US20020066666A1 - Anode box for electrometallurgical processes - Google Patents
Anode box for electrometallurgical processes Download PDFInfo
- Publication number
- US20020066666A1 US20020066666A1 US09/728,010 US72801000A US2002066666A1 US 20020066666 A1 US20020066666 A1 US 20020066666A1 US 72801000 A US72801000 A US 72801000A US 2002066666 A1 US2002066666 A1 US 2002066666A1
- Authority
- US
- United States
- Prior art keywords
- anode
- anode box
- box
- frame body
- spacers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
Definitions
- large industrial electrolytic cells for the recovery or refining of metals is well-known and widely practiced, particularly in the mining and metallurgy industry.
- the design or configuration of large industrial electrolytic cells varies, but they usually comprise a tank containing one or more cathodes positioned in proximity to one or more anodes in a bath of electrolyte.
- a very common configuration of such apparatus is an elongated tank containing a plurality of vertically-oriented cathode plates alternating with a plurality of anodes.
- the bosses 44 keep the anode 30 positioned within the frame body 12 and spaced apart from the spacers 34 . Additionally, a space 46 is provided between the anode plate 30 and the spacers 34 through which chemically-liberated gas may move during the electrolytic process, as explained more fully below.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
- 1. Field of the Invention
- This invention relates to electrometallurgical processes, namely electrowinning and electrorefining, in which metals are recovered or refined using industrial-scale electrolysis apparatus. Specifically, this invention relates to an improved anode box design for use in such processes.
- 2. Description of Related Art
- Use of large industrial electrolytic cells for the recovery or refining of metals is well-known and widely practiced, particularly in the mining and metallurgy industry. The design or configuration of large industrial electrolytic cells varies, but they usually comprise a tank containing one or more cathodes positioned in proximity to one or more anodes in a bath of electrolyte. A very common configuration of such apparatus is an elongated tank containing a plurality of vertically-oriented cathode plates alternating with a plurality of anodes.
- In the process of recovering metals from the electrolyte, i.e., electrowinning, the electrolyte is a purified solution which contains the recoverable metal and the anodes are insoluble. Each anode in the tank is encased in a sheath or diaphragm of porous media through which the electrolyte moves. When an electrical current in applied, electrolyte moves through the diaphragm causing deposition of the metal species on the cathode with a corresponding decrease in acidity in the fluid within the diaphragm, i.e., in the anolyte, and liberation of a gas. The anode, including the diaphragm, is usually designed to carry the gas away from the anode and to remove anolyte from within the diaphragm to maintain and/or optimize the electrowinning process. Examples of electrowinning cells are disclosed in U.S. Pat. No. 4,210,653 and U.S. Pat. No. 4,288,305.
- In electrorefining, a target metal is purified or refined from an anode made of the target metal. Application of electricity to the anode causes the target metal to migrate through the electrolyte to the cathode where it is deposited. In most electrorefining processes, the anode is not encased in a diaphragm. However, the refining of some metals causes a sludge of impurities to form in the bottom of the tank, which can be avoided by placing a diaphragm about the anode.
- Anodes used in electrometallurgical processes as previously described typically exist in the form of a flat plate of metal having a bar positioned at one end for hanging the anode in the tank and for providing an electrical bus between the anodes of the tank. U.S. Pat. No. 3,981,353 discloses, for example, a method of producing anode plates for electrowinning processes. U.S. Pat. No. 4,201,653 further discloses a means for separating the diaphragm from the anode plate by providing a spacing device, in recognition of the fact that contact between the diaphragm and anode plate in electrowinning reduces the efficient operation of the process. Other anode designs are disclosed in the prior art in which the anode is not in the form of a plate. Thus, for example, U.S. Pat. No. 5,277,777 describes an anode formed of fork-shaped elements which are maintained in a framework.
- The environment of electrometallurgical processing tanks is very harsh on both the cathodes and the anodes. Both the cathodes and anodes can undergo warping as a result of the processing. Further, the cathodes are removed after a processing cycle to remove the metals deposited on the cathode. While the anode, particularly in electrowinning processes, does not need to be withdrawn from the tank as frequently as the cathodes, they nonetheless are subject to contact by the cathodes as the cathodes are being removed, and the anodes can be damaged as a result. Others have recognized the need to protect and isolate the anode plate; however, prior efforts to provide an a protective cover have resulted in the production of devices which are, themselves, subject to degradation from the harsh environment of an electrolytic tank. In particular, anode boxes of the known art are structured from many separate pieces which are bonded together, rendering the device structurally weak and vulnerable to chemical degradation.
- It would be advantageous to the art, therefore, to provide a protective member for an anode which is structured to protect and stabilize the anode in both electrowinning and electrorefining processes and to provide isolation from the diaphragm (when used) and adjacent cathodes. It would further be advantageous to provide a protective member for an anode which is structured to resist the damage or degradation which inherently results from exposure to the environment of an electrolyte tank.
- In accordance with the present invention, an anode box is provided in which an anode plate is positionable for placement in an electrolytic tank. The anode box is structured to protect and stabilize the anode plate and to isolate the anode from adjacent cathode plates and from the diaphragm, when used. The structure of the present invention is particularly advantageous in that it is unitarily formed, comprising two or three pieces, from materials which render the anode box relatively resistant to chemical and mechanical degradation, thereby providing better protection to the anode plate. The anode box of the present invention may be employed in both electrowinning and electrorefining processes.
- The present invention comprises a frame sized to receive an anode plate therein. Specifically, the anode box comprises a frame body having two opposing long sides and a third side joining the two opposing long sides together. The outer-facing or peripheral edges of frame may be preferably shaped to facilitate placement of diaphragm or media bag about the frame body. A continuous, U-shaped slot is formed along the three sides of the body and the open fourth side of the frame thereby provides for insertion of an anode plate into the frame with the peripheral sides of the anode plate being supported by the U-shaped slot. A plurality of spacers extend between the sides of the frame body to isolate the anode plate from contact with an adjacent cathode or a diaphragm. The spacers have inwardly projecting members which contact the anode plate to help center the anode plate within the frame body and to provide a space about the anode plate through which gas liberated in the electrolytic process can escape.
- A removable hood structured to span the two opposing long sides is positionable on the frame body to provide a fourth side of the frame body, thereby fully enclosing the anode plate therewithin. The removable hood is structured to support an electrical bus and has a gas release mechanism for releasing chemically-liberated gas from around the anode plate. The removable hood may also be configured with an attachment structure to which a diaphragm, or bag of porous media, may be attached.
- The anode box of the present invention is unitarily and integrally formed from materials which are comparatively resistant to chemical and mechanical degradation. For example, the frame body, including the sides and spacers, is formed from polymer materials, such as polypropylene, PVC (polyvinyl chloride) or other materials. A particularly suitable material may, for example, be polypropylene in which is incorporated glass beads. The anode box may preferentially be made by a molding process. The frame body may also be formed by extrusion and then processed by known milling techniques to provide the desired configuration. The anode box of the present invention is, therefore, structurally strong to protect the anode plate and reduce warping of the anode plate, and, because it is unitarily formed, it is not subject to degradation.
- In the drawings, which illustrate what is currently considered to be the best mode for carrying out the invention:
- FIG. 1 is a perspective view of the anode box of the invention, shown in an exploded view;
- FIG. 2 is a view in lateral cross section of a portion of the anode box shown in FIG. 1, taken at line2-2;
- FIG. 3 is a perspective view of the anode box shown in FIG. 1, having a diaphragm (shown in phantom) positioned over the anode box; and
- FIG. 4 is a view in longitudinal cross section of the anode box shown in FIG. 1, taken at line4-4.
- FIG. 1 illustrates the
anode box 10 of the present invention which generally comprises aframe body 12 and aremovable hood 14. Theframe body 12 is further comprised of afirst side 16 and a second side 18 oriented in opposition, and parallel, to thefirst side 16. Theframe body 12 also has athird side 20 positioned between thefirst side 16 and second side 18 of theframe body 12 to provide a three-sided frame structure. Anopen channel 24 is formed along the inner-facingedge 26 of thefirst side 16,third side 20 and second side 18 of theframe body 12, thereby forming acontinuous channel 24 or slot which is sized to receive the peripheral edge of aplanar anode plate 30, a bottom portion of which is suggested by phantom line in FIG. 1. - The
anode box 10 of the present invention further includes a plurality ofspacers 34 which extend between the sides of theframe body 12. The number ofspacers 34 may vary and may be positioned in any direction relative to the sides of theframe body 12. FIG. 1 illustrates but one exemplar configuration where there are a plurality ofspacers 34 extending at right angles to each other to form a lattice-like structure on either side of thechannel 24 of theframe body 12. That is, a number of parallel and spaced-apart members, nominally designated ashorizontal spacers 36, extend between thefirst side 16 and second side 18 of theframe body 12. A plurality of parallel and spaced-apart members, nominally designated as vertical spacers 38, extend from thethird side 20 and intersect thehorizontal spacers 36 to form a lattice configuration. Afirst assemblage 40 ofhorizontal spacers 36 and vertical spacers 38 is positioned on one side of thecontinuous channel 24 and a second assemblage 42 ofhorizontal spacers 36 and vertical spacers 38 is positioned on the other side of thecontinuous channel 24 such that a lattice configuration of spacers lies adjacent each side of theanode plate 30. - The configuration of the
spacers 34 is further shown in FIG. 2 where it can be seen that thefirst assemblage 40 ofhorizontal spacers 36 and vertical spacers 38 is positioned on one side of the anode plate 30 (shown in phantom) and the second assemblage 42 ofhorizontal spacers 36 and vertical spacers 38 is positioned on the other side of theanode plate 30. It can further be seen thatbosses 44 are formed along the spacers 34 (either thehorizontal spacers 36 and/or the vertical spacers 38) to extend in the direction of the continuous channel 24 (not shown in FIG. 2). Thebosses 44 extend in the proximity of theanode plate 30 may or extend a sufficient distance to contact theanode plate 30. Thebosses 44 keep theanode 30 positioned within theframe body 12 and spaced apart from thespacers 34. Additionally, a space 46 is provided between theanode plate 30 and thespacers 34 through which chemically-liberated gas may move during the electrolytic process, as explained more fully below. - Referring again to FIG. 1, it should be noted that the
frame body 12 is unitarily formed such that the sides and spacers are integrally formed, from the same material, in a single unit. In one embodiment of the invention, theframe body 12 is singularly formed with three continuous sides and opposing spacer assemblies on either side of the continuous channel. In an alternative embodiment, which is suggested in FIG. 1, theframe body 12 may comprise two unitarily formed, mirror-image lateral sides 48, 50 which are joined along a peripheral edge to form a seam or joint 52. In the latter embodiment, the twolateral sides 48, 50 may be joined by such means as adhesive bonding and/or securement apparatus, such as screws 54. - The
anode box 10 of the present invention further includes aremovable hood 14 which is sized to fit over theframe body 12, as shown more clearly in FIG. 3. Theremovable hood 14 provides a forth side to theanode box 10 which effectively encloses the anode plate therewithin. Theremovable hood 14 generally has a top 56 and a substantially continuous wall member 58 extending from the top 56. Theremovable hood 14 may be configured with a securement structure 60 for attaching a diaphragm, or porous media bag, to theanode box 10 when desired. In the illustrated embodiment of FIG. 1, the securement structure 60 is acontinuous groove 62 formed along the continuous side wall member 58 to which the diaphragm 66 (FIG. 3, shown in phantom) may be caulked or held by a flexible spline 68, as shown in FIG. 4. - The
removable hood 14 is also configured with at least one electrical connector port 70, two such electrical connector ports 70 being illustrated in FIGS. 1 and 3. The electrical connector port 70 provides a means for contacting a source of electricity to theanode plate 30 to power the electrolytic process, and preferably is structured to further provide an electrical bus between or with other anode plates in a tank. In theanode box 10 illustrated in FIGS. 1, 3 and 4, the electrical connector port 70 is configured as a hollow standpipe through which a conductive pin 72 is positionable. The conductive pin 72, as shown in FIG. 4, is sized in length to extend from a position above the electrical connector port 70, through a conductive connectingbar 76 and through the electrical connector port 70 to contact theanode plate 30. The conductive connectingbar 76 spans between the anode plates in an electrolytic tank containing a plurality of cathodes and anodes. The conductive pin 72 may be secured in place by, for example, a nut 78. An electrode seal 80 is provided about the connecting pin 72. - The
removable hood 14 may also be configured with a gas vent 82 through which chemically-liberated gas moving through the space 46 between theanode plate 30 andframe body 12 is released. The liberated gas may be vented to the atmosphere through the gas vent 82 or may be vented via a hose (not shown) connected to the gas vent 82. Theremovable hood 14 may also be configured with attachment members 84 for securing theremovable hood 14 to theframe body 12 during use. - The anode box of the present invention provides a device for enclosing an anode plate in an electrolytic tank used for electrowinning or electrorefining. The anode box is particularly configured to protect and isolate the anode plate from contact with the diaphragm, when one is use, and from contact with adjacent cathodes. Moreover, the unitary formation of the anode box of the present invention renders it significantly more resistant to degradation or damage from the environment of the electrolytic tank and, therefore, provides better protection for the anode plate. Many variations may be made in the configuration of the anode box to achieve the objectives enumerated above. Thus, reference herein to specific details of the structure and function of the invention is by reference only and not by way of limitation. Those skilled in the art will recognize that changes may be made to the invention to adapt it accordingly.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/728,010 US6391170B1 (en) | 2000-12-01 | 2000-12-01 | Anode box for electrometallurgical processes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/728,010 US6391170B1 (en) | 2000-12-01 | 2000-12-01 | Anode box for electrometallurgical processes |
Publications (2)
Publication Number | Publication Date |
---|---|
US6391170B1 US6391170B1 (en) | 2002-05-21 |
US20020066666A1 true US20020066666A1 (en) | 2002-06-06 |
Family
ID=24925058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/728,010 Expired - Fee Related US6391170B1 (en) | 2000-12-01 | 2000-12-01 | Anode box for electrometallurgical processes |
Country Status (1)
Country | Link |
---|---|
US (1) | US6391170B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10309022B2 (en) * | 2011-08-10 | 2019-06-04 | Sumitomo Electric Industries, Ltd. | Element recovery method and element recovery apparatus |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10261493A1 (en) * | 2002-12-23 | 2004-07-08 | METAKEM Gesellschaft für Schichtchemie der Metalle mbH | Anode for electroplating |
US7378011B2 (en) * | 2003-07-28 | 2008-05-27 | Phelps Dodge Corporation | Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction |
US7393438B2 (en) * | 2004-07-22 | 2008-07-01 | Phelps Dodge Corporation | Apparatus for producing metal powder by electrowinning |
US8097132B2 (en) * | 2006-07-04 | 2012-01-17 | Luis Antonio Canales Miranda | Process and device to obtain metal in powder, sheet or cathode from any metal containing material |
CL2008000032A1 (en) * | 2008-01-07 | 2008-07-04 | New Tech Copper S A | VERTICAL GUIDE OF ELECTRODES THAT INCLUDES A SUPERIOR ALIGNMENT HEAD FOLLOWED BY A LOWER GUIDE WHERE THE HEAD HELPS THE INTRODUCTION OF THE ELECTRODE IN THE GUIDE WHICH HAS PERFORATIONS TO BE FIXED TO THE CELL STRUCTURE AND A PROFILE IN |
MX2010007795A (en) | 2008-01-17 | 2011-02-23 | Freeport Mcmoran Corp | Method and apparatus for electrowinning copper using an atmospheric leach with ferrous/ferric anode reaction electrowinning. |
KR20100036495A (en) * | 2008-09-30 | 2010-04-08 | 삼성전자주식회사 | Deionization apparatus and electrode module using thereof, and manufacturing method the same |
US20130153437A1 (en) * | 2011-12-20 | 2013-06-20 | Freeport-Mcmoran Corporation | Cathode assembly including a barrier, system including the assembly and method for using same |
US20130153435A1 (en) * | 2011-12-20 | 2013-06-20 | Freeport-Mcmoran Corporation | High surface area cathode assembly, system including the assembly, and method of using same |
JP6778286B2 (en) * | 2019-01-21 | 2020-10-28 | デノラ・ペルメレック株式会社 | Chamber frame element, electrolytic cell and electrodialysis tank |
CN110904467B (en) * | 2019-12-27 | 2023-06-27 | 昆明理工大学 | Assembled anode for synthesizing stannous octoate through electrochemical reaction and assembling method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3703358A (en) * | 1969-08-21 | 1972-11-21 | Gen Electric | Method of generating hydrogen with magnesium reactant |
US3979275A (en) * | 1974-02-25 | 1976-09-07 | Kennecott Copper Corporation | Apparatus for series electrowinning and electrorefining of metal |
US4098668A (en) | 1974-08-21 | 1978-07-04 | Continental Copper & Steel Industries, Inc. | Electrolyte metal extraction |
US3981353A (en) | 1975-01-16 | 1976-09-21 | Knight Bill J | Anode casting machine |
CA1092056A (en) | 1977-10-11 | 1980-12-23 | Victor A. Ettel | Electrowinning cell with bagged anode |
CA1125228A (en) | 1979-10-10 | 1982-06-08 | Daniel P. Young | Process for electrowinning nickel or cobalt |
NO172250C (en) | 1990-05-07 | 1993-06-23 | Elkem Aluminium | DEVICE FOR CLOSING THE ANODETOPE ON A SODER BERGANODEI AN ELECTROLYCLE CELL FOR ALUMINUM PRODUCTION |
DE69119590T2 (en) | 1991-09-28 | 1996-11-07 | Engitec Spa | Insoluble anode for electrolysis in aqueous solutions |
US5492608A (en) | 1994-03-14 | 1996-02-20 | The United States Of America As Represented By The Secretary Of The Interior | Electrolyte circulation manifold for copper electrowinning cells which use the ferrous/ferric anode reaction |
US5516412A (en) | 1995-05-16 | 1996-05-14 | International Business Machines Corporation | Vertical paddle plating cell |
US5908540A (en) | 1997-08-07 | 1999-06-01 | International Business Machines Corporation | Copper anode assembly for stabilizing organic additives in electroplating of copper |
US6231730B1 (en) * | 1999-12-07 | 2001-05-15 | Epvirotech Pumpsystems, Inc. | Cathode frame |
-
2000
- 2000-12-01 US US09/728,010 patent/US6391170B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10309022B2 (en) * | 2011-08-10 | 2019-06-04 | Sumitomo Electric Industries, Ltd. | Element recovery method and element recovery apparatus |
Also Published As
Publication number | Publication date |
---|---|
US6391170B1 (en) | 2002-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6391170B1 (en) | Anode box for electrometallurgical processes | |
FI65285C (en) | ELEKTROLYTISK UTVINNINGSCELL MED INHOELJD ANOD | |
US4017375A (en) | Bipolar electrode for an electrolytic cell | |
KR20010061947A (en) | Electrolysis Plate | |
US4051009A (en) | Bipolar electrolytic filter press cell frame | |
IE49616B1 (en) | Electrode for the electrolytic deposition of metals | |
US3997421A (en) | Top-mounted anode spacer clip | |
US4181588A (en) | Method of recovering lead through the direct reduction of lead chloride by aqueous electrolysis | |
CA2586149C (en) | Modular system for improving electro-metallurgical processes | |
CA1204410A (en) | Electrode frame for the electrolytic extraction and refining of metals | |
US6428676B1 (en) | Process for producing low alpha lead methane sulfonate | |
US20150182914A1 (en) | Apparatus and method for membrane electrolysis recycling of process chemicals | |
EP2794959B1 (en) | Bus bar electrical feedthrough for electrorefiner system | |
US3959111A (en) | Electrolytic cell | |
US3898149A (en) | Electrolytic diaphragm cell | |
US4851099A (en) | Electrolytic cell | |
US4225396A (en) | Vanadium and uranium oxidation by controlled potential electrolysis | |
KR20010024406A (en) | Electrode for electrolytic refining or electrowinning and method for producing the same | |
WO2008101283A1 (en) | Electrochemical reduction of metal oxides | |
US4048046A (en) | Electrolytic cell design | |
US20170260635A1 (en) | Consumable anode and anode assembly for electrolytic reduction of metal oxides | |
CA1291865C (en) | Method of assembling filter press type structure | |
US3642604A (en) | Anodic assembly for electrolysis cells | |
CN218756089U (en) | Electrode assembly and anode unit for electrolytic treatment of acidic etching solution | |
US3981788A (en) | Caustic alkali producing multiple vertical diaphragm type electrolytic cell admitting of easy assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENVIRO TECH PUMPSYSTEMS, INC., UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAY, FORREST B.;RYTTING, MICHAEL;DAVIS, STEVEN S.;REEL/FRAME:011341/0352 Effective date: 20001029 |
|
AS | Assignment |
Owner name: EMP ACQUISITION I, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENVIROTECH PUMPSYSTEMS, INC.;REEL/FRAME:013248/0034 Effective date: 20020628 Owner name: ENVIROTECH MOLDED PRODUCTS, INC., FLORIDA Free format text: CHANGE OF NAME;ASSIGNOR:EMP ACQUISTION I, INC.;REEL/FRAME:013248/0266 Effective date: 20020705 |
|
AS | Assignment |
Owner name: BFI BUSINESS FINANCE, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:ENVIROTECH MOLDED PRODUCTS, INC.;REEL/FRAME:015541/0261 Effective date: 20041230 |
|
REMI | Maintenance fee reminder mailed | ||
REIN | Reinstatement after maintenance fee payment confirmed | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060521 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20080623 |
|
AS | Assignment |
Owner name: ENVIROTECH MOLDED PRODUCTS, INC., UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BFI BUSINESS FINANCE;REEL/FRAME:022343/0372 Effective date: 20090225 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140521 |