US20020090701A1 - 14257 novel protein kinase molecules and their uses therefor - Google Patents
14257 novel protein kinase molecules and their uses therefor Download PDFInfo
- Publication number
- US20020090701A1 US20020090701A1 US09/834,496 US83449601A US2002090701A1 US 20020090701 A1 US20020090701 A1 US 20020090701A1 US 83449601 A US83449601 A US 83449601A US 2002090701 A1 US2002090701 A1 US 2002090701A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- seq
- polypeptide
- acid molecule
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102000001253 Protein Kinase Human genes 0.000 title abstract description 20
- 108060006633 protein kinase Proteins 0.000 title abstract description 20
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 279
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 267
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 267
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 119
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 108
- 230000000692 anti-sense effect Effects 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 149
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 146
- 230000000694 effects Effects 0.000 claims description 136
- 230000014509 gene expression Effects 0.000 claims description 114
- 125000003729 nucleotide group Chemical group 0.000 claims description 114
- 239000002773 nucleotide Substances 0.000 claims description 111
- 229920001184 polypeptide Polymers 0.000 claims description 100
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 97
- 150000001875 compounds Chemical class 0.000 claims description 87
- 239000000523 sample Substances 0.000 claims description 82
- 239000013598 vector Substances 0.000 claims description 58
- 206010028980 Neoplasm Diseases 0.000 claims description 55
- 201000011510 cancer Diseases 0.000 claims description 45
- 239000012634 fragment Substances 0.000 claims description 44
- 150000001413 amino acids Chemical class 0.000 claims description 43
- 238000012360 testing method Methods 0.000 claims description 41
- 238000011282 treatment Methods 0.000 claims description 41
- 230000024245 cell differentiation Effects 0.000 claims description 37
- 238000009396 hybridization Methods 0.000 claims description 36
- 230000004663 cell proliferation Effects 0.000 claims description 34
- 239000002299 complementary DNA Substances 0.000 claims description 30
- 230000000295 complement effect Effects 0.000 claims description 28
- 239000013612 plasmid Substances 0.000 claims description 27
- 230000001594 aberrant effect Effects 0.000 claims description 25
- 230000027455 binding Effects 0.000 claims description 23
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 20
- 230000003321 amplification Effects 0.000 claims description 19
- 108090000994 Catalytic RNA Proteins 0.000 claims description 11
- 102000053642 Catalytic RNA Human genes 0.000 claims description 11
- 108091092562 ribozyme Proteins 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 150000003384 small molecules Chemical class 0.000 claims description 9
- 238000001415 gene therapy Methods 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 108010001441 Phosphopeptides Proteins 0.000 claims 1
- 238000011156 evaluation Methods 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 492
- 102000004169 proteins and genes Human genes 0.000 abstract description 362
- 241001465754 Metazoa Species 0.000 abstract description 44
- 239000013604 expression vector Substances 0.000 abstract description 43
- 102000037865 fusion proteins Human genes 0.000 abstract description 30
- 108020001507 fusion proteins Proteins 0.000 abstract description 30
- 239000000203 mixture Substances 0.000 abstract description 29
- 230000009261 transgenic effect Effects 0.000 abstract description 19
- 238000003259 recombinant expression Methods 0.000 abstract description 16
- 238000012216 screening Methods 0.000 abstract description 15
- 238000002560 therapeutic procedure Methods 0.000 abstract description 6
- 230000000890 antigenic effect Effects 0.000 abstract description 5
- 235000018102 proteins Nutrition 0.000 description 351
- 210000004027 cell Anatomy 0.000 description 173
- 108020004414 DNA Proteins 0.000 description 102
- 239000003795 chemical substances by application Substances 0.000 description 76
- 208000035475 disorder Diseases 0.000 description 70
- 239000003814 drug Substances 0.000 description 65
- 241000282414 Homo sapiens Species 0.000 description 57
- 229940079593 drug Drugs 0.000 description 56
- 108020004999 messenger RNA Proteins 0.000 description 51
- 108091000080 Phosphotransferase Proteins 0.000 description 48
- 102000020233 phosphotransferase Human genes 0.000 description 48
- 210000001519 tissue Anatomy 0.000 description 48
- 201000010099 disease Diseases 0.000 description 47
- 235000001014 amino acid Nutrition 0.000 description 44
- 238000003556 assay Methods 0.000 description 44
- 108091028043 Nucleic acid sequence Proteins 0.000 description 40
- 229940024606 amino acid Drugs 0.000 description 39
- 230000035772 mutation Effects 0.000 description 39
- 125000000539 amino acid group Chemical group 0.000 description 37
- 239000012472 biological sample Substances 0.000 description 29
- 239000003550 marker Substances 0.000 description 28
- 230000001105 regulatory effect Effects 0.000 description 26
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 25
- 108091026890 Coding region Proteins 0.000 description 23
- 210000000349 chromosome Anatomy 0.000 description 23
- 239000013615 primer Substances 0.000 description 23
- 238000001514 detection method Methods 0.000 description 22
- 238000003752 polymerase chain reaction Methods 0.000 description 22
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 21
- 241000699666 Mus <mouse, genus> Species 0.000 description 20
- 230000004927 fusion Effects 0.000 description 20
- 108091034117 Oligonucleotide Proteins 0.000 description 19
- 230000010261 cell growth Effects 0.000 description 19
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 108700019146 Transgenes Proteins 0.000 description 18
- -1 e.g. Proteins 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 230000002974 pharmacogenomic effect Effects 0.000 description 18
- 230000004044 response Effects 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 17
- 230000001413 cellular effect Effects 0.000 description 16
- 238000007423 screening assay Methods 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 230000001225 therapeutic effect Effects 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 15
- 230000026731 phosphorylation Effects 0.000 description 14
- 238000006366 phosphorylation reaction Methods 0.000 description 14
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 13
- 230000004075 alteration Effects 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 102000053602 DNA Human genes 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 11
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 230000004071 biological effect Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 210000004408 hybridoma Anatomy 0.000 description 11
- 201000009030 Carcinoma Diseases 0.000 description 10
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 10
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- 230000003612 virological effect Effects 0.000 description 10
- 108010070675 Glutathione transferase Proteins 0.000 description 9
- 102000005720 Glutathione transferase Human genes 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 239000005557 antagonist Substances 0.000 description 9
- 239000012707 chemical precursor Substances 0.000 description 9
- 238000003776 cleavage reaction Methods 0.000 description 9
- 238000002744 homologous recombination Methods 0.000 description 9
- 230000006801 homologous recombination Effects 0.000 description 9
- 210000003917 human chromosome Anatomy 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 230000003285 pharmacodynamic effect Effects 0.000 description 9
- 230000000069 prophylactic effect Effects 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 206010035226 Plasma cell myeloma Diseases 0.000 description 8
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 8
- 239000004473 Threonine Substances 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 239000000556 agonist Substances 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 230000002068 genetic effect Effects 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 201000000050 myeloid neoplasm Diseases 0.000 description 8
- 102000054765 polymorphisms of proteins Human genes 0.000 description 8
- 230000007017 scission Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000010561 standard procedure Methods 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 7
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 7
- 208000024172 Cardiovascular disease Diseases 0.000 description 7
- 108091033380 Coding strand Proteins 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000008194 pharmaceutical composition Substances 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 108091035707 Consensus sequence Proteins 0.000 description 6
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 102000040945 Transcription factor Human genes 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000002759 chromosomal effect Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 210000004962 mammalian cell Anatomy 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 238000002703 mutagenesis Methods 0.000 description 6
- 231100000350 mutagenesis Toxicity 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 102000011632 Caseins Human genes 0.000 description 5
- 108010076119 Caseins Proteins 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 102000009465 Growth Factor Receptors Human genes 0.000 description 5
- 108010009202 Growth Factor Receptors Proteins 0.000 description 5
- 206010019280 Heart failures Diseases 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 208000002193 Pain Diseases 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- 108010091086 Recombinases Proteins 0.000 description 5
- 102000018120 Recombinases Human genes 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 239000005018 casein Substances 0.000 description 5
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 5
- 235000021240 caseins Nutrition 0.000 description 5
- 230000007850 degeneration Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 230000004077 genetic alteration Effects 0.000 description 5
- 231100000118 genetic alteration Toxicity 0.000 description 5
- 230000003394 haemopoietic effect Effects 0.000 description 5
- 210000004754 hybrid cell Anatomy 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 230000036210 malignancy Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000001613 neoplastic effect Effects 0.000 description 5
- 210000000287 oocyte Anatomy 0.000 description 5
- 239000000816 peptidomimetic Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 210000001082 somatic cell Anatomy 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 102000014914 Carrier Proteins Human genes 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 4
- 239000003155 DNA primer Substances 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- 108091005461 Nucleic proteins Proteins 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 239000000074 antisense oligonucleotide Substances 0.000 description 4
- 238000012230 antisense oligonucleotides Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 108091008324 binding proteins Proteins 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000003184 complementary RNA Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 210000001671 embryonic stem cell Anatomy 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 238000001114 immunoprecipitation Methods 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 210000001161 mammalian embryo Anatomy 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 230000011278 mitosis Effects 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 238000002823 phage display Methods 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 102000040430 polynucleotide Human genes 0.000 description 4
- 108091033319 polynucleotide Proteins 0.000 description 4
- 239000002157 polynucleotide Substances 0.000 description 4
- 239000002987 primer (paints) Substances 0.000 description 4
- 210000001236 prokaryotic cell Anatomy 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 238000012340 reverse transcriptase PCR Methods 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 3
- 239000003298 DNA probe Substances 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 206010016654 Fibrosis Diseases 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 108091092724 Noncoding DNA Proteins 0.000 description 3
- 102000012515 Protein kinase domains Human genes 0.000 description 3
- 108050002122 Protein kinase domains Proteins 0.000 description 3
- 108700008625 Reporter Genes Proteins 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 208000027520 Somatoform disease Diseases 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003150 biochemical marker Substances 0.000 description 3
- 230000004097 bone metabolism Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 230000002308 calcification Effects 0.000 description 3
- 238000003200 chromosome mapping Methods 0.000 description 3
- 208000019425 cirrhosis of liver Diseases 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 210000004292 cytoskeleton Anatomy 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003831 deregulation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 230000000857 drug effect Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000005714 functional activity Effects 0.000 description 3
- 238000001476 gene delivery Methods 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 210000002064 heart cell Anatomy 0.000 description 3
- 230000002440 hepatic effect Effects 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 235000014304 histidine Nutrition 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 208000015210 hypertensive heart disease Diseases 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000011164 ossification Effects 0.000 description 3
- 210000002997 osteoclast Anatomy 0.000 description 3
- 208000027753 pain disease Diseases 0.000 description 3
- 208000008494 pericarditis Diseases 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000004952 protein activity Effects 0.000 description 3
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 3
- 210000004988 splenocyte Anatomy 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- 206010007559 Cardiac failure congestive Diseases 0.000 description 2
- 206010011703 Cyanosis Diseases 0.000 description 2
- 108010026925 Cytochrome P-450 CYP2C19 Proteins 0.000 description 2
- 102100029363 Cytochrome P450 2C19 Human genes 0.000 description 2
- 108020003215 DNA Probes Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 108030004793 Dual-specificity kinases Proteins 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 208000025499 G6PD deficiency Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 206010071602 Genetic polymorphism Diseases 0.000 description 2
- 206010018444 Glucose-6-phosphate dehydrogenase deficiency Diseases 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000015023 Graves' disease Diseases 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 2
- 108091027305 Heteroduplex Proteins 0.000 description 2
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 2
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 208000005228 Pericardial Effusion Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 2
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 102100037787 Protein-tyrosine kinase 2-beta Human genes 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 101150073911 STK gene Proteins 0.000 description 2
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108091023045 Untranslated Region Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 201000006966 adult T-cell leukemia Diseases 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000002449 bone cell Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 210000000748 cardiovascular system Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 238000002742 combinatorial mutagenesis Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940000406 drug candidate Drugs 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 206010014665 endocarditis Diseases 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 230000000762 glandular Effects 0.000 description 2
- 208000008605 glucosephosphate dehydrogenase deficiency Diseases 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 201000009277 hairy cell leukemia Diseases 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 231100000753 hepatic injury Toxicity 0.000 description 2
- 238000002169 hydrotherapy Methods 0.000 description 2
- 208000026278 immune system disease Diseases 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 230000031146 intracellular signal transduction Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000011565 manganese chloride Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 230000033607 mismatch repair Effects 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- 239000002853 nucleic acid probe Substances 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 108091005981 phosphorylated proteins Proteins 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 230000009822 protein phosphorylation Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000000163 radioactive labelling Methods 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 208000007442 rickets Diseases 0.000 description 2
- 201000000306 sarcoidosis Diseases 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- YMXHPSHLTSZXKH-RVBZMBCESA-N (2,5-dioxopyrrolidin-1-yl) 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)ON1C(=O)CCC1=O YMXHPSHLTSZXKH-RVBZMBCESA-N 0.000 description 1
- NLEBIOOXCVAHBD-YHBSTRCHSA-N (2r,3r,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-dodecoxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](OCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 NLEBIOOXCVAHBD-YHBSTRCHSA-N 0.000 description 1
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- WRFPVMFCRNYQNR-UHFFFAOYSA-N 2-hydroxyphenylalanine Chemical compound OC(=O)C(N)CC1=CC=CC=C1O WRFPVMFCRNYQNR-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- FUBFWTUFPGFHOJ-UHFFFAOYSA-N 2-nitrofuran Chemical class [O-][N+](=O)C1=CC=CO1 FUBFWTUFPGFHOJ-UHFFFAOYSA-N 0.000 description 1
- GYJNVSAUBGJVLV-UHFFFAOYSA-N 3-(dimethylazaniumyl)propane-1-sulfonate Chemical compound CN(C)CCCS(O)(=O)=O GYJNVSAUBGJVLV-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- GUQQBLRVXOUDTN-XOHPMCGNSA-N 3-[dimethyl-[3-[[(4r)-4-[(3r,5s,7r,8r,9s,10s,12s,13r,14s,17r)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]propyl]azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CC(O)CS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 GUQQBLRVXOUDTN-XOHPMCGNSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 206010059245 Angiopathy Diseases 0.000 description 1
- 102100022014 Angiopoietin-1 receptor Human genes 0.000 description 1
- 206010058079 Anomalous pulmonary venous connection Diseases 0.000 description 1
- 208000000103 Anorexia Nervosa Diseases 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 208000006179 Aortic Coarctation Diseases 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 206010003225 Arteriospasm coronary Diseases 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 108020005224 Arylamine N-acetyltransferase Proteins 0.000 description 1
- 102100038110 Arylamine N-acetyltransferase 2 Human genes 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 102100037598 B-cell lymphoma/leukemia 10 Human genes 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 208000023328 Basedow disease Diseases 0.000 description 1
- 206010004552 Bicuspid aortic valve Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000007257 Budd-Chiari syndrome Diseases 0.000 description 1
- 101150010738 CYP2D6 gene Proteins 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 240000001432 Calendula officinalis Species 0.000 description 1
- 235000005881 Calendula officinalis Nutrition 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 201000000274 Carcinosarcoma Diseases 0.000 description 1
- 208000021565 Cardiac Papillary Fibroelastoma Diseases 0.000 description 1
- 206010007558 Cardiac failure chronic Diseases 0.000 description 1
- 206010007572 Cardiac hypertrophy Diseases 0.000 description 1
- 208000006029 Cardiomegaly Diseases 0.000 description 1
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 102000052052 Casein Kinase II Human genes 0.000 description 1
- 108010010919 Casein Kinase II Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010053684 Cerebrohepatorenal syndrome Diseases 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 208000013725 Chronic Kidney Disease-Mineral and Bone disease Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 206010009807 Coarctation of the aorta Diseases 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 208000003890 Coronary Vasospasm Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108020001738 DNA Glycosylase Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102000028381 DNA glycosylase Human genes 0.000 description 1
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 1
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- 206010011891 Deafness neurosensory Diseases 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 208000019872 Drug Eruptions Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 206010062608 Endocarditis noninfective Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000702191 Escherichia virus P1 Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 208000023281 Fallot tetralogy Diseases 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 206010072104 Fructose intolerance Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000027472 Galactosemias Diseases 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102100035172 Glucose-6-phosphate 1-dehydrogenase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 241000288105 Grus Species 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 208000018565 Hemochromatosis Diseases 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 206010019668 Hepatic fibrosis Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 206010019755 Hepatitis chronic active Diseases 0.000 description 1
- 206010019878 Hereditary fructose intolerance Diseases 0.000 description 1
- 206010062624 High turnover osteopathy Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000753291 Homo sapiens Angiopoietin-1 receptor Proteins 0.000 description 1
- 101000884399 Homo sapiens Arylamine N-acetyltransferase 2 Proteins 0.000 description 1
- 101000739859 Homo sapiens B-cell lymphoma/leukemia 10 Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 208000004454 Hyperalgesia Diseases 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 208000035154 Hyperesthesia Diseases 0.000 description 1
- 201000002980 Hyperparathyroidism Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 208000000038 Hypoparathyroidism Diseases 0.000 description 1
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 1
- 208000001019 Inborn Errors Metabolism Diseases 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 208000035478 Interatrial communication Diseases 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 206010065973 Iron Overload Diseases 0.000 description 1
- 206010023129 Jaundice cholestatic Diseases 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 208000024369 Libman-Sacks endocarditis Diseases 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 206010024612 Lipoma Diseases 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010025476 Malabsorption Diseases 0.000 description 1
- 208000004155 Malabsorption Syndromes Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000035490 Megakaryoblastic Acute Leukemia Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 208000003430 Mitral Valve Prolapse Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000023178 Musculoskeletal disease Diseases 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 208000021908 Myocardial disease Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- BKAYIFDRRZZKNF-VIFPVBQESA-N N-acetylcarnosine Chemical compound CC(=O)NCCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BKAYIFDRRZZKNF-VIFPVBQESA-N 0.000 description 1
- 102000008763 Neurofilament Proteins Human genes 0.000 description 1
- 108010088373 Neurofilament Proteins Proteins 0.000 description 1
- 208000032234 No therapeutic response Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 201000005267 Obstructive Jaundice Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000002624 Osteitis Fibrosa Cystica Diseases 0.000 description 1
- 206010031240 Osteodystrophy Diseases 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 201000000023 Osteosclerosis Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 208000025584 Pericardial disease Diseases 0.000 description 1
- 206010034476 Pericardial haemorrhage Diseases 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 208000020547 Peroxisomal disease Diseases 0.000 description 1
- 208000004605 Persistent Truncus Arteriosus Diseases 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 201000009454 Portal vein thrombosis Diseases 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 206010036774 Proctitis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 208000008640 Pulmonary Atresia Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 206010038748 Restrictive cardiomyopathy Diseases 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 208000005678 Rhabdomyoma Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 241000251131 Sphyrna Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 206010041969 Steatorrhoea Diseases 0.000 description 1
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 241000223892 Tetrahymena Species 0.000 description 1
- 201000003005 Tetralogy of Fallot Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 231100000644 Toxic injury Toxicity 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000002148 Transposition of Great Vessels Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 229920004929 Triton X-114 Polymers 0.000 description 1
- 208000037258 Truncus arteriosus Diseases 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 206010070517 Type 2 lepra reaction Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- 208000012346 Venoocclusive disease Diseases 0.000 description 1
- 208000001910 Ventricular Heart Septal Defects Diseases 0.000 description 1
- ZVNYJIZDIRKMBF-UHFFFAOYSA-N Vesnarinone Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)N1CCN(C=2C=C3CCC(=O)NC3=CC=2)CC1 ZVNYJIZDIRKMBF-UHFFFAOYSA-N 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 201000004525 Zellweger Syndrome Diseases 0.000 description 1
- 208000036813 Zellweger spectrum disease Diseases 0.000 description 1
- DLYSYXOOYVHCJN-UDWGBEOPSA-N [(2r,3s,5r)-2-[[[(4-methoxyphenyl)-diphenylmethyl]amino]methyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphonamidous acid Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)NC[C@@H]1[C@@H](OP(N)O)C[C@H](N2C(NC(=O)C(C)=C2)=O)O1 DLYSYXOOYVHCJN-UDWGBEOPSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 208000013593 acute megakaryoblastic leukemia Diseases 0.000 description 1
- 208000020700 acute megakaryocytic leukemia Diseases 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 201000009961 allergic asthma Diseases 0.000 description 1
- 208000006682 alpha 1-Antitrypsin Deficiency Diseases 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 229960003965 antiepileptics Drugs 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 206010002906 aortic stenosis Diseases 0.000 description 1
- 208000002399 aphthous stomatitis Diseases 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000013914 atrial heart septal defect Diseases 0.000 description 1
- 206010003664 atrial septal defect Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 1
- 201000004982 autoimmune uveitis Diseases 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Chemical group C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 208000021654 bicuspid aortic valve disease Diseases 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 210000001109 blastomere Anatomy 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 208000020670 canker sore Diseases 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 208000005761 carcinoid heart disease Diseases 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000008711 chromosomal rearrangement Effects 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 208000037893 chronic inflammatory disorder Diseases 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229940121657 clinical drug Drugs 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229960004126 codeine Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 201000011634 coronary artery vasospasm Diseases 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 208000018554 digestive system carcinoma Diseases 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- SLPJGDQJLTYWCI-UHFFFAOYSA-N dimethyl-(4,5,6,7-tetrabromo-1h-benzoimidazol-2-yl)-amine Chemical compound BrC1=C(Br)C(Br)=C2NC(N(C)C)=NC2=C1Br SLPJGDQJLTYWCI-UHFFFAOYSA-N 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 201000010073 fibrogenesis imperfecta ossium Diseases 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 208000007345 glycogen storage disease Diseases 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000024348 heart neoplasm Diseases 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 201000002303 hemopericardium Diseases 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000437 hepatocellular injury Toxicity 0.000 description 1
- 201000006846 hereditary fructose intolerance syndrome Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 206010020871 hypertrophic cardiomyopathy Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000016245 inborn errors of metabolism Diseases 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 201000007119 infective endocarditis Diseases 0.000 description 1
- 208000015978 inherited metabolic disease Diseases 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 201000010666 keratoconjunctivitis Diseases 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 201000011486 lichen planus Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000832 liver cell necrosis Toxicity 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 201000007261 marantic endocarditis Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000000472 morula Anatomy 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 101150029137 mutY gene Proteins 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 208000009091 myxoma Diseases 0.000 description 1
- ZTLGJPIZUOVDMT-UHFFFAOYSA-N n,n-dichlorotriazin-4-amine Chemical compound ClN(Cl)C1=CC=NN=N1 ZTLGJPIZUOVDMT-UHFFFAOYSA-N 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- UMWKZHPREXJQGR-XOSAIJSUSA-N n-methyl-n-[(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl]decanamide Chemical compound CCCCCCCCCC(=O)N(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO UMWKZHPREXJQGR-XOSAIJSUSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006218 nasal suppository Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000002956 necrotizing effect Effects 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 208000016135 nonbacterial thrombotic endocarditis Diseases 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 201000008972 osteitis fibrosa Diseases 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 208000005368 osteomalacia Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SJDACOMXKWHBOW-UHFFFAOYSA-N oxyphenisatine Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2NC1=O SJDACOMXKWHBOW-UHFFFAOYSA-N 0.000 description 1
- 229960003241 oxyphenisatine Drugs 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 208000003278 patent ductus arteriosus Diseases 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 230000009120 phenotypic response Effects 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 208000007232 portal hypertension Diseases 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229940076376 protein agonist Drugs 0.000 description 1
- 229940076372 protein antagonist Drugs 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 208000009138 pulmonary valve stenosis Diseases 0.000 description 1
- 208000030390 pulmonic stenosis Diseases 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000018406 regulation of metabolic process Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 201000006409 renal osteodystrophy Diseases 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 208000004124 rheumatic heart disease Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 231100000879 sensorineural hearing loss Toxicity 0.000 description 1
- 208000023573 sensorineural hearing loss disease Diseases 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000012409 standard PCR amplification Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 208000001162 steatorrhea Diseases 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000003161 three-hybrid assay Methods 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 208000004371 toothache Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 208000007340 tricuspid atresia Diseases 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 206010044697 tropical sprue Diseases 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000003160 two-hybrid assay Methods 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 201000011296 tyrosinemia Diseases 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 201000003130 ventricular septal defect Diseases 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- Phosphate tightly associated with protein has been known since the late nineteenth century. Since then, a variety of covalent linkages of phosphate to proteins have been found. The most common involve esterification of phosphate to serine, threonine, and tyrosine with smaller amounts being linked to lysine, arginine, histidine, aspartic acid, glutamic acid, and cysteine.
- the occurrence of phosphorylated proteins implies the existence of one or more protein kinases capable of phosphorylating amino acid residues on proteins, and also of protein phosphatases capable of hydrolyzing phosphorylated amino acid residues on proteins.
- kinases play a critical role in the mechanism of intracellular signal transduction. They act on the hydroxyamino acids of target proteins to catalyze the transfer of a high energy phosphate group from adenosine triphosphate (ATP). This process is known as protein phosphorylation. Along with phosphatases, which remove phosphates from phosphorylated proteins, kinases participate in reversible protein phosphorylation. Reversible phosphorylation acts as the main strategy for regulating protein activity in eukaryotic cells.
- Protein kinases play critical roles in the regulation of biochemical and morphological changes associated with cell proliferation, differentiation, growth and division (D'Urso, G. et al. (1990) Science 250: 786-791; Birchmeier. C. et al. (1993) Bioessays 15: 185-189). They serve as growth factor receptors and signal transducers and have been implicated in cellular transformation and malignancy (Hunter, T. et al. (1992) Cell 70: 375-387; Posada, J. et al. (1992) Mol. Biol. Cell 3: 583-592; Hunter, T. et al. (1994) Cell 79: 573-582).
- protein kinases have been shown to participate in the transmission of signals from growth-factor receptors (Sturgill, T. W. et al. (1988) Nature 344: 715-718; Gomez, N. et al. (1991) Nature 353: 170-173), control of entry of cells into mitosis (Nurse, P. (1990) Nature 344: 503-508; Maller, J. L. (1991) Curr. Opin. Cell Biol. 3: 269-275) and regulation of actin bundling (Husain-Chishti, A. et al. (1988) Nature 334: 718-721).
- kinases vary widely in their selectivity and specificity of target proteins. They still may, however, comprise the largest known enzyme superfamily. Protein kinases can be divided into two main groups based on either amino acid sequence similarity or specificity for either serine/threonine or tyrosine residues. Serine/threonine specific kinases are often referred to as STKs while tyrosine specific kinases are referred to as PTKs. A small number of dual-specificity kinases are structurally like the serine/threonine-specific group. Within the broad classification, kinases can be further sub-divided into families whose members share a higher degree of catalytic domain amino acid sequence identity and also have similar biochemical properties.
- kinases contain a catalytic domain composed of 250-300 conserved amino acids. This catalytic domain may be viewed as composed of 11 subdomains. Some of these subdomains apparently contain distinct amino acid motifs which confer specificity as a STK or PTK or both. Kinases may also contain additional amino acid sequences, usually between 5 and 100 residues, flanking or occurring within the catalytic domain. These residues apparently act to regulate kinase activity and to determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book, Vol I:7-20 Academic Press, San Diego, Calif.)
- the present invention is based, at least in part, on the discovery of novel nucleic acid molecules and proteins encoded by such nucleic acid molecules, referred to herein as “kinases” or by the individual clone names “14257”.
- the 14257 nucleic acid and protein molecules of the present invention are useful as modulating agents in regulating a variety of cellular processes, e.g., including cell proliferation, differentiation, growth and division.
- the kinase and its related nucleic acids will be advantageous in the regulation of any cellular function uncontrolled proliferation and differentiation such as in cases of cancer.
- Other situations where the kinases of the invention are of particular advantage are in cases of autoimmune disorders or undesired inflammation.
- this invention provides isolated nucleic acid molecules encoding 14257 proteins or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection of 14257-encoding nucleic acids.
- a 14257 nucleic acid molecule of the invention is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to a nucleotide sequence (e.g., to the entire length of the nucleotide sequence) including SEQ ID NO:1, SEQ ID NO:3, or a complement thereof.
- a 14257 nucleic acid molecule includes a nucleotide sequence encoding a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of SEQ ID NO:2.
- a 14257 nucleic acid molecule includes a nucleotide sequence encoding a protein having an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to an amino acid sequence including SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2).
- an isolated nucleic acid molecule encodes the amino acid sequence of a human 14257.
- the nucleic acid molecule includes a nucleotide sequence encoding a protein which includes the amino acid sequence of SEQ ID NO:2.
- the nucleic acid molecule includes a nucleotide sequence encoding a protein having the amino acid sequence of SEQ ID NO:2.
- nucleic acid molecules preferably 14257 nucleic acid molecules, which specifically detect 14257 nucleic acid molecules relative to nucleic acid molecules encoding non-14257 proteins.
- a nucleic acid molecule is at least 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, or 800 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence shown in SEQ ID NO:1, or a complement thereof.
- the nucleic acid molecule encodes a naturally occurring allelic variant of a polypeptide which includes the amino acid sequence of SEQ ID NO:2, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule which includes SEQ ID NO:1 or SEQ ID NO:3 under stringent conditions.
- Another embodiment of the invention provides an isolated nucleic acid molecule which is antisense to a 14257 nucleic acid molecule, e.g., the coding strand of a 14257 nucleic acid molecule.
- Another aspect of the invention provides a vector comprising a 14257 nucleic acid molecule.
- the vector is a recombinant expression vector.
- the invention provides a host cell containing a vector of the invention.
- the invention also provides a method for producing a protein, preferably a 14257 protein, by culturing in a suitable medium, a host cell, e.g., a mammalian host cell such as a non-human mammalian cell, of the invention containing a recombinant expression vector, such that the protein is produced.
- Another aspect of this invention features isolated or recombinant 14257 proteins and polypeptides.
- the isolated protein preferably a 14257 protein, includes at least one Ser/Thr kinase site.
- the isolated protein, preferably a 14257 protein includes at least one Ser/Thr kinase site and has an amino acid sequence which is at least50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 99% or more homologous to an amino acid sequence including SEQ ID NO:2.
- the isolated protein, preferably a 14257 protein includes at least one Ser/Thr kinase site and plays a role in signaling pathways associated with cellular growth, e.g., signaling pathways associated with cell cycle regulation.
- the isolated protein preferably a 14257 protein, includes at least one Ser/Thr kinase site and is encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3.
- the isolated protein preferably a 14257 protein
- the protein preferably a 14257 protein
- the invention features fragments of the proteins having the amino acid sequence of SEQ ID NO:2, wherein the fragment comprises at least 15 amino acids (e.g., contiguous amino acids) of the amino acid sequence of SEQ ID NO:2, respectively.
- the protein preferably a 14257 protein, has the amino acid sequence of SEQ ID NO:2.
- Another embodiment of the invention features an isolated protein, preferably a 14257 protein, which is encoded by a nucleic acid molecule having a nucleotide sequence at least about 50%, 55%, 60%, 62%, 65%, 70%, 75%, 78%, 80%, 85%, 86%, 90%, 95%, 97%, 98% or more homologous to a nucleotide sequence (e.g., to the entire length of the nucleotide sequence) including SEQ ID NO:1, SEQ ID NO:3, or a complement thereof.
- This invention further features an isolated protein, preferably a 14257 protein, which is encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or a complement thereof.
- the proteins of the present invention or biologically active portions thereof can be operatively linked to a non-14257 polypeptide (e.g., heterologous amino acid sequences) to form fusion proteins.
- the invention further features antibodies, such as monoclonal or polyclonal antibodies, that specifically bind proteins of the invention, preferably 14257 proteins.
- the 14257 proteins or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.
- the present invention provides a method for detecting the presence of a 14257 nucleic acid molecule, protein or polypeptide in a biological sample by contacting the biological sample with an agent capable of detecting a 14257 nucleic acid molecule, protein or polypeptide such that the presence of a 14257 nucleic acid molecule, protein or polypeptide is detected in the biological sample.
- the present invention provides a method for detecting the presence of 14257 activity in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of 14257 activity such that the presence of 14257 activity is detected in the biological sample.
- the invention provides a method for modulating 14257 activity comprising contacting a cell capable of expressing 14257 with an agent that modulates 14257 activity such that 14257 activity in the cell is modulated.
- the agent inhibits 14257 activity.
- the agent stimulates 14257 activity.
- the agent is an antibody that specifically binds to a 14257 protein.
- the agent modulates expression of 14257 by modulating transcription of a 14257 gene or translation of a 14257 mRNA.
- the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of a 14257 mRNA or a 14257 gene.
- the methods of the present invention are used to treat a subject having a disorder characterized by aberrant 14257 protein or nucleic acid expression or activity by administering an agent which is a 14257 modulator to the subject.
- the 14257 modulator is a 14257 protein.
- the 14257 modulator is a 14257 nucleic acid molecule.
- the 14257 modulator is a peptide, peptidomimetic, or other small molecule.
- the disorder characterized by aberrant 14257 protein or nucleic acid expression is a cellular growth related disorder.
- the present invention also provides a diagnostic assay for identifying the presence or absence of a genetic alteration characterized by at least one of (i) aberrant modification or mutation of a gene encoding a 14257 protein; (ii) mis-regulation of the gene; and (iii) aberrant post-translational modification of a 14257 protein, wherein a wild-type form of the gene encodes a protein with a 14257 activity.
- the invention provides a method for identifying a compound that binds to or modulates the activity of a 14257 protein, by providing an indicator composition comprising a 14257 protein having 14257 activity, contacting the indicator composition with a test compound, and determining the effect of the test compound on 14257 activity in the indicator composition to identify a compound that modulates the activity of a 14257 protein.
- FIGS. 1A-B depict a cDNA sequence (SEQ ID NO:1) and predicted amino acid sequence (SEQ ID NO:2) of human 14257. The location of the methionine-initiated open reading frame of human 14257 (without the 5′ and 3′ untranslated regions) is also indicated (FIG. 1B, SEQ ID NO:3).
- FIG. 2 depicts a hydropathy plot of human 14257. Relatively hydrophobic residues are shown above the dashed horizontal line, and relatively hydrophilic residues are shown below the dashed horizontal line. The cysteine residues (cys) and N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The numbers corresponding to the amino acid sequence of human 14257 are indicated.
- Polypeptides of the invention include fragments which include: all or part of a hydrophobic sequence, e.g., a sequence above the dashed line, e.g., the sequence from about amino acid 100 to 110, from about 130 to 150, and from about 180 to 195 of SEQ ID NO:2; all or part of a hydrophilic sequence, e.g., a sequence below the dashed line, e.g., the sequence from about amino acid 35 to 45, from about 90 to 100, and from about 195 to 205 of SEQ ID NO:2; a sequence which includes a Cys, or a glycosylation site.
- a hydrophobic sequence e.g., a sequence above the dashed line, e.g., the sequence from about amino acid 100 to 110, from about 130 to 150, and from about 180 to 195 of SEQ ID NO:2
- a hydrophilic sequence e.g., a sequence below the dashed line, e.g., the sequence from
- FIG. 3 depicts an alignment of the protein kinase domain of human 14257 with a consensus amino acid sequence derived from a hidden Markov model (HMM) from PFAM.
- the upper sequence is the consensus amino acid sequence (SEQ ID NO:4), while the lower amino acid sequence corresponds to amino acids 4 to 218 of SEQ ID NO:2.
- FIG. 4 depicts a BLAST alignment of human 14257 with a consensus amino acid sequence derived from a ProDomain “kinase transferase protein serine/threonine-protein ATP-binding II phosphorylation casein alpha chain;” (Release 1999.2, http://www.toulouse.inra.fr/prodom.html).
- the lower sequence is amino acid residues 17 to 74 of the 58 amino acid consensus sequence (SEQ ID NO:5), while the upper amino acid sequence corresponds to the “kinase transferase protein serine/threonine-protein ATP-binding II phosphorylation casein alpha chain” domain of human 14257, amino acid residues 161 to 218 of SEQ ID NO:2.
- the human 14257 sequence (FIG. 1; SEQ ID NO:1), which is approximately 882 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 687 nucleotides, including the termination codon (nucleotides indicated as the coding region of SEQ ID NO:1 in FIG. 1; SEQ ID NO:3).
- the coding sequence encodes a 228 amino acid protein (SEQ ID NO:2).
- Human 14257 contains the following regions or other structural features (for general information regarding PFAM identifiers, PS prefix and PF prefix domain identification numbers, refer to Sonnhammer et al. ( 1997 ) Protein 28:405-420 and http://www.psc.edu/general/software/packages/pfam/pfam.html):
- PFAM Accession Number PF00069 located at about amino acid residues 4 to 218 of SEQ ID NO:2;
- N-glycosylation site (Prosite PS00001) from about amino acids 23 to 26 of SEQ ID NO:2;
- the present invention is based, at least in part, on the discovery of novel molecules, referred to herein as “14257” nucleic acid and polypeptide molecules, which have homologies to known serine/threonine kinases at their active sites and in regions relating to ATP binding and the phosphorylation of the alpha chain of casein.
- 14257 proteins are expected to play a role in or function in signaling pathways associated with cellular growth.
- the 14257 molecules modulate the activity of one or more proteins involved in cellular growth or differentiation, e.g., cardiac cell growth or differentiation.
- the 14257 molecules of the present invention are capable of modulating the phosphorylation state of a 14257 molecule or one or more proteins involved in cellular growth or differentiation.
- protein kinase includes a protein or polypeptide which is capable of modulating its own phosphorylation state or the phosphorylation state of another protein or polypeptide.
- Protein kinases can have a specificity for (i.e., a specificity to phosphorylate) serine/threonine residues, tyrosine residues, or both serine/threonine and tyrosine residues, e.g., the dual specificity kinases.
- protein kinases preferably include a catalytic domain of about 200-400 amino acid residues in length, preferably about 200-300 amino acid residues in length, or more preferably about 250-300 amino acid residues in length, which includes preferably 5-20, more preferably 5-15, or preferably 11 highly conserved motifs or subdomains separated by sequences of amino acids with reduced or minimal conservation.
- Specificity of a protein kinase for phosphorylation of either tyrosine or serine/threonine can be predicted by the sequence of two of the subdomains (VIb and VIII) in which different residues are conserved in each class (as described in, for example, Hanks et al. (1988) Science 241:42-52) the contents of which are incorporated herein by reference). These subdomains are also described in further detail herein.
- the kinases of the invention are serine/threonine kinases.
- Protein kinases play a role in signaling pathways associated with cellular growth. For example, protein kinases are involved in the regulation of signal transmission from cellular receptors, e.g., growth-factor receptors; entry of cells into mitosis; and the regulation of cytoskeleton function, e.g., actin bundling.
- cellular receptors e.g., growth-factor receptors
- cytoskeleton function e.g., actin bundling.
- the 14257 molecules of the present invention may be involved in: 1) the regulation of transmission of signals from cellular receptors, e.g., cardiac cell growth factor receptors; 2) the modulation of the entry of cells into mitosis; 3) the modulation of cellular differentiation; 4) the modulation of cell death; 5) the regulation of cytoskeleton function, e.g., actin bundling; and 6) the ability to antagonize or inhibit, competitively or non-competitively, any or all of (1)-(5).
- cellular receptors e.g., cardiac cell growth factor receptors
- a “cellular growth related disorder” includes a disorder, disease, or condition characterized by a deregulation, e.g., an upregulation or a downregulation, of cellular growth.
- a deregulation e.g., an upregulation or a downregulation
- Cellular growth deregulation may be due to a deregulation of cellular proliferation, cell cycle progression, cellular differentiation and/or cellular hypertrophy.
- the present invention is based, at least in part, on the discovery of novel molecules, referred to herein as 14257 protein and nucleic acid molecules, which comprise a family of molecules having certain conserved structural and functional features.
- family when referring to the protein and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence homology as defined herein.
- family members can be naturally or non-naturally occurring and can be from either the same or different species.
- a family can contain a first protein of human origin, as well as other, distinct proteins of human origin or alternatively, can contain homologues of non-human origin.
- Members of a family may also have common functional characteristics.
- kinase domain includes an amino acid sequence of about 100 to 215 amino acid residues in length and having a bit score for the alignment of the sequence to the kinase domain (HMM) of at least 100.
- a kinase domain mediates intracellular signal transduction.
- a kinase domain includes at least about 100 to 215 amino acids, more preferably about 150 to 215 amino acid residues, or about 200 to 215 amino acids and has a bit score for the alignment of the sequence to the kinase domain (HMM) of at least 100, 150, 200 or greater.
- An alignment of the kinase domain (amino acids 4 to 218 of SEQ ID NO:2) of human 14257 with a consensus amino acid sequence (SEQ ID NO:2) derived from a hidden Markov model is depicted in FIG. 3.
- a 14257 polypeptide or protein has a “kinase domain” or a region which includes at least about 100 to 215 more preferably about 150 to 215 or 200 to 215 amino acid residues and has at least about 60%, 70% 80% 90% 95%, 99%, or 100% homology with a “kinase domain,” e.g., the kinase domain of human 14257 (e.g., residues 4 to 218 of SEQ ID NO:2).
- the amino acid sequence of the protein can be searched against the Pfam database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters (http://www.sanger.ac.uk/Software/Pfam/HMM_search).
- HMMs e.g., the Pfam database, release 2.1
- the default parameters http://www.sanger.ac.uk/Software/Pfam/HMM_search.
- the hmmsf program which is available as part of the HMMER package of search programs, is a family specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit.
- the threshold score for determining a hit can be lowered (e.g., to 8 bits).
- a description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28:405-420 and a detailed description of HMMs can be found, for example, in Gribskov et al. (1990) Meth. Enzymol.183:146-159; Gribskov et al. (1987) Proc. Natl. Acad. Sci. USA 84:4355-4358; Krogh et al. (1994) J. Mol. Biol. 235:1501-1531; and Stultz et al. (1993) Protein Sci. 2:305-314, the contents of which are incorporated herein by reference. A search was performed against the HMM database resulting in the identification of a “kinase domain” domain in the amino acid sequence of human 14257 at about residues 4 to 218 of SEQ ID NO:2 (see FIG. 1).
- the amino acid sequence of the protein can be searched against a database of domains, e.g., the ProDom database (Corpet et al. (1999), Nucl. Acids Res. 27:263-267).
- the ProDom protein domain database consists of an automatic compilation of homologous domains. Current versions of ProDom are built using recursive PSI-BLAST searches (Altschul S F et al. (1997) Nucleic Acids Res. 25:3389-3402; Gouzy et al.
- the database automatically generates a consensus sequence for each domain.
- a BLAST search was performed against the HMM database resulting in the identification of a “kinase” domain in the amino acid sequence of human 14257 at about residues 161 to 218 of SEQ ID NO:2 (see FIG. 1).
- the kinase domain is homologous to ProDom family “kinase transferase protein serine/threonine-protein ATP-binding II phosphorylation casein alpha chain,” SEQ ID NO:5, (ProDomain Release 1999.2 http://www.toulouse.inra.fr/prodom.html).
- the consensus sequence for SEQ ID NO:5 is 51% identical over amino acids 161 to 218 of SEQ ID NO:2 as shown in FIG. 4.
- One embodiment of the invention features 14257 nucleic acid molecules, preferably human 14257 molecules, e.g., 14257.
- the 14257 nucleic acid and protein molecules of the invention are described in further detail in the following subsections.
- the isolated proteins of the present invention are identified based on the presence of at least Ser/Thr kinase site.
- Ser/Thr kinase site includes an amino acid sequence of about 200-400 amino acid residues in length, preferably 200-300 amino acid residues in length, and more preferably 250-300 amino acid residues in length, which is conserved in kinases which phosphorylate serine and threonine residues and found in the catalytic domain of Ser/Thr kinases.
- the Ser/Thr kinase site includes the following amino acid consensus sequence X 9 -g-X-G-X 4 -V-X 12 -K-X- (10-19) -E-X 66 -h-X 8 -h-r-D-X-K-X 2 -N-X 17 -K-X 2 -D-f-g-X 21 -p-X 13 -w-X 3 -g-X 55 -R-X 14 -h-X 3 (SEQ ID NO:6) (where invariant residues are indicated by upper case letters and nearly invariant residues are indicated by lower case letters).
- the nearly invariant residues are usually found in most Ser/Thr kinase sites, but can be replaced by other amino acids which, preferably, have similar characteristics. For example, a nearly invariant hydrophobic amino acid in the above amino acid consensus sequence would most likely be replaced by another hydrophobic amino acid.
- Ser/Thr kinase domains are described in, for example, Levin D. E. et al. (1990) Proc. Natl. Acad. Sci. USA 87:8272-76, the contents of which are incorporated herein by reference.
- the 14257 includes the following Prosite signature (PS00108) amino acid consensus sequence, or sequence homologous thereto: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-[LIVMFYCT] (SEQ. ID. NO:7).
- PS00108 Prosite signature amino acid consensus sequence, or sequence homologous thereto: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-[LIVMFYCT] (SEQ. ID. NO:7).
- the standard IUPAC one-letter code for the amino acids is used. Each element in the pattern is separated by a dash (-); square brackets ([ ]) indicate the particular residues that are accepted at that position; x indicates that any residue is accepted at that position; and numbers in parentheses (( )) indicate the number of residues represented by the accompanying amino acid.
- the protein kinase domain (HMM) has been assigned
- Isolated proteins of the present invention preferably 14257 proteins, have an amino acid sequence sufficiently homologous to the amino acid sequence of SEQ ID NO:2 or are encoded by a nucleotide sequence sufficiently homologous to SEQ ID NO: 1 or SEQ ID NO:3.
- the 14257 nucleic acid encodes a polypeptide with similarities to previously characterized protein kinases.
- the 14257 encoded polypeptide is expected to be a kinase and function in the phosphorylation of protein substrates.
- 14257 activity refers to an activity exerted by a 14257 protein, polypeptide or nucleic acid molecule on a 14257 responsive cell or a 14257 protein substrate as determined in vivo, or in vitro, according to standard techniques.
- the biological activity of 14257 is described herein.
- the 14257 molecules can act as novel diagnostic targets and therapeutic agents for controlling one or more disorders.
- disorders e.g., kinase-associated or other 14257-associated disorders
- disorders associated with bone metabolism include but are not limited to, cellular proliferative and/or differentiative disorders, disorders associated with bone metabolism, immune e.g., inflammatory, disorders, cardiovascular disorders, including endothelial cell disorders, liver disorders, viral diseases, pain or metabolic disorders.
- Examples of cellular proliferative and/or differentiative disorders include cancer, e.g., carcinoma, sarcoma, metastatic disorders or hematopoietic neoplastic disorders, e.g., leukemias.
- a metastatic tumor can arise from a multitude of primary tumor types, including but not limited to those of ovary, prostate, colon, lung, breast and liver origin.
- cancer refers to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth.
- cancerous disease states may be categorized as pathologic, i.e., characterizing or constituting a disease state, e.g., malignant tumor growth, or may be categorized as non-pathologic, i.e., a deviation from normal but not associated with a disease state, e.g., cell proliferation associated with wound repair.
- cancer includes malignancies of the various organ systems, such as those affecting lung, breast, thyroid, lymphoid, gastrointestinal, and genito-urinary tract, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus.
- carcinoma is art recognized and refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas. Exemplary carcinomas include those forming from tissue of the cervix, lung, prostate, breast, head and neck, colon and ovary.
- carcinosarcomas e.g., which include malignant tumors composed of carcinomatous and sarcomatous tissues.
- An “adenocarcinoma” refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures.
- sarcoma is art recognized and refers to malignant tumors of mesenchymal derivation.
- the 14257 molecules of the invention can be used to monitor, treat and/or diagnose a variety of proliferative disorders.
- Such disorders include hematopoietic neoplastic disorders.
- hematopoietic neoplastic disorders includes diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof.
- the diseases arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia.
- myeloid disorders include, but are not limited to, acute promycloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus, L. (1991) Crit Rev. in Oncol./Hemotol. 11:267-97); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM).
- ALL acute lymphoblastic leukemia
- ALL chronic lymphocytic leukemia
- PLL prolymphocytic leukemia
- HLL hairy cell leukemia
- WM Waldenstrom's macroglobulinemia
- malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Sternberg disease.
- 14257 molecules Aberrant expression and/or activity of 14257 molecules can mediate disorders associated with bone metabolism.
- “Bone metabolism” refers to direct or indirect effects in the formation or degeneration of bone structures, e.g., bone formation, bone resorption, etc., which can ultimately affect the concentrations in serum of calcium and phosphate.
- This term also includes activities mediated by 14257 molecules effects in bone cells, e.g. osteoclasts and osteoblasts, that can in turn result in bone formation and degeneration.
- 14257 molecules can support different activities of bone resorbing osteoclasts such as the stimulation of differentiation of monocytes and mononuclear phagocytes into osteoclasts.
- 14257 molecules that modulate the production of bone cells can influence bone formation and degeneration, and thus can be used to treat bone disorders.
- disorders include, but are not limited to, osteoporosis, osteodystrophy, osteomalacia, rickets, osteitis fibrosa cystica, renal osteodystrophy, osteosclerosis, anti-convulsant treatment, osteopenia, fibrogenesis-imperfecta ossium, secondary hyperparathyrodism, hypoparathyroidism, hyperparathyroidism, cirrhosis, obstructive jaundice, drug induced metabolism, medullary carcinoma, chronic renal disease, rickets, sarcoidosis, glucocorticoid antagonism, malabsorption syndrome, steatorrhea, tropical sprue, idiopathic hypercalcemia and milk fever.
- the 14257 nucleic acid and protein of the invention can be used to treat and/or diagnose a variety of immune, e.g., inflammatory, (e.g. respiratory inflammatory) disorders.
- immune disorders or diseases include, but are not limited to, autoimmune diseases (including, for example, diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), multiple sclerosis, encephalomyelitis, myasthenia gravis, systemic lupus erythematosis, autoimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), psoriasis, Sjögren's Syndrome, inflammatory bowel disease, e.g.
- autoimmune diseases including, for example, diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, ps
- cardiovascular disorder examples include, but are not limited to, a disease, disorder, or state involving the cardiovascular system, e.g., the heart, the blood vessels, and/or the blood.
- a cardiovascular disorder can be caused by an imbalance in arterial pressure, a malfunction of the heart, or an occlusion of a blood vessel, e.g., by a thrombus.
- cardiovascular disorders include but are not limited to, hypertension, atherosclerosis, coronary artery spasm, coronary artery disease, arrhythmias, heart failure, including but not limited to, cardiac hypertrophy, left-sided heart failure, and right-sided heart failure; ischemic heart disease, including but not limited to angina pectoris, myocardial infarction, chronic ischemic heart disease, and sudden cardiac death; hypertensive heart disease, including but not limited to, systemic (left-sided) hypertensive heart disease and pulmonary (right-sided) hypertensive heart disease; valvular heart disease, including but not limited to, valvular degeneration caused by calcification, such as calcification of a congenitally bicuspid aortic valve, and mitral annular calcification, and myxomatous degeneration of the mitral valve (mitral valve prolapse), rheumatic fever and rheumatic heart disease, infective endocarditis, and noninfected vegetations, such as nonbacterial
- a cardiovasular disease or disorder also includes an endothelial cell disorder.
- an “endothelial cell disorder” includes a disorder characterized by aberrant, unregulated, or unwanted endothelial cell activity, e.g., proliferation, migration, angiogenesis, or vascularization; or aberrant expression of cell surface adhesion molecules or genes associated with angiogenesis, e.g., TIE-2, FLT and FLK.
- Endothelial cell disorders include tumorigenesis, tumor metastasis, psoriasis, diabetic retinopathy, endometriosis, Grave's disease, ischemic disease (e.g., atherosclerosis), and chronic inflammatory diseases (e.g., rheumatoid arthritis).
- disorders which can be treated or diagnosed by methods described herein include, but are not limited to, disorders associated with an accumulation in the liver of fibrous tissue, such as that resulting from an imbalance between production and degradation of the extracellular matrix accompanied by the collapse and condensation of preexisting fibers.
- the methods described herein can be used to diagnose or treat hepatocellular necrosis or injury induced by a wide variety of agents including processes which disturb homeostasis, such as an inflammatory process, tissue damage resulting from toxic injury or altered hepatic blood flow, and infections (e.g., bacterial, viral and parasitic).
- the methods can be used for the early detection of hepatic injury, such as portal hypertension or hepatic fibrosis.
- the methods can be employed to detect liver fibrosis attributed to inborn errors of metabolism, for example, fibrosis resulting from a storage disorder such as Gaucher's disease (lipid abnormalities) or a glycogen storage disease, A1-antitrypsin deficiency; a disorder mediating the accumulation (e.g., storage) of an exogenous substance, for example, hemochromatosis (iron-overload syndrome) and copper storage diseases (Wilson's disease), disorders resulting in the accumulation of a toxic metabolite (e.g., tyrosinemia, fructosemia and galactosemia) and peroxisomal disorders (e.g., Zellweger syndrome).
- a storage disorder such as Gaucher's disease (lipid abnormalities) or a glycogen storage disease, A1-antitrypsin deficiency
- a disorder mediating the accumulation (e.g., storage) of an exogenous substance for example, hemochromatosis (iron-overload syndrome) and copper storage diseases (W
- the methods described herein can be used for the early detection and treatment of liver injury associated with the administration of various chemicals or drugs, such as for example, methotrexate, isonizaid, oxyphenisatin, methyldopa, chlorpromazine, tolbutamide or alcohol, or which represents a hepatic manifestation of a vascular disorder such as obstruction of either the intrahepatic or extrahepatic bile flow or an alteration in hepatic circulation resulting, for example, from chronic heart failure, veno-occlusive disease, portal vein thrombosis or Budd-Chiari syndrome.
- various chemicals or drugs such as for example, methotrexate, isonizaid, oxyphenisatin, methyldopa, chlorpromazine, tolbutamide or alcohol, or which represents a hepatic manifestation of a vascular disorder such as obstruction of either the intrahepatic or extrahepatic bile flow or an alteration in hepatic circulation resulting, for example, from chronic heart
- 14257 molecules can play an important role in the etiology of certain viral diseases, including but not limited to Hepatitis B, Hepatitis C and Herpes Simplex Virus (HSV).
- Modulators of 14257 activity could be used to control viral diseases.
- the modulators can be used in the treatment and/or diagnosis of viral infected tissue or virus-associated tissue fibrosis, especially liver and liver fibrosis.
- 14257 modulators can be used in the treatment and/or diagnosis of virus-associated carcinoma, especially hepatocellular cancer.
- 14257 can play an important role in the regulation of metabolism or pain disorders.
- Diseases of metabolic imbalance include, but are not limited to, obesity, anorexia nervosa, cachexia, lipid disorders, and diabetes.
- pain disorders include, but are not limited to, pain response elicited during various forms of tissue injury, e.g., inflammation, infection, and ischemia, usually referred to as hyperalgesia (described in, for example, Fields, H. L. (1987) Pain, New York:McGraw-Hill); pain associated with musculoskeletal disorders, e.g., joint pain; tooth pain; headaches; pain associated with surgery; pain related to irritable bowel syndrome; or chest pain.
- hyperalgesia described in, for example, Fields, H. L. (1987) Pain, New York:McGraw-Hill
- pain associated with musculoskeletal disorders e.g., joint pain; tooth pain; headaches; pain associated with surgery; pain related to irritable bowel
- another embodiment of the invention features isolated 14257 proteins and polypeptides having a 14257 activity.
- Preferred proteins are 14257 proteins having at least one Ser/Thr kinase site. Additional preferred proteins have at least one Ser/Thr kinase site, and preferably a 14257 activity. Additional preferred proteins have at least one Ser/Thr kinase site and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3.
- FIG. 1 The nucleotide sequence of the isolated human 14257 cDNA and the predicted amino acid sequence of the human 14257 polypeptide are shown in FIG. 1 and in SEQ ID NOs:1 and 2, respectively.
- a plasmid containing the nucleotide sequence encoding human 14257 was deposited with American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, on ______ and assigned Accession Number ______. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. ⁇ 112.
- the 14257 gene which is approximately 882 nucleotides in length, encodes a protein having a molecular weight of approximately 25.2 kD and which is approximately 228 amino acid residues in length.
- nucleic acid molecules that encode 14257 proteins or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes to identify 14257-encoding nucleic acids (e.g., 14257 mRNA) and fragments for use as PCR primers for the amplification or mutation of 14257 nucleic acid molecules.
- nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
- the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
- an “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid.
- the term “isolated” includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated.
- an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- the isolated 14257 nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
- an “isolated” nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule of the present invention e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, using all or portion of the nucleic acid sequence of SEQ ID NO:1, or the nucleotide sequence of SEQ ID NO:3, as a hybridization probe, nucleic acid molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2 nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
- nucleic acid molecule encompassing all or a portion of SEQ ID NO:1 or SEQ ID NO:3 can be isolated by the polymerase chain reaction (PCR) using synthetic oligonucleotide primers designed based upon the sequence of SEQ ID NO:1 or SEQ ID NO:3, respectively.
- PCR polymerase chain reaction
- a nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
- the nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to 14257 nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
- an isolated nucleic acid molecule of the invention comprises the nucleotide sequence shown in SEQ ID NO:1.
- the sequence of SEQ ID NO:1 corresponds to the partial human 14257 cDNA.
- This cDNA comprises sequences encoding the partial human 14257 protein (i.e., “the coding region”, as shown in SEQ ID NO:3), as well as 5′ untranslated sequences (128 nucleotides before the coding region) and 3′ untranslated sequences (67 nucleotides after the coding region).
- the nucleic acid molecule can comprise only the coding region of SEQ ID NO:1 (e.g., corresponding to SEQ ID NO:3).
- an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, or a portion of any of these nucleotide sequences.
- a nucleic acid molecule which is complementary to the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO:3, is one which is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, respectively, such that it can hybridize to the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, respectively, thereby forming a stable duplex.
- an isolated nucleic acid molecule of the present invention comprises a nucleotide sequence which is at least about 50%, 54%, 55%, 60%, 62%, 65%, 70%, 75%, 78%, 80%, 85%, 86%, 90%, 95%, 97%, 98% or more homologous to the nucleotide sequence (e.g., to the entire length of the nucleotide sequence) shown in SEQ ID NO:1 or SEQ ID NO:3, or a portion of any of these nucleotide sequences.
- the nucleic acid molecule of the invention can comprise only a portion of the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:3, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a 14257 protein.
- the nucleotide sequence determined from the cloning of the 14257 gene allows for the generation of probes and primers designed for use in identifying and/or cloning other 14257 family members, as well as 14257 homologues from other species.
- the probe/primer typically comprises substantially purified oligonucleotide.
- the oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12 or 15, preferably about 20 or 25, more preferably about 30, 35, 40, 45, 50, 55, 60, 65, or 75 consecutive nucleotides of a sense sequence of SEQ ID NO:1 or SEQ ID NO:3, of an anti-sense sequence of SEQ ID NO:1 or SEQ ID NO:3, or of a naturally occurring allelic variant or mutant of SEQ ID NO:1 or SEQ ID NO:3.
- a nucleic acid molecule of the present invention comprises a nucleotide sequence which is at least 350, 400, 450, 500, 550, 600, 650, 700, 750, or 800 nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of SEQ ID NO:1 or SEQ ID NO:3.
- Probes based on the 14257 nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins.
- the probe further comprises a label group attached thereto, e.g., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
- Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which misexpress a 14257 protein, such as by measuring a level of a 14257-encoding nucleic acid in a sample of cells from a subject e.g., detecting 14257 mRNA levels or determining whether a genomic 14257 gene has been mutated or deleted.
- a nucleic acid fragment encoding a “biologically active portion of a 14257 protein” can be prepared by isolating a portion of the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3, which encodes a polypeptide having a 14257 biological activity (the biological activities of the 14257 proteins are described herein), expressing the encoded portion of the 14257 protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the 14257 protein.
- the invention further encompasses nucleic acid molecules that differ from the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, due to the degeneracy of the genetic code and, thus, encode the same 14257 proteins as those encoded by the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3.
- an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO:2.
- DNA sequence polymorphisms that lead to changes in the amino acid sequences of the 14257 proteins may exist within a population (e.g., the human population). Such genetic polymorphism in the 14257 genes may exist among individuals within a population due to natural allelic variation.
- the terms “gene” and “recombinant gene” refer to nucleic acid molecules which include an open reading frame encoding an 14257 protein, preferably a mammalian 14257 protein, and can further include non-coding regulatory sequences, and introns.
- Such natural allelic variations include both functional and non-functional 14257 proteins and can typically result in 1-5% variance in the nucleotide sequence of a 14257 gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in 14257 genes that are the result of natural allelic variation and that do not alter the functional activity of a 14257 protein are intended to be within the scope of the invention.
- nucleic acid molecules encoding other 14257 family members and, thus, which have a nucleotide sequence which differs from the 14257 sequences of SEQ ID NO:1 or SEQ ID NO:3 are intended to be within the scope of the invention.
- another 14257 cDNA can be identified based on the nucleotide sequence of human 14257.
- nucleic acid molecules encoding 14257 proteins from different species, and thus which have a nucleotide sequence which differs from the 14257 sequences of SEQ ID NO:1 or SEQ ID NO:3 are intended to be within the scope of the invention.
- a mouse 14257 cDNA can be identified based on the nucleotide sequence of a human 14257.
- Nucleic acid molecules corresponding to natural allelic variants and homologues of the 14257 cDNAs of the invention can be isolated based on their homology to the 14257 nucleic acids disclosed herein using the cDNAs disclosed herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
- an isolated nucleic acid molecule of the invention is at least 15, 20, 25, 30 or more nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3.
- the nucleic acid is at least 30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, or 600 nucleotides in length.
- hybridizes under stringent conditions is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 30%, 40%, 50%, or 60% homologous to each other typically remain hybridized to each other.
- the conditions are such that sequences at least about 70%, more preferably at least about 80%, even more preferably at least about 85% or 90% homologous to each other typically remain hybridized to each other.
- stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
- a preferred, non-limiting example of stringent hybridization conditions are hybridization in 6 ⁇ sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2 ⁇ SSC, 0.1% SDS at 50-65° C.
- an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1 or SEQ ID NO:3 corresponds to a naturally-occurring nucleic acid molecule.
- a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
- allelic variants of the 14257 sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:1 or SEQ ID NO:3, thereby leading to changes in the amino acid sequence of the encoded 14257 proteins, without altering the functional ability of the 14257 proteins.
- nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO:1 or SEQ ID NO:3.
- non-essential amino acid residue is a residue that can be altered from the wild-type sequence of 14257 (e.g., the sequence of SEQ ID NO:2) without altering the biological activity, whereas an “essential” amino acid residue is required for biological activity.
- amino acid residues that are conserved among the 14257 proteins of the present invention are predicted to be particularly unamenable to alteration.
- additional amino acid residues that are conserved between the 14257 proteins of the present invention and other 14257 family members are not likely to be amenable to alteration.
- nucleic acid molecules encoding 14257 proteins that contain changes in amino acid residues that are not essential for activity. Such 14257 proteins differ in amino acid sequence from SEQ ID NO:2, yet retain biological activity.
- the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 41%, 42%, 45%, 50%, 55%, 59%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 98% or more homologous to the amino acid sequence of SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2).
- An isolated nucleic acid molecule encoding a 14257 protein homologous to the protein of SEQ ID NO:2 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:1, respectively, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into SEQ ID NO:1 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g.
- a predicted nonessential amino acid residue in a 14257 protein is preferably replaced with another amino acid residue from the same side chain family.
- mutations can be introduced randomly along all or part of a 14257 coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for 14257 biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO:1, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.
- a mutant 14257 protein can be assayed for the ability to: 1) regulate transmission of signals from cellular receptors, e.g., cardiac cell growth factor receptors; 2) control entry of cells into mitosis; 3) modulate cellular differentiation; 4) modulate cell death; or 5) regulate cytoskeleton function, e.g., actin bundling.
- cellular receptors e.g., cardiac cell growth factor receptors
- an antisense nucleic acid comprises a nucleotide sequence which is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid.
- the antisense nucleic acid can be complementary to an entire 14257 coding strand, or only to a portion thereof.
- an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a nucleotide sequence encoding 14257.
- the term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the coding region of human 14257 corresponds to SEQ ID NO:3).
- the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding 14257.
- the term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions).
- antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing.
- the antisense nucleic acid molecule can be complementary to the entire coding region of 14257 mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of 14257 mRNA.
- the antisense oligonucleotide can be complementary to the region surrounding the translation start site of 14257 mRNA.
- An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.
- An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
- an antisense nucleic acid e.g., an antisense oligonucleotide
- an antisense nucleic acid e.g., an antisense oligonucleotide
- modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarbox
- the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- the antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a 14257 protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation.
- the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix.
- An example of a route of administration of antisense nucleic acid molecules of the invention include direct injection at a tissue site.
- antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
- antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens.
- the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
- the antisense nucleic acid molecule of the invention is an ⁇ -anomeric nucleic acid molecule.
- An ⁇ -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641).
- the antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
- an antisense nucleic acid of the invention is a ribozyme.
- Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
- ribozymes e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)
- a ribozyme having specificity for a 14257-encoding nucleic acid can be designed based upon the nucleotide sequence of a 14257 cDNA disclosed herein (i.e., SEQ ID NO:1 or SEQ ID NO:3).
- a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a 14257-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742.
- 14257 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J. W. (1993) Science 261:1411-1418.
- 14257 gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the 14257 (e.g., the 14257 promoter and/or enhancers) to form triple helical structures that prevent transcription of the 14257 gene in target cells.
- nucleotide sequences complementary to the regulatory region of the 14257 e.g., the 14257 promoter and/or enhancers
- 14257 promoter and/or enhancers e.g., the 14257 promoter and/or enhancers
- the 14257 nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
- the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup B. et al. (1996) Bioorganic & Medicinal Chemistry 4 (1):5-23).
- peptide nucleic acids refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
- the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
- the synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup B. et al. (1996) supra; Perry-O'Keefe et al. Proc. Natl. Acad. Sci. 93:14670-675.
- PNAs of 14257 nucleic acid molecules can be used in therapeutic and diagnostic applications.
- PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication.
- PNAs of 14257 nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as ‘artificial restriction enzymes’ when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup B. (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup B. et al. (1996) supra; Perry-O'Keefe supra).
- PNAs of 14257 can be modified, (e.g., to enhance their stability or cellular uptake), by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
- PNA-DNA chimeras of 14257 nucleic acid molecules can be generated which may combine the advantageous properties of PNA and DNA.
- Such chimeras allow DNA recognition enzymes, (e.g., RNAse H and DNA polymerases), to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
- PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup B. (1996) supra).
- the synthesis of PNA-DNA chimeras can be performed as described in Hyrup B. (1996) supra and Finn P. J. et al. (1996) Nucleic Acids Res. 24 (17): 3357-63.
- a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used as a between the PNA and the 5′ end of DNA (Mag, M. et al. (1989) Nucleic Acid Res. 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn P. J. et al. (1996) supra).
- chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser, K. H. et al. (1975) Bioorganic Med. Chem. Lett. 5: 1119-11124).
- the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. US. 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134).
- peptides e.g., for targeting host cell receptors in vivo
- agents facilitating transport across the cell membrane see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. US. 86:6553-6556; Lemaitre et al. (1987) Proc. Natl.
- oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al. (1988) Bio-Techniques 6:958-976) or intercalating agents. (See, e.g., Zon (1988) Pharm. Res. 5:539-549).
- the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).
- One aspect of the invention pertains to isolated 14257 proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise anti-14257 antibodies.
- native 14257 proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
- 14257 proteins are produced by recombinant DNA techniques.
- a 14257 protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
- an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the 14257 protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of 14257 protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
- the language “substantially free of cellular material” includes preparations of 14257 protein having less than about 30% (by dry weight) of non-14257 protein (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-14257 protein, still more preferably less than about 10% of non-14257 protein, and most preferably less than about 5% non-14257 protein.
- a contaminating protein also referred to herein as a “contaminating protein”
- the 14257 protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.
- the language “substantially free of chemical precursors or other chemicals” includes preparations of 14257 protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein.
- the language “substantially free of chemical precursors or other chemicals” includes preparations of 14257 protein having less than about 30% (by dry weight) of chemical precursors or non-14257 chemicals, more preferably less than about 20% chemical precursors or non-14257 chemicals, still more preferably less than about 10% chemical precursors or non-14257 chemicals, and most preferably less than about 5% chemical precursors or non-14257 chemicals.
- Biologically active portions of a 14257 protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the 14257 protein, e.g., the amino acid sequence shown in SEQ ID NO:2, which include less amino acids than the full length 14257 proteins, and exhibit at least one activity of a 14257 protein.
- biologically active portions comprise a domain or motif with at least one activity of the 14257 protein.
- a biologically active portion of a 14257 protein can be a polypeptide which is, for example, at least 10, 25, 50, 100 or more amino acids in length.
- the 14257 protein has an amino acid sequence shown in SEQ ID NO:2.
- the 14257 protein is substantially homologous to SEQ ID NO:2, and retains the functional activity of the protein of SEQ ID NO:2, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail in subsection I above.
- the 14257 protein is a protein which comprises an amino acid sequence at least about 41%, 42%, 45%, 50%, 55%, 59%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 98% or more homologous to the amino acid sequence of SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2).
- sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
- the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, or 90% of the length of the reference sequence (e.g., when aligning a second sequence to the 14257, amino acid sequence of SEQ ID NO:2 having 228 amino acid residues, at least about 69, preferably at least 92, more preferably at least 114, even more preferably at least 137, and even more preferably at least 160, 183 or 206 amino acid residues are aligned).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
- amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”.
- the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
- the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- the percent identity between two amino acid sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
- the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
- nucleic acid and protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences.
- search can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10.
- Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402.
- the default parameters of the respective programs e.g., XBLAST and NBLAST
- XBLAST and NBLAST See http://www.ncbi.nlm.nih.gov.
- the invention also provides 14257 chimeric or fusion proteins.
- a 14257 “chimeric protein” or “fusion protein” comprises a 14257 polypeptide operatively linked to a non-14257 polypeptide.
- An “14257 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to 14257
- a “non-14257 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the 14257 protein, e.g., a protein which is different from the 14257 protein and which is derived from the same or a different organism.
- a 14257 fusion protein the 14257 polypeptide can correspond to all or a portion of a 14257 protein.
- a 14257 fusion protein comprises at least one biologically active portion of a 14257 protein.
- a 14257 fusion protein comprises at least two biologically active portions of a 14257 protein.
- the term “operatively linked” is intended to indicate that the 14257 polypeptide and the non-14257 polypeptide are fused in-frame to each other.
- the non-14257 polypeptide can be fused to the N-terminus or C-terminus of the 14257 polypeptide.
- the fusion protein is a GST-14257 fusion protein in which the 14257 sequences are fused to the C-terminus of the GST sequences.
- Such fusion proteins can facilitate the purification of recombinant 14257.
- the fusion protein is a 14257 protein containing a heterologous signal sequence at its N-terminus.
- expression and/or secretion of 14257 can be increased through use of a heterologous signal sequence.
- the 14257 fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject in vivo.
- the 14257 fusion proteins can be used to affect the bioavailability of a 14257 substrate.
- Use of 14257 fusion proteins may be useful therapeutically for the treatment of cellular growth related disorders, e.g., cardiovascular disorders.
- the 14257-fusion proteins of the invention can be used as immunogens to produce anti-14257 antibodies in a subject, to purify 14257 ligands and in screening assays to identify molecules which inhibit the interaction of 14257 with a 14257 substrate.
- a 14257 chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques.
- DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
- the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
- PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992 ).
- anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence
- many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide).
- a 14257-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the 14257 protein.
- the present invention also pertains to variants of the 14257 proteins which function as either 14257 agonists (mimetics) or as 14257 antagonists.
- Variants of the 14257 proteins can be generated by mutagenesis, e.g., discrete point mutation or truncation of a 14257 protein.
- An agonist of the 14257 proteins can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of a 14257 protein.
- An antagonist of a 14257 protein can inhibit one or more of the activities of the naturally occurring form of the 14257 protein by, for example, competitively modulating a cardiovascular system activity of a 14257 protein.
- treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the 14257 protein.
- variants of a 14257 protein which function as either 14257 agonists (mimetics) or as 14257 antagonists respectively can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of a 14257 protein for 14257 protein agonist or antagonist activity.
- a variegated library of 14257 variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
- a variegated library of 14257 variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential 14257 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of 14257 sequences therein.
- a degenerate set of potential 14257 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of 14257 sequences therein.
- methods which can be used to produce libraries of potential 14257 variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector.
- degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential 14257 sequences.
- Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.
- libraries of fragments of a 14257 protein coding sequence can be used to generate a variegated population of 14257 fragments respectively for screening and subsequent selection of variants of a 14257 protein.
- a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a 14257 coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector.
- an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the 14257 protein.
- Recrusive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify 14257 variants (Arkin and Yourvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).
- cell based assays can be exploited to analyze a variegated 14257 library.
- a library of expression vectors can be transfected into a cell line which ordinarily synthesizes and secretes 14257.
- the transfected cells are then cultured such that 14257 and a particular mutant 14257 are secreted and the effect of expression of the mutant on 14257 activity in cell supernatants can be detected, e.g., by any of a number of enzymatic assays.
- Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of 14257 activity, and the individual clones further characterized.
- An isolated 14257 protein, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind 14257 using standard techniques for polyclonal and monoclonal antibody preparation.
- a full-length 14257 protein can be used or, alternatively, the invention provides antigenic peptide fragments of 14257 for use as immunogens.
- the antigenic peptide of 14257 comprises at least 8 amino acid residues of the amino acid sequence shown in SEQ ID NO:2 and encompasses an epitope of 14257 such that an antibody raised against the peptide forms a specific immune complex with 14257.
- the antigenic peptide comprises at least 10 amino acid residues, more preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues.
- Preferred epitopes encompassed by the antigenic peptide are regions of 14257 that are located on the surface of the protein, e.g., hydrophilic regions.
- a 14257 immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal) with the immunogen.
- An appropriate immunogenic preparation can contain, for example, recombinantly expressed 14257 protein or a chemically synthesized 14257 polypeptide.
- the preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent. inmunization of a suitable subject with an immunogenic 14257 preparation induces a polyclonal anti-14257 antibody response.
- antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds (immunoreacts with) an antigen, such as 14257.
- immunologically active portions of immunoglobulin molecules include F(ab) and F(ab′) 2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.
- the invention provides polyclonal and monoclonal antibodies that bind 14257.
- monoclonal antibody or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of 14257.
- a monoclonal antibody composition thus typically displays a single binding affinity for a particular 14257 protein with which it immunoreacts.
- Polyclonal anti-14257 antibodies can be prepared as described above by immunizing a suitable subject with a 14257 immunogen.
- the anti-14257 antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized 14257.
- ELISA enzyme linked immunosorbent assay
- the antibody molecules directed against 14257 can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction.
- antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature 256:495-497) (see also, Brown et al. (1981) J. Immunol. 127:539-46; Brown et al. (1980) J. Biol. Chem . 255:4980-83; Yeh et al. (1976) Proc. Natl. Acad. Sci. USA 76:2927-31; and Yeh et al. (1982) Int. J.
- an immortal cell line typically a myeloma
- lymphocytes typically splenocytes
- the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds 14257.
- any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating an anti-14257 monoclonal antibody (see, e.g., G. Galfre et al. (1977) Nature 266:55052; Gefter et al. Somatic Cell Genet., cited supra; Lerner, Yale J. Biol. Med., cited supra; Kenneth, Monoclonal Antibodies, cited supra).
- the immortal cell line e.g., a myeloma cell line
- the immortal cell line is derived from the same mammalian species as the lymphocytes.
- murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line.
- Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine (“HAT medium”). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines. These myeloma lines are available from ATCC.
- HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol (“PEG”).
- PEG polyethylene glycol
- Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed).
- Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind 14257, e.g., using a standard ELISA assay.
- a monoclonal anti-14257 antibody can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with 14257 to thereby isolate immunoglobulin library members that bind 14257.
- Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, Ladner et al.
- recombinant anti-14257 antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
- Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al. International Application No. PCT/US86/02269; Akira, et al. European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al. European Patent Application 173,494; Neuberger et al. PCT International Publication No.
- An anti-14257 antibody (e.g., monoclonal antibody) can be used to isolate 14257 by standard techniques, such as affinity chromatography or immunoprecipitation.
- An anti-14257 antibody can facilitate the purification of natural 14257 from cells and of recombinantly produced 14257 expressed in host cells.
- an anti-14257 antibody can be used to detect 14257 protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the 14257 protein.
- Anti-14257 antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen.
- Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance.
- detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
- suitable enzymes include horseradish peroxidase, alkaline phosphatase, -galactosidase, or acetylcholinesterase;
- suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
- suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
- an example of a luminescent material includes luminol;
- bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125 I,
- vectors preferably expression vectors, containing a nucleic acid encoding a 14257 protein (or a portion thereof).
- vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
- viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
- Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
- vectors e.g., non-episomal mammalian vectors
- Other vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
- certain vectors are capable of directing the expression of genes to which they are operatively linked.
- Such vectors are referred to herein as “expression vectors”.
- expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
- plasmid and vector can be used interchangeably as the plasmid is the most commonly used form of vector.
- the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
- the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed.
- “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like.
- the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., 14257 proteins, mutant forms of 14257 proteins, fusion proteins, and the like).
- the recombinant expression vectors of the invention can be designed for expression of 14257 proteins in prokaryotic or eukaryotic cells.
- 14257 proteins can be expressed in bacterial cells such as E. coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990).
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
- Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
- a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
- enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
- Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D. B. and Johnson, K. S.
- GST glutathione S-transferase
- Purified fusion proteins can be utilized in 14257 activity assays, (e.g., direct assays or competitive assays described in detail below), or to generate antibodies specific for 14257 proteins, for example.
- a 14257 fusion protein expressed in a retroviral expression vector of the present invention can be utilized to infect bone marrow cells which are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).
- Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 60-89).
- Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter.
- Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.
- One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128).
- Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118).
- Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
- the 14257 expression vector is a yeast expression vector.
- yeast expression vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari, et al., (1987) Embo J. 6:229-234), pMFa (Kuijan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).
- 14257 proteins can be expressed in insect cells using baculovirus expression vectors.
- Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).
- a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector.
- mammalian expression vectors include pCDM 8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195).
- the expression vector's control functions are often provided by viral regulatory elements.
- commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
- suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2 nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
- the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
- tissue-specific regulatory elements are known in the art.
- suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.
- promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the ⁇ -fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).
- the invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to 14257 mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA.
- the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
- a high efficiency regulatory region the activity of which can be determined by the cell type into which the vector is introduced.
- Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced.
- host cell and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- a host cell can be any prokaryotic or eukaryotic cell.
- a 14257 protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells).
- bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells).
- mammalian cells such as Chinese hamster ovary cells (CHO) or COS cells.
- Other suitable host cells are known to those skilled in the art.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
- transformation and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. ( Molecular Cloning: A Laboratory Manual. 2 nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.
- a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
- selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate.
- Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a 14257 protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
- a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a 14257 protein.
- the invention further provides methods for producing a 14257 protein using the host cells of the invention.
- the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a 14257 protein has been introduced) in a suitable medium such that a 14257 protein is produced.
- the method further comprises isolating a 14257 protein from the medium or the host cell.
- the host cells of the invention can also be used to produce non-human transgenic animals.
- a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which 14257-coding sequences have been introduced.
- Such host cells can then be used to create non-human transgenic animals in which exogenous 14257 sequences have been introduced into their genome or homologous recombinant animals in which endogenous 14257 sequences have been altered.
- Such animals are useful for studying the function and/or activity of a 14257 and for identifying and/or evaluating modulators of 14257 activity.
- a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
- Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like.
- a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
- a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous 14257 gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
- a transgenic animal of the invention can be created by introducing a 14257-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
- the 14257 cDNA sequence of SEQ ID NO:1 can be introduced as a transgene into the genome of a non-human animal.
- a nonhuman homologue of a human 14257 gene such as a mouse or rat 14257 gene, can be used as a transgene.
- a 14257 gene homologue such as another 14257 family member, can be isolated based on hybridization to the 14257 cDNA sequences of SEQ ID NO:1 or SEQ ID NO:3 (described further in subsection I above) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
- a tissue-specific regulatory sequence(s) can be operably linked to a 14257 transgene to direct expression of a 14257 protein to particular cells.
- transgenic founder animal can be identified based upon the presence of a 14257 transgene in its genome and/or expression of 14257 mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a 14257 protein can further be bred to other transgenic animals carrying other transgenes.
- a vector which contains at least a portion of a 14257 gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the 14257 gene.
- the 14257 gene can be a human gene (e.g., the SEQ ID NO:1), but more preferably, is a non-human homologue of a human 14257 gene (e.g., a cDNA isolated by stringent hybridization with the nucleotide sequence of SEQ ID NO:1).
- a mouse 14257 gene can be used to construct a homologous recombination vector suitable for altering an endogenous 14257 gene in the mouse genome.
- the vector is designed such that, upon homologous recombination, the endogenous 14257 gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector).
- the vector can be designed such that, upon homologous recombination, the endogenous 14257 gene is mutated or otherwise altered but still encodes a functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous 14257 protein).
- the altered portion of the 14257 gene is flanked at its 5′ and 3′ ends by additional nucleic acid sequence of the 14257 gene to allow for homologous recombination to occur between the exogenous 14257 gene carried by the vector and an endogenous 14257 gene in an embryonic stem cell.
- the additional flanking 14257 nucleic acid sequence is of sufficient length for successful homologous recombination with the endogenous gene.
- flanking DNA both at the 5′ and 3′ ends
- are included in the vector see e.g., Thomas, K. R. and Capecchi, M. R.
- the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced 14257 gene has homologously recombined with the endogenous 14257 gene are selected (see, e.g., Li, E. et al. (1992) Cell 69:915).
- the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see e.g., Bradley, A. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed.
- a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
- Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, A.
- transgenic non-humans animals can be produced which contain selected systems which allow for regulated expression of the transgene.
- a system is the cre/loxP recombinase system of bacteriophage P1.
- Cre/loxP recombinase system of bacteriophage P1.
- a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355.
- mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
- Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
- Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. (1997) Nature 385:810-813 and PCT International Publication Nos. WO 97/07668 and WO 97/07669.
- a cell e.g., a somatic cell
- the quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated.
- the reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal.
- the offspring borne of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.
- the 14257 molecules of the invention are also useful as markers of disorders or disease states, as markers for precursors of disease states, as markers for predisposition of disease states, as markers of drug activity, or as markers of the pharmacogenomic profile of a subject.
- the presence, absence and/or quantity of the 14257 molecules of the invention can be detected, and can be correlated with one or more biological states in vivo.
- the 14257 molecules of the invention can serve as surrogate markers for one or more disorders or disease states or for conditions leading up to disease states.
- a “surrogate marker” is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder (e.g., with the presence or absence of a tumor). The presence or quantity of such markers is independent of the disease. Therefore, these markers can serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder.
- Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies (e.g., early stage tumors), or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached (e.g., an assessment of cardiovascular disease can be made using cholesterol levels as a surrogate marker, and an analysis of HIV infection can be made using HIV RNA levels as a surrogate marker, well in advance of the undesirable clinical outcomes of myocardial infarction or fully-developed AIDS).
- Examples of the use of surrogate markers in the art include: Koomen et al. (2000) J. Mass. Spectrom. 35: 258-264; and James (1994) AIDS Treatment News Archive 209.
- a “pharmacodynamic marker” is an objective biochemical marker which correlates specifically with drug effects.
- the presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject.
- a pharmacodynamic marker can be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug can be monitored by the pharmacodynamic marker.
- the presence or quantity of the pharmacodynamic marker can be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo.
- Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses.
- the amplified marker can be in a quantity which is more readily detectable than the drug itself Also, the marker can be more easily detected due to the nature of the marker itself; for example, using the methods described herein, anti-14257 antibodies can be employed in an immune-based detection system for a 14257 protein marker, or 14257-specific radiolabeled probes can be used to detect a 14257 mRNA marker.
- a pharmacodynamic marker can offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations. Examples of the use of pharmacodynamic markers in the art include: Matsuda et al.
- the 14257 molecules of the invention are also useful as pharmacogenomic markers.
- a “pharmacogenomic marker” is an objective biochemical marker which correlates with a specific clinical drug response or susceptibility in a subject (see, e.g., McLeod et al. (1999) Eur. J. Cancer 35:1650-1652).
- the presence or quantity of the pharmacogenomic marker is related to the predicted response of the subject to a specific drug or class of drugs prior to administration of the drug.
- a drug therapy which is most appropriate for the subject, or which is predicted to have a greater degree of success, can be selected.
- RNA, or protein e.g., 14257 protein or RNA
- a drug or course of treatment can be selected that is optimized for the treatment of the specific tumor likely to be present in the subject.
- the presence or absence of a specific sequence mutation in 14257 DNA can correlate with a 14257 drug response.
- the use of pharmacogenomic markers therefore permits the application of the most appropriate treatment for each subject without having to administer the therapy.
- compositions suitable for administration typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a 14257 protein or anti-14257 antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- the active compound e.g., a 14257 protein or anti-14257 antibody
- dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- suppositories e.g., with conventional suppository bases such as cocoa butter and other glycerides
- retention enemas for rectal delivery.
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- a controlled release formulation including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- the materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
- Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
- Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
- Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- IC50 i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms
- levels in plasma may be measured, for example, by high performance liquid chromatography.
- the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
- Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057).
- the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
- the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
- compositions can be included in a container, pack, or dispenser together with instructions for administration.
- nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenetics); and c) methods of treatment (e.g., therapeutic and prophylactic).
- the isolated nucleic acid molecules of the invention can be used, for example, to express 14257 protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect 14257 mRNA (e.g., in a biological sample) or a genetic alteration in a 14257 gene, and to modulate 14257 activity, as described further below.
- the 14257 proteins can be used to treat disorders characterized by insufficient or excessive production of a 14257 substrate or production of 14257 inhibitors.
- the 14257 proteins can be used to screen for naturally occurring 14257 substrates, to screen for drugs or compounds which modulate 14257 activity, as well as to treat disorders characterized by insufficient or excessive production of 14257 protein or production of 14257 protein forms which have decreased or aberrant activity compared to 14257 wild type protein.
- the anti-14257 antibodies of the invention can be used to detect and isolate 14257 proteins, regulate the bioavailability of 14257 proteins, and modulate 14257 activity.
- the invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to 14257 proteins, have a stimulatory or inhibitory effect on, for example, 14257 expression or 14257 activity, or have a stimulatory or inhibitory effect on, for example, the expression or activity of a 14257 substrate.
- modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to 14257 proteins, have a stimulatory or inhibitory effect on, for example, 14257 expression or 14257 activity, or have a stimulatory or inhibitory effect on, for example, the expression or activity of a 14257 substrate.
- the invention provides assays for screening candidate or test compounds which are substrates of a 14257 protein or polypeptide or biologically active portion thereof.
- the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a 14257 protein or polypeptide or biologically active portion thereof, e.g., modulate the ability of 14257 to interact with its cognate ligand.
- the test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K. S. (1997) Anticancer Drug Des. 12:145).
- an assay is a cell-based assay comprising contacting a cell expressing a 14257 target molecule (e.g., a 14257 phosphorylation substrate) with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the 14257 target molecule. Determining the ability of the test compound to modulate the activity of a 14257 target molecule can be accomplished, for example, by determining the ability of the 14257 protein to bind to or interact with the 14257 target molecule, or by determining the ability of the 14257 protein to phosphorylate the 14257 target molecule.
- a 14257 target molecule e.g., a 14257 phosphorylation substrate
- the ability of the 14257 protein to phosphorylate a 14257 target molecule can be determined by, for example, an in vitro kinase assay. Briefly, a 14257 target molecule, e.g., an immunoprecipitated 14257 target molecule from a cell line expressing such a molecule, can be incubated with the 14257 protein and radioactive ATP, e.g., [ ⁇ - 32 P] ATP, in a buffer containing MgCl 2 and MnCl 2 , e.g., 10 mM MgCl 2 and 5 mM MnCl 2 .
- radioactive ATP e.g., [ ⁇ - 32 P] ATP
- the immunoprecipitated 14257 target molecule can be separated by SDS-polyacrylamide gel electrophoresis under reducing conditions, transferred to a membrane, e.g., a PVDF membrane, and autoradiographed.
- a membrane e.g., a PVDF membrane
- Phosphoaminoacid analysis of the phosphorylated substrate can also be performed in order to determine which residues on the 14257 substrate are phosphorylated.
- the radiophosphorylated protein band can be excised from the SDS gel and subjected to partial acid hydrolysis. The products can then be separated by one-dimensional electrophoresis and analyzed on, for example, a phosphoimager and compared to ninhydrin-stained phosphoaminoacid standards.
- Determining the ability of the 14257 protein to bind to or interact with a 14257 target molecule can be accomplished by determining direct binding. Determining the ability of the 14257 protein to bind to or interact with a 14257 target molecule can be accomplished, for example, by coupling the 14257 protein with a radioisotope or enzymatic label such that binding of the 14257 protein to a 14257 target molecule can be determined by detecting the labeled 14257 protein in a complex.
- 14257 molecules e.g., 14257 proteins
- 14257 molecules can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
- a microphysiometer can be used to detect the interaction of 14257 with its target molecule without the labeling of either 14257 or the target molecule. McConnell, H. M. et al. (1992) Science 257:1906-1912.
- a “microphysiometer” e.g., Cytosensor
- LAPS light-addressable potentiometric sensor
- determining the ability of the 14257 protein to bind to or interact with a 14257 target molecule can be accomplished by determining the activity of the target molecule.
- the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca 2+ , diacylglycerol, IP 3 , etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., chloramphenicol acetyl transferase), or detecting a target-regulated cellular response.
- a cellular second messenger of the target e.g., intracellular Ca 2+ , diacylglycerol, IP 3 , etc.
- detecting catalytic/enzymatic activity of the target an appropriate substrate detecting the induction of a reporter gene (com
- an assay of the present invention is a cell-free assay in which a 14257 protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the 14257 protein or biologically active portion thereof is determined. Binding of the test compound to the 14257 protein can be determined either directly or indirectly as described above.
- the assay includes contacting the 14257 protein or biologically active portion thereof with a known compound which binds 14257 to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a 14257 protein, wherein determining the ability of the test compound to interact with a 14257 protein comprises determining the ability of the test compound to preferentially bind to 14257 or biologically active portion thereof as compared to the known compound.
- the assay is a cell-free assay in which a 14257 protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the 14257 protein or biologically active portion thereof is determined.
- Determining the ability of the test compound to modulate the activity of a 14257 protein can be accomplished, for example, by determining the ability of the 14257 protein to bind to a 14257 target molecule by one of the methods described above for determining direct binding. Determining the ability of the 14257 protein to bind to a 14257 target molecule can also be accomplished using a technology such as real-time Biomolecular Interaction Analysis (BIA).
- BIOS Biomolecular Interaction Analysis
- BIOA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
- SPR surface plasmon resonance
- determining the ability of the test compound to modulate the activity of a 14257 protein can be accomplished by determining the ability of the 14257 protein to further modulate the activity of a 14257 target molecule (e.g., a 14257 mediated signal transduction pathway component).
- a 14257 target molecule e.g., a 14257 mediated signal transduction pathway component
- the activity of the effector molecule on an appropriate target can be determined, or the binding of the effector to an appropriate target can be determined as previously described.
- the cell-free assay involves contacting a 14257 protein or biologically active portion thereof with a known compound which binds the 14257 protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the 14257 protein, wherein determining the ability of the test compound to interact with the 14257 protein comprises determining the ability of the 14257 protein to preferentially bind to or modulate the activity of a 14257 target molecule.
- the cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of proteins (e.g., 14257 proteins or biologically active portions thereof, or receptors to which 14257 binds).
- proteins e.g., 14257 proteins or biologically active portions thereof, or receptors to which 14257 binds.
- a membrane-bound form a protein e.g., a cell surface 14257 receptor
- non-ionic detergents such as n-octylglucoside,
- binding of a test compound to a 14257 protein, or interaction of a 14257 protein with a target molecule in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes.
- a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix.
- glutathione-S-transferase/14257 fusion proteins or glutathione-S-transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or 14257 protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of 14257 binding or activity determined using standard techniques.
- a 14257 protein or a 14257 target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
- Biotinylated 14257 protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
- antibodies reactive with 14257 protein or target molecules but which do not interfere with binding of the 14257 protein to its target molecule can be derivatized to the wells of the plate, and unbound target or 14257 protein trapped in the wells by antibody conjugation.
- Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the 14257 protein or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the 14257 protein or target molecule.
- modulators of 14257 expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of 14257 mRNA or protein in the cell is determined. The level of expression of 14257 mRNA or protein in the presence of the candidate compound is compared to the level of expression of 14257 mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of 14257 expression based on this comparison. For example, when expression of 14257 mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of 14257 mRNA or protein expression.
- the candidate compound when expression of 14257 mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of 14257 mRNA or protein expression.
- the level of 14257 mRNA or protein expression in the cells can be determined by methods described herein for detecting 14257 mRNA or protein.
- the 14257 proteins can be used as “bait proteins” in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al.
- 14257-binding proteins proteins which bind to or interact with 14257
- Such 14257-binding proteins are also likely to be involved in the propagation of signals by the 14257 proteins or 14257 targets as, for example, downstream elements of a 14257-mediated signaling pathway.
- 14257-binding proteins are likely to be 14257 inhibitors.
- the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
- the assay utilizes two different DNA constructs.
- the gene that codes for a 14257 protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4).
- a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor.
- the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the 14257 protein.
- a reporter gene e.g., LacZ
- This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model.
- an agent identified as described herein e.g., a 14257 modulating agent, an antisense 14257 nucleic acid molecule, a 14257-specific antibody, or a 14257-binding partner
- an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
- an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
- this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
- cDNA sequences identified herein can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.
- this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the 14257 nucleotide sequences, described herein, can be used to map the location of the 14257 genes on a chromosome. The mapping of the 14257 sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.
- 14257 genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the 14257 nucleotide sequences. Computer analysis of the 14257 sequences can be used to predict primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the 14257 sequences will yield an amplified fragment.
- Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but human cells can, the one human chromosome that contains the gene encoding the needed enzyme, will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes.
- mammals e.g., human and mouse cells.
- Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
- PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the 14257 nucleotide sequences to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a 9o, 1p, or 1v sequence to its chromosome include in situ hybridization (described in Fan, Y. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries.
- Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step.
- Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical such as colcemid that disrupts the mitotic spindle.
- the chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually.
- the FISH technique can be used with a DNA sequence as short as 500 or 600 bases.
- clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection.
- 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time.
- Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
- differences in the DNA sequences between individuals affected and unaffected with a disease associated with the 14257 gene can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.
- the 14257 sequences of the present invention can also be used to identify individuals from minute biological samples.
- the United States military for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel.
- RFLP restriction fragment length polymorphism
- an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification.
- This method does not suffer from the current limitations of “Dog Tags” which can be lost, switched, or stolen, making positive identification difficult.
- the sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Pat. No. 5,272,057).
- sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome.
- the 14257 nucleotide sequences described herein can be used to prepare two PCR primers from the 5′ and 3′ ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
- Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
- the sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue.
- the 14257 nucleotide sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases.
- Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes.
- the noncoding sequences of SEQ ID NO:1 can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
- a panel of reagents from 14257 nucleotide sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual.
- Using the unique identification database positive identification of the individual, living or dead, can be made from extremely small tissue samples.
- DNA-based identification techniques can also be used in forensic biology. Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a perpetrator of a crime.
- PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
- sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another “identification marker” (i.e. another DNA sequence that is unique to a particular individual).
- an “identification marker” i.e. another DNA sequence that is unique to a particular individual.
- actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.
- Sequences targeted to noncoding regions of SEQ ID NO:1 are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique.
- polynucleotide reagents include the 14257 nucleotide sequences or portions thereof, e.g., fragments derived from the noncoding regions of SEQ ID NO:1, having a length of at least 20 bases, preferably at least 30 bases.
- the 14257 nucleotide sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such 14257 probes can be used to identify tissue by species and/or by organ type.
- polynucleotide reagents e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such 14257 probes can be used to identify tissue by species and/or by organ type.
- these reagents e.g., 14257 primers or probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).
- the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining 14257 protein and/or nucleic acid expression as well as 14257 activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant 14257 expression or activity.
- a biological sample e.g., blood, serum, cells, tissue
- the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with 14257 protein, nucleic acid expression or activity. For example, mutations in a 14257 gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with 14257 protein, nucleic acid expression or activity.
- Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of 14257 in clinical trials.
- agents e.g., drugs, compounds
- An exemplary method for detecting the presence or absence of 14257 protein or nucleic acid in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting 14257 protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes 14257 protein such that the presence of 14257 protein or nucleic acid is detected in the biological sample.
- a compound or an agent capable of detecting 14257 protein or nucleic acid e.g., mRNA, genomic DNA
- a preferred agent for detecting 14257 mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to 14257 mRNA or genomic DNA.
- the nucleic acid probe can be, for example, a human 14257 nucleic acid, such as the nucleic acid of SEQ ID NO:1, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to 14257 mRNA or genomic DNA.
- a human 14257 nucleic acid such as the nucleic acid of SEQ ID NO:1
- a portion thereof such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to 14257 mRNA or genomic DNA.
- Other suitable probes for use in the diagnostic assays of the invention are described herein.
- a preferred agent for detecting 14257 protein is an antibody capable of binding to 14257 protein, preferably an antibody with a detectable label.
- Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′) 2 ) can be used.
- the term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
- Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
- biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect 14257 mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
- in vitro techniques for detection of 14257 mRNA include Northern hybridizations and in situ hybridizations.
- In vitro techniques for detection of 14257 protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
- In vitro techniques for detection of 14257 genomic DNA include Southern hybridizations.
- in vivo techniques for detection of 14257 protein include introducing into a subject a labeled anti-14257 antibody.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- the biological sample contains protein molecules from the test subject.
- the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
- a preferred biological sample is a serum sample isolated by conventional means from a subject.
- the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting 14257 protein, mRNA, or genomic DNA, such that the presence of 14257 protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of 14257 protein, mRNA or genomic DNA in the control sample with the presence of 14257 protein, mRNA or genomic DNA in the test sample.
- kits for detecting the presence of 14257 in a biological sample can comprise a labeled compound or agent capable of detecting 14257 protein or mRNA in a biological sample; means for determining the amount of 14257 in the sample; and means for comparing the amount of 14257 in the sample with a standard.
- the compound or agent can be packaged in a suitable container.
- the kit can further comprise instructions for using the kit to detect 14257 protein or nucleic acid.
- the diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant 14257 expression or activity.
- the assays described herein such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with 14257 protein, nucleic acid expression or activity.
- the present invention provides a method for identifying a disease or disorder associated with aberrant 14257 expression or activity in which a test sample is obtained from a subject and 14257 protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of 14257 protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant 14257 expression or activity.
- a test sample refers to a biological sample obtained from a subject of interest.
- a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
- the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant 14257 expression or activity.
- an agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
- the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant 14257 expression or activity in which a test sample is obtained and 14257 protein or nucleic acid expression or activity is detected (e.g., wherein the abundance of 14257 protein or nucleic acid expression or activity is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant 14257 expression or activity).
- the methods of the invention can also be used to detect genetic alterations in a 14257 gene, thereby determining if a subject with the altered gene is at risk for a disorder associated with the 14257 gene.
- the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic alteration characterized by at least one of an alteration affecting the integrity of a gene encoding a 14257-protein, or the mis-expression of the 14257 gene.
- such genetic alterations can be detected by ascertaining the existence of at least one of 1) a deletion of one or more nucleotides from a 14257 gene; 2) an addition of one or more nucleotides to a 14257 gene; 3) a substitution of one or more nucleotides of a 14257 gene, 4) a chromosomal rearrangement of a 14257 gene; 5) an alteration in the level of a messenger RNA transcript of a 14257 gene, 6) aberrant modification of a 14257 gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a 14257 gene, 8) a non-wild type level of a 14257 protein, 9) allelic loss of a 14257 gene, and 10) inappropriate post-translational modification of a 14257 protein.
- assay techniques known in the art which can be used
- detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in the 14257 gene (see Abravaya et al.
- PCR polymerase chain reaction
- LCR ligation chain reaction
- This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a 14257 gene under conditions such that hybridization and amplification of the 14257 gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
- nucleic acid e.g., genomic, mRNA or both
- Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio - Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- mutations in a 14257 gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns.
- sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
- sequence specific ribozymes see, for example, U.S. Pat. No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
- genetic mutations in 14257 can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin, M. T. et al. (1996) Human Mutation 7: 244-255; Kozal, M. J. et al. (1996) Nature Medicine 2: 753-759).
- genetic mutations in 14257 can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, M. T. et al. supra.
- a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected.
- Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
- any of a variety of sequencing reactions known in the art can be used to directly sequence the 14257 gene and detect mutations by comparing the sequence of the sample 14257 with the corresponding wild-type (control) sequence.
- Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).
- RNA/RNA or RNA/DNA heteroduplexes Other methods for detecting mutations in the 14257 gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242).
- the art technique of “mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type 14257 sequence with potentially mutant RNA or DNA obtained from a tissue sample.
- the double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands.
- RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions.
- either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl Acad Sci USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295.
- the control DNA or RNA can be labeled for detection.
- the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in 14257 cDNAs obtained from samples of cells.
- DNA mismatch repair enzymes
- the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).
- a probe based on a 14257 sequence e.g., a wild-type 14257 sequence
- a cDNA or other DNA product from a test cell(s).
- the duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Pat. No. 5,459,039.
- alterations in electrophoretic mobility will be used to identify mutations in 14257 genes.
- SSCP single strand conformation polymorphism
- Single-stranded DNA fragments of sample and control 14257 nucleic acids will be denatured and allowed to renature.
- the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
- the DNA fragments may be labeled or detected with labeled probes.
- the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
- the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5).
- the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al (1985) Nature 313:495).
- DGGE denaturing gradient gel electrophoresis
- DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
- a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:12753).
- oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl Acad. Sci USA 86:6230).
- Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
- Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner et al. (1993) Tibtech 11:238).
- amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
- the methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a 14257 gene.
- any cell type or tissue in which 14257 is expressed may be utilized in the prognostic assays described herein.
- Monitoring the influence of agents (e.g., drugs or compounds) on the expression or activity of a 14257 protein can be applied not only in basic drug screening, but also in clinical trials.
- agents e.g., drugs or compounds
- the effectiveness of an agent determined by a screening assay as described herein to increase 14257 gene expression, protein levels, or upregulate 14257 activity can be monitored in clinical trials of subjects exhibiting decreased 14257 gene expression, protein levels, or downregulated 14257 activity.
- the effectiveness of an agent determined by a screening assay to decrease 14257 gene expression, protein levels, or downregulate 14257 activity can be monitored in clinical trials of subjects exhibiting increased 14257 gene expression, protein levels, or upregulated 14257 activity.
- the expression or activity of a 14257 gene, and preferably, other genes that have been implicated in a disorder can be used as a “read out” or markers of the phenotype of a particular cell.
- genes, including 14257, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates 14257 activity can be identified.
- an agent e.g., compound, drug or small molecule
- 14257 activity e.g., identified in a screening assay as described herein
- cells can be isolated and RNA prepared and analyzed for the levels of expression of 14257 and other genes implicated in the 14257 associated disorder, respectively.
- the levels of gene expression can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of 14257 or other genes.
- the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during treatment of the individual with the agent.
- the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a 14257 protein, mRNA, or genomic DNA in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the 14257 protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the 14257 protein, mRNA, or genomic DNA in the pre-administration sample with the 14257 protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the
- increased administration of the agent may be desirable to increase the expression or activity of 14257 to higher levels than detected, i.e., to increase the effectiveness of the agent.
- decreased administration of the agent may be desirable to decrease expression or activity of 14257 to lower levels than detected, i.e. to decrease the effectiveness of the agent.
- 14257 expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.
- the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant 14257 expression or activity.
- treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics.
- treatment is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.
- a therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides.
- “Pharmacogenomics”, as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market. More specifically, the term refers the study of how a patient's genes determine his or her response to a drug (e.g., a patient's “drug response phenotype”, or “drug response genotype”.)
- another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with either the 14257 molecules of the present invention or 14257 modulators according to that individual's drug response genotype.
- Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to patients who will most benefit from the treatment and to avoid treatment of patients who will experience toxic drug-related side effects.
- the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant 14257 expression or activity, by administering to the subject a 14257 or an agent which modulates 14257 expression or at least one 14257 activity.
- Subjects at risk for a disease which is caused or contributed to by aberrant 14257 expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
- Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the 14257 aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
- a 14257, 14257 agonist or 14257 antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.
- the modulatory method of the invention involves contacting a cell with a 14257 or agent that modulates one or more of the activities of 14257 protein activity associated with the cell.
- An agent that modulates 14257 protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring target molecule of a 14257 protein (e.g., a 14257 phosphorylation substrate), a 14257 antibody, a 14257 agonist or antagonist, a peptidomimetic of a 14257 agonist or antagonist, or other small molecule.
- the agent stimulates one or more 14257 activities.
- stimulatory agents include active 14257 protein and a nucleic acid molecule encoding 14257 that has been introduced into the cell.
- the agent inhibits one or more 14257 activities.
- inhibitory agents include antisense 14257 nucleic acid molecules, anti-14257 antibodies, and 14257 inhibitors.
- the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a 14257 protein or nucleic acid molecule.
- the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) 14257 expression or activity.
- the method involves administering a 14257 protein or nucleic acid molecule as therapy to compensate for reduced or aberrant 14257 expression or activity.
- Stimulation of 14257 activity is desirable in situations in which 14257 is abnormally downregulated and/or in which increased 14257 activity is likely to have a beneficial effect.
- stimulation of 14257 activity is desirable in situations in which a 14257 is downregulated and/or in which increased 14257 activity is likely to have a beneficial effect.
- inhibition of 14257 activity is desirable in situations in which 14257 is abnormally upregulated and/or in which decreased 14257 activity is likely to have a beneficial effect.
- the 14257 molecules of the present invention as well as agents, or modulators which have a stimulatory or inhibitory effect on 14257 activity (e.g., 14257 gene expression) as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (e.g., cardiovascular disorders such as congestive heart failure) associated with aberrant 14257 activity.
- disorders e.g., cardiovascular disorders such as congestive heart failure
- pharmacogenomics i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug
- Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug.
- a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a 14257 molecule or 14257 modulator as well as tailoring the dosage and/or therapeutic regimen of treatment with a 14257 molecule or 14257 modulator.
- Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, for example, Eichelbaum, M. et al. (1996) Clin. Exp. Pharmacol. Physiol. 23(10-11) :983-985 and Linder, M. W. et al. (1997) Clin. Chem. 43(2):254-266.
- two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare genetic defects or as naturally-occurring polymorphisms.
- G6PD glucose-6-phosphate dehydrogenase deficiency
- oxidant drugs anti-malarials, sulfonamides, analgesics, nitrofurans
- One pharmacogenomics approach to identifying genes that predict drug response relies primarily on a high-resolution map of the human genome consisting of already known gene-related markers (e.g., a “bi-allelic” gene marker map which consists of 60,000-100,000 polymorphic or variable sites on the human genome, each of which has two variants.)
- a high-resolution genetic map can be compared to a map of the genome of each of a statistically significant number of patients taking part in a Phase II/III drug trial to identify markers associated with a particular observed drug response or side effect.
- such a high resolution map can be generated from a combination of some ten-million known single nucleotide polymorphisms (SNPs) in the human genome.
- SNPs single nucleotide polymorphisms
- a “SNP” is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1000 bases of DNA.
- a SNP may be involved in a disease process, however, the vast majority may not be disease-associated.
- individuals Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals.
- a method termed the “candidate gene approach” can be utilized to identify genes that predict a drug response. According to this method, if a gene that encodes a drug target is known (e.g., a 14257 protein or 14257 receptor of the present invention), all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.
- a gene that encodes a drug target e.g., a 14257 protein or 14257 receptor of the present invention
- the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action.
- drug metabolizing enzymes e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19
- NAT 2 N-acetyltransferase 2
- CYP2D6 and CYP2C19 cytochrome P450 enzymes
- the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
- a method termed the “gene expression profiling” can be utilized to identify genes that predict drug response.
- a drug e.g., a 14257 molecule or 14257 modulator of the present invention
- the gene expression of an animal dosed with a drug can give an indication whether gene pathways related to toxicity have been turned on.
- Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment an individual. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a 14257 molecule or 14257 modulator, such as a modulator identified by one of the exemplary screening assays described herein.
- the human 14257 sequence (FIG. 1A-B; SEQ ID NO:1), which is approximately 882 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence (SEQ ID NO:3) of about 687 nucleotides (nucleotides 1-687 of SEQ ID NO:1).
- the coding sequence encodes a 228 amino acid protein (SEQ ID NO:2).
- Northern blot hybridizations with various RNA samples can be performed under standard conditions and washed under stringent conditions, i.e., 0.2 ⁇ SSC at 65° C.
- a DNA probe corresponding to all or a portion of the 14257 cDNA can be used.
- the DNA is radioactively labeled with 32 P-dCTP using the Prime-It Kit (Stratagene, La Jolla, Calif.) according to the instructions of the supplier.
- Filters containing mRNA from mouse hematopoietic and endocrine tissues, and cancer cell lines can be probed in ExpressHyb hybridization solution (Clontech) and washed at high stringency according to manufacturer's recommendations.
- TaqMan real-time quantitative RT-PCR is used to detect the presence of RNA transcript corresponding to human 14257 in several tissues. It is found that the corresponding orthologs of 14257 are expressed in a variety of tissues.
- RT-PCR Reverse Transcriptase PCR
- modulators which have a stimulatory or inhibitory effect on protein kinase activity (e.g., protein kinase gene expression) can be administered to individuals to treat (prophylactically or therapeutically) protein kinase-associated disorders.
- 14257 molecules are found to be overexpressed or underexpressed in some tumor or cells, where the molecules may be inappropriately propagating either cell proliferation or cell survival signals or have aberrant protein kinase activity. As such, 14257 molecules may serve as specific and novel identifiers of such tumor cells or disorders.
- modulators of the 14257 molecules are useful for the treatment of cancer.
- inhibitors of the 14257 molecules are useful for the treatment of cancer where 14257 is upregulated in tumor cells and are useful as a diagnostic.
- activators of the 14257 molecules are useful for the treatment of cancer, where 14257 expression is downregulated.
- 14257 is expressed as a recombinant glutathione-S-transferase (GST) fusion polypeptide in E. coli and the fusion polypeptide is isolated and characterized. Specifically, 14257 is fused to GST and this fusion polypeptide is expressed in E. coli, e.g., strain PEB199. Expression of the GST-3714, -16742, -23546, or -13887 fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.
- GST glutathione-S-transferase
- the pcDNA/Amp vector by Invitrogen Corporation (San Diego, Calif.) is used.
- This vector contains an SV40 origin of replication, an ampicillin resistance gene, an E. coli replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site.
- a DNA fragment encoding the entire 14257 protein and an HA tag (Wilson et al. (1984) Cell 37:767) or a FLAG tag fused in-frame to its 3′ end of the fragment is cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.
- the 14257 DNA sequence is amplified by PCR using two primers.
- the 5′ primer contains the restriction site of interest followed by approximately twenty nucleotides of the 14257 coding sequence starting from the initiation codon; the 3′ end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the 14257 coding sequence.
- the PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CLAP enzyme (New England Biolabs, Beverly, Mass.).
- the two restriction sites chosen are different so that the 14257 gene is inserted in the correct orientation.
- the ligation mixture is transformed into E. coli cells (strains HB101, DH5 ⁇ , SURE, available from Stratagene Cloning Systems, La Jolla, Calif., can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.
- COS cells are subsequently transfected with the 14257-pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co-precipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation.
- Other suitable methods for transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2 nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
- the expression of the 14257 polypeptide is detected by radiolabelling ( 35 S-methionine or 35 S-cysteine available from NEN, Boston, Mass., can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988) using an HA specific monoclonal antibody. Briefly, the cells are labeled for 8 hours with 35 S-methionine (or 35 S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE.
- DNA containing the 14257 coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites.
- the resulting plasmid is transfected into COS cells in the manner described above, and the expression of the 14257 polypeptide is detected by radiolabelling and immunoprecipitation using a 14257 specific monoclonal antibody.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention provides isolated nucleic acids molecules, designated 14257 nucleic acid molecules, which encode novel protein kinases. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing 14257 nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a 14257 gene has been introduced or disrupted. The invention still further provides isolated 14257 proteins, fusion proteins, antigenic peptides and anti-14257 antibodies. Diagnostic, screening, and therapeutic methods utilizing compositions of the invention are also provided.
Description
- This application claims priority on U.S. Provisional Application Serial No. 60/196,910 filed Apr. 13, 2000, which is relied on and incorporated herein by reference.
- Phosphate tightly associated with protein has been known since the late nineteenth century. Since then, a variety of covalent linkages of phosphate to proteins have been found. The most common involve esterification of phosphate to serine, threonine, and tyrosine with smaller amounts being linked to lysine, arginine, histidine, aspartic acid, glutamic acid, and cysteine. The occurrence of phosphorylated proteins implies the existence of one or more protein kinases capable of phosphorylating amino acid residues on proteins, and also of protein phosphatases capable of hydrolyzing phosphorylated amino acid residues on proteins.
- Kinases play a critical role in the mechanism of intracellular signal transduction. They act on the hydroxyamino acids of target proteins to catalyze the transfer of a high energy phosphate group from adenosine triphosphate (ATP). This process is known as protein phosphorylation. Along with phosphatases, which remove phosphates from phosphorylated proteins, kinases participate in reversible protein phosphorylation. Reversible phosphorylation acts as the main strategy for regulating protein activity in eukaryotic cells.
- Protein kinases play critical roles in the regulation of biochemical and morphological changes associated with cell proliferation, differentiation, growth and division (D'Urso, G. et al. (1990)Science 250: 786-791; Birchmeier. C. et al. (1993) Bioessays 15: 185-189). They serve as growth factor receptors and signal transducers and have been implicated in cellular transformation and malignancy (Hunter, T. et al. (1992) Cell 70: 375-387; Posada, J. et al. (1992) Mol. Biol. Cell 3: 583-592; Hunter, T. et al. (1994) Cell 79: 573-582). For example, protein kinases have been shown to participate in the transmission of signals from growth-factor receptors (Sturgill, T. W. et al. (1988) Nature 344: 715-718; Gomez, N. et al. (1991) Nature 353: 170-173), control of entry of cells into mitosis (Nurse, P. (1990) Nature 344: 503-508; Maller, J. L. (1991) Curr. Opin. Cell Biol. 3: 269-275) and regulation of actin bundling (Husain-Chishti, A. et al. (1988) Nature 334: 718-721).
- Kinases vary widely in their selectivity and specificity of target proteins. They still may, however, comprise the largest known enzyme superfamily. Protein kinases can be divided into two main groups based on either amino acid sequence similarity or specificity for either serine/threonine or tyrosine residues. Serine/threonine specific kinases are often referred to as STKs while tyrosine specific kinases are referred to as PTKs. A small number of dual-specificity kinases are structurally like the serine/threonine-specific group. Within the broad classification, kinases can be further sub-divided into families whose members share a higher degree of catalytic domain amino acid sequence identity and also have similar biochemical properties. Most protein kinase family members also share structural features outside the kinase domain that reflect their particular cellular roles. These include regulatory domains that control kinase activity or interaction with other proteins (Hanks, S. K. et al. (1988)Science 241:42-52).
- Almost all kinases contain a catalytic domain composed of 250-300 conserved amino acids. This catalytic domain may be viewed as composed of 11 subdomains. Some of these subdomains apparently contain distinct amino acid motifs which confer specificity as a STK or PTK or both. Kinases may also contain additional amino acid sequences, usually between 5 and 100 residues, flanking or occurring within the catalytic domain. These residues apparently act to regulate kinase activity and to determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book, Vol I:7-20 Academic Press, San Diego, Calif.)
- The present invention is based, at least in part, on the discovery of novel nucleic acid molecules and proteins encoded by such nucleic acid molecules, referred to herein as “kinases” or by the individual clone names “14257”. The 14257 nucleic acid and protein molecules of the present invention are useful as modulating agents in regulating a variety of cellular processes, e.g., including cell proliferation, differentiation, growth and division. In particular, the kinase and its related nucleic acids will be advantageous in the regulation of any cellular function uncontrolled proliferation and differentiation such as in cases of cancer. Other situations where the kinases of the invention are of particular advantage are in cases of autoimmune disorders or undesired inflammation. Accordingly, in one aspect, this invention provides isolated nucleic acid molecules encoding 14257 proteins or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection of 14257-encoding nucleic acids.
- In one embodiment, a 14257 nucleic acid molecule of the invention is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to a nucleotide sequence (e.g., to the entire length of the nucleotide sequence) including SEQ ID NO:1, SEQ ID NO:3, or a complement thereof.
- In another embodiment, a 14257 nucleic acid molecule includes a nucleotide sequence encoding a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of SEQ ID NO:2. In a preferred embodiment, a 14257 nucleic acid molecule includes a nucleotide sequence encoding a protein having an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to an amino acid sequence including SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2).
- In another preferred embodiment, an isolated nucleic acid molecule encodes the amino acid sequence of a human 14257. In yet another preferred embodiment, the nucleic acid molecule includes a nucleotide sequence encoding a protein which includes the amino acid sequence of SEQ ID NO:2. In yet another preferred embodiment, the nucleic acid molecule includes a nucleotide sequence encoding a protein having the amino acid sequence of SEQ ID NO:2.
- Another embodiment of the invention features nucleic acid molecules, preferably 14257 nucleic acid molecules, which specifically detect 14257 nucleic acid molecules relative to nucleic acid molecules encoding non-14257 proteins. For example, in one embodiment, such a nucleic acid molecule is at least 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, or 800 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising the nucleotide sequence shown in SEQ ID NO:1, or a complement thereof. In other preferred embodiments, the nucleic acid molecule encodes a naturally occurring allelic variant of a polypeptide which includes the amino acid sequence of SEQ ID NO:2, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule which includes SEQ ID NO:1 or SEQ ID NO:3 under stringent conditions.
- Another embodiment of the invention provides an isolated nucleic acid molecule which is antisense to a 14257 nucleic acid molecule, e.g., the coding strand of a 14257 nucleic acid molecule.
- Another aspect of the invention provides a vector comprising a 14257 nucleic acid molecule. In certain embodiments, the vector is a recombinant expression vector. In another embodiment, the invention provides a host cell containing a vector of the invention. The invention also provides a method for producing a protein, preferably a 14257 protein, by culturing in a suitable medium, a host cell, e.g., a mammalian host cell such as a non-human mammalian cell, of the invention containing a recombinant expression vector, such that the protein is produced.
- Another aspect of this invention features isolated or recombinant 14257 proteins and polypeptides.
- In one embodiment, the isolated protein, preferably a 14257 protein, includes at least one Ser/Thr kinase site. In another embodiment, the isolated protein, preferably a 14257 protein, includes at least one Ser/Thr kinase site and has an amino acid sequence which is at least50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 99% or more homologous to an amino acid sequence including SEQ ID NO:2. In an even further embodiment, the isolated protein, preferably a 14257 protein, includes at least one Ser/Thr kinase site and plays a role in signaling pathways associated with cellular growth, e.g., signaling pathways associated with cell cycle regulation. In another embodiment, the isolated protein, preferably a 14257 protein, includes at least one Ser/Thr kinase site and is encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3.
- In another embodiment, the isolated protein, preferably a 14257 protein, has an amino acid sequence sufficiently homologous to the amino acid sequence of SEQ ID NO:2. In a preferred embodiment, the protein, preferably a 14257 protein, has an amino acid sequence at least about 50%, 55%, 59%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 98% or more homologous to an amino acid sequence including SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2). In another embodiment, the invention features fragments of the proteins having the amino acid sequence of SEQ ID NO:2, wherein the fragment comprises at least 15 amino acids (e.g., contiguous amino acids) of the amino acid sequence of SEQ ID NO:2, respectively. In another embodiment, the protein, preferably a 14257 protein, has the amino acid sequence of SEQ ID NO:2.
- Another embodiment of the invention features an isolated protein, preferably a 14257 protein, which is encoded by a nucleic acid molecule having a nucleotide sequence at least about 50%, 55%, 60%, 62%, 65%, 70%, 75%, 78%, 80%, 85%, 86%, 90%, 95%, 97%, 98% or more homologous to a nucleotide sequence (e.g., to the entire length of the nucleotide sequence) including SEQ ID NO:1, SEQ ID NO:3, or a complement thereof. This invention further features an isolated protein, preferably a 14257 protein, which is encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or a complement thereof.
- The proteins of the present invention or biologically active portions thereof, can be operatively linked to a non-14257 polypeptide (e.g., heterologous amino acid sequences) to form fusion proteins. The invention further features antibodies, such as monoclonal or polyclonal antibodies, that specifically bind proteins of the invention, preferably 14257 proteins. In addition, the 14257 proteins or biologically active portions thereof can be incorporated into pharmaceutical compositions, which optionally include pharmaceutically acceptable carriers.
- In another aspect, the present invention provides a method for detecting the presence of a 14257 nucleic acid molecule, protein or polypeptide in a biological sample by contacting the biological sample with an agent capable of detecting a 14257 nucleic acid molecule, protein or polypeptide such that the presence of a 14257 nucleic acid molecule, protein or polypeptide is detected in the biological sample.
- In another aspect, the present invention provides a method for detecting the presence of 14257 activity in a biological sample by contacting the biological sample with an agent capable of detecting an indicator of 14257 activity such that the presence of 14257 activity is detected in the biological sample.
- In another aspect, the invention provides a method for modulating 14257 activity comprising contacting a cell capable of expressing 14257 with an agent that modulates 14257 activity such that 14257 activity in the cell is modulated. In one embodiment, the agent inhibits 14257 activity. In another embodiment, the agent stimulates 14257 activity. In one embodiment, the agent is an antibody that specifically binds to a 14257 protein. In another embodiment, the agent modulates expression of 14257 by modulating transcription of a 14257 gene or translation of a 14257 mRNA. In yet another embodiment, the agent is a nucleic acid molecule having a nucleotide sequence that is antisense to the coding strand of a 14257 mRNA or a 14257 gene.
- In one embodiment, the methods of the present invention are used to treat a subject having a disorder characterized by aberrant 14257 protein or nucleic acid expression or activity by administering an agent which is a 14257 modulator to the subject. In one embodiment, the 14257 modulator is a 14257 protein. In another embodiment the 14257 modulator is a 14257 nucleic acid molecule. In yet another embodiment, the 14257 modulator is a peptide, peptidomimetic, or other small molecule. In a preferred embodiment, the disorder characterized by aberrant 14257 protein or nucleic acid expression is a cellular growth related disorder.
- The present invention also provides a diagnostic assay for identifying the presence or absence of a genetic alteration characterized by at least one of (i) aberrant modification or mutation of a gene encoding a 14257 protein; (ii) mis-regulation of the gene; and (iii) aberrant post-translational modification of a 14257 protein, wherein a wild-type form of the gene encodes a protein with a 14257 activity.
- In another aspect the invention provides a method for identifying a compound that binds to or modulates the activity of a 14257 protein, by providing an indicator composition comprising a 14257 protein having 14257 activity, contacting the indicator composition with a test compound, and determining the effect of the test compound on 14257 activity in the indicator composition to identify a compound that modulates the activity of a 14257 protein.
- Other features and advantages of the invention will be apparent from the following detailed description and claims.
- FIGS. 1A-B depict a cDNA sequence (SEQ ID NO:1) and predicted amino acid sequence (SEQ ID NO:2) of
human 14257. The location of the methionine-initiated open reading frame of human 14257 (without the 5′ and 3′ untranslated regions) is also indicated (FIG. 1B, SEQ ID NO:3). - FIG. 2 depicts a hydropathy plot of
human 14257. Relatively hydrophobic residues are shown above the dashed horizontal line, and relatively hydrophilic residues are shown below the dashed horizontal line. The cysteine residues (cys) and N-glycosylation sites (Ngly) are indicated by short vertical lines just below the hydropathy trace. The numbers corresponding to the amino acid sequence ofhuman 14257 are indicated. Polypeptides of the invention include fragments which include: all or part of a hydrophobic sequence, e.g., a sequence above the dashed line, e.g., the sequence from about amino acid 100 to 110, from about 130 to 150, and from about 180 to 195 of SEQ ID NO:2; all or part of a hydrophilic sequence, e.g., a sequence below the dashed line, e.g., the sequence from about amino acid 35 to 45, from about 90 to 100, and from about 195 to 205 of SEQ ID NO:2; a sequence which includes a Cys, or a glycosylation site. - FIG. 3 depicts an alignment of the protein kinase domain of
human 14257 with a consensus amino acid sequence derived from a hidden Markov model (HMM) from PFAM. The upper sequence is the consensus amino acid sequence (SEQ ID NO:4), while the lower amino acid sequence corresponds toamino acids 4 to 218 of SEQ ID NO:2. - FIG. 4 depicts a BLAST alignment of
human 14257 with a consensus amino acid sequence derived from a ProDomain “kinase transferase protein serine/threonine-protein ATP-binding II phosphorylation casein alpha chain;” (Release 1999.2, http://www.toulouse.inra.fr/prodom.html). The lower sequence is amino acid residues 17 to 74 of the 58 amino acid consensus sequence (SEQ ID NO:5), while the upper amino acid sequence corresponds to the “kinase transferase protein serine/threonine-protein ATP-binding II phosphorylation casein alpha chain” domain ofhuman 14257,amino acid residues 161 to 218 of SEQ ID NO:2. - The human 14257 sequence (FIG. 1; SEQ ID NO:1), which is approximately 882 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 687 nucleotides, including the termination codon (nucleotides indicated as the coding region of SEQ ID NO:1 in FIG. 1; SEQ ID NO:3). The coding sequence encodes a 228 amino acid protein (SEQ ID NO:2).
-
Human 14257 contains the following regions or other structural features (for general information regarding PFAM identifiers, PS prefix and PF prefix domain identification numbers, refer to Sonnhammer et al. (1997) Protein 28:405-420 and http://www.psc.edu/general/software/packages/pfam/pfam.html): - a eukaryotic protein kinase domain (PFAM Accession Number PF00069) located at about
amino acid residues 4 to 218 of SEQ ID NO:2; - 1 N-glycosylation site (Prosite PS00001) from about amino acids 23 to 26 of SEQ ID NO:2;
- 3 casein kinase II phosphorylation sites (Prosite PS00006) located at about amino acids 38 to 41, 180 to 183, and 205 to 208 of SEQ ID NO:2;
- 2 tyrosine kinase phosphorylation sites (Prosite PS0007) located at about amino acids 9 to 15 and 204 to 211;
- 3 N-myristoylation sites (Prosite PS00008) from about
amino acids 27 to 32, 97 to 102 and 188 to 193 of SEQ ID NO:2; and - 1 serine/threonine protein kinase active-site signal site (Prosite PS00108) from about amino acids 132 to 134 of SEQ ID NO:2.
- The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as “14257” nucleic acid and polypeptide molecules, which have homologies to known serine/threonine kinases at their active sites and in regions relating to ATP binding and the phosphorylation of the alpha chain of casein. Thus in addition to the expected ability to phosphorylate proteins such as the casein alpha chain, 14257 proteins are expected to play a role in or function in signaling pathways associated with cellular growth. In one embodiment, the 14257 molecules modulate the activity of one or more proteins involved in cellular growth or differentiation, e.g., cardiac cell growth or differentiation. In another embodiment, the 14257 molecules of the present invention are capable of modulating the phosphorylation state of a 14257 molecule or one or more proteins involved in cellular growth or differentiation.
- As used herein, the term “protein kinase” includes a protein or polypeptide which is capable of modulating its own phosphorylation state or the phosphorylation state of another protein or polypeptide. Protein kinases can have a specificity for (i.e., a specificity to phosphorylate) serine/threonine residues, tyrosine residues, or both serine/threonine and tyrosine residues, e.g., the dual specificity kinases. As referred to herein, protein kinases preferably include a catalytic domain of about 200-400 amino acid residues in length, preferably about 200-300 amino acid residues in length, or more preferably about 250-300 amino acid residues in length, which includes preferably 5-20, more preferably 5-15, or preferably 11 highly conserved motifs or subdomains separated by sequences of amino acids with reduced or minimal conservation. Specificity of a protein kinase for phosphorylation of either tyrosine or serine/threonine can be predicted by the sequence of two of the subdomains (VIb and VIII) in which different residues are conserved in each class (as described in, for example, Hanks et al. (1988)Science 241:42-52) the contents of which are incorporated herein by reference). These subdomains are also described in further detail herein. Preferably, the kinases of the invention are serine/threonine kinases.
- Protein kinases play a role in signaling pathways associated with cellular growth. For example, protein kinases are involved in the regulation of signal transmission from cellular receptors, e.g., growth-factor receptors; entry of cells into mitosis; and the regulation of cytoskeleton function, e.g., actin bundling. Thus, the 14257 molecules of the present invention may be involved in: 1) the regulation of transmission of signals from cellular receptors, e.g., cardiac cell growth factor receptors; 2) the modulation of the entry of cells into mitosis; 3) the modulation of cellular differentiation; 4) the modulation of cell death; 5) the regulation of cytoskeleton function, e.g., actin bundling; and 6) the ability to antagonize or inhibit, competitively or non-competitively, any or all of (1)-(5).
- Inhibition or over stimulation of the activity of protein kinases involved in signaling pathways associated with cellular growth can lead to perturbed cellular growth, which can in turn lead to cellular growth related disorders. As used herein, a “cellular growth related disorder” includes a disorder, disease, or condition characterized by a deregulation, e.g., an upregulation or a downregulation, of cellular growth. Cellular growth deregulation may be due to a deregulation of cellular proliferation, cell cycle progression, cellular differentiation and/or cellular hypertrophy.
- The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as 14257 protein and nucleic acid molecules, which comprise a family of molecules having certain conserved structural and functional features. The term “family” when referring to the protein and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having a common structural domain or motif and having sufficient amino acid or nucleotide sequence homology as defined herein. Such family members can be naturally or non-naturally occurring and can be from either the same or different species. For example, a family can contain a first protein of human origin, as well as other, distinct proteins of human origin or alternatively, can contain homologues of non-human origin. Members of a family may also have common functional characteristics.
- As used herein, the term “kinase domain” includes an amino acid sequence of about 100 to 215 amino acid residues in length and having a bit score for the alignment of the sequence to the kinase domain (HMM) of at least 100. Preferably a kinase domain mediates intracellular signal transduction. Preferably, a kinase domain includes at least about 100 to 215 amino acids, more preferably about 150 to 215 amino acid residues, or about 200 to 215 amino acids and has a bit score for the alignment of the sequence to the kinase domain (HMM) of at least 100, 150, 200 or greater. An alignment of the kinase domain (
amino acids 4 to 218 of SEQ ID NO:2) ofhuman 14257 with a consensus amino acid sequence (SEQ ID NO:2) derived from a hidden Markov model is depicted in FIG. 3. - In a preferred embodiment, a 14257 polypeptide or protein has a “kinase domain” or a region which includes at least about 100 to 215 more preferably about 150 to 215 or 200 to 215 amino acid residues and has at least about 60%, 70% 80% 90% 95%, 99%, or 100% homology with a “kinase domain,” e.g., the kinase domain of human 14257 (e.g.,
residues 4 to 218 of SEQ ID NO:2). - To identify the presence of a “kinase” domain in a 14257 protein sequence, and make the determination that a polypeptide or protein of interest has a particular profile, the amino acid sequence of the protein can be searched against the Pfam database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters (http://www.sanger.ac.uk/Software/Pfam/HMM_search). For example, the hmmsf program, which is available as part of the HMMER package of search programs, is a family specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit. Alternatively, the threshold score for determining a hit can be lowered (e.g., to 8 bits). A description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28:405-420 and a detailed description of HMMs can be found, for example, in Gribskov et al. (1990) Meth. Enzymol.183:146-159; Gribskov et al. (1987) Proc. Natl. Acad. Sci. USA 84:4355-4358; Krogh et al. (1994) J. Mol. Biol. 235:1501-1531; and Stultz et al. (1993) Protein Sci. 2:305-314, the contents of which are incorporated herein by reference. A search was performed against the HMM database resulting in the identification of a “kinase domain” domain in the amino acid sequence of
human 14257 at aboutresidues 4 to 218 of SEQ ID NO:2 (see FIG. 1). - To identify the presence of a “kinase” domain in a 14257 protein sequence, and make the determination that a polypeptide or protein of interest has a particular profile, the amino acid sequence of the protein can be searched against a database of domains, e.g., the ProDom database (Corpet et al. (1999), Nucl. Acids Res. 27:263-267). The ProDom protein domain database consists of an automatic compilation of homologous domains. Current versions of ProDom are built using recursive PSI-BLAST searches (Altschul S F et al. (1997) Nucleic Acids Res. 25:3389-3402; Gouzy et al. (1999) Computers and Chemistry 23:333-340) of the SWISS-PROT 38 and TREMBL protein databases. The database automatically generates a consensus sequence for each domain. A BLAST search was performed against the HMM database resulting in the identification of a “kinase” domain in the amino acid sequence of
human 14257 at aboutresidues 161 to 218 of SEQ ID NO:2 (see FIG. 1). The kinase domain is homologous to ProDom family “kinase transferase protein serine/threonine-protein ATP-binding II phosphorylation casein alpha chain,” SEQ ID NO:5, (ProDomain Release 1999.2 http://www.toulouse.inra.fr/prodom.html). The consensus sequence for SEQ ID NO:5 is 51% identical overamino acids 161 to 218 of SEQ ID NO:2 as shown in FIG. 4. - One embodiment of the invention features 14257 nucleic acid molecules, preferably human 14257 molecules, e.g., 14257. The 14257 nucleic acid and protein molecules of the invention are described in further detail in the following subsections.
- In another embodiment, the isolated proteins of the present invention, preferably 14257 proteins, are identified based on the presence of at least Ser/Thr kinase site.
- As used herein, the term “Ser/Thr kinase site” includes an amino acid sequence of about 200-400 amino acid residues in length, preferably 200-300 amino acid residues in length, and more preferably 250-300 amino acid residues in length, which is conserved in kinases which phosphorylate serine and threonine residues and found in the catalytic domain of Ser/Thr kinases. Preferably, the Ser/Thr kinase site includes the following amino acid consensus sequence X9-g-X-G-X4-V-X12-K-X-(10-19)-E-X66-h-X8-h-r-D-X-K-X2-N-X17-K-X2-D-f-g-X21-p-X13-w-X3-g-X55-R-X14-h-X3 (SEQ ID NO:6) (where invariant residues are indicated by upper case letters and nearly invariant residues are indicated by lower case letters). The nearly invariant residues are usually found in most Ser/Thr kinase sites, but can be replaced by other amino acids which, preferably, have similar characteristics. For example, a nearly invariant hydrophobic amino acid in the above amino acid consensus sequence would most likely be replaced by another hydrophobic amino acid. Ser/Thr kinase domains are described in, for example, Levin D. E. et al. (1990) Proc. Natl. Acad. Sci. USA 87:8272-76, the contents of which are incorporated herein by reference.
- In a preferred embodiment, the 14257 includes the following Prosite signature (PS00108) amino acid consensus sequence, or sequence homologous thereto: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-[LIVMFYCT] (SEQ. ID. NO:7). In the above conserved motif, and other motifs described herein, the standard IUPAC one-letter code for the amino acids is used. Each element in the pattern is separated by a dash (-); square brackets ([ ]) indicate the particular residues that are accepted at that position; x indicates that any residue is accepted at that position; and numbers in parentheses (( )) indicate the number of residues represented by the accompanying amino acid. The protein kinase domain (HMM) has been assigned the PFAM Accession Number PF00069 (http://genome.wustl.edu/Pfam/.html).
- Isolated proteins of the present invention, preferably 14257 proteins, have an amino acid sequence sufficiently homologous to the amino acid sequence of SEQ ID NO:2 or are encoded by a nucleotide sequence sufficiently homologous to SEQ ID NO:1 or SEQ ID NO:3. The 14257 nucleic acid encodes a polypeptide with similarities to previously characterized protein kinases. Thus the 14257 encoded polypeptide is expected to be a kinase and function in the phosphorylation of protein substrates.
- As used interchangeably herein a “14257 activity”, “biological activity of 14257” or “functional activity of 14257”, refers to an activity exerted by a 14257 protein, polypeptide or nucleic acid molecule on a 14257 responsive cell or a 14257 protein substrate as determined in vivo, or in vitro, according to standard techniques. The biological activity of 14257 is described herein.
- Thus, the 14257 molecules can act as novel diagnostic targets and therapeutic agents for controlling one or more disorders. Examples of such disorders, e.g., kinase-associated or other 14257-associated disorders, include but are not limited to, cellular proliferative and/or differentiative disorders, disorders associated with bone metabolism, immune e.g., inflammatory, disorders, cardiovascular disorders, including endothelial cell disorders, liver disorders, viral diseases, pain or metabolic disorders.
- Examples of cellular proliferative and/or differentiative disorders include cancer, e.g., carcinoma, sarcoma, metastatic disorders or hematopoietic neoplastic disorders, e.g., leukemias. A metastatic tumor can arise from a multitude of primary tumor types, including but not limited to those of ovary, prostate, colon, lung, breast and liver origin.
- As used herein, the term “cancer” (also used interchangeably with the terms, “hyperproliferative” and “neoplastic” ) refers to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth. Cancerous disease states may be categorized as pathologic, i.e., characterizing or constituting a disease state, e.g., malignant tumor growth, or may be categorized as non-pathologic, i.e., a deviation from normal but not associated with a disease state, e.g., cell proliferation associated with wound repair. The term is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness. The term “cancer” includes malignancies of the various organ systems, such as those affecting lung, breast, thyroid, lymphoid, gastrointestinal, and genito-urinary tract, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus. The term “carcinoma” is art recognized and refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas. Exemplary carcinomas include those forming from tissue of the cervix, lung, prostate, breast, head and neck, colon and ovary. The term “carcinoma” also includes carcinosarcomas, e.g., which include malignant tumors composed of carcinomatous and sarcomatous tissues. An “adenocarcinoma” refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures. The term “sarcoma” is art recognized and refers to malignant tumors of mesenchymal derivation.
- The 14257 molecules of the invention can be used to monitor, treat and/or diagnose a variety of proliferative disorders. Such disorders include hematopoietic neoplastic disorders. As used herein, the term “hematopoietic neoplastic disorders” includes diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. Preferably, the diseases arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia. Additional exemplary myeloid disorders include, but are not limited to, acute promycloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus, L. (1991) Crit Rev. in Oncol./Hemotol. 11:267-97); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM). Additional forms of malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Sternberg disease.
- Aberrant expression and/or activity of 14257 molecules can mediate disorders associated with bone metabolism. “Bone metabolism” refers to direct or indirect effects in the formation or degeneration of bone structures, e.g., bone formation, bone resorption, etc., which can ultimately affect the concentrations in serum of calcium and phosphate. This term also includes activities mediated by 14257 molecules effects in bone cells, e.g. osteoclasts and osteoblasts, that can in turn result in bone formation and degeneration. For example, 14257 molecules can support different activities of bone resorbing osteoclasts such as the stimulation of differentiation of monocytes and mononuclear phagocytes into osteoclasts. Accordingly, 14257 molecules that modulate the production of bone cells can influence bone formation and degeneration, and thus can be used to treat bone disorders. Examples of such disorders include, but are not limited to, osteoporosis, osteodystrophy, osteomalacia, rickets, osteitis fibrosa cystica, renal osteodystrophy, osteosclerosis, anti-convulsant treatment, osteopenia, fibrogenesis-imperfecta ossium, secondary hyperparathyrodism, hypoparathyroidism, hyperparathyroidism, cirrhosis, obstructive jaundice, drug induced metabolism, medullary carcinoma, chronic renal disease, rickets, sarcoidosis, glucocorticoid antagonism, malabsorption syndrome, steatorrhea, tropical sprue, idiopathic hypercalcemia and milk fever.
- The 14257 nucleic acid and protein of the invention can be used to treat and/or diagnose a variety of immune, e.g., inflammatory, (e.g. respiratory inflammatory) disorders. Examples of immune disorders or diseases include, but are not limited to, autoimmune diseases (including, for example, diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), multiple sclerosis, encephalomyelitis, myasthenia gravis, systemic lupus erythematosis, autoimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), psoriasis, Sjögren's Syndrome, inflammatory bowel disease, e.g. Crohn's disease and ulcerative colitis, aphthous ulcer, iritis, conjunctivitis, keratoconjunctivitis, asthma, allergic asthma, chronic obstructive pulmonary disease, cutaneous lupus erythematosus, scleroderma, vaginitis, proctitis, drug eruptions, leprosy reversal reactions, erythema nodosum leprosum, autoimmune uveitis, allergic encephalomyelitis, acute necrotizing hemorrhagic encephalopathy, idiopathic bilateral progressive sensorineural hearing loss, aplastic anemia, pure red cell anemia, idiopathic thrombocytopenia, polychondritis, Wegener's granulomatosis, chronic active hepatitis, Stevens-Johnson syndrome, idiopathic sprue, lichen planus, Graves' disease, sarcoidosis, primary biliary cirrhosis, uveitis posterior, and interstitial lung fibrosis), graft-versus-host disease, cases of transplantation, and allergy such as, atopic allergy.
- Examples of disorders involving the heart or “cardiovascular disorder” include, but are not limited to, a disease, disorder, or state involving the cardiovascular system, e.g., the heart, the blood vessels, and/or the blood. A cardiovascular disorder can be caused by an imbalance in arterial pressure, a malfunction of the heart, or an occlusion of a blood vessel, e.g., by a thrombus. Examples of cardiovascular disorders include but are not limited to, hypertension, atherosclerosis, coronary artery spasm, coronary artery disease, arrhythmias, heart failure, including but not limited to, cardiac hypertrophy, left-sided heart failure, and right-sided heart failure; ischemic heart disease, including but not limited to angina pectoris, myocardial infarction, chronic ischemic heart disease, and sudden cardiac death; hypertensive heart disease, including but not limited to, systemic (left-sided) hypertensive heart disease and pulmonary (right-sided) hypertensive heart disease; valvular heart disease, including but not limited to, valvular degeneration caused by calcification, such as calcification of a congenitally bicuspid aortic valve, and mitral annular calcification, and myxomatous degeneration of the mitral valve (mitral valve prolapse), rheumatic fever and rheumatic heart disease, infective endocarditis, and noninfected vegetations, such as nonbacterial thrombotic endocarditis and endocarditis of systemic lupus erythematosus (Libman-Sacks disease), carcinoid heart disease, and complications of artificial valves; myocardial disease, including but not limited to dilated cardiomyopathy, hypertrophic cardiomyopathy, restrictive cardiomyopathy, and myocarditis; pericardial disease, including but not limited to, pericardial effusion and hemopericardium and pericarditis, including acute pericarditis and healed pericarditis, and rheumatoid heart disease; neoplastic heart disease, including but not limited to, primary cardiac tumors, such as myxoma, lipoma, papillary fibroelastoma, rhabdomyoma, and sarcoma, and cardiac effects of noncardiac neoplasms; congenital heart disease, including but not limited to, left-to-right shunts-late cyanosis, such as atrial septal defect, ventricular septal defect, patent ductus arteriosus, and atrioventricular septal defect, right-to-left shunts-early cyanosis, such as tetralogy of fallot, transposition of great arteries, truncus arteriosus, tricuspid atresia, and total anomalous pulmonary venous connection, obstructive congenital anomalies, such as coarctation of aorta, pulmonary stenosis and atresia, and aortic stenosis and atresia, disorders involving cardiac transplantation, and congestive heart failure.
- A cardiovasular disease or disorder also includes an endothelial cell disorder.
- As used herein, an “endothelial cell disorder” includes a disorder characterized by aberrant, unregulated, or unwanted endothelial cell activity, e.g., proliferation, migration, angiogenesis, or vascularization; or aberrant expression of cell surface adhesion molecules or genes associated with angiogenesis, e.g., TIE-2, FLT and FLK. Endothelial cell disorders include tumorigenesis, tumor metastasis, psoriasis, diabetic retinopathy, endometriosis, Grave's disease, ischemic disease (e.g., atherosclerosis), and chronic inflammatory diseases (e.g., rheumatoid arthritis).
- Disorders which can be treated or diagnosed by methods described herein include, but are not limited to, disorders associated with an accumulation in the liver of fibrous tissue, such as that resulting from an imbalance between production and degradation of the extracellular matrix accompanied by the collapse and condensation of preexisting fibers. The methods described herein can be used to diagnose or treat hepatocellular necrosis or injury induced by a wide variety of agents including processes which disturb homeostasis, such as an inflammatory process, tissue damage resulting from toxic injury or altered hepatic blood flow, and infections (e.g., bacterial, viral and parasitic). For example, the methods can be used for the early detection of hepatic injury, such as portal hypertension or hepatic fibrosis. In addition, the methods can be employed to detect liver fibrosis attributed to inborn errors of metabolism, for example, fibrosis resulting from a storage disorder such as Gaucher's disease (lipid abnormalities) or a glycogen storage disease, A1-antitrypsin deficiency; a disorder mediating the accumulation (e.g., storage) of an exogenous substance, for example, hemochromatosis (iron-overload syndrome) and copper storage diseases (Wilson's disease), disorders resulting in the accumulation of a toxic metabolite (e.g., tyrosinemia, fructosemia and galactosemia) and peroxisomal disorders (e.g., Zellweger syndrome). Additionally, the methods described herein can be used for the early detection and treatment of liver injury associated with the administration of various chemicals or drugs, such as for example, methotrexate, isonizaid, oxyphenisatin, methyldopa, chlorpromazine, tolbutamide or alcohol, or which represents a hepatic manifestation of a vascular disorder such as obstruction of either the intrahepatic or extrahepatic bile flow or an alteration in hepatic circulation resulting, for example, from chronic heart failure, veno-occlusive disease, portal vein thrombosis or Budd-Chiari syndrome.
- Additionally, 14257 molecules can play an important role in the etiology of certain viral diseases, including but not limited to Hepatitis B, Hepatitis C and Herpes Simplex Virus (HSV). Modulators of 14257 activity could be used to control viral diseases. The modulators can be used in the treatment and/or diagnosis of viral infected tissue or virus-associated tissue fibrosis, especially liver and liver fibrosis. Also, 14257 modulators can be used in the treatment and/or diagnosis of virus-associated carcinoma, especially hepatocellular cancer.
- Additionally, 14257 can play an important role in the regulation of metabolism or pain disorders. Diseases of metabolic imbalance include, but are not limited to, obesity, anorexia nervosa, cachexia, lipid disorders, and diabetes. Examples of pain disorders include, but are not limited to, pain response elicited during various forms of tissue injury, e.g., inflammation, infection, and ischemia, usually referred to as hyperalgesia (described in, for example, Fields, H. L. (1987) Pain, New York:McGraw-Hill); pain associated with musculoskeletal disorders, e.g., joint pain; tooth pain; headaches; pain associated with surgery; pain related to irritable bowel syndrome; or chest pain.
- Accordingly, another embodiment of the invention features isolated 14257 proteins and polypeptides having a 14257 activity. Preferred proteins are 14257 proteins having at least one Ser/Thr kinase site. Additional preferred proteins have at least one Ser/Thr kinase site, and preferably a 14257 activity. Additional preferred proteins have at least one Ser/Thr kinase site and are, preferably, encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3.
- The nucleotide sequence of the
isolated human 14257 cDNA and the predicted amino acid sequence of the human 14257 polypeptide are shown in FIG. 1 and in SEQ ID NOs:1 and 2, respectively. A plasmid containing the nucleotidesequence encoding human 14257 was deposited with American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, on ______ and assigned Accession Number ______. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112. - The 14257 gene, which is approximately 882 nucleotides in length, encodes a protein having a molecular weight of approximately 25.2 kD and which is approximately 228 amino acid residues in length.
- Various aspects of the invention are described in further detail in the following subsections:
- I. Isolated Nucleic Acid Molecules
- One aspect of the invention pertains to isolated nucleic acid molecules that encode 14257 proteins or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes to identify 14257-encoding nucleic acids (e.g., 14257 mRNA) and fragments for use as PCR primers for the amplification or mutation of 14257 nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
- An “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. For example, with regards to genomic DNA, the term “isolated” includes nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated 14257 nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, using all or portion of the nucleic acid sequence of SEQ ID NO:1, or the nucleotide sequence of SEQ ID NO:3, as a hybridization probe, nucleic acid molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T.Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
- Moreover, a nucleic acid molecule encompassing all or a portion of SEQ ID NO:1 or SEQ ID NO:3 can be isolated by the polymerase chain reaction (PCR) using synthetic oligonucleotide primers designed based upon the sequence of SEQ ID NO:1 or SEQ ID NO:3, respectively.
- A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to 14257 nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
- In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises the nucleotide sequence shown in SEQ ID NO:1. The sequence of SEQ ID NO:1 corresponds to the
partial human 14257 cDNA. This cDNA comprises sequences encoding thepartial human 14257 protein (i.e., “the coding region”, as shown in SEQ ID NO:3), as well as 5′ untranslated sequences (128 nucleotides before the coding region) and 3′ untranslated sequences (67 nucleotides after the coding region). Alternatively, the nucleic acid molecule can comprise only the coding region of SEQ ID NO:1 (e.g., corresponding to SEQ ID NO:3). - In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, or a portion of any of these nucleotide sequences. A nucleic acid molecule which is complementary to the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, is one which is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, respectively, such that it can hybridize to the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, respectively, thereby forming a stable duplex.
- In still another preferred embodiment, an isolated nucleic acid molecule of the present invention comprises a nucleotide sequence which is at least about 50%, 54%, 55%, 60%, 62%, 65%, 70%, 75%, 78%, 80%, 85%, 86%, 90%, 95%, 97%, 98% or more homologous to the nucleotide sequence (e.g., to the entire length of the nucleotide sequence) shown in SEQ ID NO:1 or SEQ ID NO:3, or a portion of any of these nucleotide sequences.
- Moreover, the nucleic acid molecule of the invention can comprise only a portion of the nucleic acid sequence of SEQ ID NO:1 or SEQ ID NO:3, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a 14257 protein. The nucleotide sequence determined from the cloning of the 14257 gene allows for the generation of probes and primers designed for use in identifying and/or cloning other 14257 family members, as well as 14257 homologues from other species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12 or 15, preferably about 20 or 25, more preferably about 30, 35, 40, 45, 50, 55, 60, 65, or 75 consecutive nucleotides of a sense sequence of SEQ ID NO:1 or SEQ ID NO:3, of an anti-sense sequence of SEQ ID NO:1 or SEQ ID NO:3, or of a naturally occurring allelic variant or mutant of SEQ ID NO:1 or SEQ ID NO:3. In an exemplary embodiment, a nucleic acid molecule of the present invention comprises a nucleotide sequence which is at least 350, 400, 450, 500, 550, 600, 650, 700, 750, or 800 nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of SEQ ID NO:1 or SEQ ID NO:3.
- Probes based on the 14257 nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which misexpress a 14257 protein, such as by measuring a level of a 14257-encoding nucleic acid in a sample of cells from a subject e.g., detecting 14257 mRNA levels or determining whether a genomic 14257 gene has been mutated or deleted.
- A nucleic acid fragment encoding a “biologically active portion of a 14257 protein” can be prepared by isolating a portion of the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3, which encodes a polypeptide having a 14257 biological activity (the biological activities of the 14257 proteins are described herein), expressing the encoded portion of the 14257 protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the 14257 protein.
- The invention further encompasses nucleic acid molecules that differ from the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3, due to the degeneracy of the genetic code and, thus, encode the same 14257 proteins as those encoded by the nucleotide sequence shown in SEQ ID NO:1 or SEQ ID NO:3. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO:2.
- In addition to the 14257 nucleotide sequences shown in SEQ ID NO:1 or SEQ ID NO:3, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the 14257 proteins may exist within a population (e.g., the human population). Such genetic polymorphism in the 14257 genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules which include an open reading frame encoding an 14257 protein, preferably a mammalian 14257 protein, and can further include non-coding regulatory sequences, and introns. Such natural allelic variations include both functional and non-functional 14257 proteins and can typically result in 1-5% variance in the nucleotide sequence of a 14257 gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in 14257 genes that are the result of natural allelic variation and that do not alter the functional activity of a 14257 protein are intended to be within the scope of the invention.
- Moreover, nucleic acid molecules encoding other 14257 family members and, thus, which have a nucleotide sequence which differs from the 14257 sequences of SEQ ID NO:1 or SEQ ID NO:3 are intended to be within the scope of the invention. For example, another 14257 cDNA can be identified based on the nucleotide sequence of
human 14257. Moreover, nucleic acid molecules encoding 14257 proteins from different species, and thus which have a nucleotide sequence which differs from the 14257 sequences of SEQ ID NO:1 or SEQ ID NO:3 are intended to be within the scope of the invention. For example, amouse 14257 cDNA can be identified based on the nucleotide sequence of a human 14257. - Nucleic acid molecules corresponding to natural allelic variants and homologues of the 14257 cDNAs of the invention can be isolated based on their homology to the 14257 nucleic acids disclosed herein using the cDNAs disclosed herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
- Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15, 20, 25, 30 or more nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:3. In other embodiment, the nucleic acid is at least 30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, or 600 nucleotides in length. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 30%, 40%, 50%, or 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 70%, more preferably at least about 80%, even more preferably at least about 85% or 90% homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found inCurrent Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2× SSC, 0.1% SDS at 50-65° C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1 or SEQ ID NO:3 corresponds to a naturally-occurring nucleic acid molecule. As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
- In addition to naturally-occurring allelic variants of the 14257 sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences of SEQ ID NO:1 or SEQ ID NO:3, thereby leading to changes in the amino acid sequence of the encoded 14257 proteins, without altering the functional ability of the 14257 proteins. For example, nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence of SEQ ID NO:1 or SEQ ID NO:3. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of 14257 (e.g., the sequence of SEQ ID NO:2) without altering the biological activity, whereas an “essential” amino acid residue is required for biological activity. For example, amino acid residues that are conserved among the 14257 proteins of the present invention, are predicted to be particularly unamenable to alteration. Furthermore, additional amino acid residues that are conserved between the 14257 proteins of the present invention and other 14257 family members are not likely to be amenable to alteration.
- Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding 14257 proteins that contain changes in amino acid residues that are not essential for activity. Such 14257 proteins differ in amino acid sequence from SEQ ID NO:2, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 41%, 42%, 45%, 50%, 55%, 59%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 98% or more homologous to the amino acid sequence of SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2).
- An isolated nucleic acid molecule encoding a 14257 protein homologous to the protein of SEQ ID NO:2 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:1, respectively, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into SEQ ID NO:1 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a 14257 protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a 14257 coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for 14257 biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO:1, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.
- In a preferred embodiment, a mutant 14257 protein can be assayed for the ability to: 1) regulate transmission of signals from cellular receptors, e.g., cardiac cell growth factor receptors; 2) control entry of cells into mitosis; 3) modulate cellular differentiation; 4) modulate cell death; or 5) regulate cytoskeleton function, e.g., actin bundling.
- In addition to the nucleic acid molecules encoding 14257 proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An “antisense” nucleic acid comprises a nucleotide sequence which is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire 14257 coding strand, or only to a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a “coding region” of the coding strand of a
nucleotide sequence encoding 14257. The term “coding region” refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the coding region ofhuman 14257 corresponds to SEQ ID NO:3). In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of anucleotide sequence encoding 14257. The term “noncoding region” refers to 5′ and 3′ sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5′ and 3′ untranslated regions). - Given the coding strand sequences encoding 14257 disclosed herein (e.g., SEQ ID NO:3), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of 14257 mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of 14257 mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of 14257 mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
- The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a 14257 protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention include direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
- In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987)Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
- In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988)Nature 334:585-591)) can be used to catalytically cleave 14257 mRNA transcripts to thereby inhibit translation of 14257 mRNA. A ribozyme having specificity for a 14257-encoding nucleic acid can be designed based upon the nucleotide sequence of a 14257 cDNA disclosed herein (i.e., SEQ ID NO:1 or SEQ ID NO:3). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a 14257-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, 14257 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J. W. (1993) Science 261:1411-1418.
- Alternatively, 14257 gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the 14257 (e.g., the 14257 promoter and/or enhancers) to form triple helical structures that prevent transcription of the 14257 gene in target cells. See generally, Helene, C. (1991)Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L. J. (1992) Bioassays 14(12):807-15.
- In yet another embodiment, the 14257 nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup B. et al. (1996)Bioorganic & Medicinal Chemistry 4 (1):5-23). As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup B. et al. (1996) supra; Perry-O'Keefe et al. Proc. Natl. Acad. Sci. 93:14670-675.
- PNAs of 14257 nucleic acid molecules can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNAs of 14257 nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as ‘artificial restriction enzymes’ when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup B. (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup B. et al. (1996) supra; Perry-O'Keefe supra).
- In another embodiment, PNAs of 14257 can be modified, (e.g., to enhance their stability or cellular uptake), by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of 14257 nucleic acid molecules can be generated which may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, (e.g., RNAse H and DNA polymerases), to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup B. (1996) supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup B. (1996) supra and Finn P. J. et al. (1996)Nucleic Acids Res. 24 (17): 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs, e.g., 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite, can be used as a between the PNA and the 5′ end of DNA (Mag, M. et al. (1989) Nucleic Acid Res. 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn P. J. et al. (1996) supra). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser, K. H. et al. (1975) Bioorganic Med. Chem. Lett. 5: 1119-11124).
- In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989)Proc. Natl. Acad. Sci. US. 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al. (1988) Bio-Techniques 6:958-976) or intercalating agents. (See, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).
- II. Isolated 14257 Proteins and Anti-14257 Antibodies
- One aspect of the invention pertains to isolated 14257 proteins, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise anti-14257 antibodies. In one embodiment, native 14257 proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, 14257 proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a 14257 protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
- An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the 14257 protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of 14257 protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language “substantially free of cellular material” includes preparations of 14257 protein having less than about 30% (by dry weight) of non-14257 protein (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-14257 protein, still more preferably less than about 10% of non-14257 protein, and most preferably less than about 5% non-14257 protein. When the 14257 protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.
- The language “substantially free of chemical precursors or other chemicals” includes preparations of 14257 protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of 14257 protein having less than about 30% (by dry weight) of chemical precursors or non-14257 chemicals, more preferably less than about 20% chemical precursors or non-14257 chemicals, still more preferably less than about 10% chemical precursors or non-14257 chemicals, and most preferably less than about 5% chemical precursors or non-14257 chemicals.
- Biologically active portions of a 14257 protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the 14257 protein, e.g., the amino acid sequence shown in SEQ ID NO:2, which include less amino acids than the
full length 14257 proteins, and exhibit at least one activity of a 14257 protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the 14257 protein. A biologically active portion of a 14257 protein can be a polypeptide which is, for example, at least 10, 25, 50, 100 or more amino acids in length. - In a preferred embodiment, the 14257 protein has an amino acid sequence shown in SEQ ID NO:2. In other embodiments, the 14257 protein is substantially homologous to SEQ ID NO:2, and retains the functional activity of the protein of SEQ ID NO:2, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the 14257 protein is a protein which comprises an amino acid sequence at least about 41%, 42%, 45%, 50%, 55%, 59%, 60%, 65%, 70%, 75%, 80%, 81%, 85%, 90%, 95%, 98% or more homologous to the amino acid sequence of SEQ ID NO:2 (e.g., the entire amino acid sequence of SEQ ID NO:2).
- To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, or 90% of the length of the reference sequence (e.g., when aligning a second sequence to the 14257, amino acid sequence of SEQ ID NO:2 having 228 amino acid residues, at least about 69, preferably at least 92, more preferably at least 114, even more preferably at least 137, and even more preferably at least 160, 183 or 206 amino acid residues are aligned). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
- The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
- The nucleic acid and protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990)J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to 14257 nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to 14257 protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.
- The invention also provides 14257 chimeric or fusion proteins. As used herein, a 14257 “chimeric protein” or “fusion protein” comprises a 14257 polypeptide operatively linked to a non-14257 polypeptide. An “14257 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to 14257, whereas a “non-14257 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the 14257 protein, e.g., a protein which is different from the 14257 protein and which is derived from the same or a different organism. Within a 14257 fusion protein the 14257 polypeptide can correspond to all or a portion of a 14257 protein. In a preferred embodiment, a 14257 fusion protein comprises at least one biologically active portion of a 14257 protein. In another preferred embodiment, a 14257 fusion protein comprises at least two biologically active portions of a 14257 protein. Within the fusion protein, the term “operatively linked” is intended to indicate that the 14257 polypeptide and the non-14257 polypeptide are fused in-frame to each other. The non-14257 polypeptide can be fused to the N-terminus or C-terminus of the 14257 polypeptide.
- For example, in one embodiment, the fusion protein is a GST-14257 fusion protein in which the 14257 sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant 14257.
- In another embodiment, the fusion protein is a 14257 protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of 14257 can be increased through use of a heterologous signal sequence.
- The 14257 fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject in vivo. The 14257 fusion proteins can be used to affect the bioavailability of a 14257 substrate. Use of 14257 fusion proteins may be useful therapeutically for the treatment of cellular growth related disorders, e.g., cardiovascular disorders. Moreover, the 14257-fusion proteins of the invention can be used as immunogens to produce anti-14257 antibodies in a subject, to purify 14257 ligands and in screening assays to identify molecules which inhibit the interaction of 14257 with a 14257 substrate.
- Preferably, a 14257 chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example,Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A 14257-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the 14257 protein.
- The present invention also pertains to variants of the 14257 proteins which function as either 14257 agonists (mimetics) or as 14257 antagonists. Variants of the 14257 proteins can be generated by mutagenesis, e.g., discrete point mutation or truncation of a 14257 protein. An agonist of the 14257 proteins can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of a 14257 protein. An antagonist of a 14257 protein can inhibit one or more of the activities of the naturally occurring form of the 14257 protein by, for example, competitively modulating a cardiovascular system activity of a 14257 protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the 14257 protein.
- In one embodiment, variants of a 14257 protein which function as either 14257 agonists (mimetics) or as 14257 antagonists respectively can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of a 14257 protein for 14257 protein agonist or antagonist activity. In one embodiment, a variegated library of 14257 variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of 14257 variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of
potential 14257 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of 14257 sequences therein. There are a variety of methods which can be used to produce libraries ofpotential 14257 variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set ofpotential 14257 sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S. A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477. - In addition, libraries of fragments of a 14257 protein coding sequence can be used to generate a variegated population of 14257 fragments respectively for screening and subsequent selection of variants of a 14257 protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a 14257 coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the 14257 protein.
- Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of 14257 proteins. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recrusive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify 14257 variants (Arkin and Yourvan (1992)Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).
- In one embodiment, cell based assays can be exploited to analyze a variegated 14257 library. For example, a library of expression vectors can be transfected into a cell line which ordinarily synthesizes and secretes 14257. The transfected cells are then cultured such that 14257 and a
particular mutant 14257 are secreted and the effect of expression of the mutant on 14257 activity in cell supernatants can be detected, e.g., by any of a number of enzymatic assays. Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of 14257 activity, and the individual clones further characterized. - An isolated 14257 protein, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind 14257 using standard techniques for polyclonal and monoclonal antibody preparation. A full-
length 14257 protein can be used or, alternatively, the invention provides antigenic peptide fragments of 14257 for use as immunogens. The antigenic peptide of 14257 comprises at least 8 amino acid residues of the amino acid sequence shown in SEQ ID NO:2 and encompasses an epitope of 14257 such that an antibody raised against the peptide forms a specific immune complex with 14257. Preferably, the antigenic peptide comprises at least 10 amino acid residues, more preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues. - Preferred epitopes encompassed by the antigenic peptide are regions of 14257 that are located on the surface of the protein, e.g., hydrophilic regions.
- A 14257 immunogen typically is used to prepare antibodies by immunizing a suitable subject, (e.g., rabbit, goat, mouse or other mammal) with the immunogen. An appropriate immunogenic preparation can contain, for example, recombinantly expressed 14257 protein or a chemically synthesized 14257 polypeptide. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent. inmunization of a suitable subject with an immunogenic 14257 preparation induces a polyclonal anti-14257 antibody response.
- Accordingly, another aspect of the invention pertains to anti-14257 antibodies. The term “antibody” as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site which specifically binds (immunoreacts with) an antigen, such as 14257. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab′)2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. The invention provides polyclonal and monoclonal antibodies that bind 14257. The term “monoclonal antibody” or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of 14257. A monoclonal antibody composition thus typically displays a single binding affinity for a particular 14257 protein with which it immunoreacts.
- Polyclonal anti-14257 antibodies can be prepared as described above by immunizing a suitable subject with a 14257 immunogen. The anti-14257 antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized 14257. If desired, the antibody molecules directed against 14257 can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction. At an appropriate time after immunization, e.g., when the anti-14257 antibody titers are highest, antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975)Nature 256:495-497) (see also, Brown et al. (1981) J. Immunol. 127:539-46; Brown et al. (1980) J. Biol. Chem .255:4980-83; Yeh et al. (1976) Proc. Natl. Acad. Sci. USA 76:2927-31; and Yeh et al. (1982) Int. J. Cancer 29:269-75), the more recent human B cell hybridoma technique (Kozbor et al. (1983) Immunol Today 4:72), the EBV-hybridoma technique (Cole et al. (1985), Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96) or trioma techniques. The technology for producing monoclonal antibody hybridomas is well known (see generally R. H. Kenneth, in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, N.Y. (1980); E. A. Lerner (1981) Yale J. Biol Med., 54:387-402; M. L. Gefter et al. (1977) Somatic Cell Genet. 3:231-36). Briefly, an immortal cell line (typically a myeloma) is fused to lymphocytes (typically splenocytes) from a mammal immunized with a 14257 immunogen as described above, and the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds 14257.
- Any of the many well known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating an anti-14257 monoclonal antibody (see, e.g., G. Galfre et al. (1977)Nature 266:55052; Gefter et al. Somatic Cell Genet., cited supra; Lerner, Yale J. Biol. Med., cited supra; Kenneth, Monoclonal Antibodies, cited supra). Moreover, the ordinarily skilled worker will appreciate that there are many variations of such methods which also would be useful. Typically, the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes. For example, murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line. Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine (“HAT medium”). Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines. These myeloma lines are available from ATCC. Typically, HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol (“PEG”). Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed). Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind 14257, e.g., using a standard ELISA assay.
- Alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal anti-14257 antibody can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with 14257 to thereby isolate immunoglobulin library members that bind 14257. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP™ Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, Ladner et al. U.S. Pat. No. 5,223,409; Kang et al. PCT International Publication No. WO 92/18619; Dower et al. PCT International Publication No. WO 91/17271; Winter et al. PCT International Publication WO 92/20791; Markland et al. PCT International Publication No. WO 92/15679; Breitling et al. PCT International Publication WO 93/01288; McCafferty et al. PCT International Publication No. WO 92/01047; Garrard et al. PCT International Publication No. WO 92/09690; Ladner et al. PCT International Publication No. WO 90/02809; Fuchs et al. (1991)Bio/Technology 9:1370-1372; Hay et al. (1992) Hum. Antibod. Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J 12:725-734; Hawkins et al. (1992) J. Mol. Biol. 226:889-896; Clarkson et al. (1991) Nature 352:624-628; Gram et al. (1992) Proc. Natl. Acad. Sci. USA 89:3576-3580; Garrad et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nuc. Acid Res. 19:4133-4137; Barbas et al. (1991) Proc. Natl. Acad. Sci. USA 88:7978-7982; and McCafferty et al. Nature (1990) 348:552-554.
- Additionally, recombinant anti-14257 antibodies, such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al. International Application No. PCT/US86/02269; Akira, et al. European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al. European Patent Application 173,494; Neuberger et al. PCT International Publication No. WO 86/01533; Cabilly et al. U.S. Pat. No. 4,816,567; Cabilly et al. European Patent Application 125,023; Better et al. (1988)Science 240:1041-1043; Liu et al. (1987) Proc. Natl. Acad. Sci. USA 84:3439-3443; Liu et al. (1987) J. Immunol. 139:3521-3526; Sun et al. (1987) Proc. Natl. Acad. Sci. USA 84:214-218; Nishimura et al. (1987) Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al. (1988) J. Natl. Cancer Inst. 80:1553-1559); Morrison, S. L. (1985) Science 229:1202-1207; Oi et al. (1986) BioTechniques 4:214; Winter U.S. Pat. No. 5,225,539; Jones et al. (1986) Nature 321:552-525; Verhoeyan et al. (1988) Science 239:1534; and Beidler et al. (1988) J. Immunol. 141:4053-4060.
- An anti-14257 antibody (e.g., monoclonal antibody) can be used to isolate 14257 by standard techniques, such as affinity chromatography or immunoprecipitation. An anti-14257 antibody can facilitate the purification of natural 14257 from cells and of recombinantly produced 14257 expressed in host cells. Moreover, an anti-14257 antibody can be used to detect 14257 protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the 14257 protein. Anti-14257 antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include125I, 131I, 35S or 3H.
- III. Recombinant Expression Vectors and Host Cells
- Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a 14257 protein (or a portion thereof). As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors”. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
- The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term “regulatory sequence” is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel;Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., 14257 proteins, mutant forms of 14257 proteins, fusion proteins, and the like).
- The recombinant expression vectors of the invention can be designed for expression of 14257 proteins in prokaryotic or eukaryotic cells. For example, 14257 proteins can be expressed in bacterial cells such asE. coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- Expression of proteins in prokaryotes is most often carried out inE. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D. B. and Johnson, K. S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
- Purified fusion proteins can be utilized in 14257 activity assays, (e.g., direct assays or competitive assays described in detail below), or to generate antibodies specific for 14257 proteins, for example. In a preferred embodiment, a 14257 fusion protein expressed in a retroviral expression vector of the present invention can be utilized to infect bone marrow cells which are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).
- Examples of suitable inducible non-fusionE. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the
lacUV 5 promoter. - One strategy to maximize recombinant protein expression inE. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
- In another embodiment, the 14257 expression vector is a yeast expression vector. Examples of vectors for expression in yeastS. cerevisiae include pYepSec1 (Baldari, et al., (1987) Embo J. 6:229-234), pMFa (Kuijan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).
- Alternatively, 14257 proteins can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf9 cells) include the pAc series (Smith et al. (1983)Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).
- In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma,
Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989. - In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987)Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Baneiji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).
- The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to 14257 mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis,Reviews—Trends in Genetics, Vol. 1(1) 1986.
- Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- A host cell can be any prokaryotic or eukaryotic cell. For example, a 14257 protein can be expressed in bacterial cells such asE. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.
- For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a 14257 protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
- A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a 14257 protein. Accordingly, the invention further provides methods for producing a 14257 protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a 14257 protein has been introduced) in a suitable medium such that a 14257 protein is produced. In another embodiment, the method further comprises isolating a 14257 protein from the medium or the host cell.
- The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which 14257-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous 14257 sequences have been introduced into their genome or homologous recombinant animals in which endogenous 14257 sequences have been altered. Such animals are useful for studying the function and/or activity of a 14257 and for identifying and/or evaluating modulators of 14257 activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a “homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous 14257 gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
- A transgenic animal of the invention can be created by introducing a 14257-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. The 14257 cDNA sequence of SEQ ID NO:1 can be introduced as a transgene into the genome of a non-human animal. Alternatively, a nonhuman homologue of a human 14257 gene, such as a mouse or
rat 14257 gene, can be used as a transgene. Alternatively, a 14257 gene homologue, such as another 14257 family member, can be isolated based on hybridization to the 14257 cDNA sequences of SEQ ID NO:1 or SEQ ID NO:3 (described further in subsection I above) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to a 14257 transgene to direct expression of a 14257 protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of a 14257 transgene in its genome and/or expression of 14257 mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a 14257 protein can further be bred to other transgenic animals carrying other transgenes. - To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a 14257 gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the 14257 gene. The 14257 gene can be a human gene (e.g., the SEQ ID NO:1), but more preferably, is a non-human homologue of a human 14257 gene (e.g., a cDNA isolated by stringent hybridization with the nucleotide sequence of SEQ ID NO:1). For example, a
mouse 14257 gene can be used to construct a homologous recombination vector suitable for altering an endogenous 14257 gene in the mouse genome. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous 14257 gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a “knock out” vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous 14257 gene is mutated or otherwise altered but still encodes a functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous 14257 protein). In the homologous recombination vector, the altered portion of the 14257 gene is flanked at its 5′ and 3′ ends by additional nucleic acid sequence of the 14257 gene to allow for homologous recombination to occur between the exogenous 14257 gene carried by the vector and an endogenous 14257 gene in an embryonic stem cell. Theadditional flanking 14257 nucleic acid sequence is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5′ and 3′ ends) are included in the vector (see e.g., Thomas, K. R. and Capecchi, M. R. (1987) Cell 51:503 for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced 14257 gene has homologously recombined with the endogenous 14257 gene are selected (see, e.g., Li, E. et al. (1992) Cell 69:915). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see e.g., Bradley, A. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, A. (1991) Current Opinion in Biotechnology 2:823-829 and in PCT International Publication Nos.: WO 90/11354 by Le Mouellec et al.; WO 91/01140 by Smithies et al.; WO 92/0968 by Zijlstra et al.; and WO 93/04169 by Berns et al. - In another embodiment, transgenic non-humans animals can be produced which contain selected systems which allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. (1992)Proc. Natl. Acad. Sci. USA 89:6232-6236. Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of “double” transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
- Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. (1997)Nature 385:810-813 and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter GO phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.
- IV. Use of 14257 Molecules as Surrogate Markers
- The 14257 molecules of the invention are also useful as markers of disorders or disease states, as markers for precursors of disease states, as markers for predisposition of disease states, as markers of drug activity, or as markers of the pharmacogenomic profile of a subject. Using the methods described herein, the presence, absence and/or quantity of the 14257 molecules of the invention can be detected, and can be correlated with one or more biological states in vivo. For example, the 14257 molecules of the invention can serve as surrogate markers for one or more disorders or disease states or for conditions leading up to disease states. As used herein, a “surrogate marker” is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder (e.g., with the presence or absence of a tumor). The presence or quantity of such markers is independent of the disease. Therefore, these markers can serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder. Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies (e.g., early stage tumors), or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached (e.g., an assessment of cardiovascular disease can be made using cholesterol levels as a surrogate marker, and an analysis of HIV infection can be made using HIV RNA levels as a surrogate marker, well in advance of the undesirable clinical outcomes of myocardial infarction or fully-developed AIDS). Examples of the use of surrogate markers in the art include: Koomen et al. (2000)J. Mass. Spectrom. 35: 258-264; and James (1994) AIDS Treatment News Archive 209.
- The 14257 molecules of the invention are also useful as pharmacodynamic markers. As used herein, a “pharmacodynamic marker” is an objective biochemical marker which correlates specifically with drug effects. The presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject. For example, a pharmacodynamic marker can be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug can be monitored by the pharmacodynamic marker. Similarly, the presence or quantity of the pharmacodynamic marker can be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo. Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses. Since even a small amount of a drug can be sufficient to activate multiple rounds of marker (e.g., a 14257 marker) transcription or expression, the amplified marker can be in a quantity which is more readily detectable than the drug itself Also, the marker can be more easily detected due to the nature of the marker itself; for example, using the methods described herein, anti-14257 antibodies can be employed in an immune-based detection system for a 14257 protein marker, or 14257-specific radiolabeled probes can be used to detect a 14257 mRNA marker. Furthermore, the use of a pharmacodynamic marker can offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations. Examples of the use of pharmacodynamic markers in the art include: Matsuda et al. U.S. Pat. No. 6,033,862; Hattis et al. (1991)Env. Health Perspect. 90: 229-238; Schentag (1999) Am. J. Health-Syst. Pharm. 56 Suppl. 3: S21-S24; and Nicolau (1999) Am. J Health-Syst. Pharm. 56 Suppl. 3: S16-S20.
- The 14257 molecules of the invention are also useful as pharmacogenomic markers. As used herein, a “pharmacogenomic marker” is an objective biochemical marker which correlates with a specific clinical drug response or susceptibility in a subject (see, e.g., McLeod et al. (1999)Eur. J. Cancer 35:1650-1652). The presence or quantity of the pharmacogenomic marker is related to the predicted response of the subject to a specific drug or class of drugs prior to administration of the drug. By assessing the presence or quantity of one or more pharmacogenomic markers in a subject, a drug therapy which is most appropriate for the subject, or which is predicted to have a greater degree of success, can be selected. For example, based on the presence or quantity of RNA, or protein (e.g., 14257 protein or RNA) for specific tumor markers in a subject, a drug or course of treatment can be selected that is optimized for the treatment of the specific tumor likely to be present in the subject. Similarly, the presence or absence of a specific sequence mutation in 14257 DNA can correlate with a 14257 drug response. The use of pharmacogenomic markers therefore permits the application of the most appropriate treatment for each subject without having to administer the therapy.
- V. Pharmaceutical Compositions
- The 14257 nucleic acid molecules, 14257 proteins, and anti-14257 antibodies (also referred to herein as “active compounds”) of the invention can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
- A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a 14257 protein or anti-14257 antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.
- It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
- Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
- The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994)Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
- The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
- VI. Uses and Methods of the Invention
- The nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenetics); and c) methods of treatment (e.g., therapeutic and prophylactic). The isolated nucleic acid molecules of the invention can be used, for example, to express 14257 protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect 14257 mRNA (e.g., in a biological sample) or a genetic alteration in a 14257 gene, and to modulate 14257 activity, as described further below. The 14257 proteins can be used to treat disorders characterized by insufficient or excessive production of a 14257 substrate or production of 14257 inhibitors. In addition, the 14257 proteins can be used to screen for naturally occurring 14257 substrates, to screen for drugs or compounds which modulate 14257 activity, as well as to treat disorders characterized by insufficient or excessive production of 14257 protein or production of 14257 protein forms which have decreased or aberrant activity compared to 14257 wild type protein. Moreover, the anti-14257 antibodies of the invention can be used to detect and isolate 14257 proteins, regulate the bioavailability of 14257 proteins, and modulate 14257 activity.
- A. Screening Assays:
- The invention provides a method (also referred to herein as a “screening assay”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) which bind to 14257 proteins, have a stimulatory or inhibitory effect on, for example, 14257 expression or 14257 activity, or have a stimulatory or inhibitory effect on, for example, the expression or activity of a 14257 substrate.
- In one embodiment, the invention provides assays for screening candidate or test compounds which are substrates of a 14257 protein or polypeptide or biologically active portion thereof. In another embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a 14257 protein or polypeptide or biologically active portion thereof, e.g., modulate the ability of 14257 to interact with its cognate ligand. The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K. S. (1997)Anticancer Drug Des. 12:145).
- Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993)Proc. Natl. Acad. Sci. U.S.A. 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckermann et al. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al. (1994) J. Med. Chem. 37:1233.
- Libraries of compounds may be presented in solution (e.g., Houghten (1992)Biotechniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria (Ladner U.S. Pat. No. 5,223,409), spores (Ladner U.S. Pat. No. '409), plasmids (Cull et al. (1992) Proc Natl Acad Sci USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwirla et al. (1990) Proc. Natl. Acad. Sci. 87:6378-6382); (Felici (1991) J. Mol. Biol. 222:301-310); (Ladner supra.).
- In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a 14257 target molecule (e.g., a 14257 phosphorylation substrate) with a test compound and determining the ability of the test compound to modulate (e.g. stimulate or inhibit) the activity of the 14257 target molecule. Determining the ability of the test compound to modulate the activity of a 14257 target molecule can be accomplished, for example, by determining the ability of the 14257 protein to bind to or interact with the 14257 target molecule, or by determining the ability of the 14257 protein to phosphorylate the 14257 target molecule.
- The ability of the 14257 protein to phosphorylate a 14257 target molecule can be determined by, for example, an in vitro kinase assay. Briefly, a 14257 target molecule, e.g., an immunoprecipitated 14257 target molecule from a cell line expressing such a molecule, can be incubated with the 14257 protein and radioactive ATP, e.g., [γ-32P] ATP, in a buffer containing MgCl2 and MnCl2, e.g., 10 mM MgCl2 and 5 mM MnCl2. Following the incubation, the immunoprecipitated 14257 target molecule can be separated by SDS-polyacrylamide gel electrophoresis under reducing conditions, transferred to a membrane, e.g., a PVDF membrane, and autoradiographed. The appearance of detectable bands on the autoradiograph indicates that the 14257 substrate has been phosphorylated. Phosphoaminoacid analysis of the phosphorylated substrate can also be performed in order to determine which residues on the 14257 substrate are phosphorylated. Briefly, the radiophosphorylated protein band can be excised from the SDS gel and subjected to partial acid hydrolysis. The products can then be separated by one-dimensional electrophoresis and analyzed on, for example, a phosphoimager and compared to ninhydrin-stained phosphoaminoacid standards.
- Determining the ability of the 14257 protein to bind to or interact with a 14257 target molecule can be accomplished by determining direct binding. Determining the ability of the 14257 protein to bind to or interact with a 14257 target molecule can be accomplished, for example, by coupling the 14257 protein with a radioisotope or enzymatic label such that binding of the 14257 protein to a 14257 target molecule can be determined by detecting the labeled 14257 protein in a complex. For example, 14257 molecules, e.g., 14257 proteins, can be labeled with125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, 14257 molecules can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
- It is also within the scope of this invention to determine the ability of a compound to modulate the interaction between 14257 and its target molecule, without the labeling of any of the interactants. For example, a microphysiometer can be used to detect the interaction of 14257 with its target molecule without the labeling of either 14257 or the target molecule. McConnell, H. M. et al. (1992)Science 257:1906-1912. As used herein, a “microphysiometer” (e.g., Cytosensor) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between compound and receptor.
- In a preferred embodiment, determining the ability of the 14257 protein to bind to or interact with a 14257 target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca2+, diacylglycerol, IP3, etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., chloramphenicol acetyl transferase), or detecting a target-regulated cellular response.
- In yet another embodiment, an assay of the present invention is a cell-free assay in which a 14257 protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the 14257 protein or biologically active portion thereof is determined. Binding of the test compound to the 14257 protein can be determined either directly or indirectly as described above. In a preferred embodiment, the assay includes contacting the 14257 protein or biologically active portion thereof with a known compound which binds 14257 to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a 14257 protein, wherein determining the ability of the test compound to interact with a 14257 protein comprises determining the ability of the test compound to preferentially bind to 14257 or biologically active portion thereof as compared to the known compound.
- In another embodiment, the assay is a cell-free assay in which a 14257 protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the 14257 protein or biologically active portion thereof is determined. Determining the ability of the test compound to modulate the activity of a 14257 protein can be accomplished, for example, by determining the ability of the 14257 protein to bind to a 14257 target molecule by one of the methods described above for determining direct binding. Determining the ability of the 14257 protein to bind to a 14257 target molecule can also be accomplished using a technology such as real-time Biomolecular Interaction Analysis (BIA). Sjolander, S. and Urbaniczky, C. (1991)Anal. Chem. 63:2338-2345 and Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705. As used herein, “BIA” is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
- In an alternative embodiment, determining the ability of the test compound to modulate the activity of a 14257 protein can be accomplished by determining the ability of the 14257 protein to further modulate the activity of a 14257 target molecule (e.g., a 14257 mediated signal transduction pathway component). For example, the activity of the effector molecule on an appropriate target can be determined, or the binding of the effector to an appropriate target can be determined as previously described.
- In yet another embodiment, the cell-free assay involves contacting a 14257 protein or biologically active portion thereof with a known compound which binds the 14257 protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the 14257 protein, wherein determining the ability of the test compound to interact with the 14257 protein comprises determining the ability of the 14257 protein to preferentially bind to or modulate the activity of a 14257 target molecule.
- The cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of proteins (e.g., 14257 proteins or biologically active portions thereof, or receptors to which 14257 binds). In the case of cell-free assays in which a membrane-bound form a protein is used (e.g., a
cell surface 14257 receptor) it may be desirable to utilize a solubilizing agent such that the membrane-bound form of the protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoy-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N,N-dimethyl-3-ammonio-1-propane sulfonate. - In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize either 14257 or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to a 14257 protein, or interaction of a 14257 protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase/14257 fusion proteins or glutathione-S-transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or 14257 protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of 14257 binding or activity determined using standard techniques.
- Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either a 14257 protein or a 14257 target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
Biotinylated 14257 protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with 14257 protein or target molecules but which do not interfere with binding of the 14257 protein to its target molecule can be derivatized to the wells of the plate, and unbound target or 14257 protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the 14257 protein or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the 14257 protein or target molecule. - In another embodiment, modulators of 14257 expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of 14257 mRNA or protein in the cell is determined. The level of expression of 14257 mRNA or protein in the presence of the candidate compound is compared to the level of expression of 14257 mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of 14257 expression based on this comparison. For example, when expression of 14257 mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of 14257 mRNA or protein expression. Alternatively, when expression of 14257 mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of 14257 mRNA or protein expression. The level of 14257 mRNA or protein expression in the cells can be determined by methods described herein for detecting 14257 mRNA or protein.
- In yet another aspect of the invention, the 14257 proteins can be used as “bait proteins” in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993)Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with 14257 (“14257-binding proteins” or “14257-bp”) and are involved in 14257 activity. Such 14257-binding proteins are also likely to be involved in the propagation of signals by the 14257 proteins or 14257 targets as, for example, downstream elements of a 14257-mediated signaling pathway. Alternatively, such 14257-binding proteins are likely to be 14257 inhibitors.
- The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a 14257 protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. If the “bait” and the “prey” proteins are able to interact, in vivo, forming a 14257-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the 14257 protein.
- This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a 14257 modulating agent, an antisense 14257 nucleic acid molecule, a 14257-specific antibody, or a 14257-binding partner) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
- B. Detection Assays
- Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.
- 1. Chromosome Mapping
- Once the sequence (or a portion of the sequence) of a gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the 14257 nucleotide sequences, described herein, can be used to map the location of the 14257 genes on a chromosome. The mapping of the 14257 sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.
- Briefly, 14257 genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the 14257 nucleotide sequences. Computer analysis of the 14257 sequences can be used to predict primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the 14257 sequences will yield an amplified fragment.
- Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but human cells can, the one human chromosome that contains the gene encoding the needed enzyme, will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes. (D'Eustachio P. et al. (1983)Science 220:919-924). Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
- PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the 14257 nucleotide sequences to design oligonucleotide primers, sublocalization can be achieved with panels of fragments from specific chromosomes. Other mapping strategies which can similarly be used to map a 9o, 1p, or 1v sequence to its chromosome include in situ hybridization (described in Fan, Y. et al. (1990)Proc. Natl. Acad. Sci. USA, 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries.
- Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical such as colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time. For a review of this technique, see Verma et al., Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).
- Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.
- Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between a gene and a disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, for example, Egeland, J. et al. (1987)Nature, 325:783-787.
- Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the 14257 gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.
- 2. Tissue Typing
- The 14257 sequences of the present invention can also be used to identify individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. This method does not suffer from the current limitations of “Dog Tags” which can be lost, switched, or stolen, making positive identification difficult. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Pat. No. 5,272,057).
- Furthermore, the sequences of the present invention can be used to provide an alternative technique which determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the 14257 nucleotide sequences described herein can be used to prepare two PCR primers from the 5′ and 3′ ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
- Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue. The 14257 nucleotide sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences of SEQ ID NO:1, can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
- If a panel of reagents from 14257 nucleotide sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.
- 3. Use of Partial 14257 Sequences in Forensic Biology
- DNA-based identification techniques can also be used in forensic biology. Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a perpetrator of a crime. To make such an identification, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
- The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another “identification marker” (i.e. another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions of SEQ ID NO:1 are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique. Examples of polynucleotide reagents include the 14257 nucleotide sequences or portions thereof, e.g., fragments derived from the noncoding regions of SEQ ID NO:1, having a length of at least 20 bases, preferably at least 30 bases.
- The 14257 nucleotide sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such 14257 probes can be used to identify tissue by species and/or by organ type.
- In a similar fashion, these reagents, e.g., 14257 primers or probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).
- C. Predictive Medicine:
- The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining 14257 protein and/or nucleic acid expression as well as 14257 activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant 14257 expression or activity. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with 14257 protein, nucleic acid expression or activity. For example, mutations in a 14257 gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with 14257 protein, nucleic acid expression or activity.
- Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of 14257 in clinical trials.
- These and other agents are described in further detail in the following sections.
- 1. Diagnostic Assays
- An exemplary method for detecting the presence or absence of 14257 protein or nucleic acid in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting 14257 protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes 14257 protein such that the presence of 14257 protein or nucleic acid is detected in the biological sample. A preferred agent for detecting 14257 mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to 14257 mRNA or genomic DNA. The nucleic acid probe can be, for example, a human 14257 nucleic acid, such as the nucleic acid of SEQ ID NO:1, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to 14257 mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
- A preferred agent for detecting 14257 protein is an antibody capable of binding to 14257 protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term “biological sample” is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect 14257 mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of 14257 mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of 14257 protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. In vitro techniques for detection of 14257 genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for detection of 14257 protein include introducing into a subject a labeled anti-14257 antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a serum sample isolated by conventional means from a subject.
- In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting 14257 protein, mRNA, or genomic DNA, such that the presence of 14257 protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of 14257 protein, mRNA or genomic DNA in the control sample with the presence of 14257 protein, mRNA or genomic DNA in the test sample.
- The invention also encompasses kits for detecting the presence of 14257 in a biological sample. For example, the kit can comprise a labeled compound or agent capable of detecting 14257 protein or mRNA in a biological sample; means for determining the amount of 14257 in the sample; and means for comparing the amount of 14257 in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect 14257 protein or nucleic acid.
- 2. Prognostic Assays
- The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant 14257 expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with 14257 protein, nucleic acid expression or activity. Thus, the present invention provides a method for identifying a disease or disorder associated with aberrant 14257 expression or activity in which a test sample is obtained from a subject and 14257 protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of 14257 protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant 14257 expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
- Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant 14257 expression or activity. Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant 14257 expression or activity in which a test sample is obtained and 14257 protein or nucleic acid expression or activity is detected (e.g., wherein the abundance of 14257 protein or nucleic acid expression or activity is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant 14257 expression or activity).
- The methods of the invention can also be used to detect genetic alterations in a 14257 gene, thereby determining if a subject with the altered gene is at risk for a disorder associated with the 14257 gene. In preferred embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic alteration characterized by at least one of an alteration affecting the integrity of a gene encoding a 14257-protein, or the mis-expression of the 14257 gene. For example, such genetic alterations can be detected by ascertaining the existence of at least one of 1) a deletion of one or more nucleotides from a 14257 gene; 2) an addition of one or more nucleotides to a 14257 gene; 3) a substitution of one or more nucleotides of a 14257 gene, 4) a chromosomal rearrangement of a 14257 gene; 5) an alteration in the level of a messenger RNA transcript of a 14257 gene, 6) aberrant modification of a 14257 gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a 14257 gene, 8) a non-wild type level of a 14257 protein, 9) allelic loss of a 14257 gene, and 10) inappropriate post-translational modification of a 14257 protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting alterations in a 14257 gene. A preferred biological sample is a tissue or serum sample isolated by conventional means from a subject.
- In certain embodiments, detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988)Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in the 14257 gene (see Abravaya et al. (1995) Nucleic Acids Res .23:675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a 14257 gene under conditions such that hybridization and amplification of the 14257 gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
- Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., (1990)Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
- In an alternative embodiment, mutations in a 14257 gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
- In other embodiments, genetic mutations in 14257 can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin, M. T. et al. (1996)Human Mutation 7: 244-255; Kozal, M. J. et al. (1996) Nature Medicine 2: 753-759). For example, genetic mutations in 14257 can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, M. T. et al. supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
- In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the 14257 gene and detect mutations by comparing the sequence of the
sample 14257 with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert ((1977) Proc. Natl. Acad. Sci. USA 74:560) or Sanger ((1977) Proc. Natl. Acad. Sci. USA 74:5463). It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159). - Other methods for detecting mutations in the 14257 gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985)Science 230:1242). In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-
type 14257 sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl Acad Sci USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection. - In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in 14257 cDNAs obtained from samples of cells. For example, the mutY enzyme ofE. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on a 14257 sequence, e.g., a wild-
type 14257 sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Pat. No. 5,459,039. - In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in 14257 genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989)Proc Natl. Acad. Sci USA: 86:2766, see also Cotton (1993) Mutat Res 285:125-144; and Hayashi (1992) Genet Anal Tech Appl 9:73-79). Single-stranded DNA fragments of sample and
control 14257 nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5). - In yet another embodiment the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al (1985)Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:12753).
- Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986)Nature 324:163); Saiki et al. (1989) Proc. Natl Acad. Sci USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
- Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989)Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner et al. (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
- The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a 14257 gene.
- Furthermore, any cell type or tissue in which 14257 is expressed may be utilized in the prognostic assays described herein.
- 3. Monitoring of Effects During Clinical Trials
- Monitoring the influence of agents (e.g., drugs or compounds) on the expression or activity of a 14257 protein can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase 14257 gene expression, protein levels, or upregulate 14257 activity, can be monitored in clinical trials of subjects exhibiting decreased 14257 gene expression, protein levels, or downregulated 14257 activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease 14257 gene expression, protein levels, or downregulate 14257 activity, can be monitored in clinical trials of subjects exhibiting increased 14257 gene expression, protein levels, or upregulated 14257 activity. In such clinical trials, the expression or activity of a 14257 gene, and preferably, other genes that have been implicated in a disorder can be used as a “read out” or markers of the phenotype of a particular cell.
- For example, and not by way of limitation, genes, including 14257, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) which modulates 14257 activity (e.g., identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on a 14257 associated disorder, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of 14257 and other genes implicated in the 14257 associated disorder, respectively. The levels of gene expression (i.e., a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of 14257 or other genes. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during treatment of the individual with the agent.
- In a preferred embodiment, the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a 14257 protein, mRNA, or genomic DNA in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the 14257 protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the 14257 protein, mRNA, or genomic DNA in the pre-administration sample with the 14257 protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of 14257 to higher levels than detected, i.e., to increase the effectiveness of the agent. Alternatively, decreased administration of the agent may be desirable to decrease expression or activity of 14257 to lower levels than detected, i.e. to decrease the effectiveness of the agent. According to such an embodiment, 14257 expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.
- C. Methods of Treatment:
- The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant 14257 expression or activity. With regards to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics. As used herein, the term “treatment” is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides. “Pharmacogenomics”, as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market. More specifically, the term refers the study of how a patient's genes determine his or her response to a drug (e.g., a patient's “drug response phenotype”, or “drug response genotype”.) Thus, another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with either the 14257 molecules of the present invention or 14257 modulators according to that individual's drug response genotype. Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to patients who will most benefit from the treatment and to avoid treatment of patients who will experience toxic drug-related side effects.
- 1. Prophylactic Methods
- In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant 14257 expression or activity, by administering to the subject a 14257 or an agent which modulates 14257 expression or at least one 14257 activity. Subjects at risk for a disease which is caused or contributed to by aberrant 14257 expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the 14257 aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of 14257 aberrancy, for example, a 14257, 14257 agonist or 14257 antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.
- 2. Therapeutic Methods
- Another aspect of the invention pertains to methods of
modulating 14257 expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the modulatory method of the invention involves contacting a cell with a 14257 or agent that modulates one or more of the activities of 14257 protein activity associated with the cell. An agent that modulates 14257 protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring target molecule of a 14257 protein (e.g., a 14257 phosphorylation substrate), a 14257 antibody, a 14257 agonist or antagonist, a peptidomimetic of a 14257 agonist or antagonist, or other small molecule. In one embodiment, the agent stimulates one or more 14257 activities. Examples of such stimulatory agents include active 14257 protein and a nucleicacid molecule encoding 14257 that has been introduced into the cell. In another embodiment, the agent inhibits one or more 14257 activities. Examples of such inhibitory agents include antisense 14257 nucleic acid molecules, anti-14257 antibodies, and 14257 inhibitors. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a 14257 protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) 14257 expression or activity. In another embodiment, the method involves administering a 14257 protein or nucleic acid molecule as therapy to compensate for reduced or aberrant 14257 expression or activity. - Stimulation of 14257 activity is desirable in situations in which 14257 is abnormally downregulated and/or in which increased 14257 activity is likely to have a beneficial effect. For example, stimulation of 14257 activity is desirable in situations in which a 14257 is downregulated and/or in which increased 14257 activity is likely to have a beneficial effect. Likewise, inhibition of 14257 activity is desirable in situations in which 14257 is abnormally upregulated and/or in which decreased 14257 activity is likely to have a beneficial effect.
- 3. Pharmacogenomics
- The 14257 molecules of the present invention, as well as agents, or modulators which have a stimulatory or inhibitory effect on 14257 activity (e.g., 14257 gene expression) as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (e.g., cardiovascular disorders such as congestive heart failure) associated with aberrant 14257 activity. In conjunction with such treatment, pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a 14257 molecule or 14257 modulator as well as tailoring the dosage and/or therapeutic regimen of treatment with a 14257 molecule or 14257 modulator.
- Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, for example, Eichelbaum, M. et al. (1996)Clin. Exp. Pharmacol. Physiol. 23(10-11) :983-985 and Linder, M. W. et al. (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare genetic defects or as naturally-occurring polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical complication is haemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.
- One pharmacogenomics approach to identifying genes that predict drug response, known as “a genome-wide association”, relies primarily on a high-resolution map of the human genome consisting of already known gene-related markers (e.g., a “bi-allelic” gene marker map which consists of 60,000-100,000 polymorphic or variable sites on the human genome, each of which has two variants.) Such a high-resolution genetic map can be compared to a map of the genome of each of a statistically significant number of patients taking part in a Phase II/III drug trial to identify markers associated with a particular observed drug response or side effect. Alternatively, such a high resolution map can be generated from a combination of some ten-million known single nucleotide polymorphisms (SNPs) in the human genome. As used herein, a “SNP” is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1000 bases of DNA. A SNP may be involved in a disease process, however, the vast majority may not be disease-associated. Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals.
- Alternatively, a method termed the “candidate gene approach”, can be utilized to identify genes that predict a drug response. According to this method, if a gene that encodes a drug target is known (e.g., a 14257 protein or 14257 receptor of the present invention), all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.
- As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
- Alternatively, a method termed the “gene expression profiling”, can be utilized to identify genes that predict drug response. For example, the gene expression of an animal dosed with a drug (e.g., a 14257 molecule or 14257 modulator of the present invention) can give an indication whether gene pathways related to toxicity have been turned on.
- Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment an individual. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a 14257 molecule or 14257 modulator, such as a modulator identified by one of the exemplary screening assays described herein.
- This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are incorporated herein by reference.
- Identification and Characterization of
Human 14257 cDNAs - The human 14257 sequence (FIG. 1A-B; SEQ ID NO:1), which is approximately 882 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence (SEQ ID NO:3) of about 687 nucleotides (nucleotides 1-687 of SEQ ID NO:1). The coding sequence encodes a 228 amino acid protein (SEQ ID NO:2).
- Expression and Tissue Distribution of 14257 mRNA
- Northern blot hybridizations with various RNA samples can be performed under standard conditions and washed under stringent conditions, i.e., 0.2×SSC at 65° C. A DNA probe corresponding to all or a portion of the 14257 cDNA (SEQ ID NO:1) can be used. The DNA is radioactively labeled with32P-dCTP using the Prime-It Kit (Stratagene, La Jolla, Calif.) according to the instructions of the supplier. Filters containing mRNA from mouse hematopoietic and endocrine tissues, and cancer cell lines (Clontech, Palo Alto, Calif.) can be probed in ExpressHyb hybridization solution (Clontech) and washed at high stringency according to manufacturer's recommendations. TaqMan real-time quantitative RT-PCR is used to detect the presence of RNA transcript corresponding to
human 14257 in several tissues. It is found that the corresponding orthologs of 14257 are expressed in a variety of tissues. - Reverse Transcriptase PCR (RT-PCR) is used to detect the presence of RNA transcript corresponding to
human 14257 in RNA prepared from tumor and normal tissues. If a subject has a disease characterized by underexpression or overexpression of a 14257 gene, modulators which have a stimulatory or inhibitory effect on protein kinase activity (e.g., protein kinase gene expression) can be administered to individuals to treat (prophylactically or therapeutically) protein kinase-associated disorders. - 14257 molecules are found to be overexpressed or underexpressed in some tumor or cells, where the molecules may be inappropriately propagating either cell proliferation or cell survival signals or have aberrant protein kinase activity. As such, 14257 molecules may serve as specific and novel identifiers of such tumor cells or disorders.
- Further, modulators of the 14257 molecules are useful for the treatment of cancer. For example, inhibitors of the 14257 molecules are useful for the treatment of cancer where 14257 is upregulated in tumor cells and are useful as a diagnostic. In addition, activators of the 14257 molecules are useful for the treatment of cancer, where 14257 expression is downregulated.
- Recombinant Expression of 14257 in Bacterial Cells
- In this example, 14257 is expressed as a recombinant glutathione-S-transferase (GST) fusion polypeptide inE. coli and the fusion polypeptide is isolated and characterized. Specifically, 14257 is fused to GST and this fusion polypeptide is expressed in E. coli, e.g., strain PEB199. Expression of the GST-3714, -16742, -23546, or -13887 fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.
- Expression of Recombinant 14257 Protein in COS Cells
- To express the 14257 gene in COS cells, the pcDNA/Amp vector by Invitrogen Corporation (San Diego, Calif.) is used. This vector contains an SV40 origin of replication, an ampicillin resistance gene, anE. coli replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site. A DNA fragment encoding the entire 14257 protein and an HA tag (Wilson et al. (1984) Cell 37:767) or a FLAG tag fused in-frame to its 3′ end of the fragment is cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.
- To construct the plasmid, the 14257 DNA sequence is amplified by PCR using two primers. The 5′ primer contains the restriction site of interest followed by approximately twenty nucleotides of the 14257 coding sequence starting from the initiation codon; the 3′ end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the 14257 coding sequence. The PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CLAP enzyme (New England Biolabs, Beverly, Mass.). Preferably the two restriction sites chosen are different so that the 14257 gene is inserted in the correct orientation. The ligation mixture is transformed intoE. coli cells (strains HB101, DH5α, SURE, available from Stratagene Cloning Systems, La Jolla, Calif., can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.
- COS cells are subsequently transfected with the 14257-pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co-precipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation. Other suitable methods for transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T.Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989. The expression of the 14257 polypeptide is detected by radiolabelling (35S-methionine or 35S-cysteine available from NEN, Boston, Mass., can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988) using an HA specific monoclonal antibody. Briefly, the cells are labeled for 8 hours with 35S-methionine (or 35S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE.
- Alternatively, DNA containing the 14257 coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites. The resulting plasmid is transfected into COS cells in the manner described above, and the expression of the 14257 polypeptide is detected by radiolabelling and immunoprecipitation using a 14257 specific monoclonal antibody.
- Equivalents
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims (22)
1. An isolated 14257 nucleic acid molecule selected from the group consisting of:
a) a nucleic acid molecule comprising a nucleotide sequence which is at least 60% identical to the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______;
b) a nucleic acid molecule comprising a fragment of at least 15 nucleotides of the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______;
c) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______;
d) a nucleic acid molecule which encodes a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______;
e) a nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______, wherein the nucleic acid molecule hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, SEQ ID NO:3, or a complement thereof, under stringent conditions;
f) a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______; and
g) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______.
2. The isolated nucleic acid molecule of claim 1 , which is the nucleotide sequence SEQ ID NO:1.
3. A host cell which contains the nucleic acid molecule of claim 1 .
4. An isolated 14257 polypeptide selected from the group consisting of:
a) a polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 60% identical to a nucleic acid comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or a complement thereof;
b) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:1, SEQ ID NO:3, or a complement thereof under stringent conditions;
c) a fragment of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:2; and
d) the amino acid sequence of SEQ ID NO:2.
5. An antibody which selectively binds to a polypeptide of claim 4 .
6. A method for producing a polypeptide selected from the group consisting of:
a) a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______;
b) a polypeptide comprising a fragment of the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______, wherein the fragment comprises at least 15 contiguous amino acids of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______;
c) a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with the ATCC as Accession Number ______, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a nucleic acid molecule comprising SEQ ID NO:1 or SEQ ID NO:3; and
d) the amino acid sequence of SEQ ID NO:2;
comprising culturing the host cell of claim 3 under conditions in which the nucleic acid molecule is expressed.
7. A method for detecting the presence of a nucleic acid molecule of claim 1 or a polypeptide encoded by the nucleic acid molecule in a sample, comprising:
a) contacting the sample with a compound which selectively hybridizes to the nucleic acid molecule of claim 1 or binds to the polypeptide encoded by the nucleic acid molecule; and
b) determining whether the compound hybridizes to the nucleic acid or binds to the polypeptide in the sample.
8. A kit comprising a compound which selectively hybridizes to a nucleic acid molecule of claim 1 or binds to a polypeptide encoded by the nucleic acid molecule and instructions for use.
9. A method for identifying a compound which binds to a polypeptide or modulates the activity of the polypeptide of claim 4 comprising the steps of:
a) contacting a polypeptide, or a cell expressing a polypeptide of claim 4 with a test compound; and
b) determining whether the polypeptide binds to the test compound or determining the effect of the test compound on the activity of the polypeptide.
10. A method for modulating the activity of a polypeptide of claim 4 comprising contacting the polypeptide or a cell expressing the polypeptide with a compound which binds to the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.
11. A method of identifying a nucleic acid molecule associated with cancer or a cellular proliferation and/or differentiation disorder comprising:
a) contacting a sample from a subject with or at risk of developing cancer or a cellular proliferation and/or differentiation disorder comprising nucleic acid molecules with a hybridization probe comprising at least 25 contiguous nucleotides of SEQ ID NO:1 defined in claim 2; and
b) detecting the presence of a nucleic acid molecule in the sample that hybridizes to the probe, thereby identifying a nucleic acid molecule associated with cancer or a cellular proliferation and/or differentiation disorder.
12. A method of identifying a nucleic acid associated with cancer or a cellular proliferation and/or differentiation disorder comprising:
a) contacting a sample from a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk of developing a cancer or a cellular proliferation and/or differentiation disorder comprising nucleic acid molecules with a first and a second amplification primer, the first primer comprising at least 25 contiguous nucleotides of SEQ ID NO:1 defined in claim 2 and the second primer comprising at least 25 contiguous nucleotides from the complement of SEQ ID NO:1;
b) incubating the sample under conditions that allow nucleic acid amplification; and
c) detecting the presence of a nucleic acid molecule in the sample that is amplified, thereby identifying the nucleic acid molecule associated with cancer or a cellular proliferation and/or differentiation disorder.
13. A method of identifying a polypeptide associated with cancer or a cellular proliferation and/or differentiation disorder comprising:
a) contacting a sample comprising polypeptides with a 14257 binding partner of the 14257 polypeptide defined in claim 4; and
b) detecting the presence of a polypeptide in the sample that binds to the 14257 binding partner, thereby identifying the polypeptide associated with cancer or a cellular proliferation and/or differentiation disorder.
14. A method of identifying a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk for developing cancer or a cellular proliferation and/or differentiation disorder comprising:
a) contacting a sample obtained from the subject comprising nucleic acid molecules with a hybridization probe comprising at least 25 contiguous nucleotides of SEQ ID NO:1 defined in claim 2; and
b) detecting the presence of a nucleic acid molecule in the sample that hybridizes to the probe, thereby identifying a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk for developing a cancer or a cellular proliferation and/or differentiation disorder.
15. A method of identifying a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk for developing a cancer or a cellular proliferation and/or differentiation disorder comprising:
a) contacting a sample obtained from the subject comprising nucleic acid molecules with a first and a second amplification primer, the first primer comprising at least 25 contiguous nucleotides of SEQ ID NO:1 defined in claim 2 and the second primer comprising at least 25 contiguous nucleotides from the complement of SEQ ID NO:1;
b) incubating the sample under conditions that allow nucleic acid amplification; and
c) detecting the presence of a nucleic acid molecule in the sample that is amplified, thereby identifying a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk for developing cancer or a cellular proliferation and/or differentiation disorder.
16. A method of identifying a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk for developing cancer or a cellular proliferation and/or differentiation disorder comprising:
a) contacting a sample obtained from the subject comprising polypeptides with a 14257 binding partner of the 14257 polypeptide defined in claim 4; and
b) detecting the presence of a polypeptide in the sample that binds to the 14257 binding partner, thereby identifying a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk for developing cancer or a cellular proliferation and/or differentiation disorder.
17. A method for identifying a compound capable of treating cancer or a cellular proliferation and/or differentiation disorder characterized by aberrant 14257 nucleic acid expression or 14257 polypeptide activity comprising assaying the ability of the compound to modulate 14257 nucleic acid expression or 14257 polypeptide activity, thereby identifying a compound capable of treating cancer or a cellular proliferation and/or differentiation disorder characterized by aberrant 14257 nucleic acid expression or 14257 polypeptide activity.
18. A method for treating a subject having cancer or a cellular proliferation and/or differentiation disorder or at risk of developing cancer or a cellular proliferation and/or differentiation disorder comprising administering to the subject a 14257 modulator of the nucleic acid molecule defined in claim 1 or the polypeptide encoded by the nucleic acid molecule or contacting a cell with a 14257 modulator.
19. The method of claim 18 , wherein the 14257 modulator is
a) a small molecule;
b) peptide;
c) phosphopeptide;
d) anti-14257 antibody;
e) a 14257 polypeptide comprising the amino acid sequence of SEQ ID NO:2, or a fragment thereof;
f) a 14257 polypeptide comprising an amino acid sequence which is at least 90 percent identical to the amino acid sequence of SEQ ID NO:2, wherein the percent identity is calculated using the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4; or
g) an isolated naturally occurring allelic variant of a polypeptide consisting of the amino acid sequence of SEQ ID NO:2, wherein the polypeptide is encoded by a nucleic acid molecule which hybridizes to a complement of a nucleic acid molecule consisting of SEQ ID NO:1 at 6×SSC at 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C.
20. The method of claim 18 , wherein the 14257 modulator is
a) an antisense 14257 nucleic acid molecule;
b) is a ribozyme;
c) the nucleotide sequence of SEQ ID NO:1, or a fragment thereof;
d) a nucleic acid molecule encoding a polypeptide comprising an amino acid sequence which is at least 90 percent identical to the amino acid sequence of SEQ ID NO:2, wherein the percent identity is calculated using the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4;
e) a nucleic acid molecule encoding a naturally occurring allelic variant of a polypeptide comprising the amino acid sequence of SEQ ID NO:2, wherein the nucleic acid molecule which hybridizes to a complement of a nucleic acid molecule consisting of SEQ ID NO:1 at 6×SSC at 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 65° C.; or
f) a gene therapy vector.
21. A method for evaluating the efficacy of a treatment of cancer or a cellular proliferation and/or differentiation disorder, in a subject, comprising:
treating a subject with a protocol under evaluation;
assessing the expression level of a 14257 nucleic acid molecule defined in claim 1 or 14257 polypeptide encoded by the 14257 nucleic acid molecule,
wherein a change in the expression level of 14257 nucleic acid or 14257 polypeptide after the treatment, relative to the level before the treatment, is indicative of the efficacy of the treatment of cancer or a cellular proliferation and/or differentiation disorder.
22. A method of diagnosing cancer or a cellular proliferation and/or differentiation disorder in a subject, comprising:
evaluating the expression or activity of a 14257 nucleic acid molecule defined in claim 1 or a 14257 polypeptide encoded by the 14257 nucleic acid molecule, such that a difference in the level of 14257 nucleic acid or 14257 polypeptide relative to a normal subject or a cohort of normal subjects is indicative of cancer or a cellular proliferation and/or differentiation disorder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/834,496 US20020090701A1 (en) | 2000-04-13 | 2001-04-13 | 14257 novel protein kinase molecules and their uses therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19691000P | 2000-04-13 | 2000-04-13 | |
US09/834,496 US20020090701A1 (en) | 2000-04-13 | 2001-04-13 | 14257 novel protein kinase molecules and their uses therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020090701A1 true US20020090701A1 (en) | 2002-07-11 |
Family
ID=22727246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/834,496 Abandoned US20020090701A1 (en) | 2000-04-13 | 2001-04-13 | 14257 novel protein kinase molecules and their uses therefor |
Country Status (3)
Country | Link |
---|---|
US (1) | US20020090701A1 (en) |
AU (1) | AU2001253489A1 (en) |
WO (1) | WO2001079488A2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003501038A (en) * | 1999-05-28 | 2003-01-14 | スージェン・インコーポレーテッド | Protein kinase |
WO2001023579A1 (en) * | 1999-09-28 | 2001-04-05 | Lexicon Genetics Incorporated | Human kinase proteins and polynucleotides encoding the same |
CA2394803A1 (en) * | 1999-11-24 | 2001-05-31 | Sugen, Inc. | Novel human protein kinases and protein kinase-like enzymes |
EP1356032A2 (en) * | 2000-07-21 | 2003-10-29 | Incyte Genomics, Inc. | Human kinases |
-
2001
- 2001-04-13 US US09/834,496 patent/US20020090701A1/en not_active Abandoned
- 2001-04-13 AU AU2001253489A patent/AU2001253489A1/en not_active Abandoned
- 2001-04-13 WO PCT/US2001/012188 patent/WO2001079488A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2001079488A3 (en) | 2003-01-30 |
WO2001079488A2 (en) | 2001-10-25 |
AU2001253489A1 (en) | 2001-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7268218B2 (en) | Cardiovascular system associated protein kinase 3 (CSAPK-3) antibodies | |
US7790157B2 (en) | Methods of modulating CARK protein activity | |
US7371380B2 (en) | Anti-Cark antibodies and uses therefor | |
US6465232B1 (en) | Nucleic acid molecules encoding human kinase and phosphatase homologues and uses therefor | |
US20070178515A1 (en) | 3714, 16742, 23546, and 13887 novel protein kinase molecules and uses therefor | |
US20020132785A1 (en) | 13305 novel protein kinase molecules and uses therefor | |
US20020155570A1 (en) | 2246, novel protein kinase molecules and uses therefor | |
US20020077463A1 (en) | 16105, a novel protein human phosphatase and uses therefor | |
EP1297151B1 (en) | 14911 novel protein kinase molecules and uses therefor | |
US20020090701A1 (en) | 14257 novel protein kinase molecules and their uses therefor | |
EP1294896A2 (en) | 13295 novel protein kinase molecules and uses therefor | |
US20020086387A1 (en) | 23155 novel protein human 5-alpha reductases and uses therefor | |
US20020061573A1 (en) | 18431 and 32374, novel human protein kinase family members and uses therefor | |
US6864078B2 (en) | 14790, novel protein kinase molecule and uses therefor | |
US20020107192A1 (en) | 23686, a novel human aminotransferase and uses therefor | |
US20030077638A1 (en) | MID 4460, a human tyrosine phosphatase family member and uses therefor | |
US20040248242A1 (en) | 47153, a human glycosyltransferase family member and uses therefor | |
US20020142426A1 (en) | 33945, a human glycosyltransferase family member and uses therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MILLENNIUM PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAPELLER-LIBERMANN, ROSANA;REEL/FRAME:012404/0064 Effective date: 20011127 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |