US20020058692A1 - Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents - Google Patents

Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents Download PDF

Info

Publication number
US20020058692A1
US20020058692A1 US09/876,808 US87680801A US2002058692A1 US 20020058692 A1 US20020058692 A1 US 20020058692A1 US 87680801 A US87680801 A US 87680801A US 2002058692 A1 US2002058692 A1 US 2002058692A1
Authority
US
United States
Prior art keywords
compound
lower alkyl
group
esters
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/876,808
Other versions
US6380250B1 (en
Inventor
Robert Burk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Sales LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allergan Sales LLC filed Critical Allergan Sales LLC
Priority to US09/876,808 priority Critical patent/US6380250B1/en
Application granted granted Critical
Publication of US6380250B1 publication Critical patent/US6380250B1/en
Publication of US20020058692A1 publication Critical patent/US20020058692A1/en
Assigned to ALLERGAN, INC. reassignment ALLERGAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLERGAN SALES, INC. (MERGED INTO ALLERGAN SALES, LLC)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/26Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring
    • C07C271/28Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atom of at least one of the carbamate groups bound to a carbon atom of a six-membered aromatic ring to a carbon atom of a non-condensed six-membered aromatic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/5575Eicosanoids, e.g. leukotrienes or prostaglandins having a cyclopentane, e.g. prostaglandin E2, prostaglandin F2-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/10Laxatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/14Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C333/00Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C333/02Monothiocarbamic acids; Derivatives thereof
    • C07C333/04Monothiocarbamic acids; Derivatives thereof having nitrogen atoms of thiocarbamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present invention relates to cyclopentane heptanoic acid, 2 thiocarbamoyloxy and 2-carbamoyloxy compounds which may be substituted in the 1-position with hydroxyl, alkyloxy, amino and amido groups. These compounds are potent ocular hypotensive and are particularly suited for the management of glaucoma.
  • a wavy segment represents an ⁇ or ⁇ bond; the dashed line represents a double bond or a single bond; Z is O or S; Ar is an aryl or hetero aryl radical having from 4 to 10 carbon atoms, e.g. phenyl, furyl, thienyl, etc.
  • the present invention relates to an ophthalmic solution comprising a therapeutically effective amount of a compound of formula (I), wherein the symbols have the above meanings, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle, packaged in a container suitable for metered application.
  • FIG. 3 shows the IOP-lowering effect of the compound of Example 9.
  • n is 0 or 1, 2 or 4; hatched lines at position C-8, C-9 and C-11 indicate the ⁇ configuration; and the triangle at position C-12 represents ⁇ orientation.
  • Y is ⁇ O.
  • R 1 is H.
  • Y is ⁇ O.
  • the above compounds of the present invention may be prepared by methods that are known in the art or according to the working examples below.
  • the compounds, below, are especially preferred representative of the compounds of the present invention.
  • a pharmaceutically acceptable salt is any salt which retains the activity of the parent compound and does not impart any deleterious or undesirable effect on the subject to whom it is administered and in the context in which it is administered.
  • salts formed with inorganic ions such as sodium, potassium, calcium, magnesium and zinc.
  • solutions are prepared using a physiological saline solution as a major vehicle.
  • the pH of such ophthalmic solutions should preferably be maintained between 6.5 and 7.2 with an appropriate buffer system.
  • the formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants.
  • Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor.
  • buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers. Acids or bases may be used to adjust the pH of these formulations as needed.
  • an ophthalmically acceptable antioxidant for use in the present invention includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
  • the compounds of the invention may also be useful in the treatment of various pathophysiological diseases including acute myocardial infarction, vascular thrombosis, hypertension, pulmonary hypertension, ischemic heart disease, congestive heat failure, and angina pectoris, in which case the compounds may be administered by any means that effect vasodilation and thereby relieve the symptoms of the disease.
  • administration may be by oral, transdermal, parenterial, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes.
  • the compounds of the invention may be used alone, or in combination with other of the known vasodilator drugs.
  • Suitable excipients are, in particular, fillers such as sugars, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch, paste using for example, maize starch, wheat starch, rich starchy, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone.
  • fillers such as sugars, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch, paste using for example, maize starch, wheat starch, rich starchy, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropyl
  • disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, crosslinked polyvinyl pyrrolidone, agar, or algenic acid or a salt thereof, such as sodium alginate.
  • Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol.
  • Dragee cores are provided with suitable coatings which if desired, are resistant to gastric juices.
  • concentrated sugar solutions may be used, which may optionally containing gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures.
  • suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used.
  • Dye stuffs or pigments may be added to the tables or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses.

Abstract

The invention relates to the use of cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and carbamoyloxy as therapeutic agents e.g. as ocular hypotensives. The compounds used in accordance with the invention are represented by the following formula I:
Figure US20020058692A1-20020516-C00001
wherein a wavy segments indicate either the alpha (α) or beta (β) configuration; the dashed bond represents a double bond or a single bond; Ar is selected from the group consisting of aryl or heteroaryl radicals having from 4 to 10 carbon atoms and substituted derivatives of said aryl and heteroaryl radicals; n is 0 or an integer of from 1 to 4; x and y are 1 or 0, provided that when x is 1, y is 0 and when x is 0, y is 1; R1 is hydrogen or a lower alkyl radical or a substituted lower alkyl radical having up to six carbon atoms; X is selected from the group consisting of —OR1 and —N(R1)2; Y is ═O or represents 2 hydrogen radicals, and the 9 and/or 11 esters thereof and/or the pharmaceutically acceptable salts of said compounds and/or esters.

Description

    RELATED APPLICATIONS
  • This application is a continuation of Ser. No. 09/671,492 which was filed on Sep. 27, 2000.[0001]
  • BACKGROUND OF THE INVENTION
  • [0002] 1. Field of the Invention
  • The present invention relates to cyclopentane heptanoic acid, 2 thiocarbamoyloxy and 2-carbamoyloxy compounds which may be substituted in the 1-position with hydroxyl, alkyloxy, amino and amido groups. These compounds are potent ocular hypotensive and are particularly suited for the management of glaucoma. [0003]
  • 2. Description of Related Art [0004]
  • Ocular hypotensive agents are useful in the treatment of a number of various ocular hypertensive conditions, such as post-surgical and post-laser trabeculectomy ocular hypertensive episodes, glaucoma, and as presurgical adjuncts. [0005]
  • Glaucoma is a disease of the eye characterized by increased intraocular pressure. On the basis of its etiology, glaucoma has been classified as primary or secondary. For example, primary glaucoma in adults (congenital glaucoma) may be either open-angle or acute or chronic angle-closure. Secondary glaucoma results from pre-existing ocular diseases such as uveitis, intraocular tumor or an enlarged cataract. [0006]
  • The underlying causes of primary glaucoma are not yet known. The increased intraocular tension is due to the obstruction of aqueous humor outflow. In chronic open-angle glaucoma, the anterior chamber and its anatomic structures appear normal, but drainage of the aqueous humor is impeded. In acute or chronic angle-closure angle-closure glaucoma, the anterior chamber is shallow, the filtration angle is narrowed, and the iris may obstruct the trabecular meshwork at the entrance of the canal of Schlemm. Dilation of the pupil may push the root of the iris forward against the angle, and may produce pupilary block and thus precipitate an acute attack. Eyes with narrow anterior chamber angles are predisposed to acute angle-closure glaucoma attacks of various degrees of severity. [0007]
  • Secondary glaucoma is caused by any interference with the flow of aqueous humor from the posterior chamber into the anterior chamber and subsequently, into the canal of Schlemm. Inflammatory disease of the anterior segment may prevent aqueous escape by causing complete posterior synechia in iris bombe, and may plug the drainage channel with exudates. Other common causes are intraocular tumors, enlarged cataracts, central retinal vein occlusion, trauma to the eye, operative procedures and intraocular hemorrhage. [0008]
  • Considering all types together, glaucoma occurs in about 2% of all persons over the age of 40 and may be asymptotic for years before progressing to rapid loss of vision. In cases where surgery is not indicated, topical b-adrenoreceptor antagonists have traditionally been the drugs of choice for treating glaucoma. [0009]
  • Certain eicosanoids and their derivatives have been reported to possess ocular hypotensive activity, and have been recommended for use in glaucoma management. Eicosanoids and derivatives include numerous biologically important compounds such as prostaglandins and their derivatives. Prostaglandins can be described as derivatives of prostanoic acid which have the following structural formula: [0010]
    Figure US20020058692A1-20020516-C00002
  • Various types of prostaglandins are known, depending on the structure and substituents carried on the alicyclic ring of the prostanoic acid skeleton. Further classification is based on the number of unsaturated bonds in the side chain indicated by numerical subscripts after the generic type of prostaglandin [e.g. prostaglandin E[0011] 1 (PGE1), prostaglandin E2 (PGE2)], and on the configuration of the substituents on the alicyclic ring indicated by α or β [[e.g. prostaglandin F(PGF)].
  • Prostaglandins were earlier regarded as potent ocular hypertensives, however, evidence accumulated in the last decade shows that some prostaglandins are highly effective ocular hypotensive agents, and are ideally suited for the long-term medical management of glaucoma (see, for example, Bito, L. Z. [0012] Biological Protection with Prostaglandins, Cohen, M. M., ed., Boca Raton, Fla., CRC Press Inc., 1985, pp. 231-252; and Bito, L. Z., Applied Pharmacology in the Medical Treatment of Glaucomas Drance, S. M. and Neufeld, A. H. eds., New York, Grune & Stratton, 1984, pp. 477-505. Such prostaglandins include PGF, PGF, PGE2, and certain lipid-soluble esters, such as C1 to C2 alkyl esters, e.g. 1-isopropyl ester, of such compounds.
  • Although the precise mechanism is not yet known experimental results indicate that the prostaglandin-induced reduction in intraocular pressure results from increased uveoscleral outflow [Nilsson et.al., [0013] Invest. Ophthalmol. Vis. Sci. (suppl), 284 (1987)].
  • The isopropyl ester of PGF[0014] has been shown to have significantly greater hypotensive potency than the parent compound, presumably as a result of its more effective penetration through the cornea. In 1987, this compound was described as “the most potent ocular hypotensive agent ever reported” [see, for example, Bito, L. Z., Arch. Ophthalmol. 105, 1036 (1987), and Siebold et.al., Prodrug 5 3 (1989)].
  • Whereas prostaglandins appear to be devoid of significant intraocular side effects, ocular surface (conjunctival) hyperemia and foreign-body sensation have been consistently associated with the topical ocular use of such compounds, in particular PGF[0015] and its prodrugs, e.g., its 1-isopropyl ester, in humans. The clinical potentials of prostaglandins in the management of conditions associated with increased ocular pressure, e.g. glaucoma are greatly limited by these side effects.
  • In a series of co-pending United States patent applications assigned to Allergan, Inc. prostaglandin esters with increased ocular hypotensive activity accompanied with no or substantially reduced side-effects are disclosed. The co-pending U.S. Ser. No. 596,430 (filed Oct. 10, 1990), relates to certain 11-acyl-prostaglandins, such as 11-pivaloyl, 11-acetyl, 11-isobutyryl, 11-valeryl, and 11-isovaleryl PGF[0016] . Intraocular pressure reducing 15-acyl prostaglandins are disclosed in the co-pending application U.S. Ser. No. 175,476 (filed Dec. 29, 1993). Similarly, 11,15-9,15 and 9,11-diesters of prostaglandins, for example 11,15-dipivaloyl PGF are known to have ocular hypotensive activity. See the co-pending patent applications U. S. Ser. Nos. 385,645 (filed Jul. 7, 1989, now U.S. Ser. No. 4,994,274), 584,370 (filed Sep. 18, 1990, now U.S. Ser. No. 5,028,624) and 585,284 (filed Sep. 18, 1990, now U.S. Pat. No. 5,034,413). The disclosures of all of these patent applications are hereby expressly incorporated by reference.
  • SUMMARY OF THE INVENTION
  • The present invention concerns a method of treating ocular hypertension which comprises administering to a mammal having ocular hypertension a therapeutically effective amount of a compound of formula I [0017]
    Figure US20020058692A1-20020516-C00003
  • wherein a wavy segment represents an α or β bond; the dashed line represents a double bond or a single bond; Z is O or S; Ar is an aryl or hetero aryl radical having from 4 to 10 carbon atoms, e.g. phenyl, furyl, thienyl, etc. or substituted aryl or a substituted heteroaryl radical; n is 0 or an integer of from 1 to 4; x and y are 1 or 0, provided that when x is 1, y is 0 and when x is 0, y is 1; R[0018] 1 is hydrogen or a lower alkyl radical or a substituted lower alkyl radical having up to six carbon atoms; X is selected from the group consisting of —OR1 and —N(R1)2; Y is ═O or represents 2 hydrogen radicals and the 9 and/or 11 esters thereof, e.g. the lower alkyl esters having up to six carbon atoms; and/or the pharmaceutically acceptable salts of said compound and/or the esters thereof. In particular, the substituents on the lower alkyl, aryl or heteroaryl radical may be selected from the group consisting of lower alkyl, e.g. C1 to C6 alkyl; hydroxy; lower alkyloxy, e.g. OCH3; halogen, e.g. fluoro, chloro and bromo; trifluoromethyl (CF3); COR1, e.g. COCH3; COCF3; SO2NR1, e.g. SO2NH2; NO2; CN; etc.
  • In a further aspect, the present invention relates to an ophthalmic solution comprising a therapeutically effective amount of a compound of formula (I), wherein the symbols have the above meanings, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle, packaged in a container suitable for metered application. [0019]
  • In a still further aspect, the present invention relates to a pharmaceutical product, comprising [0020]
  • a container adapted to dispense its contents in a metered form; and [0021]
  • an ophthalmic solution therein, as hereinabove defined. [0022]
  • Finally, certain of the compounds represented by the above formula, disclosed below and utilized in the method of the present invention are novel and unobvious.[0023]
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • FIG. 1 is a schematic of the chemical synthesis of certain compounds of the invention, specifically disclosed as Examples 2, 3, 5, 6 and 8 through 14 below. [0024]
  • FIG. 2 is a schematic of the chemical synthesis of certain compounds of the invention, specifically disclosed as Examples 17 through 20. [0025]
  • FIG. 3 shows the IOP-lowering effect of the compound of Example 9. [0026]
  • FIG. 4 shows the IOP-lowering effect of the compound of Example 12.[0027]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to the use of cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy as therapeutic agents, e.g. as ocular hypotensives. The compounds used in accordance with the present invention are encompassed by the following structural formula I: [0028]
    Figure US20020058692A1-20020516-C00004
  • wherein the substituents and symbols are as hereinabove defined. The dotted line on the bond between [0029] carbons 5 and 6 (C-5) indicates a single or double bond. If two solid lines are used at C-5, it indicates a specific configuration for that double bond.
  • A preferred group of the compounds of the present invention includes compounds that have the following structural formula II: [0030]
    Figure US20020058692A1-20020516-C00005
  • wherein n is 0 or 1, 2 or 4; hatched lines at position C-8, C-9 and C-11 indicate the α configuration; and the triangle at position C-12 represents β orientation. Preferably Y is ═O. [0031]
  • More preferably, Ar is selected from the group consisting of phenyl, furyl and thienyl. [0032]
  • Another preferred group includes compounds having the formula III: [0033]
    Figure US20020058692A1-20020516-C00006
  • In compounds of formula III, preferably X is —OR[0034] 1 or N(R1)2 and Y is ═O, e.g. the 1-position is a carboxylic acid or carboxylamide radical.
  • Preferably, R[0035] 1 is H.
  • Preferably n is 0, 1, 2 or 4. [0036]
  • Preferably Ar is phenyl, thienyl, chlorophenyl or trifluoromethyl phenyl. [0037]
  • Preferably X is OH, NH[0038] 2, NHC2H5 or NHC2H4OH
  • Preferably Y is ═O. [0039]
  • The above compounds of the present invention may be prepared by methods that are known in the art or according to the working examples below. The compounds, below, are especially preferred representative of the compounds of the present invention. [0040]
  • (Z)-7-((1R,2S,3R,5S)-2-Benzylthiocarbamoyloxymethyl-3,5-dihydroxycyclopentyl)hept-5-enoic acid [0041]
  • (Z)-7-((1R,2S,3R,5S)-2-Benzylcarbamoyloxymethyl-3,5-dihydroxycyclopentyl)hept-5-enoic acid [0042]
  • (Z)-7-((1R,2S,3R,5S)-3,5-Dihydroxy-2-phenylcarbamoyloxymethylcyclopentyl)hept-5-enoic acid [0043]
  • (Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(2-thiophen-2-ylethylcarbamoyloxymethyl)cyclopentyl]hept-5-enoic acid [0044]
  • (Z)-7-((1R,2S,3R,5S)-2-Butylthiocarbamoyloxymethyl-3,5-dihydroxycyclopentyl) hept-5-enoic acid [0045]
  • (Z)-7-[(1R,2S,3R,5S)-2-(3-Chlorobenzylthiocarbamoyloxymethyl)-3,5-dihydroxycyclopentyl]hept-5-enoic acid [0046]
  • (Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(3-trifluoromethylbenzylcarbamoyloxymethyl) cyclopentyl]hept-5-enoic acid [0047]
  • (Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(3-trifluoromethylbenzylthiocarbamoyloxymethyl) cyclopentyl]hept-5-enoic acid [0048]
  • (3-Chlorobenzyl)thiocarbamic acid O-{(1S,2R,3S,5R)-3,5-dihydroxy-2-[(Z)-6-(2-hydroxyethylcarbamoyl)hex-2-enyl]cyclopentylmethyl} ester [0049]
  • (3-Chlorobenzyl)thiocarbamic acid O-[(1S,2R,3S,5R)-2-((Z)-6-ethylcarbamoylhex-2-enyl)-3,5-dihydroxycyclopentylmethyl] ester [0050]
  • (3-Chlorobenzyl)thiocarbamic acid O-[(1S,2R,3S,5R)-2-((Z)-6-carbamoylhex-2-enyl) -3,5-dihydroxycyclopentylmethyl] ester [0051]
  • A pharmaceutically acceptable salt is any salt which retains the activity of the parent compound and does not impart any deleterious or undesirable effect on the subject to whom it is administered and in the context in which it is administered. Of particular interest are salts formed with inorganic ions, such as sodium, potassium, calcium, magnesium and zinc. [0052]
  • Pharmaceutical compositions may be prepared by combining a therapeutically effective amount of at least one compound according to the present invention, or a pharmaceutically acceptable acid addition salt thereof, as an active ingredient, with conventional ophthalmically acceptable pharmaceutical excipients, and by preparation of unit dosage forms suitable for topical ocular use. The therapeutically efficient amount typically is between about 0.0001 and about 5% (w/v), preferably about 0.001 to about 1.0% (w/v) in liquid formulations. [0053]
  • For ophthalmic application, preferably solutions are prepared using a physiological saline solution as a major vehicle. The pH of such ophthalmic solutions should preferably be maintained between 6.5 and 7.2 with an appropriate buffer system. The formulations may also contain conventional, pharmaceutically acceptable preservatives, stabilizers and surfactants. [0054]
  • Preferred preservatives that may be used in the pharmaceutical compositions of the present invention include, but are not limited to, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate and phenylmercuric nitrate. A preferred surfactant is, for example, Tween 80. Likewise, various preferred vehicles may be used in the ophthalmic preparations of the present invention. These vehicles include, but are not limited to, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose and purified water. [0055]
  • Tonicity adjustors may be added as needed or convenient. They include, but are not limited to, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable ophthalmically acceptable tonicity adjustor. [0056]
  • Various buffers and means for adjusting pH may be used so long as the resulting preparation is ophthalmically acceptable. Accordingly, buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers. Acids or bases may be used to adjust the pH of these formulations as needed. [0057]
  • In a similar vein, an ophthalmically acceptable antioxidant for use in the present invention includes, but is not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene. [0058]
  • Other excipient components which may be included in the ophthalmic preparations are chelating agents. The preferred chelating agent is edentate disodium, although other chelating agents may also be used in place or in conjunction with it. [0059]
  • The ingredients are usually used in the following amounts: [0060]
    Ingredient Amount (% w/v)
    active ingredient about
    0.001-5   
    preservative   0-0.10
    vehicle  0-40
    tonicity adjustor  1-10
    buffer 0.01-10  
    pH adjustor q.s. pH
    4.5-7.5
    antioxidant as needed
    surfactant as needed
    purified water as needed
    to make 100%
  • The actual dose of the active compounds of the present invention depends on the specific compound, and on the condition to be treated; the selection of the appropriate dose is well within the knowledge of the skilled artisan. [0061]
  • The ophthalmic formulations of the present invention are conveniently packaged in forms suitable for metered application, such as in containers equipped with a dropper, to facilitate the application to the eye. Containers suitable for dropwise application are usually made of suitable inert, non-toxic plastic material, and generally contain between about 0.5 and about 15 ml solution. [0062]
  • The invention is further illustrated by the following non-limiting Examples, which are summarized in the reaction scheme of FIG. 1, wherein like numbers refer to the same compounds. [0063]
  • EXAMPLE 1 Methyl 7-[Phenylcarbamoyloxymethyl-3,5-bis(tetrahydropyran-2-yloxy)cyclopentyl]hept-5-enoate (2 a)
  • Phenylisocyanate (68 μL, 0.63 mmol) was added to a solution of 1,4-diazabicyclo[2.2.2]octane (76.5 mg, 0.68 mmol) and alcohol [0064] 1 (250 mg, 0.57 mmol) in THF (3.0 mL at 23° C. After 16 h the reaction was concentrated in vacuo and the residue was purified by flash column chromatography (silica gel, 3:1 hexane/EtOAc) to afford the title compound.
  • EXAMPLE 2 Methyl 7-[3,5-Dihydroxy-2-phenylcarbamoyloxymethylcyclopentyl]hept-5-enoate (3 a)
  • A solution of bis-[0065] THP ether 2 a obtained above and pyridinium p-toluenesulfonate (150 mg, 0.60 mmol) in MeOH (6.0 mL) was stirred at 23° C. for 12 h. The solvent was removed in vacuo. The residue was diluted with EtOAc and washed with 1N HCl, saturated aqueous NaHCO3 and brine. The organic portion was dried (MgSO4), filtered and concentrated in vacuo. Flash column chromatography (silica gel, 100% EtOAc)of the residue provided 208 mg (93% over two steps) of the title compound.
  • EXAMPLE 3 (Z)-7-((1R,2S,3R,5S)-3,5-Dihydroxy-2-phenzylcarbamoyloxymethylcyclopentyl)-hept-5-enoic acid (4 a)
  • A mixture of [0066] ester 3 a (64 mg, 0. 163 mmol) and lithium hydroxide (0.66 mL of a 0.5 N solution in H2O, 0.33 mmol) in THF (1.3 mL) was stirred at 23° C. for 12 h. The reaction was acidified with 1N HCl and extracted with EtOAc. The organic portion was washed with brine (2×), dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 9:1 EtOAc/MeOH) to afford 55.3 mg (90%) of the title compound.
  • EXAMPLE 4 Methyl 7-[2-Benzylcarbamoyloxymethyl-3,5-bis(tetrahydropyran-2-yloxy) -cyclopentyl] hept-5-enoate (2 b).
  • According to the procedures described for [0067] 2 a the reaction of alcohol 1 (275 mg, 0.63 mmol), 1,4-diazabicyclo[2.2.2]octane (83.6 mg, 0.75 mmol), and benzylisocyanate (99.3 mg, 0.75 mmol) afforded 182.6 mg (51%) of the title compound after purification by flash column chromatography (silica gel, 2:1 hexane/EtOAc).
  • EXAMPLE 5 Methyl 7-[2-Benzylcarbamoyloxymethyl-3,5-dihydroxycyclopentyl]hept-5-enoate (3 b)
  • According to the procedures described for [0068] 3 a the reaction of bis-THP ether 2 b(240 mg, 0.42 mmol) and pyridinium p-toluenesulfonate (100 mg, 0.40 mmol) afforded 153.1 mg (90%) of the title compound after purification by flash column chromatography (silica gel, 1:1 hexane/EtOAc).
  • EXAMPLE 6 7-[2-Benzylcarbamoyloxymethyl-3,5-dihydroxycyclopentyl]hept-5-enoic acid (4 b)
  • According to the procedures described for [0069] 4 a the reaction of ester 3 b (40 mg, 0.99 mmol) and lithium hydroxide hydroxide (0.40 mL of a 0.5 N solution in H2O, 0.20 mmol) afforded 35.6 mg (92%) of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 7 Methyl 7-[2-Benzylthiocarbamoyloxymethyl-3,5-bis(tetrahydropyran-2-yloxy)cyclopentyl]hept-5-enoate (2 c).
  • According to the procedures described for [0070] 2 a the reaction of alcohol 1 (300 mg, 0.68 mmol), 1,4-diazabicyclo[2.2.2]octane (153.0 mg, 1.36 mmol), and benzylthioisocyanate (0.14 mL, 1.02 mmol) afforded 380.3 mg (95%) of the title compound after purification by flash column chromatography (silica gel, 3:1 hexane/EtOAc).
  • EXAMPLE 8 Methyl 7-[2-Benzylthiocarbamoyloxymethyl-3,5-dihydroxycyclopentyl]-hept -5-enoate (3 c)
  • According to the procedures described for [0071] 3 a the reaction of bis-THP ether 2 c (380.3 mg, 0.65 mmol) and pyridinium p-toluenesulfonate (200 mg, 0. 7 8 mmol) afforded 246.4 mg (91%) of the title compound after purification by flash column chromatography (silica gel, 1:1 hexane/EtOAc).
  • EXAMPLE 9 7-[2-Benzylthiocarbamoyloxymethyl-3,5-dihydroxycyclopentyl]hept-5 -enoic acid (4 c)
  • According to the procedures described for [0072] 4 a the reaction of ester 3 c (60 mg, 0.142 mmol) and lithium hydroxide (0. 57 mL of a 0.5 N solution in H2O, 0.29 mmol) afforded 9.7 mg (17%) of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 10 (Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(2-thiophen-2-ylethylcarbamoyloxymethyl) -cyclopentyl]hept-5-enoic acid (4 d)
  • According to the procedures described above in Examples 1, 2 and 3 for conversion of [0073] alcohol 1 to 4 a, the use of (2-thiophen-2-ylethylimino)ethenone afforded 80 mg of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 11 (Z)-7-((1R,2S,3R,5S)-2-Butylthiocarbamoyloxymethyl-3,5-dihydroxycyclopentyl)-hept -5-enoic acid (4 e)
  • According to the procedures described above in Examples 1,2 and 3 for conversion of [0074] alcohol 1 to 4 a, the use of (butylimino)ethenethione in refluxing THF afforded 20 mg of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 12 (Z)-7-[(1R,2S,3R,5S)-2-(3-Chlorobenzylthiocarbamoyloxymethyl)-3,5-dihydroxy -cyclopentyl]hept-5-enoic acid (4 f)
  • According to the procedures described above in Examples 1, 2 and 3 for conversion of [0075] alcohol 1 to 4 a, the use of (3-chlorobenzylimino)ethenethione in refluxing THF afforded 30.5 mg of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 13 (Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(3-trifluoromethylbenzylcarbamoyloxymethyl)cyclopentyl]hept-5-enoic acid (4 g)
  • According to the procedures described above in Examples 1, 2 and 3 for conversion of [0076] alcohol 1 to 4 a, the use of (3-trifluoromethylbenzylimino)ethenone afforded 20 mg of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 14 (Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(3-trifluoromethylbenzylthiocarbamoyloxymethyl)cyclopentyl]hept-5-enoic acid (4 h)
  • According to the procedures described above in Examples 1, 2 and 3 for conversion of [0077] alcohol 1 to 4 a, the use of (3-trifluoromethylbenzylimino)ethenethione in refluxing THF afforded 22.7 mg of the title compound after purification by flash column chromatography (silica gel, 100% EtOAc).
  • EXAMPLE 15 (Z)-7-[(1 S,2R,3S,5R)-2-(3-Chlorobenzylthiocarbamoyloxymethyl)-3,5-bis -(tetrahydropyran-2-yloxy)cyclopentyl]hept-5-enoic acid allyl ester (6)
  • (3-Chlorobenzylimino)ethenethione (826.6 mg, 4.5 mmol) was added to a solution of alcohol [0078] 5 (717 mg, 1.54 mmol) and 1,4-diazabicyclo[2.2.2]octane (345.5 mg, 3.08 mmol) in THF (10 mL) and refluxed for 24 h. The mixture was concentrated in vacuo and the residue was purified by flash column chromatography (silica gel, 2:1 hex/EtOAc) to afford 614 mg (63%) of the above titled compound.
  • EXAMPLE 16 (Z)-7-[(1S,2R,3S,5R)-2-(3-Chlorobenzylthiocarbamoyloxymethyl)-3,5-bis -(tetrahydropyran-2-yloxy)cyclopentyl]hept-5-enoic acid (7)
  • A solution of ester [0079] 6 (614 mg, 0.97 mmol) and lithium hydroxide (62 mg, 1.5 mmol) in THF/H2O (1:1, 20 mL) was stirred at 23° C. for 72 h. The mixture was acidified with 1N HCl and extracted with EtOAc. The organic portion was washed with brine, dried (Na2SO4), filtered and concentrated in vacuo to give 430 mg of the above titled compound.
  • EXAMPLE 17 (3-Chlorobenzyl)thiocarbamic acid O-[(1S,2R,3S,5R)-2-[(Z)-6-(2-hydroxyethyl-carbamoyl) hex-2-enyl -3,5-bis-(tetrahydropyran-2-yloxy)cyclopentylmethyl] ester (8 a)
  • A solution of acid [0080] 7 (60 mg, 0.10 mmol) and triethylamine (30 mg, 0.30 mmol) in CH2Cl2 (2 mL) was cooled to 0° C. and ethylchloroformate (11 μL, 0.12 mmol) was added. After 0.5 h ethanolamine (7.2 μL, 0.12 mmol) was added and the reaction was allowed to warm to room temperature for 12 h. The reaction was diluted with EtOAc and washed with 1N HCl, saturated aqueous NaHCO3 and brine. The organic portion was dried (Na2SO4), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography (silica gel, 100% EtOAc followed by 19:1 EtOAc/MeOH) provided 40 mg of the above titled compound.
  • EXAMPLE 18 (3-Chlorobenzyl)thiocarbamic acid O-{(1 S,2R,3 S,5R)-3,5-dihydroxy-2-[(Z)-6-(2-hydroxyethylcarbamoyl)hex-2-enyl]cyclopentylmethyl} ester (9 a)
  • A solution of bis-THP ether [0081] 8 a (40 mg, 0.062 mmol) and pyridinium p-toluenesulfonate (5 mg) in MeOH (1.5 mL) was stirred at 23° C. for 16 h. The solvent was removed in vacuo and the residue was diluted with EtOAc and washed with 1N HCl, saturated aqueous NaHCO3 and brine. The organic portion was dried (Na2SO4), filtered and concentrated in vacuo. Purification of the residue by flash column chromatography (silica gel, 100% EtOAc followed by 9:1 EtOAc/MeOH) provided 20 mg of the above titled compound.
  • EXAMPLE 19 (3-Chlorobenzyl)thiocarbamic acid O-[(1S,2R,3S,5R)-2-((Z)-6-ethylcarbamoylhex-2-enyl)-3,5-dihydroxycyclopentylmethyl] ester (9 b)
  • According to the procedures described above in Examples 17 and 18 [0082] acid 7 was converted with use of ethylamine to 30 mg of the above titled compound.
  • EXAMPLE 20 (3-Chlorobenzyl)thiocarbamic acid O-[(1S,2R,3S,5R)-2-((Z)-6-carbamoylhex -3,5-dihydroxycyclopentylmethyl] ester (9 c)
  • According to the procedures described above in Examples 17 and 18 [0083] acid 7 was converted with use of ammonia to 10 mg of the above titled compound.
  • Certain of the above compounds were tested for activity in the various in vitro assays described below and the results are reported in Table 1, below. [0084]
  • Activity at different prostanoid receptors was measured in vitro in isolated smooth muscle preparations. FP-activity was measured as contraction of the isolated feline iris sphincter. Activity was also measured as relaxation of smooth muscle of isolated rabbit jugular vein a preparation which appears to contain a unique PGF[0085] -sensitive receptor provisionally termed FPVASC. TP-vasoconstrictor activity was measured as contraction of rings of the isolated rat thoracic aorta.
  • Other potential therapeutic applications are in osteoporosis, constipation, renal disorders, sexual dysfunction, baldness, diabetes, cancer and in disorder of immune regulation. [0086]
  • Many examples also have pronounced activity at the FP receptor, provisionally termed FP- associated with the vascular endothelium in the rabbit jugular vein preparation. Since such agents would be vasodilators they have potential in hypertension and any disease where tissue blood perfusion is compromised. Such indications include, but are not limited to, systemic hypertension, angina, stroke, retinal vascular diseases, claudication, Raynauds disease, diabetes, and pulmonary hypertension. [0087]
  • The effects of the compounds of this invention on intraocular pressure are also provided in FIGS. 3 and 4. The compounds were prepared at the said concentrations in a vehicle comprising 0.1[0088] % polysorbate 80 and 10 mM TRIS base. Dogs were treated by administering 25 μl to the ocular surface, the contralateral eye received vehicle as a control. Intraocular pressure was measured by applanation pneumatonometry. Dog intraocular pressure was measured immediately before drug administration and at 6 hours thereafter. The compounds of Examples 9 and 12 both lowered intraocular pressure.
  • The compounds of the invention may also be useful in the treatment of various pathophysiological diseases including acute myocardial infarction, vascular thrombosis, hypertension, pulmonary hypertension, ischemic heart disease, congestive heat failure, and angina pectoris, in which case the compounds may be administered by any means that effect vasodilation and thereby relieve the symptoms of the disease. For example, administration may be by oral, transdermal, parenterial, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes. [0089]
  • The compounds of the invention may be used alone, or in combination with other of the known vasodilator drugs. [0090]
  • The compounds of the invention may be formulated into an ointment containing about 0.10 to 10% of the active ingredient in a suitable base of, for example, white petrolatum, mineral oil and petroatum and lanolin alcohol. Other suitable bases will be readily apparent to those skilled in the art. [0091]
  • The pharmaceutical preparations of the present invention are manufactured in a manner which is itself known, for example, by means of conventional dissolving or suspending the compounds, which are all either water soluble or suspendable. For administration in the treatment of the other mentioned pathophysiological disorders. The pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules make of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in liquid form that may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as in buffered salt solution. In addition, stabilizers may be added. [0092]
  • In addition to being provided in a liquid form, for example in gelatin capsule or other suitable vehicle, the pharmaceutical preparations may contain suitable excipients to facilitate the processing of the active compounds into preparations that can be used pharmaceutically. Thus, pharmaceutical preparations for oral use can be obtained by adhering the solution of the active compounds to a solid support, optionally grinding the resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores. [0093]
  • Suitable excipients are, in particular, fillers such as sugars, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch, paste using for example, maize starch, wheat starch, rich starchy, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, crosslinked polyvinyl pyrrolidone, agar, or algenic acid or a salt thereof, such as sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol. Dragee cores are provided with suitable coatings which if desired, are resistant to gastric juices. For this purpose, concentrated sugar solutions may be used, which may optionally containing gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used. Dye stuffs or pigments may be added to the tables or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses. [0094]
  • Suitable formulations for intravenous or parenteral administration include aqueous solutions of the active compounds. In addition, suspensions of the active compounds as oily injection suspensions may be administered. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, soribitol, and/or dextran. Optionally, the suspension may also contain stabilizers. [0095]
  • The foregoing description details specific methods and compositions that can be employed to practice the present invention, and represents the best mode contemplated. However, it is apparent for one of ordinary skill in the art that further compounds with the desired pharmacological properties can be prepared in an analogous manner, and that the disclosed compounds can also be obtained from different starting compounds via different chemical reactions. Similarly, different pharmaceutical compositions may be prepared and used with substantially the same result. Thus, however detailed the foregoing may appear in text, it should not be construed as limiting the overall scope hereof; rather, the ambit of the present invention is to be governed only by the lawful construction of the appended claims. [0096]

Claims (19)

1. A method of treating ocular hypertension which comprises administering to a mammal having ocular hypertension a therapeutically effective amount of a compound represented by formula I:
Figure US20020058692A1-20020516-C00007
wherein a wavy segments indicate either the alpha (α) or beta (β) configuration; the dashed bond represents a double bond or a single bond; Ar is a heteroaryl radical selected from the group consisting of thienyl and furyl radicals and substituted derivatives thereof; n is 0 or an integer of from 1 to 4; x is 1 and y is 0; R1 is hydrogen or a lower alkyl radical or a substituted lower alkyl radical having up to six carbon atoms wherein the substituent on the lower alkyl or heteroaryl radical is selected from the group consisting of lower alkyl, hydroxy, lower alkyloxy, halogen, trifluoromethyl (CF3), COR1, COCF3, SO2NR1, SO2NH2, NO2 and CN.; X is selected from the group consisting of —OR1 and —N(R1)2; Y is ═O or represents 2 hydrogen radicals, and the 9 and/or 11 esters thereof and/or the pharmaceutically acceptable salts of said compounds and/or esters.
2. The method of claim 1 wherein said compound is represented by formula II:
Figure US20020058692A1-20020516-C00008
wherein n is 0 or 1, 2 or 4; hatched lines at position C-8, C-9 and C-11 indicate the α orientation; and the triangle at position C-12 represents the β orientation.
3. The method of claim 2 wherein when Y is ═O.
4. The method of claim 3 wherein said compound is represented by formula III:
Figure US20020058692A1-20020516-C00009
5. The method of claim 4 wherein X is —OH, NH2, NHC2H5 or NHC2H4OH.
6. The method of claim 5 wherein Y is ═O and X is —OH.
7. The method of claim 5 wherein Y is ═O and X is —NH2, NHC2H5 or NHC2H4OH.
8. The method of claim 6 wherein said compound is
Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(2-thiophen-2-ylethylcarbamoyloxymethyl) cyclopentyl]hept-5-enoic acid
9. An ophthalmic solution comprising a therapeutically effective amount of a compound of formula I:
Figure US20020058692A1-20020516-C00010
wherein a wavy segments indicate either the alpha (α) or beta (β) configuration; the dashed bond represents a double bond or a single bond; Ar is selected from the group consisting of aryl or heteroaryl radicals having from 4 to 10 carbon atoms and substituted derivatives of said aryl and heteroaryl radicals; n is 0 or an integer of from 1 to 4; x and y are 1 or 0, provided that when x is 1, y is 0 and when x is 0, y is 1; R1 is hydrogen or a lower alkyl radical or a substituted lower alkyl radical having up to six carbon atoms; X is selected from the group consisting of —OR1 and —N(R1)2; Y is ═O or represents 2 hydrogen radicals, and the 9 and/or 11 esters thereof and/or the pharmaceutically acceptable salts of said compounds and/or esters, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle, packaged in a container suitable for metered application.
10. The ophthalmic solution of claim 9 wherein said compound is a compound of Formula III:
Figure US20020058692A1-20020516-C00011
wherein n is 0 or 1, 2 or 4; hatched lines at position C-8, C-9 and C-11 indicate the α orientation; and the triangle at position C-12 represents the β orientation.
11. A pharmaceutical product, comprising a container adapted to dispense the contents of said container in metered form; and an ophthalmic solution in said container comprising a compound of formula I:
Figure US20020058692A1-20020516-C00012
wherein a wavy segments indicate either the alpha (α) or beta (β) configuration; the dashed bond represents a double bond or a single bond; Ar is selected from the group consisting of aryl or heteroaryl radicals having from 4 to 10 carbon atoms and substituted derivatives of said aryl and heteroaryl radicals; n is 0 or an integer of from 1 to 4; x and y are 1 or 0, provided that when x is 1, y is 0 and when x is 0, y is 1; R1 is hydrogen or a lower alkyl radical or a substituted lower alkyl radical having up to six carbon atoms; X is selected from the group consisting of —OR1 and —N(R1)2; Y is ═O or represents 2 hydrogen radicals, and the 9 and/or 11 esters thereof and/or the pharmaceutically acceptable salts of said compounds and/or esters, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle.
12. The product of claim 13 wherein said compound is a compound of Formula III:
Figure US20020058692A1-20020516-C00013
wherein n is 0 or 1, 2 or 4; hatched lines at position C-8, C-9 and C-11 indicate the α orientation; and the triangle at position C-12 represents the β orientation.
13. The compound represented by Formula I:
Figure US20020058692A1-20020516-C00014
wherein a wavy segments indicate either the alpha (α) or beta (β) configuration; the dashed bond represents a double bond or a single bond; Ar is a heteroaryl radical selected from the group consisting of thienyl and furyl radicals and substituted derivatives thereof; n is 0 or an integer of from 1 to 4; x is 1 and y is 0; R1 is hydrogen or a lower alkyl radical or a substituted lower alkyl radical having up to six carbon atoms wherein the substituent on the lower alkyl or heteroaryl radical is selected from the group consisting of lower alkyl, hydroxy, lower alkyloxy, halogen, trifluoromethyl (CF3), COR1, COCF3, SO2NR1, SO2NH2, NO2 and CN.; X is selected from the group consisting of —OR1 and —N(R1)2; Y is ═O or represents 2 hydrogen radicals, and the 9 and/or 11 esters thereof and/or the pharmaceutically acceptable salts of said compounds and/or esters.
14. The compound of claim 13 wherein said compound is formula II
Figure US20020058692A1-20020516-C00015
wherein n is 0 or 1, 2 or 4; hatched lines at position C-8, C-9 and C-11 indicate the α orientation; and the triangle at position C-12 represents the β orientation.
15. The compound of claim 14 wherein said compound is formula III:
Figure US20020058692A1-20020516-C00016
16. The compound of claim 15 wherein X is —OH, —NH2, NHC2H5 or NHC2H4OH.
17. The compound of claim 16 wherein Y is ═O and X is —OH.
18. The compound of claim 16 wherein Y is ═O and X is —NH2, NHC2H5 or NHC2H4OH.
19. The compound of claim 18 wherein said compound is
Z)-7-[(1R,2S,3R,5S)-3,5-Dihydroxy-2-(2-thiophen-2-ylethylcarbamoyloxymethyl) cyclopentyl]hept-5-enoic acid
US09/876,808 2000-09-27 2001-06-06 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents Expired - Lifetime US6380250B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/876,808 US6380250B1 (en) 2000-09-27 2001-06-06 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/671,492 US6291522B1 (en) 2000-09-27 2000-09-27 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
US09/876,808 US6380250B1 (en) 2000-09-27 2001-06-06 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/671,492 Continuation US6291522B1 (en) 2000-09-27 2000-09-27 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/903,971 Continuation US6380251B1 (en) 2000-09-27 2001-08-10 Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Publications (2)

Publication Number Publication Date
US6380250B1 US6380250B1 (en) 2002-04-30
US20020058692A1 true US20020058692A1 (en) 2002-05-16

Family

ID=24694738

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/671,492 Expired - Lifetime US6291522B1 (en) 2000-09-27 2000-09-27 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
US09/876,808 Expired - Lifetime US6380250B1 (en) 2000-09-27 2001-06-06 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
US09/903,971 Expired - Lifetime US6380251B1 (en) 2000-09-27 2001-08-10 Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/671,492 Expired - Lifetime US6291522B1 (en) 2000-09-27 2000-09-27 Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/903,971 Expired - Lifetime US6380251B1 (en) 2000-09-27 2001-08-10 Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents

Country Status (8)

Country Link
US (3) US6291522B1 (en)
EP (1) EP1320521B1 (en)
JP (1) JP2004525078A (en)
AT (1) ATE271542T1 (en)
AU (2) AU2001285196C1 (en)
CA (1) CA2423474A1 (en)
DE (1) DE60104435T2 (en)
WO (1) WO2002026704A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734201B1 (en) 2003-06-02 2004-05-11 Allergan, Inc. 8-Azaprostaglandin carbonate and thiocarbonate analogs as therapeutic agents
US7179820B2 (en) * 2003-06-06 2007-02-20 Allergan, Inc. Piperidinyl prostaglandin E analogs
US7235586B2 (en) * 2003-09-09 2007-06-26 Allergan, Inc. Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
ATE465986T1 (en) * 2005-01-14 2010-05-15 Allergan Inc SUBSTITUTED CYCLOPENTANES OR CYCLOPENTANONES FOR THE TREATMENT OF EYE HYPERTENSION
ES2447065T3 (en) * 2006-07-10 2014-03-11 Allergan, Inc. Cyclopentane derivatives substituted as therapeutic agents
CN101646433B (en) 2006-10-24 2011-11-16 戴维·W·克雷姆平 Anti-resorptive and bone building dietary supplements and methods of use
US8039496B2 (en) * 2007-01-22 2011-10-18 Allergan, Inc. Therapeutic compounds
AU2009246573B2 (en) 2008-05-15 2014-04-24 Allergan, Inc. Therapeutic substituted cyclopentanes
US20110293549A1 (en) 2009-02-03 2011-12-01 Athena Cosmetics, Inc. Composition, method and kit for enhancing hair

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308135B1 (en) * 1987-09-18 1992-11-19 R-Tech Ueno Ltd. Ocular hypotensive agents
US5034413A (en) 1989-07-27 1991-07-23 Allergan, Inc. Intraocular pressure reducing 9,11-diacyl prostaglandins
US4994274A (en) 1989-07-27 1991-02-19 Allergan, Inc. Intraocular pressure reducing 11,15-diacyl prostaglandins and method of using
CA2021316C (en) 1989-07-27 2000-10-24 Ming Fai Chan Intraocular pressure reducing 11-acyl prostaglandins
US5028624A (en) 1989-07-27 1991-07-02 Allergan, Inc. Intraocular pressure reducing 9,15-diacyl prostaglandins
US5352708A (en) * 1992-09-21 1994-10-04 Allergan, Inc. Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
WO1996036599A1 (en) * 1995-05-18 1996-11-21 Allergan Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents for the treatment of ocular hypertension
US6160013A (en) * 1998-12-17 2000-12-12 Alcon Laboratories, Inc. 14-aza prostaglandins for the treatment of glaucoma and ocular hypertension

Also Published As

Publication number Publication date
EP1320521A1 (en) 2003-06-25
CA2423474A1 (en) 2002-04-04
AU2001285196B2 (en) 2006-02-02
EP1320521B1 (en) 2004-07-21
JP2004525078A (en) 2004-08-19
US6380251B1 (en) 2002-04-30
AU2001285196C1 (en) 2006-11-09
AU8519601A (en) 2002-04-08
DE60104435T2 (en) 2005-07-28
DE60104435D1 (en) 2004-08-26
WO2002026704A1 (en) 2002-04-04
US6380250B1 (en) 2002-04-30
US6291522B1 (en) 2001-09-18
ATE271542T1 (en) 2004-08-15

Similar Documents

Publication Publication Date Title
US6680337B2 (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylalkenyl derivatives as therapeutic agents
US8017655B2 (en) Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US6248773B1 (en) Cyclopentane heptan(ene)oic acid, 2-heteroarylalk(en)yl derivatives as therapeutic agents
US6410591B1 (en) 3,7 or 3 and 7 thia or oxa prostanoic acid derivatives as agents for lowering intraocular pressure
US6376533B1 (en) Omega-cycloalkyl 17-heteroaryl prostaglandin E2 analogs as EP2-receptor agonists
US6767920B2 (en) 3, 7 or 3 and 7 thia or oxa prostanoic acid derivatives as agents for lowering intraocular pressure
US6706755B2 (en) Cyclopentane heptan(ene) acyl sulfonamide, 2-alkyl or 2-arylalkyl, or 2-heteroarylalkenyl derivatives as therapeutic agents
US6291522B1 (en) Cyclopentane heptan(ENE)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
US6359181B1 (en) Cyclopentane 1-hydroxy alkyl or alkenyl-2-one or 2-hydroxy derivatives as therapeutic agents
AU2001285196A1 (en) 2-thiocarbamoyloxy and 2-carbamoyloxy derivatives of cyclopentyl-heptan(ene)oic acid as therapeutic agents
US20070219256A1 (en) Cyclopentane heptan(ene)oic acid, 2-thiocarbamoyloxy and 2-carbamoyloxy compounds as therapeutic agents
US6812240B1 (en) 8-azaprostaglandin carbonate and thiocarbonate analogs as therapeutic agents

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
AS Assignment

Owner name: ALLERGAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALLERGAN SALES, INC. (MERGED INTO ALLERGAN SALES, LLC);REEL/FRAME:013897/0053

Effective date: 20030401

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12