US20020082240A1 - Method for treating restenosis with a2a adenosine receptor agonists - Google Patents

Method for treating restenosis with a2a adenosine receptor agonists Download PDF

Info

Publication number
US20020082240A1
US20020082240A1 US09/543,385 US54338500A US2002082240A1 US 20020082240 A1 US20020082240 A1 US 20020082240A1 US 54338500 A US54338500 A US 54338500A US 2002082240 A1 US2002082240 A1 US 2002082240A1
Authority
US
United States
Prior art keywords
alkyl
groups
rolipram
amino groups
agonist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/543,385
Other versions
US6448235B1 (en
Inventor
Joel Linden
Gail Sullivan
Ian Sarembock
W Sheld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/272,821 external-priority patent/US5877180A/en
Application filed by Individual filed Critical Individual
Priority to US09/543,385 priority Critical patent/US6448235B1/en
Publication of US20020082240A1 publication Critical patent/US20020082240A1/en
Application granted granted Critical
Publication of US6448235B1 publication Critical patent/US6448235B1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE Assignors: UNIVERSITY OF VIRGINIA
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to methods and compositions for treating inflammatory diseases.
  • cytokines such as tumor necrosis factor-alpha (TNF ⁇ ) by leukocytes
  • TNF ⁇ tumor necrosis factor-alpha
  • Cytokines stimulate neutrophils to enhance oxidative (e.g., superoxide and secondary products) and nonoxidative (e.g., myeloperoxidase and other enzymes) inflammatory activity.
  • Oxidative e.g., superoxide and secondary products
  • nonoxidative e.g., myeloperoxidase and other enzymes
  • Inappropriate and over-release of cytokines can produce counterproductive exaggerated pathogenic effects through the release of tissue damaging oxidative and nonoxidative products (Tracey, K. G., et al., J. Exp. Med., vol. 167, pp. 1211-1227 (1988); and Switzerlandnnel, D. N., et al., Rev. Infect. Dis., vol. 9 (suppl 5), pp. S602-S606 (19
  • inflammatory cytokines have been shown to be pathogenic in: arthritis (Dinarello, C. A., Semin. Immunol., vol. 4, pp. 133-45 (1992)); ischemia (Seekamp, A., et al., Agents-Actions-Supp., vol. 41, pp. 137-52 (1993)); septic shock (Männel, D. N., et al., Rev. Infect. Dis., vol. 9, (suppl 5), pp. S602-S606 (1987)); asthma (Cembrzynska Nowak M., et al., Am. Rev. Respir. Dis., vol. 147, pp.
  • adenosine has been shown to inhibit superoxide release from neutrophils stimulated by chemoattractants such as the synthetic mimic of bacterial peptides, f-met-leu-phe (fMLP), and the complement component C 5 a (Cronstein, B. N.,et al., J. Immunol, vol. 135, pp. 1366-1371 (1985)).
  • Adenosine can decrease the greatly enhanced oxidative burst of PMN (neutrophil) first primed with TNF- ⁇ (an inflammatory cytokine) and then stimulated by a second stimulus such as f-met-leu-phe (Sullivan, G. W., et al., Clin. Res., vol. 41, p. 172A (1993)).
  • PMN neutril
  • TNF- ⁇ an inflammatory cytokine
  • adenosine can decrease the rate of HIV replication in a T-cell line (Sipka, S., et al., Acta. Biochim. Biopys. Hung., vol. 23, pp. 75-82 (1988)).
  • SHA 211 also called WRC-0474
  • WRC-0474 have also been evaluated as agonists at the coronary artery A 2A receptor (Niiya, K., et al., J. Med. Chem., vol. 35, pp. 45574561(1992)).
  • R-PIA and Cl-Ado analogs are actually more potent activators of A 1 adenosine receptors than of A 2A adenosine receptors and, thus, are likely to cause side effects due to activation of A 1 receptors on cardiac muscle and other tissues causing effects such as “heart block”.
  • Linden et al. Ser. No. 08/272,821 is based on the discovery that inflammatory diseases may be effectively treated by the administration of drugs which are selective agonists of A 2A adenosine receptors, preferably in combination with a phosphodiesterase inhibitor.
  • An embodiment of the Linden et al. invention provides a method for treating inflammatory diseases by administering an effective amount of an A 2A adenosine receptor of the following formula:
  • X is a group selected from the group consisting of —OR 1 , —NR 2 R 3 , and —NH—N ⁇ R 4 ;
  • R 1 is C 1-4 -alkyl; C 1-4 -alkyl substituted with one or more C 1-4 -alkoxy groups, halogens (-fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C 1-4 -alkyl)amino groups, di(C 1-4 ,-alkyl)amino groups, or C 6-10 -aryl groups (wherein the aryl groups may be substituted with one or more halogens (fluorine, chlorine, or bromine), C 1-4 -alkyl groups, hydroxy groups, amino groups, mono(C 1-4 -alkyl)amino groups, or di(C 1-4 alkyl)amino groups); C 6-10 -aryl; or C 6-10 -aryl substituted with one or more halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C 1-4 -alkyl)amino groups, or di(C 1-4 alkyl)amino groups
  • R 2 and R 3 has the same meaning as R 1 and the other is hydrogen;
  • R 4 is a group having the formula:
  • each of R 5 and R 6 independently may be hydrogen, C 3-7 -cycloalkyl, or any of the meanings of R 1 , provided that R 5 and R 6 are not both hydrogen;
  • R is —CH 2 OH, —CH 2 H, —CO 2 R 7 , or —C( ⁇ O)NR 8 R 9 ; wherein R 7 has the same meaning as R 1 and wherein R 8 and R 9 have the same meanings as R 5 and R 6 and R 8 and R 9 may both be hydrogen.
  • the Linden et al. invention involves the administration of a Type IV phosphodiesterase (PDE) inhibitor in combination with the A 2A adenosine receptor agonist.
  • PDE Type IV phosphodiesterase
  • the Type IV phosphodiesterase (PDE) inhibitor can be racemic and optically active 4-(polyalkoxyphenyl)-2-pyrrolidones of the following formula:
  • R 18 and R 19 each are alike or different and are hydrocarbon radicals having up to 18 carbon atoms with at least one being other than methyl, a heterocyclic ring, or alkyl of 1-5 carbon atoms which is substituted by one or more of halogen atoms, hydroxy, carboxy, alkoxy, alkoxycarbonyl or an amino group; amino; R′ is a hydrogen atom, alkyl, aryl or acyl; and X is an oxygen atom or a sulfur atom.
  • Rolipram is an example of a suitable Type IV phosphodiesterase or PDE inhibitor included within the above formula.
  • Rolipram has the following structure:
  • the present invention is based on the inventors' discovery that improved effective treatment of inflammatory disease is achieved by the administration of certain agonists of A 2A adenosine receptors in combination with rolipram or rolipram derivatives that are Type IV phosphodiesterase or PDE inhibitors.
  • one object of the present invention is to provide a novel and improved method for treating inflammatory diseases.
  • compositions and methods for effectively treating inflammatory diseases by administration of an agonist of an A 2A adenosine receptor in combination with rolipram or a rolipram derivative that is a Type IV phosphodiesterase (PDE) inhibitor.
  • PDE Type IV phosphodiesterase
  • FIG. 1 illustrates the relative potencies of adenosine analogs to modulate TNF ⁇ -primed fMLP-stimulated polymorphonuclear cell (PMN) chemiluminescence as a measure of PMN production of oxidative products (0, no TNF ⁇ ; ⁇ , WRC-0474[SHA 211]+TNF ⁇ ; ⁇ , CGS 21680+TNF ⁇ ; and ⁇ , adenosine+TNF ⁇ );
  • PMN polymorphonuclear cell
  • FIG. 2 illustrates the synergistic effect of WRC-0474[SHA 211] and 4-(3cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (rolipram) in inhibiting TNF ⁇ -primed (10 U/ml), fMLP-stimulated (100 nM) PMN superoxide production: 0, no 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone; ⁇ , 3 nM 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone; ⁇ , 30 nM 4-(3-cyclopentyloxy4-methoxyphenyl)-2-pyrrolidone; and, 300 nM 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone.
  • FIG. 3 illustrates the synergistic effect of WRC-0474[SHA 211] and rolipram in inhibiting TNF ⁇ -stimulated adherent PMN superoxide release;
  • FIG. 4 illustrates the effect of WRC-0474[SHA 211] and rolipram on TNF ⁇ -stimulated PMN adherence to a fibrinogen coated surface
  • FIG. 5 illustrates synergy between A 2A adenosine receptor agonists and Rolipram in inhibiting superoxide release from TNF ⁇ -stimulated adherent human neutrophils
  • FIG. 6 illustrates the effects of WRC-0470 and rolipram on the oxidative activity of neutrophils in whole blood
  • FIG. 7 illustrates the effects of WRC-0470 and rolipram on the release of TNF ⁇ from adherent human monocytes and that this activity is dependent on binding of the adenosine agonist to A 2A adenosine receptors.
  • FIG. 8 illustrates the effect of WRC-0470 on white blood cell pleocytosis in rats.
  • FIG. 9 illustrates the effect of WRC-0470 on blood-brain-barrier permeability in rats
  • FIG. 10 illustrates the effect of rolipram on white blood cell pleocytosis in rats.
  • FIG. 11 illustrates the combined effect of WRC-0470 and rolipram on white blood cell pleocytosis in rats.
  • the present invention provides a method for treating inflammatory diseases by administering an effective amount of a compound of formula (I):
  • X is a group selected from the group consisting of —OR 1 , —NR 2 R 3 , and —NH—N ⁇ R 4 ;
  • R 1 is C 1-4 -alkyl; C 1-4 -alkyl substituted with one or more C 1-4 -alkoxy groups, halogens (-fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C 1-4 -alkyl)amino groups, di(C 1-4 -alkyl)amino groups, or C 6-10 -aryl groups (wherein the aryl groups may be substituted with one or more halogens (fluorine, chlorine, or bromine), C 1-4 -alkyl groups, hydroxy groups, amino groups, mono(C 1-4 -alkyl)amino groups, or di(C 1-4 alkyl)amino groups); C 6-10 -aryl; or C 6-10 -aryl substituted with one or more halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C 1-4 -alkyl)amino groups, or di(C 1-4 alkyl)amino groups);
  • R 2 and R 3 has the same meaning as R 1 and the other is hydrogen;
  • R 4 is a group having the formula (II)
  • each of R 5 and R 6 independently may be hydrogen, C 3-7 -cycloalkyl, or any of the meanings of R 1 , provided that R 5 and R 6 are not both hydrogen;
  • Examples of suitable C 6-10 -aryl groups include phenyl and naphthyl.
  • the compound of formula (I) has X being a group of the formula (III)
  • the compound of formula (IV) has X being a group of the formula (I)
  • Cy is a C 3-7 -cycloalkyl group, preferably cyclohexyl or a C 1-4 alkyl group, preferably isopropyl.
  • WRC-0474[SHA 211] and WRC-0470 are particularly preferred.
  • Such compounds may be synthesized as described in: Hutchinson, A. J., et al., J. Pharmacol. ExD. Ther., vol. 251, pp. 47-55 (1989); Olsson, R. A., et al., J. Med. Chem., vol. 29, pp. 1683-1689 (1986); Bridges, A. J., et al., J. Med. Chem., vol. 31, pp. 1282-1285 (1988); Hutchinson, A. J., et al., J. Med. Chem., vol. 33, pp. 1919-1924 (1990); Ukena, M., et al., J. Med. Chem., vol. 34, pp.
  • the present method includes the administration of a Type IV phosphodiesterase (PDE) inhibitor in combination with the compound of formula (I).
  • PDE Type IV phosphodiesterase
  • Examples of Type IV phosphodiesterase inhibitors include those disclosed in U.S. Pat. No. 4,193,926, and WO 92-079778, and Molnar-Kimber, K. L., et al., J. Immunol., vol. 150, p. 295A (1993), all of which are incorporated herein by reference.
  • the suitable Type IV phosphodiesterase (PDE) inhibitors include racemic and optically active 4-(polyalkoxyphenyl)-2-pyrrolidones of general formula (V)
  • R 18 and R 19 each are alike or different and are hydrocarbon radicals having up to 18 carbon atoms with at least one being other than methyl, a heterocyclic ring, or alkyl of 1-5 carbon atoms which is substituted by one or more of halogen atoms, hydroxy, carboxy, alkoxy, alkoxycarbonyl or an amino group or amino.
  • hydrocarbon R 18 and R 19 groups are saturated and unsaturated, straight-chain and branched alkyl of 1-18, preferably 1-5, carbon atoms, cycloalkyl and cycloalkylalkyl, preferably of 3-7 carbon atoms, and aryl and aralkyl, preferably of 6-10 carbon atoms, especially monocyclic.
  • alkyl examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, 2-methylbutyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, 1,2-dimethylheptyl, decyl, undecyl, dodecyl and stearyl, with the proviso that when one of R 18 and R 19 is methyl, the other is a value other than methyl.
  • unsaturated alkyl groups are alkenyl and alkynyl, e.g., vinyl, 1-propenyl, 2-propenyl, 2-propynyl and 3-methyl-2-propenyl.
  • cycloalkyl and cycloalkylalkyl which preferably contain a total of 3-7 carbon atoms are cyclopropyl, cyclopropylmethyl, cyclopentyl and cyclohexyl.
  • aryl and aralkyl are phenyl and benzyl, which are preferred, and tolyl, xylyl, naphthyl, phenethyl and 3phenylpropyl.
  • heterocyclic R 18 and R 19 groups are those wherein the heterocyclic ring is saturated with 5 or 6 ring members and has a single 0, S or N atom as the hetero atom, e.g., 2- and 3-tetrahydrofuryl, 2 and 3-tetrahydropyranyl, 2- and 3-tetrahydrothiophenyl, pyrrolidino, 2- and 3-pyrrolidyl, piperidino, 2-, 3- and 4-piperidyl, and the corresponding N-alkyl-pyrrolidyl and piperidyl wherein alkyl is of 1-4 carbon atoms.
  • heterocyclic rings having fewer or more, e.g., 4 and 7, ring members, and one or more additional hetero atoms as ring members, e.g., morpholino, piperazino and N-alkylpiperazino.
  • substituted alkyl R 18 and R 19 groups are those mono- or polysubstituted, for example, by halogen, especially fluorine, chlorine and bromine.
  • halogen-substituted alkyl are 2-chloroethyl, 3-chloropropyl, 4-bromobutyl, difluoromethyl, trifluoromethyl, 1,1,2-trifluoro-2-chloroethyl, 3,3,3-trifluoropropyl, 2,2,3,3,3-pentafluoropropyl and 1,1,1,3,3,3-hexafluoro-2-propyl.
  • alkyl groups examples include hydroxy groups, e.g., 2-hydroxyethyl or 3-hydroxypropyl; carboxy groups, e.g., carboxymethyl or carboxyethyl; alkoxy groups, wherein each alkoxy group contains 1-5 carbon atoms, e.g., ethoxymethyl, isopropoxymethyl, 2-methoxyethyl, 2-isopropoxyethyl, 2-butyoxyethyl, 2-isobutyoxyethyl, and 3-pentoxypropyl.
  • hydroxy groups e.g., 2-hydroxyethyl or 3-hydroxypropyl
  • carboxy groups e.g., carboxymethyl or carboxyethyl
  • alkoxy groups wherein each alkoxy group contains 1-5 carbon atoms, e.g., ethoxymethyl, isopropoxymethyl, 2-methoxyethyl, 2-isopropoxyethyl, 2-butyoxyethyl, 2-isobutyoxye
  • alkoxycarbonyl of 1-5 carbon atoms in the alkoxy group are alkoxycarbonyl substituted alkyl-groups.
  • alkoxycarbonyl substituted alkyl-groups are ethoxycarbonylmethyl and 2-butoxycarbonylethyl.
  • Alkyl groups of 1-5 carbon atoms can also be substituted, e.g., in the ⁇ , ⁇ and preferably terminal position with amino groups wherein the nitrogen atom optionally is mono- or disubstituted by alkyl, preferably of 1-5 carbon atoms, or is part of a 4- to 7-membered ring.
  • Rolipram and its analogues are specific examples of preferred Type IV phosphodiesterase inhibitors.
  • inflammatory diseases which may be treated according to the present invention include:
  • autoimmune diseases such as lupus erythenatosis, multiple sclerosis, type I diabetes mellits, Crohn's disease, ulcerative colitis, inflammatory bowel disease, osteoporosis, arthritis, allergic diseases such as asthma, infectious diseases such as sepsis, septic shock, infectious arthritis, endotoxic shock, gram negative shock, toxic shock,cerebral malaria, bacterial meningitis, adult respiratory distress syndrome (ARDS), TNF ⁇ -enhanced HIV replication and TNF ⁇ inhibition of reverse transciptase inhibitor activity, wasting diseases (cachexia secondary to cancer and HIV), skin diseases like psoriasis, contact dermatitis, eczema, infectious skin ulcers, cellulitis, organ transplant rejection (including bone marrow, kidney, liver, lung, heart, skin rejection), graft versus host disease, adverse effects from amphotericin B treatment, adverse effects from interleukin-2 treatment, adverse effects from OKT3 treatment, adverse effects from GM-CSF treatment
  • the exact dosage of the compound of formula (I) to be administered will, of course, depend on the size and condition of the patient being treated, the exact condition being treated, and the identity of the particular compound of formula (I) being administered.
  • a suitable dosage of the compound of formula (I) is 0.5 to 100 ⁇ g/kg of body weight, preferably 1 to 10 ⁇ g/kg of body weight.
  • the compound of formula (I) will be administered from 1 to 8, preferably 1 to 4, times per day.
  • the preferred mode of administration of the compound of formula (I) may also depend on the exact condition being treated. However, most typically, the mode of administration will be oral, topical, intravenous, parenteral, subcutaneous, or intramuscular injection.
  • the compound of formula (I) may be administered in the form of a pharmaceutically acceptable salt.
  • salts include acid addition salts.
  • Preferred pharmaceutically acceptable addition salts include salts of mineral acids, for example, hydrochloric acid, sulfuric acid, nitric acid, and the like; salts of monobasic carboxylic acids, such as, for example, acetic acid, propionic acid, and the like; salts of dibasic carboxylic acids, such as maleic acid, fumaric acid, oxalic acid, and the like; and salts of tribasic carboxylic acids, such as, carboxysuccinic acid, citric acid, and the like.
  • the salt may be derived by replacing the acidic proton of the —CO 2 H group with a cation such as Na + , K + , NH + 4 mon-, di, tri, or tetra(C 1-4 -alkyl)ammonium, or mono-, di-, tri-, or tetra(C 2-4 alkanol)ammonium.
  • a cation such as Na + , K + , NH + 4 mon-, di, tri, or tetra(C 1-4 -alkyl)ammonium, or mono-, di-, tri-, or tetra(C 2-4 alkanol)ammonium.
  • the compounds of formula (I) can be administered orally, for example, with an inert diluent with an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets.
  • the compounds can be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, waters, chewing gums, and the like.
  • These preparations should contain at least 0.5% by weight of the compound of formula (I), but the amount can be varied depending upon the particular form and can conveniently be between 4.0% to about 70% by weight of the unit dosage.
  • the amount of the compound of formula (I) in such compositions is such that a suitable dosage will be obtained.
  • Preferred compositions and preparations according to the present invention are prepared so that an oral dosage unit form contains between about 30 ⁇ g and about 5 mg, preferably between 50 to 500 ⁇ g, of active compound.
  • Tablets, pills, capsules, troches, and the like can contain the following ingredients: a binder, such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient, such as starch or lactose; a disintegrating agent, such as alginic acid, Primogel, corn starch, and the like; a lubricant, such as magnesium stearate or Sterotes; a glidant, such as colloidal silicon dioxide; a sweetening agent, such as sucrose, saccharin or aspartame; or flavoring agent, such as peppermint, methyl salicylate, or orange flavoring.
  • a liquid carrier such as a fatty oil.
  • dosage unit forms can contain other materials that modify the physical form of the dosage unit, for example, as coatings.
  • tablets or pills can be coated with sugar, shellac, or other enteric coating agents.
  • a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and preservatives, dyes, colorings, and flavors. Materials used in preparing these compositions should be pharmaceutically pure and non-toxic in the amounts used.
  • the compounds of formula (I) can be incorporated into a solution or suspension. These preparations should contain at least 0.1% of the aforesaid compound, but may be varied between 0.5% and about 50% of the weight thereof. The amount of active compound in such compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 30 ⁇ g to 5 mg, preferably between 50 to 500 ⁇ g, of the compound of formula (I).
  • Solutions or suspensions of the compounds of formula (I) can also include the following components: a sterile diluent, such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents: antibacterial agents, such as benzyl alcohol or methyl parabens; antioxidants, such as ascorbic acid or sodium bisulfite; chelating agents, such as ethylenediaminetetraacetic acid; buffers, such as acetates, citrates or phosphates; and agents for the adjustment of tonicity, such as sodium chloride or dextrose.
  • a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents: antibacterial agents, such as benzyl alcohol or methyl parabens; antioxidants, such as ascorbic acid or sodium bisulfite; chelating agents, such as
  • Effective amounts of the Type IV phosphodiesterase inhibitor can be administered to a subject by any one of various methods, for example, orally as in a capsule or tablets, topically, or parenterally in the form of sterile solutions.
  • the Type IV phosphodiesterase inhibitors while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable addition salts for purposes of stability, convenience of crystallization, increased solubility, and the like.
  • Preferred pharmaceutically acceptable addition salts include salts of mineral acids, for example, hydrochloric acid, sulfuric acid, nitric acid, and the like; salts of monobasic carboxylic acids, such as, for example, acetic acid, propionic acid, and the like; salts of dibasic carboxylic acids, such as maleic acid, fumaric acid, oxalic acid, and the like; and salts of tribasic carboxylic acids, such as, carboxysuccinic acid, citric acid, and the like.
  • mineral acids for example, hydrochloric acid, sulfuric acid, nitric acid, and the like
  • salts of monobasic carboxylic acids such as, for example, acetic acid, propionic acid, and the like
  • salts of dibasic carboxylic acids such as maleic acid, fumaric acid, oxalic acid, and the like
  • salts of tribasic carboxylic acids such as, carboxysuccinic acid, citric acid, and the like.
  • Type IV phosphodiesterase may be administered in the form of a pharmaceutical composition similar to those described above in the context of the compound of formula (I).
  • Type IV phosphodiesterase inhibitor is administered to a subject requiring such treatment as an effective oral, parenteral or intravenous dose as described below.
  • the amount of active agent per oral dosage unit usually is 0.1-20 mg, preferably 0.5-10 mg.
  • the daily dosage is usually 0.1-50 mg, preferably 1-30 mg. p.o.
  • the amount of active agent per dosage unit is usually 0.005-10 mg, preferably 0.01-5 mg.
  • the daily dosage is usually 0.01-20 mg, preferably 0.02-5 mg i.v. or i.m.
  • dosage levels and their related procedures would be consistent with those known in the art, such as those dosage levels and procedures described in U.S. Pat. No. 5,565,462 to Eitan et al., which is incorporated herein by reference.
  • the compound of formula (I) and the Type IV phosphodiesterase inhibitor are coadministered together in a single dosage unit.
  • the compound of formula (I) and the type IV phosphodiesterase inhibitor may be administered in the same type of pharmaceutical composition as those described above in the context of the compound of formula (I).
  • the dosage of the A 2A adenosine receptor agonist may be reduced by a factor of 5 to 10 from the dosage used when no type IV phosphodiesterase inhibitor is administered. This reduces the possibility of side effects.
  • the present studies establish that anti-inflammatory doses have no toxic effects in animals; the effect of WRC-0470 to inhibit neutrophil activation is synergistic with rolipram; and intravenous infusion of WRC-0470 profoundly inhibits extravasation of neutrophils in an animal model of inflammation, an action also synergistic with rolipram. Further, the present studies establish that activation of A 2A receptors on human monocytes strongly inhibits TNF ⁇ (an inflamatory cytokine) release. This mechanism further contributes to the anti-inflamatory action of the A 2A adenosine receptor agonists of the present invention.
  • f-Met—Leu—Phe(fMLP), luminol, and trypan blue were from Sigma Chemical. Ficoll-hypaque was purchased from Flow Laboratories (McLean, A) and Los Alamos Diagnostics (Los Alamos, N. Mex.). Hanks balanced salt solution (HBSS), and limulus amebocyte lysate assay kit were from Whittaker Bioproducts (Walkersville, Md.). Human serum albumin (HSA) was from Cutter Biological (Elkhart, Ind.). Recombinant human tumor necrosis factor-alpha was supplied by Dianippon Pharmaceutical Co. Ltd. (Osaka, Japan). ZM241385 was a gidt of Dr. Simon Poucher, Zeneca Pharmaceuticals (Chesire, England).
  • Leukocyte Preparation Purified PMN ( ⁇ 98% PMN and >95% viable by trypan blue exclusion) containing ⁇ 1 platelet per 5 PMN and ⁇ 50 pg/ml endotoxin (limulus amebocyte lysate assay) were obtained from normal heparinized (10 Units/ml) venous blood by a one step ficoll-hypaque separation procedure (Ferrante, A., et al., J. Immunol. Meth., vol. 36, p. 109, (1980)). Residual RBC were lysed by hypotonic lysis with iced 3 ml 0.22% sodium chloride solution for 45 seconds followed by 0.88 ml of 3% sodium chloride solution.
  • Luminol enhanced chemiluminescence a measure of neutrophil oxidative activity, is dependent upon both superoxide production and mobilization of the granule enzyme myeloperoxidase. The light is emitted from unstable high-energy oxygen species generated by activated neutrophils.
  • Purified PMN (5 ⁇ 10 5 /ml) were incubated in HBSS containing 0.1 % human serum albumin (1 ml) with or without adenosine, adenosine analogs, and TNF ⁇ (1 U/mL) for 30 minutes at 37° C. in a shaking water bath.
  • the samples were iced and centrifuged (2000 g ⁇ 10 minutes). The optical density of the supernatants were read at 550 nm against the matched SOD samples, and the moles of SOD-inhibitable superoxide released in 10 minutes were calculated.
  • TNF ⁇ -stimulated superoxide release of PMN adherent to a matrix protein (fibrinogen) coated surface Human PMN (1 ⁇ 10 6 /ml) from Ficoll-Hypaque separation were incubated for 90 minutes in 1 ml of Hanks balanced salt solution containing 0.1% human serum albumin, cytochrome c (120 ⁇ M), and catalase (0.062 mg/ml) in the presence and absence of rhTNF (1 U/ml), WRC-0474[SHA 211] (10 nM) and rolipram (100 nM) in a tissue culture well which had been coated overnight with human fibrinogen. SOD (200 U/ml) was added to matched samples.
  • the supernatants were iced and centrifuged (2000 g ⁇ 10 minutes) to remove any remaining suspended cells, and the optical density of the supernatants were read at 550 mn against the matched SOD samples, and the nmoles of SOD-inhibitable superoxide released in 90 minutes were calculated.
  • PMN adherence to fibrinogen was measured as follows as adapted from Hanlon, J. Leukocyte Biol., vol. 50, p. 43 (1991). Twenty-four well flat-bottomed tissue culture plates were incubated (37° C.) overnight with 0.5 ml of fibrinogen (5 mg/ml) dissolved in 1.5% NaHCO 3 . The plates were emptied and each well washed 2 ⁇ with 1 ml of normal saline. The wells were then filled with 1 ml of HBSS-0.
  • the plates were incubated for 90 minutes at 37° C. in 5% CO 2 . Following incubation the tissue culture wells were washed free of non-adherent cells with normal saline.
  • the adherent monolayer of PMN was lysed with 0.1% triton-X, the amount of lactic dehydrogenase (LDH) released from the monolayer assayed (LDH kit, Sigma Co., St. Louis, Mo.), and compared to a standard curve relating the LDH content to PMN numbers. The results are shown in FIG. 4.
  • test compounds WRC-0474[SHA 211], WRC-0470, WRC-0090 and WRC-0018 were evaluated according to the following method modified from Sullivan, G. W. et al., Int. J. Immunonopharmacol, 1995, 17:793-803.
  • Neutrophils (1 ⁇ 10 6 /ml) from Ficoll-Hypaque separation were incubated for 90 minutes in 1 ml of Hanks balanced salt solution containing 0.1% human serum albumin, cytochrome c (120 ⁇ M) and catalase (0.062 mg/ml) in the presence and absence of rhTNF ⁇ (1 U/ml), WRC-0474[SHA 211], WRC-0470, WRC-0090 and WRC-0018 (3-300 nM), and rolipram (100 nM) in a tissue culture well which had been coated overnight with human fibrinogen.
  • SOD superoxide dismutase
  • FIG. 5 shows synergy between A 2A adenosine agonists and rolipram in inhibiting TNF ⁇ -stimulated adherent PMN oxidative activity (p ⁇ 0.05).
  • WRC-0474[SHA 211] (30-300 nM), WRC-0470 (300 nM), WRC-0090 (300 nM) and WRC-0018 (300 nM) combined with rolipram synergistically decreased superoxide release (p ⁇ 0.05). All four compounds had some activity in the presence of rolipram.
  • WRC-0474[SHA 211] and WRC-0470 were the most active. Nanomolar concentrations of WRC-0474[SHA 211] resulted in biphasic activity. All compounds were synergistic with rolipram to decrease TNF ⁇ -stimulated adherent PMN oxidative activity.
  • PMN degranulation (adherent cells). The following methods were adapted from Sullivan, G. W. and G. L. Mandell, Infect. Inumun., 1980: 30:272-280. Neutrophils (3.1 ⁇ 10 6 /ml) from Ficoll-Hypaque separation were incubated for 120 minutes in 1 ml of Hanks balanced salt solution containing 0.1% human serum albumin, ⁇ rh TNF ⁇ (10 U/ml), ⁇ WRC-0470 (3-300 nM), and ⁇ rolipram (300 nM) in a tissue culture well which had been coated overnight with human fibrinogen.
  • the supernatant fluids with any suspended neutrophils were harvested following incubation, centrifuged (2000 ⁇ g for 10 min) to remove any suspended cells and the cell-free supernatants frozen. Release of lysozyme, a component of neutrophil primary and secondary granules was assayed. Lysis of a suspension of Micrococcus lysodeikticus by the “cell-free supernatant” was measured by spectrophotometric analysis (540 mm) to determine the amount of release of granule contents to the surrounding medium.
  • the primed blood samples were stimulated with fMLP (15 min), then iced, the red blood cells lysed with FACS lysing solution (Becton-Dickinson, San Jose, Calif.), washed and the leukocytes resuspended in phosphate buffered saline (PBS) These samples containing mixed leukocytes were gated for neutrophils by forward and side scatter and the fluorescence of 10,000 neutrophils measured in the FL1 channel of a FACScan (Beckton-Dickinson) fluorescence activated cell sorter.
  • WRC-0470 decreased oxidative activity of TNF ⁇ -primed fMLP-stimulated neutrophils in whole blood and acted synergistically with rolipram.
  • WRC-0470 (30-300 nM) decreased neutrophil oxidative activity synergistically with rolipram (300 nM) in samples stimulated with fMLP and in blood samples primed with TNF ⁇ and then stimulated with fMLP.
  • a monocyte rich monolayer (>95% monocytes) was prepared by incubating 1 ml of the mononuclear leukocyte fraction (5 ⁇ 10 5 /ml) from a Ficoll-Hypaque separation in wells of a 24 well tissue culture plate (1 hr; 37° C.; 5% CO 2 ).
  • the non-adherent leukocytes were removed by washing and culture medium added to the wells (1 ml RPMI 1640 containing 1.5 mM HEPES-1% autologous serum with penicillin and streptomycin (250 U/ml and 250 ⁇ g/ml, respectively) and ADA (1 U/ml) ⁇ WRC-0470 (30-100 nM), ⁇ endotoxin (10 ng/ml), +rolipram (300 nM) and ⁇ the adenosine A 2A selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3a]-[1,3,5]trazinyl-amino]ethyl)-phenol (ZM241385) (50 nM).
  • WRC-0470 ⁇ rolipram-decreased endotoxin-stimulated adherent monocyte production of TNF ⁇ (P ⁇ 0.050).
  • WRC-0470 affects TNF ⁇ -stimulated neutrophil activity and decreases endotoxin-stimulated TNF ⁇ production by monocytes.
  • CSF cerebrospinal fluid
  • BBBP blood-brain barrier permeability
  • WBC white blood cell
  • CSF and WBC concentrations were determined with standard hemacytometer methods.
  • FIG. 11 The effect of a combination of rolipram and WRC-0470 on CSF WBC pleocytosis is illustrated in FIG. 11.
  • Rolipram (0.001 ⁇ g/kg/hr) in combination with WRC-0470 (0.1 ⁇ g/kg/hr) inhibited migration of WBC's (200 ⁇ 70 WBC/ ⁇ l) into the sub-arachnoid space (SAS) to a greater extent than did either rolipram (1,670 ⁇ 1,273 WBC/ ⁇ l, p ⁇ 0.050) or WRC-0470 (600 ⁇ 308 WBCs/ ⁇ l, p ⁇ 0.050) alone.
  • the data show a powerful inhibiting effect of WRC-0470 and a synergy with rolipram to prevent inflammation in an animal model.
  • Restenosis results from a complex interaction of biologic processes, including (i) formation of platelet-rich thrombus; (ii) release of vasoactive and mitogenic factors causing migration and proliferation of smooth muscle cells (SMC); (iii) macrophage and other inflammatory cell accumulation and foam cell (FC) formation; (iv) production of extracellular matrix; and (v) geometric remodeling.
  • SMC smooth muscle cells
  • FC macrophage and other inflammatory cell accumulation and foam cell

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Agonists of A2A adenosine receptors in combination with rolipram, its derivatives or other Type IV phosphodiesterase (PDE) inhibitors are effective for the treatment of inflammatory diseases.

Description

    RELATED APPLICATION
  • This application is a continuation-in part of co-pending U.S. patent application Ser. No. 08/272,821, filed Jul. 22, 1994 to Linden et al., which is incorporated herein in its entirety by reference.[0001]
  • [0002] The present invention was made with the assistance of U.S. Government funding (NIH Grant R01-HL 37942). The U.S. Government may have some rights in this invention.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • The present invention relates to methods and compositions for treating inflammatory diseases. [0004]
  • 2. Discussion of the Background [0005]
  • The release of inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) by leukocytes is a means by which the immune system combats pathogenic invasions, including infections. Cytokines stimulate neutrophils to enhance oxidative (e.g., superoxide and secondary products) and nonoxidative (e.g., myeloperoxidase and other enzymes) inflammatory activity. Inappropriate and over-release of cytokines can produce counterproductive exaggerated pathogenic effects through the release of tissue damaging oxidative and nonoxidative products (Tracey, K. G., et al., [0006] J. Exp. Med., vol. 167, pp. 1211-1227 (1988); and Männel, D. N., et al., Rev. Infect. Dis., vol. 9 (suppl 5), pp. S602-S606 (1987)).
  • For example, inflammatory cytokines have been shown to be pathogenic in: arthritis (Dinarello, C. A., [0007] Semin. Immunol., vol. 4, pp. 133-45 (1992)); ischemia (Seekamp, A., et al., Agents-Actions-Supp., vol. 41, pp. 137-52 (1993)); septic shock (Männel, D. N., et al., Rev. Infect. Dis., vol. 9, (suppl 5), pp. S602-S606 (1987)); asthma (Cembrzynska Nowak M., et al., Am. Rev. Respir. Dis., vol. 147, pp. 291-5 (1993)); organ transplant rejection (Imagawa, D. K., et al., Transplantation, vol. 51, pp. 57-62 (1991)); multiple sclerosis (Hartung, H. P., Ann. Neurol., vol. 33, pp. 591-6 (1993)); and AIDS (Matsuyama, T., et al., AIDS, vol. 5, pp. 1405-1417 (1991)). In addition, superoxide formation in leukocytes has been implicated in promoting replication of the human immunodeficiency virus (HIV) (Legrand-Poels, S., et al., AIDS Res. Hum. Retroviruses, vol. 6, pp. 1389-1397 (1990)).
  • It is well known that adenosine and some relatively nonspecific analogs of adenosine decrease neutrophil production of inflammatory oxidative products (Cronstein, B. N., et al., Ann. [0008] N.Y. Acad. Sci., vol. 451, pp. 291-314 (1985); Roberts, P. A., et al., Biochem. J., vol. 227, pp. 66.9-674 (19-85); Schrier, D. J., et al., J. Immunol., vol. 137, pp. 3284-3289 (1986); Cronstein, B. N., et al., Clinical Immunol. and Immunopath., vol. 42, pp. 76-85 (1987); Iannone, M. A., et al., in Topics and Perspectives in Adenosine Research, E. Gerlach et al., eds., Springer-Verlag, Berlin, pp. 286-298 (1987); McGarrity, S. T., et al., J. Leukocyte Biol., vol. 44, pp. 411421 (1988); De La Harpe, J., et al., J. Immunol., vol. 143, pp. 596-602 (1989); McGarrity, S. T., et al., J. Immunol., vol. 142, pp. 1986-1994 (1989); and Nielson, C. P., et al., Br. J.Pharmacol., vol. 97, pp. 882-888 (1989)). For example, adenosine has been shown to inhibit superoxide release from neutrophils stimulated by chemoattractants such as the synthetic mimic of bacterial peptides, f-met-leu-phe (fMLP), and the complement component C5a (Cronstein, B. N.,et al., J. Immunol, vol. 135, pp. 1366-1371 (1985)). Adenosine can decrease the greatly enhanced oxidative burst of PMN (neutrophil) first primed with TNF-α (an inflammatory cytokine) and then stimulated by a second stimulus such as f-met-leu-phe (Sullivan, G. W., et al., Clin. Res., vol. 41, p. 172A (1993)). There is evidence that in vivo adenosine has anti-inflammatory activity (Firestein, G. S., et al., Clin. Res., vol. 41, p. 170A (1993); and Cronstein, B. N., et al., Clin. Res., vol. 41, p. 244A (1993)). Additionally, it has been reported that adenosine can decrease the rate of HIV replication in a T-cell line (Sipka, S., et al., Acta. Biochim. Biopys. Hung., vol. 23, pp. 75-82 (1988)).
  • It has been suggested that there is more than one subtype of adenosine receptor on neutrophils that have opposite effects on superoxide release (Cronstein, B. N., et al., [0009] J. Clin. Invest., vol. 85, pp. 1150-1157 (1990)). The existence of A2A receptor on neutrophils was originally demonstrated by Van Calker et al. (Van Calker, D., et al., Eur. J. Pharmacology, vol. 206, pp. 285-290 (1991)).
  • There has been progressive development of compounds that are more and more potent and selective as agonists of A[0010] 2A adenosine receptors based on radioligand binding assays and physiological responses. Initially, compounds with little or no selectivity for A2A receptors were used, such as adenosine itself or 5′-carboxamides of adenosine, such as 5′-N-ethylcarboxamidoadenosine (NECA) (Cronstein, B. N., et al., J. Immunol., vol. 135, pp. 1366-1371 (1985)). Later, it was shown that addition of 2-alkylamino substituents increased potency and selectivity, e.g. CV1808 and CGS21680 (Jarvis, M. F., et al., J. Pharmacol. Exp. Ther., vol. 251, pp. 888-893 (1989)). 2-Alkoxy-substituted adenosine derivatives such as WRC-0090 are even more potent and selective as agonists on the coronary artery A2A receptor (Ukena, M., et al., J. Med. Chem., vol. 34, pp. 1334-1339 (1991)). The 2-alkylhydrazino adenosine derivatives, e.g. SHA 211 (also called WRC-0474) have also been evaluated as agonists at the coronary artery A2A receptor (Niiya, K., et al., J. Med. Chem., vol. 35, pp. 45574561(1992)).
  • There is one report of the combination of relatively nonspecific adenosine analogs, R-phenylisopropyladenosine (R-PIA) and 2-chloroadenosine (Cl-Ado) with a phosphodiesterase (PDE) inhibitor resulting in a lowering of neutrophil oxidative activity (Iannone, M. A., et al., in [0011] Topics and Perspectives in Adenosine Research, E. Gerlach et al., Eds., Springer-Verlag, Berlin, pp. 286-298 (1987)). However, R-PIA and Cl-Ado analogs are actually more potent activators of A1 adenosine receptors than of A2A adenosine receptors and, thus, are likely to cause side effects due to activation of A1 receptors on cardiac muscle and other tissues causing effects such as “heart block”.
  • Linden et al. Ser. No. 08/272,821 is based on the discovery that inflammatory diseases may be effectively treated by the administration of drugs which are selective agonists of A[0012] 2A adenosine receptors, preferably in combination with a phosphodiesterase inhibitor. An embodiment of the Linden et al. invention provides a method for treating inflammatory diseases by administering an effective amount of an A2A adenosine receptor of the following formula:
    Figure US20020082240A1-20020627-C00001
  • wherein X is a group selected from the group consisting of —OR[0013] 1, —NR2R3, and —NH—N═R4;
  • wherein R[0014] 1 is C1-4-alkyl; C1-4-alkyl substituted with one or more C1-4-alkoxy groups, halogens (-fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, di(C1-4,-alkyl)amino groups, or C6-10-aryl groups (wherein the aryl groups may be substituted with one or more halogens (fluorine, chlorine, or bromine), C1-4-alkyl groups, hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4 alkyl)amino groups); C6-10-aryl; or C6-10-aryl substituted with one or more halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4 alkyl)amino groups, or C1-4-alkyl groups;
  • one of R[0015] 2 and R3 has the same meaning as R1 and the other is hydrogen;
  • R[0016] 4 is a group having the formula:
    Figure US20020082240A1-20020627-C00002
  • wherein each of R[0017] 5 and R6 independently may be hydrogen, C3-7-cycloalkyl, or any of the meanings of R1, provided that R5 and R6 are not both hydrogen; and
  • R is —CH[0018] 2OH, —CH2H, —CO2R7, or —C(═O)NR8R9; wherein R7 has the same meaning as R1 and wherein R8 and R9 have the same meanings as R5 and R6 and R8 and R9 may both be hydrogen.
  • In a preferred embodiment, the Linden et al. invention involves the administration of a Type IV phosphodiesterase (PDE) inhibitor in combination with the A[0019] 2A adenosine receptor agonist. The Type IV phosphodiesterase (PDE) inhibitor can be racemic and optically active 4-(polyalkoxyphenyl)-2-pyrrolidones of the following formula:
    Figure US20020082240A1-20020627-C00003
  • (disclosed and described in U.S. Pat. No. 4,193,926) wherein R[0020] 18 and R19 each are alike or different and are hydrocarbon radicals having up to 18 carbon atoms with at least one being other than methyl, a heterocyclic ring, or alkyl of 1-5 carbon atoms which is substituted by one or more of halogen atoms, hydroxy, carboxy, alkoxy, alkoxycarbonyl or an amino group; amino; R′ is a hydrogen atom, alkyl, aryl or acyl; and X is an oxygen atom or a sulfur atom.
  • Rolipram is an example of a suitable Type IV phosphodiesterase or PDE inhibitor included within the above formula. Rolipram has the following structure: [0021]
    Figure US20020082240A1-20020627-C00004
  • The present invention is based on the inventors' discovery that improved effective treatment of inflammatory disease is achieved by the administration of certain agonists of A[0022] 2A adenosine receptors in combination with rolipram or rolipram derivatives that are Type IV phosphodiesterase or PDE inhibitors.
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the present invention is to provide a novel and improved method for treating inflammatory diseases. [0023]
  • It is another object of the present invention to provide novel and improved compositions for the treatment of inflammatory disease. [0024]
  • These and other objects, which will become better understood during the course of the following detailed description, have been achieved by the inventors' discovery of improved compositions and methods for effectively treating inflammatory diseases by administration of an agonist of an A[0025] 2A adenosine receptor in combination with rolipram or a rolipram derivative that is a Type IV phosphodiesterase (PDE) inhibitor.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein: [0026]
  • FIG. 1 illustrates the relative potencies of adenosine analogs to modulate TNF[0027] α-primed fMLP-stimulated polymorphonuclear cell (PMN) chemiluminescence as a measure of PMN production of oxidative products (0, no TNFα; Δ, WRC-0474[SHA 211]+TNFα; □, CGS 21680+TNFα; and ▴, adenosine+TNFα);
  • FIG. 2 illustrates the synergistic effect of WRC-0474[SHA 211] and 4-(3cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (rolipram) in inhibiting TNFα-primed (10 U/ml), fMLP-stimulated (100 nM) PMN superoxide production: 0, no 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone; ▴, 3 nM 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone; □, 30 nM 4-(3-cyclopentyloxy4-methoxyphenyl)-2-pyrrolidone; and, 300 nM 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone. [0028]
  • FIG. 3 illustrates the synergistic effect of WRC-0474[SHA 211] and rolipram in inhibiting TNFα-stimulated adherent PMN superoxide release; [0029]
  • FIG. 4 illustrates the effect of WRC-0474[SHA 211] and rolipram on TNFα-stimulated PMN adherence to a fibrinogen coated surface; [0030]
  • FIG. 5 illustrates synergy between A[0031] 2A adenosine receptor agonists and Rolipram in inhibiting superoxide release from TNFα-stimulated adherent human neutrophils;
  • FIG. 6 illustrates the effects of WRC-0470 and rolipram on the oxidative activity of neutrophils in whole blood; [0032]
  • FIG. 7 illustrates the effects of WRC-0470 and rolipram on the release of TNFα from adherent human monocytes and that this activity is dependent on binding of the adenosine agonist to A[0033] 2A adenosine receptors.
  • FIG. 8 illustrates the effect of WRC-0470 on white blood cell pleocytosis in rats. [0034]
  • FIG. 9 illustrates the effect of WRC-0470 on blood-brain-barrier permeability in rats; [0035]
  • FIG. 10 illustrates the effect of rolipram on white blood cell pleocytosis in rats; and [0036]
  • FIG. 11 illustrates the combined effect of WRC-0470 and rolipram on white blood cell pleocytosis in rats. [0037]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Thus, in a first embodiment, the present invention provides a method for treating inflammatory diseases by administering an effective amount of a compound of formula (I): [0038]
    Figure US20020082240A1-20020627-C00005
  • wherein X is a group selected from the group consisting of —OR[0039] 1, —NR2R3, and —NH—N═R4;
  • wherein R[0040] 1 is C1-4-alkyl; C1-4-alkyl substituted with one or more C1-4-alkoxy groups, halogens (-fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, di(C1-4-alkyl)amino groups, or C6-10-aryl groups (wherein the aryl groups may be substituted with one or more halogens (fluorine, chlorine, or bromine), C1-4-alkyl groups, hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4 alkyl)amino groups); C6-10-aryl; or C6-10-aryl substituted with one or more halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4 alkyl)amino groups, or C1-4-alkyl groups;
  • one of R[0041] 2 and R3 has the same meaning as R1 and the other is hydrogen;
  • R[0042] 4 is a group having the formula (II)
    Figure US20020082240A1-20020627-C00006
  • wherein each of R[0043] 5 and R6 independently may be hydrogen, C3-7-cycloalkyl, or any of the meanings of R1 , provided that R5 and R6 are not both hydrogen;
  • Examples of suitable C[0044] 6-10-aryl groups include phenyl and naphthyl.
  • Preferably the compound of formula (I) has X being a group of the formula (III)[0045]
  • —O—CH2n—Ar  (III)
  • wherein n is an integer from 1-4, preferably 2, and Ar is a phenyl group, tolyl group, naphthyl group, xylyl group, or mesityl group. Most preferably Ar is a para-tolyl group and n=2. [0046]
  • Even more preferably, the compound of formula (IV) has X being a group of the formula (I)[0047]
  • —NH—N═CHCy  (IV)
  • wherein Cy is a C[0048] 3-7-cycloalkyl group, preferably cyclohexyl or a C1-4 alkyl group, preferably isopropyl.
  • Specific examples of such compounds of formula (I) include WRC-0470, WRC-0474 [SHA 211], WRC-0090 and WRC-0018, shown below: [0049]
    Figure US20020082240A1-20020627-C00007
  • Of these specific examples, WRC-0474[SHA 211] and WRC-0470 are particularly preferred. [0050]
  • Such compounds may be synthesized as described in: Hutchinson, A. J., et al., [0051] J. Pharmacol. ExD. Ther., vol. 251, pp. 47-55 (1989); Olsson, R. A., et al., J. Med. Chem., vol. 29, pp. 1683-1689 (1986); Bridges, A. J., et al., J. Med. Chem., vol. 31, pp. 1282-1285 (1988); Hutchinson, A. J., et al., J. Med. Chem., vol. 33, pp. 1919-1924 (1990); Ukena, M., et al., J. Med. Chem., vol. 34, pp. 1334-1339 (1991); Francis, J. E., et al., J. Med. Chem., vol. 34, pp. 2570-2579 (1991); Yoneyama, F., et al., Eur. J. Pharmacol., vol. 213, pp. 199-204 (1992); Peet, N. P., et al., J. Med. Chem., vol. 35, pp. 3263-3269 (1992); and Cristalli, G., et al., J. Med. Chem., vol. 35, pp. 2363-2368 (1992); all of which are incorporated herein by reference.
  • The present method includes the administration of a Type IV phosphodiesterase (PDE) inhibitor in combination with the compound of formula (I). Examples of Type IV phosphodiesterase inhibitors include those disclosed in U.S. Pat. No. 4,193,926, and WO 92-079778, and Molnar-Kimber, K. L., et al., [0052] J. Immunol., vol. 150, p. 295A (1993), all of which are incorporated herein by reference.
  • Specifically, the suitable Type IV phosphodiesterase (PDE) inhibitors include racemic and optically active 4-(polyalkoxyphenyl)-2-pyrrolidones of general formula (V) [0053]
    Figure US20020082240A1-20020627-C00008
  • (disclosed and described in U.S. Pat. No. 4,193,926) wherein R[0054] 18 and R19 each are alike or different and are hydrocarbon radicals having up to 18 carbon atoms with at least one being other than methyl, a heterocyclic ring, or alkyl of 1-5 carbon atoms which is substituted by one or more of halogen atoms, hydroxy, carboxy, alkoxy, alkoxycarbonyl or an amino group or amino.
  • Examples of hydrocarbon R[0055] 18 and R19 groups are saturated and unsaturated, straight-chain and branched alkyl of 1-18, preferably 1-5, carbon atoms, cycloalkyl and cycloalkylalkyl, preferably of 3-7 carbon atoms, and aryl and aralkyl, preferably of 6-10 carbon atoms, especially monocyclic.
  • Examples of alkyl are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, 2-methylbutyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, 1,2-dimethylheptyl, decyl, undecyl, dodecyl and stearyl, with the proviso that when one of R[0056] 18 and R19 is methyl, the other is a value other than methyl. Examples of unsaturated alkyl groups are alkenyl and alkynyl, e.g., vinyl, 1-propenyl, 2-propenyl, 2-propynyl and 3-methyl-2-propenyl.
  • Examples of cycloalkyl and cycloalkylalkyl which preferably contain a total of 3-7 carbon atoms are cyclopropyl, cyclopropylmethyl, cyclopentyl and cyclohexyl. [0057]
  • Examples of aryl and aralkyl are phenyl and benzyl, which are preferred, and tolyl, xylyl, naphthyl, phenethyl and 3phenylpropyl. [0058]
  • Examples of heterocyclic R[0059] 18 and R19 groups are those wherein the heterocyclic ring is saturated with 5 or 6 ring members and has a single 0, S or N atom as the hetero atom, e.g., 2- and 3-tetrahydrofuryl, 2 and 3-tetrahydropyranyl, 2- and 3-tetrahydrothiophenyl, pyrrolidino, 2- and 3-pyrrolidyl, piperidino, 2-, 3- and 4-piperidyl, and the corresponding N-alkyl-pyrrolidyl and piperidyl wherein alkyl is of 1-4 carbon atoms. Equivalents are heterocyclic rings having fewer or more, e.g., 4 and 7, ring members, and one or more additional hetero atoms as ring members, e.g., morpholino, piperazino and N-alkylpiperazino.
  • Examples of substituted alkyl R[0060] 18 and R19 groups, preferably of 1-5 carbon atoms, are those mono- or polysubstituted, for example, by halogen, especially fluorine, chlorine and bromine. Specific examples of such halogen-substituted alkyl are 2-chloroethyl, 3-chloropropyl, 4-bromobutyl, difluoromethyl, trifluoromethyl, 1,1,2-trifluoro-2-chloroethyl, 3,3,3-trifluoropropyl, 2,2,3,3,3-pentafluoropropyl and 1,1,1,3,3,3-hexafluoro-2-propyl. Examples of other suitable substituents for such alkyl groups are hydroxy groups, e.g., 2-hydroxyethyl or 3-hydroxypropyl; carboxy groups, e.g., carboxymethyl or carboxyethyl; alkoxy groups, wherein each alkoxy group contains 1-5 carbon atoms, e.g., ethoxymethyl, isopropoxymethyl, 2-methoxyethyl, 2-isopropoxyethyl, 2-butyoxyethyl, 2-isobutyoxyethyl, and 3-pentoxypropyl.
  • Also suitable as preferably terminal-positioned substituents on alkyl groups of 1-5 carbon atoms are alkoxycarbonyl of 1-5 carbon atoms in the alkoxy group. Examples of such alkoxycarbonyl substituted alkyl-groups are ethoxycarbonylmethyl and 2-butoxycarbonylethyl. [0061]
  • Alkyl groups of 1-5 carbon atoms can also be substituted, e.g., in the β, Υ and preferably terminal position with amino groups wherein the nitrogen atom optionally is mono- or disubstituted by alkyl, preferably of 1-5 carbon atoms, or is part of a 4- to 7-membered ring. [0062]
  • Rolipram and its analogues are specific examples of preferred Type IV phosphodiesterase inhibitors. [0063]
  • Examples of inflammatory diseases which may be treated according to the present invention include: [0064]
  • autoimmune diseases such as lupus erythenatosis, multiple sclerosis, type I diabetes mellits, Crohn's disease, ulcerative colitis, inflammatory bowel disease, osteoporosis, arthritis, allergic diseases such as asthma, infectious diseases such as sepsis, septic shock, infectious arthritis, endotoxic shock, gram negative shock, toxic shock,cerebral malaria, bacterial meningitis, adult respiratory distress syndrome (ARDS), TNFα-enhanced HIV replication and TNFα inhibition of reverse transciptase inhibitor activity, wasting diseases (cachexia secondary to cancer and HIV), skin diseases like psoriasis, contact dermatitis, eczema, infectious skin ulcers, cellulitis, organ transplant rejection (including bone marrow, kidney, liver, lung, heart, skin rejection), graft versus host disease, adverse effects from amphotericin B treatment, adverse effects from interleukin-2 treatment, adverse effects from OKT3 treatment, adverse effects from GM-CSF treatment, adverse effects of cyclosporine treatment and adverse effects of aminoglycoside treatment, ischemia, mucositis, infertility from endometriosis, circulatory diseases induced or exacerbated by an inflammatory response such as atherosclerosis, peripheral vascular disease, restenosis following angioplasty, inflammatory aortic aneurysm, ischemia/reperfusion damage, vasculitis, stroke, congestive heart failure, hemorrhagic shock, vasospasm following subarachnoid hemorrhage, vasospasm following cerebrovascular accident, pleuritis, pericarditis, and encephalitis. [0065]
  • The exact dosage of the compound of formula (I) to be administered will, of course, depend on the size and condition of the patient being treated, the exact condition being treated, and the identity of the particular compound of formula (I) being administered. However, a suitable dosage of the compound of formula (I) is 0.5 to 100 μg/kg of body weight, preferably 1 to 10 μg/kg of body weight. Typically, the compound of formula (I) will be administered from 1 to 8, preferably 1 to 4, times per day. [0066]
  • The preferred mode of administration of the compound of formula (I) may also depend on the exact condition being treated. However, most typically, the mode of administration will be oral, topical, intravenous, parenteral, subcutaneous, or intramuscular injection. [0067]
  • Of course, it is to be understood that the compound of formula (I) may be administered in the form of a pharmaceutically acceptable salt. Examples of such salts include acid addition salts. Preferred pharmaceutically acceptable addition salts include salts of mineral acids, for example, hydrochloric acid, sulfuric acid, nitric acid, and the like; salts of monobasic carboxylic acids, such as, for example, acetic acid, propionic acid, and the like; salts of dibasic carboxylic acids, such as maleic acid, fumaric acid, oxalic acid, and the like; and salts of tribasic carboxylic acids, such as, carboxysuccinic acid, citric acid, and the like. In the compounds of formula (I) in which R is —CO[0068] 2H, the salt may be derived by replacing the acidic proton of the —CO2H group with a cation such as Na+, K+, NH+ 4 mon-, di, tri, or tetra(C1-4-alkyl)ammonium, or mono-, di-, tri-, or tetra(C2-4alkanol)ammonium.
  • It is also to be understood that many of the compounds of formula (I) may exist as various isomers, enantiomers, and diastereomers and that the present invention encompasses the administration of a single isomer, enantiomer, or diastereomer in addition to the administration of mixtures of isomers, enantiomers, or diastereomers. [0069]
  • The compounds of formula (I) can be administered orally, for example, with an inert diluent with an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the compounds can be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, waters, chewing gums, and the like. These preparations should contain at least 0.5% by weight of the compound of formula (I), but the amount can be varied depending upon the particular form and can conveniently be between 4.0% to about 70% by weight of the unit dosage. The amount of the compound of formula (I) in such compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that an oral dosage unit form contains between about 30 μg and about 5 mg, preferably between 50 to 500 μg, of active compound. [0070]
  • Tablets, pills, capsules, troches, and the like can contain the following ingredients: a binder, such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient, such as starch or lactose; a disintegrating agent, such as alginic acid, Primogel, corn starch, and the like; a lubricant, such as magnesium stearate or Sterotes; a glidant, such as colloidal silicon dioxide; a sweetening agent, such as sucrose, saccharin or aspartame; or flavoring agent, such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule it can contain, in addition to the compound of formula (I), a liquid carrier, such as a fatty oil. [0071]
  • Other dosage unit forms can contain other materials that modify the physical form of the dosage unit, for example, as coatings. Thus, tablets or pills can be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and preservatives, dyes, colorings, and flavors. Materials used in preparing these compositions should be pharmaceutically pure and non-toxic in the amounts used. [0072]
  • For purposes of parenteral therapeutic administration, the compounds of formula (I) can be incorporated into a solution or suspension. These preparations should contain at least 0.1% of the aforesaid compound, but may be varied between 0.5% and about 50% of the weight thereof. The amount of active compound in such compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 30 μg to 5 mg, preferably between 50 to 500 μg, of the compound of formula (I). [0073]
  • Solutions or suspensions of the compounds of formula (I) can also include the following components: a sterile diluent, such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents: antibacterial agents, such as benzyl alcohol or methyl parabens; antioxidants, such as ascorbic acid or sodium bisulfite; chelating agents, such as ethylenediaminetetraacetic acid; buffers, such as acetates, citrates or phosphates; and agents for the adjustment of tonicity, such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. [0074]
  • Effective amounts of the Type IV phosphodiesterase inhibitor can be administered to a subject by any one of various methods, for example, orally as in a capsule or tablets, topically, or parenterally in the form of sterile solutions. The Type IV phosphodiesterase inhibitors, while effective themselves, can be formulated and administered in the form of their pharmaceutically acceptable addition salts for purposes of stability, convenience of crystallization, increased solubility, and the like. [0075]
  • Preferred pharmaceutically acceptable addition salts include salts of mineral acids, for example, hydrochloric acid, sulfuric acid, nitric acid, and the like; salts of monobasic carboxylic acids, such as, for example, acetic acid, propionic acid, and the like; salts of dibasic carboxylic acids, such as maleic acid, fumaric acid, oxalic acid, and the like; and salts of tribasic carboxylic acids, such as, carboxysuccinic acid, citric acid, and the like. [0076]
  • The Type IV phosphodiesterase may be administered in the form of a pharmaceutical composition similar to those described above in the context of the compound of formula (I). [0077]
  • While dosage values will vary with the specific disease condition to be alleviated, good results are achieved when the Type IV phosphodiesterase inhibitor is administered to a subject requiring such treatment as an effective oral, parenteral or intravenous dose as described below. [0078]
  • For oral administration, the amount of active agent per oral dosage unit usually is 0.1-20 mg, preferably 0.5-10 mg. The daily dosage is usually 0.1-50 mg, preferably 1-30 mg. p.o. For parenteral application, the amount of active agent per dosage unit is usually 0.005-10 mg, preferably 0.01-5 mg. The daily dosage is usually 0.01-20 mg, preferably 0.02-5 mg i.v. or i.m. [0079]
  • With topical administration, dosage levels and their related procedures would be consistent with those known in the art, such as those dosage levels and procedures described in U.S. Pat. No. 5,565,462 to Eitan et al., which is incorporated herein by reference. [0080]
  • It is to be understood, however, that for any particular subject, specific dosage regimens should be adjusted to the individual need and the professional judgement of the person administering or supervising the administration of the Type IV phosphodiesterase inhibitor. It is to be further understood that the dosages set forth herein are exemplary only and that they do not, to any extent, limit the scope or practice of the present invention. [0081]
  • In a particularly preferred embodiment, the compound of formula (I) and the Type IV phosphodiesterase inhibitor are coadministered together in a single dosage unit. The compound of formula (I) and the type IV phosphodiesterase inhibitor may be administered in the same type of pharmaceutical composition as those described above in the context of the compound of formula (I). [0082]
  • By coadministering a Type IV phosphodiesterase inhibitor with the agonist of the A[0083] 2A adenosine receptor it is possible to dramatically lower the dosage of the A2A adenosine receptor agonist and the Type IV phosphodiesterase inhibitor due to a synergistic effect of the two agents. Thus, in the embodiment involving coadministration of the A2A adenosine receptor agonist with the type IV phosphodiesterase inhibitor, the dosage of the A2A adenosine receptor agonist may be reduced by a factor of 5 to 10 from the dosage used when no type IV phosphodiesterase inhibitor is administered. This reduces the possibility of side effects.
  • The present invention will now be described in more detail in the context of the coadministration of WRC-0470, WRC-0474[SHA 211], WRC-0090 or WRC-0018 and rolipram. However, it is to be understood that the present invention may be practiced with other compounds of formula (I) and other Type IV phosphodiesterase inhibitors of formula (V). [0084]
  • The present studies establish that anti-inflammatory doses have no toxic effects in animals; the effect of WRC-0470 to inhibit neutrophil activation is synergistic with rolipram; and intravenous infusion of WRC-0470 profoundly inhibits extravasation of neutrophils in an animal model of inflammation, an action also synergistic with rolipram. Further, the present studies establish that activation of A[0085] 2A receptors on human monocytes strongly inhibits TNFα (an inflamatory cytokine) release. This mechanism further contributes to the anti-inflamatory action of the A2A adenosine receptor agonists of the present invention.
  • Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof. [0086]
  • EXAMPLES
  • Materials and Methods [0087]
  • Materials: f-Met—Leu—Phe(fMLP), luminol, and trypan blue were from Sigma Chemical. Ficoll-hypaque was purchased from Flow Laboratories (McLean, A) and Los Alamos Diagnostics (Los Alamos, N. Mex.). Hanks balanced salt solution (HBSS), and limulus amebocyte lysate assay kit were from Whittaker Bioproducts (Walkersville, Md.). Human serum albumin (HSA) was from Cutter Biological (Elkhart, Ind.). Recombinant human tumor necrosis factor-alpha was supplied by Dianippon Pharmaceutical Co. Ltd. (Osaka, Japan). ZM241385 was a gidt of Dr. Simon Poucher, Zeneca Pharmaceuticals (Chesire, England). [0088]
  • Leukocyte Preparation: Purified PMN (˜98% PMN and >95% viable by trypan blue exclusion) containing <1 platelet per 5 PMN and <50 pg/ml endotoxin (limulus amebocyte lysate assay) were obtained from normal heparinized (10 Units/ml) venous blood by a one step ficoll-hypaque separation procedure (Ferrante, A., et al., [0089] J. Immunol. Meth., vol. 36, p. 109, (1980)). Residual RBC were lysed by hypotonic lysis with iced 3 ml 0.22% sodium chloride solution for 45 seconds followed by 0.88 ml of 3% sodium chloride solution.
  • Chemiluminescence: Luminol enhanced chemiluminescence, a measure of neutrophil oxidative activity, is dependent upon both superoxide production and mobilization of the granule enzyme myeloperoxidase. The light is emitted from unstable high-energy oxygen species generated by activated neutrophils. Purified PMN (5×10[0090] 5/ml) were incubated in HBSS containing 0.1 % human serum albumin (1 ml) with or without adenosine, adenosine analogs, and TNFα (1 U/mL) for 30 minutes at 37° C. in a shaking water bath. Then luminol (1×10−4M) enhanced f-met-leu-phe (1 μM) stimulated chemiluminescence was read with a Chronolog Photometer (Chrono-log Corp., Havertown, Pa.) at 37° C. for 8 min. Chemiluminescence is reported as relative peak light emitted (=height of the curve) compared to samples with TNF and without adenosine or adenosine analogs. WRC-0474[SHA 211] was 10 times more potent than either adenosine (ADO) or CGS21680 in decrease TNFα-primed f-met-leu-phe-stimulated PMN chemiluminescence (see FIG. 1).
  • Synergy of A[0091] 2A Adenosine Receptor Agonist and Phosphodiesterase Inhibitors. The synergy between WRC-0474[SHA 211] and 4-(3-cyclopentyloxy-4methoxyphenyl)-2-pyrrolidone (rolipram) was examined by measuring the effect of combined WRC-0474[SHA 211] and rolipram on TNF-primed f-met-leu-phe-stimulated suspended neutrophil superoxide release and on the oxidative burst of neutrophils adhering to matrix proteins (in this model the PMN oxidative burst is enhanced by small concentrations of TNFα [e.g. 1 U/ml] when added prior to the addition of a second stimulus such as the peptide f-met-leu-phe).
  • Suspended PMN Superoxide Release: Human PMN (1×10[0092] 6/ml) from Ficoll-Hypaque separation were primed for 30 minutes (37° C.) with or without rhTNF (10 U/ml), with adenosine deaminase (1 U/ml), and with or without 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone and SHA 211. Cytochrome c (120 μM), catalase (0.062 mg/ml) and fMLP (100 nM) were added and the samples incubated for 10 minutes more at 37° C. SOD (200 U/ml) was added to matched samples. The samples were iced and centrifuged (2000 g×10 minutes). The optical density of the supernatants were read at 550 nm against the matched SOD samples, and the moles of SOD-inhibitable superoxide released in 10 minutes were calculated.
  • A synergistic effect of WRC-0474[SHA 211] and rolipram in decreasing the TNFα-primed fMLP-stimulated PMN oxidative burst was observed (see FIG. 2). [0093]
  • TNFα-stimulated superoxide release of PMN adherent to a matrix protein (fibrinogen) coated surface: Human PMN (1×10[0094] 6/ml) from Ficoll-Hypaque separation were incubated for 90 minutes in 1 ml of Hanks balanced salt solution containing 0.1% human serum albumin, cytochrome c (120 μM), and catalase (0.062 mg/ml) in the presence and absence of rhTNF (1 U/ml), WRC-0474[SHA 211] (10 nM) and rolipram (100 nM) in a tissue culture well which had been coated overnight with human fibrinogen. SOD (200 U/ml) was added to matched samples. The supernatants were iced and centrifuged (2000 g×10 minutes) to remove any remaining suspended cells, and the optical density of the supernatants were read at 550 mn against the matched SOD samples, and the nmoles of SOD-inhibitable superoxide released in 90 minutes were calculated.
  • A synergistic effect of WRC-0474[SHA 211] and rolipram in decreasing the TNFα-stimulated release of superoxide from PMN adherent to fibrinogen was observed (see FIG. 3). [0095]
  • Effect of WRC-0474[SHA 211] with and without rolipram on TNF-Stimulated PMN Adherence to a Fibrinogen-Coated Surface. Cronstein et al., [0096] J. Immunol., vol. 148, p. 2201 (1992) reported that adenosine binding to A1 receptors increases PMN adherence to endothelium and matrix proteins and binding to A2 receptors decreases adherence to these surfaces when the PMN are stimulated with fMLP. Despite this, others have failed to see much of an effect of adenosine (10 μM) on TNFα-stimulated PMN adherence to matrix proteins. In contrast, adenosine dramatically decreases the oxidative burst of TNFα-stimulated PMN adhering to matrix proteins (DeLa Harpe, J., J. Immunol., vol. 143, p. 596 (1989)). The experiments described above establish that WRC-0474[SHA 211] decreases TNF-stimulated oxidative activity of PMN adhering to fibrinogen, especially when combined with rolipram.
  • PMN adherence to fibrinogen was measured as follows as adapted from Hanlon, [0097] J. Leukocyte Biol., vol. 50, p. 43 (1991). Twenty-four well flat-bottomed tissue culture plates were incubated (37° C.) overnight with 0.5 ml of fibrinogen (5 mg/ml) dissolved in 1.5% NaHCO3. The plates were emptied and each well washed 2× with 1 ml of normal saline. The wells were then filled with 1 ml of HBSS-0. 1% human serum albumin containing PMN (1×106/ml) with and without rhTNFα(1 U/ml), adenosine deaminase (ADA) (1 U/ML), WRC-0474[SHA 211] (10 nM), CGS21680 (30 nM), adenosine (100 nM) and rolipram (100 nM). The plates were incubated for 90 minutes at 37° C. in 5% CO2. Following incubation the tissue culture wells were washed free of non-adherent cells with normal saline. The adherent monolayer of PMN was lysed with 0.1% triton-X, the amount of lactic dehydrogenase (LDH) released from the monolayer assayed (LDH kit, Sigma Co., St. Louis, Mo.), and compared to a standard curve relating the LDH content to PMN numbers. The results are shown in FIG. 4.
  • As a comparison to WRC-0474[SHA 211] (at only 10 nM), CGS21680 (30 nM) decreased TNF-stimulated adherence in the presence of ADA from 38% to 30% adhered (p=0.004) (see FIG. 4), and ten times as much adenosine (100 nM) decreased adherence to 28% adhered (p=0.009 compared to TNF in the presence of ADA). [0098]
  • Additional effects of adenosine A[0099] 2A agonists on adherent human neutrophil oxidative activity. The bioactivity of test compounds WRC-0474[SHA 211], WRC-0470, WRC-0090 and WRC-0018 were evaluated according to the following method modified from Sullivan, G. W. et al., Int. J. Immunonopharmacol, 1995, 17:793-803. Neutrophils (1×106/ml) from Ficoll-Hypaque separation were incubated for 90 minutes in 1 ml of Hanks balanced salt solution containing 0.1% human serum albumin, cytochrome c (120 μM) and catalase (0.062 mg/ml) in the presence and absence of rhTNFα (1 U/ml), WRC-0474[SHA 211], WRC-0470, WRC-0090 and WRC-0018 (3-300 nM), and rolipram (100 nM) in a tissue culture well which had been coated overnight with human fibrinogen. The supernatants were iced and centrifuged (200 g×10 min) to remove any remaining suspended cells, and the optical densities of the supernatants were read at 550 nm against matched superoxide dismutase (SOD) (200 U/ml) samples. The nmoles of SOD=inhabitable superoxide released in 90 min were calculated.
  • FIG. 5 shows synergy between A[0100] 2A adenosine agonists and rolipram in inhibiting TNFα-stimulated adherent PMN oxidative activity (p<0.05). WRC-0474[SHA 211] (30-300 nM), WRC-0470 (300 nM), WRC-0090 (300 nM) and WRC-0018 (300 nM) combined with rolipram synergistically decreased superoxide release (p<0.05). All four compounds had some activity in the presence of rolipram. WRC-0474[SHA 211] and WRC-0470 were the most active. Nanomolar concentrations of WRC-0474[SHA 211] resulted in biphasic activity. All compounds were synergistic with rolipram to decrease TNFα-stimulated adherent PMN oxidative activity.
  • PMN degranulation (adherent cells). The following methods were adapted from Sullivan, G. W. and G. L. Mandell, [0101] Infect. Inumun., 1980: 30:272-280. Neutrophils (3.1×106/ml) from Ficoll-Hypaque separation were incubated for 120 minutes in 1 ml of Hanks balanced salt solution containing 0.1% human serum albumin, ±rh TNFα (10 U/ml), ±WRC-0470 (3-300 nM), and ±rolipram (300 nM) in a tissue culture well which had been coated overnight with human fibrinogen. The supernatant fluids with any suspended neutrophils were harvested following incubation, centrifuged (2000×g for 10 min) to remove any suspended cells and the cell-free supernatants frozen. Release of lysozyme, a component of neutrophil primary and secondary granules was assayed. Lysis of a suspension of Micrococcus lysodeikticus by the “cell-free supernatant” was measured by spectrophotometric analysis (540 mm) to determine the amount of release of granule contents to the surrounding medium.
  • Results showed that WRC-0470 (300 nM) with rolipram (300 nM) significantly decreased TNFα-stimulated adherent neutrophil degranulation 67%; P=0.027. The data indicate that in addition to decreasing TNFα-stimulated PMN adherent and the oxidative burst of these adherent neutrophils, WRC-0470 also decreases degranulation activated PMN adhering to a biological surface. [0102]
  • PMN oxidative activity in whole blood. The following methods were adapted from Rothe, G. A. et al., [0103] J. Immunol. Meth. 1991; 138:133-135). Heparinized whole blood (0.8 ml) was incubated (37°; 30 min) with adenosine deaminase (ADA, 1 U/ml), catalase (14,000 U/ml), ±dihydrorhodamine 123, ±WRC-0470 (3-300 nM), ±rolipram (300 nM) and ±TNFα (10 U/ml). The primed blood samples were stimulated with fMLP (15 min), then iced, the red blood cells lysed with FACS lysing solution (Becton-Dickinson, San Jose, Calif.), washed and the leukocytes resuspended in phosphate buffered saline (PBS) These samples containing mixed leukocytes were gated for neutrophils by forward and side scatter and the fluorescence of 10,000 neutrophils measured in the FL1 channel of a FACScan (Beckton-Dickinson) fluorescence activated cell sorter.
  • The results are reported as relative mean florescence intensity in FIG. 6 of the drawings. WRC-0470 decreased oxidative activity of TNFα-primed fMLP-stimulated neutrophils in whole blood and acted synergistically with rolipram. WRC-0470 (30-300 nM) decreased neutrophil oxidative activity synergistically with rolipram (300 nM) in samples stimulated with fMLP and in blood samples primed with TNFα and then stimulated with fMLP. [0104]
  • Production of TNFα by purified human adherent monocytes. A monocyte rich monolayer (>95% monocytes) was prepared by incubating 1 ml of the mononuclear leukocyte fraction (5×10[0105] 5/ml) from a Ficoll-Hypaque separation in wells of a 24 well tissue culture plate (1 hr; 37° C.; 5% CO2). The non-adherent leukocytes were removed by washing and culture medium added to the wells (1 ml RPMI 1640 containing 1.5 mM HEPES-1% autologous serum with penicillin and streptomycin (250 U/ml and 250 μg/ml, respectively) and ADA (1 U/ml) ±WRC-0470 (30-100 nM), ±endotoxin (10 ng/ml), +rolipram (300 nM) and ±the adenosine A2A selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3a]-[1,3,5]trazinyl-amino]ethyl)-phenol (ZM241385) (50 nM). The samples were incubated for 4 hr (37° C.; 5% CO2) and the supernatants harvested. Any suspended cells were removed by centrifugation and the cell-free samples frozen (−70° C.). TNFα was assayed in the cell-free supernatants by an ELISA kit (Cistron Biotechnology, Pine Brook, N.J.).
  • As shown in FIGS. 7A and 7B, WRC-0470 ±rolipram-decreased endotoxin-stimulated adherent monocyte production of TNFα (P<0.050). As illustrated in FIG. 7B, the A[0106] 2A selective antagonist ZM241385 significantly inhibited the effect of WRC-0470 (300 nM) combined with rolipram (300 nM) (p=0.020) on TNFα release from monocytes. Hence, WRC-0470 affects TNFα-stimulated neutrophil activity and decreases endotoxin-stimulated TNFα production by monocytes.
  • Effects of WRC-0470 and rolipram on the extravasation of white blood cells in a rat model of inflammation. Adult wistar rats (approximately 200 g) were anesthetized with intermuscular injections of ketamine and xylazine. Bacteria meningitis (BM) was induced via intracisternal inoculation of either [0107] E. coli strain 026:B6LPS (200 ng), cytokines (IL-1 and TNFα, or LPS plus cytokines). The animals were then infused with rolipram and/or WRC-1470 over the duration of the experiment using a Harvard pump. CSF (cerebrospinal fluid) and blood was then sampled at 4 h postinoculation and alterations in BBBP (blood-brain barrier permeability) and WBC (white blood cell) counts were determined. CSF and WBC concentrations were determined with standard hemacytometer methods. For assessment of % BBBP, rats were given an intravenous injection of 5 μCi 125I-labeled bovine serum albumin concomitant with intracisternal inoculation. Equal samples of CSF and blood were read simultaneously in a gamma counter and after subtraction of background radioactivity, % BBBP was calculated by the following formula: % BBBP=(cpm CSF/cpm blood)×100. All statistical tests were performed using Instat biostatistical software to compare the post-inoculation samples of experimental rats with the control rats. The statistical tests used to generate p-values were Student's t-test and ANOVA.
  • Results of the tests are reported in FIGS. 8 and 9. Infusion of WRC-0470 at a rate of 0.005-1.2 μg/kg/hr inhibited pleiocytosis (p<0.05 as compared to control). The effect of WRC-0470 on BBBP is shown in FIG. 9. A significant response is seen with a range of 0.01-0.015 μg/kg/hr (p<0.05 as compared to control). A rebound effect is noted with the administration of 1.2 μg/kg/hr where % BBBP returned to control. FIG. 10 shows the effect of rolipram on CSF pleocytosis in a range of 0-0.01 μg/kg/hr with 0.01 μg/kg/hr inhibiting 99% of the pleocytosis (p<0.05). Rolipram at either 0.01 or 0.005 μg/kg/hr showed significant inhibition of alterations of BBBP (p<0.05), while a dose of 0.002 μg/kg/hr had no significant effect [0108]
  • The effect of a combination of rolipram and WRC-0470 on CSF WBC pleocytosis is illustrated in FIG. 11. Rolipram (0.001 μg/kg/hr) in combination with WRC-0470 (0.1 μg/kg/hr) inhibited migration of WBC's (200±70 WBC/μl) into the sub-arachnoid space (SAS) to a greater extent than did either rolipram (1,670±1,273 WBC/μl, p<0.050) or WRC-0470 (600±308 WBCs/μl, p<0.050) alone. The data show a powerful inhibiting effect of WRC-0470 and a synergy with rolipram to prevent inflammation in an animal model. [0109]
  • Application of A[0110] 2A adenosine receptors with or without rolipram on balloon angioplasty and gene therapy. Balloon angioplasty is commonly used to treat coronary artery stenosis. Restenosis following balloon angioplasty (BA) occurs in up to 40% of coronary interventions. Holmes et al., American Journal of Cardiology, 53: 77C-81C (1984). (40%). Restenosis results from a complex interaction of biologic processes, including (i) formation of platelet-rich thrombus; (ii) release of vasoactive and mitogenic factors causing migration and proliferation of smooth muscle cells (SMC); (iii) macrophage and other inflammatory cell accumulation and foam cell (FC) formation; (iv) production of extracellular matrix; and (v) geometric remodeling. Recently the use of coronary stents and pharmacologic intervention using a chimeric antibody to block the integrin on platelets have been partially successful in limiting restenosis after percutaneous coronary interventions in man. Topol et al., Lencet, 343: 881-886 (1994). Since inflammatory cell infiltration might be central to the response to injury, and restenotic processes, and adenosine, activing via A2A adenosine receptors, inhibits tissues inflammatory cell accumulation, we hypothesize that agonists of A2A adenosine receptors±type IV PDE inhibitors will reduce the incidence of restenosis following balloon angioplasty.
  • In addition, recent advances in local delivery catheters and gene delivery techniques raise the interesting and exciting possibility of administering genes locally into the vessel wall. Nabel et al., [0111] Science, 249: 1285-1288 (1990); Leclerc et al., Journal of Clinical Investigation, 90: 936-944 (1992). Adenoviral-mediated gene transfer affords several advantages over other techniques. However, gene expression is only transient, and has been observed for 7-14 days with diminuition or loss of expression by 28 days. Lack of persistence may result from host immune cytolytic responses directed against infected cells. The inflammatory response generated by the present generation of adenovirus results in neoitimal lesion formation and may thus offset the benefit of a therapeutic gene. Newman et al., Journal of Clinical Investigation, 96: 2955-2965 (1995). An A2A adenosine receptor agonist±a type IV phosphodiesterase inhibitor in combination with adenovirus may improve the efficiency of gene transfer.
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. [0112]

Claims (19)

What is claimed:
1. A method of treating inflammatory disease, comprising administering to a patient in need thereof an agonist of an A2A adenosine receptor in combination with rolipram, a rolipram derivative or other compound that is a Type IV phosphodiesterase inhibitor.
2. The method of claim 1, wherein said disease is selected from the group consisting of: autoimmune diseases (lupus erythenatosis), multiple sclerosis, type I diabetes mellits, Crohn's disease, ulcerative colitis, inflammatory bowel disease, osteoporosis, arthritis, allergic diseases (asthma), infectious diseases (sepsis),septic shock, infectious arthritis, endotoxic shock, gram negative shock, toxic shock,cerebral malaria, bacterial meningitis, adult respiratory distress syndrome, TNFα-enhanced HIV replication and TNFα inhibition of reverse transciptase inhibitor activity, wasting diseases (cachexia secondary to cancer and HIV), skin diseases (psoriasis), contact dermatitis, eczema, infectious skin ulcers, cellulitis,organ transplant rejection, graft versus host disease, adverse effects from amphotericin B treatment, adverse effects from interleukin-2 treatment, adverse effects from OKT3 treatment, adverse effects from GM-CSF treatment, adverse effects of cyclosporine treatment and adverse effects of aminoglycoside treatment, ischemia, mucositis, infertility from endometriosis, atherosclerosis, peripheral vascular disease, restenosis following angioplasty, inflammatory aortic aneurysm, ischemia/reperfusion damage, vasculitis, stroke, congestive heart failure, hemorrhagic shock, vasospasm following subarachnoid hemorrhage, vasospasm following cerebrovascular accident, pleauritis, pericarditis, and encephalitis.
3. The method of claim 1, wherein said agonist of an A2A adenosine receptor has the formula (I)
Figure US20020082240A1-20020627-C00009
wherein X is a group selected from the group consisting of —OR1, —NR2R3, and —NH—N═R4;
wherein R1 is C1-4-alkyl; C1-4-alkyl substituted with one or more C1-4-alkoxy groups, halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, di(C1-4-alkyl)amino groups, or C6-10-aryl groups (wherein the aryl groups may be substituted with one or more halogens (fluorine, chlorine, or bromine), C1-4-alkyl groups, hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4alkyl)amino groups); C6-10-aryl; or C6-10-aryl substituted with one or more halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4 alkyl)amino groups, or C1-4-alkyl groups;
one of R2 and R3 has the same meaning as R1 and the other is hydrogen;
R4 is a group having the formula
Figure US20020082240A1-20020627-C00010
wherein each of R5 and R6 independently may be hydrogen, C3-7-cycloalkyl, or any of the meanings of R1, provided that R5 and R6 are not both hydrogen;
or a pharmaceutically acceptable salt thereof.
4. The method of claim 1, wherein said agonist of an A2A adenosine receptor is selected from the group consisting of:
Figure US20020082240A1-20020627-C00011
5. The method of claim 1, wherein said Type IV phosphodiesterase inhibitor is a compound having formula (V):
Figure US20020082240A1-20020627-C00012
wherein R18 and R19 each are alike or different and are hydrocarbon radicals having up to 18 carbon atoms with at least one being other than methyl, a heterocyclic ring, or alkyl of 1-5 carbon atoms which is substituted by one or more of halogen atoms, hydroxy, carboxy, alkoxy, alkoxycarbonyl or an amino group; or amino.
6. The method of claim 1, wherein said type IV phosphodiesterase inhibitor is rolipram.
7. The method of claim 1, wherein said agonist of an A2A adenosine receptor is
Figure US20020082240A1-20020627-C00013
and said Type IV phosphosterase inhibitor is rolipram.
8. The method of claim 1, wherein said agonist of an A2A adenosine receptor is
Figure US20020082240A1-20020627-C00014
9. The method of claim 1, wherein said A2A adenosine receptor agonist and said Type IV phosphosterase inhibitor are coadministered together to the patient in need thereof.
10. A pharmaceutical composition comprising an effective amount of an agonist of an A2A adenosine receptor in combination with rolipram or a rolipram derivative or a rolipram analogue or other Type IV phosphodiesterase inhibitors.
11. The pharmaceutical composition of claim 10, wherein said agonist of an A2A adenosine receptor has the formula (I)
Figure US20020082240A1-20020627-C00015
wherein X is a group selected from the group consisting of —OR1, —NR2R3, and —NH—N═R4;
wherein R1 is C1-4-alkyl; C1-4-alkyl substituted with one or more C1-4-alkoxy groups, halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, di(C1-4-alkyl)amino groups, or C6-10-aryl groups (wherein the aryl groups may be substituted with one or more halogens (fluorine, chlorine, or bromine), C1-4-alkyl groups, hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4alkyl)amino groups); C6-10-aryl; or C6-10-aryl substituted with one or more halogens (fluorine, chlorine, or bromine), hydroxy groups, amino groups, mono(C1-4-alkyl)amino groups, or di(C1-4 alkyl)amino groups, or C1-4-alkyl groups;
one of R2 and R3 has the same meaning as R1 and the other is hydrogen; R4 is a group having the formula
Figure US20020082240A1-20020627-C00016
wherein each of R5 and R6 independently may be hydrogen, C3-7-cycloalkyl, or any of the meanings of R1, provided that R5 and R6 are not both hydrogen;
or a pharmaceutically acceptable salt thereof.
12. The pharmaceutical composition of claim 10, wherein said agonist of an A2A adenosine receptor is selected from the group consisting of
Figure US20020082240A1-20020627-C00017
13. The pharmaceutical composition of claim 10, wherein said Type IV phosphodiesterase inhibitor is a compound having formula (V):
Figure US20020082240A1-20020627-C00018
wherein R18 and R19 each are alike or different and are hydrocarbon radicals having up to 18 carbon atoms with at least one being other than methyl, a heterocyclic ring, or alkyl of 1-5 carbon atoms which is substituted by one or more of halogen atoms, hydroxy, carboxy, alkoxy, alkoxycarbonyl or an amino group; amino; R′ is a hydrogen atom, alkyl, aryl or acyl; and X is an oxygen atom or a sulfur atom.
14. The pharmaceutical composition of claim 10, wherein said type IV phosphodiesterase inhibitor is rolipram.
15. The pharmaceutical composition of claim 10, wherein said agonist of an A2A adenosine receptor is
Figure US20020082240A1-20020627-C00019
and said Type IV phosphosterase inhibitor is rolipram.
16. The pharmaceutical composition of claim 10, wherein said agonist of an A2A adenosine receptor is
Figure US20020082240A1-20020627-C00020
and said Type IV phosphosterase inhibitor is rolipram.
17. The method of claim 1, further comprising administering said agonist of an A2A adenosine receptor in combination with rolipram, a rolipram derivative or other compound that is a Type IV phosphodiesterase inhibitor during and for a limited time after balloon angioplasty to reduce frequence and extent of restenosis.
18. The method of claim 1, further comprising administering said agonist of an A2A adenosine receptor in combination with rolipram, a rolipram derivative or other compound that is a Type IV phosphodiesterase inhibitor in conjunction with a gene delivery modality to limit inflammation and thereby improve efficiency and stability of gene therapy.
19. The method of claim 1, wherein said gene delivery modality is selected from the group comprising viruses and lipid vesicles.
US09/543,385 1994-07-11 2000-04-04 Method for treating restenosis with A2A adenosine receptor agonists Expired - Fee Related US6448235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/543,385 US6448235B1 (en) 1994-07-11 2000-04-04 Method for treating restenosis with A2A adenosine receptor agonists

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/272,821 US5877180A (en) 1994-07-11 1994-07-11 Method for treating inflammatory diseases with A2a adenosine receptor agonists
US393098A 1998-01-08 1998-01-08
US09/543,385 US6448235B1 (en) 1994-07-11 2000-04-04 Method for treating restenosis with A2A adenosine receptor agonists

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US393098A Continuation 1994-07-11 1998-01-08

Publications (2)

Publication Number Publication Date
US20020082240A1 true US20020082240A1 (en) 2002-06-27
US6448235B1 US6448235B1 (en) 2002-09-10

Family

ID=26672386

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/543,385 Expired - Fee Related US6448235B1 (en) 1994-07-11 2000-04-04 Method for treating restenosis with A2A adenosine receptor agonists

Country Status (1)

Country Link
US (1) US6448235B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094326A1 (en) * 2000-10-13 2002-07-18 Johns Hopkins University Methods and compositions for nucleic acid delivery
US20030212082A1 (en) * 2000-08-01 2003-11-13 Joel Linden Use of selective adenosine a1 receptor agonists, antagonists and allosteric enhancers to manipulate angiogenesis
WO2006079796A1 (en) * 2005-01-25 2006-08-03 Heptagen Ltd Treatment for mucositis
US20070191301A1 (en) * 2005-11-30 2007-08-16 Inotek Pharmaceuticals Corporation Purine derivatives and methods of use thereof
US20090047243A1 (en) * 2007-07-17 2009-02-19 Richard Rickles Combinations for the treatment of b-cell proliferative disorders
US20090053168A1 (en) * 2007-07-17 2009-02-26 Richard Rickles Treatments of b-cell proliferative disorders
US20100009934A1 (en) * 2008-06-09 2010-01-14 Combinatorx, Incorporated Beta adrenergic receptor agonists for the treatment of b-cell proliferative disorders
US20110064671A1 (en) * 2008-03-10 2011-03-17 Cornell University Modulation of blood brain barrier permeability
WO2013126545A1 (en) * 2012-02-22 2013-08-29 New York University Methods and compositions for stimulating bone regeneration

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232297B1 (en) * 1999-02-01 2001-05-15 University Of Virginia Patent Foundation Methods and compositions for treating inflammatory response
US7427606B2 (en) * 1999-02-01 2008-09-23 University Of Virginia Patent Foundation Method to reduce inflammatory response in transplanted tissue
US7378400B2 (en) * 1999-02-01 2008-05-27 University Of Virginia Patent Foundation Method to reduce an inflammatory response from arthritis
US6403567B1 (en) * 1999-06-22 2002-06-11 Cv Therapeutics, Inc. N-pyrazole A2A adenosine receptor agonists
US6214807B1 (en) * 1999-06-22 2001-04-10 Cv Therapeutics, Inc. C-pyrazole 2A A receptor agonists
USRE47351E1 (en) 1999-06-22 2019-04-16 Gilead Sciences, Inc. 2-(N-pyrazolo)adenosines with application as adenosine A2A receptor agonists
CA2671940A1 (en) * 2000-02-23 2001-08-30 Cv Therapeutics, Inc. Identification of partial agonists of the a2a adenosine receptor
US6670334B2 (en) * 2001-01-05 2003-12-30 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
GB2372741A (en) * 2001-03-03 2002-09-04 Univ Leiden C2,8-Disubstituted adenosine derivatives and their different uses
CA2460911C (en) * 2001-10-01 2011-08-30 University Of Virginia Patent Foundation 2-propynyl adenosine analogs having a2a agonist activity and compositions thereof
ATE381336T1 (en) * 2002-04-10 2008-01-15 Univ Virginia USE OF A2A ADENOSINE RECEPTOR AGONIST AND ANTIPATHOGENE CONTAINING COMBINATIONS FOR THE TREATMENT OF INFLAMMATORY DISEASES
JP2005538190A (en) * 2002-07-29 2005-12-15 シーブイ・セラピューティクス・インコーポレイテッド Myocardial perfusion imaging
US20050020915A1 (en) * 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
US8470801B2 (en) 2002-07-29 2013-06-25 Gilead Sciences, Inc. Myocardial perfusion imaging methods and compositions
TWI346109B (en) * 2004-04-30 2011-08-01 Otsuka Pharma Co Ltd 4-amino-5-cyanopyrimidine derivatives
WO2006028618A1 (en) * 2004-08-02 2006-03-16 University Of Virginia Patent Foundation 2-polycyclic propynyl adenosine analogs with modified 5'-ribose groups having a2a agonist activity
US7442687B2 (en) * 2004-08-02 2008-10-28 The University Of Virginia Patent Foundation 2-polycyclic propynyl adenosine analogs having A2A agonist activity
US7605143B2 (en) * 2004-08-02 2009-10-20 University Of Virginia Patent Foundation 2-propynyl adenosine analogs with modified 5′-ribose groups having A2A agonist activity
CA2583185A1 (en) 2004-10-20 2006-04-27 Cv Therapeutics, Inc. Use of a2a adenosine receptor agonists
KR101494125B1 (en) 2006-02-03 2015-02-16 길리애드 사이언시즈, 인코포레이티드 Process for preparing an a2a-adenosine receptor agonist and its polymorphs
WO2007092936A2 (en) * 2006-02-08 2007-08-16 University Of Virginia Patent Foundation Method to treat gastric lesions
WO2007120972A2 (en) 2006-02-10 2007-10-25 University Of Virginia Patent Foundation Method to treat sickle cell disease
US8188063B2 (en) * 2006-06-19 2012-05-29 University Of Virginia Patent Foundation Use of adenosine A2A modulators to treat spinal cord injury
US20070299089A1 (en) * 2006-06-22 2007-12-27 Cv Therapeutics, Inc. Use of A2A Adenosine Receptor Agonists in the Treatment of Ischemia
US7811549B2 (en) 2006-07-05 2010-10-12 Adenobio N.V. Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects
US20090081120A1 (en) * 2006-09-01 2009-03-26 Cv Therapeutics, Inc. Methods and Compositions for Increasing Patient Tolerability During Myocardial Imaging Methods
RU2459626C2 (en) * 2006-09-01 2012-08-27 Гайлид Сайэнсиз, Инк. Methods and compositions improving patient's tolerance of myocardial visualisation technique
EP2066232A1 (en) * 2006-09-29 2009-06-10 Cv Therapeutics, Inc. Methods for myocardial imaging in patients having a history of pulmonary disease
WO2008086096A2 (en) * 2007-01-03 2008-07-17 Cv Therapeutics, Inc. Myocardial perfusion imaging
US8058259B2 (en) * 2007-12-20 2011-11-15 University Of Virginia Patent Foundation Substituted 4-{3-[6-amino-9-(3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-piperidine-1-carboxylic acid esters as A2AR agonists
US20090185973A1 (en) * 2008-01-22 2009-07-23 Adenobio N.V. Methods, compositions, unit dosage forms, and kits for pharmacologic stress testing with reduced side effects
US20090228097A1 (en) * 2008-03-07 2009-09-10 Abbott Cardiovascular Systems Inc. A1 Adenosine Receptor Antagonist-Coated Implantable Medical Device
MX2011003168A (en) * 2008-09-29 2011-05-19 Gilead Sciences Inc Combinations of a rate control agent and an a-2-alpha receptor antagonist for use in multidetector computed tomography methods.
JP2015511231A (en) 2012-02-03 2015-04-16 アデノバイオ エヌ.フェー. Methods of using adenosine and dipyridamole for pharmacological stress testing, and specific compositions, unit dosage forms and kits

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892777A (en) 1968-05-01 1975-07-01 Hoffmann La Roche Substituted benzylethylenedicarbamates
CH608236A5 (en) 1974-01-22 1978-12-29 Wuelfing J A Fa
US4193926A (en) 1974-03-20 1980-03-18 Schering Aktiengesellschaft 4-(Polyalkoxy phenyl)-2-pyrrolidones
DK159431C (en) 1984-05-10 1991-03-18 Byk Gulden Lomberg Chem Fab 6-PHENYL-3 (2H) -PYRIDAZINONES, METHOD OF PREPARING THEREOF, PHARMACEUTICALS CONTAINING THESE AND USING THE COMPOUNDS FOR THE PREPARATION OF MEDICINAL PRODUCTS
GB8510758D0 (en) 1985-04-27 1985-06-05 Wellcome Found Compounds
US4824660A (en) 1985-06-06 1989-04-25 Paul S. Angello Method of determining the viability of tissue in an organism
US5231086A (en) 1985-09-24 1993-07-27 Item Development Aktiebolag Continuous administration adenosine to increase myocardial blood flow
JPS6299395A (en) 1985-10-25 1987-05-08 Yamasa Shoyu Co Ltd 2-alkinyladenosine and antihypertensive
US4965271A (en) 1986-12-31 1990-10-23 Hoechst Roussel Pharmaceuticals, Inc. Method of inhibiting the activity of leukocyte derived cytokines
US5096906A (en) 1986-12-31 1992-03-17 University Of Virginia Alumni Patents Foundation Method of inhibiting the activity of leukocyte derived cytokines
US5272153A (en) 1986-12-31 1993-12-21 Hoechst-Roussel Pharmaceuticals, Inc. Method of inhibiting the activity of leukocyte derived cytokines
US5298508A (en) 1988-07-19 1994-03-29 The United States Of America As Represented By The Department Of Health And Human Services Irreversible inhibitors of adenosine receptors
US5070877A (en) 1988-08-11 1991-12-10 Medco Research, Inc. Novel method of myocardial imaging
US4938949A (en) 1988-09-12 1990-07-03 University Of New York Treatment of damaged bone marrow and dosage units therefor
USRE36494E (en) 1990-02-20 2000-01-11 Discovery Therapeutics, Inc. 2-aralkoxy and 2-alkoxy adenosine derivatives as coronary vasodilators and antihypertensive agents
US5140015A (en) 1990-02-20 1992-08-18 Whitby Research, Inc. 2-aralkoxy and 2-alkoxy adenosine derivatives as coronary vasodilators and antihypertensive agents
US6004945A (en) 1990-05-10 1999-12-21 Fukunaga; Atsuo F. Use of adenosine compounds to relieve pain
US5124455A (en) 1990-08-08 1992-06-23 American Home Products Corporation Oxime-carbamates and oxime-carbonates as bronchodilators and anti-inflammatory agents
US5189027A (en) 1990-11-30 1993-02-23 Yamasa Shoyu Kabushiki Kaisha 2-substituted adenosine derivatives and pharmaceutical compositions for circulatory diseases
ZA923641B (en) 1991-05-21 1993-02-24 Iaf Biochem Int Processes for the diastereoselective synthesis of nucleosides
IL99368A (en) 1991-09-02 1996-01-19 Teva Pharma Compositions for topical treatment of psoriasis and atopic dermatitis comprising a xanthine derivative
IT1254915B (en) 1992-04-24 1995-10-11 Gloria Cristalli ADENOSINE DERIVATIVES FOR ACTIVITY A2 AGONIST
US5278150A (en) 1992-04-24 1994-01-11 Whitby Research, Inc. 2-hydrazoadenosines and their utility for the treatmeat of vascular conditions
WO1994023723A1 (en) 1993-04-15 1994-10-27 New York University Adenosine receptor agonists for the promotion of wound healing
US5665754A (en) 1993-09-20 1997-09-09 Glaxo Wellcome Inc. Substituted pyrrolidines
US5446046A (en) 1993-10-28 1995-08-29 University Of Florida Research Foundation A1 adenosine receptor agonists and antagonists as diuretics
WO1995011681A1 (en) 1993-10-29 1995-05-04 Merck & Co., Inc. Human adenosine receptor antagonists
US5877180A (en) 1994-07-11 1999-03-02 University Of Virginia Patent Foundation Method for treating inflammatory diseases with A2a adenosine receptor agonists
US5661153A (en) 1994-07-19 1997-08-26 Japan Energy Corporation 1-arylpyrimidine derivatives and pharmaceutical use thereof
GB9415529D0 (en) 1994-08-01 1994-09-21 Wellcome Found Phenyl xanthine derivatives
US5854081A (en) 1996-06-20 1998-12-29 The University Of Patent Foundation Stable expression of human A2B adenosine receptors, and assays employing the same
UA68348C2 (en) 1997-04-18 2004-08-16 Searle & Co Use of cyclooxygenase-2 inhibitors in preventing cardiovascular disorders
WO1998057651A1 (en) 1997-06-18 1998-12-23 Discovery Therapeutics, Inc. Compositions and methods for preventing restenosis following revascularization procedures
US5998386A (en) 1997-09-19 1999-12-07 Feldman; Arthur M. Pharmaceutical compositions and method of using same for the treatment of failing myocardial tissue
US6020339A (en) 1997-10-03 2000-02-01 Merck & Co., Inc. Aryl furan derivatives as PDE IV inhibitors
US6034089A (en) 1997-10-03 2000-03-07 Merck & Co., Inc. Aryl thiophene derivatives as PDE IV inhibitors
AU4675699A (en) 1998-06-08 1999-12-30 Epigenesis Pharmaceuticals, Inc. Composition and method for prevention and treatment of cardiopulmonary and renal failure or damage associated with ischemia, endotoxin release, ards or brought about by administration of certain drugs
DE60009665T2 (en) 1999-02-01 2004-08-19 The University Of Virginia Patent Foundation COMPOSITIONS FOR TREATING IGNITION REACTIONS

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212082A1 (en) * 2000-08-01 2003-11-13 Joel Linden Use of selective adenosine a1 receptor agonists, antagonists and allosteric enhancers to manipulate angiogenesis
US7732484B2 (en) 2000-08-01 2010-06-08 University Of Virginia Patent Foundation Use of selective adenosine A1 receptor allosteric enhancers to manipulate angiogenesis
US20020094326A1 (en) * 2000-10-13 2002-07-18 Johns Hopkins University Methods and compositions for nucleic acid delivery
US6992070B2 (en) * 2000-10-13 2006-01-31 The Johns Hopkins University Methods and compositions for nucleic acid delivery
WO2006079796A1 (en) * 2005-01-25 2006-08-03 Heptagen Ltd Treatment for mucositis
US7732424B2 (en) 2005-11-30 2010-06-08 Inotek Pharmaceuticals Corporation Purine derivatives and methods of use thereof
WO2007064795A3 (en) * 2005-11-30 2007-11-29 Inotek Pharmaceuticals Corp Purine derivatives and methods of use thereof
US20070191301A1 (en) * 2005-11-30 2007-08-16 Inotek Pharmaceuticals Corporation Purine derivatives and methods of use thereof
EA015683B1 (en) * 2005-11-30 2011-10-31 Инотек Фармасьютикалз Корпорейшн Purine derivatives and methods of use thereof
AU2006320578B2 (en) * 2005-11-30 2013-01-31 Inotek Pharmaceuticals Corporation Purine derivatives and methods of use thereof
US20090047243A1 (en) * 2007-07-17 2009-02-19 Richard Rickles Combinations for the treatment of b-cell proliferative disorders
US20090053168A1 (en) * 2007-07-17 2009-02-26 Richard Rickles Treatments of b-cell proliferative disorders
US20110064671A1 (en) * 2008-03-10 2011-03-17 Cornell University Modulation of blood brain barrier permeability
US20100009934A1 (en) * 2008-06-09 2010-01-14 Combinatorx, Incorporated Beta adrenergic receptor agonists for the treatment of b-cell proliferative disorders
WO2013126545A1 (en) * 2012-02-22 2013-08-29 New York University Methods and compositions for stimulating bone regeneration

Also Published As

Publication number Publication date
US6448235B1 (en) 2002-09-10

Similar Documents

Publication Publication Date Title
US6448235B1 (en) Method for treating restenosis with A2A adenosine receptor agonists
US6514949B1 (en) Method compositions for treating the inflammatory response
US6670334B2 (en) Method and compositions for treating the inflammatory response
EP1044004A1 (en) A2a adenosine receptor agonists in combination with a type iv phosphodiesterase inhibitors
WO2000072799A2 (en) Method and compositions for treating the inflammatory response
US5877180A (en) Method for treating inflammatory diseases with A2a adenosine receptor agonists
JP4980530B2 (en) Pharmaceutical composition comprising an adenosine receptor agonist or antagonist
US6579857B1 (en) Combination cancer therapy comprising adenosine and deaminase enzyme inhibitors
US7378400B2 (en) Method to reduce an inflammatory response from arthritis
US6329349B1 (en) Methods for reducing ischemic injury of the heart via the sequential administration of monophosphoryl lipid A and adenosine receptor agents
US7427606B2 (en) Method to reduce inflammatory response in transplanted tissue
WO1994001105A1 (en) Method of treating hyperproliferative vascular disease
US20070032450A1 (en) New compositions and methods for the treatment of inflammation
AU2004216891B2 (en) Use of adenosine receptor agonists in therapy
EP1272897A2 (en) Adenosine a2a receptor antagonists for treating and preventing hepatic fibrosis, cirrhosis and fatty liver
JP2024096939A (en) Method and pharmaceutical composition for treating patient suffering from myeloproliferative disorder
US6103702A (en) Use of adenosine deaminase inhibitors to treat systemic inflammatory response syndrome
WO1994017809A1 (en) Adenosine deaminase inhibitor therapies
US6790839B2 (en) Pharmaceutical administration of adenosine agonists
JP2010529984A (en) Interferon alpha sequential regimen for treating cancer
EP1056459B1 (en) Treatment of hiv infections
Miura et al. Ischemic preconditioning against infarction: Its mechanism and clinical implications

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF VIRGINIA;REEL/FRAME:021035/0218

Effective date: 20010522

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140910