US20020115152A1 - Expression system for factor VIII - Google Patents

Expression system for factor VIII Download PDF

Info

Publication number
US20020115152A1
US20020115152A1 US10/047,257 US4725702A US2002115152A1 US 20020115152 A1 US20020115152 A1 US 20020115152A1 US 4725702 A US4725702 A US 4725702A US 2002115152 A1 US2002115152 A1 US 2002115152A1
Authority
US
United States
Prior art keywords
cells
leu
ser
factor viii
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/047,257
Inventor
Myung-Sam Cho
Sham-Yuen Chan
William Kelsey
Helena Yee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Healthcare LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/047,257 priority Critical patent/US20020115152A1/en
Publication of US20020115152A1 publication Critical patent/US20020115152A1/en
Assigned to BAYER HEALTHCARE LLC reassignment BAYER HEALTHCARE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAYER CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/028Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a herpesvirus

Definitions

  • the present invention relates to an improved production method for factor VIII and its derivatives.
  • the method relates generally to vector construction, transfection, and selection of cell lines with enhanced productivity under protein-free conditions.
  • this invention relates to a process for preparing a protein with factor VIII procoagulant activity on an industrial scale.
  • Human factor VIII is a trace plasma glycoprotein involved as a cofactor in the activation of factor X and factor IXa. Inherited deficiency of factor VIII results in the X-linked bleeding disorder hemophilia A which can be treated successfully with purified factor VIII.
  • the replacement therapy of hemophilia A has evolved from the use of plasma-derived factor VIII to the use of recombinant factor VIII obtained by cloning and expressing the factor VIII cDNA in mammalian cells. (Wood et al., 1984, Nature 312: 330).
  • Factor VIII has a domain organization of A1-A2-B-A3-C1-C2 and is synthesized as a single chain polypeptide of 2351 amino acids, from which a 19-amino acid signal peptide is cleaved upon translocation into the lumen of the endoplasmic reticulum. Due to the fact that factor VIII is heavily glycosylated, high-level expression (>0.2 pg/c/d) of factor VIII has been difficult to achieve (Lind et al., 1995, Eur J Biochem. 232: 19-27; Kaufman et al., 1989, Mol Cell Biol. 9: 1233-1242).
  • factor VIII in mammalian cells is typically 2-3 orders of magnitude lower than that observed with other genes using similar vectors and approaches.
  • productivity of production cell lines for factor VIII has been in the range of 0.5-1 ⁇ U/c/d (0.1-0.2 pg/c/d).
  • a process for the production of proteins having factor VIII procoagulant activity at the industrial scale Using a newly created cell host, cell clones with specific productivities in the range of 2-4 pg/cell/day (10-20 ⁇ U/c/d) were derived. Under serum-free conditions, one clone has sustained a daily productivity of 2-4 pg/c/d. Clones with this high level of productivity are able to produce 3-4 million units per day in a 15-liter perfusion fermenter.
  • One unit of factor VIII activity is by definition the activity present in one milliliter of plasma.
  • One pg of factor VIII is generally equivalent to about 5 ⁇ U of FVIII activity.
  • a protein having factor VIII procoagulant activity is a protein which causes the activation of Factor X in an in vitro or in vivo model system.
  • this definition includes full length recombinant human factor VIII and the B domain deleted factor VIII whose sequence is described in FIG. 1.
  • a high level of expression of a protein having factor VIII procoagulant activity means at least about 2 ⁇ U/c/d, or more preferably at least about 4 ⁇ U/c/d, or most preferably at least about 5 ⁇ U/c/d, of factor VIII activity if grown in plasma derived protein-free medium, or at least about 4 ⁇ U/c/d, or more preferably at least about 8 ⁇ U/c/d, or most preferably at least about 10 ⁇ U/c/d, of factor VIII activity if grown in medium supplemented with plasma derived protein.
  • the protein expressed is BDD-FVIII
  • cell lines having specific productivities up to about 15 ⁇ U/c/d, more preferably up to about 20 ⁇ U/c/d may be obtained by the method described herein.
  • derived from is intended to include, but not be limited to, normal mitotic cell division and processes such as transfections, cell fusions, or other genetic engineering techniques used to alter cells or produce cells with new properties.
  • FIG. 1 Amino Acid Sequence of BDD-FVIII (SEQ ID NO:1).
  • FIG. 2 Sequence of terminal repeat (TR) sequence isolated from Epstein-Barr virus (SEQ ID NO:2).
  • FIG. 3 Plasmid map of pCIS25DTR.
  • FIG. 4( a ). Derivation of clone 20B8.
  • FIG. 4( b ) Comparison of productivities of several clones in various media. Three data points are presented from a two month stability test of each clone.
  • FIG. 5 Volumetric productivity of clone 20B8.
  • factor VIII derivatives obtained from recombinant gene expression in methotrexate (MTX)-resistant cell populations was measured by a chromogenic assay. Activity was quantitated using Coatest® factor VIII:C/4 kit (Cromogenix, Molndal, Sweden) according to manufacturer's instructions. A U.S. standard anti-hemophilic factor (factor VIII) known as MEGA 1 (Office of Biologics Research and Review, Bethesda, Md.) was used as the standard of measurement in this assay. See Barrowcliffe, 1993, Thromb Haem 70: 876.
  • BDD FVIII The sequence of the B-domain deleted (BDD) FVIII is shown in FIG. 1.
  • the 90-kD and 80-kD chains were linked by a linker consisting of 14 amino acids. See Chan, S.-Y., “Production of Recombinant Factor VIII in the Presence of Liposome-like Substances of Mixed Composition,” U.S. patent application Ser. No. 08/634,001, filed Apr. 16, 1996.
  • the expression vector for BDD-FVIII was made using standard recombinant DNA techniques.
  • the structure of the expression vector (pCIS25DTR) is shown in FIG. 3.
  • the vector includes a transcriptional unit for BDD-FVIII and a selectable marker, dihydrofolate reductase (dhfr).
  • a terminal repeat sequence from Epstein-Barr virus which shows enhanced drug selection ratio, (FIG. 2) was inserted into the vector to increase the integration efficiency.
  • the vector is essentially a construct of a vector (deposited ATCC 98879) which has been engineered to include a transcriptional unit corresponding to the sequence shown in FIG. 1. Further information about the terminal repeat sequence can be found in the related patent application, incorporated herein by reference, to Cho and Chan designated MSB-7254, “Terminal repeat sequence of Epstein-Barr virus enhances drug selection ratio,” filed on the same day as the current application.
  • Similar vectors can be constructed and used by those having skill in the art to obtain cells expressing proteins having factor VIII procoagulant activity.
  • coding sequences coding for known variants of factor VIII which retain procoagulant activity can be substituted for the BDD-FVIII coding sequence.
  • other selectable markers can be used, such as glutamine synthetase (gs) or multidrug-resistance gene (mdr).
  • gs glutamine synthetase
  • mdr multidrug-resistance gene
  • the choice of a selection agent must be made accordingly, as is known in the art, i.e. for dhfr, the preferred selection agent is methotrexate, for gs the preferred selection agent is methionine sulfoximine, and for mdr the preferred selection agent is colchicine.
  • HKB11 ATCC deposit no. CRL 12568—a hybrid of 293S cells and human Burkitt's lymphoma cells, see U.S. patent application to Cho et al. filed on the same day as the current application and designated MSB-7241, incorporated herein by reference
  • HKB11 ATCC deposit no. CRL 12568—a hybrid of 293S cells and human Burkitt's lymphoma cells, see U.S. patent application to Cho et al. filed on the same day as the current application and designated MSB-7241, incorporated herein by reference
  • BTX Electro cell Manipulator 600 using a 2 mm cuvette (BTX part #620).
  • CHO Choinese hamster ovary
  • 293S human embryonic kidney
  • Amplification of transfected cells was done with increasing methotrexate (MTX) concentrations (100 nM, 200 nM, 400 nM, and 800 nM) at 1 ⁇ 10 6 cells per 96 well plate in a MTX-selection medium lacking hypoxanthine and thymidine (DME/F12 media without hypoxanthine and thymidine plus 5% dialyzed fetal bovine serum from Hyclone, Logan, Utah).
  • MTX resistant cells were scored for growth, and secretion of the BDD-FVIII was screened using a Coatest® factor VIII kit about 2-3 weeks post-transfection. The cultivation of cells were done at 37° C. in a humidified 5% CO 2 incubator.
  • Single cell clones were derived by limiting dilution cloning (LDC) of high producing populations in 96 well plates under serum-free conditions.
  • Cells were seeded at 1-10 cells per well in DME/F12 media supplemented with Humulin® recombinant insulin (Lilly, Indianapolis, Ind.) at 10 ⁇ g/ml, 10 ⁇ essential amino acids (Life Technology, Gaithersburg, Md.), and Plasmanate® human plasma protein fraction (Bayer, Clayton, N.C.). Plasmanate® human plasma protein (HPP) fraction contains human albumin (88%) and various globulins (12%). The clones were screened for BDD-FVIII productivity using the Coatest® factor VIII kits.
  • the highest producing clones were selected for stability evaluation in shake flasks.
  • the first round LDC was performed using selection medium supplemented with 5% dialyzed FBS.
  • the second round LDC was done in serum-free but Plasmanate® HPP fraction-containing medium using the first SCC adapted in serum-free medium supplemented with Plasmanate® HPP fraction.
  • the initial population 1C10 was derived from the HKB cells transfected with pCIS25DTR after amplification with 400 nM MTX in the selection medium with 5% FBS.
  • One of the first single cell clones (SCCs), 10A8, derived from 1C10 by a LDC using a selection medium supplemented with 5% FBS was adapted in serum-free medium supplemented with Plasmanate® HPP fraction.
  • 10A8 showed extremely increased levels of rFVIII production at this stage (FIG. 4 b ). Therefore, we did a second LDC using the medium supplemented with Plasmanate® HPP fraction.
  • the productivity of SCCs e.g.
  • 20B8 derived from the second LDC was similar with Plasmanate® HPP fraction-adapted 10A8. 20B8 showed higher levels of BDD-FVIII than original 10A8 derived from the first LDC in serum-containing medium. Finally, 20B8 was adapted to growth in plasma protein-free (PPF) medium. Samples of 20B8 were deposited at the American Type Culture Collection (Manassas, Va.) (ATCC deposit no. CRL-12582).
  • HKB clones exhibit superior productivity for BDD-FVIII. A10-20 fold increase in productivity was observed in HKB cells when compared to clones derived from transfected CHO and 293S cells. HKB cells, which do not form large aggregates of cells when grown in suspension culture, are preferred cells for the expression of proteins having factor VIII procoagulant activity.
  • HKB clones that have been adapted to grow as serum-free suspension cultures were further weaned of plasma protein supplements.
  • the weaning was done in sterile polycarbonate shake flasks (Corning, Corning, N.Y.) at a cell density of about 0.5 ⁇ 10 6 cells/ml using plasma derived protein free medium.
  • the plasma protein free (PPF) medium was DME/F12 medium supplemented with pluronic F68 (0.1%), CuSO 4 (50 nM), and FeSO 4 /EDTA (50 ⁇ M). Complete medium exchange was done every 48 hours and the shake flasks were reseeded at 0.5 ⁇ 10 6 cells/ml.
  • the productivity of clone 20B8 was evaluated in a 15-liter perfusion fermenter.
  • the fermenter was seeded with clone 20B8 cells at a density of about 3 ⁇ 10 6 cells/ml.
  • the fermenter was perfused at a rate of 4 volumes per day with the serum-free production medium as described in the preceding paragraph.
  • a final cell density of 2 ⁇ 10 7 cells/ml was sustained throughout the evaluation period (45 days).
  • clone 20B8 was perfused with the serumfree production medium supplemented with Plasmanate® HPP fraction and was able to sustain high productivity.
  • the cells were perfused with the same serumfree production medium but without Plasmanate® HPP fraction. As shown in FIG. 5, the cells continued to produce high levels of FVIII in a plasma derived protein-free environment. “Plasma derived protein-free” means that essentially no proteins isolated from plasma have been added to the medium.
  • HKB cells provide a protein-free production system to produce not only BDD-FVIII but other therapeutic proteins as well. Proteins produced from HKB cells have human glycosylation patterns which may improve the half-life of certain glycoproteins in vivo. These cells should also be useful for the production of adenovirus and adeno-associated virus strains that have been designed for gene therapy purposes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

This invention describes a protein-free production process for proteins having factor VIII procoagulant activity. The process includes the derivation of stable human cell clones with high productivity for B-domain deleted Factor VIII, and (2) the adaptation of cells to grow in a medium free of plasma-derived proteins.

Description

    RELATED APPLICATIONS
  • The application to Cho designated MSB-7241, “Human hybrid host cell for mammalian gene expression,” and the application to Cho and Chan designated MSB-7254, “Terminal repeat sequence of Epstein-Barr virus enhances drug selection ratio,” contain related subject matter. Both applications were filed on the same day as the current application. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field [0002]
  • The present invention relates to an improved production method for factor VIII and its derivatives. The method relates generally to vector construction, transfection, and selection of cell lines with enhanced productivity under protein-free conditions. In particular, this invention relates to a process for preparing a protein with factor VIII procoagulant activity on an industrial scale. [0003]
  • 2. Background [0004]
  • Human factor VIII is a trace plasma glycoprotein involved as a cofactor in the activation of factor X and factor IXa. Inherited deficiency of factor VIII results in the X-linked bleeding disorder hemophilia A which can be treated successfully with purified factor VIII. The replacement therapy of hemophilia A has evolved from the use of plasma-derived factor VIII to the use of recombinant factor VIII obtained by cloning and expressing the factor VIII cDNA in mammalian cells. (Wood et al., 1984, Nature 312: 330). [0005]
  • Factor VIII has a domain organization of A1-A2-B-A3-C1-C2 and is synthesized as a single chain polypeptide of 2351 amino acids, from which a 19-amino acid signal peptide is cleaved upon translocation into the lumen of the endoplasmic reticulum. Due to the fact that factor VIII is heavily glycosylated, high-level expression (>0.2 pg/c/d) of factor VIII has been difficult to achieve (Lind et al., 1995, Eur J Biochem. 232: 19-27; Kaufman et al., 1989, Mol Cell Biol. 9: 1233-1242). Expression of factor VIII in mammalian cells is typically 2-3 orders of magnitude lower than that observed with other genes using similar vectors and approaches. The productivity of production cell lines for factor VIII has been in the range of 0.5-1 μU/c/d (0.1-0.2 pg/c/d). [0006]
  • It has been demonstrated that the B-domain of factor VIII is dispensable for procoagulant activity. Using truncated variants of factor VIII, improved expression of factor VIII in mammalian cells has been reported by various groups (Lind et al., 1995, Eur J Biochem 232: 19-27; Tajima et al., 1990, Proc 6[0007] th Int Symp H.T. p.51-63; U.S. Pat. No. 5,661,008 to Almstedt, 1997). However, the expression level of the factor VIII variants remained below 1 pg/c/d from a stable cell clone.
  • SUMMARY OF THE INVENTION
  • We have now discovered (i) a method which derives cell lines with extremely high productivity of proteins having factor VIII procoagulant activity, and (ii) a plasma protein-free production process for proteins having factor VIII procoagulant activity. [0008]
  • A process for the production of proteins having factor VIII procoagulant activity at the industrial scale. Using a newly created cell host, cell clones with specific productivities in the range of 2-4 pg/cell/day (10-20 μU/c/d) were derived. Under serum-free conditions, one clone has sustained a daily productivity of 2-4 pg/c/d. Clones with this high level of productivity are able to produce 3-4 million units per day in a 15-liter perfusion fermenter. One unit of factor VIII activity is by definition the activity present in one milliliter of plasma. One pg of factor VIII is generally equivalent to about 5 μU of FVIII activity. [0009]
  • As used herein, a protein having factor VIII procoagulant activity is a protein which causes the activation of Factor X in an in vitro or in vivo model system. As non-limiting examples, this definition includes full length recombinant human factor VIII and the B domain deleted factor VIII whose sequence is described in FIG. 1. [0010]
  • A high level of expression of a protein having factor VIII procoagulant activity means at least about 2 μU/c/d, or more preferably at least about 4 μU/c/d, or most preferably at least about 5 μU/c/d, of factor VIII activity if grown in plasma derived protein-free medium, or at least about 4 μU/c/d, or more preferably at least about 8 μU/c/d, or most preferably at least about 10 μU/c/d, of factor VIII activity if grown in medium supplemented with plasma derived protein. When the protein expressed is BDD-FVIII, cell lines having specific productivities up to about 15 μU/c/d, more preferably up to about 20 μU/c/d may be obtained by the method described herein. [0011]
  • As used herein to describe the origin of cell lines, “derived from” is intended to include, but not be limited to, normal mitotic cell division and processes such as transfections, cell fusions, or other genetic engineering techniques used to alter cells or produce cells with new properties.[0012]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1. Amino Acid Sequence of BDD-FVIII (SEQ ID NO:1). [0013]
  • FIG. 2. Sequence of terminal repeat (TR) sequence isolated from Epstein-Barr virus (SEQ ID NO:2). [0014]
  • FIG. 3. Plasmid map of pCIS25DTR. [0015]
  • FIG. 4([0016] a). Derivation of clone 20B8.
  • FIG. 4([0017] b). Comparison of productivities of several clones in various media. Three data points are presented from a two month stability test of each clone.
  • FIG. 5. Volumetric productivity of clone 20B8.[0018]
  • SPECIFIC EMBODIMENTS
  • FVIII Assay [0019]
  • The activity of factor VIII derivatives obtained from recombinant gene expression in methotrexate (MTX)-resistant cell populations was measured by a chromogenic assay. Activity was quantitated using Coatest® factor VIII:C/4 kit (Cromogenix, Molndal, Sweden) according to manufacturer's instructions. A U.S. standard anti-hemophilic factor (factor VIII) known as MEGA 1 (Office of Biologics Research and Review, Bethesda, Md.) was used as the standard of measurement in this assay. See Barrowcliffe, 1993, Thromb Haem 70: 876. [0020]
  • Construction of Expression Vectors for B-domain Deleted FVIII [0021]
  • The sequence of the B-domain deleted (BDD) FVIII is shown in FIG. 1. The 90-kD and 80-kD chains were linked by a linker consisting of 14 amino acids. See Chan, S.-Y., “Production of Recombinant Factor VIII in the Presence of Liposome-like Substances of Mixed Composition,” U.S. patent application Ser. No. 08/634,001, filed Apr. 16, 1996. The expression vector for BDD-FVIII was made using standard recombinant DNA techniques. The structure of the expression vector (pCIS25DTR) is shown in FIG. 3. The vector includes a transcriptional unit for BDD-FVIII and a selectable marker, dihydrofolate reductase (dhfr). In addition a terminal repeat sequence from Epstein-Barr virus, which shows enhanced drug selection ratio, (FIG. 2) was inserted into the vector to increase the integration efficiency. The vector is essentially a construct of a vector (deposited ATCC 98879) which has been engineered to include a transcriptional unit corresponding to the sequence shown in FIG. 1. Further information about the terminal repeat sequence can be found in the related patent application, incorporated herein by reference, to Cho and Chan designated MSB-7254, “Terminal repeat sequence of Epstein-Barr virus enhances drug selection ratio,” filed on the same day as the current application. [0022]
  • Similar vectors can be constructed and used by those having skill in the art to obtain cells expressing proteins having factor VIII procoagulant activity. For example, coding sequences coding for known variants of factor VIII which retain procoagulant activity can be substituted for the BDD-FVIII coding sequence. Also, instead of dhfr, other selectable markers can be used, such as glutamine synthetase (gs) or multidrug-resistance gene (mdr). The choice of a selection agent must be made accordingly, as is known in the art, i.e. for dhfr, the preferred selection agent is methotrexate, for gs the preferred selection agent is methionine sulfoximine, and for mdr the preferred selection agent is colchicine. [0023]
  • WORKING EXAMPLES
  • Derivation of Cell Lines Expressing BDD-FVIII: Transfection, Drug Selection and Gene Amplification [0024]
  • Thirty micrograms of pCIS25DTR DNA was transferred into HKB11 (ATCC deposit no. CRL 12568—a hybrid of 293S cells and human Burkitt's lymphoma cells, see U.S. patent application to Cho et al. filed on the same day as the current application and designated MSB-7241, incorporated herein by reference) cells by electroporation set at 300 volts and 300 micro farads (BTX Electro cell Manipulator 600) using a 2 mm cuvette (BTX part #620). In comparative experiments done to parallel work with the HKB11 cells, CHO (Chinese hamster ovary) and 293S (human embryonic kidney) cells were transfected using a cationic lipid reagent DMRIE-C (Life Technologies, Gaithersburg, Md.) according to a protocol provided by the Life Technologies. Amplification of transfected cells was done with increasing methotrexate (MTX) concentrations (100 nM, 200 nM, 400 nM, and 800 nM) at 1×10[0025] 6 cells per 96 well plate in a MTX-selection medium lacking hypoxanthine and thymidine (DME/F12 media without hypoxanthine and thymidine plus 5% dialyzed fetal bovine serum from Hyclone, Logan, Utah). MTX resistant cells were scored for growth, and secretion of the BDD-FVIII was screened using a Coatest® factor VIII kit about 2-3 weeks post-transfection. The cultivation of cells were done at 37° C. in a humidified 5% CO2 incubator.
  • Limiting Dilution Cloning [0026]
  • Single cell clones (SCC) were derived by limiting dilution cloning (LDC) of high producing populations in 96 well plates under serum-free conditions. Cells were seeded at 1-10 cells per well in DME/F12 media supplemented with Humulin® recombinant insulin (Lilly, Indianapolis, Ind.) at 10 μg/ml, 10×essential amino acids (Life Technology, Gaithersburg, Md.), and Plasmanate® human plasma protein fraction (Bayer, Clayton, N.C.). Plasmanate® human plasma protein (HPP) fraction contains human albumin (88%) and various globulins (12%). The clones were screened for BDD-FVIII productivity using the Coatest® factor VIII kits. The highest producing clones were selected for stability evaluation in shake flasks. For HKB cells, the first round LDC was performed using selection medium supplemented with 5% dialyzed FBS. The second round LDC was done in serum-free but Plasmanate® HPP fraction-containing medium using the first SCC adapted in serum-free medium supplemented with Plasmanate® HPP fraction. [0027]
  • Derivation of HKB Clone 20B8 [0028]
  • As summarized in FIG. 4([0029] a), the initial population 1C10 was derived from the HKB cells transfected with pCIS25DTR after amplification with 400 nM MTX in the selection medium with 5% FBS. One of the first single cell clones (SCCs), 10A8, derived from 1C10 by a LDC using a selection medium supplemented with 5% FBS was adapted in serum-free medium supplemented with Plasmanate® HPP fraction. Unexpectedly, 10A8 showed extremely increased levels of rFVIII production at this stage (FIG. 4b). Therefore, we did a second LDC using the medium supplemented with Plasmanate® HPP fraction. The productivity of SCCs (e.g. 20B8) derived from the second LDC was similar with Plasmanate® HPP fraction-adapted 10A8. 20B8 showed higher levels of BDD-FVIII than original 10A8 derived from the first LDC in serum-containing medium. Finally, 20B8 was adapted to growth in plasma protein-free (PPF) medium. Samples of 20B8 were deposited at the American Type Culture Collection (Manassas, Va.) (ATCC deposit no. CRL-12582).
  • As shown in Table 1, HKB clones exhibit superior productivity for BDD-FVIII. A10-20 fold increase in productivity was observed in HKB cells when compared to clones derived from transfected CHO and 293S cells. HKB cells, which do not form large aggregates of cells when grown in suspension culture, are preferred cells for the expression of proteins having factor VIII procoagulant activity. [0030]
    TABLE 1
    Expression of FVIII and BDD-FVIII in human and rodent cell lines
    Specific Productivity (μU/c/d)*
    FVIII Derivatives BHK 293s CHO HKB
    Full length FVIII 0.45 1.2 0.5 1.0
    BDD-FVIII ND 2.5 1.0 20  
  • Plasma-Protein-free Adaptation of Clones [0031]
  • HKB clones that have been adapted to grow as serum-free suspension cultures were further weaned of plasma protein supplements. The weaning was done in sterile polycarbonate shake flasks (Corning, Corning, N.Y.) at a cell density of about 0.5×10[0032] 6 cells/ml using plasma derived protein free medium. The plasma protein free (PPF) medium was DME/F12 medium supplemented with pluronic F68 (0.1%), CuSO4 (50 nM), and FeSO4/EDTA (50 μM). Complete medium exchange was done every 48 hours and the shake flasks were reseeded at 0.5×106 cells/ml.
  • Fermentation of Clone 20B8 [0033]
  • The productivity of clone 20B8 was evaluated in a 15-liter perfusion fermenter. The fermenter was seeded with clone 20B8 cells at a density of about 3×10[0034] 6 cells/ml. The fermenter was perfused at a rate of 4 volumes per day with the serum-free production medium as described in the preceding paragraph. A final cell density of 2×107 cells/ml was sustained throughout the evaluation period (45 days). As shown in FIG. 5, during the first 4 weeks of fermentation, clone 20B8 was perfused with the serumfree production medium supplemented with Plasmanate® HPP fraction and was able to sustain high productivity. From day 28 to the end of the fermentation run, the cells were perfused with the same serumfree production medium but without Plasmanate® HPP fraction. As shown in FIG. 5, the cells continued to produce high levels of FVIII in a plasma derived protein-free environment. “Plasma derived protein-free” means that essentially no proteins isolated from plasma have been added to the medium.
  • Discussion
  • The derivation of HKB cells provides a protein-free production system to produce not only BDD-FVIII but other therapeutic proteins as well. Proteins produced from HKB cells have human glycosylation patterns which may improve the half-life of certain glycoproteins in vivo. These cells should also be useful for the production of adenovirus and adeno-associated virus strains that have been designed for gene therapy purposes. [0035]
  • The above examples are intended to illustrate the invention and it is thought variations will occur to those skilled in the art. Accordingly, it is intended that the scope of the invention should be limited only by the claims below. [0036]
  • 1 2 1 1438 PRT Artificial Sequence Description of Artificial Sequence Derived from human factor VIII sequence 1 Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr 1 5 10 15 Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro 20 25 30 Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys 35 40 45 Thr Leu Phe Val Glu Phe Thr Val His Leu Phe Asn Ile Ala Lys Pro 50 55 60 Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val 65 70 75 80 Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val 85 90 95 Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala 100 105 110 Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val 115 120 125 Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn 130 135 140 Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser 145 150 155 160 His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu 165 170 175 Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu 180 185 190 His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp 195 200 205 His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser 210 215 220 Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg 225 230 235 240 Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His 245 250 255 Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu 260 265 270 Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile 275 280 285 Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly 290 295 300 Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met 305 310 315 320 Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg 325 330 335 Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp 340 345 350 Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe 355 360 365 Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His 370 375 380 Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu 385 390 395 400 Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro 405 410 415 Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr 420 425 430 Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile 435 440 445 Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile 450 455 460 Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile 465 470 475 480 Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys 485 490 495 His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys 500 505 510 Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys 515 520 525 Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala 530 535 540 Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp 545 550 555 560 Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe 565 570 575 Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln 580 585 590 Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe 595 600 605 Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser 610 615 620 Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu 625 630 635 640 Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr 645 650 655 Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro 660 665 670 Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp 675 680 685 Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala 690 695 700 Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu 705 710 715 720 Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala 725 730 735 Ile Glu Pro Arg Ser Phe Ser Gln Asn Pro Pro Val Leu Lys Arg His 740 745 750 Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile 755 760 765 Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp 770 775 780 Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys 785 790 795 800 Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly 805 810 815 Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser 820 825 830 Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser 835 840 845 Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu 850 855 860 Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr 865 870 875 880 Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile 885 890 895 Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe 900 905 910 Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His 915 920 925 Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe 930 935 940 Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro 945 950 955 960 Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln 965 970 975 Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr 980 985 990 Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro 995 1000 1005 Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe 1010 1015 1020 His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met 1025 1030 1035 1040 Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn 1045 1050 1055 Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg 1060 1065 1070 Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val 1075 1080 1085 Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val 1090 1095 1100 Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe 1105 1110 1115 1120 Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly 1125 1130 1135 His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp 1140 1145 1150 Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp 1155 1160 1165 Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro 1170 1175 1180 Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser 1185 1190 1195 1200 Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys 1205 1210 1215 Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe 1220 1225 1230 Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro 1235 1240 1245 Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile 1250 1255 1260 Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys 1265 1270 1275 1280 Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile 1285 1290 1295 Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser 1300 1305 1310 Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln 1315 1320 1325 Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met 1330 1335 1340 Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser 1345 1350 1355 1360 Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln 1365 1370 1375 Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn 1380 1385 1390 Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu 1395 1400 1405 Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala 1410 1415 1420 Leu Arg Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr 1425 1430 1435 2 402 DNA Artificial Sequence Description of Artificial SequenceDerived from Epstein-Barr virus sequence 2 ggcaatggag cgtgacgaag ggccccaggg ctgaccccgg caaacgtgac ccggggctcc 60 ggggtgaccc aggcaagcgt ggccaagggg cccgtgggtg acacaggcaa ccctgacaaa 120 ggccccccag gaaagacccc cggggggcat cgggggggtg ttggcgggtc atgggggggg 180 cgggtcatgc cgcgcattcc tggaaaaagt ggagggggcg tggccttccc cccgcggccc 240 cctagccccc ccgcagagag cggcgcaacg gcgggcgagc ggcggggggt cggggtccgc 300 gggctccggg ggctgcgggc ggtggatggc ggctggcgtt ccggggatcg ggggggggtc 360 ggggggcgct gcgcgggcgc agccatgcgt gaccgtgatg ag 402

Claims (19)

We claim:
1. A method of producing cells which express a protein having factor VIII procoagulant activity comprising the sequential steps of:
a) obtaining cells which are solely of human origin,
b) contacting the cells of step a) with a vector under conditions sufficient to allow the vector to enter the cells, wherein the vector comprises a selectable marker and a sequence coding for the protein having factor VIII procoagulant activity operably linked to a promoter,
c) selecting the cells from step b) with a selection agent, and
d) isolating individual clones which express high levels of the protein having factor VIII activity from the cells obtained from step c).
2. The method of claim 1, further comprising the step
e) adapting the clones of step d) to growth in a plasma derived protein-free medium.
3. The method of claim 1, wherein the cells of step a) are hybrids of human lymphoma cells and 293S cells.
4. The method of claim 1, wherein the cells of step a) are hybrids of 2B8 cells (ATCC CRL-12569) and 293S cells.
5. The method of claim 1, wherein the cells of step a) are HKB11 cells (ATCC CRL-12568).
6. The method of claim 1, wherein the steps c) and d) are performed more than once.
7. The method of claim 1, wherein the sequence of step b) codes for the sequence shown in FIG. 1 (SEQ ID NO:1).
8. The method of claim 1, wherein the sequence of step b) codes for human factor VIII.
9. The method of claim 1, wherein the selectable marker of step b) is dhfr and the selection agent of step c) is methotrexate.
10. The method of claim 1, wherein the selectable marker of step b) is gs and the selection agent of step c) is methionine sulfoximine.
11. The method of claim 1, wherein the selectable marker of step b) is mdr and the selection agent of step c) is colchicine.
12. A method of producing a protein having factor VIII activity comprising growing the cells produced by the method of claim 1 in a growth medium and then isolating the protein having factor VIII activity from the medium.
13. The method of claim 11 wherein the protein is human factor VIII.
14. The method of claim 11 wherein the protein has the amino acid sequence shown in FIG. 1 (SEQ ID NO:1]).
15. A human cell line derived from human lymphoma cells and 293S cells which expresses high levels of a protein having factor VIII activity.
16. The human cell line of claim 14, wherein the human cell line is derived from HKB11 cells (ATCC CRL-12568).
17. A human cell line derived from human lymphoma cells and 293S cells which expresses high levels of a protein having factor VIII activity when grown in plasma derived protein-free medium.
18. The cell line of claim 16, wherein the cell line is derived from HKB11 cells (ATCC CRL-12568).
19. A cell line designated 20B8 (ATCC CRL-12582).
US10/047,257 1998-12-10 2002-01-15 Expression system for factor VIII Abandoned US20020115152A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/047,257 US20020115152A1 (en) 1998-12-10 2002-01-15 Expression system for factor VIII

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/209,916 US6358703B1 (en) 1998-12-10 1998-12-10 Expression system for factor VIII
US10/047,257 US20020115152A1 (en) 1998-12-10 2002-01-15 Expression system for factor VIII

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/209,916 Continuation US6358703B1 (en) 1998-12-10 1998-12-10 Expression system for factor VIII

Publications (1)

Publication Number Publication Date
US20020115152A1 true US20020115152A1 (en) 2002-08-22

Family

ID=22780858

Family Applications (10)

Application Number Title Priority Date Filing Date
US09/209,916 Expired - Lifetime US6358703B1 (en) 1998-12-10 1998-12-10 Expression system for factor VIII
US10/006,091 Abandoned US20020102730A1 (en) 1998-12-10 2001-12-06 Expression system for factor VIII
US10/047,257 Abandoned US20020115152A1 (en) 1998-12-10 2002-01-15 Expression system for factor VIII
US10/225,900 Expired - Fee Related US7459525B2 (en) 1998-12-10 2002-08-22 Factor VIII glycoforms
US11/789,580 Abandoned US20090036358A1 (en) 1998-12-10 2007-04-25 Methods of preparing pharmaceutical compositions for treatment of factor Vlll associated disorders and methods of use
US12/941,685 Expired - Fee Related US8207117B2 (en) 1998-12-10 2010-11-08 Methods of reducing hemorrhage due to surgical procedure
US13/482,326 Expired - Fee Related US8945869B2 (en) 1998-12-10 2012-05-29 Factor VIII glycoforms
US13/918,053 Expired - Fee Related US9249209B2 (en) 1998-12-10 2013-06-14 Compositions containing factor VIII glycoforms
US14/985,134 Expired - Fee Related US9650431B2 (en) 1998-12-10 2015-12-30 Method for treating bleeding disorders
US15/480,162 Abandoned US20170267745A1 (en) 1998-12-10 2017-04-05 Factor viii glycoforms

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/209,916 Expired - Lifetime US6358703B1 (en) 1998-12-10 1998-12-10 Expression system for factor VIII
US10/006,091 Abandoned US20020102730A1 (en) 1998-12-10 2001-12-06 Expression system for factor VIII

Family Applications After (7)

Application Number Title Priority Date Filing Date
US10/225,900 Expired - Fee Related US7459525B2 (en) 1998-12-10 2002-08-22 Factor VIII glycoforms
US11/789,580 Abandoned US20090036358A1 (en) 1998-12-10 2007-04-25 Methods of preparing pharmaceutical compositions for treatment of factor Vlll associated disorders and methods of use
US12/941,685 Expired - Fee Related US8207117B2 (en) 1998-12-10 2010-11-08 Methods of reducing hemorrhage due to surgical procedure
US13/482,326 Expired - Fee Related US8945869B2 (en) 1998-12-10 2012-05-29 Factor VIII glycoforms
US13/918,053 Expired - Fee Related US9249209B2 (en) 1998-12-10 2013-06-14 Compositions containing factor VIII glycoforms
US14/985,134 Expired - Fee Related US9650431B2 (en) 1998-12-10 2015-12-30 Method for treating bleeding disorders
US15/480,162 Abandoned US20170267745A1 (en) 1998-12-10 2017-04-05 Factor viii glycoforms

Country Status (26)

Country Link
US (10) US6358703B1 (en)
EP (1) EP1137797B1 (en)
JP (1) JP4240818B2 (en)
KR (1) KR100616028B1 (en)
AT (1) ATE412765T1 (en)
AU (1) AU761801B2 (en)
BG (1) BG65431B1 (en)
BR (1) BRPI9916069B8 (en)
CA (1) CA2354845C (en)
CZ (1) CZ302330B6 (en)
DE (1) DE69939839D1 (en)
DK (1) DK1137797T3 (en)
ES (1) ES2315026T3 (en)
HU (1) HU228489B1 (en)
IL (2) IL143353A0 (en)
NO (1) NO329544B1 (en)
NZ (1) NZ512234A (en)
PL (1) PL200676B1 (en)
PT (1) PT1137797E (en)
RO (1) RO121604B1 (en)
RU (1) RU2249041C2 (en)
SI (1) SI20644B (en)
SK (1) SK286945B6 (en)
TR (1) TR200101592T2 (en)
UA (1) UA77383C2 (en)
WO (1) WO2000034505A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094113A1 (en) * 2004-10-29 2006-05-04 David Epstein Chemically defined media compositions

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475725B1 (en) 1997-06-20 2002-11-05 Baxter Aktiengesellschaft Recombinant cell clones having increased stability and methods of making and using the same
US6358703B1 (en) * 1998-12-10 2002-03-19 Bayer Corporation Expression system for factor VIII
US6180108B1 (en) * 1998-12-10 2001-01-30 Bayer Corporation Vectors having terminal repeat sequence of Epstein-Barr virus
CA2404163C (en) * 2000-03-22 2009-09-29 Octagene Gmbh Production of recombinant blood clotting factors in human cell lines
EP2110385A1 (en) 2001-06-14 2009-10-21 The Scripps Research Institute Stabilized factor VIII with engineered disulfide bonds
EP1596887B1 (en) * 2003-02-26 2022-03-23 Nektar Therapeutics Polymer-factor viii moiety conjugates
WO2005017149A1 (en) * 2003-06-03 2005-02-24 Cell Genesys, Inc. Compositions and methods for enhanced expression of recombinant polypeptides from a single vector using a peptide cleavage site
US7485291B2 (en) * 2003-06-03 2009-02-03 Cell Genesys, Inc. Compositions and methods for generating multiple polypeptides from a single vector using a virus derived peptide cleavage site, and uses thereof
EP2371856B1 (en) 2004-11-12 2022-05-18 Bayer HealthCare LLC Site-directed modification of FVIII
ES2439641T3 (en) 2005-12-20 2014-01-24 Bristol-Myers Squibb Company Compositions and production procedures of a composition
AR058568A1 (en) 2005-12-20 2008-02-13 Bristol Myers Squibb Co METHODS TO PRODUCE A COMPOSITION WITH CTLA4-IG MOLECULES FROM A CROP MEANS
DK2235197T3 (en) 2007-12-27 2017-10-09 Baxalta GmbH Methods of cell culture
KR101005967B1 (en) 2008-04-12 2011-01-05 (주)셀트리온 Human host cell for producing recombinant proteins with high quality and quantity
KR20110033242A (en) * 2008-06-25 2011-03-30 바이엘 헬스케어 엘엘씨 Factor viii muteins with reduced immunogenicity
JP2012500250A (en) 2008-08-21 2012-01-05 オクタファルマ アクチェン ゲゼルシャフト Recombinantly produced human factor VIII and factor IX
CA2735376C (en) * 2008-09-03 2016-11-29 Octapharma Ag New protecting compositions for recombinantly produced factor viii
EP2393828B1 (en) 2009-02-03 2016-10-12 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
JP5739865B2 (en) * 2009-03-24 2015-06-24 バイエル・ヘルスケア・エルエルシー Factor VIII variants and methods of use
WO2011028229A1 (en) 2009-08-24 2011-03-10 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
US20110150843A1 (en) * 2009-10-30 2011-06-23 National Institute Of Immunology Method for the therapeutic correction of hemophilia a by transplanting bone marrow cells
US20130017997A1 (en) * 2010-08-19 2013-01-17 Amunix Operating Inc. Factor VIII Compositions and Methods of Making and Using Same
DK3626737T3 (en) * 2011-05-13 2024-02-05 Octapharma Ag METHOD FOR INCREASING THE PRODUCTIVITY OF EUKARYOTIC CELLS IN THE PRODUCTION OF RECOMBINANT FVIII
LT2804623T (en) 2012-01-12 2019-12-10 Bioverativ Therapeutics Inc Chimeric factor viii polypeptides and uses thereof
RS63870B1 (en) 2012-02-15 2023-01-31 Bioverativ Therapeutics Inc Factor viii compositions and methods of making and using same
HUE043537T2 (en) 2012-02-15 2019-08-28 Bioverativ Therapeutics Inc Recombinant factor viii proteins
US10548953B2 (en) 2013-08-14 2020-02-04 Bioverativ Therapeutics Inc. Factor VIII-XTEN fusions and uses thereof
CN116731201A (en) 2014-01-10 2023-09-12 比奥贝拉蒂治疗公司 Factor VIII chimeric proteins and uses thereof
EP3331608A4 (en) 2015-08-03 2019-05-01 Bioverativ Therapeutics Inc. Factor ix fusion proteins and methods of making and using same
HUE065455T2 (en) 2016-04-15 2024-05-28 Takeda Pharmaceuticals Co Method and apparatus for providing a pharmacokinetic drug dosing regimen
EP3487538A1 (en) 2016-07-22 2019-05-29 Nektar Therapeutics Conjugates of a factor viii moiety having an oxime-containing linkage
US10896749B2 (en) 2017-01-27 2021-01-19 Shire Human Genetic Therapies, Inc. Drug monitoring tool
US20200245667A1 (en) * 2017-09-13 2020-08-06 Evolve Biosystems, Inc. Oligosaccharide compositions and their use during transitional phases of the mammalian gut microbiome
KR20190086269A (en) * 2018-01-12 2019-07-22 재단법인 목암생명과학연구소 Long-acting recombinant glycoproteins and menufacturing method thereof
WO2020086686A2 (en) * 2018-10-23 2020-04-30 The Children's Hospital Of Philadelphia Compositions and methods for modulating factor viii function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952198A (en) * 1995-05-04 1999-09-14 Bayer Corporation Production of recombinant Factor VIII in the presence of liposome-like substances of mixed composition
US6358703B1 (en) * 1998-12-10 2002-03-19 Bayer Corporation Expression system for factor VIII

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045849B2 (en) 1980-08-25 1985-10-12 林原 健 Method for producing human erythropoietin
US4766075A (en) * 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
GB8308235D0 (en) * 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4757006A (en) * 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4703008A (en) * 1983-12-13 1987-10-27 Kiren-Amgen, Inc. DNA sequences encoding erythropoietin
KR890002004B1 (en) * 1984-01-11 1989-06-07 가부시끼 가이샤 도오시바 Distinction apparatus of papers
US4965199A (en) * 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
US4970300A (en) * 1985-02-01 1990-11-13 New York University Modified factor VIII
EP0218712B1 (en) * 1985-04-12 1992-02-26 Genetics Institute, Inc. Novel procoagulant proteins
US5198349A (en) * 1986-01-03 1993-03-30 Genetics Institute, Inc. Method for producing factor VIII:C and analogs
ATE63335T1 (en) * 1986-07-11 1991-05-15 Miles Inc PRODUCTION OF RECOMBINANT PROTEIN.
GB2197321B (en) 1986-09-12 1990-10-03 Genentech Inc Method and vectors for obtaining continuous production of heterologous protein in a eukaryotic host cell line
IL86693A (en) * 1987-06-12 1994-06-24 Stichting Centraal Lab Proteins with factor VIII activity, process for their preparation using genetically engineered cells and pharmaceutical compositions containing them
SE465222C5 (en) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab A recombinant human factor VIII derivative and process for its preparation
US5661008A (en) * 1991-03-15 1997-08-26 Kabi Pharmacia Ab Recombinant human factor VIII derivatives
US5859204A (en) 1992-04-07 1999-01-12 Emory University Modified factor VIII
EP0629700A3 (en) * 1993-06-10 1995-02-15 Miles Inc Vector and mammalian cell line having improved productivity.
DE19517194A1 (en) * 1995-05-11 1996-11-14 Giesecke & Devrient Gmbh Device and method for checking sheet material, e.g. Banknotes or securities
MX9504215A (en) 1995-10-05 1997-04-30 Inst Politecnico Nacional Improved process to purify oligopeptides with molecular weights from 1,000 to 10,000 daltons, from leukocyte extracts and their pharmaceutical presentation.
US5922959A (en) * 1996-10-15 1999-07-13 Currency Systems International Methods of measuring currency limpness
US5923413A (en) * 1996-11-15 1999-07-13 Interbold Universal bank note denominator and validator
US5804420A (en) * 1997-04-18 1998-09-08 Bayer Corporation Preparation of recombinant Factor VIII in a protein free medium
AU735763B2 (en) * 1997-12-05 2001-07-12 Immune Response Corporation, The Novel vectors and genes exhibiting increased expression
US6040584A (en) * 1998-05-22 2000-03-21 Mti Corporation Method and for system for detecting damaged bills
US6528286B1 (en) * 1998-05-29 2003-03-04 Genentech, Inc. Mammalian cell culture process for producing glycoproteins
US6136599A (en) * 1998-12-10 2000-10-24 Bayer Corporation Human hybrid host cell for mammalian gene expression
US6180108B1 (en) * 1998-12-10 2001-01-30 Bayer Corporation Vectors having terminal repeat sequence of Epstein-Barr virus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952198A (en) * 1995-05-04 1999-09-14 Bayer Corporation Production of recombinant Factor VIII in the presence of liposome-like substances of mixed composition
US6358703B1 (en) * 1998-12-10 2002-03-19 Bayer Corporation Expression system for factor VIII

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094113A1 (en) * 2004-10-29 2006-05-04 David Epstein Chemically defined media compositions
US7598083B2 (en) 2004-10-29 2009-10-06 Centocor, Inc. Chemically defined media compositions

Also Published As

Publication number Publication date
US9249209B2 (en) 2016-02-02
US20020102730A1 (en) 2002-08-01
SK286945B6 (en) 2009-08-06
US6358703B1 (en) 2002-03-19
IL143353A (en) 2010-12-30
CA2354845A1 (en) 2000-06-15
TR200101592T2 (en) 2001-11-21
HUP0200558A2 (en) 2002-06-28
CA2354845C (en) 2008-08-12
HU228489B1 (en) 2013-03-28
NO329544B1 (en) 2010-11-08
CZ302330B6 (en) 2011-03-16
WO2000034505A1 (en) 2000-06-15
SI20644A (en) 2002-02-28
PL349284A1 (en) 2002-07-15
NZ512234A (en) 2002-12-20
IL143353A0 (en) 2002-04-21
AU761801B2 (en) 2003-06-12
EP1137797A4 (en) 2005-06-22
EP1137797B1 (en) 2008-10-29
ES2315026T3 (en) 2009-03-16
US20090036358A1 (en) 2009-02-05
BG65431B1 (en) 2008-07-31
NO20012718L (en) 2001-06-01
US20130267468A1 (en) 2013-10-10
AU2170100A (en) 2000-06-26
US20130143818A1 (en) 2013-06-06
NO20012718D0 (en) 2001-06-01
RU2249041C2 (en) 2005-03-27
PL200676B1 (en) 2009-01-30
KR20020013481A (en) 2002-02-20
JP4240818B2 (en) 2009-03-18
RO121604B1 (en) 2007-12-28
BRPI9916069B8 (en) 2021-05-25
HUP0200558A3 (en) 2004-11-29
BRPI9916069B1 (en) 2016-08-02
BR9916069A (en) 2001-09-04
ATE412765T1 (en) 2008-11-15
JP2002531137A (en) 2002-09-24
CZ20012024A3 (en) 2001-10-17
US8207117B2 (en) 2012-06-26
US8945869B2 (en) 2015-02-03
KR100616028B1 (en) 2006-08-28
DE69939839D1 (en) 2008-12-11
US20170267745A1 (en) 2017-09-21
SK7922001A3 (en) 2002-01-07
PT1137797E (en) 2008-12-26
US20030077752A1 (en) 2003-04-24
UA77383C2 (en) 2006-12-15
SI20644B (en) 2009-04-30
US20110144025A1 (en) 2011-06-16
EP1137797A1 (en) 2001-10-04
US7459525B2 (en) 2008-12-02
DK1137797T3 (en) 2009-02-23
US9650431B2 (en) 2017-05-16
US20160115219A1 (en) 2016-04-28
BG105567A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
US6358703B1 (en) Expression system for factor VIII
AU627432B2 (en) Process for producing recombinant human factor viii:c and transformant to be used therefor
US6171825B1 (en) Preparation of recombinant factor VIII in a protein free medium
JP4804356B2 (en) Modified cDNA for high expression levels of factor VIII and its derivatives
MXPA01005667A (en) Expression system for factor viii
NO300428B1 (en) Process for producing proteins with FVIII activity or FVIII derivatives
AU632495B2 (en) Method of producing proteins with fviii activity and/or fviii derivatives
MXPA98003051A (en) Preparation of recombinant factor viii in a protei free medium

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BAYER HEALTHCARE LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER CORPORATION;REEL/FRAME:038586/0967

Effective date: 20160510