US20020060197A1 - Insertion and removal system in plug-in unit - Google Patents
Insertion and removal system in plug-in unit Download PDFInfo
- Publication number
- US20020060197A1 US20020060197A1 US09/774,724 US77472401A US2002060197A1 US 20020060197 A1 US20020060197 A1 US 20020060197A1 US 77472401 A US77472401 A US 77472401A US 2002060197 A1 US2002060197 A1 US 2002060197A1
- Authority
- US
- United States
- Prior art keywords
- plug
- handle
- lever
- unit
- front panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1401—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
- H05K7/1402—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards
- H05K7/1409—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards by lever-type mechanisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/62—Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
- H01R13/629—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
- H01R13/62933—Comprising exclusively pivoting lever
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/62—Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
- H01R13/629—Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure electrical locking indicators, manufacturing tolerances
- H01R13/62933—Comprising exclusively pivoting lever
- H01R13/62961—Pivoting lever having extendable handle
Definitions
- the present invention relates to a plug-in unit consisting of a sub-rack constituting electronic equipment such as communication equipment and so on and a printed circuit board including electronic circuit parts inserted into and removed from the sub-rack.
- the present invention relates to an insertion and removal system in a plug-in unit for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack.
- FIG. 1 is a perspective view of the constitution of a conventional sub-rack.
- reference numeral 100 denotes a sub-rack.
- 101 denotes a top plate.
- 102 denotes a bottom plate.
- 103 denotes a side plate.
- 104 denotes a front rail arranged on front edges of the top plate 101 and the bottom plate 102 , respectively.
- 105 denotes a mid-rail arranged on a midrange of the top plate 101 and the bottom plate 102 , respectively, so as to cross the midrange.
- 106 denotes a guide rail whose both ends are mounted on upper faces of the front rail 104 and the mid-rail 105 .
- 107 denotes a locating hole used for locating a position on which a plug-in unit (not shown) is inserted.
- FIG. 2 is a perspective view of the sub-rack 100 that a plug-in unit is partially mounted.
- 111 denotes a front panel for covering an opening of the sub-rack 100 when the plug-in unit is housed in the sub-rack 100 .
- 112 denotes a handle arranged on the front panel 111 , the handle 112 used for insertion and removal of the plug-in unit.
- 112 a denotes a lever part being operated on operating rotationally the handle 112 .
- FIG. 3 is a side view of the constitution of a plug-in unit inserted into the sub-rack. In FIG.
- 120 denotes a plug-in unit
- 121 denotes a printed circuit board constituting the plug-in unit
- 122 denotes a connector arranged on the printed circuit board 121 , which can be connected to a connector arranged on a back plane by a plug-in mode.
- 123 denotes a guide pin, which is inserted into a locating hole 107 in order to locate the front panel 111
- 124 denotes a handle-support part, which is coupled to the printed circuit board 121 or the front panel 111 .
- 125 denotes a pin, which is locked to the handle 112 or the handle-support part 124 to allow the rotation of the handle 112 with respect to the handle-support part 124 .
- the common numerals denote common elements in FIG. 2, the description of such parts is omitted.
- FIG. 4 is a side view of a conventional insertion and removal system in a plug-in unit for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack.
- 131 denotes a first engagement claw formed on the handle 112 and 132 denotes a second engagement claw formed on the handle 112 .
- 133 denotes a first engagement part formed on the front rail 104 and 134 denotes a second engagement part formed on the front rail 104 .
- the common numerals denote common elements in FIGS. 1 to 3 , the description of such parts is omitted.
- the printed circuit board 121 is slid along a groove formed on the guide rail 106 .
- the guide pin 123 arranged on the plug-in unit 120 , is then inserted into the locating hole 107 formed in the front rail 104 to locate the front panel 111 with respect to the front rail 104 .
- the lever part 112 a of the handle 112 is then rotated in a direction of arrow A shown in FIG. 4 in a state of engaging the first engagement claw 131 of the handle 112 with the first engagement part 133 of the front rail 104 .
- the connector 122 of the printed circuit board 121 is connected to the back plane to finish the insertion of the plug-in unit 120 .
- the lever part 112 a of the handle 112 is rotated in a direction of arrow B shown in FIG. 4 in a state of engaging the second engagement claw 132 of the handle 112 with the second engagement part 134 of the front rail 104 to disconnect the connector 122 of the printed circuit board 121 from the back plane.
- the printed circuit board 121 is pulled along the groove formed on the guide rail 106 to remove the plug-in unit 120 from the sub-rack 100 .
- JP-A-2000/91770 discloses an insertion and removal system in a plug-in unit for resolving such problems above.
- FIG. 5 is a side view of the constitution of a conventional insertion and removal system (hereafter, referring to a conventional example 1 ) in a plug-in unit as disclosed in JP-A-2000/91770.
- 221 denotes a tool for insertion and removal system in a plug-in unit.
- 222 denotes a lever part rotationally operated on insertion and removal of the plug-in unit with respect to the sub-rack and
- 222 A denotes a slider constituting the lever 222 , which is inserted into a tubular part 223 A of a main body 223 .
- 222 B denotes an action part for insertion and removal of the lever 222 , which is acted upon by a rotational force when rotationally operating.
- 223 denotes a main body having a tubular part 223 A which allows insertion of the slider 222 A of the lever 222 .
- 223 AA denotes a first engagement part arranged on the main body 223
- 223 BA denotes a second engagement part arranged on the main body 223 .
- 228 denotes a central hole which allows insertion of a pin 241 for rotating a construction part, including the lever 222 and the main body 223 , in an insertion or removal direction.
- 231 denotes a printed circuit board constituting the plug-in unit.
- 233 denotes a vertical piece formed on a portion, on which the tool 221 is placed, at a right angle.
- the printed circuit board 231 is slid in a direction of arrow 251 along a groove formed on the guide rail.
- the slider 222 A is slid from the tubular part 223 A of the main body 223 in an extension direction of the length of the lever 222 .
- the action part 222 B of the lever 222 in the tool 221 is rotated in a direction of arrow 252 about a rotational axis including the central hole 228 and the pin 241 .
- the second engagement part 223 BA of the main body 223 is engaged with the vertical piece 233 of the sub-rack to transfer such a rotational force as a force in a direction of arrow 251 to the printed circuit board 231 .
- the printed circuit board 231 of the plug-in unit is moved in the direction of arrow 251 to insert the plug-in unit into the sub-rack.
- the slider 222 A is slid from the tubular part 223 A of the main body 223 in an extension direction of the length of the lever 222 .
- the action part 222 B of the lever 222 in the tool 221 is rotated in a direction of arrow 253 about a rotational axis including the central hole 228 and the pin 241 .
- the first engagement part 223 AA of the main body 223 is engaged with the vertical piece 233 of the sub-rack to transfer such a rotational force as a force in a direction of arrow 254 to the printed circuit board 231 .
- the printed circuit board 231 of the plug-in unit is moved in the direction of arrow 254 to remove the plug-in unit from the sub-rack.
- the length of the lever part can be changed by sliding the slider 222 A in the tubular part 223 A of the main body 223 . Consequently, it can be provided a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force, as the trend toward more and more pins on a connector.
- the area, mounted on the front panel, is not narrowed because the lever 222 is changeable in length.
- FIG. 6 is a side view of the constitution of a conventional insertion and removal system (hereafter, referring to a conventional example 2 ) in a plug-in unit as disclosed in JP-U-6/21273.
- 302 denotes an extension lever part of engaging with an operation part 321 a of a lever 321 to substantially extend the length of the lever 321 .
- 303 denotes a mounting part for mounting the lever 321 on a lower portion of a front end of the printed circuit board 310 .
- 303 b denotes a rotational axis for rotating the lever 321 in an insertion or removal direction of the plug-in unit.
- 304 denotes a first engagement claw arranged on the mounting part 303 .
- 305 denotes a second engagement claw arranged on the mounting part 303 .
- 310 denotes a printed circuit board constituting the plug-in unit.
- 311 denotes a front rail arranged on a front end of the sub-rack, and 311 a denotes an engagement part arranged on the front rail 311 .
- 321 denotes a lever part including the mounting part 303 , the operation part 321 a and the extension lever 302 .
- 321 a denotes the operation part used for inserting freely the extension lever 302 in an advance or retreat direction.
- the printed circuit board 310 is slid along a groove formed on the guide rail.
- the extension lever 302 is slid on the operation part 321 a in an extension direction of the length of the lever 321 to rotate the extension lever 302 in an insertion direction of the plug-in unit about the rotational axis 303 b .
- the first engagement part 304 of the mounting part 303 is engaged with the engagement part 311 a of the front rail 311 to transfer such a rotational force as a force in the insertion direction to the printed circuit board 310 .
- the printed circuit board 310 is moved in the insertion direction of the plug-in unit to be inserted into the sub-rack.
- the extension lever 302 is then slid on the operation part 321 a in an opposite direction of arrow B shown in FIG. 6.
- An end of the extension lever 302 on the side of the printed circuit board 310 is moved to inside of a circle having a radius, which is defined by a length R between the mounting part 303 and a corner of the printed circuit board 310 .
- the end of the extension lever 302 on the side of the printed circuit board 310 comes into contact with the mounting part 303 and the corner of the printed circuit board 310 .
- the rotation of the lever 321 is locked. Up to this point, the insertion motion of the plug-in unit is finished.
- the extension lever 302 When the plug-in unit is removed from the sub-rack, the extension lever 302 is slid on the operation part 321 a in the extension direction of the length of the lever 321 to rotate the extension lever 302 in a removal direction of the plug-in unit about the rotational axis 303 b .
- the second engagement part 305 of the mounting part 303 is engaged with the engagement part 311 a of the front rail 311 to transfer such a rotational force as a force in the removal direction to the printed circuit board 310 .
- the printed circuit board 310 is moved in the removal direction of the plug-in unit to be removed from the sub-rack.
- the conventional example 2 can obtain the same effects as the conventional example 1 .
- the rotation of the lever 321 is locked when the extension lever 302 is pushed down to a shrinkage position to prevent the plug-in unit from accidental removal out of the sub-rack.
- the slider 222 A is ejected from the lower end of the tubular part 223 A, and the ejected slider 222 A comes into contact with one side of the vertical piece 233 having the other opposite side where the printed circuit board 231 is arranged.
- a locking system must be therefore arranged beneath a rotational fulcrum of the tool 221 , and the insertion and removal system on the periphery of an opening of the sub-rack is unavoidably increased in size to limit a downsizing of such system.
- the system includes a lever part substantially changeable in length so as to provide a sufficient insertion and removal force according to the plug-in unit with the need of the insertion and removal force.
- the system includes a lever part, which can be shrunk after placing the plug-in unit in the sub-rack to prevent an area mounted on a front panel from narrowing.
- the system does not require high accuracy for manufacture of the plug-in unit.
- the system includes a locking system, which does not limit to scale down it.
- an insertion and removal system in a plug-in unit comprises a front panel arranged on a plug-in unit inserted into a sub-rack, the front panel for covering an opening frame of the sub-rack when the plug-in unit is inserted into the sub-rack; a handle element including a lever part rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack, and an engagement part engaging with a projection arranged on the opening frame of the sub-rack to transfer a rotational force worked on rotationally operating the lever part to the projection, as a force in the insertion or removal direction; a handle-extension slide element inserted freely into the lever part in an advance or retreat direction to be slid in a longitudinal direction of the lever between an extension position of the lever on extending the lever at the maximum and a shrinkage position of the lever whose length nearly corresponds to the length of the lever; and a locking element arranged on
- the locking element may include a pit arranged in the handle-extension slide element and a projection arranged on the front panel for mating with the pit, and the handle-extension slide element maybe locked by mating the projection with the pit when the handle-extension slide element is slid to the shrinkage position.
- the handle-extension slide element may have a pit arranged in the front panel.
- a detector may be further comprised, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the locking element with respect to the handle-extension slide element or the lever element.
- An insertion and removal system in plug-in unit comprises a front panel arranged on a plug-in unit inserted into a sub-rack, the front panel for covering an opening frame of the sub-rack when the plug-in unit is inserted into the sub-rack; a handle element including a lever part rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack, and an engagement part engaging with a projection arranged on the opening frame of the sub-rack to transfer a rotational force worked on rotationally operating the lever part to the projection, as a force in the insertion or removal direction; a handle-extension slide element inserted freely into the lever part in an advance or retreat direction to be slid in a longitudinal direction of the lever between an extension position of the lever on extending the lever at the maximum and a shrinkage position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element including an engagement pit arranged in the lever part and an engagement projection
- a detector may be arranged on an outer peripheral portion of the engagement projection, the detector detecting a normal finish of the engagement motion with respect to the engagement pit.
- the handle-extension slide element may have a pit arranged in the front panel.
- a detector may be further comprised, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the locking element with respect to the handle-extension slide element or the lever part.
- An insertion and removal system in plug-in unit comprises a front panel arranged on a plug-in unit inserted into a sub-rack, the front panel for covering an opening frame of the sub-rack when the plug-in unit is inserted into the sub-rack; a handle element including a lever part rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack, and an engagement part engaging with a projection arranged on the opening frame of the sub-rack to transfer a rotational force worked on rotationally operating the lever part to the projection, as a force in the insertion or removal direction; a handle-extension rotation element rotationally supported on the lever part to rotationally move in a longitudinal direction of the lever part between an extension position of the lever part on extending the lever part at the maximum and a refractive position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element arranged on the handle-extension rotation element and the front panel, the locking
- the handle-extension rotation element may include an axial part rotationally supported on the lever part and a plate part of connecting with the axial part, the handle-extension rotation element in the extension position has a planar shape.
- the locking element may include a projection, which is arranged in the handle-extension rotation element, and a pit, which is arranged in the front panel for mating with the projection, and wherein the handle-extension rotation element is locked by mating the projection with the pit when the handle-extension rotation element is rotationally moved to the refractive position.
- the handle-extension rotation element may include an axial part rotationally supported by the lever part and a plate part of connecting with the axial part, the handle-extension rotation element in the extension position has a planar shape.
- a detector may be further comprised, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the locking element with respect to the handle-extension rotation element.
- FIG. 1 is a perspective view of the constitution of a conventional sub-rack.
- FIG. 2 is a perspective view of the sub-rack 100 that a plug-in unit is partially mounted.
- FIG. 3 is a side view of the constitution of a plug-in unit inserted into the sub-rack.
- FIG. 4 is a side view of a conventional insertion and removal system in a plug-in unit for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack.
- FIG. 5 is a side view of the constitution of a conventional insertion and removal system in a plug-in unit as disclosed in JP-A-2000/91770.
- FIG. 6 is a side view of the constitution of a conventional insertion and removal system in a plug-in unit as disclosed in JP-U-6/21273.
- FIGS. 7A, 7B and 7 C are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 1 according to the present invention, respectively.
- FIG. 8 is a side view of the operation of insertion and removal system in embodiment 1.
- FIG. 9 is a side view of an insertion and removal system in a plug-in unit in alternative embodiment 1.
- FIGS. 10A, 10B, 10 C and 10 D are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 2 according to the present invention, respectively.
- FIGS. 11A and 11B are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 3 according to the present invention, respectively.
- FIG. 12 is a perspective view of an insertion and removal system in a plug-in unit in alternative embodiment 3.
- FIGS. 13A, 13B and 13 C are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 4 according to the present invention, respectively.
- FIGS. 14A, 14B, 14 C and 14 D are side views of explaining operation of extension of the handle element of an insertion and removal system in a plug-in unit in embodiment 4 according to the present invention.
- FIGS. 15A, 15B and 15 C are side views of explaining a keeping system keeping an extension position of the handle element of an insertion and removal system in a plug-in unit in embodiment 4 according to the present invention.
- FIGS. 16A and 16B are drawings of an insertion and removal system in a plug-in unit in alternative embodiment 4.
- FIGS. 7A, 7B and 7 C are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 1 according to the present invention, respectively.
- FIG. 7A is a side view of a handle on extension.
- FIG. 7B is a side view of a handle on shrinkage.
- FIG. 7C is a perspective view of a lock system of the handle for locking a front panel.
- 1 denotes a lever (a lever part, a handle element) rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack.
- 2 denotes a handle-support part of rotationally supporting the lever, which is arranged on an end of a front panel 3 .
- 4 denotes a handle slider (a handle-extension slide element).
- the handle slider 4 is inserted freely into the lever 1 in an advance or retreat direction.
- the handle slider 4 is slid in a longitudinal direction of the lever 1 between an extension position of the lever 1 on extending the lever 1 at the maximum and a shrinkage position of the lever 1 whose length nearly corresponds to the length of the lever 1 .
- 4 a denotes an insertion allowing insertion of the lever 1 arranged on the handle slider 4 .
- a handle is constituted by the lever 1 , the handle-support part 2 and an engagement claw, and is used for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack.
- FIG. 8 is a side view of the operation of insertion and removal system in embodiment 1.
- 6 a denotes a first engagement claw (an engagement part, a handle element) of the handle
- 6 b denotes a second engagement claw (an engagement part, a handle element) of the handle
- 7 a denotes a first engagement part (a projection) formed in a front rail arranged on a front side of a top part and a bottom part constituting a sub-rack.
- 7 b denotes a second engagement part (a projection) formed in the front rail.
- the common numerals denote common elements in FIGS. 7A, 7B and 7 C, the description of such parts is omitted.
- the handle slider 4 When the plug-in unit is inserted into the sub-rack, the handle slider 4 is slid to the extension position of the lever 1 on extending the lever at the maximum as shown in FIG. 7A. As a result, the lever 1 can be substantially increased in length.
- an inner diameter of the insertion hole 4 a of the handle slider 4 is approximately equal to an outer diameter of the lever 1 to prevent the lever 1 from accidentally removing out of the insertion hole 4 a .
- An engagement system may be arranged on an end of the lever 1 and a back of the insertion hole 4 a.
- the printed circuit board 121 is slid along a groove formed on the guide rail 106 .
- the guide pin 123 arranged on the plug-in unit 120 , is then inserted into the locating hole 107 formed in the front rail 104 to locate the front panel 3 with respect to the front rail 104 .
- the lever 1 of the handle is then rotated about the handle-support part 2 in a direction of arrow A shown in FIG. 8 in a state of engaging the first engagement claw 6 a of the handle 112 with the first engagement part 7 a of the front rail 104 .
- the rotational force of the first engagement claw 6 a is transferred to the first engagement part 7 a to connect the connector 122 of the printed circuit board 121 to the back plane, and accordingly the insertion of the plug-in unit is finished.
- the length of the lever 1 in the longitudinal direction becomes substantially longer by virtue of the handle slider 4 .
- the force in the insertion direction, transferred to the first engagement part 7 a is enhanced by the action of a lever.
- the handle slider 4 is slid to the shrinkage position of the lever 1 whose length nearly corresponds to the length of the lever 1 .
- the mating projection 5 arranged on the front panel 3 , is mated with the mating pit 5 a arranged in the handle slider 4 , and accordingly they are locked.
- the lever 1 of the handle cannot be rotated in a state of placing the plug-in unit within the sub-rack to prevent the plug-in unit from accidental removal out of the sub-rack.
- the handle slider 4 is slid to the extension position of the lever 1 again.
- the lever 1 of the handle is then rotated about the handle-support part 2 in the direction of arrow B in a state of engaging the second engagement claw 6 b of the handle with the second engagement part 7 b of the front rail.
- the rotational force of the second engagement claw 6 b is transferred to the second engagement part 7 b to remove the connector 122 of the printed circuit board 121 from the back plane.
- the printed circuit board 121 is pulled along the groove formed on the guide rail 106 to remove the plug-in unit from the sub-rack.
- the length of the lever 1 in the longitudinal direction becomes substantially longer by virtue of the handle slider 4 .
- the force in the insertion direction, transferred to the second engagement part 7 b is enhanced by the action of a lever.
- the length of the lever 1 can be substantially changed to provide a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force. Since the lever 1 can be decreased in length after placing the plug-in unit in the sub-rack, the area mounted on the front panel 3 is not narrowed. The handle is locked on the front panel 3 to prevent the plug-in unit from accidental removal out of the sub-rack. Since the rotation of the handle slider 4 is locked on a small area arranged on the front panel 3 , the insertion and removal system on the periphery of the opening of the sub-rack can be scaled down in size.
- the handle slider 4 is supported on the front panel 3 by two points, or the locking system of the handle slider 4 on the front panel 3 and the handle-support part 2 . Accordingly, the durability to withstand an external force can be increased as compared with the conventional insertion and removal system in the plug-in unit. High-performance insertion and removal system in the plug-in unit can be provided at a low cost without requiring high-accuracy for manufacturing the plug-in unit.
- the locking element includes the mating pit 5 a arranged in the handle slider 4 and the mating projection 5 arranged on the front panel 3 for mating with the mating pit 5 a .
- the handle slider 4 can be locked by mating the mating pit 5 a with the mating projection 5 on sliding to the shrinkage position to provide a locking system having a simple constitution, using a slight area on the front panel 3 .
- the handle slider 4 in embodiment 1 is rectangular solid as shown in FIGS. 7A, 7B and 7 C.
- the handle slider 4 of the present invention is not limited to such a shape.
- FIG. 9 is a side view of an insertion and removal system in a plug-in unit in alternative embodiment 1.
- 4A denotes a handle slider (a handle extension slide part) having a recess 4 b arranged on the side of the front panel 3 .
- 4 b denotes a recess formed in a region on side of the front panel 3 , except for the mating pit 5 a of the handle slider 4 A.
- the common numerals denote common elements in FIGS. 7A, 7B, 7 C and 8 , the description of such parts is omitted.
- a detector is provided, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of a locking element with respect to a handle-extension slide element or a lever element.
- FIGS. 10A, 10B, 10 C and 10 D are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 2 according to the present invention, respectively.
- FIG. 10A is a front view of one example of the detector
- FIG. 10B is a side view of FIG. 10A
- FIG. 10C is a front view of another examples of the detector
- FIG. 10D is a side view of FIG. 10C.
- 8 and 8 a denote triggers arranged on the handle slider 4 A, the respective triggers constituting detectors.
- the micro-switch 9 When the handle slider 4 A is slid from the shrinkage position to the extension position, the micro-switch 9 turns off.
- the micro-switch 9 constituting the detector is arranged in holes 10 or 10 a arranged in the front panel 3 to detect insertion and removal of the plug-in unit with respect to the sub-rack. Size of the hole 10 or 10 a constituting the detector depends on position of the micro-switch 9 .
- FIGS. 10A, 10B, 10 C and 10 D since the common numerals denote common elements in FIGS. 7A to 9 , the description of such parts is omitted.
- the handle slider 4 A is slid to the shrinkage position.
- the trigger 8 or 8 a arranged on the handle slider 4 A turns on the micro-switch 9 arranged in the hole 10 or 10 a arranged in the front panel 3 .
- a signal informing of finishing insertion of the plug-in unit with respect to the sub-rack acting as an interrupt signal designating service conditions of the plug-in unit, is transferred to another plug-in units through electronic circuits arranged in the plug-in unit or through sub-racks.
- the handle is completely locked on the front panel 3 . Accordingly, the plug-in unit can be operated to prevent the plug-in unit from accidental removal out of the sub-rack as compared with the constitution of embodiment 1.
- the trigger 8 turning on and off the micro-switch 9 , is increased in size by depth of the hole 10 . Accordingly, the opening of the hole 10 for allowing slide of the trigger 8 is increased on a proportional basis.
- the micro-switch 9 is arranged at a position substantially parallel to the front panel 3 as shown in FIGS. 10C and 10D, the hole 10 a having a small opening the extent to which an only on-off lever part of the micro-switch 9 is exposed.
- a small-size trigger 8 a may be used in agreement with the size of the hole 10 a above.
- the detector is constituted by the trigger 8 or 8 a and the micro-switch 9 , and detects an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the handle slider 4 A.
- the handle is completely locked on the front panel 3 .
- the plug-in unit can be operated to prevent the plug-in unit from accidental removal out of the sub-rack as compared with the constitution of embodiment 1. Accordingly, by only sliding the handle slider 4 A in the extension direction on operating the plug-in unit, it is possible to inform another apparatus through the sub-rack that the required plug-in unit transits to unserviceable conditions and to facilitate removal motion of the plug-in unit from the sub-rack.
- the system in embodiment 3 includes a handle-extension slide element inserted freely into the lever part in an advance or retreat direction to be slid in a longitudinal direction of the lever between an extension position of the lever on extending the lever at the maximum and a shrinkage position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element including an engagement pit arranged in the lever part and an engagement projection arranged on the front panel, the engagement projection for engaging with the engagement pit when the lever part is rotated toward the front panel side, for locking the lever part on the front panel by transferring a stress generated in the lever part to the engagement pit as a force narrowing an opening diameter of the engagement pit to lock the lever part on the front panel.
- FIGS. 11A and 11B are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 3 according to the present invention, respectively.
- FIG. 11A is a perspective view of a locking system of a lever part with respect to a front panel.
- FIG. 11B is a front view of the principle of the locking system as shown in FIG. 11A.
- the lever part locked by the handle slider on the side of the front panel, can be seen from the side of the front panel when the front panel is optically transparent.
- 1 A denotes a lever (a lever part, a handle element) being rotationally supported on the front panel 3 , and being operated in the insertion and removal directions of the plug-in unit with respect to the sub-rack.
- the lever 1 A has a mating pit 11 allowing mating with a mating projection 5 A arranged on the front panel 3 .
- the lever 1 A is formed so as to have an outer diameter approximately equal to an inner diameter of an insertion hole (not shown) allowing insertion of the lever 1 A of the handle slider 4 B.
- a stress generated on the lever 1 A, when the handle slider 4 B is slid to a shrinkage position of the lever 1 A can be transferred to the mating pit 11 as a force narrowing the opening diameter of the mating pit 11 .
- An engagement system may be provided at the end of the lever 1 A and the back of the insertion hole, and a taper may be formed at the lever 1 A in a longitudinal direction of the lever 1 A. Any constitution allowing transfer of the stress generated on the lever 1 A as the force narrowing the opening diameter of the mating pit 11 may be used.
- the lever 1 A is made of flexible resin materials.
- 4 B denotes a handle slider (a handle extension slide part, a handle element).
- the handle slider 4 B is inserted freely into the lever 1 A in an advance or retreat direction, and is slid in a longitudinal direction of the lever 1 A between an extension position of the lever 1 A on extending the lever 1 A at the maximum and a shrinkage position of the lever 1 A whose length nearly corresponds to the length of the lever 1 A.
- the handle slider 4 B has a notch portion 5 b formed on the side of the front panel 3 so as to interpose an engagement projection (a locking element) 5 A arranged on the front panel 3 .
- the engagement projection 5 A may have a taper in a direction of the normal of the front panel 3 so as to facilitate engagement with an engagement pit 11 arranged in the lever 1 A.
- the notch portion 5 b is arranged in the handle slider 4 B.
- the notch portion 5 b may be gradually decreased in size in the longitudinal direction so as to be gradually smaller than an outer diameter of the engagement projection 5 A.
- the engagement pit (a locking element) 11 engages with the engagement projection 5 A when the lever 1 A is rotationally moved toward the side of the front panel 3 .
- FIGS. 11A and 11B since the common numerals denote common elements in FIGS. 7A to 10 D, the description of such parts is omitted.
- FIG. 12 is a perspective view of an insertion and removal system in a plug-in unit in alternative embodiment 3.
- 5B denotes an engagement projection (a locking element) arranged on the front panel 3 .
- 5 Ba denotes a pit (a detector) arranged on an outer periphery of the engagement projection 5 B.
- the common numerals denote common elements in FIGS. 7A to 11 B, the description of such parts is omitted.
- the engagement pit 11 When the engagement projection 5 B is inserted into the engagement pit 11 of the lever 1 A, the engagement pit 11 reaches the pit 5 Ba arranged on the outer periphery of the engagement projection 5 B to fit an inner wall of the opening the engagement pit 11 in the pit 5 Ba.
- the engagement pit 11 fit in the pit 5 Ba is released from the stress of enlarging the opening of the engagement pit 11 . Accordingly, the stress is dispersed into the lever 1 A through the inner wall of the opening of the engagement pit 11 . Vibration generated on the lever 1 A is transferred to an operator, and the operator can feel that the engagement projection 5 B is normally inserted into the engagement pit 11 .
- the pit 5 Ba is arranged in the outer periphery of the engagement projection 5 B
- a projection may be arranged on the outer periphery of the engagement projection 5 B.
- the engagement projection 5 B is inserted into the engagement pit 11 of the lever 1 A or when the engagement projection 5 B is removed from the engagement pit 11 , the inner wall of the opening of the engagement pit 11 goes beyond the projection above. In this time, the operator may feel that the engagement projection 5 B is normally inserted into the engagement pit 11 , on the basis of the vibration above.
- the system in embodiment 3 can obtain the same effect as the system in embodiment 1.
- the locking system in embodiment can have a simple constitution as compared with the constitution of embodiment 1 to lock the handle on the side of the front panel 3 .
- the pit 5 Ba acting as a detector detecting finish of engagement operation with the engagement pit 11 , is arranged in the outer periphery of the engagement projection 5 B. Accordingly, since the operator can feel that the lever 1 A is normally locked on the side of the front panel 3 or is normally unlocked from the side of the front panel 3 . The reliability of locking operation can be enhanced.
- embodiment 2 may expand its applicability to embodiment 3.
- the system of embodiment 3 can therefore obtain the same effect as embodiment 2.
- the system in embodiment 4 includes a handle-extension rotation element rotationally supported on the lever part to rotationally move in a longitudinal direction of the lever part between an extension position of the lever part on extending the lever part at the maximum and a refractive position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element arranged on the handle-extension rotation element and the front panel, the locking element for locking the handle-extension rotation element, rotationally moved to the refractive position, on the front panel.
- FIGS. 13A, 13B and 13 C are drawings of the constitution of an insertion and removal system in a plug-in unit in embodiment 4 according to the present invention, respectively.
- FIG. 13A is a side view of such constitution
- FIG. 13B is a perspective view of the lever part
- FIG. 13C is a perspective view of the handle extension rotation element.
- 1 B denotes a lever (a lever part) rotationally supported on an end of the front panel 3 to be rotationally operated in the insertion and removal direction of the plug-in unit with respect the sub-rack.
- the lever 1 B has a bearing groove 14 rotationally supporting a rotational part 12 (a handle extension rotation element).
- the rotational part 12 denotes a mating projection (a locking element) formed on the rotational part 12 .
- the mating projection 5 C is mated with a mating pit 15 (a locking element) formed in the front panel 3 , when the rotational part 12 is rotationally moved toward the refractive position, to lock the rotational part 12 on the side of the front panel 3 .
- the rotational part 12 can be rotationally moved about a rotational axis 13 , which is rotationally supported in the bearing groove 14 of the lever 1 B, between the extension position of the lever 1 B on extending the lever 1 B at the maximum and the refractive position of the lever 1 B whose length nearly corresponds to the length of the lever 1 B.
- the wall 12 a denotes a wall (a handle extension rotation element) of the rotational part 12 .
- the wall 12 a stops rotation of both the rotational part 12 and the lever 1 B when the rotational axis (a handle extension rotation element) 13 is moved in the bearing groove 14 toward the side of the handle-support part 2 of the lever 1 B at the extending position.
- the rotational axis 13 is arranged at a side wall of the rotational part 12 , and is rotationally supported in the bearing groove 14 of the lever 1 B.
- the bearing groove 14 includes two different-length grooves, which are communicated to each other, and which cross each other at right angles.
- One of the grooves is formed at the lever 1 B near the handle-support part 2 , and is shorter in length than the other.
- the mating pit 15 is mated with the mating projection 5 C of the rotational part 12 , and has an inner diameter nearly equal to an outer diameter of the mating projection SC so as to reliably mate with the mating projection 5 C.
- FIGS. 13A, 13B and 13 C since the common numerals denote common elements in FIGS. 7A to 12 , the description of such parts is omitted.
- FIGS. 14A, 14B, 14 C and 14 D are side views of explaining operation of extension of the handle element of an insertion and removal system in a plug-in unit in embodiment 4 according to the present invention.
- the mating projection SC is mated with the mating pit 15 of the front panel 3 to lock the rotational part 12 at the refractive position. (see FIG. 14A)
- the rotational part 12 is moved to an opposite direction (a left hand of FIG. 14B) to the front panel 3 in order to unlock mate of the mating projection SC of the rotational part 12 with the mating pit 15 of the front panel 3 .
- the rotational axis 13 moves in an upper groove of the bearing groove 14 to reach an inlet of a communication groove for communicating two different-length grooves each other.
- the rotational part 12 is rotated about the rotational axis 13 in a direction of arrow of FIG. 14C to substantially extend the lever 1 B in length.
- the rotational axis 13 moves in the communication groove toward a lower groove of the bearing groove 14 , and further moves toward the back of the lower groove.
- the extension position of the lever 1 B is defined as a state of reaching the rotational axis 13 to the back of the lower groove of the bearing groove 14 .
- the rotational part 12 moves from the inlet of the communication groove for communicating two grooves of the bearing groove 14 allowing free rotation of the rotational part 12 about the rotational axis 13 to the lever 1 B near the handle-support part 2 . Accordingly, when a rotational force is exerted on the rotational part 12 , the wall 12 a comes into contact with the lever 1 B to lock rotation of the rotational part 12 .
- the rotational part 12 keeps the extension position of the lever 1 B.
- FIGS. 15A, 15B and 15 C are side views of explaining a keeping system keeping an extension position of the handle element of an insertion and removal system in a plug-in unit in embodiment 4 according to the present invention.
- the rotational axis 13 moves in the back of the lower groove of the bearing groove 14 to perform rotational operation about the handle-support part 2
- the rotational part 12 has the inclination ⁇ of the longitudinal direction of the lever 1 B.
- the smaller inclination ⁇ of the longitudinal direction of the lever 1 B the higher operability of insertion and removal of the plug-in unit with respect to the sub-rack. Therefore, as shown in FIG.
- the length of the lever 1 B can be substantially changed to provide a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force. Since the lever 1 B can be decreased in length after placing the plug-in unit in the sub-rack, the area mounted on the front panel 3 is not narrowed. The handle is locked on the front panel 3 to prevent the plug-in unit from accidental removal out of the sub-rack. Since the rotation of the rotational part 12 at the refractive position of the lever 1 B is locked on a small area arranged on the front panel 3 , the insertion and removal system on the periphery of the opening of the sub-rack can be scaled down in size.
- the rotational part 12 is supported on the front panel 3 by two points, or the locking system of the rotational part 12 on the front panel 3 and the rotational fulcrum of the lever 1 B. Accordingly, the durability to withstand an external force can be increased as compared with the conventional insertion and removal system in the plug-in unit.
- the rotational part 12 in embodiment 4 is provided to cover the lever 1 B with the two side walls.
- the rotational part of the present invention is not limited to such constitution.
- FIGS. 16A and 16B are drawings of an insertion and removal system in a plug-in unit in alternative embodiment 4. Specifically, FIG. 16A is a side view of the system, and FIG. 16B is a perspective view of the handle extension rotation element rotated to the extension position.
- 12 A denotes a rotational part (a handle extension rotation element), which does not have a side wall except for the rotational axis 13 , and which becomes a flat plate in a state of rotationally moving the rotational part 12 A to the extension position.
- FIGS. 16A and 16B since the common numerals denote common elements in FIGS. 7A to 15 C, the description of such parts is omitted.
- the rotational part 12 includes an axial part, which is rotationally supported on the lever 1 B, and a plate extending from the axial part.
- the lever 1 B at the extension position is parallel to the plate of the rotational part 12 A.
- embodiment 2 may expand its applicability to embodiment 4.
- the micro-switch 9 may be arranged in the mating pit 15 to turn on/off by using the mating projection 5 C of the rotational part 12 or 12 A.
- the system of embodiment 4 can therefore obtain the same effect as embodiment 2.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mounting Of Printed Circuit Boards And The Like (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a plug-in unit consisting of a sub-rack constituting electronic equipment such as communication equipment and so on and a printed circuit board including electronic circuit parts inserted into and removed from the sub-rack. Especially, the present invention relates to an insertion and removal system in a plug-in unit for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack.
- 2. Description of the Prior Art
- FIG. 1 is a perspective view of the constitution of a conventional sub-rack. In FIG. 1,
reference numeral 100 denotes a sub-rack. 101 denotes a top plate. 102 denotes a bottom plate. 103 denotes a side plate. 104 denotes a front rail arranged on front edges of thetop plate 101 and thebottom plate 102, respectively. 105 denotes a mid-rail arranged on a midrange of thetop plate 101 and thebottom plate 102, respectively, so as to cross the midrange. 106 denotes a guide rail whose both ends are mounted on upper faces of thefront rail 104 and themid-rail 105. 107 denotes a locating hole used for locating a position on which a plug-in unit (not shown) is inserted. - FIG. 2 is a perspective view of the
sub-rack 100 that a plug-in unit is partially mounted. In FIG. 2, 111 denotes a front panel for covering an opening of thesub-rack 100 when the plug-in unit is housed in thesub-rack 100. 112 denotes a handle arranged on thefront panel 111, thehandle 112 used for insertion and removal of the plug-in unit. 112 a denotes a lever part being operated on operating rotationally thehandle 112. FIG. 3 is a side view of the constitution of a plug-in unit inserted into the sub-rack. In FIG. 3, 120 denotes a plug-in unit, 121 denotes a printed circuit board constituting the plug-in unit, and 122 denotes a connector arranged on the printedcircuit board 121, which can be connected to a connector arranged on a back plane by a plug-in mode. 123 denotes a guide pin, which is inserted into a locatinghole 107 in order to locate thefront panel circuit board 121 or thefront panel 111. 125 denotes a pin, which is locked to thehandle 112 or the handle-support part 124 to allow the rotation of thehandle 112 with respect to the handle-support part 124. In FIG. 3, since the common numerals denote common elements in FIG. 2, the description of such parts is omitted. - FIG. 4 is a side view of a conventional insertion and removal system in a plug-in unit for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack. In FIG. 4, 131 denotes a first engagement claw formed on the
handle handle 112. 133 denotes a first engagement part formed on thefront rail front rail 104. In FIG. 4, since the common numerals denote common elements in FIGS. 1 to 3, the description of such parts is omitted. - The motion will be described as follows:
- When the plug-in
unit 120 having the printedcircuit board 121 is inserted into thesub-rack 100, the printedcircuit board 121 is slid along a groove formed on theguide rail 106. Theguide pin 123, arranged on the plug-inunit 120, is then inserted into the locatinghole 107 formed in thefront rail 104 to locate thefront panel 111 with respect to thefront rail 104. Thelever part 112 a of thehandle 112 is then rotated in a direction of arrow A shown in FIG. 4 in a state of engaging thefirst engagement claw 131 of thehandle 112 with thefirst engagement part 133 of thefront rail 104. Theconnector 122 of the printedcircuit board 121 is connected to the back plane to finish the insertion of the plug-inunit 120. - When the plug-in
unit 120 is removed from thesub-rack 100, thelever part 112 a of thehandle 112 is rotated in a direction of arrow B shown in FIG. 4 in a state of engaging thesecond engagement claw 132 of thehandle 112 with thesecond engagement part 134 of thefront rail 104 to disconnect theconnector 122 of the printedcircuit board 121 from the back plane. The printedcircuit board 121 is pulled along the groove formed on theguide rail 106 to remove the plug-inunit 120 from thesub-rack 100. - With such an arrangement of the insertion and removal system in the plug-in unit, a length of the
lever part 112 a of thehandle 112 cannot be however changed. Consequently, it cannot be provided a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force, as the trend toward more and more pins on a connector. - In the case that the
lever part 112 a of thehandle 112 is increased in length to be compatible with the plug-in unit with the need of the insertion and removal force, an area mounted on thefront panel 111 is narrowed because of thelong lever part 112 a. - In the case that the
lever part 112 a of thehandle 112 is carelessly rotated in the direction of arrow B shown in FIG. 4 in a state of fitting the plug-inunit 120 in thesub-rack 100, there is a possibility that the plug-inunit 120 is accidentally removed from thesub-rack 100. - JP-A-2000/91770 discloses an insertion and removal system in a plug-in unit for resolving such problems above.
- FIG. 5 is a side view of the constitution of a conventional insertion and removal system (hereafter, referring to a conventional example1) in a plug-in unit as disclosed in JP-A-2000/91770. In FIG. 5, 221 denotes a tool for insertion and removal system in a plug-in unit. 222 denotes a lever part rotationally operated on insertion and removal of the plug-in unit with respect to the sub-rack and 222A denotes a slider constituting the
lever 222, which is inserted into atubular part 223A of amain body 223. 222B denotes an action part for insertion and removal of thelever 222, which is acted upon by a rotational force when rotationally operating. 223 denotes a main body having atubular part 223A which allows insertion of theslider 222A of thelever 222. 223AA denotes a first engagement part arranged on themain body 223, and 223BA denotes a second engagement part arranged on themain body 223. 228 denotes a central hole which allows insertion of a pin 241 for rotating a construction part, including thelever 222 and themain body 223, in an insertion or removal direction. 231 denotes a printed circuit board constituting the plug-in unit. 233 denotes a vertical piece formed on a portion, on which thetool 221 is placed, at a right angle. - The operation of this invention will be described as follows:
- When the plug-in unit having the printed circuit board231 is inserted into the sub-rack, the printed circuit board 231 is slid in a direction of
arrow 251 along a groove formed on the guide rail. Theslider 222A is slid from thetubular part 223A of themain body 223 in an extension direction of the length of thelever 222. Theaction part 222B of thelever 222 in thetool 221 is rotated in a direction ofarrow 252 about a rotational axis including the central hole 228 and the pin 241. Here, the second engagement part 223BA of themain body 223 is engaged with thevertical piece 233 of the sub-rack to transfer such a rotational force as a force in a direction ofarrow 251 to the printed circuit board 231. As a result, the printed circuit board 231 of the plug-in unit is moved in the direction ofarrow 251 to insert the plug-in unit into the sub-rack. - When the
slider 222A is downwardly slid in a state of rotationally moving thelever 222 toward the printed circuit board 231, theslider 222A is ejected from a lower end of thetubular part 223A. The ejectedslider 222A comes into contact with one side of thevertical piece 233 having the other opposite side where the printed circuit board 231 is arranged. As a result, the rotation of thetool 221 is locked. Up to this point, the insertion motion of the plug-in unit is finished. - When the plug-in unit is removed from the sub-rack, the
slider 222A is slid from thetubular part 223A of themain body 223 in an extension direction of the length of thelever 222. Theaction part 222B of thelever 222 in thetool 221 is rotated in a direction ofarrow 253 about a rotational axis including the central hole 228 and the pin 241. Here, the first engagement part 223AA of themain body 223 is engaged with thevertical piece 233 of the sub-rack to transfer such a rotational force as a force in a direction ofarrow 254 to the printed circuit board 231. As a result, the printed circuit board 231 of the plug-in unit is moved in the direction ofarrow 254 to remove the plug-in unit from the sub-rack. - Thus, the length of the lever part can be changed by sliding the
slider 222A in thetubular part 223A of themain body 223. Consequently, it can be provided a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force, as the trend toward more and more pins on a connector. The area, mounted on the front panel, is not narrowed because thelever 222 is changeable in length. - Another system is disclosed in JP-U-6/21273.
- FIG. 6 is a side view of the constitution of a conventional insertion and removal system (hereafter, referring to a conventional example2) in a plug-in unit as disclosed in JP-U-6/21273. In FIG. 6, 302 denotes an extension lever part of engaging with an
operation part 321 a of alever 321 to substantially extend the length of thelever 321. 303 denotes a mounting part for mounting thelever 321 on a lower portion of a front end of the printedcircuit board 310. 303 b denotes a rotational axis for rotating thelever 321 in an insertion or removal direction of the plug-in unit. 304 denotes a first engagement claw arranged on the mountingpart 303. 305 denotes a second engagement claw arranged on the mountingpart 303. 310 denotes a printed circuit board constituting the plug-in unit. 311 denotes a front rail arranged on a front end of the sub-rack, and 311 a denotes an engagement part arranged on thefront rail 311. 321 denotes a lever part including the mountingpart 303, theoperation part 321 a and theextension lever 302. 321 a denotes the operation part used for inserting freely theextension lever 302 in an advance or retreat direction. - The operation of this invention will be described as follows:
- When the plug-in unit having the printed
circuit board 310 is inserted into the sub-rack, the printedcircuit board 310 is slid along a groove formed on the guide rail. Theextension lever 302 is slid on theoperation part 321 a in an extension direction of the length of thelever 321 to rotate theextension lever 302 in an insertion direction of the plug-in unit about therotational axis 303 b. Here, thefirst engagement part 304 of the mountingpart 303 is engaged with theengagement part 311 a of thefront rail 311 to transfer such a rotational force as a force in the insertion direction to the printedcircuit board 310. As a result, the printedcircuit board 310 is moved in the insertion direction of the plug-in unit to be inserted into the sub-rack. - The
extension lever 302 is then slid on theoperation part 321 a in an opposite direction of arrow B shown in FIG. 6. An end of theextension lever 302 on the side of the printedcircuit board 310 is moved to inside of a circle having a radius, which is defined by a length R between the mountingpart 303 and a corner of the printedcircuit board 310. As a result, the end of theextension lever 302 on the side of the printedcircuit board 310 comes into contact with the mountingpart 303 and the corner of the printedcircuit board 310. The rotation of thelever 321 is locked. Up to this point, the insertion motion of the plug-in unit is finished. - When the plug-in unit is removed from the sub-rack, the
extension lever 302 is slid on theoperation part 321 a in the extension direction of the length of thelever 321 to rotate theextension lever 302 in a removal direction of the plug-in unit about therotational axis 303 b. Here, thesecond engagement part 305 of the mountingpart 303 is engaged with theengagement part 311 a of thefront rail 311 to transfer such a rotational force as a force in the removal direction to the printedcircuit board 310. As a result, the printedcircuit board 310 is moved in the removal direction of the plug-in unit to be removed from the sub-rack. - With such an arrangement, the conventional example2 can obtain the same effects as the conventional example 1. With the conventional example 2, the rotation of the
lever 321 is locked when theextension lever 302 is pushed down to a shrinkage position to prevent the plug-in unit from accidental removal out of the sub-rack. - With the conventional example1, the
slider 222A is ejected from the lower end of thetubular part 223A, and the ejectedslider 222A comes into contact with one side of thevertical piece 233 having the other opposite side where the printed circuit board 231 is arranged. As a result, the rotation of thetool 221 is locked. A locking system must be therefore arranged beneath a rotational fulcrum of thetool 221, and the insertion and removal system on the periphery of an opening of the sub-rack is unavoidably increased in size to limit a downsizing of such system. - With the conventional example2, the end of the
extension lever 302 on the side of the printedcircuit board 310 is moved to inside of a circle having a radius defined by the length R between the mountingpart 303 and a corner of the printedcircuit board 310. Accordingly, the rotation of thelever 321 is locked. As a result, a contact part of theextension lever 302 with the printedcircuit board 310 must be arranged in close to therotational axis 303 b in principle. When an external force is slightly acted on thelever part 302 on locking, large force is acted on the contact part to facilitate breakage of the contact part. - If high-accuracy finish of an end face of the printed
circuit board 310 and high-relative positional accuracy of the printedcircuit board 310 to therotational axis 303 b are obtained, locking functions cannot be performed. - Accordingly, it is an object of the present invention to provide an insertion and removal system in a plug-in unit as follows:
- The system includes a lever part substantially changeable in length so as to provide a sufficient insertion and removal force according to the plug-in unit with the need of the insertion and removal force.
- The system includes a lever part, which can be shrunk after placing the plug-in unit in the sub-rack to prevent an area mounted on a front panel from narrowing.
- The system does not allow breakage thereof on which external forces are exerted.
- The system does not require high accuracy for manufacture of the plug-in unit.
- The system includes a locking system, which does not limit to scale down it.
- In order to achieve the object of the present invention, an insertion and removal system in a plug-in unit comprises a front panel arranged on a plug-in unit inserted into a sub-rack, the front panel for covering an opening frame of the sub-rack when the plug-in unit is inserted into the sub-rack; a handle element including a lever part rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack, and an engagement part engaging with a projection arranged on the opening frame of the sub-rack to transfer a rotational force worked on rotationally operating the lever part to the projection, as a force in the insertion or removal direction; a handle-extension slide element inserted freely into the lever part in an advance or retreat direction to be slid in a longitudinal direction of the lever between an extension position of the lever on extending the lever at the maximum and a shrinkage position of the lever whose length nearly corresponds to the length of the lever; and a locking element arranged on the handle-extension slide element and the front panel, the locking element for locking the handle-extension slide element slid to the shrinkage position on the front panel.
- Here, the locking element may include a pit arranged in the handle-extension slide element and a projection arranged on the front panel for mating with the pit, and the handle-extension slide element maybe locked by mating the projection with the pit when the handle-extension slide element is slid to the shrinkage position.
- The handle-extension slide element may have a pit arranged in the front panel.
- A detector may be further comprised, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the locking element with respect to the handle-extension slide element or the lever element.
- An insertion and removal system in plug-in unit comprises a front panel arranged on a plug-in unit inserted into a sub-rack, the front panel for covering an opening frame of the sub-rack when the plug-in unit is inserted into the sub-rack; a handle element including a lever part rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack, and an engagement part engaging with a projection arranged on the opening frame of the sub-rack to transfer a rotational force worked on rotationally operating the lever part to the projection, as a force in the insertion or removal direction; a handle-extension slide element inserted freely into the lever part in an advance or retreat direction to be slid in a longitudinal direction of the lever between an extension position of the lever on extending the lever at the maximum and a shrinkage position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element including an engagement pit arranged in the lever part and an engagement projection arranged on the front panel, the engagement projection for engaging with the engagement pit when the lever part is rotated toward the front panel side, for locking the lever part on the front panel by transferring a stress generated in the lever part to the engagement pit as a force narrowing an opening diameter of the engagement pit to lock the lever part on the front panel.
- Here, a detector may be arranged on an outer peripheral portion of the engagement projection, the detector detecting a normal finish of the engagement motion with respect to the engagement pit.
- The handle-extension slide element may have a pit arranged in the front panel.
- A detector may be further comprised, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the locking element with respect to the handle-extension slide element or the lever part.
- An insertion and removal system in plug-in unit comprises a front panel arranged on a plug-in unit inserted into a sub-rack, the front panel for covering an opening frame of the sub-rack when the plug-in unit is inserted into the sub-rack; a handle element including a lever part rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack, and an engagement part engaging with a projection arranged on the opening frame of the sub-rack to transfer a rotational force worked on rotationally operating the lever part to the projection, as a force in the insertion or removal direction; a handle-extension rotation element rotationally supported on the lever part to rotationally move in a longitudinal direction of the lever part between an extension position of the lever part on extending the lever part at the maximum and a refractive position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element arranged on the handle-extension rotation element and the front panel, the locking element for locking the handle-extension rotation element, rotationally moved to the refractive position, on the front panel.
- Here, the handle-extension rotation element may include an axial part rotationally supported on the lever part and a plate part of connecting with the axial part, the handle-extension rotation element in the extension position has a planar shape.
- The locking element may include a projection, which is arranged in the handle-extension rotation element, and a pit, which is arranged in the front panel for mating with the projection, and wherein the handle-extension rotation element is locked by mating the projection with the pit when the handle-extension rotation element is rotationally moved to the refractive position.
- The handle-extension rotation element may include an axial part rotationally supported by the lever part and a plate part of connecting with the axial part, the handle-extension rotation element in the extension position has a planar shape.
- A detector may be further comprised, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of the locking element with respect to the handle-extension rotation element.
- FIG. 1 is a perspective view of the constitution of a conventional sub-rack.
- FIG. 2 is a perspective view of the sub-rack100 that a plug-in unit is partially mounted.
- FIG. 3 is a side view of the constitution of a plug-in unit inserted into the sub-rack.
- FIG. 4 is a side view of a conventional insertion and removal system in a plug-in unit for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack.
- FIG. 5 is a side view of the constitution of a conventional insertion and removal system in a plug-in unit as disclosed in JP-A-2000/91770.
- FIG. 6 is a side view of the constitution of a conventional insertion and removal system in a plug-in unit as disclosed in JP-U-6/21273.
- FIGS. 7A, 7B and7C are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 1 according to the present invention, respectively. - FIG. 8 is a side view of the operation of insertion and removal system in
embodiment 1. - FIG. 9 is a side view of an insertion and removal system in a plug-in unit in
alternative embodiment 1. - FIGS. 10A, 10B,10C and 10D are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 2 according to the present invention, respectively. - FIGS. 11A and 11B are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 3 according to the present invention, respectively. - FIG. 12 is a perspective view of an insertion and removal system in a plug-in unit in
alternative embodiment 3. - FIGS. 13A, 13B and13C are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 4 according to the present invention, respectively. - FIGS. 14A, 14B,14C and 14D are side views of explaining operation of extension of the handle element of an insertion and removal system in a plug-in unit in
embodiment 4 according to the present invention. - FIGS. 15A, 15B and15C are side views of explaining a keeping system keeping an extension position of the handle element of an insertion and removal system in a plug-in unit in
embodiment 4 according to the present invention. - FIGS. 16A and 16B are drawings of an insertion and removal system in a plug-in unit in
alternative embodiment 4. - One embodiment according to the present invention will be described as follows:
-
Embodiment 1 - FIGS. 7A, 7B and7C are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 1 according to the present invention, respectively. FIG. 7A is a side view of a handle on extension. FIG. 7B is a side view of a handle on shrinkage. FIG. 7C is a perspective view of a lock system of the handle for locking a front panel. In the drawings, 1 denotes a lever (a lever part, a handle element) rotationally supported on an end of the front panel and rotationally operated in a direction of insertion or removal of the plug-in unit with respect to the sub-rack. 2 denotes a handle-support part of rotationally supporting the lever, which is arranged on an end of afront panel 3. 3 denotes the front panel arranged on a printed circuit board constituting a plug-in unit, for covering an opening of the sub-rack when the plug-in unit is housed in the sub-rack. 4 denotes a handle slider (a handle-extension slide element). Thehandle slider 4 is inserted freely into thelever 1 in an advance or retreat direction. Thehandle slider 4 is slid in a longitudinal direction of thelever 1 between an extension position of thelever 1 on extending thelever 1 at the maximum and a shrinkage position of thelever 1 whose length nearly corresponds to the length of thelever 1. 4 a denotes an insertion allowing insertion of thelever 1 arranged on thehandle slider 4. 5 denotes a mating projection (a locking element) arranged on thefront panel mating projection 5 arranged on thehandle slider 4. A handle is constituted by thelever 1, the handle-support part 2 and an engagement claw, and is used for inserting the plug-in unit into the sub-rack and removing the plug-in unit from the sub-rack. - FIG. 8 is a side view of the operation of insertion and removal system in
embodiment 1. In FIG. 8, 6a denotes a first engagement claw (an engagement part, a handle element) of the handle, and 6 b denotes a second engagement claw (an engagement part, a handle element) of the handle. 7 a denotes a first engagement part (a projection) formed in a front rail arranged on a front side of a top part and a bottom part constituting a sub-rack. 7 b denotes a second engagement part (a projection) formed in the front rail. In FIG. 8, since the common numerals denote common elements in FIGS. 7A, 7B and 7C, the description of such parts is omitted. - The operation of the system in
embodiment 1 will be described as follows: - When the plug-in unit is inserted into the sub-rack, the
handle slider 4 is slid to the extension position of thelever 1 on extending the lever at the maximum as shown in FIG. 7A. As a result, thelever 1 can be substantially increased in length. Here, an inner diameter of theinsertion hole 4 a of thehandle slider 4 is approximately equal to an outer diameter of thelever 1 to prevent thelever 1 from accidentally removing out of theinsertion hole 4 a. An engagement system may be arranged on an end of thelever 1 and a back of theinsertion hole 4 a. - Next, the printed
circuit board 121 is slid along a groove formed on theguide rail 106. Theguide pin 123, arranged on the plug-inunit 120, is then inserted into the locatinghole 107 formed in thefront rail 104 to locate thefront panel 3 with respect to thefront rail 104. Thelever 1 of the handle is then rotated about the handle-support part 2 in a direction of arrow A shown in FIG. 8 in a state of engaging thefirst engagement claw 6 a of thehandle 112 with thefirst engagement part 7 a of thefront rail 104. The rotational force of thefirst engagement claw 6 a, as a force in the insertion direction, is transferred to thefirst engagement part 7 a to connect theconnector 122 of the printedcircuit board 121 to the back plane, and accordingly the insertion of the plug-in unit is finished. Here, the length of thelever 1 in the longitudinal direction becomes substantially longer by virtue of thehandle slider 4. The force in the insertion direction, transferred to thefirst engagement part 7 a, is enhanced by the action of a lever. - After the insertion of the plug-in unit is finished, the
handle slider 4 is slid to the shrinkage position of thelever 1 whose length nearly corresponds to the length of thelever 1. Here, as shown in FIG. 7B, themating projection 5, arranged on thefront panel 3, is mated with themating pit 5 a arranged in thehandle slider 4, and accordingly they are locked. As a result, thelever 1 of the handle cannot be rotated in a state of placing the plug-in unit within the sub-rack to prevent the plug-in unit from accidental removal out of the sub-rack. - When the plug-in unit is removed from the sub-rack, the
handle slider 4 is slid to the extension position of thelever 1 again. Thelever 1 of the handle is then rotated about the handle-support part 2 in the direction of arrow B in a state of engaging thesecond engagement claw 6 b of the handle with thesecond engagement part 7 b of the front rail. The rotational force of thesecond engagement claw 6 b, as a force in a removal direction, is transferred to thesecond engagement part 7 b to remove theconnector 122 of the printedcircuit board 121 from the back plane. Next, the printedcircuit board 121 is pulled along the groove formed on theguide rail 106 to remove the plug-in unit from the sub-rack. Here, the length of thelever 1 in the longitudinal direction becomes substantially longer by virtue of thehandle slider 4. The force in the insertion direction, transferred to thesecond engagement part 7 b, is enhanced by the action of a lever. - As described above, with such an arrangement in
embodiment 1, the length of thelever 1 can be substantially changed to provide a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force. Since thelever 1 can be decreased in length after placing the plug-in unit in the sub-rack, the area mounted on thefront panel 3 is not narrowed. The handle is locked on thefront panel 3 to prevent the plug-in unit from accidental removal out of the sub-rack. Since the rotation of thehandle slider 4 is locked on a small area arranged on thefront panel 3, the insertion and removal system on the periphery of the opening of the sub-rack can be scaled down in size. Thehandle slider 4 is supported on thefront panel 3 by two points, or the locking system of thehandle slider 4 on thefront panel 3 and the handle-support part 2. Accordingly, the durability to withstand an external force can be increased as compared with the conventional insertion and removal system in the plug-in unit. High-performance insertion and removal system in the plug-in unit can be provided at a low cost without requiring high-accuracy for manufacturing the plug-in unit. - With
embodiment 1, the locking element includes themating pit 5 a arranged in thehandle slider 4 and themating projection 5 arranged on thefront panel 3 for mating with themating pit 5 a. Thehandle slider 4 can be locked by mating themating pit 5 a with themating projection 5 on sliding to the shrinkage position to provide a locking system having a simple constitution, using a slight area on thefront panel 3. - The
handle slider 4 inembodiment 1 is rectangular solid as shown in FIGS. 7A, 7B and 7C. However, thehandle slider 4 of the present invention is not limited to such a shape. - FIG. 9 is a side view of an insertion and removal system in a plug-in unit in
alternative embodiment 1. In FIG. 9, 4A denotes a handle slider (a handle extension slide part) having arecess 4 b arranged on the side of thefront panel 3. 4 b denotes a recess formed in a region on side of thefront panel 3, except for themating pit 5 a of thehandle slider 4A. In FIG. 9, since the common numerals denote common elements in FIGS. 7A, 7B, 7C and 8, the description of such parts is omitted. - Since the region on the side of the
front panel 3 except for themating pit 5 a of thehandle slider 4A, the area mounted on thefront panel 3 can be enlarged, as compared with thehandle slider 4. -
Embodiment 2 - With
embodiment 2, a detector is provided, the detector detecting an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of a locking element with respect to a handle-extension slide element or a lever element. - FIGS. 10A, 10B,10C and 10D are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 2 according to the present invention, respectively. Specifically, FIG. 10A is a front view of one example of the detector, and FIG. 10B is a side view of FIG. 10A. FIG. 10C is a front view of another examples of the detector, and FIG. 10D is a side view of FIG. 10C. In the drawings, 8 and 8 a denote triggers arranged on thehandle slider 4A, the respective triggers constituting detectors. When thehandle slider 4A is slid to the shrinkage position of thelever 1, amicro-switch 9 turns on. When thehandle slider 4A is slid from the shrinkage position to the extension position, themicro-switch 9 turns off. Themicro-switch 9 constituting the detector is arranged inholes front panel 3 to detect insertion and removal of the plug-in unit with respect to the sub-rack. Size of thehole micro-switch 9. In FIGS. 10A, 10B, 10C and 10D, since the common numerals denote common elements in FIGS. 7A to 9, the description of such parts is omitted. - The operation of the system in
embodiment 2 will be described as follows: - At first, after insertion of the plug-in unit into the sub-rack, the
handle slider 4A is slid to the shrinkage position. When thehandle slider 4A reaches the shrinkage position, thetrigger handle slider 4A turns on themicro-switch 9 arranged in thehole front panel 3. As a result, a signal informing of finishing insertion of the plug-in unit with respect to the sub-rack, acting as an interrupt signal designating service conditions of the plug-in unit, is transferred to another plug-in units through electronic circuits arranged in the plug-in unit or through sub-racks. The handle is completely locked on thefront panel 3. Accordingly, the plug-in unit can be operated to prevent the plug-in unit from accidental removal out of the sub-rack as compared with the constitution ofembodiment 1. - Next, when the plug-in unit is removed from the sub-rack, the
handle slider 4A is slid to the extension position of thelever 1 again. Thetrigger micro-switch 9. As a result, the interrupt signal designating service conditions of the required plug-in unit, transferred to the electronic circuit in the plug-in unit, is stopped dead. It is possible to inform another plug-in units through the sub-rack that the required plug-in unit transits to unserviceable conditions. Accordingly, by only sliding thehandle slider 4A in the extension direction on operating the plug-in unit, it is possible to inform another apparatus through the sub-rack that the required plug-in unit transits to unserviceable conditions and to facilitate removal motion of the plug-in unit from the sub-rack. - When the
micro-switch 9 is arranged in the back of thehole 10 as shown in FIGS. 10A and 10B, thetrigger 8, turning on and off themicro-switch 9, is increased in size by depth of thehole 10. Accordingly, the opening of thehole 10 for allowing slide of thetrigger 8 is increased on a proportional basis. On the other hand, when themicro-switch 9 is arranged at a position substantially parallel to thefront panel 3 as shown in FIGS. 10C and 10D, thehole 10 a having a small opening the extent to which an only on-off lever part of themicro-switch 9 is exposed. A small-size trigger 8 a may be used in agreement with the size of thehole 10 a above. - As described above, the detector is constituted by the
trigger micro-switch 9, and detects an insertion or removal state of the plug-in unit with respect to the sub-rack, with linking to a locking motion and an unlocking motion of thehandle slider 4A. The handle is completely locked on thefront panel 3. Accordingly, the plug-in unit can be operated to prevent the plug-in unit from accidental removal out of the sub-rack as compared with the constitution ofembodiment 1. Accordingly, by only sliding thehandle slider 4A in the extension direction on operating the plug-in unit, it is possible to inform another apparatus through the sub-rack that the required plug-in unit transits to unserviceable conditions and to facilitate removal motion of the plug-in unit from the sub-rack. -
Embodiment 3 - The system in
embodiment 3 includes a handle-extension slide element inserted freely into the lever part in an advance or retreat direction to be slid in a longitudinal direction of the lever between an extension position of the lever on extending the lever at the maximum and a shrinkage position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element including an engagement pit arranged in the lever part and an engagement projection arranged on the front panel, the engagement projection for engaging with the engagement pit when the lever part is rotated toward the front panel side, for locking the lever part on the front panel by transferring a stress generated in the lever part to the engagement pit as a force narrowing an opening diameter of the engagement pit to lock the lever part on the front panel. - FIGS. 11A and 11B are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 3 according to the present invention, respectively. Specifically, FIG. 11A is a perspective view of a locking system of a lever part with respect to a front panel. FIG. 11B is a front view of the principle of the locking system as shown in FIG. 11A. In FIG. 11B, the lever part, locked by the handle slider on the side of the front panel, can be seen from the side of the front panel when the front panel is optically transparent. In the drawings, 1A denotes a lever (a lever part, a handle element) being rotationally supported on thefront panel 3, and being operated in the insertion and removal directions of the plug-in unit with respect to the sub-rack. Thelever 1A has amating pit 11 allowing mating with amating projection 5A arranged on thefront panel 3. Thelever 1A is formed so as to have an outer diameter approximately equal to an inner diameter of an insertion hole (not shown) allowing insertion of thelever 1A of thehandle slider 4B. A stress generated on thelever 1A, when thehandle slider 4B is slid to a shrinkage position of thelever 1A, can be transferred to themating pit 11 as a force narrowing the opening diameter of themating pit 11. An engagement system may be provided at the end of thelever 1A and the back of the insertion hole, and a taper may be formed at thelever 1A in a longitudinal direction of thelever 1A. Any constitution allowing transfer of the stress generated on thelever 1A as the force narrowing the opening diameter of themating pit 11 may be used. Thelever 1A is made of flexible resin materials. -
handle slider 4B is inserted freely into thelever 1A in an advance or retreat direction, and is slid in a longitudinal direction of thelever 1A between an extension position of thelever 1A on extending thelever 1A at the maximum and a shrinkage position of thelever 1A whose length nearly corresponds to the length of thelever 1A. Thehandle slider 4B has anotch portion 5 b formed on the side of thefront panel 3 so as to interpose an engagement projection (a locking element) 5A arranged on thefront panel 3. Theengagement projection 5A may have a taper in a direction of the normal of thefront panel 3 so as to facilitate engagement with anengagement pit 11 arranged in thelever 1A. Thenotch portion 5 b is arranged in thehandle slider 4B. Thenotch portion 5 b may be gradually decreased in size in the longitudinal direction so as to be gradually smaller than an outer diameter of theengagement projection 5A. As a result, the handle can be securely locked on thefront panel 3 when thehandle slider 4B is slid to the shrinkage position of thelever 1A. The engagement pit (a locking element) 11 engages with theengagement projection 5A when thelever 1A is rotationally moved toward the side of thefront panel 3. In FIGS. 11A and 11B, since the common numerals denote common elements in FIGS. 7A to 10D, the description of such parts is omitted. - The operation of the system in
embodiment 3 will be described as follows: - At first, when the
lever 1A is rotationally moved toward the side of thefront panel 3, theengagement projection 5A arranged on thefront panel 3 engages with theengagement pit 11 arranged in thelever 1A. Thehandle slider 4B is slid to the shrinkage position of thelever 1A. When thehandle slider 4B reaches the shrinkage position of thelever 1A, a stress generated on thelever 1A, as a force narrowing the opening diameter of theengagement pit 11 as shown in arrow A of FIG. 11B, transfers to theengagement pit 11. A force of arrow B is transferred to theengagement projection 5A so as to interpose theengagement projection 5A in thenotch portion 5 b of thehandle slider 4B. Accordingly, the handle, including thelever 1A and thehandle slider 4B, is locked on the side of thefront panel 3. - Hereafter,
alternative embodiment 3 will be described as follows: - FIG. 12 is a perspective view of an insertion and removal system in a plug-in unit in
alternative embodiment 3. In FIG. 12, 5B denotes an engagement projection (a locking element) arranged on thefront panel 3. 5Ba denotes a pit (a detector) arranged on an outer periphery of theengagement projection 5B. In FIG. 12, since the common numerals denote common elements in FIGS. 7A to 11B, the description of such parts is omitted. - Next, the summary of
alternative embodiment 3 will be described. - When the
engagement projection 5B is inserted into theengagement pit 11 of thelever 1A, theengagement pit 11 reaches the pit 5Ba arranged on the outer periphery of theengagement projection 5B to fit an inner wall of the opening theengagement pit 11 in the pit 5Ba. Here, theengagement pit 11 fit in the pit 5Ba is released from the stress of enlarging the opening of theengagement pit 11. Accordingly, the stress is dispersed into thelever 1A through the inner wall of the opening of theengagement pit 11. Vibration generated on thelever 1A is transferred to an operator, and the operator can feel that theengagement projection 5B is normally inserted into theengagement pit 11. - Although the pit5Ba is arranged in the outer periphery of the
engagement projection 5B, alternatively a projection may be arranged on the outer periphery of theengagement projection 5B. Here, when theengagement projection 5B is inserted into theengagement pit 11 of thelever 1A or when theengagement projection 5B is removed from theengagement pit 11, the inner wall of the opening of theengagement pit 11 goes beyond the projection above. In this time, the operator may feel that theengagement projection 5B is normally inserted into theengagement pit 11, on the basis of the vibration above. - As described above, the system in
embodiment 3 can obtain the same effect as the system inembodiment 1. The locking system in embodiment can have a simple constitution as compared with the constitution ofembodiment 1 to lock the handle on the side of thefront panel 3. - According to
embodiment 3, the pit 5Ba, acting as a detector detecting finish of engagement operation with theengagement pit 11, is arranged in the outer periphery of theengagement projection 5B. Accordingly, since the operator can feel that thelever 1A is normally locked on the side of thefront panel 3 or is normally unlocked from the side of thefront panel 3. The reliability of locking operation can be enhanced. - The constitution of
embodiment 2 may expand its applicability toembodiment 3. The system ofembodiment 3 can therefore obtain the same effect asembodiment 2. -
Embodiment 4 - The system in
embodiment 4 includes a handle-extension rotation element rotationally supported on the lever part to rotationally move in a longitudinal direction of the lever part between an extension position of the lever part on extending the lever part at the maximum and a refractive position of the lever part whose length nearly corresponds to the length of the lever part; and a locking element arranged on the handle-extension rotation element and the front panel, the locking element for locking the handle-extension rotation element, rotationally moved to the refractive position, on the front panel. - FIGS. 13A, 13B and13C are drawings of the constitution of an insertion and removal system in a plug-in unit in
embodiment 4 according to the present invention, respectively. Specifically, FIG. 13A is a side view of such constitution, FIG. 13B is a perspective view of the lever part, and FIG. 13C is a perspective view of the handle extension rotation element. In the drawings, 1B denotes a lever (a lever part) rotationally supported on an end of thefront panel 3 to be rotationally operated in the insertion and removal direction of the plug-in unit with respect the sub-rack. Thelever 1B has a bearinggroove 14 rotationally supporting a rotational part 12 (a handle extension rotation element). 5C denotes a mating projection (a locking element) formed on therotational part 12. Themating projection 5C is mated with a mating pit 15 (a locking element) formed in thefront panel 3, when therotational part 12 is rotationally moved toward the refractive position, to lock therotational part 12 on the side of thefront panel 3. Therotational part 12 can be rotationally moved about arotational axis 13, which is rotationally supported in the bearinggroove 14 of thelever 1B, between the extension position of thelever 1B on extending thelever 1B at the maximum and the refractive position of thelever 1B whose length nearly corresponds to the length of the lever 1B. 12 a denotes a wall (a handle extension rotation element) of therotational part 12. Thewall 12 a stops rotation of both therotational part 12 and thelever 1B when the rotational axis (a handle extension rotation element) 13 is moved in the bearinggroove 14 toward the side of the handle-support part 2 of thelever 1B at the extending position. - The
rotational axis 13 is arranged at a side wall of therotational part 12, and is rotationally supported in the bearinggroove 14 of thelever 1B. The bearinggroove 14 includes two different-length grooves, which are communicated to each other, and which cross each other at right angles. One of the grooves is formed at thelever 1B near the handle-support part 2, and is shorter in length than the other. Themating pit 15 is mated with themating projection 5C of therotational part 12, and has an inner diameter nearly equal to an outer diameter of the mating projection SC so as to reliably mate with themating projection 5C. In FIGS. 13A, 13B and 13C, since the common numerals denote common elements in FIGS. 7A to 12, the description of such parts is omitted. - The operation of the system in
embodiment 4 will be described as follows: - FIGS. 14A, 14B,14C and 14D are side views of explaining operation of extension of the handle element of an insertion and removal system in a plug-in unit in
embodiment 4 according to the present invention. - At first, the mating projection SC is mated with the
mating pit 15 of thefront panel 3 to lock therotational part 12 at the refractive position. (see FIG. 14A) - Next, the
rotational part 12 is moved to an opposite direction (a left hand of FIG. 14B) to thefront panel 3 in order to unlock mate of the mating projection SC of therotational part 12 with themating pit 15 of thefront panel 3. Here, therotational axis 13 moves in an upper groove of the bearinggroove 14 to reach an inlet of a communication groove for communicating two different-length grooves each other. - Here, the
rotational part 12 is rotated about therotational axis 13 in a direction of arrow of FIG. 14C to substantially extend thelever 1B in length. Therotational axis 13 moves in the communication groove toward a lower groove of the bearinggroove 14, and further moves toward the back of the lower groove. (see FIG. 14D) Inembodiment 4, the extension position of thelever 1B is defined as a state of reaching therotational axis 13 to the back of the lower groove of the bearinggroove 14. In this extension position, therotational part 12 moves from the inlet of the communication groove for communicating two grooves of the bearinggroove 14 allowing free rotation of therotational part 12 about therotational axis 13 to thelever 1B near the handle-support part 2. Accordingly, when a rotational force is exerted on therotational part 12, thewall 12 a comes into contact with thelever 1B to lock rotation of therotational part 12. Thus, therotational part 12 keeps the extension position of thelever 1B. - FIGS. 15A, 15B and15C are side views of explaining a keeping system keeping an extension position of the handle element of an insertion and removal system in a plug-in unit in
embodiment 4 according to the present invention. As shown in FIGS. 15A and 15B, when therotational axis 13 moves in the back of the lower groove of the bearinggroove 14 to perform rotational operation about the handle-support part 2, therotational part 12 has the inclination α of the longitudinal direction of thelever 1B. Inembodiment 4, the smaller inclination α of the longitudinal direction of thelever 1B, the higher operability of insertion and removal of the plug-in unit with respect to the sub-rack. Therefore, as shown in FIG. 15C, since a difference x between length of the two grooves of the bearinggroove 14 is appropriately ensured, a contact area between thewall 12 a and thelever 1B can be ensured at the extension position. As a result, it can prevent therotational part 12 from rotation about therotational axis 13. Alternatively, the contact area between thewall 12 a and thelever 1B can be ensured at the extension position by ensuring length of the communication groove communicating two grooves of the bearinggroove 14. - As described above, with such an arrangement in
embodiment 4, the length of thelever 1B can be substantially changed to provide a sufficient force of the insertion and removal according to the plug-in unit with the need of the insertion and removal force. Since thelever 1B can be decreased in length after placing the plug-in unit in the sub-rack, the area mounted on thefront panel 3 is not narrowed. The handle is locked on thefront panel 3 to prevent the plug-in unit from accidental removal out of the sub-rack. Since the rotation of therotational part 12 at the refractive position of thelever 1B is locked on a small area arranged on thefront panel 3, the insertion and removal system on the periphery of the opening of the sub-rack can be scaled down in size. Therotational part 12 is supported on thefront panel 3 by two points, or the locking system of therotational part 12 on thefront panel 3 and the rotational fulcrum of thelever 1B. Accordingly, the durability to withstand an external force can be increased as compared with the conventional insertion and removal system in the plug-in unit. - With
embodiment 4, when therotational part 12 is rotationally moved to the refractive position, themating projection 5C is mated with themating pit 15. Accordingly, the locking system having a simple constitution can be provided to lock the handle on thefront panel 3. - The
rotational part 12 inembodiment 4 is provided to cover thelever 1B with the two side walls. However, the rotational part of the present invention is not limited to such constitution. - FIGS. 16A and 16B are drawings of an insertion and removal system in a plug-in unit in
alternative embodiment 4. Specifically, FIG. 16A is a side view of the system, and FIG. 16B is a perspective view of the handle extension rotation element rotated to the extension position. In the drawings, 12A denotes a rotational part (a handle extension rotation element), which does not have a side wall except for therotational axis 13, and which becomes a flat plate in a state of rotationally moving therotational part 12A to the extension position. In FIGS. 16A and 16B, since the common numerals denote common elements in FIGS. 7A to 15C, the description of such parts is omitted. - As shown in FIG. 16A, the
rotational part 12 includes an axial part, which is rotationally supported on thelever 1B, and a plate extending from the axial part. On rotating therotational part 12A, thelever 1B at the extension position is parallel to the plate of therotational part 12A. As a result, the handle can be scaled down in size as compared with embodiments above. - The constitution of
embodiment 2 may expand its applicability toembodiment 4. For example, themicro-switch 9 may be arranged in themating pit 15 to turn on/off by using themating projection 5C of therotational part embodiment 4 can therefore obtain the same effect asembodiment 2. - The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-229668 | 2000-07-28 | ||
JP2000229668A JP3862944B2 (en) | 2000-07-28 | 2000-07-28 | Plug-in unit insertion / extraction mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020060197A1 true US20020060197A1 (en) | 2002-05-23 |
US6443315B1 US6443315B1 (en) | 2002-09-03 |
Family
ID=18722747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/774,724 Expired - Fee Related US6443315B1 (en) | 2000-07-28 | 2001-02-01 | Insertion and removal system in plug-in unit |
Country Status (4)
Country | Link |
---|---|
US (1) | US6443315B1 (en) |
EP (1) | EP1176858B1 (en) |
JP (1) | JP3862944B2 (en) |
DE (1) | DE60142100D1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100308189A1 (en) * | 2009-06-09 | 2010-12-09 | International Business Machines Corporation | Latching System for Multiple Nodes of a Computer System |
TWI394515B (en) * | 2010-08-03 | 2013-04-21 | Inventec Corp | Fasten structure and electronic device |
US20160234956A1 (en) * | 2013-10-04 | 2016-08-11 | ECM S.p.A. | Control peripheral post of railway field devices provided with means to facilitate the extraction of the control modules |
CN113597188A (en) * | 2021-08-31 | 2021-11-02 | 南京莱斯电子设备有限公司 | Power-assisted pluggable device with locking function for interior of electronic case |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084388A1 (en) * | 2002-11-05 | 2004-05-06 | Roesner Arlen L. | Card retention system and method |
US7023704B1 (en) * | 2004-01-09 | 2006-04-04 | Ciena Corporation | Ejector latch |
DE102004007740B4 (en) | 2004-02-16 | 2014-02-13 | Dspace Digital Signal Processing And Control Engineering Gmbh | Module board and separator bracket |
US8355261B2 (en) | 2004-05-26 | 2013-01-15 | Intel Corporation | Systems and methods to secure a circuit board |
TWI280839B (en) | 2004-06-21 | 2007-05-01 | Southco | Ejector lever assembly |
JP4485531B2 (en) * | 2004-12-08 | 2010-06-23 | 富士通株式会社 | Interface cable connection panel structure and rack mounting device in rack mounting device |
US8079481B2 (en) * | 2005-10-28 | 2011-12-20 | International Business Machines Corporation | Integrated frame and central electronic complex structure |
DE102006045155A1 (en) * | 2006-09-25 | 2008-04-03 | Robert Bosch Gmbh | Harness connector with extendable lever |
US8369094B2 (en) * | 2010-05-19 | 2013-02-05 | Fujitsu Limited | Unibody latch for plug-in units |
FR2979794B1 (en) * | 2011-09-02 | 2013-08-23 | Airbus Operations Sas | DEVICE FOR INSERTING, EXTRACTING AND LOCKING AN ELECTRONIC CARD IN A SLIDER |
TWI482584B (en) * | 2012-05-03 | 2015-04-21 | Wistron Corp | Emi shielding device which can readily be disassembled |
US9992896B2 (en) * | 2013-12-20 | 2018-06-05 | Flextronics Ap, Llc | Detachable crank and slider circuit pack ejector |
US11284531B2 (en) | 2018-05-23 | 2022-03-22 | Erico International Corporation | Ejector for electric modules |
JP7063836B2 (en) * | 2019-03-22 | 2022-05-09 | ファナック株式会社 | Circuit board omission prevention structure and numerical control device |
TWI709465B (en) * | 2019-11-19 | 2020-11-11 | 和碩聯合科技股份有限公司 | Handle extension structure and electronic device casing |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4648009A (en) * | 1986-04-09 | 1987-03-03 | Northern Telecom Limited | Articulated latch for use with a printed circuit board |
US4740164A (en) * | 1987-07-23 | 1988-04-26 | Pitney Bowes Inc. | Circuit board inserter/extractor |
WO1989010681A1 (en) * | 1988-04-30 | 1989-11-02 | Fujitsu Limited | Printed board unit inserting and withdrawing mechanism for electronic circuit devices |
US4996631A (en) * | 1989-10-30 | 1991-02-26 | Canoga Industries, Inc. | Injector/ejector system for rack mounted plug-in modules with front panels |
US4999744A (en) * | 1989-12-28 | 1991-03-12 | Universal Data Systems, Inc. | Ejector mechanism |
DE9012143U1 (en) * | 1990-08-23 | 1990-10-25 | Knürr-Mechanik für die Elektronik AG, 8000 München | Plugging and unplugging aid |
US5216518A (en) * | 1990-09-04 | 1993-06-01 | Canon Kabushiki Kaisha | Image processing method and apparatus for encoding variable-length data |
JPH04188794A (en) | 1990-11-22 | 1992-07-07 | Fujitsu Ltd | Mechanism for inserting and drawing out printed board |
JPH0499590A (en) | 1990-12-27 | 1992-03-31 | Hitachi Ltd | Washer |
DE4105948C2 (en) * | 1991-02-26 | 2001-08-30 | Philips Corp Intellectual Pty | Assembly unit with a plate, in particular printed circuit board, which is designed for insertion into a receiving device |
GB9126235D0 (en) * | 1991-12-11 | 1992-02-12 | Bicc Plc | Enclosure for circuit boards |
JPH0779144B2 (en) | 1992-04-21 | 1995-08-23 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Heat-resistant semiconductor chip package |
JPH0621273A (en) | 1992-07-03 | 1994-01-28 | Seiko Epson Corp | Ic socket |
US5317482A (en) * | 1992-12-07 | 1994-05-31 | Smith Industries | Clamp activator and circuit card extractor |
US5309325A (en) * | 1993-02-19 | 1994-05-03 | Eg&G Birtcher, Inc. | Locking circuit board injector/extractor |
JPH0722587A (en) | 1993-07-01 | 1995-01-24 | Hitachi Ltd | Semiconductor integrated circuit device and manufacture thereof |
JPH11163561A (en) * | 1997-11-27 | 1999-06-18 | Fujitsu Ltd | Ejector for electronic circuit package |
JP2959568B1 (en) * | 1998-09-16 | 1999-10-06 | 日本電気株式会社 | Board insertion / extraction device |
-
2000
- 2000-07-28 JP JP2000229668A patent/JP3862944B2/en not_active Expired - Fee Related
-
2001
- 2001-02-01 EP EP01102334A patent/EP1176858B1/en not_active Expired - Lifetime
- 2001-02-01 DE DE60142100T patent/DE60142100D1/en not_active Expired - Lifetime
- 2001-02-01 US US09/774,724 patent/US6443315B1/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100308189A1 (en) * | 2009-06-09 | 2010-12-09 | International Business Machines Corporation | Latching System for Multiple Nodes of a Computer System |
US8107233B2 (en) * | 2009-06-09 | 2012-01-31 | International Business Machines Corporation | Latching system for multiple nodes of a computer system |
TWI394515B (en) * | 2010-08-03 | 2013-04-21 | Inventec Corp | Fasten structure and electronic device |
US20160234956A1 (en) * | 2013-10-04 | 2016-08-11 | ECM S.p.A. | Control peripheral post of railway field devices provided with means to facilitate the extraction of the control modules |
US9648772B2 (en) * | 2013-10-04 | 2017-05-09 | ECM S.p.A. | Control peripheral post of railway field devices provided with means to facilitate the extraction of the control modules |
CN113597188A (en) * | 2021-08-31 | 2021-11-02 | 南京莱斯电子设备有限公司 | Power-assisted pluggable device with locking function for interior of electronic case |
Also Published As
Publication number | Publication date |
---|---|
JP2002043776A (en) | 2002-02-08 |
EP1176858A3 (en) | 2004-01-14 |
EP1176858A2 (en) | 2002-01-30 |
US6443315B1 (en) | 2002-09-03 |
EP1176858B1 (en) | 2010-05-12 |
JP3862944B2 (en) | 2006-12-27 |
DE60142100D1 (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6443315B1 (en) | Insertion and removal system in plug-in unit | |
US6912124B2 (en) | Lever system for moving a component within a chassis | |
US6146210A (en) | Connector assembly that prevents polarization problems and uses a single aperture to perform both latching functions and guide functions | |
CN110632712B (en) | Unlocking structure and operation method of pluggable module | |
JP6898395B2 (en) | Coupling connector with slider section | |
JPH06208866A (en) | Connector | |
JPH0963694A (en) | Connector having lock mechanism | |
US20070093097A1 (en) | Card edge connector with ejecting means | |
JPH04233174A (en) | Connector device mechanically and ellectrically plug-connecting electronic apparatus unit | |
EP0424034A2 (en) | Telephone Lock | |
JPH0799079A (en) | Electric connector with ejector and its assembly | |
US20230198201A1 (en) | Connector position assurance device and connector assembly including same | |
JP3457146B2 (en) | Connector locking structure | |
US7214076B1 (en) | Card connector with anti-mismating device | |
US7811114B2 (en) | Connector with improved latching mechanism | |
CN110556670B (en) | Unlocking structure of pluggable module | |
JP5562108B2 (en) | Lock detection connector | |
US11363727B1 (en) | Terminal apparatus and terminal equipment including the same | |
JP4047902B2 (en) | A housing for accommodating a printed wiring board in which a mounting portion of the printed wiring board forms at least a part of a communication system | |
JPH11250985A (en) | Connector fitting structure | |
CN110542955B (en) | Unlocking structure of module capable of being plugged and unplugged with cable | |
CN112130259A (en) | Connector with a locking member | |
CN215717857U (en) | Lock core | |
JPH10173356A (en) | Extension unit | |
JP3820813B2 (en) | Connected structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TABUCHI, HIROSHI;REEL/FRAME:013118/0566 Effective date: 20010116 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140903 |