US20020075385A1 - Alignment correction prior to image sampling in inspection systems - Google Patents
Alignment correction prior to image sampling in inspection systems Download PDFInfo
- Publication number
- US20020075385A1 US20020075385A1 US10/066,161 US6616102A US2002075385A1 US 20020075385 A1 US20020075385 A1 US 20020075385A1 US 6616102 A US6616102 A US 6616102A US 2002075385 A1 US2002075385 A1 US 2002075385A1
- Authority
- US
- United States
- Prior art keywords
- die
- alignment
- image
- images
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007689 inspection Methods 0.000 title abstract description 19
- 238000012937 correction Methods 0.000 title description 15
- 238000005070 sampling Methods 0.000 title description 14
- 230000007547 defect Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 21
- 230000032258 transport Effects 0.000 claims 2
- 235000012431 wafers Nutrition 0.000 description 17
- 230000006870 function Effects 0.000 description 5
- 238000012952 Resampling Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N21/95607—Inspecting patterns on the surface of objects using a comparative method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Definitions
- the present invention is related to sub-pixel image alignment in wafer inspection machines, particularly to the alignment of images both prior to and subsequent to scanning. Two alternate methods are taught, one for laser scanning and the other for scanning with a linear array.
- the most frequently used method for automatic inspection of photomasks or patterned semiconductor wafers utilizes comparison to detect defects.
- two supposedly identical patterns are compared by scanning and digitizing the images.
- the digitized images are then compared in high speed digital logic, or an image is compared with data stored in the CADS (Computer Aided Design System) database with data representing the desired pattern.
- CADS Computer Aided Design System
- Pat. No. 4,805,123 taught a method of achieving image subtraction by first reducing the registration error between the two images to less than a pixel.
- the Specht method had the shortcoming that in re-registering (also known as resampling) the two images with respect to each other, interpolation of the scanned image was used, which in turn introduced errors in determining the intensities of the resulting pixels. These errors limited sensitivity (the smallest detectable defect).
- the maximum intensity error determines the maximum detectable defect-to-pixel ratio. Since inspection speed, at a given sensitivity, defines the productivity of an inspection system, for a fixed sampling rate, it is desirable to maximize the pixel size. Therefore, to achieve the maximum throughput, one must minimize the registration error.
- the present invention teaches methods for minimizing the registration error for the two most common scanning methods: scanning with a laser and scanning with a linear array.
- the present invention is a method and apparatus, and variations of each, for inspecting a wafer defining at least one die thereon.
- the present invention first obtains the electronic image equivalent of two die, and then determines the x and y offset between those electronic images. Prior to inspection for defects, those two electronic images are aligned by adjusting the x and y positions of one electronic image of one die with respect to the electronic image of the other die. Once that is accomplished, the those electronic images are compared to detect any defects that may exist on one of the die.
- FIG. 1 illustrates the pixelization of a surface by an inspection system and the mis-alignment between two images.
- FIG. 2 is a block diagram of a diode array scanning system embodiment of the present invention.
- FIG. 2 a is the transparent reticle version of the system of FIG. 2.
- FIG. 3 a illustrates the scanning of multiple patterns from die-to-die inspection.
- FIG. 3 b illustrates the scanning of a single pattern for die-to-database inspection.
- FIG. 4 is a block diagram of a laser scanning system embodiment of the present invention.
- FIG. 4 a is the transparent reticle version of the system of FIG. 4.
- FIG. 5 is a sketch of a signal that is representative of the signal applied to the acousto-optic deflector/driver of FIG. 4 to correct for coarse x-direction mis-alignment of the wafer of the stage.
- the key to the present invention is the use of the same sampling points for both images, or the image of the die being viewed and the die equivalent in the data base, to be compared as will be seen from the following discussion.
- FIGS. 3 a and 3 b illustrate the typical serpentine scanning technique for multiple patterns and for a single pattern, respectively.
- a wafer 14 is scanned in a serpentine path 31 , sweeping out several dies 33 , 35 and 37 in die-to-die inspection, and in FIG. 3 b only a single die is scanned in serpentine path 31 ′ when die-to-database inspection is employed.
- Each sweep of the path is designated a swath.
- a typical swath may have a height of 500 to 2,000 pixels and may have a length of 500,000 pixels.
- FIG. 1 illustrates two identical forms 20 and 30 superimposed on a grid that represents the boundaries of pixels 10 as defined by the inspection system of the present invention.
- the nominal sampling point of each pixel is the center of that pixel however in reality the scanner measures the total light energy that falls on an area of approximately the size of a pixel 10 .
- the idealized intensity value of each pixel is the normalized intensity value expressed as a percentage of the maximum.
- FIG. 1 shows two identical geometric forms 20 and 30 , each consisting of a rectangle of opaque material (e.g., chromium) on a transparent medium, such as quartz.
- opaque material e.g., chromium
- pixels 40 A and 40 B have different measured values since the sampling points (the centers of the pixels) are not equidistant from the corresponding one of two forms 20 and 30 , respectively. Consequently, pixels 40 A and 40 B, as shown in FIG. 1 have measurable values of 76% and 92%, respectively.
- the sampling points must nearly coincide with respect to the forms.
- the registration error the relative displacement of the sampling points between the two forms 20 and 30 .
- the defect detectors intensity threshold must be at least ⁇ I.
- the minimum detectable defect size is merely D x times D y , where D x and D y are the maximum x and y directional registration errors (see FIG. 1 for the D x and D y between forms 20 and 30 for example).
- a coarse correction is made prior to sampling, the image is scanned and then stored in memory.
- coarse correction in the X-direction is implemented by a mechanical movement of a mirror, while for laser scanning (FIG. 4)
- X-directional coarse correction uses timing control of the sampling.
- both scanning techniques use timing control of the sampling.
- the purpose of the present invention is to minimize the intensity error caused by the registration error of sampling points with respect to the two forms to be compared whether die-to-die or die-to-data base.
- the present invention is an improvement over the Specht method in that a coarse correction of the misregistration error is achieved in both X and Y prior to the scanning of the pattern, or patterns.
- the residual error after coarse correction and subsequent to scanning is then further reduced by interpolation of the intensities. Since the residual alignment error after coarse correction is now small, the error contributed by interpolation is significantly smaller than when the Specht alignment and inspection method is used.
- the two images used in image subtraction are much better aligned with respect to each other and consequently the minimum detectable defect, as a percentage of the pixel size, is significantly smaller than as in the prior art. Consequently, a larger pixel size can be used for a given minimum detectable defect.
- a larger pixel size, for a given minimum detectable defect and for a constant pixel rate translates into a higher throughput than in the prior art. Higher throughput produces more defect data which in turn results in more reliable diagnosis of the problems and better yield management.
- One significant concept of the present invention is that one may employ a pixel that is significantly larger than the minimum detectable defect or even the minimum feature size (geometric figure on the mask or wafer), provided the two images are registered accurately with respect to each other.
- the present invention relates to two different scanning embodiments and how improved registration may be achieved using the present invention. These scanning embodiments are: Scanning with a Diode (or TDI) Array, and Scanning with a Laser Beam. These two embodiments are discussed separately below. Additionally, it should be kept in mind that both embodiments lend themselves to scanning with both transmitted and reflected light, either separately or together in the same system.
- FIG. 2 is a block diagram of a diode (or TDI) array scanning system using reflected light.
- a wafer, or reticle, 14 is mounted on X/Y stage 50 , with X-Y scales 51 mounted thereon to determine stage position, and an illuminator (not shown) illuminates the area of wafer 14 under objective lens 52 .
- the light reflected from wafer 14 travels through objective lens 52 , is reflected by tilted mirror 54 to lens 57 through which a portion of the wafer image is projected onto linear diode array 59 .
- Mirror 54 shifts the image of wafer 14 onto diode array 59 by pivoting about an axis perpendicular to the plane of the paper under the control of piezo-electric actuator 56 with the shift occurring in the y-direction.
- array 59 serially reads out a (y-directional) column of intensities which are digitized by A/D converter 58 .
- This information flows from converter 58 into each of pixel memory 60 , first-in-first-out (FIFO) memory 64 and alignment computer 62 .
- Pixel memory 60 is a two-dimensional memory of the width of a swath and a length somewhat greater than the widest (x-directional dimension) die to be inspected.
- Pixel memory 60 is essentially also a FIFO memory, i.e. its input accepts a column of pixels at a time and outputs them at the other end.
- Pixel memory 60 has output registers which are capable of shifting one pixel, on a command from alignment computer 62 , the data in either the x or y direction, prior to producing an output, similar to the method taught by U.S. Pat. No. 4,247,203 by Levy et al.
- the purpose of pixel memory 60 is to store pixel data from one die while the next die is being scanned so that the two dies can be compared.
- This operation is illustrated by the following example.
- the information flows into pixel memory 60 .
- the information from die 33 is read from pixel memory 60 correctly aligned to the closest integer pixel to the image of die 35 .
- Alignment computer 62 performs running alignment computation to determine the misalignment between the two data streams corresponding to the first swath across die 33 and the present time swath across die 35 .
- the alignment error of these two data streams is computed as described by Specht. Integer alignment errors are corrected by the output registers of pixel memory 60 , while the fractional error is corrected by alignment corrector 66 by using resampling as discussed below.
- the two data streams arrive at defect detector 74 aligned with a precision of such as ⁇ fraction (1/256) ⁇ of a pixel is achievable.
- alignment computer 62 In addition to the alignment correction commands fed to alignment corrector 66 and pixel memory 60 , alignment computer 62 produces three other signals. Two of these, one to stage drive 70 and a second to tilt mirror actuator 56 , are intended to provide low frequency alignment correction signals.
- the signal to tilt mirror actuator 56 provides y-directional control, while the signal to stage drive 70 exercises control in the x-direction. The purpose of these is to make sure that the misalignment between die does not exceed the dynamic range that the correction system can rectify.
- Alignment computer 62 also produces a strobe signal to initiate the readout of a column of pixels from linear diode sensor 59 .
- stage 50 travels approximately at a constant speed, slightly varying the time between strobe pulses allows fine alignment in the x-direction.
- the strobe is generated in alignment computer 62 by a phase-locked loop which derives its input from the x-directional alignment error and from a linear scale mounted on stage 50 that measures the position of stage 50 by alignment computer 62 .
- U.S. Pat. No. 4,926,489 by Danielson, et al. describes a similar implementation using a phase-locked loop.
- FIFO memory 64 is a short memory of the same width as the swath height. Its purpose is to delay the flow of pixel information into defect detector 74 sufficiently to make sure that alignment computer 62 has enough image data to correct the alignment error, prior to the two image data streams reach defect detector 74 .
- defect detector 74 the corresponding intensity values of the two images are compared and if the absolute value of the difference exceeds a predetermined threshold, an error flag is raised.
- the error data is then sent to general purpose computer 72 (e.g. a Sun workstation), where adjacent defect locations are combined to permit a determination of the size and shape of the defects. This information is then used by yield management programs.
- tilting mirror 54 and proper strobing of linear diode sensor 59 provide first order alignment corrections which reduce the needed dynamic range for the fine correction. Since the amount of error contributed by the resampling is a function of the dynamic range of the correction needed, the error intensity into defect detector 74 is smaller than would be achievable without correcting the alignment prior to sampling the image.
- the subject invention may also be used to inspect transparent substrates, such as a reticle.
- FIG. 2 a illustrates the system in that case.
- Substrate 14 ′ a reticle, is illuminated from below and the only difference between this implementation and the one that uses transmitted light, is the location of the source of the illumination.
- the inspection is a comparison with the data base.
- the data base generator at its output, produces a data stream that simulates the desired optical image.
- Switch 61 allows either the datastream from A/D converter 58 or from database generator 63 to flow into pixel memory 60 .
- FIG. 4 illustrates such a laser scanner embodiment of the present invention.
- Laser 80 directs coherent light to acousto-optic deflector/driver 82 which deflects the light in the y-direction, as described by Evelet in U.S. Pat. No. 3,851,951 (High Resolution Laser Beam Recorder with Self-focusing Acousto-optic Scanner).
- the y-deflected light beam from acousto-optic deflector/driver 82 is then applied to beamsplitter 84 through which the laser beam passes and proceeds to lens 86 which focuses the laser beam on wafer 14 on X/Y stage 50 .
- Some of the light incident on wafer 14 is then reflected back into lens 86 and proceeds to beamsplitter 84 , where portions of the reflected light are reflected to condenser lens 88 where it is refracted and collected on the surface of single diode sensor 90 .
- the resultant electrical signal from diode 90 is then applied to A/D converter 100 .
- the remaining components of the laser implementation, with the exception of alignment computer 62 ′, function as for the diode array implementation of FIG. 2.
- pixel memory 60 alignment corrector 66 , FIFO 64 , defect detector 74 , general purpose computer 72 , stage drive 70 and X/Y stage 50 function as described above for the diode array implementation shown in FIG. 2 with stage 14 executing the same serpentine scanning travel as described previously with respect to FIG. 3.
- A/D converter 100 and alignment computer 62 ′ perform additional functions that are necessary to control the operation of acousto-optic deflector/driver 82 .
- Acousto-optic deflector/driver 82 is driven by a saw tooth signal (see FIG. 5) generated by alignment computer 62 ′. That saw tooth signal includes two components, a ramp 92 and variable time delay 96 between consecutive ramps.
- X-directional coarse correction is implemented by varying time-delay 96 between successive ramps 92 , since the stage travels at a constant speed.
- the timing of the start of ramp 92 is controlled by a phased-locked loop oscillator of alignment computer 62 ′ that derives its control signal from the x-directional alignment error determined by alignment computer 62 ′.
- Alignment computer 62 ′ also generates strobe pulses to control when A/D converter 100 samples the video signal from diode sensor 90 . Since the laser beam sweeps across wafer 14 at a constant speed, the y-coordinates of the samples are determined by the timing of the strobe pulses.
- These strobe pulses are also driven by the phase-locked loop oscillator of alignment computer 62 ′ which is controlled by the y-directional alignment error.
- the fine corrections in both X and Y are executed in alignment corrector 66 , as discussed for the diode array embodiment of FIG. 2.
- switch 61 and data base generator 63 are as discussed above for FIG. 2.
- reticle 14 ′ is placed on stage 50 and the implementation is virtually identical to the one shown in FIG. 4 except that diode detector 90 is now under stage 50 to collect, via condenser lens 88 ′, the light transmitted through reticle 14 ′. In most instances, the inspection will be against the CADS database for which DataBase Generator 63 provides a simulated image.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
A method and apparatus, and variations of each, for inspecting a wafer defining at least one die thereon is disclosed. The present invention first obtains the electronic image equivalent of two die, and then determines the x and y offset between those electronic images. Prior to inspection for defects, those two electronic images are aligned by adjusting the x and y positions of one electronic image of one die with respect to the electronic image of the other die. Once that is accomplished, the those electronic images are compared to detect any defects that may exist on one of the die.
Description
- The present invention is related to sub-pixel image alignment in wafer inspection machines, particularly to the alignment of images both prior to and subsequent to scanning. Two alternate methods are taught, one for laser scanning and the other for scanning with a linear array.
- It is well known in the wafer inspection art that when two similar images are to be compared, sub-pixel alignment is often necessary to obtain the degree of accuracy that is desired. Traditionally that alignment was accomplished by digitally interpolating the image after scanning.
- The most frequently used method for automatic inspection of photomasks or patterned semiconductor wafers utilizes comparison to detect defects. Typically, two supposedly identical patterns are compared by scanning and digitizing the images. The digitized images are then compared in high speed digital logic, or an image is compared with data stored in the CADS (Computer Aided Design System) database with data representing the desired pattern.
- In the comparison process to detect differences between the two patterns some form of image subtraction is most frequently employed. However, image subtraction is contingent on sampling the two images (or the image and image data from the database) at nearly identical points for both images.
- Early mask inspection systems, such as taught by Levy, et al., in U.S. Pat. No. 4,247,203, were able to guarantee only a ±2½ pixel registration accuracy between the two images. Because of the limited registration accuracy, Levy required that the defect detection algorithm use feature extraction, followed by the matching of these features, rather than image subtraction. Some time later Levy, U.S. Pat. No. 4,579,455, taught area subtraction, but because of the limited registration accuracy computed the intensity difference at several possible registrations. If, for any of these registrations the absolute value of the intensities was less than a predetermined threshold, no defect was recorded at that particular pixel. Subsequently, Specht, et al., in U.S. Pat. No. 4,805,123, taught a method of achieving image subtraction by first reducing the registration error between the two images to less than a pixel. However, the Specht method had the shortcoming that in re-registering (also known as resampling) the two images with respect to each other, interpolation of the scanned image was used, which in turn introduced errors in determining the intensities of the resulting pixels. These errors limited sensitivity (the smallest detectable defect).
- As will be shown subsequently, the maximum intensity error determines the maximum detectable defect-to-pixel ratio. Since inspection speed, at a given sensitivity, defines the productivity of an inspection system, for a fixed sampling rate, it is desirable to maximize the pixel size. Therefore, to achieve the maximum throughput, one must minimize the registration error. The present invention teaches methods for minimizing the registration error for the two most common scanning methods: scanning with a laser and scanning with a linear array.
- The present invention is a method and apparatus, and variations of each, for inspecting a wafer defining at least one die thereon. The present invention first obtains the electronic image equivalent of two die, and then determines the x and y offset between those electronic images. Prior to inspection for defects, those two electronic images are aligned by adjusting the x and y positions of one electronic image of one die with respect to the electronic image of the other die. Once that is accomplished, the those electronic images are compared to detect any defects that may exist on one of the die.
- FIG. 1 illustrates the pixelization of a surface by an inspection system and the mis-alignment between two images.
- FIG. 2 is a block diagram of a diode array scanning system embodiment of the present invention.
- FIG. 2a is the transparent reticle version of the system of FIG. 2.
- FIG. 3a illustrates the scanning of multiple patterns from die-to-die inspection.
- FIG. 3b illustrates the scanning of a single pattern for die-to-database inspection.
- FIG. 4 is a block diagram of a laser scanning system embodiment of the present invention.
- FIG. 4a is the transparent reticle version of the system of FIG. 4.
- FIG. 5 is a sketch of a signal that is representative of the signal applied to the acousto-optic deflector/driver of FIG. 4 to correct for coarse x-direction mis-alignment of the wafer of the stage.
- The key to the present invention is the use of the same sampling points for both images, or the image of the die being viewed and the die equivalent in the data base, to be compared as will be seen from the following discussion.
- FIGS. 3a and 3 b illustrate the typical serpentine scanning technique for multiple patterns and for a single pattern, respectively. In FIG.
3a wafer 14 is scanned in aserpentine path 31, sweeping outseveral dies serpentine path 31′ when die-to-database inspection is employed. Each sweep of the path is designated a swath. A typical swath may have a height of 500 to 2,000 pixels and may have a length of 500,000 pixels. - FIG. 1 illustrates two
identical forms pixels 10 as defined by the inspection system of the present invention. The nominal sampling point of each pixel is the center of that pixel however in reality the scanner measures the total light energy that falls on an area of approximately the size of apixel 10. The idealized intensity value of each pixel is the normalized intensity value expressed as a percentage of the maximum. FIG. 1 shows two identicalgeometric forms pixels 40A and 40B have different measured values since the sampling points (the centers of the pixels) are not equidistant from the corresponding one of twoforms pixels 40A and 40B, as shown in FIG. 1 have measurable values of 76% and 92%, respectively. - Clearly, if pixel-to-pixel comparison is used for defect detection, the sampling points must nearly coincide with respect to the forms. It can readily be seen that the registration error (the relative displacement of the sampling points between the two
forms 20 and 30) determines the maximum possible intensity difference between any two pixels to be compared. Assuming that ΔI is the maximum possible intensity difference attributable to the registration error, then the defect detectors intensity threshold must be at least ΔI. For binary images, i.e. where at every sampling point the transmittance is either 0 or 100%, the minimum detectable defect size (in terms of area) is merely Dx times Dy, where Dx and Dy are the maximum x and y directional registration errors (see FIG. 1 for the Dx and Dy betweenforms - In the prior art, as stated above in the Background of the Invention section, registering the two images was accomplished by first scanning both images. Next, integer pixel misalignment was corrected as taught by Levy, by shifting the image in the digital memory the appropriate number of locations. Fractional pixel registration was achieved by resampling one of the images as taught by Specht.
- In the present invention, for both scanning techniques, a coarse correction is made prior to sampling, the image is scanned and then stored in memory. For diode array scanning (FIG. 2) coarse correction in the X-direction is implemented by a mechanical movement of a mirror, while for laser scanning (FIG. 4) X-directional coarse correction uses timing control of the sampling. In the Y-direction, both scanning techniques use timing control of the sampling.
- The purpose of the present invention is to minimize the intensity error caused by the registration error of sampling points with respect to the two forms to be compared whether die-to-die or die-to-data base.
- The present invention is an improvement over the Specht method in that a coarse correction of the misregistration error is achieved in both X and Y prior to the scanning of the pattern, or patterns. The residual error after coarse correction and subsequent to scanning is then further reduced by interpolation of the intensities. Since the residual alignment error after coarse correction is now small, the error contributed by interpolation is significantly smaller than when the Specht alignment and inspection method is used. Hence, with the present invention, the two images used in image subtraction are much better aligned with respect to each other and consequently the minimum detectable defect, as a percentage of the pixel size, is significantly smaller than as in the prior art. Consequently, a larger pixel size can be used for a given minimum detectable defect. A larger pixel size, for a given minimum detectable defect and for a constant pixel rate translates into a higher throughput than in the prior art. Higher throughput produces more defect data which in turn results in more reliable diagnosis of the problems and better yield management.
- One significant concept of the present invention is that one may employ a pixel that is significantly larger than the minimum detectable defect or even the minimum feature size (geometric figure on the mask or wafer), provided the two images are registered accurately with respect to each other.
- The present invention relates to two different scanning embodiments and how improved registration may be achieved using the present invention. These scanning embodiments are: Scanning with a Diode (or TDI) Array, and Scanning with a Laser Beam. These two embodiments are discussed separately below. Additionally, it should be kept in mind that both embodiments lend themselves to scanning with both transmitted and reflected light, either separately or together in the same system.
- FIG. 2 is a block diagram of a diode (or TDI) array scanning system using reflected light. A wafer, or reticle,14 is mounted on X/
Y stage 50, with X-Y scales 51 mounted thereon to determine stage position, and an illuminator (not shown) illuminates the area ofwafer 14 underobjective lens 52. The light reflected fromwafer 14 travels throughobjective lens 52, is reflected by tiltedmirror 54 tolens 57 through which a portion of the wafer image is projected ontolinear diode array 59.Mirror 54 shifts the image ofwafer 14 ontodiode array 59 by pivoting about an axis perpendicular to the plane of the paper under the control of piezo-electric actuator 56 with the shift occurring in the y-direction. Eachtime stage 14 travels the distance of a pixel,array 59 serially reads out a (y-directional) column of intensities which are digitized by A/D converter 58. This information flows fromconverter 58 into each ofpixel memory 60, first-in-first-out (FIFO)memory 64 andalignment computer 62.Pixel memory 60 is a two-dimensional memory of the width of a swath and a length somewhat greater than the widest (x-directional dimension) die to be inspected.Pixel memory 60 is essentially also a FIFO memory, i.e. its input accepts a column of pixels at a time and outputs them at the other end.Pixel memory 60 has output registers which are capable of shifting one pixel, on a command fromalignment computer 62, the data in either the x or y direction, prior to producing an output, similar to the method taught by U.S. Pat. No. 4,247,203 by Levy et al. The purpose ofpixel memory 60 is to store pixel data from one die while the next die is being scanned so that the two dies can be compared. - This operation is illustrated by the following example. Referring to FIGS. 2 and 3a as die 33 is scanned on the first pass across
wafer 14, the information flows intopixel memory 60. Then, as the scanner starts to scan die 35, the information from die 33 is read frompixel memory 60 correctly aligned to the closest integer pixel to the image ofdie 35.Alignment computer 62 performs running alignment computation to determine the misalignment between the two data streams corresponding to the first swath acrossdie 33 and the present time swath acrossdie 35. The alignment error of these two data streams is computed as described by Specht. Integer alignment errors are corrected by the output registers ofpixel memory 60, while the fractional error is corrected byalignment corrector 66 by using resampling as discussed below. - Overall, the two data streams, one from
FIFO memory 64 and the other fromalignment corrector 66, arrive atdefect detector 74 aligned with a precision of such as {fraction (1/256)} of a pixel is achievable. - In addition to the alignment correction commands fed to
alignment corrector 66 andpixel memory 60,alignment computer 62 produces three other signals. Two of these, one to stagedrive 70 and a second to tiltmirror actuator 56, are intended to provide low frequency alignment correction signals. The signal to tiltmirror actuator 56 provides y-directional control, while the signal to stage drive 70 exercises control in the x-direction. The purpose of these is to make sure that the misalignment between die does not exceed the dynamic range that the correction system can rectify.Alignment computer 62 also produces a strobe signal to initiate the readout of a column of pixels fromlinear diode sensor 59. Sincestage 50 travels approximately at a constant speed, slightly varying the time between strobe pulses allows fine alignment in the x-direction. The strobe is generated inalignment computer 62 by a phase-locked loop which derives its input from the x-directional alignment error and from a linear scale mounted onstage 50 that measures the position ofstage 50 byalignment computer 62. U.S. Pat. No. 4,926,489 by Danielson, et al., describes a similar implementation using a phase-locked loop. -
FIFO memory 64 is a short memory of the same width as the swath height. Its purpose is to delay the flow of pixel information intodefect detector 74 sufficiently to make sure thatalignment computer 62 has enough image data to correct the alignment error, prior to the two image data streams reachdefect detector 74. - In
defect detector 74 the corresponding intensity values of the two images are compared and if the absolute value of the difference exceeds a predetermined threshold, an error flag is raised. The error data is then sent to general purpose computer 72 (e.g. a Sun workstation), where adjacent defect locations are combined to permit a determination of the size and shape of the defects. This information is then used by yield management programs. - The basic philosophy behind this embodiment of the present invention is that tilting
mirror 54 and proper strobing oflinear diode sensor 59 provide first order alignment corrections which reduce the needed dynamic range for the fine correction. Since the amount of error contributed by the resampling is a function of the dynamic range of the correction needed, the error intensity intodefect detector 74 is smaller than would be achievable without correcting the alignment prior to sampling the image. - In the case where the comparison is die-to-data base, data is obtained from a die14 on
stage 50 withswitch 61 in the position shown, then switch 61 is switched to the other position and data fromdata base generator 63 is connected to supply the second data set. The overall operation is therefore the same as described above. - The subject invention may also be used to inspect transparent substrates, such as a reticle. FIG. 2a illustrates the system in that case.
Substrate 14′, a reticle, is illuminated from below and the only difference between this implementation and the one that uses transmitted light, is the location of the source of the illumination. - When the reticles, rather than wafers, are inspected, ordinarily the inspection is a comparison with the data base. The data base generator, at its output, produces a data stream that simulates the desired optical image.
Switch 61 allows either the datastream from A/D converter 58 or fromdatabase generator 63 to flow intopixel memory 60. - The same general approach taught above with respect to FIG. 2 may also be used with laser scanning. The laser scanner here can be adapted from the implementation of the KLA301 Reticle and Mask Inspection Unit, made by the assignee. FIG. 4 illustrates such a laser scanner embodiment of the present invention.
Laser 80 directs coherent light to acousto-optic deflector/driver 82 which deflects the light in the y-direction, as described by Evelet in U.S. Pat. No. 3,851,951 (High Resolution Laser Beam Recorder with Self-focusing Acousto-optic Scanner). The y-deflected light beam from acousto-optic deflector/driver 82 is then applied tobeamsplitter 84 through which the laser beam passes and proceeds tolens 86 which focuses the laser beam onwafer 14 on X/Y stage 50. Some of the light incident onwafer 14 is then reflected back intolens 86 and proceeds tobeamsplitter 84, where portions of the reflected light are reflected tocondenser lens 88 where it is refracted and collected on the surface ofsingle diode sensor 90. The resultant electrical signal fromdiode 90 is then applied to A/D converter 100. The remaining components of the laser implementation, with the exception ofalignment computer 62′, function as for the diode array implementation of FIG. 2. Consequently,pixel memory 60,alignment corrector 66,FIFO 64,defect detector 74,general purpose computer 72,stage drive 70 and X/Y stage 50 function as described above for the diode array implementation shown in FIG. 2 withstage 14 executing the same serpentine scanning travel as described previously with respect to FIG. 3. - In addition to the functions outlined above, A/
D converter 100 andalignment computer 62′ perform additional functions that are necessary to control the operation of acousto-optic deflector/driver 82. Acousto-optic deflector/driver 82 is driven by a saw tooth signal (see FIG. 5) generated byalignment computer 62′. That saw tooth signal includes two components, aramp 92 andvariable time delay 96 between consecutive ramps. X-directional coarse correction is implemented by varying time-delay 96 betweensuccessive ramps 92, since the stage travels at a constant speed. The timing of the start oframp 92 is controlled by a phased-locked loop oscillator ofalignment computer 62′ that derives its control signal from the x-directional alignment error determined byalignment computer 62′.Alignment computer 62′ also generates strobe pulses to control when A/D converter 100 samples the video signal fromdiode sensor 90. Since the laser beam sweeps acrosswafer 14 at a constant speed, the y-coordinates of the samples are determined by the timing of the strobe pulses. These strobe pulses are also driven by the phase-locked loop oscillator ofalignment computer 62′ which is controlled by the y-directional alignment error. The fine corrections in both X and Y are executed inalignment corrector 66, as discussed for the diode array embodiment of FIG. 2. - Also, for the die-to-data base situation, the use of
switch 61 anddata base generator 63 is as discussed above for FIG. 2. - For the laser scanner implementation using transmitted light as in FIG. 4a,
reticle 14′ is placed onstage 50 and the implementation is virtually identical to the one shown in FIG. 4 except thatdiode detector 90 is now understage 50 to collect, viacondenser lens 88′, the light transmitted throughreticle 14′. In most instances, the inspection will be against the CADS database for whichDataBase Generator 63 provides a simulated image. - While the forgoing techniques are most beneficial in defect detection where image subtraction is used, all known techniques, such as those using feature extraction and comparison, specifically, operate more efficiently when registration errors are minimized of course, these methods may also be used when a single image is derived physically and is compared with computer generated data. Furthermore, these alignment techniques are useful in all image processing applications that depend on alignment.
- While the present invention has been described in several embodiments and with exemplary routines and apparatus, it is contemplated that persons skilled in the art, upon reading the preceding descriptions and studying the drawings, will realize various alternative approaches to the implementation of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations and modifications that fall within the true spirit and scope to the present invention and the appended claims.
Claims (2)
1. A method for inspecting a wafer defining at least one die thereon, said method comprising the steps of:
a. obtaining the electronic image equivalent of two die;
b. determining the x and y offset between the electronic images of said two die of step a.;
c. aligning said electronic images of said two die by adjusting the x and y positions of one electronic image of one die with respect to said electronic image of said other die;
d. comparing said electronic images from step c.;
e. identifying image differences between the two die compared in step d.
2. An apparatus to inspect a wafer defining at least one die thereon comprising:
an x-y stage to transport said die;
a scanner to obtain an electronic image equivalent of said at least one die as said x-y stage transports said die;
a first comparator coupled to said scanner to determine the x and y offset between the electronic images of two die;
an alignment computer to reposition said scanner to adjust the x and y positions of one electronic image of one die with respect to said electronic image of said other die;
a second comparator coupled to said scanner to compare said electronic images of said first and second die following the operation of said alignment computer; and
a defect detector coupled to said second comparator to identify defect differences between said electronic images compared by said second comparator.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/066,161 US20020075385A1 (en) | 1995-10-02 | 2002-01-31 | Alignment correction prior to image sampling in inspection systems |
US10/314,546 US20030063190A1 (en) | 1995-10-02 | 2002-12-09 | Alignment correction prior to image sampling in inspection systems |
US11/180,348 US20050254698A1 (en) | 1995-10-02 | 2005-07-13 | Alignment correction prior to image sampling in inspection systems |
US12/221,806 US20080304734A1 (en) | 1995-10-02 | 2008-08-07 | Alignment correction prio to image sampling in inspection systems |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53813795A | 1995-10-02 | 1995-10-02 | |
US08/884,466 US6141038A (en) | 1995-10-02 | 1997-06-27 | Alignment correction prior to image sampling in inspection systems |
US70294300A | 2000-10-30 | 2000-10-30 | |
US10/066,161 US20020075385A1 (en) | 1995-10-02 | 2002-01-31 | Alignment correction prior to image sampling in inspection systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US70294300A Continuation | 1995-10-02 | 2000-10-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/314,546 Continuation US20030063190A1 (en) | 1995-10-02 | 2002-12-09 | Alignment correction prior to image sampling in inspection systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020075385A1 true US20020075385A1 (en) | 2002-06-20 |
Family
ID=24145667
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/884,466 Expired - Lifetime US6141038A (en) | 1995-10-02 | 1997-06-27 | Alignment correction prior to image sampling in inspection systems |
US10/066,161 Abandoned US20020075385A1 (en) | 1995-10-02 | 2002-01-31 | Alignment correction prior to image sampling in inspection systems |
US10/314,546 Abandoned US20030063190A1 (en) | 1995-10-02 | 2002-12-09 | Alignment correction prior to image sampling in inspection systems |
US11/180,348 Abandoned US20050254698A1 (en) | 1995-10-02 | 2005-07-13 | Alignment correction prior to image sampling in inspection systems |
US12/221,806 Abandoned US20080304734A1 (en) | 1995-10-02 | 2008-08-07 | Alignment correction prio to image sampling in inspection systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/884,466 Expired - Lifetime US6141038A (en) | 1995-10-02 | 1997-06-27 | Alignment correction prior to image sampling in inspection systems |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/314,546 Abandoned US20030063190A1 (en) | 1995-10-02 | 2002-12-09 | Alignment correction prior to image sampling in inspection systems |
US11/180,348 Abandoned US20050254698A1 (en) | 1995-10-02 | 2005-07-13 | Alignment correction prior to image sampling in inspection systems |
US12/221,806 Abandoned US20080304734A1 (en) | 1995-10-02 | 2008-08-07 | Alignment correction prio to image sampling in inspection systems |
Country Status (4)
Country | Link |
---|---|
US (5) | US6141038A (en) |
EP (1) | EP0853856B1 (en) |
DE (1) | DE69634089T2 (en) |
WO (1) | WO1997013370A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789713A (en) * | 2018-10-19 | 2021-05-11 | 科磊股份有限公司 | Defect location determination using correction cycle for pixel alignment |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0853856B1 (en) * | 1995-10-02 | 2004-12-22 | KLA-Tencor Corporation | Alignment correction prior to image sampling in inspection systems |
JPH10164443A (en) * | 1996-11-29 | 1998-06-19 | Nikon Corp | Solid-state image-pickup element camera |
US7093229B2 (en) | 1997-09-17 | 2006-08-15 | Synopsys, Inc. | System and method for providing defect printability analysis of photolithographic masks with job-based automation |
US7107571B2 (en) | 1997-09-17 | 2006-09-12 | Synopsys, Inc. | Visual analysis and verification system using advanced tools |
US6578188B1 (en) | 1997-09-17 | 2003-06-10 | Numerical Technologies, Inc. | Method and apparatus for a network-based mask defect printability analysis system |
US6757645B2 (en) | 1997-09-17 | 2004-06-29 | Numerical Technologies, Inc. | Visual inspection and verification system |
US7617474B2 (en) | 1997-09-17 | 2009-11-10 | Synopsys, Inc. | System and method for providing defect printability analysis of photolithographic masks with job-based automation |
US6369888B1 (en) | 1999-11-17 | 2002-04-09 | Applied Materials, Inc. | Method and apparatus for article inspection including speckle reduction |
JP3874996B2 (en) * | 2000-05-30 | 2007-01-31 | ファブソリューション株式会社 | Device inspection method and apparatus |
JP3266602B1 (en) * | 2000-10-30 | 2002-03-18 | 洋一 奥寺 | Address inquiry system, computer program product and method thereof |
JP3990981B2 (en) * | 2000-12-15 | 2007-10-17 | ケイエルエイ−テンコー コーポレイション | Method and apparatus for inspecting a substrate |
US6873720B2 (en) | 2001-03-20 | 2005-03-29 | Synopsys, Inc. | System and method of providing mask defect printability analysis |
US6925202B2 (en) | 2001-03-20 | 2005-08-02 | Synopsys, Inc. | System and method of providing mask quality control |
US6721928B2 (en) | 2001-07-26 | 2004-04-13 | Numerical Technologies, Inc. | Verification utilizing instance-based hierarchy management |
US6560766B2 (en) | 2001-07-26 | 2003-05-06 | Numerical Technologies, Inc. | Method and apparatus for analyzing a layout using an instance-based representation |
JP2003066341A (en) * | 2001-08-28 | 2003-03-05 | Nec Corp | Reticle inspection device |
US7014955B2 (en) | 2001-08-28 | 2006-03-21 | Synopsys, Inc. | System and method for indentifying dummy features on a mask layer |
US20030081826A1 (en) * | 2001-10-29 | 2003-05-01 | Tokyo Seimitsu (Israel) Ltd. | Tilted scan for Die-to-Die and Cell-to-Cell detection |
US6976240B2 (en) | 2001-11-14 | 2005-12-13 | Synopsys Inc. | Simulation using design geometry information |
JP3913555B2 (en) * | 2002-01-17 | 2007-05-09 | ファブソリューション株式会社 | Film thickness measuring method and film thickness measuring apparatus |
US7126681B1 (en) * | 2002-04-23 | 2006-10-24 | Kla-Tencor Technologies Corporation | Closed region defect detection system |
US7043071B2 (en) | 2002-09-13 | 2006-05-09 | Synopsys, Inc. | Soft defect printability simulation and analysis for masks |
US7123356B1 (en) | 2002-10-15 | 2006-10-17 | Kla-Tencor Technologies Corp. | Methods and systems for inspecting reticles using aerial imaging and die-to-database detection |
US7379175B1 (en) | 2002-10-15 | 2008-05-27 | Kla-Tencor Technologies Corp. | Methods and systems for reticle inspection and defect review using aerial imaging |
US7027143B1 (en) | 2002-10-15 | 2006-04-11 | Kla-Tencor Technologies Corp. | Methods and systems for inspecting reticles using aerial imaging at off-stepper wavelengths |
US7133119B1 (en) | 2002-12-17 | 2006-11-07 | Kla-Tencor Technologies Corp. | Systems for simulating high NA and polarization effects in aerial images |
US20040120017A1 (en) * | 2002-12-20 | 2004-06-24 | Miller Mindy Lee | Method and apparatus for compensating for assembly and alignment errors in sensor assemblies |
DE10307358B3 (en) * | 2003-02-21 | 2004-10-07 | Leica Microsystems Semiconductor Gmbh | Semiconductor wafer scanning method in which camera and wafer relative movement and acceleration in both the scanning direction and the direction perpendicular take place simultaneously |
US7109981B2 (en) * | 2003-07-31 | 2006-09-19 | Hewlett-Packard Development Company, L.P. | Generating and displaying spatially offset sub-frames |
JP4758358B2 (en) | 2004-01-29 | 2011-08-24 | ケーエルエー−テンカー コーポレイション | Computer-implemented method for detecting defects in reticle design data |
US20050225571A1 (en) * | 2004-04-08 | 2005-10-13 | Collins David C | Generating and displaying spatially offset sub-frames |
US20060045383A1 (en) * | 2004-08-31 | 2006-03-02 | Picciotto Carl E | Displacement estimation system and method |
JP4904034B2 (en) | 2004-09-14 | 2012-03-28 | ケーエルエー−テンカー コーポレイション | Method, system and carrier medium for evaluating reticle layout data |
US7769225B2 (en) | 2005-08-02 | 2010-08-03 | Kla-Tencor Technologies Corp. | Methods and systems for detecting defects in a reticle design pattern |
DE102005044502B8 (en) * | 2005-09-16 | 2010-01-28 | Suss Microtec Test Systems Gmbh | Method for inspecting a plurality of repetitive structures |
US7570796B2 (en) | 2005-11-18 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
US8041103B2 (en) | 2005-11-18 | 2011-10-18 | Kla-Tencor Technologies Corp. | Methods and systems for determining a position of inspection data in design data space |
US7676077B2 (en) | 2005-11-18 | 2010-03-09 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
US7369236B1 (en) * | 2006-10-31 | 2008-05-06 | Negevtech, Ltd. | Defect detection through image comparison using relative measures |
WO2008077100A2 (en) | 2006-12-19 | 2008-06-26 | Kla-Tencor Corporation | Systems and methods for creating inspection recipes |
US8194968B2 (en) | 2007-01-05 | 2012-06-05 | Kla-Tencor Corp. | Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions |
US7738093B2 (en) | 2007-05-07 | 2010-06-15 | Kla-Tencor Corp. | Methods for detecting and classifying defects on a reticle |
US7962863B2 (en) | 2007-05-07 | 2011-06-14 | Kla-Tencor Corp. | Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer |
US8213704B2 (en) | 2007-05-09 | 2012-07-03 | Kla-Tencor Corp. | Methods and systems for detecting defects in a reticle design pattern |
DE102007032958A1 (en) * | 2007-07-14 | 2009-01-15 | Carl Zeiss Sms Gmbh | Method for determining lithographically relevant mask defects |
US7796804B2 (en) | 2007-07-20 | 2010-09-14 | Kla-Tencor Corp. | Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer |
US7711514B2 (en) | 2007-08-10 | 2010-05-04 | Kla-Tencor Technologies Corp. | Computer-implemented methods, carrier media, and systems for generating a metrology sampling plan |
US7975245B2 (en) | 2007-08-20 | 2011-07-05 | Kla-Tencor Corp. | Computer-implemented methods for determining if actual defects are potentially systematic defects or potentially random defects |
US8139844B2 (en) | 2008-04-14 | 2012-03-20 | Kla-Tencor Corp. | Methods and systems for determining a defect criticality index for defects on wafers |
US9659670B2 (en) | 2008-07-28 | 2017-05-23 | Kla-Tencor Corp. | Computer-implemented methods, computer-readable media, and systems for classifying defects detected in a memory device area on a wafer |
US8775101B2 (en) | 2009-02-13 | 2014-07-08 | Kla-Tencor Corp. | Detecting defects on a wafer |
US8204297B1 (en) | 2009-02-27 | 2012-06-19 | Kla-Tencor Corp. | Methods and systems for classifying defects detected on a reticle |
US8112241B2 (en) | 2009-03-13 | 2012-02-07 | Kla-Tencor Corp. | Methods and systems for generating an inspection process for a wafer |
US8781781B2 (en) | 2010-07-30 | 2014-07-15 | Kla-Tencor Corp. | Dynamic care areas |
US9170211B2 (en) | 2011-03-25 | 2015-10-27 | Kla-Tencor Corp. | Design-based inspection using repeating structures |
US9087367B2 (en) | 2011-09-13 | 2015-07-21 | Kla-Tencor Corp. | Determining design coordinates for wafer defects |
US8831334B2 (en) | 2012-01-20 | 2014-09-09 | Kla-Tencor Corp. | Segmentation for wafer inspection |
US8826200B2 (en) | 2012-05-25 | 2014-09-02 | Kla-Tencor Corp. | Alteration for wafer inspection |
US9189844B2 (en) | 2012-10-15 | 2015-11-17 | Kla-Tencor Corp. | Detecting defects on a wafer using defect-specific information |
DE102012111835A1 (en) * | 2012-12-05 | 2014-06-05 | Hseb Dresden Gmbh | inspection device |
US9053527B2 (en) | 2013-01-02 | 2015-06-09 | Kla-Tencor Corp. | Detecting defects on a wafer |
US9134254B2 (en) | 2013-01-07 | 2015-09-15 | Kla-Tencor Corp. | Determining a position of inspection system output in design data space |
US9311698B2 (en) | 2013-01-09 | 2016-04-12 | Kla-Tencor Corp. | Detecting defects on a wafer using template image matching |
KR102019534B1 (en) | 2013-02-01 | 2019-09-09 | 케이엘에이 코포레이션 | Detecting defects on a wafer using defect-specific and multi-channel information |
US9865512B2 (en) | 2013-04-08 | 2018-01-09 | Kla-Tencor Corp. | Dynamic design attributes for wafer inspection |
US9310320B2 (en) | 2013-04-15 | 2016-04-12 | Kla-Tencor Corp. | Based sampling and binning for yield critical defects |
KR102090862B1 (en) | 2013-08-23 | 2020-03-18 | 케이엘에이 코포레이션 | Block-to-block reticle inspection |
JP6293023B2 (en) * | 2014-09-04 | 2018-03-14 | 株式会社ニューフレアテクノロジー | Inspection method |
US9864173B2 (en) | 2015-04-21 | 2018-01-09 | Kla-Tencor Corporation | Systems and methods for run-time alignment of a spot scanning wafer inspection system |
US11225061B2 (en) | 2015-05-29 | 2022-01-18 | Cryovac, Llc | Oxygen scavenging films |
KR20180061556A (en) | 2016-11-29 | 2018-06-08 | 삼성전자주식회사 | Inspect device for inspecting wafer, and method of inspecting wafer using the same |
US11113827B2 (en) * | 2019-09-23 | 2021-09-07 | Kla Corporation | Pattern-to-design alignment for one-dimensional unique structures |
US11120546B2 (en) | 2019-09-24 | 2021-09-14 | Kla Corporation | Unsupervised learning-based reference selection for enhanced defect inspection sensitivity |
JP7409988B2 (en) * | 2020-07-29 | 2024-01-09 | 株式会社ニューフレアテクノロジー | Pattern inspection device and method for obtaining alignment amount between contour lines |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3851951A (en) * | 1974-01-16 | 1974-12-03 | Isomet Corp | High resolution laser beam recorder with self-focusing acousto-optic scanner |
US4247203A (en) * | 1978-04-03 | 1981-01-27 | Kla Instrument Corporation | Automatic photomask inspection system and apparatus |
JPS57196377A (en) * | 1981-05-27 | 1982-12-02 | Hitachi Ltd | Pattern recognizing method |
US4926489A (en) * | 1983-03-11 | 1990-05-15 | Kla Instruments Corporation | Reticle inspection system |
US4579455A (en) * | 1983-05-09 | 1986-04-01 | Kla Instruments Corporation | Photomask inspection apparatus and method with improved defect detection |
US4618938A (en) * | 1984-02-22 | 1986-10-21 | Kla Instruments Corporation | Method and apparatus for automatic wafer inspection |
US4644172A (en) * | 1984-02-22 | 1987-02-17 | Kla Instruments Corporation | Electronic control of an automatic wafer inspection system |
US4805123B1 (en) * | 1986-07-14 | 1998-10-13 | Kla Instr Corp | Automatic photomask and reticle inspection method and apparatus including improved defect detector and alignment sub-systems |
JPS63134939A (en) * | 1986-11-27 | 1988-06-07 | Canon Inc | Pattern inspection device |
JP3148353B2 (en) * | 1991-05-30 | 2001-03-19 | ケーエルエー・インストルメンツ・コーポレーション | Electron beam inspection method and system |
DE69208413T2 (en) * | 1991-08-22 | 1996-11-14 | Kla Instr Corp | Device for automatic testing of photomask |
US5563702A (en) * | 1991-08-22 | 1996-10-08 | Kla Instruments Corporation | Automated photomask inspection apparatus and method |
JP3730263B2 (en) * | 1992-05-27 | 2005-12-21 | ケーエルエー・インストルメンツ・コーポレーション | Apparatus and method for automatic substrate inspection using charged particle beam |
EP0853856B1 (en) * | 1995-10-02 | 2004-12-22 | KLA-Tencor Corporation | Alignment correction prior to image sampling in inspection systems |
-
1996
- 1996-10-02 EP EP96934014A patent/EP0853856B1/en not_active Expired - Lifetime
- 1996-10-02 DE DE69634089T patent/DE69634089T2/en not_active Expired - Lifetime
- 1996-10-02 WO PCT/US1996/015835 patent/WO1997013370A1/en active IP Right Grant
-
1997
- 1997-06-27 US US08/884,466 patent/US6141038A/en not_active Expired - Lifetime
-
2002
- 2002-01-31 US US10/066,161 patent/US20020075385A1/en not_active Abandoned
- 2002-12-09 US US10/314,546 patent/US20030063190A1/en not_active Abandoned
-
2005
- 2005-07-13 US US11/180,348 patent/US20050254698A1/en not_active Abandoned
-
2008
- 2008-08-07 US US12/221,806 patent/US20080304734A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789713A (en) * | 2018-10-19 | 2021-05-11 | 科磊股份有限公司 | Defect location determination using correction cycle for pixel alignment |
Also Published As
Publication number | Publication date |
---|---|
US20030063190A1 (en) | 2003-04-03 |
US20050254698A1 (en) | 2005-11-17 |
EP0853856B1 (en) | 2004-12-22 |
US6141038A (en) | 2000-10-31 |
WO1997013370A1 (en) | 1997-04-10 |
EP0853856A1 (en) | 1998-07-22 |
EP0853856A4 (en) | 1998-12-16 |
DE69634089D1 (en) | 2005-01-27 |
DE69634089T2 (en) | 2005-12-08 |
US20080304734A1 (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6141038A (en) | Alignment correction prior to image sampling in inspection systems | |
US6317512B1 (en) | Pattern checking method and checking apparatus | |
US4926489A (en) | Reticle inspection system | |
US5774224A (en) | Linear-scanning, oblique-viewing optical apparatus | |
US4559603A (en) | Apparatus for inspecting a circuit pattern drawn on a photomask used in manufacturing large scale integrated circuits | |
US4886958A (en) | Autofocus system for scanning laser inspector or writer | |
US5095447A (en) | Color overlay of scanned and reference images for display | |
US4531060A (en) | Positioning method | |
US4912487A (en) | Laser scanner using focusing acousto-optic device | |
US5018210A (en) | Pattern comparator with substage illumination and polygonal data representation | |
JPH10325711A (en) | Method and apparatus for inspection as well as manufacture of semiconductor substrate | |
US5027132A (en) | Position compensation of laser scan for stage movement | |
EP0485274B1 (en) | Image data inspecting method and apparatus | |
US4969200A (en) | Target autoalignment for pattern inspector or writer | |
US5046110A (en) | Comparator error filtering for pattern inspector | |
JP4013510B2 (en) | Defect inspection method and apparatus | |
JP3135063B2 (en) | Comparative inspection method and apparatus | |
JP2000147749A (en) | Image alignment method for reticle appearance inspection device | |
JP3257010B2 (en) | Pattern inspection method and apparatus | |
JPH0658215B2 (en) | Method and apparatus for inspecting a pattern to be inspected on a semiconductor wafer | |
US4984282A (en) | Parallel processing of reference and guardband data | |
JP3223483B2 (en) | Defect inspection method and device | |
JP2954381B2 (en) | Pattern inspection method and apparatus | |
JP3316829B2 (en) | Comparative inspection method and device | |
JP3189796B2 (en) | Defect inspection method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |