | Drain pan overflow safety switch | |
US6035699A (en) | Water leakage detection apparatus | |
US11320172B1 (en) | Air conditioner shut-off system and method to prevent drainage overflow | |
CN107587330A (en) | A kind of dryer reminds the method and dryer of cleaning water storage case | |
US20240142126A1 (en) | Overflow Sensor Assembly In Temperature Control Systems | |
JP2024091843A (en) | Water leakage detection device | |
US6745580B1 (en) | Combination P-trap, shutoff switch and cleanout fitting | |
US4896052A (en) | Overflow and leakage detection system for an air conditioning unit | |
KR20080060857A (en) | A device for a discharge of condensed water in an airconditioner system | |
US4973950A (en) | Sewer blockage alarm | |
NZ547692A (en) | Water ingress detection system | |
US20030201898A1 (en) | Blockage detector with separate alarm and shut-off functions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SMD RESEARCH, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OAKNER, STUART P.;BRANNICK, MARK T.;OAKNER BRANNICK, DONNA E.;REEL/FRAME:013392/0527 Effective date: 20021017 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MSD RESEARCH, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SMD RESEARCH, INC.;REEL/FRAME:020733/0361 Effective date: 20080328 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
AS | Assignment |
Owner name: THE RECTORSEAL CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MSD RESEARCH, INC.;REEL/FRAME:028081/0885 Effective date: 20080403 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNOR:THE RECTORSEAL CORPORATION;REEL/FRAME:037411/0005 Effective date: 20151211 |
|
AS | Assignment |
Owner name: RECTORSEAL, LLC, TEXAS Free format text: CONVERSION, FORMATION;ASSIGNOR:THE RECTORSEAL CORPORATION;REEL/FRAME:040665/0755 Effective date: 20161121 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT Free format text: SECURITY INTEREST;ASSIGNOR:RECTORSEAL, LLC FORMERLY KNOWN AS THE RECTORSEAL CORPORATION;REEL/FRAME:040818/0086 Effective date: 20161130 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, TEXAS Free format text: SECURITY INTEREST;ASSIGNORS:BALCO, INC.;RECTORSEAL, LLC;SMOKE GUARD, INC.;AND OTHERS;REEL/FRAME:056697/0888 Effective date: 20210518 |