US20020117205A1 - Buoyant vent valve - Google Patents

Buoyant vent valve Download PDF

Info

Publication number
US20020117205A1
US20020117205A1 US09/791,514 US79151401A US2002117205A1 US 20020117205 A1 US20020117205 A1 US 20020117205A1 US 79151401 A US79151401 A US 79151401A US 2002117205 A1 US2002117205 A1 US 2002117205A1
Authority
US
United States
Prior art keywords
valve
vent
floating body
fuel tank
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/791,514
Other versions
US6431195B1 (en
Inventor
Eric Parker
Kenneth LeVey
David Nowak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Priority to US09/791,514 priority Critical patent/US6431195B1/en
Assigned to ILLINOIS TOOL WORKS INC. reassignment ILLINOIS TOOL WORKS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEVEY, KENNETH, NOWAK, DAVID R., PARKER, ERIC G.
Application granted granted Critical
Publication of US6431195B1 publication Critical patent/US6431195B1/en
Publication of US20020117205A1 publication Critical patent/US20020117205A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03519Valve arrangements in the vent line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • F16K24/042Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float
    • F16K24/048Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float a transmission element, e.g. arm, being interposed between the float and the valve element, the transmission element following a non-translational, e.g. pivoting or rocking, movement when actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/03523Arrangements of the venting tube
    • B60K2015/03533Arrangements of the venting tube the venting tube being movable with the fuel level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0753Control by change of position or inertia of system
    • Y10T137/0874Vent opening or closing on tipping container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/3003Fluid separating traps or vents
    • Y10T137/3084Discriminating outlet for gas
    • Y10T137/309Fluid sensing valve
    • Y10T137/3099Float responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86292System with plural openings, one a gas vent or access opening
    • Y10T137/86324Tank with gas vent and inlet or outlet

Definitions

  • This invention relates to a vent valve used in a fuel tank for venting vapor, shutting off fluid flow when the fuel tank is in an overfill condition and preventing fuel leakage in the event of a rollover.
  • Fuel tanks and more particularly vehicle/automobile fuel tanks are subject to a great deal of scrutiny during the design phase. Fuel tanks are formed in complex forming operations involving numerous layers of material that may lose integrity when layer continuity is interrupted. One such interruption takes place when a sending unit is positioned within a sidewall of the fuel tank.
  • the sending unit includes electronics and diagnostics for the operation of the vehicle including a fuel level gauge and/or a fuel pump.
  • vent valves are commonly used in fuel tanks to vent excess vapor from an interior of the fuel tank to an exterior of the fuel tank, usually to an external filter.
  • Existing vent valves are primarily rigidly fixed through a sidewall of the fuel tank and comprise a float, spring and flapper valve in an arrangement similar to that shown in U.S. Pat. No. 4,960,153.
  • Such existing vent valves require an interface with the fuel tank in addition to the interface created by the sending unit. These interfaces may become prone to corrosion, leakage and/or other factors that may compromise the safety and integrity of the vehicle.
  • Fuel within fuel tanks releases vapors that may be harmful to the environment and create a safety hazard to the occupants of the vehicle.
  • Fuel tanks typically include sending units that are positioned within a sidewall of the fuel tank and contain electronics and diagnostics related to the operation and maintenance of the vehicle.
  • a vent valve is positioned within the fuel and is tethered to a sidewall of the fuel tank, preferably through the existing sending unit.
  • the vent valve is designed to vent fuel vapors from an interior of a fuel tank through a vent hose that extends through the sending unit and ultimately to the exterior of fuel tank, such as to a charcoal filter.
  • a floating body is preferably incorporated into the vent valve and comprises a buoyant material.
  • a valve is preferably positioned within the floating body. The valve is positioned to open and close depending upon an internal pressure of the fuel tank and/or a level of fuel within the fuel tank and/or a relative position of fuel within the fuel tank.
  • a vent is preferably positioned with respect to the floating body and further arranged in fluid communication with the valve.
  • the vent preferably creates an outlet for vapor from the vent valve.
  • a vent hose is further positioned with respect to the vent and forms a vapor path from the valve to an exterior of the fuel tank.
  • the valve may include a valve float having an internally positioned valve channel.
  • the valve float is preferably rotatably positioned within the floating body so that the valve channel within the valve float and correspondingly rotates relative to the floating body.
  • the valve channel is sized to permit vapor to escape through the vent valve but prevent the free flow of fluid through the vent valve.
  • a check valve is preferably positioned relative to the vent and may include two O-rings positioned to flex and permit either the entry of vapor or the exit of vapor from within the vent valve.
  • the vapor is thereupon directed through the vent hose and to the exterior of the fuel tank.
  • the check valve preferably permits a two way exchange of pressure between the interior and exterior of the fuel tank.
  • the floating body preferably includes a plurality of channels positioned between the floating body and the valve.
  • the valve and/or the floating body may include a plurality of baffles to permit passage of vapor from an exterior of the vent valve to an interior of the vent valve.
  • FIG. 1 is a side perspective view of a vent valve according to one preferred embodiment of this invention.
  • FIG. 2 is an exploded side and partial cutaway view of a vent valve according to one preferred embodiment of this invention.
  • FIG. 3 is a schematic of a vent valve in a fuel tank according to one preferred embodiment of this invention.
  • FIG. 4 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention.
  • FIG. 5 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention.
  • FIG. 6 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention.
  • FIG. 7 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention.
  • FIG. 8 is a cross-sectional side view of a body stem according to one preferred embodiment of this invention.
  • FIGS. 1 and 2 show vent valve 10 according to one preferred embodiment of this invention. As shown schematically in FIG. 3, vent valve 10 is buoyant within fuel tank 80 .
  • vent valve 10 is designed to vent fuel vapors from an interior of a fuel tank 80 through a vent hose 70 that extends through sending unit 85 and ultimately to the exterior of fuel tank 80 , such as to a charcoal filter 87 (not shown).
  • An overview of several basic elements of vent valve 10 include: floating body 20 floatable within fuel tank 80 ; valve 30 positioned with respect to floating body 20 ; and vent hose 70 positioned with respect to valve 30 and extending between floating body 20 and sending unit 85 .
  • Floating body 20 is preferably incorporated into vent valve 10 and comprises a buoyant material that is resistant to the corrosive environment present in a typical fuel tank, particularly a material that is resistant to gasoline.
  • Valve 30 is preferably positioned with respect to floating body 20 .
  • Valve 30 may be positioned at least partially within floating body 20 , such as shown in FIG. 2, or completely internal or external to floating body 20 , depending upon the preferred embodiment of the invention.
  • Valve 30 is designed to open and close depending upon an internal pressure of fuel tank 80 and/or a level of fuel within fuel tank 80 and/or a relative position of fuel within fuel tank 80 .
  • Floating body 20 may be a unitary component or may include two components, as shown in FIG. 2, such as dome float 22 and body 27 . Aside from providing buoyancy, dome float 22 may additionally baffle fluid that is within vent valve 10 from splashing.
  • Vent 65 is preferably positioned with respect to floating body 20 and further arranged in fluid conununication with valve 30 . Vent 65 preferably creates an outlet for vapor from vent valve 10 . In a static state within fuel tank 80 , air and vapor preferably flow freely through floating body 20 and valve 30 and into vent 65 .
  • Vent hose 70 is preferably positioned with respect to vent 65 and forms a vapor path from valve 30 to an exterior of fuel tank 80 , as shown schematically in FIG. 3. Vent hose 70 is preferably at least as long enough to permit extension of vent valve 10 to every extremity of fuel tank 80 . According to one preferred embodiment of this invention, vent hose 70 is constructed from a buoyant material. In addition, vent hose 70 is preferably constructed of a non-binding, kink-free material and geometry.
  • valve 30 comprises valve float 35 having an internally positioned valve channel 40 .
  • Valve float 35 is preferably rotatably positioned within floating body 20 so that valve channel 40 correspondingly rotates within valve float 35 and relative to floating body 20 .
  • Valve channel 40 should be of an appropriate size to permit vapor to escape through vent valve 10 but prevent free flow of fluid through vent valve 10 .
  • valve channel 40 is 5 mm in diameter.
  • valve 30 is freely rotatable within floating body 20 and positionable between an open position and a closed position.
  • valve channel 40 extends between vent 65 and a portion of the sidewall of floating body 20 , such as detente 24 .
  • vapor flows freely from an interior of fuel tank 80 into an interior of vent valve 10 between floating body 20 and valve float 35 , through vent channel 40 and then out through vent 65 and vent hose 70 .
  • Valve 30 may further include valve seat 45 fixed with respect to floating body 20 and permitting the rotation of valve float 35 with respect to floating body 20 .
  • Valve seat 45 as shown in FIG. 2, partially encloses a portion of valve float 35 to permit rotation of valve float 35 with respect to floating body 20 .
  • Valve seat 45 further helps maintain orientation of valve float 35 when fuel tank 80 is not in overfill mode.
  • Valve seat 45 assists in shutoff of vent valve 10 into a closed position when high angulation of vent valve 10 occurs.
  • Valve float 35 may comprise a unitary component, or alternatively, as shown in FIG. 2, valve float 35 may comprise a combination of components, such as ball 37 and cap 33 . In such an arrangement, as shown in FIGS. 4 - 7 , ball 37 preferably contains valve channel 40 . Preferably, a level of fluid within vent valve 10 directly controls movement of valve float 35 relative to floating body 20 .
  • vent valve 10 further comprises body stem 50 for attachment of vent hose 70 , such as shown schematically in FIG. 3.
  • Check valve 55 preferably a two-way check valve, is preferably positioned within body stem 50 .
  • Check valve 55 according to one preferred embodiment of this invention is shown in FIG. 8.
  • Check valve 55 may include two O-rings 60 positioned along body stem 50 , each O-ring 60 positioned to flex and permit either the entry of vapor or the exit of vapor from within vent valve 10 .
  • the vapor is thereupon directed through vent hose 70 and to the exterior of fuel tank 80 .
  • Such an arrangement as shown in FIG. 8 permits a two way exchange of pressure between the interior of fuel tank 80 and the exterior of fuel tank 80 .
  • floating body 20 preferably includes a plurality of channels 25 positioned between floating body 20 and valve 30 .
  • valve 30 and/or floating body 20 include a plurality of baffles 43 to permit passage of vapor from an exterior of vent valve 10 to an interior of vent valve 10 .
  • vent valve 10 preferably operates as shown in FIGS. 4 - 7 .
  • FIG. 4 shows a cross-section of vent valve 10 illustrating an open position of vent valve 10 .
  • the open position is a position wherein fuel tank 80 is generally level and static.
  • valve 30 is floating on the top of fuel, allowing vapor and air to exchange with fuel tank 80 . This exchange, and thus the internal pressure of fuel tank 80 , is controlled by an operating condition of the automobile or other vehicle.
  • FIG. 5 shows vent valve 10 angulated to a maximum operating position. This position allows for valve 30 to operate within a 30° requirement as mandated by automobile manufacturers. Valve float 35 of valve 30 interacting with fuel level directly effects this angulation. Baffles 43 and a tight clearance between valve float 35 and floating body 20 eliminate or greatly reduce the possibility of fuel splashing into orifice of vent 65 .
  • FIG. 6 shows vent valve 10 reaching a critical level of fuel within fuel tank 80 so that valve float 35 forces valve channel 40 into a fully closed position.
  • vent valve 10 is trapped against a top of fuel tank 80 , valve channel 40 and thus valve 30 is forced in the fully closed position.
  • FIG. 7 shows vent valve 10 when fuel tank 80 is in an overfill condition.
  • the overfill condition may occur during a roll-over event.
  • a secure cut-off condition is preferably obtained in the overfill condition.
  • a lower end of valve channel 40 within valve 30 is preferably open to a side of an inner chamber between floating body 20 and valve 30 to allow fuel to drain before valve 30 rotates into the closed position.
  • fuel tank 80 is vented by vent valve 10 when vapor is discharged through valve 30 from an interior of fuel tank 80 to an exterior of fuel tank 80 , preferably through sending unit 85 or similar preexisting component positioned through a sidewall of fuel tank 80 .
  • Vapor is preferably discharged through vent hose 70 that tethers vent valve 10 with respect to the sidewall of fuel tank 80 .
  • Valve 30 rotates within floating body 20 based upon an angle of a fuel level within fuel tank 80 .
  • valve 30 closes relative to floating body 20 , thus stopping fuel and/or vapor discharge through vent 65 /vent hose 70 .
  • a small amount of fuel present in valve channel 40 is drained from valve 30 and into fuel tank 80 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Abstract

A vent valve for a fuel tank having a sending unit positioned therethrough including a floating body floatable within the fuel tank and a valve positioned with respect to the floating body. A vent hose is positioned with respect to the valve, the vent hose extending between the floating body and the sending unit.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a vent valve used in a fuel tank for venting vapor, shutting off fluid flow when the fuel tank is in an overfill condition and preventing fuel leakage in the event of a rollover. [0002]
  • 2. Description of Related Art [0003]
  • Fuel tanks, and more particularly vehicle/automobile fuel tanks are subject to a great deal of scrutiny during the design phase. Fuel tanks are formed in complex forming operations involving numerous layers of material that may lose integrity when layer continuity is interrupted. One such interruption takes place when a sending unit is positioned within a sidewall of the fuel tank. The sending unit includes electronics and diagnostics for the operation of the vehicle including a fuel level gauge and/or a fuel pump. [0004]
  • In addition, vent valves are commonly used in fuel tanks to vent excess vapor from an interior of the fuel tank to an exterior of the fuel tank, usually to an external filter. Existing vent valves are primarily rigidly fixed through a sidewall of the fuel tank and comprise a float, spring and flapper valve in an arrangement similar to that shown in U.S. Pat. No. 4,960,153. Such existing vent valves require an interface with the fuel tank in addition to the interface created by the sending unit. These interfaces may become prone to corrosion, leakage and/or other factors that may compromise the safety and integrity of the vehicle. [0005]
  • SUMMARY OF THE INVENTION
  • Fuel within fuel tanks releases vapors that may be harmful to the environment and create a safety hazard to the occupants of the vehicle. Fuel tanks typically include sending units that are positioned within a sidewall of the fuel tank and contain electronics and diagnostics related to the operation and maintenance of the vehicle. [0006]
  • A vent valve according to a preferred embodiment of this invention is positioned within the fuel and is tethered to a sidewall of the fuel tank, preferably through the existing sending unit. The vent valve is designed to vent fuel vapors from an interior of a fuel tank through a vent hose that extends through the sending unit and ultimately to the exterior of fuel tank, such as to a charcoal filter. [0007]
  • A floating body is preferably incorporated into the vent valve and comprises a buoyant material. A valve is preferably positioned within the floating body. The valve is positioned to open and close depending upon an internal pressure of the fuel tank and/or a level of fuel within the fuel tank and/or a relative position of fuel within the fuel tank. [0008]
  • A vent is preferably positioned with respect to the floating body and further arranged in fluid communication with the valve. The vent preferably creates an outlet for vapor from the vent valve. A vent hose is further positioned with respect to the vent and forms a vapor path from the valve to an exterior of the fuel tank. [0009]
  • The valve may include a valve float having an internally positioned valve channel. The valve float is preferably rotatably positioned within the floating body so that the valve channel within the valve float and correspondingly rotates relative to the floating body. The valve channel is sized to permit vapor to escape through the vent valve but prevent the free flow of fluid through the vent valve. [0010]
  • A check valve is preferably positioned relative to the vent and may include two O-rings positioned to flex and permit either the entry of vapor or the exit of vapor from within the vent valve. The vapor is thereupon directed through the vent hose and to the exterior of the fuel tank. The check valve preferably permits a two way exchange of pressure between the interior and exterior of the fuel tank. [0011]
  • The floating body preferably includes a plurality of channels positioned between the floating body and the valve. In addition, the valve and/or the floating body may include a plurality of baffles to permit passage of vapor from an exterior of the vent valve to an interior of the vent valve. [0012]
  • It is one object of this invention to provide a buoyant vent valve that vents vapor from a fuel tank through a vent hose that passes through a sending unit in a sidewall of the fuel tank. [0013]
  • It is another object of this invention to provide a buoyant vent valve that provides a vent for a fuel tank. [0014]
  • It is another object of this invention to provide a buoyant vent valve that maintains a predetermined pressure range within the fuel tank. [0015]
  • It is yet another object of this invention to provide a buoyant vent valve that will operate across a wide range of temperatures. [0016]
  • It is still another object of this invention to provide a buoyant vent valve that will not allow any fuel to escape from the fuel tank in the event of a rollover or extreme inclination. [0017]
  • It is yet another object of this invention to provide a buoyant vent valve that shuts off all flow when the fuel tank is in an overfill condition. [0018]
  • It is still another object of this invention to provide a buoyant vent valve that works in any orientation and does not require mounting holes in the fuel tank.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above-mentioned and other features and objects of this invention will be better understood from the following detailed description taken in conjunction with the drawings wherein: [0020]
  • FIG. 1 is a side perspective view of a vent valve according to one preferred embodiment of this invention; [0021]
  • FIG. 2 is an exploded side and partial cutaway view of a vent valve according to one preferred embodiment of this invention; [0022]
  • FIG. 3 is a schematic of a vent valve in a fuel tank according to one preferred embodiment of this invention; [0023]
  • FIG. 4 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention; [0024]
  • FIG. 5 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention; [0025]
  • FIG. 6 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention; [0026]
  • FIG. 7 is a cross-sectional side view of a vent valve according to one preferred embodiment of this invention; and [0027]
  • FIG. 8 is a cross-sectional side view of a body stem according to one preferred embodiment of this invention.[0028]
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIGS. 1 and 2 [0029] show vent valve 10 according to one preferred embodiment of this invention. As shown schematically in FIG. 3, vent valve 10 is buoyant within fuel tank 80.
  • As shown in FIG. 3, [0030] vent valve 10 is designed to vent fuel vapors from an interior of a fuel tank 80 through a vent hose 70 that extends through sending unit 85 and ultimately to the exterior of fuel tank 80, such as to a charcoal filter 87 (not shown). An overview of several basic elements of vent valve 10 include: floating body 20 floatable within fuel tank 80; valve 30 positioned with respect to floating body 20; and vent hose 70 positioned with respect to valve 30 and extending between floating body 20 and sending unit 85.
  • Floating [0031] body 20 is preferably incorporated into vent valve 10 and comprises a buoyant material that is resistant to the corrosive environment present in a typical fuel tank, particularly a material that is resistant to gasoline.
  • Valve [0032] 30 is preferably positioned with respect to floating body 20. Valve 30 may be positioned at least partially within floating body 20, such as shown in FIG. 2, or completely internal or external to floating body 20, depending upon the preferred embodiment of the invention. Valve 30 is designed to open and close depending upon an internal pressure of fuel tank 80 and/or a level of fuel within fuel tank 80 and/or a relative position of fuel within fuel tank 80.
  • Floating [0033] body 20 may be a unitary component or may include two components, as shown in FIG. 2, such as dome float 22 and body 27. Aside from providing buoyancy, dome float 22 may additionally baffle fluid that is within vent valve 10 from splashing.
  • Vent [0034] 65 is preferably positioned with respect to floating body 20 and further arranged in fluid conununication with valve 30. Vent 65 preferably creates an outlet for vapor from vent valve 10. In a static state within fuel tank 80, air and vapor preferably flow freely through floating body 20 and valve 30 and into vent 65.
  • [0035] Vent hose 70 is preferably positioned with respect to vent 65 and forms a vapor path from valve 30 to an exterior of fuel tank 80, as shown schematically in FIG. 3. Vent hose 70 is preferably at least as long enough to permit extension of vent valve 10 to every extremity of fuel tank 80. According to one preferred embodiment of this invention, vent hose 70 is constructed from a buoyant material. In addition, vent hose 70 is preferably constructed of a non-binding, kink-free material and geometry.
  • According to one preferred embodiment of this invention, [0036] valve 30 comprises valve float 35 having an internally positioned valve channel 40. Valve float 35 is preferably rotatably positioned within floating body 20 so that valve channel 40 correspondingly rotates within valve float 35 and relative to floating body 20. Valve channel 40 should be of an appropriate size to permit vapor to escape through vent valve 10 but prevent free flow of fluid through vent valve 10. According to one preferred embodiment of this invention, valve channel 40 is 5 mm in diameter.
  • According to a preferred embodiment of this invention, [0037] valve 30 is freely rotatable within floating body 20 and positionable between an open position and a closed position. In an open position, such as shown in FIG. 4, valve channel 40 extends between vent 65 and a portion of the sidewall of floating body 20, such as detente 24. In the open position, vapor flows freely from an interior of fuel tank 80 into an interior of vent valve 10 between floating body 20 and valve float 35, through vent channel 40 and then out through vent 65 and vent hose 70.
  • [0038] Valve 30 may further include valve seat 45 fixed with respect to floating body 20 and permitting the rotation of valve float 35 with respect to floating body 20. Valve seat 45 as shown in FIG. 2, partially encloses a portion of valve float 35 to permit rotation of valve float 35 with respect to floating body 20. Valve seat 45 further helps maintain orientation of valve float 35 when fuel tank 80 is not in overfill mode. Valve seat 45 assists in shutoff of vent valve 10 into a closed position when high angulation of vent valve 10 occurs.
  • [0039] Valve float 35 may comprise a unitary component, or alternatively, as shown in FIG. 2, valve float 35 may comprise a combination of components, such as ball 37 and cap 33. In such an arrangement, as shown in FIGS. 4-7, ball 37 preferably contains valve channel 40. Preferably, a level of fluid within vent valve 10 directly controls movement of valve float 35 relative to floating body 20.
  • According to one preferred embodiment of this invention, vent [0040] valve 10 further comprises body stem 50 for attachment of vent hose 70, such as shown schematically in FIG. 3.
  • [0041] Check valve 55, preferably a two-way check valve, is preferably positioned within body stem 50. Check valve 55 according to one preferred embodiment of this invention is shown in FIG. 8. Check valve 55 may include two O-rings 60 positioned along body stem 50, each O-ring 60 positioned to flex and permit either the entry of vapor or the exit of vapor from within vent valve 10. The vapor is thereupon directed through vent hose 70 and to the exterior of fuel tank 80. Such an arrangement as shown in FIG. 8 permits a two way exchange of pressure between the interior of fuel tank 80 and the exterior of fuel tank 80.
  • As best shown in FIGS. [0042] 2-7, floating body 20 preferably includes a plurality of channels 25 positioned between floating body 20 and valve 30. In addition, valve 30 and/or floating body 20 include a plurality of baffles 43 to permit passage of vapor from an exterior of vent valve 10 to an interior of vent valve 10.
  • In practice, vent [0043] valve 10 preferably operates as shown in FIGS. 4-7. FIG. 4 shows a cross-section of vent valve 10 illustrating an open position of vent valve 10. The open position is a position wherein fuel tank 80 is generally level and static. In the open position shown in FIG. 4, valve 30 is floating on the top of fuel, allowing vapor and air to exchange with fuel tank 80. This exchange, and thus the internal pressure of fuel tank 80, is controlled by an operating condition of the automobile or other vehicle.
  • FIG. 5 shows vent [0044] valve 10 angulated to a maximum operating position. This position allows for valve 30 to operate within a 30° requirement as mandated by automobile manufacturers. Valve float 35 of valve 30 interacting with fuel level directly effects this angulation. Baffles 43 and a tight clearance between valve float 35 and floating body 20 eliminate or greatly reduce the possibility of fuel splashing into orifice of vent 65.
  • FIG. 6 shows vent [0045] valve 10 reaching a critical level of fuel within fuel tank 80 so that valve float 35 forces valve channel 40 into a fully closed position. When vent valve 10 is trapped against a top of fuel tank 80, valve channel 40 and thus valve 30 is forced in the fully closed position.
  • FIG. 7 shows vent [0046] valve 10 when fuel tank 80 is in an overfill condition. The overfill condition may occur during a roll-over event. A secure cut-off condition is preferably obtained in the overfill condition. A lower end of valve channel 40 within valve 30 is preferably open to a side of an inner chamber between floating body 20 and valve 30 to allow fuel to drain before valve 30 rotates into the closed position.
  • In operation, [0047] fuel tank 80 is vented by vent valve 10 when vapor is discharged through valve 30 from an interior of fuel tank 80 to an exterior of fuel tank 80, preferably through sending unit 85 or similar preexisting component positioned through a sidewall of fuel tank 80. Vapor is preferably discharged through vent hose 70 that tethers vent valve 10 with respect to the sidewall of fuel tank 80. Valve 30 rotates within floating body 20 based upon an angle of a fuel level within fuel tank 80. When fuel tank 80 becomes inverted or otherwise distressed within a predetermined tolerance, valve 30 closes relative to floating body 20, thus stopping fuel and/or vapor discharge through vent 65/vent hose 70. Just prior to valve 30 obtaining the closed position, a small amount of fuel present in valve channel 40 is drained from valve 30 and into fuel tank 80.
  • While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purpose of illustration, it will be apparent to those skilled in the art that the vent valve according to this invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention. [0048]

Claims (20)

We claim:
1. A vent valve for a fuel tank comprising:
a floating body;
a valve positioned within the floating body;
a vent positioned with respect to the floating body; and
a vent hose positioned with respect to the vent, the vent forming a vapor path between the valve and the vent hose.
2. The vent valve of claim 1 wherein the valve comprises:
a valve float rotatably positioned within the floating body; and
a valve channel positioned within the valve float.
3. The vent valve of claim 2 wherein the valve further comprises:
a valve seat fixed with respect to the floating body, the valve seat permitting the rotation of the valve float with respect to the floating body.
4. The vent valve of claim 1 wherein the floating body further comprises:
a body stem, the vent hose connected with respect to the body stem; and
a two-way check valve positioned with respect to the body stem.
5. The vent valve of claim 1 wherein the two-way check valve comprises two O-rings positioned along the body stem, the two O-rings each positioned to flex and permit at least one of the entry of vapor and the exit of vapor.
6. The vent valve of claim 1 wherein the floating body includes a plurality of channels positioned between the floating body and the valve.
7. The vent valve of claim 1 wherein the valve is freely rotatable within the floating body and positionable between an open position and a closed position.
8. The vent valve of claim 1 wherein one of the valve and the floating body includes a plurality of baffles to permit passage of vapor from an exterior of the vent valve to an interior of the vent valve.
9. A vent valve for a fuel tank having a sending unit positioned therethrough, the vent valve comprising:
a floating body floatable within the fuel tank;
a valve positioned within the floating body; and
a vent hose positioned with respect to the valve, the vent hose extending between the floating body and the sending unit.
10. The vent valve of claim 9 wherein the valve comprises:
a valve float rotatably positioned within the floating body; and
a valve channel positioned within the valve float.
11. The vent valve of claim 10 wherein the valve float comprises a ball integrated with a floatable cap.
12. The vent valve of claim 9 further comprising:
a two-way check valve positioned with respect to the valve.
13. The vent valve of claim 12 wherein the two-way check valve comprises two O-rings positioned around a portion of the vent valve to flex and permit at least one of the entry of vapor and the exit of vapor.
14. The vent valve of claim 9 further comprising a plurality of baffles positioned within the floating body.
15. A method for venting a fuel tank comprising:
floating a valve in the fuel tank;
tethering the valve with respect to a sidewall of the fuel tank; and
discharging vapor through the valve from an interior of the fuel tank to an exterior of the fuel tank.
16. The method of claim 15 wherein the vapor is discharged through a vent hose that tethers the valve.
17. The method of claim 15 further comprising:
rotating the valve within a floating body based upon an angle of a fuel level within the fuel tank.
18. The method of claim 15 further comprising:
closing the valve when the fuel tank becomes inverted.
19. The method of claim 18 further comprising:
draining gasoline from the valve before closing the valve.
20. The method of claim 15 further comprising:
permitting a two way exchange of pressure between the interior of the fuel tank and the exterior of the fuel tank.
US09/791,514 2001-02-23 2001-02-23 Buoyant vent valve Expired - Fee Related US6431195B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/791,514 US6431195B1 (en) 2001-02-23 2001-02-23 Buoyant vent valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/791,514 US6431195B1 (en) 2001-02-23 2001-02-23 Buoyant vent valve

Publications (2)

Publication Number Publication Date
US6431195B1 US6431195B1 (en) 2002-08-13
US20020117205A1 true US20020117205A1 (en) 2002-08-29

Family

ID=25153977

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/791,514 Expired - Fee Related US6431195B1 (en) 2001-02-23 2001-02-23 Buoyant vent valve

Country Status (1)

Country Link
US (1) US6431195B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577826B1 (en) * 2005-03-17 2006-05-08 삼성에스디아이 주식회사 Cap device and fuel tank using same
US7520293B2 (en) * 2006-02-16 2009-04-21 Ti Group Automotive Systems, L.L.C. Fuel storage system for a vehicle
ES2704753T3 (en) * 2016-05-31 2019-03-19 Sfc Energy Ag Device for the extraction of fuel from fuel cartridges for fuel cells
DE102017011344A1 (en) * 2017-12-08 2019-06-13 Andreas Stihl Ag & Co. Kg Arrangement for filling a gas tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US137A (en) * 1837-03-03 Register and air-box for grates and fireplaces
US2679333A (en) * 1952-03-08 1954-05-25 Northrop Aircraft Inc Variable length tank vent
US4142647A (en) * 1977-12-15 1979-03-06 General Motors Corporation Fuel tank venting system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US223396A (en) * 1880-01-06 Vent-valve for barrels
US4753262A (en) 1987-02-06 1988-06-28 G.T. Products, Inc. Fuel system vent valve having roll-over closure with improved re-opening action for venting
US4960153A (en) 1989-11-03 1990-10-02 G. T. Products, Inc. Fuel tank vapor vent valve
US5083583A (en) 1990-09-04 1992-01-28 G.T. Products, Inc. Fuel tank vapor vent valve and seal
DE19820540C2 (en) 1998-05-08 2000-06-08 Stihl Maschf Andreas Breather valve for a fuel tank
WO2001021991A1 (en) * 1999-09-22 2001-03-29 Stant Manufacturing Inc. Fuel tank valve with internal fuel tank vent tube
US6298873B1 (en) * 2000-01-31 2001-10-09 Illinois Tool Works Inc. Two-way check valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US137A (en) * 1837-03-03 Register and air-box for grates and fireplaces
US2679333A (en) * 1952-03-08 1954-05-25 Northrop Aircraft Inc Variable length tank vent
US4142647A (en) * 1977-12-15 1979-03-06 General Motors Corporation Fuel tank venting system

Also Published As

Publication number Publication date
US6431195B1 (en) 2002-08-13

Similar Documents

Publication Publication Date Title
US6918405B2 (en) Fill limit vent valve
US6675779B2 (en) Dual float valve for fuel tank vent with liquid carryover filter
US4630749A (en) Fuel fill tube with vapor vent and overfill protection
EP0777833B1 (en) Vapor recovery system with two stage valve
US4974645A (en) Non-expulsive fuel filler assembly
EP2607135B1 (en) Fuel ventilation system valve
EP2620310B1 (en) Fuel tank venting system
EP1199207A2 (en) Fuel tank vent control valve
US5782262A (en) Gas ventilation apparatus for a fuel tank
US6213170B1 (en) Valveless fuel tank assembly
CA2586570A1 (en) Controlling vapor emission in a small engine fuel tank system
US6425379B2 (en) Evaporative emission control system
US20040149333A1 (en) Vapor vent valve
JP2004052686A (en) Complex type air vent valve and air vent mechanism for fuel tank
US5373957A (en) Low expulsion vent for an automotive fuel tank
US7143783B2 (en) Fuel tank cap safety valve with splash control and overpressure release
US7055556B2 (en) Controlling vapor recirculation during refueling of a tank through a filler tube from a dispensing nozzle
US5343905A (en) Vehicular fuel tank vent
US6431195B1 (en) Buoyant vent valve
US20030136444A1 (en) Fuel valve
US6719000B1 (en) Two stage fuel tank vent valve
CN113226949A (en) Pressure vacuum valve
AU761724B2 (en) Safety valve, in particular for a refuelling vent line
US6058964A (en) Multi-level fuel pickup
US20080142111A1 (en) Fuel tank venting system and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ILLINOIS TOOL WORKS INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARKER, ERIC G.;LEVEY, KENNETH;NOWAK, DAVID R.;REEL/FRAME:011577/0673

Effective date: 20010118

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100813