US20020100583A1 - Composite landing collar for cementing operation - Google Patents

Composite landing collar for cementing operation Download PDF

Info

Publication number
US20020100583A1
US20020100583A1 US09/771,745 US77174501A US2002100583A1 US 20020100583 A1 US20020100583 A1 US 20020100583A1 US 77174501 A US77174501 A US 77174501A US 2002100583 A1 US2002100583 A1 US 2002100583A1
Authority
US
United States
Prior art keywords
collar
shoulder
tubular
adhesive
landing collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/771,745
Other versions
US6457517B1 (en
Inventor
Jim Goodson
Sidney Smith
Paul Zutz
Yusheng Yuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/771,745 priority Critical patent/US6457517B1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, SIDNEY K., JR., ZUTZ, PAUL, GOODSON, JIM, YUAN, YUSHENG
Priority to AU11939/02A priority patent/AU785227B2/en
Priority to GB0201484A priority patent/GB2371576B/en
Priority to NO20020433A priority patent/NO321804B1/en
Priority to CA002370006A priority patent/CA2370006C/en
Publication of US20020100583A1 publication Critical patent/US20020100583A1/en
Application granted granted Critical
Publication of US6457517B1 publication Critical patent/US6457517B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/03Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting the tools into, or removing the tools from, laterally offset landing nipples or pockets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • E21B33/16Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes using plugs for isolating cement charge; Plugs therefor
    • E21B33/167Cementing plugs provided with anti-rotation mechanisms, e.g. for easier drill-out

Definitions

  • the field of this invention relates to landing collars for wiper plugs used in cementing operations and more particularly to the construction thereof, using composite materials as well as the mounting technique in casing.
  • Landing collars are used as an accessory inside liner casing strings for cementing operations.
  • the landing collars must be removed at the conclusion of the cementing job, usually by drilling it out. Since drilling out takes time, prior solutions have emphasized the use of relatively soft metals such as aluminum. Aluminum still presented too much resistance to drilling out.
  • U.S. Pat. No. 6,079,496 addressed the problem of shocking the formation when landing wiper plugs on landing collars. Although the focus of this patent was in shock reduction, it also suggested that drillability of landing collars could be improved by using non-metallic components. It further suggested use of engineering grade plastics, epoxies, or phenolics for many of the landing collar components.
  • One of the objectives of the present invention is to provide a landing collar that can be securely mounted in a manner which will eliminate or minimize leakage around its connection to the liner string while at the same time the landing collar possesses the structural strength to withstand bump pressures in excess of 10,000 PSI when the wiper plug lands. At the same time, the landing collar can effectively hold the wiper plug against rotation during drill out. Finally, the unique construction combines the feature of rapid drill out.
  • a composite landing collar which is preferably adhesive bonded to the liner string using a high temperature epoxy.
  • the spacing during bonding is maintained within dimensional limits using spacers.
  • the body features a bi-directional material, with an appropriate ratio in the warp and fills directions, for about a quarter of the wall thickness.
  • a unidirectional material with the fibers axially aligned aids in reduction of thermal stresses in the thick wall during curing, as well as reducing shear stress concentration along the adhesive bonding interface.
  • FIG. 1 is a sectional elevation view of the landing collar with a wiper plug landed:
  • FIG. 2 is a detail of the top of FIG. 1;
  • FIG. 3 is a section view along lines 3 - 3 of FIG. 1.
  • the landing collar 10 is shown inside the tubular 12 , which can be a liner string or casing string component.
  • the landing collar 12 has a tubular body 14 and a central passage 16 .
  • a back-up ring 20 which helps retain o-ring seal 22 against shoulder 24 , adjacent the outer surface 26 of the body 14 (see FIG. 2).
  • Tubular body 14 further comprises a shoulder 28 on which rests ring insert 30 .
  • One or more pins 32 secure ring insert 30 to shoulder 28 .
  • Ring insert 30 has a top undulating surface 34 to mate with undulating surface 36 at the lower end 38 of wiper plug 40 . Upon contact of the undulating surfaces 34 and 36 a resistance to rotation is present in the wiper plug 40 as it and the landing collar 14 are being drilled out.
  • the preferred mode of attachment of the outer surface 26 to the inside wall 42 is to use a high temperature epoxy-based adhesive in an annular clearance gap of about 0.010 to 0.015 inches. This clearance can be maintained using spacers 44 during the bonding process. This insures a uniform adhesive layer between the outer surface 26 and the inside wall 42 .
  • Curing can be accomplished in two steps. First, there is a low temperature initial curing using temperatures in the range of about 57-63 degrees Centigrade followed by a high temperature post cure using temperatures in the range of approximately 174-180 degrees Centigrade to reduce thermal stresses on the bonding interface when the bonded assembly is cooled from final curing temperature to room temperature.
  • the body 14 employs a fiber reinforced, high temperature polymer-matrix composite material due to its good mechanical performance at high temperatures. For example, loading capacities in excess of 10,000 PSI can be withstood by the bonding system between the outer surface 26 and the inside wall 42 in a 7 inch casing. Seal 22 prevents leakage between these two surfaces, which are adhesive bonded together.
  • the body 14 can be glass or carbon fiber reinforced with the resin system being epoxy or phenolic having a glass transition temperature above 400F.
  • Body 14 can be manufactured by filament winding, wrapping or laminating with a wet process, a prepreg process or a resin transfer process. It is preferred to use the resin transfer process with a dry reinforcement pre-form because it provides a consistent dense material with a satisfactory fiber concentration.
  • the body 14 comprises an internal layer of a bi-directional material such as 4985 or 6781, which has an appropriate fiber ratio in the warp, and fill direction of about 62:38 or 51:49.
  • This material preferably comprises about a quarter of the wall thickness and is the innermost layer, which extends the length of body 14 .
  • This inner layer 46 provides sufficient tensile strength to inner surface 48 in the axial and hoop directions.
  • Overlaying layer 46 is another layer 50 , which comprises a preferably unidirectional material such as 6543 or 1543 having fibers aligned in the axial direction. Its purpose is to reduce thermal stresses created in the thick wall of body 14 during the curing process. Layer 50 also helps to reduce shear stress concentration along the bonded interface between inside wall 42 and outer surface 26 after the wiper plug 40 has landed and differential pressure is applied.
  • layer 46 is extended down to form part of that shoulder.
  • insert ring 30 which is preferably held in position with fiberglass pins 32 , improves the anti-rotation capabilities of the landing collar 10 . As previously stated, it is the insert ring 30 which has the undulating surface 34 which prevents rotation of the wiper plug 40 when its undulating surface 36 engages undulating surface 34 on insert ring 30 .
  • layer 46 extends beyond and forms a portion of shoulder 28 . This adds tensile strength in this key area.
  • fiberglass roving 52 is circumferentially wound between fabric layers in inner layer 46 and outer layer 50 adjacent shoulder 28 to give it further strength.
  • the specification for the roving 52 is E-glass 660-A5-675.
  • the preferred manner of application and layer thickness for the roving 52 is one layer winding about 0.010 inches thick.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A composite landing collar is disclosed which is preferably adhesive bonded to the liner string using a high temperature epoxy. The spacing during bonding is maintained within dimensional limits using spacers. The body features a bi-directional material, with an appropriate ratio in the warp and fills directions, for about a quarter of the wall thickness. A unidirectional material with the fibers axially aligned aids in reduction of thermal stresses in the thick wall during curing, as well as reducing shear stress concentration along the adhesive bonding interface.

Description

    FIELD OF THE INVENTION
  • The field of this invention relates to landing collars for wiper plugs used in cementing operations and more particularly to the construction thereof, using composite materials as well as the mounting technique in casing. [0001]
  • BACKGROUND OF THE INVENTION
  • Landing collars are used as an accessory inside liner casing strings for cementing operations. The landing collars must be removed at the conclusion of the cementing job, usually by drilling it out. Since drilling out takes time, prior solutions have emphasized the use of relatively soft metals such as aluminum. Aluminum still presented too much resistance to drilling out. More recently, U.S. Pat. No. 6,079,496 addressed the problem of shocking the formation when landing wiper plugs on landing collars. Although the focus of this patent was in shock reduction, it also suggested that drillability of landing collars could be improved by using non-metallic components. It further suggested use of engineering grade plastics, epoxies, or phenolics for many of the landing collar components. It further suggested use of a ceramic ball seat in combination with a non-metallic ball. This patent, which is being reissued to add claims to these features, did not detail construction techniques, which would allow bump pressure differentials of 10,000 PSI or more. It did not illustrate a mounting technique compatible with such high-pressure differentials. [0002]
  • One of the objectives of the present invention is to provide a landing collar that can be securely mounted in a manner which will eliminate or minimize leakage around its connection to the liner string while at the same time the landing collar possesses the structural strength to withstand bump pressures in excess of 10,000 PSI when the wiper plug lands. At the same time, the landing collar can effectively hold the wiper plug against rotation during drill out. Finally, the unique construction combines the feature of rapid drill out. Those skilled in the art will more readily understand these and other advantages of the present invention by a review of the description of the preferred embodiment, which appears below. [0003]
  • SUMMARY OF THE INVENTION
  • A composite landing collar is disclosed which is preferably adhesive bonded to the liner string using a high temperature epoxy. The spacing during bonding is maintained within dimensional limits using spacers. The body features a bi-directional material, with an appropriate ratio in the warp and fills directions, for about a quarter of the wall thickness. A unidirectional material with the fibers axially aligned aids in reduction of thermal stresses in the thick wall during curing, as well as reducing shear stress concentration along the adhesive bonding interface.[0004]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional elevation view of the landing collar with a wiper plug landed: [0005]
  • FIG. 2 is a detail of the top of FIG. 1; and [0006]
  • FIG. 3 is a section view along lines [0007] 3-3 of FIG. 1.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to FIG. 1, the landing collar [0008] 10 is shown inside the tubular 12, which can be a liner string or casing string component. The landing collar 12 has a tubular body 14 and a central passage 16. At the upper end 18 is a back-up ring 20 which helps retain o-ring seal 22 against shoulder 24, adjacent the outer surface 26 of the body 14 (see FIG. 2). Tubular body 14 further comprises a shoulder 28 on which rests ring insert 30. One or more pins 32 secure ring insert 30 to shoulder 28. Ring insert 30 has a top undulating surface 34 to mate with undulating surface 36 at the lower end 38 of wiper plug 40. Upon contact of the undulating surfaces 34 and 36 a resistance to rotation is present in the wiper plug 40 as it and the landing collar 14 are being drilled out.
  • The preferred mode of attachment of the outer surface [0009] 26 to the inside wall 42 is to use a high temperature epoxy-based adhesive in an annular clearance gap of about 0.010 to 0.015 inches. This clearance can be maintained using spacers 44 during the bonding process. This insures a uniform adhesive layer between the outer surface 26 and the inside wall 42. Curing can be accomplished in two steps. First, there is a low temperature initial curing using temperatures in the range of about 57-63 degrees Centigrade followed by a high temperature post cure using temperatures in the range of approximately 174-180 degrees Centigrade to reduce thermal stresses on the bonding interface when the bonded assembly is cooled from final curing temperature to room temperature.
  • The body [0010] 14 employs a fiber reinforced, high temperature polymer-matrix composite material due to its good mechanical performance at high temperatures. For example, loading capacities in excess of 10,000 PSI can be withstood by the bonding system between the outer surface 26 and the inside wall 42 in a 7 inch casing. Seal 22 prevents leakage between these two surfaces, which are adhesive bonded together.
  • The body [0011] 14 can be glass or carbon fiber reinforced with the resin system being epoxy or phenolic having a glass transition temperature above 400F. Body 14 can be manufactured by filament winding, wrapping or laminating with a wet process, a prepreg process or a resin transfer process. It is preferred to use the resin transfer process with a dry reinforcement pre-form because it provides a consistent dense material with a satisfactory fiber concentration.
  • In the preferred embodiment, the body [0012] 14 comprises an internal layer of a bi-directional material such as 4985 or 6781, which has an appropriate fiber ratio in the warp, and fill direction of about 62:38 or 51:49. This material preferably comprises about a quarter of the wall thickness and is the innermost layer, which extends the length of body 14. This inner layer 46 provides sufficient tensile strength to inner surface 48 in the axial and hoop directions. Overlaying layer 46 is another layer 50, which comprises a preferably unidirectional material such as 6543 or 1543 having fibers aligned in the axial direction. Its purpose is to reduce thermal stresses created in the thick wall of body 14 during the curing process. Layer 50 also helps to reduce shear stress concentration along the bonded interface between inside wall 42 and outer surface 26 after the wiper plug 40 has landed and differential pressure is applied.
  • To improve the strength of shoulder [0013] 28, layer 46 is extended down to form part of that shoulder. Additionally, insert ring 30, which is preferably held in position with fiberglass pins 32, improves the anti-rotation capabilities of the landing collar 10. As previously stated, it is the insert ring 30 which has the undulating surface 34 which prevents rotation of the wiper plug 40 when its undulating surface 36 engages undulating surface 34 on insert ring 30. To further add strength in this critical area, layer 46 extends beyond and forms a portion of shoulder 28. This adds tensile strength in this key area. Additionally, fiberglass roving 52 is circumferentially wound between fabric layers in inner layer 46 and outer layer 50 adjacent shoulder 28 to give it further strength. The specification for the roving 52 is E-glass 660-A5-675. The preferred manner of application and layer thickness for the roving 52 is one layer winding about 0.010 inches thick.
  • Those skilled in the art will appreciate that the disclosed invention will allow for large bump pressures, in excess of 10,000 PSI while maintaining sealing integrity against the casing inside wall [0014] 42. Drill-out or mill-out time is reduced by the disclosed construction, which further includes the anti-rotation feature of mating undulating surfaces 34 and 36. These and other advantages of the invention can be determined from the claims below. The above description of the preferred embodiment is merely illustrative of the optimal way of practicing the invention and various modifications in form, size, material or placement of the components can be made within the scope of the invention defined by the claims below.

Claims (17)

We claim:
1. A landing collar for down hole use in a tubular, comprising:
a substantially non-metallic body, further comprising a flow path there-through, said flow path further comprising a shoulder surrounding it for selective reception of an object and obstruction of the tubular;
said body secured to the tubular without threads.
2. The collar of claim 1, wherein:
said body is affixed to the tubular with adhesive.
3. The collar of claim 2, wherein:
said adhesive is a high temperature epoxy based material placed in a clearance between said body and the tubular.
4. The collar of claim 3, wherein:
said clearance is maintained by at least one spacer.
5. The collar of claim 4, wherein:
said adhesive is maintained at two different temperatures during curing; and said gap is in the order of about 0.010 to 0.015 inches.
6. The collar of claim 2, wherein:
said body further comprises an inner and an outer layer made of a fiber reinforced material, said inner layer extending beyond said shoulder to provide strength in the axial and hoop directions when an object lands on said shoulder, while said outer layer reduces thermal stresses during curing of said adhesive.
7. The collar of claim 6, wherein:
said inner layer further comprises a fiber ratio in the warp and fill directions in the range of at least 1:1; and
said outer layer comprises a substantially unidirectional material having its fibers substantially longitudinally aligned on said body.
8. The collar of claim 7, wherein:
said inner and outer layers are made of an epoxy or phenolic material with a glass transition temperature of greater than 400 degrees Fahrenheit.
9. The collar of claim 8, wherein:
said inner and outer layers, in the region of said shoulder, further comprise wound roving.
10. The collar of claim 9, wherein:
said inner layer represents about a quarter of the thickness of said body;
said roving is made of fiber glass; and
said inner and outer layers are made using a resin transfer process with a dry reinforcement pre-form.
11. The collar of claim 2, further comprising:
a rotation locking feature on said shoulder to engage the object in such a manner as to prevent its rotation as said body is drilled or milled out.
12. The collar of claim 11, wherein:
said rotation locking feature further comprises an undulation on said shoulder.
13. The collar of claim 11, wherein:
said rotation locking feature further comprises an insert ring supported by said shoulder and having an undulating top surface.
14. The collar of claim 13, wherein:
said insert ring is pinned to said body by at least one fiberglass pin.
15. The collar of claim 1, wherein:
said shoulder can withstand differential pressures of up to about 10,000 PSI acting on an object supported on it.
16. The collar of claim 6, wherein:
said shoulder can withstand differential pressures of up to about 10,000 PSI acting on an object supported on it.
17. The collar of claim 11, wherein:
said shoulder can withstand differential pressures of up to about 10,000 PSI acting on an object supported on it.
US09/771,745 2001-01-29 2001-01-29 Composite landing collar for cementing operation Expired - Lifetime US6457517B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/771,745 US6457517B1 (en) 2001-01-29 2001-01-29 Composite landing collar for cementing operation
AU11939/02A AU785227B2 (en) 2001-01-29 2002-01-18 Composite landing collar for cementing operation
GB0201484A GB2371576B (en) 2001-01-29 2002-01-23 Composite landing collar for cementing operation
NO20020433A NO321804B1 (en) 2001-01-29 2002-01-28 Composite landing collar for cementing operations
CA002370006A CA2370006C (en) 2001-01-29 2002-01-28 Composite landing collar for cementing operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/771,745 US6457517B1 (en) 2001-01-29 2001-01-29 Composite landing collar for cementing operation

Publications (2)

Publication Number Publication Date
US20020100583A1 true US20020100583A1 (en) 2002-08-01
US6457517B1 US6457517B1 (en) 2002-10-01

Family

ID=25092840

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/771,745 Expired - Lifetime US6457517B1 (en) 2001-01-29 2001-01-29 Composite landing collar for cementing operation

Country Status (5)

Country Link
US (1) US6457517B1 (en)
AU (1) AU785227B2 (en)
CA (1) CA2370006C (en)
GB (1) GB2371576B (en)
NO (1) NO321804B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120186828A1 (en) * 2011-01-25 2012-07-26 Halliburton Energy Services, Inc. Composite Bow Centralizer

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090308614A1 (en) * 2008-06-11 2009-12-17 Sanchez James S Coated extrudable ball seats
US8505624B2 (en) 2010-12-09 2013-08-13 Halliburton Energy Services, Inc. Integral pull-through centralizer
US8833446B2 (en) 2011-01-25 2014-09-16 Halliburton Energy Services, Inc. Composite bow centralizer
US8668018B2 (en) 2011-03-10 2014-03-11 Baker Hughes Incorporated Selective dart system for actuating downhole tools and methods of using same
US8668006B2 (en) 2011-04-13 2014-03-11 Baker Hughes Incorporated Ball seat having ball support member
US8573296B2 (en) 2011-04-25 2013-11-05 Halliburton Energy Services, Inc. Limit collar
US8479808B2 (en) 2011-06-01 2013-07-09 Baker Hughes Incorporated Downhole tools having radially expandable seat member
US9145758B2 (en) 2011-06-09 2015-09-29 Baker Hughes Incorporated Sleeved ball seat
US9074430B2 (en) 2011-09-20 2015-07-07 Halliburton Energy Services, Inc. Composite limit collar
US9004091B2 (en) 2011-12-08 2015-04-14 Baker Hughes Incorporated Shape-memory apparatuses for restricting fluid flow through a conduit and methods of using same
US9016388B2 (en) 2012-02-03 2015-04-28 Baker Hughes Incorporated Wiper plug elements and methods of stimulating a wellbore environment
US9194198B2 (en) 2013-02-11 2015-11-24 Baker Hughes Incorporated Runnable member catcher, system and method of removing same
US10648272B2 (en) * 2016-10-26 2020-05-12 Weatherford Technology Holdings, Llc Casing floatation system with latch-in-plugs
US10954740B2 (en) 2016-10-26 2021-03-23 Weatherford Netherlands, B.V. Top plug with transitionable seal
US11634972B2 (en) 2021-02-12 2023-04-25 Weatherford Technology Holdings, Llc Catcher for dropped objects
US11976533B1 (en) * 2022-12-22 2024-05-07 Halliburton Energy Services, Inc. Externally threadless float equipment for cementing operations

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2572309A (en) * 1948-08-09 1951-10-23 Cicero C Brown Cementing plug
US3420309A (en) * 1963-11-26 1969-01-07 John R Beylik Method of lining water wells and apparatus therefor
US4510994A (en) * 1984-04-06 1985-04-16 Camco, Incorporated Pump out sub
US5095980A (en) 1991-02-15 1992-03-17 Halliburton Company Non-rotating cementing plug with molded inserts
US5165473A (en) * 1991-06-17 1992-11-24 Bode Robert E Positive stop collar
US5413172A (en) 1992-11-16 1995-05-09 Halliburton Company Sub-surface release plug assembly with non-metallic components
US5390736A (en) * 1992-12-22 1995-02-21 Weatherford/Lamb, Inc. Anti-rotation devices for use with well tools
US6056053A (en) * 1995-04-26 2000-05-02 Weatherford/Lamb, Inc. Cementing systems for wellbores
US6082451A (en) * 1995-04-26 2000-07-04 Weatherford/Lamb, Inc. Wellbore shoe joints and cementing systems
AU705448B2 (en) * 1995-08-03 1999-05-20 Svenska Borr Ab Drilling method and casing shoe
US5842517A (en) * 1997-05-02 1998-12-01 Davis-Lynch, Inc. Anti-rotational cementing apparatus
US6079496A (en) 1997-12-04 2000-06-27 Baker Hughes Incorporated Reduced-shock landing collar
CA2239748C (en) * 1998-06-05 2003-02-11 Top-Co Industries Ltd. Cementing plug
WO2001009480A1 (en) 1999-08-03 2001-02-08 Latiolais, Burney, J., Jr. Anti-rotation device for use with well tools

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120186828A1 (en) * 2011-01-25 2012-07-26 Halliburton Energy Services, Inc. Composite Bow Centralizer
US8678096B2 (en) * 2011-01-25 2014-03-25 Halliburton Energy Services, Inc. Composite bow centralizer

Also Published As

Publication number Publication date
GB2371576B (en) 2003-08-20
AU1193902A (en) 2002-08-01
NO321804B1 (en) 2006-07-03
CA2370006A1 (en) 2002-07-29
US6457517B1 (en) 2002-10-01
AU785227B2 (en) 2006-11-23
GB0201484D0 (en) 2002-03-13
GB2371576A (en) 2002-07-31
NO20020433L (en) 2002-07-30
CA2370006C (en) 2005-06-14
NO20020433D0 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
US6457517B1 (en) Composite landing collar for cementing operation
US7337841B2 (en) Casing comprising stress-absorbing materials and associated methods of use
US5398975A (en) Composite threaded pipe connectors and method
CA2653725C (en) Perforating methods and devices for high wellbore pressure applications
US9291007B2 (en) Floating apparatus and method for fabricating the apparatus
EP0433686B1 (en) Fibre-reinforced plastics pipe with threaded end joint section
US6719058B2 (en) Multiple seal design for composite risers and tubing for offshore applications
US20110284153A1 (en) Method of making a molded composite mandrel
CA1201985A (en) Tubular member
AU2012389797B2 (en) Composite wellbore ball valve
US4603071A (en) Molded-in composite bushings
US4545837A (en) Molded-in composite bushings
US20050067037A1 (en) Collapse resistant composite riser
US4693313A (en) Insulated wellbore casing
US6863279B2 (en) Redundant seal design for composite risers with metal liners
AU2014409598B2 (en) Sealed downhole equipment and method for fabricating the equipment
JPH0261680B2 (en)
US3796449A (en) Reinforced flange for plastic pipe
NO20170337A1 (en) Sealed downhole equipment and method for fabricating the equipment
JPS63251666A (en) Piston rod assembly and manufacture thereof
WO2005036042A1 (en) Method and joint for connecting a metal part
GB2038977A (en) Joining fibre-reinforced tubular structures

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOODSON, JIM;SMITH, SIDNEY K., JR.;ZUTZ, PAUL;AND OTHERS;REEL/FRAME:011710/0807;SIGNING DATES FROM 20010402 TO 20010405

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12