US20020093336A1 - Mri rf power monitor - Google Patents

Mri rf power monitor Download PDF

Info

Publication number
US20020093336A1
US20020093336A1 US09/964,155 US96415501A US2002093336A1 US 20020093336 A1 US20020093336 A1 US 20020093336A1 US 96415501 A US96415501 A US 96415501A US 2002093336 A1 US2002093336 A1 US 2002093336A1
Authority
US
United States
Prior art keywords
power
measured
recited
time intervals
different time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/964,155
Other versions
US6426623B1 (en
Inventor
Matthew Bernstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayo Foundation for Medical Education and Research
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/964,155 priority Critical patent/US6426623B1/en
Assigned to MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH reassignment MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERNSTEIN, MATTHEW A.
Publication of US20020093336A1 publication Critical patent/US20020093336A1/en
Application granted granted Critical
Publication of US6426623B1 publication Critical patent/US6426623B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3614RF power amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/288Provisions within MR facilities for enhancing safety during MR, e.g. reduction of the specific absorption rate [SAR], detection of ferromagnetic objects in the scanner room
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • G01R33/583Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency

Definitions

  • the field of the invention is nuclear magnetic resonance imaging (MRI) methods and systems. More particularly, the invention relates to the measurement and limitation of RF power produced by an MRI system during a patient scan.
  • MRI nuclear magnetic resonance imaging
  • polarizing field B 0 When a substance such as human tissue is subjected to a uniform magnetic field (polarizing field B 0 ), the individual magnetic moments of the spins in the tissue attempt to align with this polarizing field, but precess about it in random order at their characteristic Larmor frequency. If the substance, or tissue, is subjected to a radio frequency (RF) magnetic field (excitation field B 1 ) which is in the x-y plane and which is near the Larmor frequency, the net aligned moment, M z , may be rotated, or “tipped”, into the x-y plane to produce a net transverse magnetic moment M t . A signal is emitted by the excited spins after the excitation signal B 1 is terminated, this signal may be received and processed to form an image.
  • RF radio frequency
  • magnetic field gradients (G x G y and G z ) are employed.
  • the region to be imaged is scanned by a sequence of measurement cycles in which an RF excitation pulse is applied and these gradients are varied according to a particular localization method.
  • the resulting set of received NMR signals are digitized and processed to reconstruct the image using one of many well known reconstruction techniques.
  • Such pulse sequences may also employ RF refocusing pulses, RF saturation pulses and other types of RF pulses required by the prescribed scan.
  • Very high field MR systems such as MR scanners operating at a main field strength of 3.0 Tesla (T)
  • An enabling technology is the compact, actively shielded magnets, which recently became available. This technology permits the 3.0T MRI system to be sited in a clinical setting.
  • Clinical applications including pulse sequences, and parameter selections (i.e. protocols) are being developed especially for these high field scanners.
  • a major limitation of scanning at very high field is the radiofrequency (RF) power deposited in the patient, as measured by the specific absorption rate (SAR).
  • RF radiofrequency
  • SAR increases approximately quadratically in the range of 1.5T to 3.0T. Therefore, applications which are straightforward to implement at standard fields strengths such as 1.5T can be severely limited by SAR at higher field strengths such as 3.0T.
  • Specific guidelines for the maximal amount of SAR that may be deposited in the patient are specified by the Food and Drug Administration (FDA) in the United States, and by other regulatory agencies in other countries. If SAR limits are exceeded, undesirable and possible dangerous patient heating may result.
  • FDA Food and Drug Administration
  • prior MR systems employ a number of measures.
  • the RF power deposited by a particular pulse sequence is estimated with a calculation based on the shape, amplitude, and duration of each of the RF pulses within the pulse sequence. If the estimated SAR for a given pulse sequence exceeds regulatory limits, then the software automatically limits input parameters such as the maximal number of slices, flip angle, or minimal repetition time (TR).
  • Another method used in commercial MR systems employs power monitor hardware and software.
  • the power monitor measures power transmitted by the RF coil in the MR system.
  • the average RF power delivered by the RF coil is measured at regular time intervals approximately every 30 milliseconds (ms).
  • ms milliseconds
  • a moving average of approximately 33 consecutive power measurements is calculated.
  • the averaging time for this system is 30 ms ⁇ 33 measurements, which is approximately 1 second. If at any time this moving average of measured power exceeds a predetermined limit (e.g. 10 Watts for head coil studies), the power monitor “trips”, and the scan is aborted.
  • a predetermined limit e.g. 10 Watts for head coil studies
  • a major limitation of the prior methods is many MR pulse sequences contain periods over which there is relatively intense application of RF pulses, followed by relatively quiescent or “dead” periods.
  • the 1-second average time can be overly restrictive since it can cause power monitor trips that are not necessary to protect the patient from detrimental heating. For example, if the power monitor trip point is set to 10 Watts, and during a 1-second period of intense RF pulse activity the average RF power is 15 Watts, the power monitor would trip. The scan is thus aborted, even if the active period is followed by a 9-second dead time. In the 1-second active period, 15 Joules of energy is deposited into the patient, (assuming 100% coil coupling efficiency).
  • the present invention is a method and apparatus for monitoring the RF power applied to a patient during a scan, and altering the scan when excessive RF power is detected.
  • the RF power produced during a scan is measured and a plurality of moving averages of this measured power over a corresponding plurality of different accumulation time intervals are calculated. Associated with each accumulation time interval is a different RF power trip level. If any moving average exceeds the RF power trip level for its accumulation time interval the scan is aborted or altered.
  • [0011] general object of the invention is to protect, the patient from harmful heating, and avoid unnecessary power monitor trips. If it is determined that 50 Joules of energy is the maximum safe limit to be deposited within the patient in a 1 second period, then the first accumulation time is 1 second, and the RF power trip level is 50 Watts. If it is further determined that within a 5 second period it is safe to deposit 75 Joules, then the trip level for the 5 second accumulation time interval is set to 15 Watts.
  • the longest accumulation time interval is set to 10-30 seconds, which is on the order of the longest repetition time encountered in MR pulse sequences.
  • the trip level for the longest time interval is set to the lowest trip level, for example, 10 Watts.
  • the trip level for this longest accumulation time interval corresponds with the regulator limits set by the FDA.
  • FIG. 1 is a block diagram of an MRI system which employs the present invention
  • FIG. 2 is an electrical block diagram of the transceiver which forms part of the MRI system of FIG. 1;
  • FIG. 3 is a flow chart of a preferred embodiment of the method practiced by the MRI system of FIG. 1;
  • FIG. 4 is a schematic representation of a power FIFO data structure employed by the method of FIG. 3.
  • FIG. 1 there is shown the major components of a preferred MRI system which incorporates the present invention.
  • the operation of the system is controlled from an operator console 100 which includes a keyboard and control panel 102 and a display 104 .
  • the console 100 communicates through a link 116 with a separate computer system 107 that enables an operator to control the production and display of images on the screen 104 .
  • the computer system 107 includes a number of modules which communicate with each other through a backplane. These include an image processor module 106 , a CPU module 108 and a memory module 113 , known in the art as a frame buffer for storing image data arrays.
  • the computer system 107 is linked to a disk storage 111 and a tape drive 112 for storage of image data and programs, and it communicates with a separate system control 122 through a high speed serial link 115 .
  • the system control 122 includes a set of modules connected together by a backplane. These include a CPU module 119 and a pulse generator module 121 which connects to the operator console 100 through a serial link 125 . It is through this link 125 that the system control 122 receives commands from the operator which indicate the scan sequence that is to be performed.
  • the pulse generator module 121 operates the system components to carry out the desired scan sequence. It produces data which indicates the timing, strength and shape of the RF pulses which are to be produced, and the timing of and length of the data acquisition window.
  • the pulse generator module 121 connects to a set of gradient amplifiers 127 , to indicate the timing and shape of the gradient pulses to be produced during the scan.
  • the pulse generator module 121 also receives patient data from a physiological acquisition controller 129 that receives signals from a number of different sensors connected to the patient, such as ECG signals from electrodes or respiratory signals from a bellows. And finally, the pulse generator module 121 connects to a scan room interface circuit 133 which receives signals from various sensors associated with the condition of the patient and the magnet system. It is also through the scan room interface circuit 133 that a patient positioning system 134 receives commands to move the patient to the desired position for the scan.
  • the gradient waveforms produced by the pulse generator module 121 are applied to a gradient amplifier system 127 comprised of G x , G y and G z amplifiers.
  • Each gradient amplifier excites a corresponding gradient coil in an assembly generally designated 139 to produce the magnetic field gradients used for position encoding acquired signals.
  • the gradient coil assembly 139 forms part of a magnet assembly 141 which includes a polarizing magnet 140 and a whole-body RF coil 152 .
  • a transceiver module 150 in the system control 122 produces pulses which are amplified by an RF amplifier 151 and coupled to the RF coil 152 by a transmit/receive switch 154 .
  • the resulting signals radiated by the excited nuclei in the patient may be sensed by the same RF coil 152 and coupled through the transmit/receive switch 154 to a preamplifier 153 .
  • the amplified NMR signals are demodulated, filtered, and digitized in the receiver section of the transceiver 150 .
  • the transmit/receive switch 154 is controlled by a signal from the pulse generator module 121 to electrically connect the RF amplifier 151 to the coil 152 during the transmit mode and to connect the preamplifier 153 during the receive mode.
  • the transmit/receive switch 154 also enables a separate RF coil (for example, a head coil or surface coil) to be used in either the transmit or receive mode.
  • the NMR signals picked up by the RF coil 152 are digitized by the transceiver module 150 and transferred to a memory module 160 in the system control 122 .
  • an array processor 161 operates to Fourier transform the data into an array of image data.
  • This image data is conveyed through the serial link 115 to the computer system 107 where it is stored in the disk memory 111 .
  • this image data may be archived on the tape drive 112 , or it may be further processed by the image processor 106 and conveyed to the operator console 100 and presented on the display 104 .
  • the transceiver 150 produces the RF excitation field B 1 through power amplifier 151 at a coil 152 A and receives the resulting signal induced in a coil 152 B.
  • the coils 152 A and B may be separate as shown in FIG. 2, or they may be a single wholebody coil as shown in FIG. 1.
  • the base, or carrier, frequency of the RF excitation field is produced under control of a frequency synthesizer 200 which receives a set of digital signals (CF) from the CPU module 119 and pulse generator module 121 . These digital signals indicate the frequency and phase of the RF carrier signal produced at an output 201 .
  • CF digital signals
  • the commanded RF carrier is applied to a modulator and up converter 202 where its amplitude is modulated in response to a signal R(t) also received from the pulse generator module 121 .
  • the signal R(t) defines the envelope of the RF excitation pulse to be produced and is produced in the module 121 by sequentially reading out a series of stored digital values. These stored digital values may, in turn, be changed from the operator console 100 to enable any desired RF pulse envelope to be produced.
  • the magnitude of the RF excitation pulse produced at output 205 is attenuated by an exciter attenuator circuit 206 which receives a digital command, TA, from the backplane 118 .
  • the attenuated RF excitation pulses are applied to the power amplifier 151 that drives the RF coil 152 A.
  • the signals employed to control the generation of the attenuated RF excitation pulses are also input to the CPU 119 (FIG. 1) which is programmed to implement the present invention.
  • the signal produced by the subject is picked up by the receiver coil 152 B and applied through the preamplifier 153 to the input of a receiver attenuator 207 .
  • the receiver attenuator 207 further amplifies the signal by an amount determined by a digital attenuation signal (RA) received from the backplane 118 .
  • RA digital attenuation signal
  • the received signal is at or around the Larmor frequency, and this high frequency signal is down converted in a two step process by a down converter 208 which first mixes the NMR signal with the carrier signal on line 201 and then mixes the resulting difference signal with the 205 MHz reference signal on line 204 .
  • the down converted NMR signal is applied to the input of an analog-to-digital (A/D) converter 209 which samples and digitizes the analog signal and applies it to a digital detector and signal processor 210 which produces 16-bit in-phase (I) values and 16-bit quadrature (Q) values corresponding to the received signal.
  • A/D analog-to-digital
  • I in-phase
  • Q quadrature
  • the 2.5 MHz reference signal as well as the 250 kHz sampling signal and the 5, 10 and 60 MHz reference signals are produced by a reference frequency generator 203 from a common 20 MHz master clock signal.
  • a reference frequency generator 203 For a more detailed description of the receiver, reference is made to U.S. Pat. No. 4,992,736 which is incorporated herein by reference.
  • the CPU 119 is programmed to monitor the RF excitation pulses produced by the transceiver 150 and stop the pulse generator 121 from continuing the scan if any of the trip levels are exceeded. A running accumulation of the RF excitation applied to the patient over each of the most recent accumulation time intervals is calculated. Each running accumulation is compared to the trip level for its accumulation time interval, and if any trip level is exceeded, the pulse generator 121 is signaled to stop the scan.
  • the measured increment of RF power generated during each successive increment of time is stored in a power FIFO 10 .
  • the power FIFO is a memory which receives each increment of RF power at an input 12 and shifts previously stored RF power increments down toward an output 14 . The oldest RF power increment is discarded.
  • the power FIFO 10 stores over ten minutes of RF power increments.
  • a power monitor program is performed by the CPU 119 .
  • the power FIFO 10 is initialized to zero and the first increment of RF power is input at process block 302 .
  • the most recent one second of RF power increments stored in the power FIFO 10 are accumulated at process block 304 and the one second power accumulation is compared with a first, 50 watt trip level at decision block 306 . If the first trip level is exceeded, the pulse generator 121 is shut down at process block 308 .
  • a second, 5 second, time interval of accumulated RF power increments is calculated at process block 310 .
  • the 5 second accumulated power is compared to a second, 15 watt trip level at decision block 312 , and if this trip level is exceeded, the pulse generator 121 is shut down. If not, a third, ten second accumulated RF power increment is calculated at process block 314 . If this third accumulated power level exceeds a third, 10 watt trip level, as determined at decision block 316 , the pulse generator 121 is shut down.
  • the system waits at process block 318 for the next time increment to elapse. The system then loops back to process block 302 to update the power FIFO with the latest increment of RF power and repeat the process. This monitoring process continues for as long as the pulse generator 121 is producing pulse sequences.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

An MRI system performs a pulse sequence to acquire image data from a subject. The RF power applied to the subject is monitored and the acquisition is altered if any one of three trip levels is exceeded. Each trip level is different and is associated with a different time interval over which applied RF power is measured.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS This application is based on U.S. Provisional Application Serial No. 60/235,813, filed on Sep. 27, 2000 and entitled “MRI RF Power Monitor”. BACKGROUND OF THE INVENTION
  • The field of the invention is nuclear magnetic resonance imaging (MRI) methods and systems. More particularly, the invention relates to the measurement and limitation of RF power produced by an MRI system during a patient scan. [0001]
  • When a substance such as human tissue is subjected to a uniform magnetic field (polarizing field B[0002] 0), the individual magnetic moments of the spins in the tissue attempt to align with this polarizing field, but precess about it in random order at their characteristic Larmor frequency. If the substance, or tissue, is subjected to a radio frequency (RF) magnetic field (excitation field B1) which is in the x-y plane and which is near the Larmor frequency, the net aligned moment, Mz, may be rotated, or “tipped”, into the x-y plane to produce a net transverse magnetic moment Mt. A signal is emitted by the excited spins after the excitation signal B1 is terminated, this signal may be received and processed to form an image.
  • When utilizing these signals to produce images, magnetic field gradients (G[0003] x Gy and Gz) are employed. Typically, the region to be imaged is scanned by a sequence of measurement cycles in which an RF excitation pulse is applied and these gradients are varied according to a particular localization method. The resulting set of received NMR signals are digitized and processed to reconstruct the image using one of many well known reconstruction techniques. Such pulse sequences may also employ RF refocusing pulses, RF saturation pulses and other types of RF pulses required by the prescribed scan.
  • Very high field MR systems (such as MR scanners operating at a main field strength of 3.0 Tesla (T)) are becoming more widely available. An enabling technology is the compact, actively shielded magnets, which recently became available. This technology permits the 3.0T MRI system to be sited in a clinical setting. Clinical applications including pulse sequences, and parameter selections (i.e. protocols) are being developed especially for these high field scanners. [0004]
  • A major limitation of scanning at very high field is the radiofrequency (RF) power deposited in the patient, as measured by the specific absorption rate (SAR). SAR increases approximately quadratically in the range of 1.5T to 3.0T. Therefore, applications which are straightforward to implement at standard fields strengths such as 1.5T can be severely limited by SAR at higher field strengths such as 3.0T. Specific guidelines for the maximal amount of SAR that may be deposited in the patient are specified by the Food and Drug Administration (FDA) in the United States, and by other regulatory agencies in other countries. If SAR limits are exceeded, undesirable and possible dangerous patient heating may result. [0005]
  • To ensure that SAR deposition is within acceptable limits, prior MR systems employ a number of measures. In one method, the RF power deposited by a particular pulse sequence is estimated with a calculation based on the shape, amplitude, and duration of each of the RF pulses within the pulse sequence. If the estimated SAR for a given pulse sequence exceeds regulatory limits, then the software automatically limits input parameters such as the maximal number of slices, flip angle, or minimal repetition time (TR). [0006]
  • Another method used in commercial MR systems employs power monitor hardware and software. The power monitor measures power transmitted by the RF coil in the MR system. In one commercial system, the average RF power delivered by the RF coil is measured at regular time intervals approximately every 30 milliseconds (ms). A moving average of approximately 33 consecutive power measurements is calculated. Thus, the averaging time for this system is 30 ms×33 measurements, which is approximately 1 second. If at any time this moving average of measured power exceeds a predetermined limit (e.g. 10 Watts for head coil studies), the power monitor “trips”, and the scan is aborted. [0007]
  • A major limitation of the prior methods is many MR pulse sequences contain periods over which there is relatively intense application of RF pulses, followed by relatively quiescent or “dead” periods. In this case, the 1-second average time can be overly restrictive since it can cause power monitor trips that are not necessary to protect the patient from detrimental heating. For example, if the power monitor trip point is set to 10 Watts, and during a 1-second period of intense RF pulse activity the average RF power is 15 Watts, the power monitor would trip. The scan is thus aborted, even if the active period is followed by a 9-second dead time. In the 1-second active period, 15 Joules of energy is deposited into the patient, (assuming 100% coil coupling efficiency). This 15 Joules is an insufficient amount of energy to cause detrimental patient heating. Over the 1+9=10 second interval, the average power is only 15J/10 s=1.5 Watts, which is well within safe limits. Thus, the scan is unnecessarily aborted. [0008]
  • Simply increasing the averaging period to a value above 1-second is not a safe solution to this problem. For example, if the averaging time is increased to 333 samples, or approximately 10 seconds and 100 Watts is delivered continuously to the patient, then up to 1000 Joules of energy may be deposited before the scan is aborted. This amount of energy could cause harm to the patient. [0009]
  • SUMMARY OF THE INVENTION
  • The present invention is a method and apparatus for monitoring the RF power applied to a patient during a scan, and altering the scan when excessive RF power is detected. The RF power produced during a scan is measured and a plurality of moving averages of this measured power over a corresponding plurality of different accumulation time intervals are calculated. Associated with each accumulation time interval is a different RF power trip level. If any moving average exceeds the RF power trip level for its accumulation time interval the scan is aborted or altered. [0010]
  • general object of the invention is to protect, the patient from harmful heating, and avoid unnecessary power monitor trips. If it is determined that 50 Joules of energy is the maximum safe limit to be deposited within the patient in a 1 second period, then the first accumulation time is 1 second, and the RF power trip level is 50 Watts. If it is further determined that within a 5 second period it is safe to deposit 75 Joules, then the trip level for the 5 second accumulation time interval is set to 15 Watts. The longest accumulation time interval is set to 10-30 seconds, which is on the order of the longest repetition time encountered in MR pulse sequences. The trip level for the longest time interval is set to the lowest trip level, for example, 10 Watts. The trip level for this longest accumulation time interval corresponds with the regulator limits set by the FDA.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an MRI system which employs the present invention; [0012]
  • FIG. 2 is an electrical block diagram of the transceiver which forms part of the MRI system of FIG. 1; [0013]
  • FIG. 3 is a flow chart of a preferred embodiment of the method practiced by the MRI system of FIG. 1; and [0014]
  • FIG. 4 is a schematic representation of a power FIFO data structure employed by the method of FIG. 3. [0015]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring first to FIG. 1, there is shown the major components of a preferred MRI system which incorporates the present invention. The operation of the system is controlled from an [0016] operator console 100 which includes a keyboard and control panel 102 and a display 104. The console 100 communicates through a link 116 with a separate computer system 107 that enables an operator to control the production and display of images on the screen 104. The computer system 107 includes a number of modules which communicate with each other through a backplane. These include an image processor module 106, a CPU module 108 and a memory module 113, known in the art as a frame buffer for storing image data arrays. The computer system 107 is linked to a disk storage 111 and a tape drive 112 for storage of image data and programs, and it communicates with a separate system control 122 through a high speed serial link 115.
  • The [0017] system control 122 includes a set of modules connected together by a backplane. These include a CPU module 119 and a pulse generator module 121 which connects to the operator console 100 through a serial link 125. It is through this link 125 that the system control 122 receives commands from the operator which indicate the scan sequence that is to be performed. The pulse generator module 121 operates the system components to carry out the desired scan sequence. It produces data which indicates the timing, strength and shape of the RF pulses which are to be produced, and the timing of and length of the data acquisition window. The pulse generator module 121 connects to a set of gradient amplifiers 127, to indicate the timing and shape of the gradient pulses to be produced during the scan. The pulse generator module 121 also receives patient data from a physiological acquisition controller 129 that receives signals from a number of different sensors connected to the patient, such as ECG signals from electrodes or respiratory signals from a bellows. And finally, the pulse generator module 121 connects to a scan room interface circuit 133 which receives signals from various sensors associated with the condition of the patient and the magnet system. It is also through the scan room interface circuit 133 that a patient positioning system 134 receives commands to move the patient to the desired position for the scan.
  • The gradient waveforms produced by the [0018] pulse generator module 121 are applied to a gradient amplifier system 127 comprised of Gx, Gy and Gz amplifiers. Each gradient amplifier excites a corresponding gradient coil in an assembly generally designated 139 to produce the magnetic field gradients used for position encoding acquired signals. The gradient coil assembly 139 forms part of a magnet assembly 141 which includes a polarizing magnet 140 and a whole-body RF coil 152. A transceiver module 150 in the system control 122 produces pulses which are amplified by an RF amplifier 151 and coupled to the RF coil 152 by a transmit/receive switch 154. The resulting signals radiated by the excited nuclei in the patient may be sensed by the same RF coil 152 and coupled through the transmit/receive switch 154 to a preamplifier 153. The amplified NMR signals are demodulated, filtered, and digitized in the receiver section of the transceiver 150. The transmit/receive switch 154 is controlled by a signal from the pulse generator module 121 to electrically connect the RF amplifier 151 to the coil 152 during the transmit mode and to connect the preamplifier 153 during the receive mode. The transmit/receive switch 154 also enables a separate RF coil (for example, a head coil or surface coil) to be used in either the transmit or receive mode.
  • The NMR signals picked up by the RF coil [0019] 152 are digitized by the transceiver module 150 and transferred to a memory module 160 in the system control 122. When the scan is completed and an entire array of data has been acquired in the memory module 160, an array processor 161 operates to Fourier transform the data into an array of image data. This image data is conveyed through the serial link 115 to the computer system 107 where it is stored in the disk memory 111. In response to commands received from the operator console 100, this image data may be archived on the tape drive 112, or it may be further processed by the image processor 106 and conveyed to the operator console 100 and presented on the display 104.
  • Referring particularly to FIGS. 1 and 2, the [0020] transceiver 150 produces the RF excitation field B1 through power amplifier 151 at a coil 152A and receives the resulting signal induced in a coil 152B. As indicated above, the coils 152A and B may be separate as shown in FIG. 2, or they may be a single wholebody coil as shown in FIG. 1. The base, or carrier, frequency of the RF excitation field is produced under control of a frequency synthesizer 200 which receives a set of digital signals (CF) from the CPU module 119 and pulse generator module 121. These digital signals indicate the frequency and phase of the RF carrier signal produced at an output 201. The commanded RF carrier is applied to a modulator and up converter 202 where its amplitude is modulated in response to a signal R(t) also received from the pulse generator module 121. The signal R(t) defines the envelope of the RF excitation pulse to be produced and is produced in the module 121 by sequentially reading out a series of stored digital values. These stored digital values may, in turn, be changed from the operator console 100 to enable any desired RF pulse envelope to be produced.
  • The magnitude of the RF excitation pulse produced at [0021] output 205 is attenuated by an exciter attenuator circuit 206 which receives a digital command, TA, from the backplane 118. The attenuated RF excitation pulses are applied to the power amplifier 151 that drives the RF coil 152A. For a more detailed description of this portion of the transceiver 122, reference is made to U.S. Pat. No. 4,952,877 which is incorporated herein by reference.
  • The signals employed to control the generation of the attenuated RF excitation pulses are also input to the CPU [0022] 119 (FIG. 1) which is programmed to implement the present invention.
  • Referring still to FIG. 1 and [0023] 2 the signal produced by the subject is picked up by the receiver coil 152B and applied through the preamplifier 153 to the input of a receiver attenuator 207. The receiver attenuator 207 further amplifies the signal by an amount determined by a digital attenuation signal (RA) received from the backplane 118.
  • The received signal is at or around the Larmor frequency, and this high frequency signal is down converted in a two step process by a [0024] down converter 208 which first mixes the NMR signal with the carrier signal on line 201 and then mixes the resulting difference signal with the 205 MHz reference signal on line 204. The down converted NMR signal is applied to the input of an analog-to-digital (A/D) converter 209 which samples and digitizes the analog signal and applies it to a digital detector and signal processor 210 which produces 16-bit in-phase (I) values and 16-bit quadrature (Q) values corresponding to the received signal. The resulting stream of digitized I and Q values of the received signal are output through backplane 118 to the memory module 160 where they are employed to reconstruct an image.
  • The 2.5 MHz reference signal as well as the 250 kHz sampling signal and the 5, 10 and 60 MHz reference signals are produced by a [0025] reference frequency generator 203 from a common 20 MHz master clock signal. For a more detailed description of the receiver, reference is made to U.S. Pat. No. 4,992,736 which is incorporated herein by reference.
  • Referring again to FIG. 1, the [0026] CPU 119 is programmed to monitor the RF excitation pulses produced by the transceiver 150 and stop the pulse generator 121 from continuing the scan if any of the trip levels are exceeded. A running accumulation of the RF excitation applied to the patient over each of the most recent accumulation time intervals is calculated. Each running accumulation is compared to the trip level for its accumulation time interval, and if any trip level is exceeded, the pulse generator 121 is signaled to stop the scan.
  • As shown in FIG. 4, the measured increment of RF power generated during each successive increment of time is stored in a [0027] power FIFO 10. The power FIFO is a memory which receives each increment of RF power at an input 12 and shifts previously stored RF power increments down toward an output 14. The oldest RF power increment is discarded. The power FIFO 10 stores over ten minutes of RF power increments.
  • Referring particularly to FIG. 3, when a scan is performed and the [0028] pulse generator 121 begins to direct the generation of the prescribed pulse sequence, a power monitor program is performed by the CPU 119. As indicated by process block 300 the power FIFO 10 is initialized to zero and the first increment of RF power is input at process block 302. The most recent one second of RF power increments stored in the power FIFO 10 are accumulated at process block 304 and the one second power accumulation is compared with a first, 50 watt trip level at decision block 306. If the first trip level is exceeded, the pulse generator 121 is shut down at process block 308.
  • A second, 5 second, time interval of accumulated RF power increments is calculated at [0029] process block 310. The 5 second accumulated power is compared to a second, 15 watt trip level at decision block 312, and if this trip level is exceeded, the pulse generator 121 is shut down. If not, a third, ten second accumulated RF power increment is calculated at process block 314. If this third accumulated power level exceeds a third, 10 watt trip level, as determined at decision block 316, the pulse generator 121 is shut down.
  • If none of the three trip levels is exceeded, the system waits at process block [0030] 318 for the next time increment to elapse. The system then loops back to process block 302 to update the power FIFO with the latest increment of RF power and repeat the process. This monitoring process continues for as long as the pulse generator 121 is producing pulse sequences.
  • It should be apparent to those skilled in the art that variations are possible from the preferred embodiment described above. Additional accumulated times and additional associated trip levels may be established. Both the time intervals and the trip levels may be changed. In addition, rather than shutting the pulse generator down when the trip level is exceeded, the pulse generator may be switched into another, lower RF power generating mode of operation. This other mode may be, for example, a lengthening of the transmit repeat (TR) interval, or a reduction in the RF pulse flip angle. [0031]

Claims (8)

1. A method for monitoring the radio frequency (RF) power produced by a magnetic resonance imaging (MRI) system as it performs a pulse sequence to acquire NMR data from a subject, the steps comprising:
a) measuring the RF power produced by the MRI system over each successive increment of time during the performance of the pulse sequence;
b) storing numbers indicative of the successive increments of measured RF power;
c) accumulating increments of measured RF power over a plurality of different time intervals to produce a corresponding plurality of accumulated power levels;
d) comparing each of the plurality of accumulated power levels with a corresponding one of a plurality of different trip levels; and
e) altering the performance of the pulse sequence by the MRI system if any of said accumulated power levels exceeds its corresponding trip level.
2. The method as recited in claim 1 in which the performance of the pulse sequence is stopped in step e).
3. The method as recited in claim 1 in which step c) accumulates increments of measured RF power over three or more different time intervals.
4. The method as recited in claim 1 in which step b) is performed by storing the increments of measured RF power in the order in which they are measured.
5. The method as recited in claim 4 in which step c) is performed by adding together the successive increments of measured RF power over each time interval beginning with the most recently stored increment of measured RF power.
6. A method for limiting the RF power applied to a subject by a magnetic resonance imaging (MRI) system during the acquisition of NMR data, the steps comprising:
a) establishing a plurality of different time intervals;
b) establishing a plurality of trip levels that correspond to the plurality of different time intervals;
c) continuously measuring the RF power applied to the subject over each of the plurality of different time intervals;
d) comparing the measured RF power over each of the plurality of different time intervals with the corresponding trip level; and
e) altering the operation of the MRI system to reduce the application of RF power applied to the subject if one said trip levels is exceeded.
7. The method as recited in claim 6 in which the alteration of operation in step e) is to stop the acquisition of NMR data.
8. The method as recited in claim 6 in which said plurality is three or more.
US09/964,155 2000-09-27 2001-09-26 MRI RF power monitor Expired - Lifetime US6426623B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/964,155 US6426623B1 (en) 2000-09-27 2001-09-26 MRI RF power monitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23581300P 2000-09-27 2000-09-27
US09/964,155 US6426623B1 (en) 2000-09-27 2001-09-26 MRI RF power monitor

Publications (2)

Publication Number Publication Date
US20020093336A1 true US20020093336A1 (en) 2002-07-18
US6426623B1 US6426623B1 (en) 2002-07-30

Family

ID=26929243

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/964,155 Expired - Lifetime US6426623B1 (en) 2000-09-27 2001-09-26 MRI RF power monitor

Country Status (1)

Country Link
US (1) US6426623B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037840A1 (en) * 2004-08-04 2006-02-23 Siemens Ag Control of the high frequency exposure of a patient undergoing diagnosis using MRI, by measuring high frequency exposure and deriving a physiological loading value for comparison with a threshold
WO2006114749A1 (en) 2005-04-28 2006-11-02 Koninklijke Philips Electronics N.V. Method and circuit arrangement for operating multi-channel transmit/receive antenna devices
JP2008539637A (en) * 2005-04-29 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and circuit arrangement for operating a multi-channel transmit / receive antenna apparatus.
CN1864074B (en) * 2003-10-07 2010-06-16 西门子公司 Method for determining patient-related information, control apparatus and magnetic resonance tomography instrument
US20100312091A1 (en) * 2007-12-21 2010-12-09 Koninklijke Philips Electronics N.V. Magnetic resonance safety monitoring systems and methods
EP2803318A1 (en) * 2013-05-17 2014-11-19 Imris Inc. Control of SAR values in MR imaging
US20150082906A1 (en) * 2013-09-26 2015-03-26 Rosemount Inc. Magnetic flowmeter with power limit and over-current detection
US11002809B2 (en) 2014-05-13 2021-05-11 Aspect Imaging Ltd. Protective and immobilizing sleeves with sensors, and methods for reducing the effect of object movement during MRI scanning

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732365B2 (en) * 1999-09-08 2006-01-05 ジーイー横河メディカルシステム株式会社 Spin excitation method and apparatus and magnetic resonance imaging apparatus
JP3858194B2 (en) * 2001-04-04 2006-12-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー MRI equipment
DE10150138B4 (en) * 2001-10-11 2009-10-08 Siemens Ag Method for magnetic resonance imaging
DE10150137B4 (en) * 2001-10-11 2006-08-17 Siemens Ag Method and apparatus for magnetic resonance imaging
DE10153320B4 (en) * 2001-10-29 2006-08-31 Siemens Ag Method and apparatus for magnetic resonance imaging including the history of performance
DE10318428A1 (en) * 2003-04-23 2004-11-25 Siemens Ag Optimization method for magnetic resonance imaging under consideration of both system- and patient-specific limiting values, whereby imaging time slices are calculated in real-time, dependent of actual operating parameters
DE102004006552B4 (en) * 2004-02-10 2013-08-29 Siemens Aktiengesellschaft Method for controlling a high frequency power amplifier, radio frequency device, radio frequency control device and magnetic resonance tomography system
DE102004006550B4 (en) * 2004-02-10 2013-08-29 Siemens Aktiengesellschaft Method for controlling a high-frequency power amplifier, high-frequency device, high-frequency control device and magnetic resonance tomography system
US7078900B2 (en) * 2004-07-23 2006-07-18 General Electric Company Method and system of determining parameters for MR data acquisition with real-time B1 optimization
US7116106B1 (en) * 2004-11-16 2006-10-03 Fonar Corporation Process and system for detecting and correcting errors in an MRI scan process
DE102005007895B4 (en) * 2005-02-21 2016-06-30 Siemens Healthcare Gmbh Method for controlling a radio-frequency device, magnetic resonance tomography system and high-frequency control device
DE102006061740A1 (en) * 2006-12-28 2008-07-10 Siemens Ag Method and control device for controlling the high-frequency load in a magnetic resonance measurement
CN101322647B (en) * 2007-06-15 2010-09-29 Ge医疗系统环球技术有限公司 Magnetic resonance imaging device and method for setting RF emission gain
WO2010018504A2 (en) * 2008-08-15 2010-02-18 Koninklijke Philips Electronics N.V. Method and monitoring device for performing an rf-safe mit scan
JP3176221U (en) 2009-04-27 2012-06-14 アスペクト・マグネット・テクノロジーズ・リミテッド Imaging device and method for three-dimensional anatomical and functional imaging
JP5542591B2 (en) 2009-11-12 2014-07-09 株式会社東芝 Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5597515B2 (en) * 2009-12-17 2014-10-01 株式会社東芝 Magnetic resonance imaging apparatus and magnetic resonance imaging method
US10209330B2 (en) 2011-03-22 2019-02-19 The Johns Hopkins University System and method of performing magnetic resonance spectroscopic imaging
US9791489B2 (en) 2011-03-22 2017-10-17 The Johns Hopkins University High dynamic range RF power monitor
US10120049B2 (en) 2015-05-18 2018-11-06 The Johns Hopkins University System and method of obtaining spatially-encoded NMR parameters from arbitrarily-shaped compartments and linear algebraic modeling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760336A (en) 1987-02-27 1988-07-26 Stanford University Variable rate magnetic resonance selective excitation for reducing rf power and specific absorption rate
GB9106789D0 (en) * 1991-04-02 1991-05-22 Nat Res Dev Nqr methods and apparatus
US5572126A (en) 1994-07-28 1996-11-05 University Of Pennsylvania Reduced power selective excitation RF pulses
US6111411A (en) * 1998-04-07 2000-08-29 Generalelectric Company RF power calibration for an MRI system using multiple axis projections

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1864074B (en) * 2003-10-07 2010-06-16 西门子公司 Method for determining patient-related information, control apparatus and magnetic resonance tomography instrument
DE102004037840A1 (en) * 2004-08-04 2006-02-23 Siemens Ag Control of the high frequency exposure of a patient undergoing diagnosis using MRI, by measuring high frequency exposure and deriving a physiological loading value for comparison with a threshold
US20070024283A1 (en) * 2004-08-04 2007-02-01 Wolfgang Bielmeier Method, device and magnetic resonance tomography system for monitoring emitted RF energy
US7342398B2 (en) 2004-08-04 2008-03-11 Siemens Aktiengesellschaft Method, device and magnetic resonance tomography system for monitoring emitted RF energy
US7701213B2 (en) 2005-04-28 2010-04-20 Koninklijke Philips Electronics N.V. Method and circuit arrangement for operating multi-channel transmit/receive antenna devices
US20080211501A1 (en) * 2005-04-28 2008-09-04 Koninklijke Philips Electronics N. V. Method and Curcuit Arrangement For Operating Multi-Channel Transmit/Receive Antenna Devices
WO2006114749A1 (en) 2005-04-28 2006-11-02 Koninklijke Philips Electronics N.V. Method and circuit arrangement for operating multi-channel transmit/receive antenna devices
JP2008539637A (en) * 2005-04-29 2008-11-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and circuit arrangement for operating a multi-channel transmit / receive antenna apparatus.
US20100312091A1 (en) * 2007-12-21 2010-12-09 Koninklijke Philips Electronics N.V. Magnetic resonance safety monitoring systems and methods
US9952296B2 (en) * 2007-12-21 2018-04-24 Koninklijke Philip N.V. Magnetic resonance safety monitoring systems and methods
EP2803318A1 (en) * 2013-05-17 2014-11-19 Imris Inc. Control of SAR values in MR imaging
US20150082906A1 (en) * 2013-09-26 2015-03-26 Rosemount Inc. Magnetic flowmeter with power limit and over-current detection
US10663331B2 (en) * 2013-09-26 2020-05-26 Rosemount Inc. Magnetic flowmeter with power limit and over-current detection
US11002809B2 (en) 2014-05-13 2021-05-11 Aspect Imaging Ltd. Protective and immobilizing sleeves with sensors, and methods for reducing the effect of object movement during MRI scanning

Also Published As

Publication number Publication date
US6426623B1 (en) 2002-07-30

Similar Documents

Publication Publication Date Title
US6426623B1 (en) MRI RF power monitor
US5363844A (en) Breath-hold monitor for MR imaging
US5256967A (en) Fast NMR image acquisition with spectrally selective inversion pulses
US6144874A (en) Respiratory gating method for MR imaging
US6078175A (en) Acquistion of segmented cardiac gated MRI perfusion images
EP1022576B1 (en) Method for optimizing fat suppression using the chemical shift selective MR imaging technique
US6201393B1 (en) Reducing image artifacts caused by patient motion during MR imaging
US5429134A (en) Multi-phase fat suppressed MRI cardiac imaging
US5657757A (en) Interleaved MR spectroscopy and imaging with dynamically changing acquisition parameters
US6028428A (en) Multiband selective RF pulse construction for NMR measurement sequences
EP1055935A2 (en) Respiratory gated multi-slab cardiac MR imaging
US5251628A (en) Variable ECG delay in fast pulse sequence scans
US20080129290A1 (en) Method and apparatus for acquiring magnetic resonance imaging data
US5339035A (en) MR imaging with rectangular magnetization transfer pulse
US5525906A (en) Detection and elimination of wide bandwidth noise in MRI signals
US20100090693A1 (en) Method and apparatus for controlling t1 recovery process in magnetic resonance measurements
EP1139114A2 (en) Slice ordering method for breath-hold abdominal MR imaging
US20060064002A1 (en) Method for monitoring thermal heating during magnetic resonance imaging
US7078900B2 (en) Method and system of determining parameters for MR data acquisition with real-time B1 optimization
US4968935A (en) Selective rephasing of NMR signals to suppress motion artifacts
US6294913B1 (en) Compensation of variations in polarizing magnetic field during magnetic resonance imaging
JP4222846B2 (en) Personalized spatial saturation pulse sequence for MR image artifact suppression
JP4301597B2 (en) How to compensate for errors associated with Maxwell terms
US7047062B2 (en) Magnetic resonance imaging with nested gradient pulses
US6487436B1 (en) Switchable field of view apparatus and method for magnetic resonance imaging

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERNSTEIN, MATTHEW A.;REEL/FRAME:012488/0422

Effective date: 20011107

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12