US20020123128A1 - Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus - Google Patents

Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus Download PDF

Info

Publication number
US20020123128A1
US20020123128A1 US09/797,381 US79738101A US2002123128A1 US 20020123128 A1 US20020123128 A1 US 20020123128A1 US 79738101 A US79738101 A US 79738101A US 2002123128 A1 US2002123128 A1 US 2002123128A1
Authority
US
United States
Prior art keywords
yeast cells
phosphorus
yeast
cells
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/797,381
Other versions
US6436695B1 (en
Inventor
Ling Cheung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultra Biotech Ltd
Original Assignee
Ultra Biotech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultra Biotech Ltd filed Critical Ultra Biotech Ltd
Priority to US09/797,381 priority Critical patent/US6436695B1/en
Priority to PCT/GB2001/005439 priority patent/WO2002070682A2/en
Priority to CNA018231950A priority patent/CN1596308A/en
Priority to EP01273915A priority patent/EP1364001A2/en
Assigned to ULTRA BIOTECH LIMITED reassignment ULTRA BIOTECH LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEUNG, LING YUK
Priority to CNA2005100721951A priority patent/CN1683527A/en
Priority to CNA200510072199XA priority patent/CN1683529A/en
Priority to CNA2005100721970A priority patent/CN1683528A/en
Priority to CNA028090608A priority patent/CN1505680A/en
Priority to EP02702521A priority patent/EP1368463A2/en
Priority to PCT/GB2002/000915 priority patent/WO2002070683A2/en
Publication of US6436695B1 publication Critical patent/US6436695B1/en
Application granted granted Critical
Publication of US20020123128A1 publication Critical patent/US20020123128A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • the invention relates to the use of yeast cells to incorporate biologically available phosphorus in a culture medium into their own biomass. These yeasts are useful in waste treatment, and can be obtained by growth in electromagnetic fields with specific frequencies and field strengths.
  • Eutrophication is usually caused by sewage, industrial waste water, fertilizers and the like. It refers to waters (e.g., a lake or pond) rich in minerals and organic nutrients that promote a proliferation of plant life, especially algae, which reduces the dissolved oxygen content or otherwise deteriorates water quality. Eutrophication often results in the extinction of other organisms.
  • compositions comprising these activated yeast cells can therefore be used for waste treatment, for example, treatment of sewage, industrial waste water, surface water, drinking water, sediment, soil, garbage, and manure, to reduce the content of available phosphorus in the waste. Waste treatment methods using these compositions are more effective, efficient, and economical in preventing eutrophication than the conventional methods.
  • This invention embraces a composition
  • a composition comprising a plurality of yeast cells that have been cultured in an alternating electric field having a frequency in the range of about 80 MHz to 440 MHz (e.g., 86-120 or 410-430 MHz) and a field strength in the range of about 0.5 to 350 mV (e.g., 60-260 mV/cm).
  • the yeast cells are cultured for a period of time sufficient to substantially increase the capability of said plurality of yeast cells to convert biologically available phosphorus in a culture medium into intracellular phosphorus.
  • the frequency and/or the field strength of the alternating electric field can be altered within the aforementioned ranges during said period of time.
  • the yeast cells can be exposed to a series of electromagnetic fields.
  • An exemplary period of time is about 12-400 hours, e.g., 228-368 hours.
  • Yeast cells that can be included in this composition are available from the China General Microbiological Culture Collection Center (“CGMCC”), a depository recognized under the Budapest Treaty (China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China).
  • Useful yeast species include, but are not limited to, Saccharomyces cerevisiae and Saccharomyces carlsbergensis.
  • yeast cells can be of the strain Saccharomyces cerevisiae AS2.346, AS2.423, AS2.430, AS2.451, AS2.558, AS2.620, AS2.628, or IFFI1203; or Saccharomyces carlsbergensis AS2.189.
  • This invention further embraces a composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been activated such that they have a substantially increased capability to convert biologically available phosphorus in a culture medium into intracellular phosphorus as compared to unactivated yeast cells. Included in this invention are also methods of making these compositions.
  • biologically available or “assimilable” phosphorus refers to phosphorus that is readily available, useable, or assimilable by living organisms for survival and/or growth.
  • exemplary biologically available or assimilable phosphorus includes, but is not limited to, PO 4 3+ , H 3 PO 4 , HPO 4 2+ , H 2 PO 4 + , other water-soluble inorganic phosphorus-containing compounds, and organic phosphorus-containing compounds.
  • a “substantial increase” means an increase of more than 10 (e.g., 10 2 , 10 3 , 10 4 , 10 5 , or 10 6 ) fold.
  • a “culture medium” refers to a medium used in a laboratory for selecting and growing a given yeast strain, or to liquid or solid waste in need of treatment.
  • FIG. 1 is a schematic diagram showing an exemplary apparatus for activating yeast cells using electromagnetic fields.
  • 1 yeast culture
  • 2 container
  • 3 power supply.
  • This invention is based on the discovery that certain yeast strains can be activated by electromagnetic fields (“EMF”) having specific frequencies and field strengths to become highly efficient in converting biologically available phosphorus to intracellular phosphorus.
  • EMF electromagnetic fields
  • Yeast cells having this function are defined herein as belonging to the same “functional group.” Compositions containing the activated yeast cells are useful in waste treatment.
  • EMFs activate or enhance the expression of a gene or a set of genes in yeast cells such that the yeast cells become active or more efficient in performing certain metabolic activities which lead to the desired phosphorus conversion result.
  • yeasts useful in this invention include, but are not limited to, yeasts of the genera of Saccharomyces, Schizosaccharomyces, Sporobolomyces, Torulopsis, Trichosporon, Wickerhamia, Ashbya, Blastomyces, Candida, Citeromyces, Crebrothecium, Cryptococcus, Debaryomyces, Endomycopsis, Eremothecium, Geotrichum, Hansenula, Kloeckera, Lipomyces, Pichia, Rhodosporidium, and Rhodotorula.
  • Exemplary species within the above-listed genera include, but are not limited to, Saccharomyces cerevisiae, Saccharomyces bailii, Saccharomyces carlsbergensis, Saccharomyces chevalieri, Saccharomyces delbrueckli, Saccharomyces exiguus, Saccharomyces fermentati, Saccharomyces logos, Saccharomyces mellis, Saccharomyces microellipsoides, Saccharomyces oviformis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces sake, Saccharomyces uvarum, Saccharomyces willianus, Saccharomyces sp., Saccharomyces ludwigii, Saccharomyces sinenses, Saccharomyces bailii, Saccharomyces carisbergensis, Schizosaccharomyces octosporus, Schizosaccharomyces pombe
  • Yeast strains useful for this invention can be obtained from laboratory cultures, or from publically accessible culture depositories, such as CGMCC and the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209.
  • useful strains are Saccharomyces cerevisiae Hansen AS2.346, AS2.423, AS2.430, AS2.451, AS2.558, AS2.620, AS2.628, and IFFI1203; and Saccharomyces carlsbergensis AS2.189.
  • yeast compositions of this invention is not limited to starting with a pure strain of yeast.
  • a yeast composition of the invention may be produced by culturing a mixture of yeast cells of different species or strains that have the same function, for example, converting biologically available phosphorus to intracellular phosphorus. The ability of any species or strain of yeast to perform this function can be readily tested by methods known in the art.
  • yeast species that can be activated according to the present invention are known to be pathogenic to human and/or other living organisms. These yeast species include, for example, Ashbya gossypii, Blastomyces dermatitidis, Candida albicans, Candida parakrusei, Candida tropicalis, Citeromyces matritensis, Crebrothecium ashbyii, Cryptococcus laurentii, Cryptococcus neoformans, Debaryomyces hansenii, Debaryomyces kloeckeri, Debaryomyces sp., and Endomycopsis fibuligera. Under certain circumstances, it may be less preferable to use such pathogenic yeasts in this invention. If use of these species is necessary, caution should be exercised to minimize the leak of the yeast cells into the final treatment product that enters the environment.
  • An electromagnetic field useful in this invention can be generated and applied by various means well known in the art.
  • the EMF can be generated by applying an alternating electric field or an oscillating magnetic field.
  • Alternating electric fields can be applied to cell cultures through electrodes in direct contact with the culture medium, or through electromagnetic induction. See, e.g., FIG. 1. Relatively high electric fields in the medium can be generated using a method in which the electrodes are in contact with the medium. Care must be taken to prevent electrolysis at the electrodes from introducing undesired ions into the culture and to prevent contact resistance, bubbles, or other features of electrolysis from dropping the field level below that intended. Electrodes should be matched to their environment, for example, using Ag—AgCl electrodes in solutions rich in chloride ions, and run at as low a voltage as possible. For general review, see Goodman et al., Effects of EMF on Molecules and Cells, International Review of Cytology, A Survey of Cell Biology, Vol. 158, Academic Press, 1995.
  • the EMFs useful in this invention can also be generated by applying an oscillating magnetic field.
  • An oscillating magnetic field can be generated by oscillating electric currents going through Helmholtz coils. Such a magnetic field in turn induces an electric field.
  • the frequencies of EMFs useful in this invention range from about 5 to 5000 MHz, e.g., from 80 to 440 MHz (e.g., 86-120 MHz or 410-430 MHz).
  • Exemplary frequencies are 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, and 430 MHz.
  • the field strength of the electric field useful in this invention ranges from about 0.5 to 350 mV/cm, e.g., from about 60 to 260 mV/cm. Exemplary field strengths are 68 and 240 mV/cm.
  • the yeast culture can remain in the same container while the same set of EMF generator and emitters is used to change the frequency and/or field strength.
  • the EMFs in the series can each have a different frequency or a different field strength; or a different frequency and a different field strength. Such frequencies and field strengths are preferably within the above-described ranges.
  • an EMF at the beginning of the series has a field strength identical to or lower than that of a subsequent EMF, such that the yeast cell culture is exposed to EMFs of progressively increasing field strength.
  • any practical number of EMFs can be used in a series, it may be preferred that the yeast culture be exposed to a total of 2, 3, 4, 5, 6, 7, 8, 9 or 10 EMFs in a series.
  • the yeast cells can be cultured in a first series of alternating electric fields each having a frequency in the range of 86 to 120 MHz and a field strength in the range of 60 to 260 mV/cm.
  • the yeast cells are exposed to each EMF for about 24 hours.
  • the resultant yeast cells are further incubated in a second series of alternating electric fields for a total of 24 to 132 hours. It may be preferred that the frequencies in the second series of alternating electric fields are identical to those of the first series in sequence and the field strengths in the second series are increased to a higher level within the range of 60 to 260 mV/cm.
  • yeast cells can be activated after even a few hours of culturing in the presence of an EMF, it may be preferred that the activated yeast cells be allowed to multiply and grow in the presence of the EMF(s) for a total of 228-368 hours.
  • FIG. 1 illustrates an exemplary apparatus for generating alternating electric fields.
  • An electric field of a desired frequency and intensity is generated by an AC source ( 3 ) capable of generating an alternating electric field, preferably in a sinusoidal wave form, in the frequency range of 5 to 5000 MHz.
  • Signal generators capable of generating signals with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output.
  • the alternating electric field can be applied to the culture by a variety of means including placing the yeast culture in close proximity to the signal emitters. In one embodiment, the electric field is applied by electrodes submerged in the culture ( 1 ).
  • one of the electrodes can be a metal plate placed on the bottom of the container ( 2 ), and the other electrode can comprise a plurality of electrode wires evenly distributed in the culture ( 1 ) so as to achieve even distribution of the electric field energy.
  • the number of electrode wires used depends on the volume of the culture as well as the diameter of the wires. In a preferred embodiment, for a culture having a volume up to 5000 ml, one electrode wire having a diameter of 0.1 to 1.2 mm can be used for each 100 ml of culture. For a culture having a volume greater than 1000 L, one electrode wire having a diameter of 3 to 30 mm can be used for each 1000 L of culture.
  • Culture media useful in this invention contain sources of nutrients assimilable by yeast cells.
  • a culture medium refers to a laboratory culture medium, or liquid or solid waste in need of treatment.
  • Complex carbon-containing substances in a suitable form such as carbohydrates (e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.) and coal, can be the carbon sources for yeast cells.
  • carbohydrates e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.
  • coal can be the carbon sources for yeast cells.
  • the exact quantity of the carbon sources utilized in the medium can be adjusted in accordance with the other ingredients of the medium.
  • the amount of carbohydrates varies between about 0.1% and 5% by weight of the medium and preferably between about 0.1% and 2%, and most preferably about 1%. These carbon sources can be used individually or in combination.
  • inorganic salts which can be added to the culture medium are the customary salts capable of yielding sodium, potassium, calcium, phosphate, sulfate, carbonate, and like ions.
  • nutrient inorganic salts are (NH 4 ) 2 HPO 4 , KH 2 PO 4 , CaCO 3 , MgSO 4 , NaCl, KNO 3 , and CaSO 4 .
  • Yeasts of this invention convert biologically available or assimilable phosphorus in a culture medium, such as waste water, into their own biomass, i.e., intracellular phosphorus.
  • Biologically available phosphorus convertible by these yeasts includes, but is not limited to, PO 4 3+ , H 3 PO 4 , HPO 4 2+ , H 2 PO 4 + , other water-soluble inorganic phosphorus-containing compounds, and organic phosphorus-containing compounds.
  • Biologically available phosphorus in waste water causes undesired eutrophication of water bodies in the world.
  • yeast cells To activate the innate ability of yeast cells to convert biologically available phosphorus into intracellular phosphorus, these cells can be cultured in an appropriate medium under sterile conditions at 25° C.-30° C., e.g., 28° C., for a sufficient amount of time, e.g., 12-400 hours (for example, 228-368 hours) in an alternating electric field or a series of alternating electric fields as described above.
  • a sufficient amount of time e.g., 12-400 hours (for example, 228-368 hours) in an alternating electric field or a series of alternating electric fields as described above.
  • An exemplary culture medium contains in per 1000 ml of sterile water: 10 g of sucrose, 3 g of (NH 4 )H 2 PO 4 (or other biologically available phosphorus), 1.2 g of NaCl, 0.2 g of MgSO 4 •7H 2 O, 3 g of CaCO 3 •5H 2 O, 0.3 g of CaSO 4 •2H 2 O, 0.3 g of KNO 3 , and 0.5 g of yeast extract.
  • the culturing process may preferably be conducted under conditions in which the concentration of dissolved oxygen is between 0.025 to 0.8 mol/m 3 , preferably 0.4 mol/m 3 .
  • the oxygen level can be controlled by, for example, stirring and/or bubbling.
  • the yeast cells can be measured for their ability to convert biologically available phosphorus to intracellular phosphorus using standard methods, such as using ultraviolet spectrophotometry or the chemical oxygen demand (“COD”) method.
  • COD chemical oxygen demand
  • waste water from a phosphorus fertilizer manufacturer containing high levels of HPO 4 2+ , H 2 PO 4 + , and/or H 3 PO 4 is mixed with distilled water to achieve the following COD concentrations: (1) 100-1,000 mg/L; (2) 1,000-5,000 mg/L; (3) 5,000-10,000 mg/L; and (4) 10,000-50,000 mg/L.
  • the solutions are then inoculated with a dry yeast cell preparation at a concentration of 0.2-0.6 g/L, and cultured for 24-48 hours at 10-40° C.
  • the COD levels of the solutions are then measured using standard techniques. The difference between the COD levels before and after 24-48 hours indicates the phosphorus converting activity of the yeast cells.
  • Another method for determining the phosphorus-converting abilities of the activated cells is described in the working example, infra.
  • each 100 ml of culture medium is inoculated with yeast cells of the same functional group at a density of 10 2 -10 5 cells/ml, preferably 3 ⁇ 10 2 -10 4 cells/ml.
  • the culturing process is carried out at about 20-40° C., preferably at about 25-28° C., for 48-96 hours.
  • the process can be scaled up or down according to needs.
  • seventy-five liters of a sterile culture medium are inoculated with the yeast cells.
  • This culture medium consists of 10 L of the culture medium described above for this particular yeast functional group, 30 kg of starch, and 65 L of distilled water.
  • the yeast cells may preferably reach a concentration of 2 ⁇ 10 10 cells/ml.
  • the cells are recovered from the culture by various methods known in the art, and stored at about 15-20° C.
  • the yeast should be dried within 24 hours and stored in powder form.
  • the yeast cells may also be cultured under certain conditions so as to acclimatize the cells to a particular type of waste. This acclimatization process results in better growth and survival of the yeasts in a particular waste environment.
  • the yeast cells of a given functional group can be mixed with waste material from a particular source at 10 6 to 10 8 cells (e.g., 10 7 cells) per 1000 ml.
  • the yeast cells are then exposed to an alternating electric field as described above.
  • the strength of the electric field can be about 100 to 400 mV/cm (e.g., 120-250 mV/cm).
  • the culture is incubated at temperatures that cycle between about 5° C. to about 45° C. at a 5° C. increment.
  • the temperature of the culture may start at 5° C. and be kept at this temperature for about 1-2 hours, then adjusted up to 10° C. and kept at this temperature for 1-2 hours, then adjusted to 15° C.
  • the yeast cells of this invention can be mixed with an appropriate filler, such as rock powder and coal ash at the following ratio: 600 L of yeast cell culture at 2 ⁇ 10 10 cells/ml and 760 kg of filler materials.
  • the mixture is quickly dried at a temperature below 65° C. for 10 minutes in a dryer, and then further dried at a temperature below 70° C. for no more than 30 minutes so that the water content is less than 7%.
  • the dried composition is then cooled to room temperature for packaging.
  • These dried yeast compositions may be used to treat polluted surface water, sewage, or any other type of waste water.
  • a yeast solution may be prepared by adding 1 kg of the dried yeast composition to 30 L of clean water. The yeast solution is then sprayed onto the polluted surface water at about 1-3 L of the solution per square meter of the polluted surface water.
  • a yeast solution may be prepared by adding about 1 kg of the dried yeast composition to 10-30 L of clean water. The yeast solution is incubated at 10-35° C. for 24-48 hours. The resultant yeast solution is then added to the waste water at about 3-20 L of the solution per liter of waste water.
  • Saccharomyces cerevisiae Hansen AS2.620 cells were cultured in the presence of a series of alternating electric fields in the following sequence: the yeast cells were exposed to (1) an alternating electric field having a frequency of 98 MHz and a field strength of 68 mV/cm for 24 hours; (2) then to an alternating electric field having a frequency of 112 MHz and a field strength of 68 mV/cm for 24 hours; (3) then to an alternating electric field having a frequency of 108 MHz and a field strength of 68 mV/cm for 24 hours; (4) then to an alternating electric field having a frequency of 118 MHz and a field strength of 68 mV/cm for 24 hours; (5) then to an alternating electric field having a frequency of 98 MHz and a field strength of 240 mV/cm for 24 hours; (6) then to an alternating electric field having a frequency of 112 MHz and a field strength of 240 mV/cm for 24 hours;

Abstract

Compositions comprising a plurality of yeast cells, wherein said plurality of yeast cells have been cultured in the presence of an alternating electric field having a specific frequency and a specific field strength for a period of time sufficient to substantially increase the capability of said plurality of yeast cells to convert biologically available phosphorus in a culture medium into their own biomass. Also included are methods of making such compositions.

Description

    FIELD OF THE INVENTION
  • The invention relates to the use of yeast cells to incorporate biologically available phosphorus in a culture medium into their own biomass. These yeasts are useful in waste treatment, and can be obtained by growth in electromagnetic fields with specific frequencies and field strengths. [0001]
  • BACKGROUND OF THE INVENTION
  • Environmental pollution by urban sewage and industrial waste water has posed a serious health threat to living organisms in the world. Currently, the most common methods for large-scale waste treatment, such as water treatment, include the activated sludge technology and the biomembrane technology. These technologies rely on the innate abilities of myriad natural microorganisms, such as fungi, bacteria and protozoa, to degrade pollutants. However, the compositions of these natural microbial components are difficult to control, affecting the reproducibility and quality of water treatment. Moreover, pathogenic microbes existing in these activated sludge or biomembranes cannot be selectively inhibited, and such microbes usually enter the environment with the treated water, causing “secondary pollution.”[0002]
  • Further, most of the current technologies cannot degrade harmful chemicals such as pesticides, insecticides, and chemical fertilizers. These technologies also cannot alleviate eutrophication, another serious environmental problem around the world. Eutrophication is usually caused by sewage, industrial waste water, fertilizers and the like. It refers to waters (e.g., a lake or pond) rich in minerals and organic nutrients that promote a proliferation of plant life, especially algae, which reduces the dissolved oxygen content or otherwise deteriorates water quality. Eutrophication often results in the extinction of other organisms. [0003]
  • SUMMARY OF THE INVENTION
  • This invention is based on the discovery that certain yeast cells can be activated by electromagnetic fields of specific frequencies and field strengths to convert biologically available phosphorus, a major environmental pollutant, to intracellular phosphorus (i.e., incorporating biologically available phosphorus in their environs into their own biomass). Compositions comprising these activated yeast cells can therefore be used for waste treatment, for example, treatment of sewage, industrial waste water, surface water, drinking water, sediment, soil, garbage, and manure, to reduce the content of available phosphorus in the waste. Waste treatment methods using these compositions are more effective, efficient, and economical in preventing eutrophication than the conventional methods. [0004]
  • This invention embraces a composition comprising a plurality of yeast cells that have been cultured in an alternating electric field having a frequency in the range of about 80 MHz to 440 MHz (e.g., 86-120 or 410-430 MHz) and a field strength in the range of about 0.5 to 350 mV (e.g., 60-260 mV/cm). The yeast cells are cultured for a period of time sufficient to substantially increase the capability of said plurality of yeast cells to convert biologically available phosphorus in a culture medium into intracellular phosphorus. In one embodiment, the frequency and/or the field strength of the alternating electric field can be altered within the aforementioned ranges during said period of time. In other words, the yeast cells can be exposed to a series of electromagnetic fields. An exemplary period of time is about 12-400 hours, e.g., 228-368 hours. [0005]
  • Yeast cells that can be included in this composition are available from the China General Microbiological Culture Collection Center (“CGMCC”), a depository recognized under the Budapest Treaty (China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China). Useful yeast species include, but are not limited to, [0006] Saccharomyces cerevisiae and Saccharomyces carlsbergensis. For instance, the yeast cells can be of the strain Saccharomyces cerevisiae AS2.346, AS2.423, AS2.430, AS2.451, AS2.558, AS2.620, AS2.628, or IFFI1203; or Saccharomyces carlsbergensis AS2.189.
  • This invention further embraces a composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been activated such that they have a substantially increased capability to convert biologically available phosphorus in a culture medium into intracellular phosphorus as compared to unactivated yeast cells. Included in this invention are also methods of making these compositions. [0007]
  • As used herein, “biologically available” or “assimilable” phosphorus refers to phosphorus that is readily available, useable, or assimilable by living organisms for survival and/or growth. Exemplary biologically available or assimilable phosphorus includes, but is not limited to, PO[0008] 4 3+, H3PO4, HPO4 2+, H2PO4 +, other water-soluble inorganic phosphorus-containing compounds, and organic phosphorus-containing compounds.
  • A “substantial increase” means an increase of more than 10 (e.g., 10[0009] 2, 103, 104, 105, or 106) fold.
  • A “culture medium” refers to a medium used in a laboratory for selecting and growing a given yeast strain, or to liquid or solid waste in need of treatment. [0010]
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. All publications and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. The materials, methods, and examples are illustrative only and not intended to be limiting. [0011]
  • Other features and advantages of the invention will be apparent from he following detailed description, and from the claims.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram showing an exemplary apparatus for activating yeast cells using electromagnetic fields. [0013] 1: yeast culture; 2: container; 3: power supply.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention is based on the discovery that certain yeast strains can be activated by electromagnetic fields (“EMF”) having specific frequencies and field strengths to become highly efficient in converting biologically available phosphorus to intracellular phosphorus. Yeast cells having this function are defined herein as belonging to the same “functional group.” Compositions containing the activated yeast cells are useful in waste treatment. [0014]
  • Without being bound by any theory or mechanism, the inventor believes that EMFs activate or enhance the expression of a gene or a set of genes in yeast cells such that the yeast cells become active or more efficient in performing certain metabolic activities which lead to the desired phosphorus conversion result. [0015]
  • I. Yeast Strains Useful in the Invention
  • The types of yeasts useful in this invention include, but are not limited to, yeasts of the genera of Saccharomyces, Schizosaccharomyces, Sporobolomyces, Torulopsis, Trichosporon, Wickerhamia, Ashbya, Blastomyces, Candida, Citeromyces, Crebrothecium, Cryptococcus, Debaryomyces, Endomycopsis, Eremothecium, Geotrichum, Hansenula, Kloeckera, Lipomyces, Pichia, Rhodosporidium, and Rhodotorula. [0016]
  • Exemplary species within the above-listed genera include, but are not limited to, [0017] Saccharomyces cerevisiae, Saccharomyces bailii, Saccharomyces carlsbergensis, Saccharomyces chevalieri, Saccharomyces delbrueckli, Saccharomyces exiguus, Saccharomyces fermentati, Saccharomyces logos, Saccharomyces mellis, Saccharomyces microellipsoides, Saccharomyces oviformis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces sake, Saccharomyces uvarum, Saccharomyces willianus, Saccharomyces sp., Saccharomyces ludwigii, Saccharomyces sinenses, Saccharomyces bailii, Saccharomyces carisbergensis, Schizosaccharomyces octosporus, Schizosaccharomyces pombe, Sporobolomyces roseus, Sporobolomyces salmonicolor, Torulopsis candida, Torulopsisfamta, Torulopsis globosa, Torulopsis inconspicua, Trichosporon behrendoo, Trichosporon capitatum, Trichosporon cutaneum, Wickerhamiafluoresens, Ashbya gossypii, Blastomyces dermatitidis, Candida albicans, Candida arborea, Candida guilliermondii, Candida krusei, Candida lambica, Candida lipolytica, Candida parakrusei, Candida parapsilosis, Candida pseudotropicalis, Candida pulcherrima, Candida robusta, Candida rugousa, Candida tropicalis, Candida utilis, Citeromyces matritensis, Crebrothecium ashbyii, Cryptococcus laurentii, Cryptococcus neoformans, Debaryomyces hansenii, Debaryomyces kloeckeri, Debaryomyces sp., Endomycopsis fibuligera, Eremothecium ashbyii, Geotrichum candidum, Geotrichum ludwigii, Geotrichum robustum, Geotrichum suaveolens, Hansenula anomala, Hansenula arabitolgens, Hansenula jadinii, Hansenula saturnus, Hansenula schneggii, Hansenula subpelliculosa, Kloeckera apiculata, Lipomyces starkeyi, Pichia farinosa, Pichia membranaefaciens, Rhodosporidium toruloides, Rhodotorula aurantiaca, Rhodotorula glutinis, Rhodotorula minuta, Rhodotorula rubar, and Rhodotorula sinesis.
  • Yeast strains useful for this invention can be obtained from laboratory cultures, or from publically accessible culture depositories, such as CGMCC and the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209. Non-limiting examples of useful strains (with accession numbers of CGMCC) are [0018] Saccharomyces cerevisiae Hansen AS2.346, AS2.423, AS2.430, AS2.451, AS2.558, AS2.620, AS2.628, and IFFI1203; and Saccharomyces carlsbergensis AS2.189.
  • Although it is preferred, the preparation of the yeast compositions of this invention is not limited to starting with a pure strain of yeast. A yeast composition of the invention may be produced by culturing a mixture of yeast cells of different species or strains that have the same function, for example, converting biologically available phosphorus to intracellular phosphorus. The ability of any species or strain of yeast to perform this function can be readily tested by methods known in the art. [0019]
  • Certain yeast species that can be activated according to the present invention are known to be pathogenic to human and/or other living organisms. These yeast species include, for example, [0020] Ashbya gossypii, Blastomyces dermatitidis, Candida albicans, Candida parakrusei, Candida tropicalis, Citeromyces matritensis, Crebrothecium ashbyii, Cryptococcus laurentii, Cryptococcus neoformans, Debaryomyces hansenii, Debaryomyces kloeckeri, Debaryomyces sp., and Endomycopsis fibuligera. Under certain circumstances, it may be less preferable to use such pathogenic yeasts in this invention. If use of these species is necessary, caution should be exercised to minimize the leak of the yeast cells into the final treatment product that enters the environment.
  • II. Application of Electromagnetic Fields
  • An electromagnetic field useful in this invention can be generated and applied by various means well known in the art. For instance, the EMF can be generated by applying an alternating electric field or an oscillating magnetic field. [0021]
  • Alternating electric fields can be applied to cell cultures through electrodes in direct contact with the culture medium, or through electromagnetic induction. See, e.g., FIG. 1. Relatively high electric fields in the medium can be generated using a method in which the electrodes are in contact with the medium. Care must be taken to prevent electrolysis at the electrodes from introducing undesired ions into the culture and to prevent contact resistance, bubbles, or other features of electrolysis from dropping the field level below that intended. Electrodes should be matched to their environment, for example, using Ag—AgCl electrodes in solutions rich in chloride ions, and run at as low a voltage as possible. For general review, see Goodman et al., [0022] Effects of EMF on Molecules and Cells, International Review of Cytology, A Survey of Cell Biology, Vol. 158, Academic Press, 1995.
  • The EMFs useful in this invention can also be generated by applying an oscillating magnetic field. An oscillating magnetic field can be generated by oscillating electric currents going through Helmholtz coils. Such a magnetic field in turn induces an electric field. [0023]
  • The frequencies of EMFs useful in this invention range from about 5 to 5000 MHz, e.g., from 80 to 440 MHz (e.g., 86-120 MHz or 410-430 MHz). Exemplary frequencies are 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, and 430 MHz. The field strength of the electric field useful in this invention ranges from about 0.5 to 350 mV/cm, e.g., from about 60 to 260 mV/cm. Exemplary field strengths are 68 and 240 mV/cm. [0024]
  • When a series of EMFs are applied to a yeast culture, the yeast culture can remain in the same container while the same set of EMF generator and emitters is used to change the frequency and/or field strength. The EMFs in the series can each have a different frequency or a different field strength; or a different frequency and a different field strength. Such frequencies and field strengths are preferably within the above-described ranges. In one embodiment, an EMF at the beginning of the series has a field strength identical to or lower than that of a subsequent EMF, such that the yeast cell culture is exposed to EMFs of progressively increasing field strength. Although any practical number of EMFs can be used in a series, it may be preferred that the yeast culture be exposed to a total of 2, 3, 4, 5, 6, 7, 8, 9 or 10 EMFs in a series. [0025]
  • By way of example, the yeast cells can be cultured in a first series of alternating electric fields each having a frequency in the range of 86 to 120 MHz and a field strength in the range of 60 to 260 mV/cm. The yeast cells are exposed to each EMF for about 24 hours. After culturing in the first series of EMFs, the resultant yeast cells are further incubated in a second series of alternating electric fields for a total of 24 to 132 hours. It may be preferred that the frequencies in the second series of alternating electric fields are identical to those of the first series in sequence and the field strengths in the second series are increased to a higher level within the range of 60 to 260 mV/cm. [0026]
  • Although the yeast cells can be activated after even a few hours of culturing in the presence of an EMF, it may be preferred that the activated yeast cells be allowed to multiply and grow in the presence of the EMF(s) for a total of 228-368 hours. [0027]
  • FIG. 1 illustrates an exemplary apparatus for generating alternating electric fields. An electric field of a desired frequency and intensity is generated by an AC source ([0028] 3) capable of generating an alternating electric field, preferably in a sinusoidal wave form, in the frequency range of 5 to 5000 MHz. Signal generators capable of generating signals with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output. The alternating electric field can be applied to the culture by a variety of means including placing the yeast culture in close proximity to the signal emitters. In one embodiment, the electric field is applied by electrodes submerged in the culture (1). In this embodiment, one of the electrodes can be a metal plate placed on the bottom of the container (2), and the other electrode can comprise a plurality of electrode wires evenly distributed in the culture (1) so as to achieve even distribution of the electric field energy. The number of electrode wires used depends on the volume of the culture as well as the diameter of the wires. In a preferred embodiment, for a culture having a volume up to 5000 ml, one electrode wire having a diameter of 0.1 to 1.2 mm can be used for each 100 ml of culture. For a culture having a volume greater than 1000 L, one electrode wire having a diameter of 3 to 30 mm can be used for each 1000 L of culture.
  • III. Culture Media
  • Culture media useful in this invention contain sources of nutrients assimilable by yeast cells. In this invention, a culture medium refers to a laboratory culture medium, or liquid or solid waste in need of treatment. Complex carbon-containing substances in a suitable form, such as carbohydrates (e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.) and coal, can be the carbon sources for yeast cells. The exact quantity of the carbon sources utilized in the medium can be adjusted in accordance with the other ingredients of the medium. In general, the amount of carbohydrates varies between about 0.1% and 5% by weight of the medium and preferably between about 0.1% and 2%, and most preferably about 1%. These carbon sources can be used individually or in combination. Among the inorganic salts which can be added to the culture medium are the customary salts capable of yielding sodium, potassium, calcium, phosphate, sulfate, carbonate, and like ions. Non-limiting examples of nutrient inorganic salts are (NH[0029] 4)2HPO4, KH2PO4, CaCO3, MgSO4, NaCl, KNO3, and CaSO4.
  • IV. Electromagnetic Activation of Yeast Cells
  • Yeasts of this invention convert biologically available or assimilable phosphorus in a culture medium, such as waste water, into their own biomass, i.e., intracellular phosphorus. Biologically available phosphorus convertible by these yeasts includes, but is not limited to, PO[0030] 4 3+, H3PO4, HPO4 2+, H2PO4 +, other water-soluble inorganic phosphorus-containing compounds, and organic phosphorus-containing compounds. Biologically available phosphorus in waste water causes undesired eutrophication of water bodies in the world.
  • To activate the innate ability of yeast cells to convert biologically available phosphorus into intracellular phosphorus, these cells can be cultured in an appropriate medium under sterile conditions at 25° C.-30° C., e.g., 28° C., for a sufficient amount of time, e.g., 12-400 hours (for example, 228-368 hours) in an alternating electric field or a series of alternating electric fields as described above. An exemplary culture medium contains in per 1000 ml of sterile water: 10 g of sucrose, 3 g of (NH[0031] 4)H2PO4 (or other biologically available phosphorus), 1.2 g of NaCl, 0.2 g of MgSO4•7H2O, 3 g of CaCO3•5H2O, 0.3 g of CaSO4•2H2O, 0.3 g of KNO3, and 0.5 g of yeast extract. The culturing process may preferably be conducted under conditions in which the concentration of dissolved oxygen is between 0.025 to 0.8 mol/m3, preferably 0.4 mol/m3. The oxygen level can be controlled by, for example, stirring and/or bubbling.
  • Subsequently, the yeast cells can be measured for their ability to convert biologically available phosphorus to intracellular phosphorus using standard methods, such as using ultraviolet spectrophotometry or the chemical oxygen demand (“COD”) method. In an exemplary method, waste water from a phosphorus fertilizer manufacturer containing high levels of HPO[0032] 4 2+, H2PO4 +, and/or H3PO4 is mixed with distilled water to achieve the following COD concentrations: (1) 100-1,000 mg/L; (2) 1,000-5,000 mg/L; (3) 5,000-10,000 mg/L; and (4) 10,000-50,000 mg/L. The solutions are then inoculated with a dry yeast cell preparation at a concentration of 0.2-0.6 g/L, and cultured for 24-48 hours at 10-40° C. The COD levels of the solutions are then measured using standard techniques. The difference between the COD levels before and after 24-48 hours indicates the phosphorus converting activity of the yeast cells. Another method for determining the phosphorus-converting abilities of the activated cells is described in the working example, infra.
  • Essentially the same protocol as described above can be used to grow activated yeast cells. To initiate the process, each 100 ml of culture medium is inoculated with yeast cells of the same functional group at a density of 10[0033] 2-105 cells/ml, preferably 3×102-104 cells/ml. The culturing process is carried out at about 20-40° C., preferably at about 25-28° C., for 48-96 hours. The process can be scaled up or down according to needs. For an industrial scale of production, seventy-five liters of a sterile culture medium are inoculated with the yeast cells. This culture medium consists of 10 L of the culture medium described above for this particular yeast functional group, 30 kg of starch, and 65 L of distilled water. At the end of the culturing process, the yeast cells may preferably reach a concentration of 2×1010 cells/ml. The cells are recovered from the culture by various methods known in the art, and stored at about 15-20° C. The yeast should be dried within 24 hours and stored in powder form.
  • V. Acclimatization of Yeast Cells To Waste Environment
  • In yet another embodiment of the invention, the yeast cells may also be cultured under certain conditions so as to acclimatize the cells to a particular type of waste. This acclimatization process results in better growth and survival of the yeasts in a particular waste environment. [0034]
  • To achieve this, the yeast cells of a given functional group can be mixed with waste material from a particular source at 10[0035] 6 to 108 cells (e.g., 107 cells) per 1000 ml. The yeast cells are then exposed to an alternating electric field as described above. The strength of the electric field can be about 100 to 400 mV/cm (e.g., 120-250 mV/cm). The culture is incubated at temperatures that cycle between about 5° C. to about 45° C. at a 5° C. increment. For example, in a typical cycle, the temperature of the culture may start at 5° C. and be kept at this temperature for about 1-2 hours, then adjusted up to 10° C. and kept at this temperature for 1-2 hours, then adjusted to 15° C. and kept at this temperature for about 1-2 hours, and so on and so forth, until the temperature reaches 45° C. Then the temperature is brought down to 40° C. and kept at this temperature for about 1-2 hours, and then to 35° C. and kept at this temperature for about 1-2 hours, and so on and so forth, until the temperature returns to 5° C. The cycles are repeated for about 48-96 hours. The resulting yeast cells are then dried and stored at 0-4° C.
  • VI. Manufacture of the Waste Treatment Compositions
  • The yeast cells of this invention can be mixed with an appropriate filler, such as rock powder and coal ash at the following ratio: 600 L of yeast cell culture at 2×10[0036] 10 cells/ml and 760 kg of filler materials. The mixture is quickly dried at a temperature below 65° C. for 10 minutes in a dryer, and then further dried at a temperature below 70° C. for no more than 30 minutes so that the water content is less than 7%. The dried composition is then cooled to room temperature for packaging.
  • These dried yeast compositions may be used to treat polluted surface water, sewage, or any other type of waste water. To treat polluted surface water, a yeast solution may be prepared by adding 1 kg of the dried yeast composition to 30 L of clean water. The yeast solution is then sprayed onto the polluted surface water at about 1-3 L of the solution per square meter of the polluted surface water. To treat sewage or any other type of waste water, a yeast solution may be prepared by adding about 1 kg of the dried yeast composition to 10-30 L of clean water. The yeast solution is incubated at 10-35° C. for 24-48 hours. The resultant yeast solution is then added to the waste water at about 3-20 L of the solution per liter of waste water. [0037]
  • In order that this invention be more fully understood, the following example is set forth. This example is for the purpose of illustration only and is not to be construed as limiting the scope of the invention in any way. [0038]
  • VII. Example: Conversion of PO4 3+, HPO4 2+, H2PO4 +, and/or H3PO4 in a Culture Medium Into Intracellular Phosphorus
  • [0039] Saccharomyces cerevisiae Hansen AS2.620 cells were cultured in the presence of a series of alternating electric fields in the following sequence: the yeast cells were exposed to (1) an alternating electric field having a frequency of 98 MHz and a field strength of 68 mV/cm for 24 hours; (2) then to an alternating electric field having a frequency of 112 MHz and a field strength of 68 mV/cm for 24 hours; (3) then to an alternating electric field having a frequency of 108 MHz and a field strength of 68 mV/cm for 24 hours; (4) then to an alternating electric field having a frequency of 118 MHz and a field strength of 68 mV/cm for 24 hours; (5) then to an alternating electric field having a frequency of 98 MHz and a field strength of 240 mV/cm for 24 hours; (6) then to an alternating electric field having a frequency of 112 MHz and a field strength of 240 mV/cm for 24 hours; (7) then to an alternating electric field having a frequency of 108 MHz and a field strength of 240 mV/cm for 42 hours; and (8) finally to an alternating electric field having a frequency of 118 MHz and a field strength of 240 mV/cm for 42 hours.
  • To test the ability of the EMF-treated AS2.620 cells to convert biologically available phosphorus to intracellular phosphorus, waste water or filtrate from animal manure or garbage was supplemented with Na[0040] 3PO4 to reconstitute a solution containing Na3PO4 at 200 mg/L. 0.1 ml of the EMF-treated AS2.620 cells at a concentration higher than 108 cells/ml was added to 100 L of the Na3PO4 solution and cultured at 28° C. for 48 hours (solution A). One hundred liters of the Na3PO4 solution containing the same number of non-treated yeast cells (solution B) or containing no yeast cells (solution C) were used as controls. After 48 hours of incubation, the solutions were examined using ultraviolet spectrophotometry. The results showed that after 48 hours of incubation, the Na3PO4 concentration in solution A decreased more than 23% relative to solution C. In contrast, the Na3PO4 concentration in solution B had no significant change relative to solution C.
  • While a number of embodiments of this invention have been set forth, it is apparent that the basic constructions may be altered to provide other embodiments which utilize the compositions and methods of this invention. [0041]

Claims (8)

What is claimed is:
1. A composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been cultured in the presence of an alternating electric field having a frequency in the range of 80 to 440 MHz and a field strength in the range of 0.5 to 350 mV/cm for a period of time sufficient to substantially increase the capability of said plurality of yeast cells to convert biologically available phosphorus in a culture medium into intracellular phosphorus.
2. The composition of claim 1, wherein said frequency is in the range of 86 to 120 MHz or 410 to 430 MHz.
3. The composition of claim 1, wherein said yeast cells are cells of the species Saccharomyces cerevisiae or Saccharomyces carlsbergensis.
4. The composition of claim 1, wherein said yeast cells are cells of the strain deposited at The China General Microbiological Culture Collection Center with an accession number selected from the group consisting of AS2.346, AS2.423, AS2.430, AS2.451, AS2.558, AS2.620, AS2.628, IFFI 1203, and AS2.189.
5. The composition of claim 1, wherein said biologically available phosphorus is PO4 3+, HPO4 2+, H2PO4 +, or H3PO4.
6. The composition of claim 5, wherein said frequency is in the range of 86 to 120 MHz and said field strength is in the range of 60 to 260 mV/cm.
7. A composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been activated such that they have a substantially increased capability to convert biologically available phosphorus in a culture medium into intracellular phosphorus as compared to unactivated yeast cells.
8. A method of preparing a yeast composition, comprising culturing a plurality of yeast cells in the presence of an alternating electric field having a frequency in the range of 80 to 440 MHz and a field strength in the range of 0.5 to 350 mV/cm for a period of time sufficient to substantially increase the capability of said plurality of yeast cells to convert biologically available phosphorus in a culture medium into intracellular phosphorus.
US09/797,381 2001-03-01 2001-03-01 Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus Expired - Fee Related US6436695B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US09/797,381 US6436695B1 (en) 2001-03-01 2001-03-01 Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus
PCT/GB2001/005439 WO2002070682A2 (en) 2001-03-01 2001-12-11 Methods and compositions for waste treatment
CNA018231950A CN1596308A (en) 2001-03-01 2001-12-11 Methods and compositions for degrading nitrogen-containing compounds
EP01273915A EP1364001A2 (en) 2001-03-01 2001-12-11 Methods and compositions for waste treatment
CNA2005100721970A CN1683528A (en) 2001-03-01 2002-03-01 Biological compositions for solid waste treatment
CNA200510072199XA CN1683529A (en) 2001-03-01 2002-03-01 Biological compositions for solid waste treatment
CNA2005100721951A CN1683527A (en) 2001-03-01 2002-03-01 Biological compositions for solid waste treatment
CNA028090608A CN1505680A (en) 2001-03-01 2002-03-01 Biological compositions for solid waste treatment
EP02702521A EP1368463A2 (en) 2001-03-01 2002-03-01 Biological compositions for solid waste treatment
PCT/GB2002/000915 WO2002070683A2 (en) 2001-03-01 2002-03-01 Biological compositions for solid waste treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/797,381 US6436695B1 (en) 2001-03-01 2001-03-01 Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus

Publications (2)

Publication Number Publication Date
US6436695B1 US6436695B1 (en) 2002-08-20
US20020123128A1 true US20020123128A1 (en) 2002-09-05

Family

ID=25170681

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/797,381 Expired - Fee Related US6436695B1 (en) 2001-03-01 2001-03-01 Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus

Country Status (1)

Country Link
US (1) US6436695B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375650A1 (en) * 2002-06-28 2004-01-02 Ultra Biotech Limited Dietary supplements for treating hyperlipemia

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416982B1 (en) * 2000-09-05 2002-07-09 Ultra Biotech Ltd. Biological fertilizer based on yeasts
US6596273B2 (en) * 2001-03-01 2003-07-22 Ultra Biotech Limited Biological fertilizer compositions comprising swine manure
US6828132B2 (en) * 2001-03-01 2004-12-07 Ultra Biotech Limited Biological fertilizer compositions comprising garbage
US20020123127A1 (en) * 2001-03-01 2002-09-05 Cheung Ling Y. Methods and compositions for reducing odor
US6596272B2 (en) * 2001-03-01 2003-07-22 Ultra Biotech Limited Biological fertilizer compositions comprising poultry manure
US20030235570A1 (en) * 2002-06-18 2003-12-25 Ling Yuk Cheung Feed additives for cattle
US20030235569A1 (en) * 2002-06-18 2003-12-25 Ling Yuk Cheung Feed additives for chickens
US20030235568A1 (en) * 2002-06-18 2003-12-25 Cheung Ling Yuk Feed additives for dogs
US20030230245A1 (en) * 2002-06-18 2003-12-18 Cheung Ling Yuk Feed additives for reducing odor of animal waste products
US20030235567A1 (en) * 2002-06-18 2003-12-25 Cheung Ling Yuk Feed additives for cats
US20040001812A1 (en) * 2002-06-18 2004-01-01 Ling Yuk Cheung Feed additives for ducks
US20030235565A1 (en) * 2002-06-18 2003-12-25 Cheung Ling Yuk Feed additives for shrimp culture
US20040001813A1 (en) * 2002-06-18 2004-01-01 Ling Yuk Cheung Feed additives for sheep
US20030235566A1 (en) * 2002-06-18 2003-12-25 Cheung Ling Yuk Feed additives for animals: prevention of foot and mouth disease
US20030232039A1 (en) * 2002-06-18 2003-12-18 Cheung Ling Yuk Feed additives for crustaceans
US20030232059A1 (en) * 2002-06-18 2003-12-18 Ling Yuk Cheung Feed additives for fishes
US20030232038A1 (en) * 2002-06-18 2003-12-18 Cheung Ling Yuk Feed additives for cattle: prevention of E. coli infection
US6793933B2 (en) 2002-06-28 2004-09-21 Ultra Biotech Limited Dietary supplements for enhancing the immune system
US6649383B1 (en) 2002-06-28 2003-11-18 Ultra Biotech Limited Dietary supplements beneficial for the gastrointestinal system
US7256026B2 (en) 2002-06-28 2007-08-14 Ultra Biotech Limited Oral compositions for white blood cell activation and proliferation
US20040001859A1 (en) * 2002-06-28 2004-01-01 Cheung Ling Yuk Anti-aging dietary supplements
US6753008B2 (en) 2002-06-28 2004-06-22 Ultra Biotech Limited Dietary supplements beneficial for the liver
US20040005335A1 (en) * 2002-06-28 2004-01-08 Cheung Ling Yuk Oral compositions for HIV-infected subjects
US20040001857A1 (en) * 2002-06-28 2004-01-01 Cheung Ling Yuk Dietary supplements for treating hypertension
US6709849B2 (en) * 2002-06-28 2004-03-23 Ultra Biotech Limited Dietary supplements for regulating male hormone
US6759055B2 (en) 2002-06-28 2004-07-06 Ultra Biotech Limited Dietary supplements for improving kidney function
US20040005336A1 (en) * 2002-06-28 2004-01-08 Cheung Ling Yuk Dietary supplements for regulating the central nervous system
US6756050B2 (en) 2002-06-28 2004-06-29 Ultra Biotech Limited Dietary supplements for improving memory
US6987012B2 (en) 2003-06-11 2006-01-17 Ultra Biotech Limited Biological compositions and methods for treatment of colorectal cancer
US6984508B2 (en) * 2003-06-11 2006-01-10 Ultra Biotech Limited Biological compositions and methods for treatment of cervical cancer
US6989253B2 (en) * 2003-06-11 2006-01-24 Ultra Biotech Limited Biological compositions and methods for treatment of testicular cancer
US6984507B2 (en) * 2003-06-11 2006-01-10 Ultra Biotech Limited Biological compositions and methods for treatment of lung cancer
US6913913B2 (en) * 2003-11-18 2005-07-05 Ultra Biotech Limited Methods and compositions for treating renal failure
US6913914B2 (en) 2003-11-18 2005-07-05 Ultra Biotech Limited Methods and compositions for treating hepatitis B
US6964864B2 (en) * 2003-11-18 2005-11-15 Ultra Biotech Limited Methods and compositions for treating gastritis
US20050106704A1 (en) * 2003-11-18 2005-05-19 Cheung Ling Y. Methods and compositions for treating lupus erythematosus
US7078202B2 (en) * 2003-11-18 2006-07-18 Ultra Biotech Limited Methods and compositions for treating vascular dementia
US7259001B2 (en) * 2003-11-18 2007-08-21 Ultra Biotech Limited Methods and compositions for treating male sexual dysfunction
US6979562B2 (en) * 2003-11-18 2005-12-27 Ultra Biotech Limited Methods and compositions for treating gastroparesis
US6977168B2 (en) * 2003-11-18 2005-12-20 Ultra Biotech Limited Methods and compositions for treating nephrotic syndrome
US7297522B2 (en) * 2003-11-18 2007-11-20 Ultra Biotech Limited Methods and compositions for treating epilepsy
US20050106166A1 (en) * 2003-11-18 2005-05-19 Cheung Ling Y. Methods and compositions for treating liver cirrhosis

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1131371A (en) 1976-07-16 1982-09-07 James E. Zajic Foam flotation activated sludge process
US4081367A (en) 1977-01-24 1978-03-28 Bio-Kinetics Inc. Purification of waste water high in carbohydrates and simultaneous production of high protein feed product
DE2839386A1 (en) 1977-09-12 1979-04-05 Hokuren METHOD OF TREATMENT OF NUTRIENT WATER
IL62822A0 (en) * 1980-05-30 1981-07-31 Ppg Industries Inc Fermentation process
JPS62216698A (en) 1986-03-18 1987-09-24 Niigata Eng Co Ltd Waste water treatment for catalytic decomposition device
US5106594A (en) 1990-03-30 1992-04-21 Stericycle, Inc. Apparatus for processing medical waste
US5075008A (en) 1989-10-17 1991-12-24 Research Association Of Biotechnology For Organic Fertilizer Process for high-load treatment of carbohydrate containing waste water
US5476787A (en) 1992-04-24 1995-12-19 Director-General Of Agency Of Industrial Science And Technology Method of removing nitrogen impurities from water using hydrocarbon-producing microalga
US5416010A (en) 1993-06-10 1995-05-16 The United States Of America As Represented By The Secretary Of Agriculture Olpidium zoospores as vectors of recombinant DNA to plants
CN1110317A (en) 1994-04-09 1995-10-18 张令玉 Microorganism separating and culturing method
JP2816087B2 (en) 1993-10-01 1998-10-27 株式会社西原環境衛生研究所 Biological treatment equipment for lipid-containing wastewater
US5578486A (en) 1994-08-05 1996-11-26 International Tlb Research Institute, Inc. Recombinant microbial fertilizer and methods for its production
US5879928A (en) 1995-10-31 1999-03-09 Neozyme International, Inc. Composition for the treatment for municipal and industrial waste-water
US5707524A (en) 1996-02-16 1998-01-13 Shane Agra Corporation Process for waste water treatment
GB9810423D0 (en) 1998-05-15 1998-07-15 Cancer Res Campaign Tech Ionizing radiation or diathermy-switched gene therapy vectors and their use in antitumour therapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375650A1 (en) * 2002-06-28 2004-01-02 Ultra Biotech Limited Dietary supplements for treating hyperlipemia

Also Published As

Publication number Publication date
US6436695B1 (en) 2002-08-20

Similar Documents

Publication Publication Date Title
US6436695B1 (en) Yeast compositions for converting bio-available phosphorus in a culture medium to intracellular phosphorus
US6391617B1 (en) Yeast compositions for converting bio-available nitrogen in a culture medium to intracellular nitrogen
US6440713B1 (en) Methods and compositions for suppressing growth of pathogenic microbes
US6391619B1 (en) Methods and compositions for suppressing growth of algae
US6391618B1 (en) Methods and compositions for degrading environmental toxins
US20020123130A1 (en) Methods and compositions for degrading polymeric compounds
US20020123129A1 (en) Methods and compositions for degrading nitrogen-containing compounds
US20070053932A1 (en) Methods and compositions for reducing odor
WO2002070682A2 (en) Methods and compositions for waste treatment
US6416982B1 (en) Biological fertilizer based on yeasts
US6416983B1 (en) Biological fertilizer compositions comprising garbage
US6800466B2 (en) Biological fertilizer compositions comprising sludge
US6828132B2 (en) Biological fertilizer compositions comprising garbage
US6994850B2 (en) Method for preparing a biological fertilizer composition comprising swine manure
US6979444B2 (en) Method for preparing a biological fertilizer composition comprising poultry manure
US6756050B2 (en) Dietary supplements for improving memory
AU2002237398B2 (en) Biological fertilizer compositions comprising manure, sludge or garbage
US20040265990A1 (en) Biological compositions for reduction of E. coli infections
EP1374697A1 (en) Feed additives for reducing odor of animal waste products
AU2002237398A1 (en) Biological fertilizer compositions comprising manure, sludge or garbage
AU2000270203B2 (en) A biological fertilizer based on yeasts
AU2000270203A1 (en) A biological fertilizer based on yeasts
AU2002220916A1 (en) Methods and compositions for waste treatment
AU2002236046A1 (en) Biological compositions for solid waste treatment

Legal Events

Date Code Title Description
AS Assignment

Owner name: ULTRA BIOTECH LIMITED, ISLE OF MAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEUNG, LING YUK;REEL/FRAME:012448/0707

Effective date: 20011027

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420

Effective date: 20120215

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140820