US20020098936A1 - Toroidal transmission with a starting clutch - Google Patents

Toroidal transmission with a starting clutch Download PDF

Info

Publication number
US20020098936A1
US20020098936A1 US09/764,233 US76423301A US2002098936A1 US 20020098936 A1 US20020098936 A1 US 20020098936A1 US 76423301 A US76423301 A US 76423301A US 2002098936 A1 US2002098936 A1 US 2002098936A1
Authority
US
United States
Prior art keywords
input
members
output
continuously
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/764,233
Other versions
US6422966B1 (en
Inventor
Raymond Haka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US09/764,233 priority Critical patent/US6422966B1/en
Assigned to GENERAL MOTORS CORPORATION reassignment GENERAL MOTORS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAKA, RAYMOND JAMES
Priority to DE10201687A priority patent/DE10201687B4/en
Application granted granted Critical
Publication of US6422966B1 publication Critical patent/US6422966B1/en
Publication of US20020098936A1 publication Critical patent/US20020098936A1/en
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL MOTORS CORPORATION
Assigned to UNITED STATES DEPARTMENT OF THE TREASURY reassignment UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES, CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES reassignment CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY Assignors: UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES, CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES
Assigned to UNITED STATES DEPARTMENT OF THE TREASURY reassignment UNITED STATES DEPARTMENT OF THE TREASURY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to UAW RETIREE MEDICAL BENEFITS TRUST reassignment UAW RETIREE MEDICAL BENEFITS TRUST SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UAW RETIREE MEDICAL BENEFITS TRUST
Assigned to GM GLOBAL TECHNOLOGY OPERATIONS, INC. reassignment GM GLOBAL TECHNOLOGY OPERATIONS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES DEPARTMENT OF THE TREASURY
Assigned to WILMINGTON TRUST COMPANY reassignment WILMINGTON TRUST COMPANY SECURITY AGREEMENT Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Assigned to GM Global Technology Operations LLC reassignment GM Global Technology Operations LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges

Definitions

  • This invention relates to continuously variable transmission and more particularly to starting devices for toroidal transmissions.
  • Toroidal transmissions are either half toroidal or full toroidal traction drives which typically utilize dual cavities for maximum efficiency.
  • the dual cavity units have two input discs and two output discs each having a toroidal or partial toroidal shape.
  • the output discs are typically located centrally between the input discs.
  • Each input disk is engaged with a respective output disc through a plurality of traction rollers. The angle of the rollers is varied to change the drive ratio between the input and output discs.
  • the dual cavity continuously variable unit (CVU) requires either a countershaft or a split torque arrangement to transmit power from the center (output) discs.
  • Half toroidal CVUs can use an input starting device, however, full toroidal CVU employ a geared neutral arrangement to effect vehicle launch.
  • a geared neutral arrangement is shown in U.S. Pat. No. 5,607,372 issued to Lohr on Mar. 4, 1997.
  • This patent describes a half toroidal CVU having a coaxial split torque arrangement having a planetary carrier and two sun gear members.
  • the carrier is the CVU input member and one of the sun gears is driven by the CVU output member.
  • the other sun gear (output) is drivingly connected to a planetary gear assembly.
  • CVU continuously variable transmission
  • a split torque planetary gear set is combined with a full toroidal CVU to provide a forward variable ratio range and a reverse fixed ratio.
  • the CVU has input members directly driven by a prime mover and the planetary gear set has a planet carrier member driven by the prime mover and a sun gear member driven by the output member of the CVU.
  • the planetary gear set has two ring gear members that rotate in opposite directions (relative to each other) when the CVU is set at a maximum underdrive ratio.
  • a selectively operable mechanical clutch is disposed between the ring gear members and a selectively engageable starting clutch to provide a forward output and a reverse output from the CVU to the starting clutch.
  • the ratio of the sun gear member to one ring gear member establishes a first directional output between the prime mover and a transmission output shaft driven by the starting clutch, and the ratio between the sun gear member and the other ring gear member establishes a second directional output, opposite the first directional output, between the prime mover and the transmission output shaft.
  • the CVU ratio remains constant during reverse operation and is varied during forward operation.
  • the CVU is maintained at a maximum underdrive ratio during reverse operation and varied between the maximum underdrive ratio and a maximum overdrive ratio during forward operation.
  • the vehicle speed in forward operation is changed by either or both CVU ratio and prime mover speed, and the vehicle speed in reverse operation is changed by prime mover speed only.
  • the starting clutch is engaged to launch the vehicle in both the forward and the reverse directions.
  • This invention uses a CVU and a coaxial planetary gear set with a “split torque arrangement”.
  • a first ring gear member to sun gear member ratio is selected to provide the desired maximum overdrive ratio in the backwards direction (opposite engine rotation) of the CVU. This will increase the transmission overall ratio to approximately twice the CVU overall ratio, which will greatly improve the ability of the starting clutch to launch the vehicle at maximum underdrive. Selecting a backwards output direction of rotation, for forward drive operation, allows a design with minimum content and higher efficiency than the forward output designs.
  • Reverse is achieved by adding a second ring gear member to provide a speed ratio equal in magnitude (with opposite direction) to the lowest forward CVT speed ratio. When the torque is output through the second ring gear member, the transmission could be used as a geared neutral CVT, however, the torque capacity and efficiency will be lower than the path provided by the first ring member.
  • the backward transmission output shaft rotation requires a “backwards” hypoid to provide a forward vehicle direction of travel.
  • the hypoid gears used on the front axle of today's four wheel drive vehicles are generally designed to produce maximum efficiency with the opposite “prop shaft” rotation. Therefore, placing a “front” hypoid in the rear will provide the correct gear geometry for maximum efficiency with reverse prop shaft rotation; however, the wheel direction of rotation will not be correct.
  • the front hypoid will need to be rotated 180 degrees about the prop shaft (i.e. installed upside down) to provide the correct wheel direction of rotation.
  • the proposed gear arrangement minimizes spin losses by using a manual transmission type dog clutch (with synchronizers) to eliminate the cost and spin losses of a second starting clutch.
  • the synchronizers will only have to accelerate the inertia of the inner clutch plates and hub when shifting between forward and reverse. This inertia is significantly lower than the inertia of the driven disk and input shaft of a conventional manual transmission.
  • the synchronizer can be activated by a conventional mechanical mechanism that is attached to the PRNDL lever, not shown, for minimum cost, or it can be activated hydraulically by any of the well-known electro-hydraulic control systems.
  • FIG. 1 is a schematic representation of a powertrain having a transmission incorporating the present invention.
  • FIG. 2 is a speed ratio plot of a CVT incorporating the present invention.
  • a powertrain 10 has a conventional internal combustion engine 12 , a spring vibration damper 14 , a continuously variable transmission (CVT) 16 , and a final drive gearing mechanism 18 .
  • the engine 12 is a throttle controlled device that operates within a speed range in a conventional manner.
  • the spring damper 14 is a conventional device that effectively eliminates or significantly reduces the torsional impulses of the engine 12 to prevent any noticeable vibrations at an input shaft 42 .
  • the final drive gearing mechanism 18 is a conventional gear mechanism.
  • the CVT 16 includes a full toroidal continuously variable unit (CVU) 20 , a planetary gear arrangement 22 , a selectively operable mechanical clutch 24 and a selectively engageable fluid operated friction clutch 26 .
  • the CVU 16 has two input members 30 and 32 , two output members 34 and 36 , and a plurality of equiangularly spaced traction rollers 38 and 40 .
  • the rollers 38 are maintained in rolling contact with toroidal surfaces on the input member 30 and the output member 34 .
  • the traction rollers 40 are maintained in rolling contact with the input member 32 and the output member 36 .
  • This type of CVU is well-known.
  • the angle of the traction rollers relative to the toroidal center of the torus formed by the input member 30 and output member 34 and the torus formed by the input member 32 and the output member 36 determines the drive ratio between the input shaft 42 , connected between the damper 14 and the input members 30 , 32 and a CVU output shaft 44 connected with the output members 34 , 36 .
  • the output members 34 , 36 are secured together or otherwise formed integrally.
  • the planetary gear set 22 includes a sun gear member 46 , a pair of ring gear members 48 , 50 and a planet carrier assembly member 52 .
  • the planet carrier assembly member 52 has a carrier 60 on which is rotatably supported a plurality of pinion gear members 54 , 56 , and 58 .
  • the pinion gear members 54 mesh with the sun gear member 46 , the pinion gear members 56 , and the pinion gear members 58 .
  • the pinion gear members 56 mesh with the ring gear member 50 and the pinion gear members 58 mesh with the ring gear member 48 .
  • the intermeshing pinion gear members 54 , 56 , and 58 are arranged in equiangularly spaced groups of three or four in a well-known manner.
  • the carrier 60 is continuously connected for common rotation with the input CVT shaft 42 and the input members 30 and 32 .
  • the sun gear member 46 is continuously connected for common rotation with the CVU output shaft 44 .
  • the ring gear member 48 is continuously connected for common rotation with a reverse input member 62 of the mechanical clutch 24 and the ring gear member 50 is continuously connected for common rotation with a forward input member 64 of the mechanical clutch 24 .
  • the mechanical clutch 24 has a conventional manual transmission type dog clutch and synchronizer assembly 66 that is connected for common rotation with a clutch input member 68 of the friction clutch 26 . As is well-known, the synchronizer assembly will permit the connection of either the reverse input member 62 or the forward input member 64 with the clutch input member 68 .
  • the friction clutch 26 includes the input member 68 , a first plurality of friction members 70 , a second plurality of friction members 72 , a hub 74 , an apply piston 76 and a backup plate 78 .
  • the friction members 70 are splined to the clutch input member 68 .
  • the friction members 72 and the backup plate 78 are splined to the hub 74 .
  • the apply piston 76 is slidably disposed in the hub 74 .
  • the hub 74 is drivingly connected with a transmission output shaft 80 that is connected with the final drive gearing 18 .
  • the piston 76 and the hub 74 cooperate to form an apply chamber 82 which, when pressurized will cause the piston to enforce frictional engagement of the friction members 70 and 72 to establish a drive relation between the clutch input member 68 and the transmission output shaft 80 and therefore between the engine 12 and the final drive gearing 18 .
  • the planetary gearing 22 provides both the split torque connection and the speed ratio between the input shaft 42 , the CVU 20 and the output shaft clutch input member 68 .
  • the friction clutch 26 provides the starting or launch function for the vehicle, not shown, in which the powertrain 10 is incorporated.
  • the carrier 60 and the input members 30 and 32 are driven forwardly (engine output direction) continuously by the engine 12 .
  • the sun gear member 46 is driven backwardly (opposite engine direction.
  • the ratio of the number of teeth on the ring gear member 48 and the sun gear member 46 is 1.650 and the ratio of the number of teeth on the ring gear member 50 to the sun gear member 48 is 1.214.
  • the maximum underdrive speed ratio (output speed/input speed) of the CVU 20 is 0.40 and the maximum overdrive speed ratio is 2.40.
  • the ring gear member 50 will rotate opposite the sun gear member 46 to provide a reverse drive ratio at the member 62 at a value of 0.15.
  • the ring gear member 20 and the member 64 will rotate opposite the sun gear member 46 in a range of values between 0.15 (underdrive) and 1.80 (overdrive).
  • the clutch 26 disengaged, the output shaft 80 will be disconnected from engine power.
  • the clutch 26 is engaged in a controlled manner by a conventional clutch engagement system that generally includes either an electronic control or a manual control.
  • the ratio of the CVU 20 is controlled by a conventional electronic control that includes a conventional programmable digital computer and a plurality of input signals such as speed, ratio set, ratio desired, throttle setting, and drive condition selected.
  • a conventional electronic control that includes a conventional programmable digital computer and a plurality of input signals such as speed, ratio set, ratio desired, throttle setting, and drive condition selected.
  • the CVU 20 will be set at the maximum underdrive condition and remain at that setting throughout the entire engine speed range as shown at point 82 of the speed plot in FIG. 2.
  • the ratio of the CVU 20 will also be set at the maximum underdrive condition.
  • the operator actuates the throttle either the CVU 20 ratio can change or the engine speed can change or both can change.
  • the overall ratio of the CVT 16 will operate along the line 84 between the points 86 and 88 as shown in FIG. 2.
  • the output of the CVU 20 is controlled along the line 90 between the points 92 and 94 of the speed plot in FIG. 2 and with the present embodiment the input/output ratio varies from ⁇ 0.40 to ⁇ 2.40.
  • the mechanical input to the CVU 20 is represented by the vector 96 and has an end point 98 which is unity or +1.0.
  • the “Y” axis of the plot represents the speed relationship between the members of the planetary gear set 22
  • the “X” axis represents the ratio values of the members of the planetary gear set 22 .
  • the point 100 represents the carrier assembly member 52
  • the point 102 represents the ring gear member 48
  • the point 104 represents the ring gear member 50
  • the point 106 represents the sun gear member 46 .
  • the distances along the “Y” axis are determined by the tooth ratios of the ring gear members to the sun gear member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

A powertrain has an engine, a continuously variable transmission, (CVT) a starting mechanism, and a final drive gearing. The CVT includes a continuously variable unit (CVU) in the form of a full toroidal traction unit, a planetary gear arrangement, and a pair of mechanical clutches that are connectable with the starting mechanism through a synchronizing assembly. The planetary gearing arrangement provides both a forward and reverse ratio path and a torque splitting or summing function.

Description

    TECHNICAL FIELD
  • This invention relates to continuously variable transmission and more particularly to starting devices for toroidal transmissions. [0001]
  • BACKGROUND OF THE INVENTION
  • Toroidal transmissions are either half toroidal or full toroidal traction drives which typically utilize dual cavities for maximum efficiency. The dual cavity units have two input discs and two output discs each having a toroidal or partial toroidal shape. The output discs are typically located centrally between the input discs. Each input disk is engaged with a respective output disc through a plurality of traction rollers. The angle of the rollers is varied to change the drive ratio between the input and output discs. The dual cavity continuously variable unit (CVU) requires either a countershaft or a split torque arrangement to transmit power from the center (output) discs. [0002]
  • Half toroidal CVUs can use an input starting device, however, full toroidal CVU employ a geared neutral arrangement to effect vehicle launch. One example of a geared neutral arrangement is shown in U.S. Pat. No. 5,607,372 issued to Lohr on Mar. 4, 1997. This patent describes a half toroidal CVU having a coaxial split torque arrangement having a planetary carrier and two sun gear members. The carrier is the CVU input member and one of the sun gears is driven by the CVU output member. The other sun gear (output) is drivingly connected to a planetary gear assembly. By changing the roller angle in one direction, from neutral, a forward output is achieved and by changing the roller angle in the other direction, from neutral, a reverse output is achieved. This avoids the need for a starting device. [0003]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide an improved continuously variable transmission (CVT) having a full toroidal CVU and an output starting clutch. [0004]
  • In one aspect of the present invention, a split torque planetary gear set is combined with a full toroidal CVU to provide a forward variable ratio range and a reverse fixed ratio. In another aspect of the present invention, the CVU has input members directly driven by a prime mover and the planetary gear set has a planet carrier member driven by the prime mover and a sun gear member driven by the output member of the CVU. In another aspect of the present invention, the planetary gear set has two ring gear members that rotate in opposite directions (relative to each other) when the CVU is set at a maximum underdrive ratio. [0005]
  • In yet another aspect of the present invention, a selectively operable mechanical clutch is disposed between the ring gear members and a selectively engageable starting clutch to provide a forward output and a reverse output from the CVU to the starting clutch. In still another aspect of the present invention, the ratio of the sun gear member to one ring gear member establishes a first directional output between the prime mover and a transmission output shaft driven by the starting clutch, and the ratio between the sun gear member and the other ring gear member establishes a second directional output, opposite the first directional output, between the prime mover and the transmission output shaft. [0006]
  • In a further aspect of the present invention, the CVU ratio remains constant during reverse operation and is varied during forward operation. In a yet further aspect of the present invention, the CVU is maintained at a maximum underdrive ratio during reverse operation and varied between the maximum underdrive ratio and a maximum overdrive ratio during forward operation. In a still further aspect of the present invention, the vehicle speed in forward operation is changed by either or both CVU ratio and prime mover speed, and the vehicle speed in reverse operation is changed by prime mover speed only. In a yet still further aspect of the present invention, the starting clutch is engaged to launch the vehicle in both the forward and the reverse directions. [0007]
  • This invention uses a CVU and a coaxial planetary gear set with a “split torque arrangement”. A first ring gear member to sun gear member ratio is selected to provide the desired maximum overdrive ratio in the backwards direction (opposite engine rotation) of the CVU. This will increase the transmission overall ratio to approximately twice the CVU overall ratio, which will greatly improve the ability of the starting clutch to launch the vehicle at maximum underdrive. Selecting a backwards output direction of rotation, for forward drive operation, allows a design with minimum content and higher efficiency than the forward output designs. Reverse is achieved by adding a second ring gear member to provide a speed ratio equal in magnitude (with opposite direction) to the lowest forward CVT speed ratio. When the torque is output through the second ring gear member, the transmission could be used as a geared neutral CVT, however, the torque capacity and efficiency will be lower than the path provided by the first ring member. [0008]
  • The backward transmission output shaft rotation requires a “backwards” hypoid to provide a forward vehicle direction of travel. The hypoid gears used on the front axle of today's four wheel drive vehicles are generally designed to produce maximum efficiency with the opposite “prop shaft” rotation. Therefore, placing a “front” hypoid in the rear will provide the correct gear geometry for maximum efficiency with reverse prop shaft rotation; however, the wheel direction of rotation will not be correct. The front hypoid will need to be rotated 180 degrees about the prop shaft (i.e. installed upside down) to provide the correct wheel direction of rotation. [0009]
  • The proposed gear arrangement minimizes spin losses by using a manual transmission type dog clutch (with synchronizers) to eliminate the cost and spin losses of a second starting clutch. The synchronizers will only have to accelerate the inertia of the inner clutch plates and hub when shifting between forward and reverse. This inertia is significantly lower than the inertia of the driven disk and input shaft of a conventional manual transmission. The synchronizer can be activated by a conventional mechanical mechanism that is attached to the PRNDL lever, not shown, for minimum cost, or it can be activated hydraulically by any of the well-known electro-hydraulic control systems.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of a powertrain having a transmission incorporating the present invention. [0011]
  • FIG. 2 is a speed ratio plot of a CVT incorporating the present invention.[0012]
  • DESCRIPTION OF AN EXEMPLARY EMBODIMENT
  • A [0013] powertrain 10 has a conventional internal combustion engine 12, a spring vibration damper 14, a continuously variable transmission (CVT) 16, and a final drive gearing mechanism 18. The engine 12 is a throttle controlled device that operates within a speed range in a conventional manner. The spring damper 14 is a conventional device that effectively eliminates or significantly reduces the torsional impulses of the engine 12 to prevent any noticeable vibrations at an input shaft 42. The final drive gearing mechanism 18 is a conventional gear mechanism. The CVT 16 includes a full toroidal continuously variable unit (CVU) 20, a planetary gear arrangement 22, a selectively operable mechanical clutch 24 and a selectively engageable fluid operated friction clutch 26.
  • The CVU [0014] 16 has two input members 30 and 32, two output members 34 and 36, and a plurality of equiangularly spaced traction rollers 38 and 40. The rollers 38 are maintained in rolling contact with toroidal surfaces on the input member 30 and the output member 34. The traction rollers 40 are maintained in rolling contact with the input member 32 and the output member 36. This type of CVU is well-known. The angle of the traction rollers relative to the toroidal center of the torus formed by the input member 30 and output member 34 and the torus formed by the input member 32 and the output member 36 determines the drive ratio between the input shaft 42, connected between the damper 14 and the input members 30, 32 and a CVU output shaft 44 connected with the output members 34, 36. The output members 34, 36 are secured together or otherwise formed integrally.
  • The [0015] planetary gear set 22 includes a sun gear member 46, a pair of ring gear members 48, 50 and a planet carrier assembly member 52. The planet carrier assembly member 52 has a carrier 60 on which is rotatably supported a plurality of pinion gear members 54, 56, and 58. Additionally, the pinion gear members 54 mesh with the sun gear member 46, the pinion gear members 56, and the pinion gear members 58. The pinion gear members 56 mesh with the ring gear member 50 and the pinion gear members 58 mesh with the ring gear member 48. The intermeshing pinion gear members 54, 56, and 58 are arranged in equiangularly spaced groups of three or four in a well-known manner.
  • The [0016] carrier 60 is continuously connected for common rotation with the input CVT shaft 42 and the input members 30 and 32. The sun gear member 46 is continuously connected for common rotation with the CVU output shaft 44. The ring gear member 48 is continuously connected for common rotation with a reverse input member 62 of the mechanical clutch 24 and the ring gear member 50 is continuously connected for common rotation with a forward input member 64 of the mechanical clutch 24. The mechanical clutch 24 has a conventional manual transmission type dog clutch and synchronizer assembly 66 that is connected for common rotation with a clutch input member 68 of the friction clutch 26. As is well-known, the synchronizer assembly will permit the connection of either the reverse input member 62 or the forward input member 64 with the clutch input member 68.
  • The [0017] friction clutch 26 includes the input member 68, a first plurality of friction members 70, a second plurality of friction members 72, a hub 74, an apply piston 76 and a backup plate 78. The friction members 70 are splined to the clutch input member 68. The friction members 72 and the backup plate 78 are splined to the hub 74. The apply piston 76 is slidably disposed in the hub 74. The hub 74 is drivingly connected with a transmission output shaft 80 that is connected with the final drive gearing 18. The piston 76 and the hub 74 cooperate to form an apply chamber 82 which, when pressurized will cause the piston to enforce frictional engagement of the friction members 70 and 72 to establish a drive relation between the clutch input member 68 and the transmission output shaft 80 and therefore between the engine 12 and the final drive gearing 18. The planetary gearing 22 provides both the split torque connection and the speed ratio between the input shaft 42, the CVU 20 and the output shaft clutch input member 68. The friction clutch 26 provides the starting or launch function for the vehicle, not shown, in which the powertrain 10 is incorporated.
  • During operation, the [0018] carrier 60 and the input members 30 and 32 are driven forwardly (engine output direction) continuously by the engine 12. The sun gear member 46 is driven backwardly (opposite engine direction. For example, the ratio of the number of teeth on the ring gear member 48 and the sun gear member 46 is 1.650 and the ratio of the number of teeth on the ring gear member 50 to the sun gear member 48 is 1.214. The maximum underdrive speed ratio (output speed/input speed) of the CVU 20 is 0.40 and the maximum overdrive speed ratio is 2.40. At the maximum underdrive setting, the ring gear member 50 will rotate opposite the sun gear member 46 to provide a reverse drive ratio at the member 62 at a value of 0.15. Throughout the ratio spectrum of the CVU 20, the ring gear member 20 and the member 64 will rotate opposite the sun gear member 46 in a range of values between 0.15 (underdrive) and 1.80 (overdrive). With the clutch 26 disengaged, the output shaft 80 will be disconnected from engine power. To launch the vehicle in either forward or reverse, the clutch 26 is engaged in a controlled manner by a conventional clutch engagement system that generally includes either an electronic control or a manual control.
  • The ratio of the [0019] CVU 20 is controlled by a conventional electronic control that includes a conventional programmable digital computer and a plurality of input signals such as speed, ratio set, ratio desired, throttle setting, and drive condition selected. When the reverse drive is selected by the operator, the CVU 20 will be set at the maximum underdrive condition and remain at that setting throughout the entire engine speed range as shown at point 82 of the speed plot in FIG. 2. When the operator selects the forward drive condition, the ratio of the CVU 20 will also be set at the maximum underdrive condition. However, when the operator actuates the throttle, either the CVU 20 ratio can change or the engine speed can change or both can change. The overall ratio of the CVT 16 will operate along the line 84 between the points 86 and 88 as shown in FIG. 2. The output of the CVU 20 is controlled along the line 90 between the points 92 and 94 of the speed plot in FIG. 2 and with the present embodiment the input/output ratio varies from −0.40 to −2.40. The mechanical input to the CVU 20 is represented by the vector 96 and has an end point 98 which is unity or +1.0. The “Y” axis of the plot represents the speed relationship between the members of the planetary gear set 22, and the “X” axis represents the ratio values of the members of the planetary gear set 22. The point 100 represents the carrier assembly member 52, the point 102 represents the ring gear member 48, the point 104 represents the ring gear member 50, and the point 106 represents the sun gear member 46. The distances along the “Y” axis are determined by the tooth ratios of the ring gear members to the sun gear member.

Claims (2)

1. A powertrain including a continuously variable transmission comprising:
an engine;
a transmission input shaft continuously connected with said engine;
a transmission output shaft;
a continuously variable unit having spaced input members, adjacent output members intermediate said input members and cooperating therewith to form a pair of tori, a plurality of traction rollers in each tori frictionally engaging respective ones of said input and output members, said input members being continuously drivingly connected with said transmission input shaft;
a planetary gear arrangement having a planet carrier assembly member continuously connected with said transmission input shaft and said input members, a sun gear member operatively connected with said planet carrier assembly member and continuously connected with said output members, a first ring gear member operatively connected with said planet carrier assembly member, and a second ring gear member operatively connected with said planet carrier assembly member;
a selectively operable mechanical clutch mechanism individually connecting said ring gear members with a friction clutch input member; and
a selectively engageable fluid operated friction clutch mechanism connecting said friction clutch input member with said transmission output shaft.
2. A powertrain including a continuously variable comprising:
an engine having an engine output shaft;
a vibration damper continuously connected with said engine output shaft;
a transmission input shaft continuously connected with said damper for co-rotation with said engine;
a transmission output shaft;
a continuously variable traction drive mechanism having an input member continuously drivingly connected with said transmission input shaft, and output member, and traction rollers frictionally drivingly connecting said input member and said output member;
a planetary gear arrangement having a sun gear member continuously connected with said output member, a planet carrier assembly member continuously connected with said transmission input shaft and including a plurality of pinion gear member rotatably mounted thereon, a forward ring gear member, and a reverse ring gear member, said sun gear member being drivingly connected with said ring gear members through said pinion gear members;
a selectively engageable synchronizer clutch mechanism having a first member continuously connected with forward ring gear member, a second member continuously connected with said reverse ring gear member, and a synchronizer member selectively connectable with said first and second members; and
a selectively engageable fluid operated friction clutch mechanism having a clutch input member continuously drivingly connected with said synchronizer member, a clutch output member continuously connected with said transmission output shaft, and a plurality of friction discs selectively interconnecting said clutch input and output members.
US09/764,233 2001-01-19 2001-01-19 Toroidal transmission with a starting clutch Expired - Lifetime US6422966B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/764,233 US6422966B1 (en) 2001-01-19 2001-01-19 Toroidal transmission with a starting clutch
DE10201687A DE10201687B4 (en) 2001-01-19 2002-01-17 Toroidal transmission with start-up clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/764,233 US6422966B1 (en) 2001-01-19 2001-01-19 Toroidal transmission with a starting clutch

Publications (2)

Publication Number Publication Date
US6422966B1 US6422966B1 (en) 2002-07-23
US20020098936A1 true US20020098936A1 (en) 2002-07-25

Family

ID=25070084

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/764,233 Expired - Lifetime US6422966B1 (en) 2001-01-19 2001-01-19 Toroidal transmission with a starting clutch

Country Status (2)

Country Link
US (1) US6422966B1 (en)
DE (1) DE10201687B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617020B2 (en) 2007-02-21 2013-12-31 Torotrak (Development) Limited Continuously variable transmission
US20140045637A1 (en) * 2011-04-29 2014-02-13 Transmission Cvtcorp Inc. Drivetrain provided with a cvt
EP2969631B1 (en) * 2013-03-15 2019-05-22 Allison Transmission, Inc. Variator bypass clutch

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10021912A1 (en) * 2000-05-05 2001-11-08 Daimler Chrysler Ag Drive train for motor vehicle has second planet wheel with diameter such that for stepping up of variable speed gear contact point of second planet wheel with driven element corresponds to center of rotation of second planet wheel
JP4151300B2 (en) * 2002-04-12 2008-09-17 日本精工株式会社 Continuously variable transmission
DE10249487A1 (en) * 2002-10-24 2004-05-06 Zf Friedrichshafen Ag Power split transmission
JP4281370B2 (en) * 2003-02-10 2009-06-17 日本精工株式会社 Continuously variable transmission
US7048667B2 (en) * 2004-02-09 2006-05-23 Ford Global Technologies, Llc Power split transaxle for producing stepless reverse, forward and geared neutral speed ratios
US10036456B2 (en) * 2013-11-29 2018-07-31 Transmission Cvtcorp Inc. Drive assembly provided with a continuously variable transmission and a direction reversing mechanism

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666544A (en) * 1979-11-05 1981-06-05 Toyota Motor Corp Speed change gear for vehicle
US4539866A (en) * 1983-11-03 1985-09-10 General Motors Corporation Continuously variable transmission
GB9026830D0 (en) * 1990-12-11 1991-01-30 Fellows Thomas G Improvements in or relating to continuously-variable-ratio transmissions of toroidal-race rolling-traction type
US5607372A (en) * 1995-01-13 1997-03-04 The Torax Company, Inc. Co-axial drive for a toroidal drive type transmission
US5989146A (en) * 1997-03-21 1999-11-23 New Venture Gear, Inc. On-demand four-wheel drive transmission
US5803858A (en) * 1997-05-23 1998-09-08 General Motors Corporation Powertrain transmission with torque converter planetary gearing and a continuously variable transmission unit
US6099431A (en) * 1999-05-06 2000-08-08 Ford Global Technologies, Inc. Method for operating a traction drive automatic transmission for automotive vehicles
US6056661A (en) * 1999-06-14 2000-05-02 General Motors Corporation Multi-range transmission with input split planetary gear set and continuously variable transmission unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617020B2 (en) 2007-02-21 2013-12-31 Torotrak (Development) Limited Continuously variable transmission
US20140045637A1 (en) * 2011-04-29 2014-02-13 Transmission Cvtcorp Inc. Drivetrain provided with a cvt
EP2969631B1 (en) * 2013-03-15 2019-05-22 Allison Transmission, Inc. Variator bypass clutch

Also Published As

Publication number Publication date
US6422966B1 (en) 2002-07-23
DE10201687A1 (en) 2002-08-29
DE10201687B4 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
US8257216B2 (en) Infinitely variable transmission
US8257217B2 (en) Infinitely variable transmission with offset output shaft
US7396309B2 (en) Split power transmission to include a variable drive
US6045477A (en) Continuously variable multi-range powertrain with a geared neutral
US8123646B2 (en) Vehicle transmission with continuously variable transmission ratio
US6540639B1 (en) Continuously variable transmission for a motor vehicle
US6056661A (en) Multi-range transmission with input split planetary gear set and continuously variable transmission unit
EP0400816B1 (en) Power Transmission
EP0347186B1 (en) Variable ratio power transmission
US7530913B2 (en) Multi-range hydromechanical transmission
US6190280B1 (en) Multispeed powershift transmission
US3897697A (en) Infinitely variable drive ratio hydro-mechanical transmission for vehicles or the like
WO2006132986A2 (en) Hydromechanical transmission
US6007450A (en) Five speed planetary transmission
JP2012527584A (en) Continuously variable transmission
US3982448A (en) Input-split hydromechanical transmission
US6561942B2 (en) Dual mode variable ratio transmission
US6056665A (en) Five speed planetary transmission
US5106353A (en) Variable transmission
US6213907B1 (en) Co-axial single mode geared neutral traction transmission
US6422966B1 (en) Toroidal transmission with a starting clutch
EP0943839B1 (en) Dual mode continuously variable transmission for a all wheel drive vehicle
US5888161A (en) All wheel drive continuously variable transmission having dual mode operation
GB2261039A (en) Split-torque hydromechanical transmission
EP0943840B1 (en) All wheel drive continuously variable transmission having dual mode operation

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL MOTORS CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAKA, RAYMOND JAMES;REEL/FRAME:011502/0167

Effective date: 20001214

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:022117/0022

Effective date: 20050119

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:022117/0022

Effective date: 20050119

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0501

Effective date: 20081231

AS Assignment

Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013

Effective date: 20090409

Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022556/0013

Effective date: 20090409

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023238/0015

Effective date: 20090709

XAS Not any more in us assignment database

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0383

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0326

Effective date: 20090814

AS Assignment

Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023155/0922

Effective date: 20090710

AS Assignment

Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023161/0864

Effective date: 20090710

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025311/0680

Effective date: 20101026

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0273

Effective date: 20100420

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, DELAWARE

Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0222

Effective date: 20101027

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0795

Effective date: 20101202

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:034183/0680

Effective date: 20141017