US20020081204A1 - Flush bucket cover - Google Patents

Flush bucket cover Download PDF

Info

Publication number
US20020081204A1
US20020081204A1 US09/741,004 US74100400A US2002081204A1 US 20020081204 A1 US20020081204 A1 US 20020081204A1 US 74100400 A US74100400 A US 74100400A US 2002081204 A1 US2002081204 A1 US 2002081204A1
Authority
US
United States
Prior art keywords
tenon
aperture
cover
bucket
planar surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/741,004
Other versions
US6454534B1 (en
Inventor
Mark Burnett
Daniel Trembley
Maurice Fournier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US09/741,004 priority Critical patent/US6454534B1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOURNIER, MAURICE D., TREMBLEY, DANIEL RANDOLPH, BURNETT, MARK EDWARD
Publication of US20020081204A1 publication Critical patent/US20020081204A1/en
Application granted granted Critical
Publication of US6454534B1 publication Critical patent/US6454534B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Definitions

  • the present invention relates to turbomachinery and more particularly, to a bucket cover having an aperture structure for mounting to a turbine blade.
  • bucket covers are connected to the top ends of turbine blades or buckets to dampen vibration and prevent twisting of the blades.
  • the bucket covers work with a seal to keep gas or steam from leaking away from the turbine blades.
  • Some bucket covers are integrally formed with the turbine blades.
  • Other bucket covers are small flat plates attached to the end of the bucket by reception of a tenon on the bucket through an opening in the cover and deforming the tenon to form a button on the outer surface.
  • Each turbine blade or bucket has an upwardly projecting tenon that is received in an aperture of a mating bucket cover. Once a cover is fitted onto the tenon, the bucket cover is attached to the turbine blade by peening or deforming the tenon to form a button head on top of the aperture to secure the cover to the blade similar to a rivet.
  • manual peening lengthens the cycle time to attach the bucket covers to the turbine blades.
  • FIG. 1 shows a partial sectional view of a conventional deformed “button” tenon and a bucket cover 1 . The excess deformed material as a result of peening the tenon remains as a rounded button 2 on the top surface of the bucket cover.
  • the opening 4 in the conventional cover 1 is straight-sided and provides no structure to engage the deformed tenon. Also, conventional “button” tenon and cover configurations did not provide an optimum steam sealing surface. In addition, during operation, the excess material erodes away due to solid particle erosion within the turbine. The solid particle erosion and the centrifugal force tends to weaken the conventional button cover fastening arrangement shortening the cycle time between replacement and inspections.
  • FIG. 2 shows a partial sectional view of a another prior art connection between a bucket and its cover 1 .
  • One proposed solution to the solid particle erosion problems of button assemblies was to provide a “foxhole” or recess 6 in cover 1 to accommodate the button 2 .
  • the “foxhole” bucket covers must also be manually peened thereby lengthening manufacturing time.
  • opening 4 has a straight sidewall that provides no structure to help retain the deformed tenon.
  • this foxhole arrangement is still affected by solid particle erosion by providing sharp angular areas where solid particles can collect. The solid particle erosion and the centrifugal force still tends to weaken the “foxhole” cover fastening arrangement. While, the cycle time between replacement and inspections might have been slightly improved with this design, any further improvement in cycle time is advantageous.
  • a flush bucket cover addresses the drawbacks of the conventional covers by providing structural modifications, which result in both operational and manufacturing advantages.
  • the aperture in the inventive bucket cover has a complex geometry compared to the straight-sided apertures of the prior art. Broadly, the aperture has multiple surfaces in the sidewall so that when the tenon is deformed to fill the aperture during assembly, the tenon will be structurally engaged to the sidewall surfaces of the aperture. More specifically, moving from the outer surface of the cover toward the inner surface which is in contact with the bucket, the aperture has a relatively large outer opening with a periphery defined by a curved shoulder.
  • a beveled surface transitions the sidewall to a vertical throat which has a size corresponding generally to the tenon size, and another beveled surface transitions from the vertical throat to the inner surface of the cover.
  • the aperture resembles a chalice shape with the larger mouth of the chalice shape defining the outer surface of the aperture, and the narrowest throat of the chalice shape defining the size of the tenon.
  • a turbine bucket In a completely assembled bucket and cover, a turbine bucket has a deformed tenon extending from a radial tip of the turbine blade and a bucket cover portion attached to the radial tip.
  • the bucket cover comprises an aperture having an engageable geometry to retain the deformed tenon having a mating geometry that fills the aperture.
  • the bucket cover is fastened to the turbine bucket by the aperture and tenon structure.
  • a method of assembling a bucket cover to a turbine bucket for turbomachinery equipment comprises the steps of: fitting a bucket cover with an opening having a plurality of sidewall surfaces onto a tenon of a turbine bucket so that a portion of the tenon extends above an outer surface of the cover; applying compressive force to the tenon so as to deform the tenon and thereby fill the opening of the cover and forming a button head on the outer surface of the cover; removing the button head and a planar portion of the cover to provide an assembly in which the tenon and the bucket cover are flush with one another.
  • the present invention thus provides a cover or shroud for turbine buckets, which has an aperture with an engaging structure for retaining a deformed tenon of a bucket.
  • This structural attachment of the aperture-tenon connection provides a secure connection that is more resistant to centrifugal forces than a conventional button head attachment.
  • the structure of the aperture-tenon connection also enables the button head to be removed so as to eliminate solid particle erosion problems.
  • FIG. 1 is a partial sectional view of a conventional peened “button” tenon and bucket cover
  • FIG. 2 is a partial sectional view of a conventional tenon and “foxhole” bucket cover arrangement
  • FIG. 3 is a partial perspective view of an exemplary embodiment of a turbine wheel with turbine buckets having bucket covers attached thereto;
  • FIG. 4 is a perspective assembly view of an exemplary embodiment of a portion of a bucket cover and a tenon of a turbine blade of FIG. 3;
  • FIG. 5 is a partial top plan view of the bucket cover of FIG. 4;
  • FIG. 6 is a cross-sectional view of the bucket cover taken along line 6 - 6 of FIG. 5;
  • FIG. 7 is a cross-sectional view similar to FIG. 6 of the tenon and bucket cover arrangement of FIG. 4 after deformation of the tenon;
  • FIG. 8 is a cross-sectional view of the tenon and bucket cover of FIG. 7 after machining to provide a flush bucket cover.
  • Each turbine blade or bucket 10 comprises a bucket cover or shroud 12 , a tenon 14 extending from a radial tip 16 , and a root or base 18 for mounting to rotor wheel 11 .
  • Bucket cover 12 is attached to radial tip 16 of the turbine blade in which an outer surface 20 of the tenon and an outer surface of the bucket cover are flush with one another.
  • Bucket cover 12 comprises an aperture 22 having a sidewall with an engageable geometry for engaging and retaining a tenon deformed to fill the aperture as shown in FIGS. 7 and 8.
  • the engageable geometry can be a broad variety of multiple surfaces such that when the tenon is peened and deformed during assembly, the bucket cover is fixed relative to the turbine bucket, and remains securely fixed during operation of the turbine.
  • aperture 22 has a shoulder 24 which when filled with the deformed tenon will provide a mating protrusion in the tenon.
  • FIG. 5 illustrates a partial top plan view of the bucket cover 12 with aperture 22 .
  • Outer periphery 26 of aperture 22 resembles a rectangle having rounded corners, and moving from the outer periphery to the inner periphery, aperture 22 includes several radii 28 for the rounded corners of the various surfaces. These radii can be varied or adjusted accordingly to the proportions of undeformed tenon 14 . Also, the width and length of aperture 22 may be adjusted to the portions of the undeformed tenon 14 .
  • a generally rectangular shape for a tenon is shown in the drawings, any number of shapes for the tenon and mating aperture such as circular, oval, airfoil shaped or other geometry, are contemplated to be within the scope of the invention
  • Aperture 22 comprises a sidewall 30 extending between an outer surface 23 and an inner surface 25 of bucket cover 12 .
  • Sidewall 30 comprises a shoulder portion 24 extending from the sidewall and toward the center axis of aperture 22 .
  • shoulder portion 24 abuts against and engages a mating, outer peripheral surface 32 of tenon 14 , in a deformed state, to secure bucket cover 12 in place.
  • sidewall 30 has a plurality of engagement surfaces for retaining deformed tenon 14 : a curved surface 34 forming the shoulder portion, a beveled surface 36 transitioning between the shoulder portion and a vertical throat surface 38 and an inner bevel surface 40 transitioning between the throat surface and the inner planar surface of the cover. Each surface is described in detail herein.
  • Curved surface 34 extends downward from outer planar surface 23 and includes a concave or bowl-like structure inside of the periphery of aperture 22 to define shoulder portion 24 .
  • the shape of curved surface 34 was determined by examining the shape of a tenon which was peened while unrestrained, and resembles a mushroom shape. By designing surface 34 in this manner, the aperture of the present invention takes advantage of the tenon's natural deformation tendencies under compressive force, and thereby presents an aperture that can be filled when the tenon is deformed without excess handling or molding of the material. In some applications, it will be advantageous to size radius 29 to the proportions of a tenon that was deformed unrestrained.
  • Bevel surface 36 is a transition surface integrally formed between curved surface 34 and vertical throat surface 38 .
  • Bevel surface 36 comprises an inclined surface extending between an outer edge 44 adjacent to curved surface 34 , and an inner edge 46 adjacent to vertical throat 38 .
  • Vertical throat surface 38 is disposed substantially in a perpendicular direction relative to outer planar surface 20 and inner planar surface 25 .
  • the peripheral shape of vertical throat surface 38 is adapted to mate with the corresponding outer peripheral surface 32 of tenon 14 , as shown in FIG. 4.
  • Inner bevel surface 40 comprises an inclined surface extending between and transitioning between vertical throat surface 38 and inner planar surface 25 . As seen in FIGS. 6 - 8 , these multiple surfaces of aperture 22 in the cover present multiple surfaces of engagement for a tenon that is deformed to fill aperture 22 .
  • FIGS. 7 - 8 Because the vertical throat surface 38 is narrower than both the outer curved surface 34 and inner bevel surface 40 , when a tenon is deformed in the aperture the tenon material will abut against these surfaces, and engage the cover on the bucket, FIGS. 7 - 8 .
  • the aperture with its mating deformed tenon provide structural engagement of the bucket and bucket cover without having to rely on a button head formed at the outer surface of the cover as in the prior art.
  • aperture 22 includes a variable cross sectional shape that structurally engages deformed tenon 14 .
  • the engageable geometry or cross sectional shape may be any structure that extends into the aperture of a bucket cover and secures it after a tenon is deformed to fill the aperture.
  • the engageable geometry can be formed by a series of grooves, thread-like extensions, a convex protrusion, prismic or other structures that extend from the sidewall of the aperture.
  • resistance to a shear force between sidewall 30 and the deformed tenon is significantly increased by the engageable geometry of aperture 22 .
  • This resistance to shearing is advantageous because during operation, rotor wheel 11 develops a substantial dynamic centrifugal force acting on bucket cover 12 that tends to separate it from the turbine blade. Under the effect of the centrifugal force, a shear force is exerted along the sidewall of aperture 22 , and this shear force can result in the cover being broken away through the deformed tenon. This is a problem with prior art tenons which are disposed in straight-sided apertures and fastened to the turbine bucket tip only by the button head formed at the outer surface.
  • pull strength is herein defined as the force magnitude at which the bucket cover will separate from the turbine blade. This pull strength serves a proxy for the developed shear force due to rotation of the turbine. Tests of an embodiment of a bucket cover has shown the pull strength has been increased at least 16% over required threshold levels.
  • the present invention advantageously reduces the likelihood that bucket cover 12 will slice or shear through deformed tenon 14 .
  • the multiple surface aperture extends the operational life of the turbine and lengthens the periodic maintenance cycle for inspection and repair.
  • Bucket cover 12 fits over undeformed tenon 14 during a rotor wheel assembly process, FIG. 4. Undeformed tenon 14 is extended into and through aperture 22 of bucket cover 12 so that the bucket cover is seated on the radial tip of the turbine blade with its outer surface 23 exposed, and its inner surface 25 abutting against the blade.
  • the tenon is then deformed so that the tenon material fills aperture 22 to provide a secure structural engagement, FIGS. 7 - 8 .
  • the tenon can be deformed by any suitable localized compressive force applied to the tenon, such as manual or automated peening. This compressive force may be radially aligned with the turbine blade.
  • a button head is formed on the outer surface of the cover.
  • the button head along with a thin layer, d, of the outer surface of the cover is removed, FIG. 7.
  • This removal step makes the top surface of the bucket cover and the exposed part of the tenon flush with one another and presents a smooth outer surface.
  • the removal of material can be accomplished in a number of ways.
  • the assembled turbine bucket with the deformed tenon button head is turned on a lathe.
  • the lathe provides a controlled cutting process. Other machining processes may be used as well.
  • a smooth outer surface of the bucket cover is provided to improve surface erosion problems experienced with the prior art.
  • the flush bucket cover of the present invention also eliminates any spaces in which solid particles can collect.
  • the bucket cover can be constructed of various metals suitable for use in turbomachinery.
  • the bucket cover can be molded or machined using conventional manufacturing processes, including the engagement surfaces 34 , 36 , 38 and 40 within aperture 22 .
  • bevel surface 36 and inner bevel surface 40 can be made by machining a chamfer on those respective edges.
  • the cost to make the bucket cover is relatively inexpensive, particularly in light of the structural advantages it provides.
  • Bucket cover 12 can replace a conventional foxhole bucket cover to provide improved sealing with a labyrinth seal in steam turbines and reduce solid particle erosion.
  • the size and shape of the bucket cover is not limited by the embodiments of the present invention. While a single bucket cover has been described having aperture 22 , a common bucket cover may have a plurality of apertures to accommodate a series of adjacent turbine blades. The apertures would have the previously described geometry.
  • the outer geometry of the bucket cover 12 can be any appropriate configuration, such as a “Z”-shape configuration as disclosed in commonly assigned U.S. Pat. No. 6,036,437 to Wolfe et al., which is herein incorporated by reference.
  • a bucket cover having an aperture with intersecting surfaces that retains and engages a tenon in a deformed state. This aperture keeps the bucket cover securely fastened to the radial tip of a turbine blade.
  • the bucket cover may have a flush outer surface for improved sealing within a turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A bucket cover to be attached to the tip of a turbine bucket has an aperture with an engageable geometry for receiving a tenon extending from the bucket and retaining the bucket cover to the bucket. The cover has an outer planar surface, an inner planar surface to abut against the bucket and an aperture extending between its surfaces. The aperture is defined by a sidewall that has multiple surfaces of varying cross-sectional size so as to structurally engage a tenon that is deformed during assembly. The sidewall of the aperture has a concave curved portion adjacent the outer planar surface leading to a narrow throat portion that corresponds generally to the size and shape of an undeformed tenon. In a method of making a turbine blade attached to a bucket cover, after a tenon is received in the aperture, the tenon is deformed by application of compressive force so that the tenon fills the aperture of the cover. The deformed tenon engages the various surfaces of the aperture sidewall to secure the cover on the bucket. The button head that is formed on the outer planar surface of the cover by excess tenon material is removed along with a thin layer of the outer planar surface of the bucket in order to provide a smooth, flush outer surface.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to turbomachinery and more particularly, to a bucket cover having an aperture structure for mounting to a turbine blade. In turbomachinery equipment, bucket covers are connected to the top ends of turbine blades or buckets to dampen vibration and prevent twisting of the blades. The bucket covers work with a seal to keep gas or steam from leaking away from the turbine blades. Some bucket covers are integrally formed with the turbine blades. Other bucket covers are small flat plates attached to the end of the bucket by reception of a tenon on the bucket through an opening in the cover and deforming the tenon to form a button on the outer surface. During operation of the turbomachinery equipment, a centrifugal force tends to pull the bucket covers away from the top end of the turbine blades, thus it is critical that the bucket cover be securely fastened to the tenon so that the cover stays connected for long periods of operational cycles. [0001]
  • Each turbine blade or bucket has an upwardly projecting tenon that is received in an aperture of a mating bucket cover. Once a cover is fitted onto the tenon, the bucket cover is attached to the turbine blade by peening or deforming the tenon to form a button head on top of the aperture to secure the cover to the blade similar to a rivet. In the manufacture and maintenance of turbine equipment, manual peening lengthens the cycle time to attach the bucket covers to the turbine blades. FIG. 1 shows a partial sectional view of a conventional deformed “button” tenon and a bucket cover [0002] 1. The excess deformed material as a result of peening the tenon remains as a rounded button 2 on the top surface of the bucket cover. The opening 4 in the conventional cover 1 is straight-sided and provides no structure to engage the deformed tenon. Also, conventional “button” tenon and cover configurations did not provide an optimum steam sealing surface. In addition, during operation, the excess material erodes away due to solid particle erosion within the turbine. The solid particle erosion and the centrifugal force tends to weaken the conventional button cover fastening arrangement shortening the cycle time between replacement and inspections.
  • FIG. 2 shows a partial sectional view of a another prior art connection between a bucket and its cover [0003] 1. One proposed solution to the solid particle erosion problems of button assemblies was to provide a “foxhole” or recess 6 in cover 1 to accommodate the button 2. The “foxhole” bucket covers must also be manually peened thereby lengthening manufacturing time. Further, opening 4 has a straight sidewall that provides no structure to help retain the deformed tenon. In addition, this foxhole arrangement is still affected by solid particle erosion by providing sharp angular areas where solid particles can collect. The solid particle erosion and the centrifugal force still tends to weaken the “foxhole” cover fastening arrangement. While, the cycle time between replacement and inspections might have been slightly improved with this design, any further improvement in cycle time is advantageous.
  • Thus, what is needed is an apparatus and method of securing a bucket cover to a turbine bucket so that the attachment is secure, assembly efficient and cycle time between periodic maintenance inspections lengthened. [0004]
  • BRIEF SUMMARY OF THE INVENTION
  • Briefly, in one embodiment of the present invention, a flush bucket cover addresses the drawbacks of the conventional covers by providing structural modifications, which result in both operational and manufacturing advantages. The aperture in the inventive bucket cover has a complex geometry compared to the straight-sided apertures of the prior art. Broadly, the aperture has multiple surfaces in the sidewall so that when the tenon is deformed to fill the aperture during assembly, the tenon will be structurally engaged to the sidewall surfaces of the aperture. More specifically, moving from the outer surface of the cover toward the inner surface which is in contact with the bucket, the aperture has a relatively large outer opening with a periphery defined by a curved shoulder. A beveled surface transitions the sidewall to a vertical throat which has a size corresponding generally to the tenon size, and another beveled surface transitions from the vertical throat to the inner surface of the cover. Seen in cross-section, the aperture resembles a chalice shape with the larger mouth of the chalice shape defining the outer surface of the aperture, and the narrowest throat of the chalice shape defining the size of the tenon. To assemble the cover to the bucket, a tenon of the bucket is received in the aperture with a portion of the tenon extending above the outer surface of the cover. The protruding portion of the tenon is worked by peening to deform the entire tenon to fill the aperture. In this way the tenon takes on the shape of the aperture. The deformed tenon is thereby engaged to multiple surfaces of the aperture to secure the cover to the bucket. [0005]
  • In a completely assembled bucket and cover, a turbine bucket has a deformed tenon extending from a radial tip of the turbine blade and a bucket cover portion attached to the radial tip. The bucket cover comprises an aperture having an engageable geometry to retain the deformed tenon having a mating geometry that fills the aperture. Thus the bucket cover is fastened to the turbine bucket by the aperture and tenon structure. [0006]
  • A method of assembling a bucket cover to a turbine bucket for turbomachinery equipment, comprises the steps of: fitting a bucket cover with an opening having a plurality of sidewall surfaces onto a tenon of a turbine bucket so that a portion of the tenon extends above an outer surface of the cover; applying compressive force to the tenon so as to deform the tenon and thereby fill the opening of the cover and forming a button head on the outer surface of the cover; removing the button head and a planar portion of the cover to provide an assembly in which the tenon and the bucket cover are flush with one another. [0007]
  • The present invention thus provides a cover or shroud for turbine buckets, which has an aperture with an engaging structure for retaining a deformed tenon of a bucket. This structural attachment of the aperture-tenon connection provides a secure connection that is more resistant to centrifugal forces than a conventional button head attachment. In addition, the structure of the aperture-tenon connection also enables the button head to be removed so as to eliminate solid particle erosion problems. These advantages result in a more reliable attachment, which increases the time between maintenance intervals.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial sectional view of a conventional peened “button” tenon and bucket cover; [0009]
  • FIG. 2 is a partial sectional view of a conventional tenon and “foxhole” bucket cover arrangement; [0010]
  • FIG. 3 is a partial perspective view of an exemplary embodiment of a turbine wheel with turbine buckets having bucket covers attached thereto; [0011]
  • FIG. 4 is a perspective assembly view of an exemplary embodiment of a portion of a bucket cover and a tenon of a turbine blade of FIG. 3; [0012]
  • FIG. 5 is a partial top plan view of the bucket cover of FIG. 4; [0013]
  • FIG. 6 is a cross-sectional view of the bucket cover taken along line [0014] 6-6 of FIG. 5;
  • FIG. 7 is a cross-sectional view similar to FIG. 6 of the tenon and bucket cover arrangement of FIG. 4 after deformation of the tenon; and [0015]
  • FIG. 8 is a cross-sectional view of the tenon and bucket cover of FIG. 7 after machining to provide a flush bucket cover.[0016]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIGS. 3 and 4, a plurality of [0017] turbine blades 10 are radially mounted at regular intervals around a rotor wheel 11. Each turbine blade or bucket 10 comprises a bucket cover or shroud 12, a tenon 14 extending from a radial tip 16, and a root or base 18 for mounting to rotor wheel 11. Bucket cover 12 is attached to radial tip 16 of the turbine blade in which an outer surface 20 of the tenon and an outer surface of the bucket cover are flush with one another. Bucket cover 12 comprises an aperture 22 having a sidewall with an engageable geometry for engaging and retaining a tenon deformed to fill the aperture as shown in FIGS. 7 and 8. The engageable geometry can be a broad variety of multiple surfaces such that when the tenon is peened and deformed during assembly, the bucket cover is fixed relative to the turbine bucket, and remains securely fixed during operation of the turbine.
  • In the embodiment of the invention described herein, [0018] aperture 22 has a shoulder 24 which when filled with the deformed tenon will provide a mating protrusion in the tenon. FIG. 5 illustrates a partial top plan view of the bucket cover 12 with aperture 22. Outer periphery 26 of aperture 22 resembles a rectangle having rounded corners, and moving from the outer periphery to the inner periphery, aperture 22 includes several radii 28 for the rounded corners of the various surfaces. These radii can be varied or adjusted accordingly to the proportions of undeformed tenon 14. Also, the width and length of aperture 22 may be adjusted to the portions of the undeformed tenon 14. Although a generally rectangular shape for a tenon is shown in the drawings, any number of shapes for the tenon and mating aperture such as circular, oval, airfoil shaped or other geometry, are contemplated to be within the scope of the invention
  • [0019] Aperture 22 comprises a sidewall 30 extending between an outer surface 23 and an inner surface 25 of bucket cover 12. Sidewall 30 comprises a shoulder portion 24 extending from the sidewall and toward the center axis of aperture 22. In operation, shoulder portion 24 abuts against and engages a mating, outer peripheral surface 32 of tenon 14, in a deformed state, to secure bucket cover 12 in place. Besides shoulder portion 24, sidewall 30 has a plurality of engagement surfaces for retaining deformed tenon 14: a curved surface 34 forming the shoulder portion, a beveled surface 36 transitioning between the shoulder portion and a vertical throat surface 38 and an inner bevel surface 40 transitioning between the throat surface and the inner planar surface of the cover. Each surface is described in detail herein.
  • [0020] Curved surface 34 extends downward from outer planar surface 23 and includes a concave or bowl-like structure inside of the periphery of aperture 22 to define shoulder portion 24. The shape of curved surface 34 was determined by examining the shape of a tenon which was peened while unrestrained, and resembles a mushroom shape. By designing surface 34 in this manner, the aperture of the present invention takes advantage of the tenon's natural deformation tendencies under compressive force, and thereby presents an aperture that can be filled when the tenon is deformed without excess handling or molding of the material. In some applications, it will be advantageous to size radius 29 to the proportions of a tenon that was deformed unrestrained.
  • [0021] Bevel surface 36 is a transition surface integrally formed between curved surface 34 and vertical throat surface 38. Bevel surface 36 comprises an inclined surface extending between an outer edge 44 adjacent to curved surface 34, and an inner edge 46 adjacent to vertical throat 38.
  • [0022] Vertical throat surface 38 is disposed substantially in a perpendicular direction relative to outer planar surface 20 and inner planar surface 25. The peripheral shape of vertical throat surface 38 is adapted to mate with the corresponding outer peripheral surface 32 of tenon 14, as shown in FIG. 4. Inner bevel surface 40 comprises an inclined surface extending between and transitioning between vertical throat surface 38 and inner planar surface 25. As seen in FIGS. 6-8, these multiple surfaces of aperture 22 in the cover present multiple surfaces of engagement for a tenon that is deformed to fill aperture 22. Because the vertical throat surface 38 is narrower than both the outer curved surface 34 and inner bevel surface 40, when a tenon is deformed in the aperture the tenon material will abut against these surfaces, and engage the cover on the bucket, FIGS. 7-8. The aperture with its mating deformed tenon provide structural engagement of the bucket and bucket cover without having to rely on a button head formed at the outer surface of the cover as in the prior art.
  • The present invention is not limited to the illustrated embodiments of the engageable geometry of [0023] aperture 22. Broadly aperture 22 includes a variable cross sectional shape that structurally engages deformed tenon 14. The engageable geometry or cross sectional shape may be any structure that extends into the aperture of a bucket cover and secures it after a tenon is deformed to fill the aperture. In other embodiments of the invention, the engageable geometry can be formed by a series of grooves, thread-like extensions, a convex protrusion, prismic or other structures that extend from the sidewall of the aperture.
  • In the embodiment of the invention shown in FIGS. [0024] 3-8, resistance to a shear force between sidewall 30 and the deformed tenon is significantly increased by the engageable geometry of aperture 22. This resistance to shearing is advantageous because during operation, rotor wheel 11 develops a substantial dynamic centrifugal force acting on bucket cover 12 that tends to separate it from the turbine blade. Under the effect of the centrifugal force, a shear force is exerted along the sidewall of aperture 22, and this shear force can result in the cover being broken away through the deformed tenon. This is a problem with prior art tenons which are disposed in straight-sided apertures and fastened to the turbine bucket tip only by the button head formed at the outer surface.
  • The structural engagement of the deformed tenon in the aperture of the present invention increases the assembly's resistance to these forces. To test for resistance to those forces, pull strength is herein defined as the force magnitude at which the bucket cover will separate from the turbine blade. This pull strength serves a proxy for the developed shear force due to rotation of the turbine. Tests of an embodiment of a bucket cover has shown the pull strength has been increased at least 16% over required threshold levels. The present invention advantageously reduces the likelihood that [0025] bucket cover 12 will slice or shear through deformed tenon 14. Thus, the multiple surface aperture extends the operational life of the turbine and lengthens the periodic maintenance cycle for inspection and repair.
  • Also, advantageously, since the engagement of the deformed tenon and the aperture occurs between [0026] outer surface 23 and inner surface 25, there is no longer a use or need for a top button head formed during tenon deformation to remain on the outer surface. So in applications where a flush outer surface is desired, after the bucket cover is assembled to the tenon, and the tenon deformed, the button head along with a thin layer off of the outer surface is removed by machining or other suitable means to provide a flush surface between bucket cover 12 and the bucket tenon 14, FIGS. 7-8. Providing the flush outer surface eliminates the problems experienced with solid particle erosion in the past. In addition, since the tenon button head is removed, the particular shape of the button head is less important than with conventional techniques. The assembly of the present invention is therefore more amenable to automated peening operations which can significantly reduce manufacture time and therefore costs.
  • The method of making or assembling each [0027] turbine blade 10 with bucket cover 12 is now described. Bucket cover 12 fits over undeformed tenon 14 during a rotor wheel assembly process, FIG. 4. Undeformed tenon 14 is extended into and through aperture 22 of bucket cover 12 so that the bucket cover is seated on the radial tip of the turbine blade with its outer surface 23 exposed, and its inner surface 25 abutting against the blade.
  • The tenon is then deformed so that the tenon material fills [0028] aperture 22 to provide a secure structural engagement, FIGS. 7-8. The tenon can be deformed by any suitable localized compressive force applied to the tenon, such as manual or automated peening. This compressive force may be radially aligned with the turbine blade.
  • After the tenon is deformed, a button head is formed on the outer surface of the cover. The button head along with a thin layer, d, of the outer surface of the cover is removed, FIG. 7. This removal step makes the top surface of the bucket cover and the exposed part of the tenon flush with one another and presents a smooth outer surface. The removal of material can be accomplished in a number of ways. In a preferred embodiment, the assembled turbine bucket with the deformed tenon button head is turned on a lathe. The lathe provides a controlled cutting process. Other machining processes may be used as well. In this manner, a smooth outer surface of the bucket cover is provided to improve surface erosion problems experienced with the prior art. In contrast to the conventional foxhole aperture, the flush bucket cover of the present invention also eliminates any spaces in which solid particles can collect. [0029]
  • The bucket cover can be constructed of various metals suitable for use in turbomachinery. The bucket cover can be molded or machined using conventional manufacturing processes, including the engagement surfaces [0030] 34, 36, 38 and 40 within aperture 22. For instance, bevel surface 36 and inner bevel surface 40 can be made by machining a chamfer on those respective edges. Thus, the cost to make the bucket cover is relatively inexpensive, particularly in light of the structural advantages it provides.
  • In an embodiment of the bucket cover, various types of turbomachinery can benefit from using the present invention. [0031] Bucket cover 12 can replace a conventional foxhole bucket cover to provide improved sealing with a labyrinth seal in steam turbines and reduce solid particle erosion. The size and shape of the bucket cover is not limited by the embodiments of the present invention. While a single bucket cover has been described having aperture 22, a common bucket cover may have a plurality of apertures to accommodate a series of adjacent turbine blades. The apertures would have the previously described geometry. Also, the outer geometry of the bucket cover 12 can be any appropriate configuration, such as a “Z”-shape configuration as disclosed in commonly assigned U.S. Pat. No. 6,036,437 to Wolfe et al., which is herein incorporated by reference.
  • Thus, what has been described are embodiments of a bucket cover having an aperture with intersecting surfaces that retains and engages a tenon in a deformed state. This aperture keeps the bucket cover securely fastened to the radial tip of a turbine blade. The bucket cover may have a flush outer surface for improved sealing within a turbine. [0032]
  • While the invention has been described with reference to preferred or exemplary embodiments, it will be understood by those of ordinary skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing form the scope of the invention. In addition, many modifications may be made to adapt to particular situations or materials to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims. [0033]

Claims (18)

What is claimed is:
1. A cover adapted to attach to a turbine blade having a tenon extending radially therefrom, said cover comprising:
an outer planar surface;
an inner planar surface adapted to abut against the turbine blade; and
an aperture extending between said outer planar surface and said inner planar surface, said aperture defined by a sidewall having at least two surfaces angled relative to one another for engaging the tenon when the tenon is deformed to fill said aperture.
2. The cover of claim 1, wherein said at least two surfaces define a passage in said aperture that is smaller in cross-section than said aperture at said outer planar surface.
3. The cover of claim 1, wherein said sidewall includes a curved surface adjacent said outer planar surface to define an outer opening of said aperture.
4. The cover of claim 3, wherein said sidewall further includes a substantially perpendicular surface perpendicular to said outer planar surface and defining a passage of said aperture narrower than said outer opening and adapted to correspond to the shape of an undeformed tenon.
5. The cover of claim 4, wherein said sidewall further includes an inclined surface to transition between said curved surface and said vertical surface.
6. The cover of claim 4, wherein said sidewall further includes an inner inclined surface transitioning between said perpendicular surface and said inner planar surface and defining an inner opening to said aperture.
7. The cover of claim 3, wherein said curved surface is concave relative to said outer planar surface.
8. A turbine bucket assembly comprising:
a turbine bucket having a deformable tenon extending from a radial tip of the bucket; and
a cover having parallel planar surfaces and an aperture with a sidewall structure having at least two sections of varying cross-sectional size extending therethrough, said tenon received in said aperture and engaging said sidewall structure when the tenon is deformed to fill said aperture.
9. The assembly of claim 8, wherein said sidewall structure comprises a concave section relative to one of said planar surfaces of said cover.
10. The assembly of claim 9, wherein said sidewall structure further comprises a straight throat section adjacent to said concave section, said straight throat section having a cross-sectional area smaller than said concave section.
11. The assembly of claim 10, wherein said sidewall structure further includes an inclined surface to transition between said concave section and said throat section.
12. The assembly of claim 8, wherein an outer planar surface of said cover is flush with said tenon when said tenon is deformed in said aperture.
13. A method of making a turbine bucket with a turbine bucket cover comprising:
inserting a tenon of the turbine bucket through an aperture with at least two sections of varying size in the bucket cover; and
deforming the tenon so that the tenon material fills the aperture and engages the sections of the aperture to thereby attach the bucket cover to the turbine bucket.
14. The method of claim 13, further comprising the step of removing deformed tenon material extending beyond the aperture.
15. The method of claim 14, wherein said step of removing tenon material also includes removing a layer of the bucket cover material to provide a flush outer surface.
16. The method of claim 13, wherein said step of deforming the tenon comprises applying compressive force to the tenon.
17. The method of claim 16, wherein said step of applying compressive force to the tenon comprises peening.
18. The method of claim 17, wherein said step of applying compressive force comprises automated peening.
US09/741,004 2000-12-21 2000-12-21 Flush bucket cover Expired - Fee Related US6454534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/741,004 US6454534B1 (en) 2000-12-21 2000-12-21 Flush bucket cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/741,004 US6454534B1 (en) 2000-12-21 2000-12-21 Flush bucket cover

Publications (2)

Publication Number Publication Date
US20020081204A1 true US20020081204A1 (en) 2002-06-27
US6454534B1 US6454534B1 (en) 2002-09-24

Family

ID=24978967

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/741,004 Expired - Fee Related US6454534B1 (en) 2000-12-21 2000-12-21 Flush bucket cover

Country Status (1)

Country Link
US (1) US6454534B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526657B2 (en) * 2001-05-07 2003-03-04 General Electric Company Methods for automated peening of tenons connecting turbine buckets and cover plates
US20070074554A1 (en) * 2005-09-30 2007-04-05 Roberts Dennis W Method and apparatus for self indexing portable automated tenon peening
US20070084051A1 (en) * 2005-10-18 2007-04-19 General Electric Company Methods of welding turbine covers and bucket tips
CH702672A1 (en) * 2010-02-10 2011-08-15 Alstom Technology Ltd Method for joining of blades of turbine with cover band element, involves providing multiple blades arranged on blade carrier, which have rivet shanks at blade tips
CN102797510A (en) * 2011-05-23 2012-11-28 株式会社东芝 Turbine rotor blade and steam turbine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644924B1 (en) * 2002-05-31 2003-11-11 General Electric Company Covers for turbine buckets and methods of assembly
US6851926B2 (en) 2003-03-07 2005-02-08 General Electric Company Variable thickness turbine bucket cover and related method
US7059821B2 (en) 2003-05-07 2006-06-13 General Electric Company Method and apparatus to facilitate sealing within turbines
US7274121B2 (en) * 2005-03-04 2007-09-25 Remy Inc. Systems and methods for fastening internal cooling fans to claw-pole electro-mechanical machines
US20070107218A1 (en) * 2005-10-31 2007-05-17 General Electric Company Formed tenons for gas turbine stator vanes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315655A (en) * 1942-01-23 1943-04-06 Westinghouse Electric & Mfg Co Turbine blade shroud fastening
US2336859A (en) * 1942-08-19 1943-12-14 Westinghouse Electric & Mfg Co Turbine blade apparatus
US2724544A (en) * 1951-05-25 1955-11-22 Westinghouse Electric Corp Stator shroud and blade assembly
DE1159965B (en) 1961-08-10 1963-12-27 Bbc Brown Boveri & Cie Device for vibration damping on a turbine or compressor blade ring
BE634692A (en) 1962-07-11 1963-11-18
US3572968A (en) * 1969-04-11 1971-03-30 Gen Electric Turbine bucket cover
US3752599A (en) 1971-03-29 1973-08-14 Gen Electric Bucket vibration damping device
FR2291349A1 (en) 1974-11-14 1976-06-11 Europ Turb Vapeur PROVISION FOR CONTINUOUS LINKAGE OF MOBILE BLADES OF A TURBO-MACHINE
JPS59215904A (en) * 1983-05-23 1984-12-05 Toshiba Corp Turbine bucket
US4710102A (en) 1984-11-05 1987-12-01 Ortolano Ralph J Connected turbine shrouding
DE3528640A1 (en) 1985-06-28 1987-01-08 Bbc Brown Boveri & Cie Blade lock for rim-straddling blades of turboengines
FR2612249B1 (en) 1987-03-12 1992-02-07 Alsthom MOBILE BLADES FOR STEAM TURBINES
US5133643A (en) * 1989-11-22 1992-07-28 Ortolano Ralph J Shroud fitting
GB2251034B (en) 1990-12-20 1995-05-17 Rolls Royce Plc Shrouded aerofoils
US5238368A (en) 1991-01-16 1993-08-24 Ortolano Ralph J Converting grouped blading to equivalent integral covered blading
US5261785A (en) 1992-08-04 1993-11-16 General Electric Company Rotor blade cover adapted to facilitate moisture removal
US6036437A (en) 1998-04-03 2000-03-14 General Electric Co. Bucket cover geometry for brush seal applications

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526657B2 (en) * 2001-05-07 2003-03-04 General Electric Company Methods for automated peening of tenons connecting turbine buckets and cover plates
US6606892B2 (en) 2001-05-07 2003-08-19 General Electric Company Apparatus for automated peening of tenons connecting turbine buckets and cover plates
US20070074554A1 (en) * 2005-09-30 2007-04-05 Roberts Dennis W Method and apparatus for self indexing portable automated tenon peening
US7389662B2 (en) * 2005-09-30 2008-06-24 General Electric Company Method and apparatus for self indexing portable automated tenon peening
US20070084051A1 (en) * 2005-10-18 2007-04-19 General Electric Company Methods of welding turbine covers and bucket tips
CH702672A1 (en) * 2010-02-10 2011-08-15 Alstom Technology Ltd Method for joining of blades of turbine with cover band element, involves providing multiple blades arranged on blade carrier, which have rivet shanks at blade tips
CN102797510A (en) * 2011-05-23 2012-11-28 株式会社东芝 Turbine rotor blade and steam turbine
US20140079551A1 (en) * 2011-05-23 2014-03-20 Kabushiki Kaisha Toshiba Turbine rotor blade and steam turbine
US9506354B2 (en) * 2011-05-23 2016-11-29 Kabushiki Kaisha Toshiba Turbine rotor and steam turbine

Also Published As

Publication number Publication date
US6454534B1 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
EP0757749B1 (en) Ramped dovetail rails for rotor blade assembly
US7165944B2 (en) Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US7594799B2 (en) Undercut fillet radius for blade dovetails
US7001152B2 (en) Shrouded turbine blades with locally increased contact faces
US4505642A (en) Rotor blade interplatform seal
US6454534B1 (en) Flush bucket cover
EP2149674B1 (en) Bladed turbine rotor with vibration damper
US5820346A (en) Blade damper for a turbine engine
US5554005A (en) Bladed rotor of a turbo-machine
US7121803B2 (en) Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
US6805530B1 (en) Center-located cutter teeth on shrouded turbine blades
GB2343225A (en) Stress relieved dovetail
CA2034478A1 (en) Gas turbine bladed disk
US5746578A (en) Retention system for bar-type damper of rotor
US20090297351A1 (en) Compressor rotor blade undercut
US4460315A (en) Turbomachine rotor assembly
US5749705A (en) Retention system for bar-type damper of rotor blade
US8992180B2 (en) Replaceable staking insert assembly and method
US4730984A (en) Bladed rotor structure having bifurcated blade roots
US7104759B2 (en) Compressor blade platform extension and methods of retrofitting blades of different blade angles
US6752594B2 (en) Split blade frictional damper
EP1698760B1 (en) Torque-tuned, integrally-covered bucket and related method
US4776764A (en) Structure for an axial flow elastic fluid utilizing machine
JPH0270904A (en) Rotor assembly of turbine
CN112313396A (en) Retaining system for a bladed wheel

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNETT, MARK EDWARD;TREMBLEY, DANIEL RANDOLPH;FOURNIER, MAURICE D.;REEL/FRAME:011593/0975;SIGNING DATES FROM 20010209 TO 20010214

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100924