US20020065602A1 - Navigation system for vehicles - Google Patents

Navigation system for vehicles Download PDF

Info

Publication number
US20020065602A1
US20020065602A1 US09/816,207 US81620701A US2002065602A1 US 20020065602 A1 US20020065602 A1 US 20020065602A1 US 81620701 A US81620701 A US 81620701A US 2002065602 A1 US2002065602 A1 US 2002065602A1
Authority
US
United States
Prior art keywords
facility
section
fuzzy search
navigation system
search words
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/816,207
Other versions
US6456929B1 (en
Inventor
Yuichiro Ohshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI DENKI KABUSHIKI KAISHA reassignment MITSUBISHI DENKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OHSHIMA, YUICHIRO
Publication of US20020065602A1 publication Critical patent/US20020065602A1/en
Application granted granted Critical
Publication of US6456929B1 publication Critical patent/US6456929B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3679Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities

Definitions

  • the present invention relates to a navigation system for vehicles that retrieves and extracts a target facility.
  • the system obtains date, weather information, etc. and retrieves or searches for specific facilities conforming to the obtained conditions.
  • the search condition on date is unique, while the search condition on weather is also uniquely appointed by selecting from rain, cloudiness and fine.
  • the present invention was made to solve the above-discussed problems and has an object of providing a navigation system for vehicles by which user (e.g., driver) can make search using natural fuzzy words.
  • a navigation system for vehicles comprises: a location detector section for detecting a location of a vehicle; a mapping data memory section for memorizing mapping data including various kinds of facility information; an input section; an facility search section for determining a facility to be searched according to a character string inputted from the mentioned input section and for retrieving facility information of the facility to be searched from the mentioned mapping data memory section; and a display section for displaying a location of the vehicle and the facility information outputted from the mentioned facility search section; in which the mentioned facility search section includes a fuzziness interpretation section for converting any fuzzy search word included in the inputted character string into a defined condition (quantified criterion) and retrieves the target facility using the facility information of the mentioned facility to be searched on the basis of the defined condition.
  • the defined condition can be selectively changed.
  • any fussy search word is converted into one of the defined conditions required by user.
  • the defined condition is an approximated condition, and a target facility can be extracted and outputted using the facility information of the facility to be searched on the basis of the approximately defined condition.
  • the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of defined conditions and, at the same time, judges a conjunctive relation between the mentioned plurality of fuzzy search words.
  • the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of approximately defined conditions and, at the same time, judges a conjunctive relation between the mentioned plurality of fuzzy search words.
  • the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of approximately defined conditions and, at the same time, judges a conjunctive relation between the mentioned plurality of fuzzy search words.
  • fuzzy search words are converted into approximately defined conditions and reliability in the mentioned fuzzy search words is acknowledged for the facility extracted on the basis of the approximately defined conditions.
  • fuzzy search words are converted into approximately defined conditions and reliability in the mentioned fuzzy search words is acknowledged for the facility extracted on the basis of the approximately defined conditions using a membership function established for the mentioned fuzzy search words.
  • fuzzy search words of negative meaning are converted into approximately defined conditions and reliability in the mentioned fuzzy search words of negative meaning is acknowledged for the facility extracted on the basis of the approximately defined conditions, using an established membership function.
  • FIG. 1 is a block diagram of a navigation system for vehicles according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic block diagram showing a schematic construction shown in FIG. 1.
  • FIG. 3 is a flow chart showing operation of Embodiment 1.
  • FIG. 4 is a diagram showing dictionary data for converting a fuzzy word into defined condition.
  • FIG. 5 is a flow char t showing operation of Embodiment 2.
  • FIG. 6 is a flow chart showing operation of Embodiment 4.
  • FIG. 7 is a diagram showing dictionary data for converting fuzzy words into approximately defined conditions.
  • FIG. 8 is a graph showing a membership function of a fuzzy word.
  • FIG. 9 is a graph showing a membership function of another fuzzy word.
  • FIG. 10 is a diagram showing reliability of a facility extracted in Embodiment 4.
  • reference numeral 11 is a mapping data memory section for memorizing mapping data including information of various facilities
  • numeral 12 is a location detector section for detecting a location of a vehicle
  • Numeral 13 is a facility search section for judging a concerned facility to be searched from a character string inputted through an input section 15 .
  • the facility search section 13 searches for facility information of the concerned facility to be searched from the mapping data memory 11 and includes a fuzziness interpretation section 131 for converting a fuzzy word included in the inputted character string into a defined condition.
  • Numeral 14 is a display section, such as a display monitor, for displaying a location of the vehicle, facility information outputted from the facility search engine 13 , etc. to user.
  • Numeral 15 is an input section, through which user inputs a character string, comprising a key board, remote control keys, a touch panel, keys disposed in a front panel, a voice input unit with a voice recognition function, etc.
  • reference numeral 21 is an azimuth sensor such as gyroscope
  • numeral 22 is a car speed sensor to determine car speed from car speed pulses.
  • Numeral 23 is a GPS (Global Positioning System) receiver, which outputs the present location of the vehicle in the form of, e.g., information of longitude and latitude degrees.
  • Numerals 21 , 22 and 23 are included in the location detector section 12 shown in FIG. 1.
  • Numeral 24 is an operating switch corresponding to the input section 15 shown in FIG. 1.
  • Numeral 25 is mapping data including facility information corresponding to the mapping data memory section 11 shown in FIG. 1.
  • Memorized in the facility information are varieties of information such as name, location, business hour, price, or parking space relating to the facility concerned.
  • a navigation ECU (electronic control unit) 27 carries out predetermined calculations on the basis of each output value using an external memory 26 .
  • the facility search section 13 and the fuzziness interpretation section 131 are implemented as respective functions of this navigation ECU 27 .
  • the location of the vehicle and the retrieved facility information are displayed on the display monitor 28 .
  • Embodiment 1 operation of this Embodiment 1 is hereinafter described with reference to FIG. 3 showing a flow chart of operation of Embodiment 1.
  • location of the vehicle is detected (S 31 ). Then, from the inputted character string (e.g., neighboring restaurant), a concerned facility to be searched (a restaurant) is determined and, from the mapping data memory, facility information of the concerned facility to be searched (the restaurant) is read in (S 32 ). Subsequently, fuzziness interpretation is conducted.
  • a fuzzy search word e.g., “neighboring” is converted into a defined condition “less than 10 km” using the dictionary data shown in FIG.
  • a facility corresponding to the fuzziness decision i.e., a facility corresponding to the defined condition “less than 10 km” is extracted from the facility information of the target facility to be searched (restaurant) and is outputted as the target facility (S 33 ).
  • the search object is a facility in the neighborhood of the present location of the vehicle, the facility located within “less than 10 km” from the vehicle location is searched.
  • the facility in the neighborhood of a destination is searched, the facility located within “less than 10 km” from the destination is searched.
  • the fuzzy search word e.g., “neighboring” is converted into an approximated criterion “less than 10 km ⁇ 10%” (either less than 9 km or less than 11 km) using the dictionary data shown in FIG. 4, and the facility corresponding to the fuzziness interpretation, i.e., the facility corresponding to the defined condition “less than 10 km ⁇ 10%” is extracted from the facility information of the concerned facility to be searched (restaurant) and is outputted as the target facility (S 33 ).
  • the facility to be searched is preferably retrieved in combination with search conditions such as number of search facilities, etc. Then the facility most suited for the search conditions such as number of search facilities, etc. within the range of mentioned ⁇ 10% is extracted.
  • FIG. 5 is a flowchart showing operation of the navigation system according to Embodiment 2. Steps S 31 and S 32 are the same as those in the foregoing Embodiment 1. Then, fuzziness interpretation is conducted. User selects one of the defined conditions “less than 10 km”, “less than 8 km” and “less than 5 km” (using the dictionary data shown in FIG. 4), which corresponds to the fuzzy word “neighboring” (S 34 ). The facility corresponding to the fuzziness interpretation on the basis of the selected criterion, e.g., “less than 5 km” is extracted from the facility information of the concerned facility to be searched (restaurant) and is outputted as the target facility (S 35 )
  • FIG. 6 is a flow chart explaining a method for the fuzziness interpretation according to Embodiment 4.
  • a key word of the facility such as restaurant, recreation ground, shop, public office etc. is searched from among the inputted character string to determine whether or not any character string to be searched is found in the inputted character string. If it is found, judgment of compound sentence about whether or not there exists any punctuation mark “,” is conducted at the same time (S 41 : Yes) Then, the facility information of the concerned facility to be searched is read from the mapping data on the basis of the character string (e.g., restaurant) to be searched (S 42 ). On the other hand, if any mentioned character string to be searched is not found (S 41 : No), the search becomes fault and goes on return step (S 47 ).
  • Step S 43 the fuzzy search words in the inputted character string are converted into approximately defined conditions using dictionary data shown in FIG. 7.
  • FIG. 7 is a diagram showing an example of dictionary data for converting each of fuzzy words into the approximately defined condition.
  • a fuzzy word “neighboring” is converted into an approximately defined condition “less than 10 km approx.”.
  • this word is a combination of “cheap” (fuzzy word) + (plus) “not” (negation), that is, “less than about 3,000 Yen” plus “not” (negation), it is interpreted as “approximately 3,000 Yen or over”.
  • all fuzzy search words are converted into approximately defined conditions (S 43 : Yes).
  • the search becomes fault and goes on return step S 47 (S 43 : No).
  • Step 44 judgment of the conjunctive relation between the approximately defined condition is conducted using the dictionary data of logical sum ( ⁇ ) comprising the disjunctive words such as “or”, “otherwise”, or “either” and, the dictionary data of logical product ( ⁇ ) comprising the conjunctive words such as “and”, “as well as” “also” or “with” in the character strings of the approximately defined conditions converted from every fuzzy search words. Then, referring to the judgment of compound sentence in Step S 41 , every conjunctive word in the character strings is converted (S 44 : Yes). On the other hand, if any mentioned character string to be searched is not found (S 41 : No), the search becomes fault and goes on return step (S 47 ).
  • the character string of the compound sentence “a restaurant in the neighborhood located within approximately 5 km but not cheap, or a restaurant distant and cheap” is converted to “restaurant (located within approximately 5 km ⁇ less than approximately 10 km ⁇ approximately 3,000 Yen or over) ⁇ (longer than approximately 10 km ⁇ less than approximately 3,000 Yen)”.
  • Step 45 the approximately defined condition is further converted to an approximately defined condition being more specific.
  • “approximately” in the approximately defined condition is more specifically converted into “ ⁇ 10%” so that the character string of the mentioned compound sentence is expressed as “restaurant located within (5 km ⁇ 10% ⁇ less than 10 km ⁇ 10% ⁇ 3,000 Yen or over) ⁇ (10 km ⁇ 10% or over ⁇ less than 3,000 Yen ⁇ 10%)”.
  • a facility, which meets the mentioned character string is extracted from the facility information previously read in (S 45 ).
  • FIGS. 8 and 9 are graphs respectively showing examples of membership functions of the fuzzy words on the basis of the more specified approximately defined conditions.
  • FIG. 8 is a graph showing a membership function of the more specified approximately defined wording “distance: less than 10 km ⁇ 10%” converted more specifically from the fuzzy word “neighboring”.
  • FIG. 9 is a graph showing a membership function of the more specified approximately defined word “price: 3,000 Yen ⁇ 10% or over” converted more specifically from the fuzzy word “not cheap”.
  • Step S 46 at the time of acknowledging a reliability of the facility for every more specified approximately defined condition, if price is a critical factor, it is preferable to apply a multiplication by a predetermined weight such as 1.5 times.
  • mapping data it is also preferable to add facility information to the mapping data as much as possible, because the more number of adjectives and adverbs for search are input, the more increases recognition rate.
  • General information stored in the navigation system includes, for example, longitude and latitude, price, telephone number, address, number of floors, gross floor area, height above sea level, existence of infant facility.
  • Specific information includes number of stars ( ⁇ ) indicated in magazines or the like to show restaurants, number of attractions in association with recreation ground or the like, number of species in association with zoo, aquarium or the like, number of sights or hot springs in association with tourist resorts, classification of religion and so forth.
  • an inputted character string is “place with a fine view”, it is possible to search it on the basis of the mentioned height above sea level or number of floors.
  • any character string is inputted by user's keystrokes or by effect of the voice recognition succeeding to the preliminary voice input.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Traffic Control Systems (AREA)

Abstract

A navigation system for vehicles which extracts a target facility by conducting a search using fuzzy search words inputted by user.
A facility search section 13 includes a fuzziness interpretation section 131 for converting any fuzzy search word included in the inputted character string into a defined condition (quantified criterion) and retrieves target facility using facility information of the facility to be searched on the basis of the defined condition.

Description

    BACKGROUND OF THE INVENTION
  • 1. Technical Field [0001]
  • The present invention relates to a navigation system for vehicles that retrieves and extracts a target facility. [0002]
  • 2. Background Art [0003]
  • In one of conventional navigation systems, for example, disclosed by the Japanese Patent Publication (unexamined) No. 337361/1999, the system obtains date, weather information, etc. and retrieves or searches for specific facilities conforming to the obtained conditions. In this case, the search condition on date is unique, while the search condition on weather is also uniquely appointed by selecting from rain, cloudiness and fine. [0004]
  • However, a problem exists in that the conventional navigation systems cannot make any search taking into consideration for fuzziness. For example, it is impossible to conduct “search for an accommodation in the neighborhood” and also, in case of “search for an accommodation located within 5 km”, the search is conducted for within a definitely predetermined distance, but not conducted for any accommodation slightly over the threshold value including fuzziness. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention was made to solve the above-discussed problems and has an object of providing a navigation system for vehicles by which user (e.g., driver) can make search using natural fuzzy words. [0006]
  • A navigation system for vehicles according to the invention comprises: a location detector section for detecting a location of a vehicle; a mapping data memory section for memorizing mapping data including various kinds of facility information; an input section; an facility search section for determining a facility to be searched according to a character string inputted from the mentioned input section and for retrieving facility information of the facility to be searched from the mentioned mapping data memory section; and a display section for displaying a location of the vehicle and the facility information outputted from the mentioned facility search section; in which the mentioned facility search section includes a fuzziness interpretation section for converting any fuzzy search word included in the inputted character string into a defined condition (quantified criterion) and retrieves the target facility using the facility information of the mentioned facility to be searched on the basis of the defined condition. [0007]
  • As a result, it becomes possible for user to extract any target facility by the search using natural fuzzy words. [0008]
  • It is preferable that the defined condition can be selectively changed. [0009]
  • As a result, any fussy search word is converted into one of the defined conditions required by user. [0010]
  • It is also preferable that the defined condition is an approximated condition, and a target facility can be extracted and outputted using the facility information of the facility to be searched on the basis of the approximately defined condition. [0011]
  • As a result, it becomes possible to define the fuzziness around a certain threshold value and to retrieve and extract the target facility from the fuzzy word. [0012]
  • It is also preferable that the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of defined conditions and, at the same time, judges a conjunctive relation between the mentioned plurality of fuzzy search words. [0013]
  • As a result, it becomes possible to appropriately retrieve and extract the target facility from the plurality of fuzzy search words having the conjunctive relation with each other. [0014]
  • It is also preferable that the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of approximately defined conditions and, at the same time, judges a conjunctive relation between the mentioned plurality of fuzzy search words. As a result, it becomes possible to define the fuzziness around a certain threshold value and, it becomes possible to appropriately retrieve and extract the target facility from the plurality of fuzzy search words having the conjunctive relation with each other. [0015]
  • It is also preferable that fuzzy search words are converted into approximately defined conditions and reliability in the mentioned fuzzy search words is acknowledged for the facility extracted on the basis of the approximately defined conditions. [0016]
  • As a result, it becomes possible to find a target facility with higher reliability. [0017]
  • It is also preferable that fuzzy search words are converted into approximately defined conditions and reliability in the mentioned fuzzy search words is acknowledged for the facility extracted on the basis of the approximately defined conditions using a membership function established for the mentioned fuzzy search words. [0018]
  • As a result, it becomes possible to find a target facility with higher reliability. [0019]
  • It is preferable that fuzzy search words of negative meaning are converted into approximately defined conditions and reliability in the mentioned fuzzy search words of negative meaning is acknowledged for the facility extracted on the basis of the approximately defined conditions, using an established membership function. [0020]
  • As a result, it becomes possible to find a target facility with higher reliability.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a navigation system for vehicles according to Embodiment 1 of the present invention. [0022]
  • FIG. 2 is a schematic block diagram showing a schematic construction shown in FIG. 1. [0023]
  • FIG. 3 is a flow chart showing operation of Embodiment 1. [0024]
  • FIG. 4 is a diagram showing dictionary data for converting a fuzzy word into defined condition. [0025]
  • FIG. 5 is a flow char t showing operation of Embodiment 2. [0026]
  • FIG. 6 is a flow chart showing operation of [0027] Embodiment 4.
  • FIG. 7 is a diagram showing dictionary data for converting fuzzy words into approximately defined conditions. [0028]
  • FIG. 8 is a graph showing a membership function of a fuzzy word. [0029]
  • FIG. 9 is a graph showing a membership function of another fuzzy word. [0030]
  • FIG. 10 is a diagram showing reliability of a facility extracted in [0031] Embodiment 4.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiment 1 [0032]
  • Referring to FIG. 1 showing a block diagram of a navigation system for vehicles according to Embodiment 1 of the present invention, [0033] reference numeral 11 is a mapping data memory section for memorizing mapping data including information of various facilities, and numeral 12 is a location detector section for detecting a location of a vehicle. Numeral 13 is a facility search section for judging a concerned facility to be searched from a character string inputted through an input section 15. ¥The facility search section 13 searches for facility information of the concerned facility to be searched from the mapping data memory 11 and includes a fuzziness interpretation section 131 for converting a fuzzy word included in the inputted character string into a defined condition. Numeral 14 is a display section, such as a display monitor, for displaying a location of the vehicle, facility information outputted from the facility search engine 13, etc. to user. Numeral 15 is an input section, through which user inputs a character string, comprising a key board, remote control keys, a touch panel, keys disposed in a front panel, a voice input unit with a voice recognition function, etc.
  • Referring now to FIG. 2 showing a schematic block diagram of the schematic construction shown in FIG. 1, [0034] reference numeral 21 is an azimuth sensor such as gyroscope, and numeral 22 is a car speed sensor to determine car speed from car speed pulses. Numeral 23 is a GPS (Global Positioning System) receiver, which outputs the present location of the vehicle in the form of, e.g., information of longitude and latitude degrees. Numerals 21, 22 and 23 are included in the location detector section 12 shown in FIG. 1. Numeral 24 is an operating switch corresponding to the input section 15 shown in FIG. 1. Numeral 25 is mapping data including facility information corresponding to the mapping data memory section 11 shown in FIG. 1. Memorized in the facility information are varieties of information such as name, location, business hour, price, or parking space relating to the facility concerned.
  • A navigation ECU (electronic control unit) [0035] 27 carries out predetermined calculations on the basis of each output value using an external memory 26. The facility search section 13 and the fuzziness interpretation section 131 are implemented as respective functions of this navigation ECU 27. The location of the vehicle and the retrieved facility information are displayed on the display monitor 28.
  • Now, operation of this Embodiment 1 is hereinafter described with reference to FIG. 3 showing a flow chart of operation of Embodiment 1. [0036]
  • Referring to FIG. 3, in the first step, location of the vehicle is detected (S[0037] 31). Then, from the inputted character string (e.g., neighboring restaurant), a concerned facility to be searched (a restaurant) is determined and, from the mapping data memory, facility information of the concerned facility to be searched (the restaurant) is read in (S32). Subsequently, fuzziness interpretation is conducted. A fuzzy search word, e.g., “neighboring” is converted into a defined condition “less than 10 km” using the dictionary data shown in FIG. 4 and, a facility corresponding to the fuzziness decision, i.e., a facility corresponding to the defined condition “less than 10 km” is extracted from the facility information of the target facility to be searched (restaurant) and is outputted as the target facility (S33). In this case, as the search object is a facility in the neighborhood of the present location of the vehicle, the facility located within “less than 10 km” from the vehicle location is searched. On the other hand, in case that the facility in the neighborhood of a destination is searched, the facility located within “less than 10 km” from the destination is searched.
  • Embodiment 2 [0038]
  • In the foregoing fuzziness interpretation process, it is also possible that the fuzzy search word, e.g., “neighboring” is converted into an approximated criterion “less than 10 km±10%” (either less than 9 km or less than 11 km) using the dictionary data shown in FIG. 4, and the facility corresponding to the fuzziness interpretation, i.e., the facility corresponding to the defined condition “less than 10 km±10%” is extracted from the facility information of the concerned facility to be searched (restaurant) and is outputted as the target facility (S[0039] 33). In this case, the facility to be searched is preferably retrieved in combination with search conditions such as number of search facilities, etc. Then the facility most suited for the search conditions such as number of search facilities, etc. within the range of mentioned ±10% is extracted.
  • [0040] Embodiment 3
  • FIG. 5 is a flowchart showing operation of the navigation system according to Embodiment 2. Steps S[0041] 31 and S32 are the same as those in the foregoing Embodiment 1. Then, fuzziness interpretation is conducted. User selects one of the defined conditions “less than 10 km”, “less than 8 km” and “less than 5 km” (using the dictionary data shown in FIG. 4), which corresponds to the fuzzy word “neighboring” (S34). The facility corresponding to the fuzziness interpretation on the basis of the selected criterion, e.g., “less than 5 km” is extracted from the facility information of the concerned facility to be searched (restaurant) and is outputted as the target facility (S35)
  • [0042] Embodiment 4
  • FIG. 6 is a flow chart explaining a method for the fuzziness interpretation according to [0043] Embodiment 4. Referring to FIG. 6, a key word of the facility such as restaurant, recreation ground, shop, public office etc. is searched from among the inputted character string to determine whether or not any character string to be searched is found in the inputted character string. If it is found, judgment of compound sentence about whether or not there exists any punctuation mark “,” is conducted at the same time (S41: Yes) Then, the facility information of the concerned facility to be searched is read from the mapping data on the basis of the character string (e.g., restaurant) to be searched (S42). On the other hand, if any mentioned character string to be searched is not found (S41: No), the search becomes fault and goes on return step (S47).
  • In Step S[0044] 43, the fuzzy search words in the inputted character string are converted into approximately defined conditions using dictionary data shown in FIG. 7. FIG. 7 is a diagram showing an example of dictionary data for converting each of fuzzy words into the approximately defined condition.
  • For example, a fuzzy word, “neighboring” is converted into an approximately defined condition “less than 10 km approx.”. Likewise, in case of “not cheap”, considering that this word is a combination of “cheap” (fuzzy word) + (plus) “not” (negation), that is, “less than about 3,000 Yen” plus “not” (negation), it is interpreted as “approximately 3,000 Yen or over”. In this manner, all fuzzy search words are converted into approximately defined conditions (S[0045] 43: Yes). On the other hand, in case that conversion of any fuzzy word is impossible because of not entered in the mentioned dictionary data or so, the search becomes fault and goes on return step S47 (S43: No).
  • In [0046] Step 44, judgment of the conjunctive relation between the approximately defined condition is conducted using the dictionary data of logical sum (∪) comprising the disjunctive words such as “or”, “otherwise”, or “either” and, the dictionary data of logical product (∩) comprising the conjunctive words such as “and”, “as well as” “also” or “with” in the character strings of the approximately defined conditions converted from every fuzzy search words. Then, referring to the judgment of compound sentence in Step S41, every conjunctive word in the character strings is converted (S44: Yes). On the other hand, if any mentioned character string to be searched is not found (S41: No), the search becomes fault and goes on return step (S47).
  • Through the mentioned Steps, for example, the character string of the compound sentence “a restaurant in the neighborhood located within approximately 5 km but not cheap, or a restaurant distant and cheap” is converted to “restaurant (located within approximately 5 km ∩ less than approximately 10 km ∩ approximately 3,000 Yen or over) ∪ (longer than approximately 10 km ∩ less than approximately 3,000 Yen)”. [0047]
  • Then, in Step [0048] 45, the approximately defined condition is further converted to an approximately defined condition being more specific. For example, “approximately” in the approximately defined condition is more specifically converted into “±10%” so that the character string of the mentioned compound sentence is expressed as “restaurant located within (5 km±10% ∩ less than 10 km±10% ∩ 3,000 Yen or over) ∪ (10 km±10% or over ∩ less than 3,000 Yen±10%)”. Thus, a facility, which meets the mentioned character string, is extracted from the facility information previously read in (S45).
  • In Step [0049] 46, reliability is found. FIGS. 8 and 9 are graphs respectively showing examples of membership functions of the fuzzy words on the basis of the more specified approximately defined conditions.
  • FIG. 8 is a graph showing a membership function of the more specified approximately defined wording “distance: less than 10 km±10%” converted more specifically from the fuzzy word “neighboring”. FIG. 9 is a graph showing a membership function of the more specified approximately defined word “price: 3,000 Yen±10% or over” converted more specifically from the fuzzy word “not cheap”. [0050]
  • As shown in FIGS. 8 and 9, the membership functions of the more specified approximately defined conditions are established for every fuzzy word mentioned above, and reliability of the extracted facilities is obtained for every fuzzy word and summed up. In this manner, the facilities are sorted from one having the highest reliability to the others each having lower reliability and, as a result, the facilities found by such sorting are outputted in return Step S[0051] 47, e.g., as shown in FIG. 10.
  • In this Step S[0052] 46, at the time of acknowledging a reliability of the facility for every more specified approximately defined condition, if price is a critical factor, it is preferable to apply a multiplication by a predetermined weight such as 1.5 times.
  • It is also preferable to apply a classification in order to extract the superlative like “most”. For example, in case that “the most neighboring restaurant” is input, it is not enough to show only the extracted result of “restaurants within approx. 10 km±10%”, but desired to extract the most reliable facility. [0053]
  • It is also preferable to make a distinction between the compound sentences. For example, in case that “the most neighboring and the cheapest restaurant” is inputted, as it is hard to distinguish whether it means “the most neighboring” ∩ “cheap” or “the most neighboring” ∩ “the cheapest”. Accordingly, if any facility is extracted with each word distinguished by the superlative like “the most neighboring” ∩ “the cheapest”, then the extraction of the facility is interrupted at that stage. If not, it is preferable to extract facilities one after another while removing the distinction by the superlative. [0054]
  • It is also preferable to make a distinction between the imperative or requesting words such as “search”, “want to see” or “want to go” and the interrogative words such as “be there?”, “be able to come?” or “which?”. For example, in case that “want to go to a neighboring and cheap restaurant” is inputted, it is not enough to display only an extracted result, but desirable to display a facility extracted with the mentioned distinction, thereby extracting the superlative to get the target facility. [0055]
  • It is also preferable to make a distinction by multiple meanings. For example, in case that “high” is inputted, it is sometimes hard to distinguish whether it means “high in price (expensive)” or “high in altitude”. If a facility for eating and drinking like a “restaurant” is requested, it is desired to choose “high in price”. On the other hand, if a facility for resting or parking to enjoy a panoramic view like “observatory” is requested, it is desired to choose “high in altitude”. [0056]
  • It is also preferable to add facility information to the mapping data as much as possible, because the more number of adjectives and adverbs for search are input, the more increases recognition rate. General information stored in the navigation system includes, for example, longitude and latitude, price, telephone number, address, number of floors, gross floor area, height above sea level, existence of infant facility. Specific information includes number of stars (⋆) indicated in magazines or the like to show restaurants, number of attractions in association with recreation ground or the like, number of species in association with zoo, aquarium or the like, number of sights or hot springs in association with tourist resorts, classification of religion and so forth. In case that an inputted character string is “place with a fine view”, it is possible to search it on the basis of the mentioned height above sea level or number of floors. [0057]
  • In this [0058] Embodiment 4, it is also preferable to utilize, e.g., a function expressing distribution probability instead of the membership function used in fuzzy theory described above.
  • It is also preferable to retrieve data from, e. g., media such as DVD-ROM, etc. or to store the data in ROM or RAM other than DVD-ROM, instead of holding predetermined dictionary data in the program. [0059]
  • It is also preferable to make it possible to externally input the mentioned weight giving an importance to price, etc. in order to reflect user's option. [0060]
  • It is also preferable that any character string is inputted by user's keystrokes or by effect of the voice recognition succeeding to the preliminary voice input. [0061]

Claims (8)

What is claimed is:
1. A navigation system for vehicles comprising:
a location detector section for detecting a location of a vehicle;
a mapping data memory section for memorizing mapping data including various kinds of facility information;
an input section;
an facility search section for determining a facility to be searched according to a character string inputted from said input section and for retrieving facility information of the facility to be searched from said mapping data memory section; and
a display section for displaying a location of the vehicle and the facility information outputted from said facility search section;
wherein said facility search section includes a fuzziness interpretation section for converting any fuzzy search word included in the inputted character string into a defined condition, and extracts and outputs the target facility using the facility information of said facility to be searched on the basis of the defined condition.
2. The navigation system for vehicles according to claim 1, wherein the defined condition can be selectively changed.
3. The navigation system for vehicles according to claim 1, wherein the defined condition is an approximated condition and a target facility can be extracted and outputted using the facility information of said facility to be searched on the basis of the approximately defined condition.
4. The navigation system for vehicles according to claim 1, wherein the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of defined conditions and, at the same time, judges a conjunctive relation between said plurality of fuzzy search words.
5. The navigation system for vehicles according to claim 4, wherein the fuzziness interpretation section converts a plurality of inputted fuzzy search words into a plurality of approximately defined conditions and, at the same time, judges a conjunctive relation between said plurality of fuzzy search words.
6. The navigation system for vehicles according to claim 3, wherein fuzzy search words are converted into approximately defined conditions and reliability in the mentioned fuzzy search words is acknowledged for the facility extracted on the basis of the approximately defined conditions.
7. The navigation system for vehicles according to claim 6, wherein fuzzy search words are converted into approximately defined conditions and reliability in the mentioned fuzzy search words is acknowledged for the facility extracted on the basis of the approximately defined conditions, using a membership function established for the mentioned fuzzy search words.
8. The navigation system for vehicles according to claim 3, wherein fuzzy search words of negative meaning are converted into approximately defined conditions and reliability in the mentioned fuzzy search words of negative meaning is acknowledged for the facility extracted on the basis of the approximately defined conditions, using an established membership function.
US09/816,207 2000-11-30 2001-03-26 Navigation system and method for vehicles Expired - Fee Related US6456929B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000364182A JP2002169828A (en) 2000-11-30 2000-11-30 Navigation device for moving body
JP2000-364182 2000-11-30

Publications (2)

Publication Number Publication Date
US20020065602A1 true US20020065602A1 (en) 2002-05-30
US6456929B1 US6456929B1 (en) 2002-09-24

Family

ID=18835169

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/816,207 Expired - Fee Related US6456929B1 (en) 2000-11-30 2001-03-26 Navigation system and method for vehicles

Country Status (3)

Country Link
US (1) US6456929B1 (en)
JP (1) JP2002169828A (en)
DE (1) DE10136644B4 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158389A1 (en) * 2002-12-17 2004-08-12 Aisin Aw Co., Ltd. Information display system
US20060224313A1 (en) * 2005-03-31 2006-10-05 Denso Corporation Device for searching sub-facility included in facility
US20070061070A1 (en) * 2005-08-29 2007-03-15 Hidekazu Aoto Navigation apparatus and navigation method
US20090144268A1 (en) * 2007-11-30 2009-06-04 Aisin Aw Co., Ltd. Facility information output device, facility information output method, and computer-readable medium storing facility information output program
US20120200430A1 (en) * 2011-02-08 2012-08-09 Ford Global Technologies, Llc Method and device for assisting a driver in finding a parking spot
CN104915395A (en) * 2015-05-28 2015-09-16 百度在线网络技术(北京)有限公司 Method and device for querying associated information of main body
US9381283B2 (en) 2004-11-05 2016-07-05 Convatec Technologies Inc. Vacuum wound dressing
CN109101565A (en) * 2018-07-16 2018-12-28 浪潮软件集团有限公司 Graph database-based semantic search implementation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576511B2 (en) * 2001-09-19 2004-10-13 松下電器産業株式会社 Voice interaction device
US7831431B2 (en) 2006-10-31 2010-11-09 Honda Motor Co., Ltd. Voice recognition updates via remote broadcast signal
JP2008257587A (en) * 2007-04-06 2008-10-23 Mitsubishi Electric Corp Navigation device and facility retrieval method for the same device
US8331958B2 (en) * 2007-12-13 2012-12-11 Garmin Switzerland Gmbh Automatically identifying location information in text data
US20110131040A1 (en) * 2009-12-01 2011-06-02 Honda Motor Co., Ltd Multi-mode speech recognition
US20110197200A1 (en) * 2010-02-11 2011-08-11 Garmin Ltd. Decoding location information in content for use by a native mapping application
DE102011017261A1 (en) * 2011-04-15 2012-10-18 Volkswagen Aktiengesellschaft Method for providing user interface in vehicle for determining information in index database, involves accounting cross-reference between database entries assigned to input sequences by determining number of hits

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283575A (en) * 1991-11-08 1994-02-01 Zexel Corporation System and method for locating a travelling vehicle
JP3385657B2 (en) * 1993-08-10 2003-03-10 トヨタ自動車株式会社 Car navigation system
US5577169A (en) * 1994-04-29 1996-11-19 International Business Machines Corporation Fuzzy logic entity behavior profiler
US5911773A (en) * 1995-07-24 1999-06-15 Aisin Aw Co., Ltd. Navigation system for vehicles
JPH11337361A (en) 1998-05-28 1999-12-10 Denso Corp Navigation apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158389A1 (en) * 2002-12-17 2004-08-12 Aisin Aw Co., Ltd. Information display system
US9381283B2 (en) 2004-11-05 2016-07-05 Convatec Technologies Inc. Vacuum wound dressing
US20060224313A1 (en) * 2005-03-31 2006-10-05 Denso Corporation Device for searching sub-facility included in facility
US20070061070A1 (en) * 2005-08-29 2007-03-15 Hidekazu Aoto Navigation apparatus and navigation method
US7650237B2 (en) * 2005-08-29 2010-01-19 Alpine Electronics, Inc. Navigation apparatus and navigation method
US20090144268A1 (en) * 2007-11-30 2009-06-04 Aisin Aw Co., Ltd. Facility information output device, facility information output method, and computer-readable medium storing facility information output program
EP2068256A1 (en) * 2007-11-30 2009-06-10 Aisin AW Co., Ltd. Facility information output device, facility information output method, and facility information output program
US8099414B2 (en) 2007-11-30 2012-01-17 Aisin Aw Co., Ltd. Facility information output device, facility information output method, and computer-readable medium storing facility information output program
US20120200430A1 (en) * 2011-02-08 2012-08-09 Ford Global Technologies, Llc Method and device for assisting a driver in finding a parking spot
RU2610295C2 (en) * 2011-02-08 2017-02-08 Форд Глобал Технолоджис, ЛЛК Method and device for driver's aid
CN104915395A (en) * 2015-05-28 2015-09-16 百度在线网络技术(北京)有限公司 Method and device for querying associated information of main body
CN109101565A (en) * 2018-07-16 2018-12-28 浪潮软件集团有限公司 Graph database-based semantic search implementation method

Also Published As

Publication number Publication date
JP2002169828A (en) 2002-06-14
DE10136644B4 (en) 2005-08-25
DE10136644A1 (en) 2002-06-13
US6456929B1 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US6456929B1 (en) Navigation system and method for vehicles
US20080312817A1 (en) Navigation apparatus and navigation program
US7225076B2 (en) Map search system
CN100376871C (en) Map information retrieving
JP2009054133A (en) Navigation device and navigation program
US8321375B2 (en) Search data update method and search data update system
US20080307356A1 (en) Navigation apparatus and navigation program
US8249804B2 (en) Systems and methods for smart city search
JP2005106496A (en) Navigation system
US9863779B2 (en) Popular and common chain points of interest
US6807480B1 (en) Navigation system and a memory medium
WO2023020529A1 (en) Method and apparatus for inputting point-of-interest, and device and storage medium
JP4915379B2 (en) Destination setting device and destination setting program
CN101738196A (en) Method and device of navigation equipment for information retrieval
JPH11271084A (en) Navigation device for vehicle and storage medium
JP4930858B2 (en) Character selection device, navigation device, and character selection program
JPS60196617A (en) Vehicle mounted navigation device
JP2010032509A (en) Navigation device, vehicle, and navigation program
JP5013266B2 (en) Destination input device and destination input program
US20080167807A1 (en) Navigation system with immediate language transform and method thereof
JP2009019976A (en) Information display device for vehicle
CN100470553C (en) Transition dictionary generation device and chinese characters transition device
JPH09167166A (en) Information retrieving device
JP2000040086A (en) Facility information retrieval display device
JP2005227091A (en) Navigation apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OHSHIMA, YUICHIRO;REEL/FRAME:011809/0891

Effective date: 20010418

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140924