US20020058196A1 - Uv-absorbing support layers and flexographic printing elements comprising same - Google Patents
Uv-absorbing support layers and flexographic printing elements comprising same Download PDFInfo
- Publication number
- US20020058196A1 US20020058196A1 US09/415,811 US41581199A US2002058196A1 US 20020058196 A1 US20020058196 A1 US 20020058196A1 US 41581199 A US41581199 A US 41581199A US 2002058196 A1 US2002058196 A1 US 2002058196A1
- Authority
- US
- United States
- Prior art keywords
- layer
- support layer
- printing element
- solid photocurable
- actinic radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
- G03F7/029—Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2014—Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
- G03F7/2016—Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
- G03F7/202—Masking pattern being obtained by thermal means, e.g. laser ablation
Definitions
- the present invention is directed to flexographic printing elements having light-attenuating support layers, to the formation of relief images on direct-image flexographic printing elements and, more particularly, to methods for achieving a uniform floor in the manufacture of such direct-image flexographic printing elements.
- Relief image printing plates are used in both flexographic and letterpress processes for printing on a variety of substrates, including paper, corrugated stock, film, foil, and laminates.
- Relief elements typically include a support layer and one or more layers of photocurable polymer in the form of solid sheets.
- the printer typically peels a cover sheet from the element to expose the photocurable polymer and places a silver halide photographic negative or some other masking device upon the photopolymer.
- the printer exposes the negative-bearing element to ultraviolet (UV) light through the negative, thereby causing exposed areas of the element to harden, or cure. After the uncured areas of the element are removed, cured polymer remains as the relief printing surface.
- UV ultraviolet
- DTP direct-to-plate
- DTP technology is significantly different than the conventional plate making technology in a number of respects.
- DTP plates typically have a photoablative mask directly on the plate.
- face exposure i.e., a blanket exposure to actinic radiation of the photopolymerizable layer on the side that does (or, ultimately will) bear the relief, is done in air (in the presence of oxygen), whereas, with conventional plates, exposure is typically done in vacuum.
- Oxygen inhibition is typically compounded when so-called “capped” photocurable printing elements are used.
- Capped photocurable elements have a thin photocurable cap disposed upon the main body of the photocurable material.
- the relief image formed includes photocurable material from the cap layer.
- Capped printing elements typically have several significant advantages over uncapped elements in DTP processes. For example, the cap typically has a rough surface that can act as an ink receptive layer, resulting in higher ink densities on the printed substrate. Also, capped plates, because of their longer exposure times, typically enable the user to modify dot shape, resulting in smaller, but more robust dots.
- the cap layer can also include an image contrast (e.g. green) dye which aids in the inspection of the registered image.
- an image contrast e.g. green
- the cap itself, however, due to the presence of the dye (and other components), acts as an actinic radiation absorbing layer.
- the phenomenon of oxygen inhibition is amplified when imaging capped photocurable printing elements to the extent that relatively long front exposures may be required to hold fine detail dots (i.e., 1% dots on a 150 line).
- the photo speed typically is increased to counter the effects of oxygen inhibition.
- oxygen scavengers such as, for example, triphenylphosphine and triphenylphosphite.
- the addition of oxygen scavengers to the polymer formulation not only decreases the front exposure time, but, also decreases the back exposure time as well.
- back exposure is a blanket exposure to actinic radiation of the photopolymerizable layer on the side opposite that which does (or, ultimately will) bear the relief. This is typically done through a transparent support layer. Such exposure is used to create a shallow layer of polymerized material, herein referred to as a “floor,” on the support side of the photopolymerizable layer.
- the purpose of the floor is generally to sensitize the photopolymerizable layer and to establish the depth of the relief.
- back exposure times greater than 15-30 seconds.
- DTP technology however, increasing the photo speed as described above often results in a back exposure time of less than 30 seconds. Such short back exposure times are undesirable because, for reasons discussed in detail below, variations in the thickness of the floor are typically observed.
- a non-uniform floor typically contributes to uneven printing due to variation in the relief across the plate.
- Back exposure times can be increased in DTP systems by applying a thin, i.e., 1-2 microns, coating of a UV-absorbing compound between the photopolymerizable layer and the support, or backing, layer.
- This approach is problematic, as it is difficult to apply the UV-absorbing coating uniformly. This, of course, also creates variations in the thickness of the floor. Also, the coating could interact with the laser and create problems of adhesion.
- the present invention provides methods for producing direct-imaged flexographic printing elements such that both the front and back exposure times are economically efficient for the manufacturer.
- the present invention provides a solid photocurable element that comprises a layer of solid photocurable material containing an oxygen scavenger disposed on a support layer.
- the support layer has an actinic radiation absorbing compound integrated uniformly throughout such that it absorbs at least some actinic radiation during exposure.
- the solid photocurable element also comprises a photoablative mask layer disposed on the solid photocurable layer. The mask is substantially opaque to actinic radiation and is capable of being photoablated by a laser.
- the methods of the present invention comprise transferring graphic data from a computer to the solid photocurable element described above by photoablating selected areas of the photoablatable mask layer using a laser that is in communication with the computer, thus providing ablated and unablated areas forming an image.
- the ablated areas expose the solid photocurable layer which ultimately becomes the relief.
- a “floor” is also established by exposing the photocurable layer through the support layer.
- the solid photocurable material that is exposed through the ablated areas of the photoablatable mask layer are then exposed to actinic radiation effective to cure the solid photocurable material and leave solid photocurable element underneath the unablated areas uncured.
- the uncured solid photocurable material and the unablated areas of said photoablatable mask layer are then removed.
- the solid photocurable printing element further comprises a solid photopolymerizable cap layer.
- the photoablative mask layer is disposed directly onto the cap layer and the method is performed accordingly.
- FIG. 1 is a cross-sectional view of a printing element according to the invention.
- FIG. 2 is a cross-sectional view of another embodiment of a printing element according to the invention.
- photocurable material refers to a solid composition which undergoes polymerization, cross-linking, or any other curing or hardening reaction in response to actinic radiation with the result that the unexposed portions of the material can be selectively separated and removed from the exposed (cured) portions to form a three dimensional or relief pattern of cured material.
- the separation and removal of the unexposed portions can be accomplished using a jet of air (“air knife”), brushing, selective solubilization or dispersion in a suitable developer solvent or detergent solution, a squeegee, a combination of the foregoing, or other suitable development means.
- air knife jet of air
- brushing selective solubilization or dispersion in a suitable developer solvent or detergent solution
- a squeegee a combination of the foregoing, or other suitable development means.
- a preferred photocurable element 10 to be used in a DTP imaging process comprises a support layer 12 , at least one photocurable layer 14 , an optional second photocurable layer 16 , and a photoablatable mask layer 18 .
- the preferred photocurable element can also comprise a “cap” layer 17 (shown in FIG. 2).
- the photocurable elements 10 shown in FIGS. 1 and 2 can also comprise an adhesive layer between photocurable layer 14 and the support layer 12 (not shown).
- the photocurable elements according to the present invention preferably are substantially planar solid elements having a thickness of at least about 0.067 inches.
- the cover-sheet (not shown) is removed, thus exposing the photoablatable mask layer.
- a computer then transfers digital information to the photoablative mask layer via a laser that is in communication with the computer that ablates those areas of the photoablative mask layer that have to cure, i.e., those areas that ultimately become the relief layer.
- the plate is then back-exposed to build the floor, face exposed through the in-situ mask, and processed in a solvent processor.
- the area of the mask that was not ablated prevents the underlying photopolymer to cure and is removed during the processing step. That area where the mask was removed is cured and becomes the relief area.
- the plate is then dried and post-exposed and de-tacked as usual.
- the photocurable layers 14 , 16 of the photocurable element can include any of the known photopolymers, monomers, initiators, reactive diluents, fillers, and dyes.
- Preferred photocurable materials include an elastomeric compound, an ethylenically unsaturated compound having at least one terminal ethylene group, and a photoinitiator.
- Exemplary photocurable materials are disclosed in European Patent Applications 0 456 336 A2 (Goss, et al.), and 0 640 878 A1 (Goss, et al.), British Patent No. 1,366,769, U.S. Pat. Nos.
- Cap layer 16 generally comprises photocurable material which is the same as or similar to the photocurable material present in the photocurable layer.
- Suitable compositions for the cap layer are those disclosed as elastomeric compositions in the multilayer cover element described in U.S. Pat. Nos. 4,427,759 and 4,460,675 (Gruetzmacher, et al.), both of which are incorporated herein by reference.
- Additional components present in the cap layer include: a coating solvent, optionally but preferably a non-migrating dye or pigment which provides a contrasting color with any colorant or dye present in the photocurable layer.
- cap layer 16 can also include one or more ethylenically unsaturated monomeric compounds, and/or a photoinitiator or initiator system.
- the contrast dye can be Acid Blue 92, or other dyes disclosed in, for example, U.S. Pat. No. 3,218,167, incorporated herein by reference.
- the thickness of the cap is in the range of from about 0.00001 to 0.003 inches. Preferably, the thickness of the cap is from about 0.000015 to about 0.0025 inches.
- FLEXLIGHT EPIC® commercially available from Polyfibron Technologies, Inc., Atlanta, Ga.
- the photocurable materials of the invention should cross-link (cure) and, thereby, harden in at least some actinic wavelength region.
- actinic radiation is radiation capable of effecting a chemical change in an exposed moiety.
- Actinic radiation includes, for example, amplified (e.g., laser) and non-amplified light, particularly in the UV and infrared wavelength regions.
- Preferred actinic wavelength regions are from about 250 nm to about 450 nm, more preferably from about 300 nm to about 400 nm, even more preferably from about 320 nm to about 380 nm.
- the oxygen scavenger is a phosphine compound.
- Representative phosphine compounds include triphenylphosphine, tri-p-tolylphosphine, diphenylmethylphosphine, diphenylethylphosphine, diphenylpropylphosphine, dimethylphenylphosphine, diethylphenylphosphine, dipropylphenylphosphine, divinylphenylphosphine, divinyl-p-methoxyphenylphosphine, divinyl-pbromophenylphosphine, divinyl-p-tolylphosphine, diallylphenylphosphine, diallyl-p-methoxyphenylphosphine, diallyl-p-bromophenylphosphine and diallyl-p-tolylphosphine.
- Triphenylphosphine is particularly preferred.
- the phosphine compound is present in the solid photocurable compound at from about 0.01 to about 2.0 weight percent of the solid photocurable material, more preferably from about 0.05 to about 1.0 weight percent of the solid photocurable material, and most preferably from about 0.075 to about 0.75 weight percent of the solid photocurable material.
- Additional ways to decrease the exposure times include increasing the intensity of the actinic radiation.
- High intensity lamps typically generate excessive heat which can create problems such as plate warping and image deterioration.
- the back exposure time required to build a floor of a particular thickness also should decrease.
- a conventional flexographic printing element manufacturing process i.e., in a vacuum and without oxygen
- a 0.067 inch element will have a floor thickness of about 0.029 inches.
- the back exposure time required to build a floor of this thickness is typically about 15-60 seconds.
- the back exposure time required to build a floor of the same thickness is typically about 1 to 5 seconds.
- the support layer 12 of the photocurable element is preferably formed from a variety of flexible, transparent materials.
- materials are cellulose films, or plastics such as, for example, PET (polyetheylene terephthalate), PEN (polyethylene naphthalate), polyether, polyethylene, polyamide (Kevlar) or nylon.
- PET polyetheylene terephthalate
- PEN polyethylene naphthalate
- polyether polyethylene
- polyamide Kevlar
- nylon polyamide
- the support layer is formed from polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- the support layer can be from about 0.001 to about 0.010 inches thick.
- the support layer is about 0.005 inches thick. More preferably, if the support layer is a polyester film such as, for example, PET, the support layer is typically about 0.005′′ for 0.067′′ and thicker plates.
- the support layer 12 is UV-absorbing to counter the increased photo-speed that results from the use of oxygen scavengers or other means used to counter the effects of oxygen inhibition in DTP technology. As described in detail below, this can be accomplished either by forming the support layer 12 from a material that is inherently UV-absorbing, i.e., attenuates actinic radiation itself, or by adding a dopant to the material forming the support layer 12 .
- the support layer 12 is formed from a material that is inherently UV-absorbing.
- PEN for example, Kaladex 1030 and Kaladex 2000 commercially available from DuPont PET, Hopewell, Va.
- the inventors have found that, when an inherently UV-absorbing support layer is used, the percent of actinic radiation that is absorbed is a function of the thickness of the support layer.
- the inventor has found that, for example, a PEN support layer having a thickness of about 5 mils absorbs about 97 percent of actinic radiation; a PEN support layer having a thickness of about 3 mils absorbs about 95 percent of actinic radiation.
- the support layer 12 comprises a UV-absorbing material to counter the increased photo-speed that results from the use of oxygen scavengers or other means to counter the effects of oxygen inhibition in DTP technology. This can be accomplished by adding a UV-absorbing dopant to the support layer during manufacture.
- Transparent materials that are not inherently UV-absorbing need to be doped with a UV-absorber when made into the support layer 12 according to the present invention.
- the UV-absorbing dopant should be uniformly distributed throughout the support layer 12 . This can be accomplished if, for example, the UV-absorbing material is soluble in the support layer or evenly dispersed throughout during the process of manufacturing the support layer 12 .
- the term “soluble” refers to the capability of one compound of being dissolved.
- the term “dispersed” refers to one substance being evenly distributed throughout another. In commercial processes, a uniform distribution of the dopant throughout the support layer 12 is typically achieved during the manufacturing process as the PET, for example, is stretched both in the transverse and machine directions so that the UV absorber is distributed uniformly throughout the PET.
- UV absorbing PET products known to the inventor are Melinex 943 (DuPont PET, Hopewell, Va.), Skyrol Polyester Type TU84B (SKC LTD, Suwon, S. Korea), Teijin Teonex Type Q51 (Teijin, Japan), and Eastman PET 9921 G0071 (Eastman Chemicals, Kingsport, Tenn.).
- the spectral range of the flood-exposure lamps used in most applications is about 300-400 nm. Therefore the UV absorbing dopant typically should be active in this range.
- the presence of the UV absorber changes a normally UV transparent support layer into an attenuation tool that absorbs at least a portion of UV radiation that passes through it.
- the support absorbs between about 80 to about 99%, more preferably between about 85 to about 95%, and most preferably about 88% of actinic radiation.
- the intensity of flood exposure lamps used in the curing of flexographic printing plates is typically in the range of about 5-25 milliwatts/cm 2 , but intensities can be as high as 50 milliwatts/cm 2 . Therefore, the support layer should be capable of absorbing irradiated light of such intensities from the UV flood lamps.
- the photoablative mask layer 18 can be any photoablative mask layer known in the art.
- Such mask layers include those that can be ablated by any type of laser known to those skilled in the art such as, for example, UV-type Eximer lasers typically operating at wavelengths of about 300 to 400 nm; IR-type lasers such as, for example, CO 2 lasers typically operating at a wavelength of about 10,640 nm; Nd-YAG lasers typically operating at a wavelength of about 1064 nm; and diode array lasers typically operating at a wavelength of about 830 nm. Examples of such photoablative mask layers are disclosed in, for example, U.S. Pat. No.
- the methods of the invention involve transferring an image to the surface of the photocurable elements 10 without the use of phototools or photomasks such that both the front and back exposure times are economically efficient for the manufacturer of a printing plate.
- This typically is accomplished by providing at least one solid photocurable element 10 .
- the solid photocurable element comprises at least one solid photocurable material 14 , 16 , a solid photopolymerizable cap layer 17 (if applicable), a photoablative mask layer 18 , and a support layer 12 having an actinic radiation absorbing compound integrated uniformly throughout such that it absorbs at least some actinic radiation during exposure.
- the photocurable layers 14 , 16 and also the cap layer (if used) contain oxygen scavengers to counter the longer exposure times that occur as a result of oxygen inhibition.
- a laser is employed to selectively ablate, or remove, the photoablative mask layer such that the areas where the photoablative mask layer was ablated will cure, or harden, upon exposure to the UV light and the areas where the photoablative mask layer was not ablated will remain uncured.
- a floor is created in the solid photocurable material by back exposure through the UV-absorber-doped support layer. The uncured plate is then front-exposed to UV light in the usual fashion effective to cure the solid photocurable material.
- uncured photopolymer i.e., the photopolymer under the areas of the photoablative layer that were not laser-ablated
- is removed from the mounted photocurable elements typically by washing the elements with (and/or in) an organic and/or aqueous solvent in which the photocurable material is at least somewhat soluble.
- This solvent wash step typically is accompanied or preceded by brushing, wiping, or some other mild, non-destructive abrasion of the elements.
- Useful washing devices include those commercially available from Polyfibron Technologies and Anderson & Vreeland.
- a Flex-Light Atlas 0.067′′ plate (Polyfibron Technologies, Inc., Atlanta, Ga.) was modified in the following way: The slip film was carefully removed using isopropanol. The plate was then dried and then laminated with a carbon black (CB) based mask.
- the CB mask comprised of a) CB pigment, b) a binder for its film forming property and c) a self-oxidizing binder to increase sensitivity to ablation.
- the coversheet was removed and discarded.
- the plate was mounted on a commercially available flexo plate-setter such as Misomex's OmniSetter 4000 or Creo's Thermoflex 5280.
- the digital file from the computer was transferred onto the CB mask through an ablative mechanism.
- the plate was then back exposed for 17 seconds, face exposed for 18 minutes to hold 1% dots at 133 LPI. The face-exposure time of 18 minutes was deemed to be too long for an uncapped DTP plate.
- a FLEX-LIGHT ATLAS® 0.067 inch plate was doped with 0.1% triphenylphosphine. Plate construction for DTP application was same as in Example 1. However, the following back exposure and face exposure times had to be used to hold the same level of detail:
- the doped FLEX-LIGHT ATLAS® 0.067 inch plate of example 2 was next constructed with polyethylene naphthalate (PEN), an inherently UV absorbing backing material as the UV-absorbing backing layer.
- PEN polyethylene naphthalate
- the PEN was 5 mil Kaladex 1030 commercially available from DuPont PET (Hopewell, Va.).
- the rest of the plate construction, laser imaging, and plate processing conditions were identical to the plate used in Example 2.
- the UV absorbing backing allowed reasonable back exposure times.
- the back exposure was now 120 seconds.
- the face exposure was still 5 minutes.
- the floor of this plate was very even.
- the back exposure times were acceptable for an uncapped DTP, it was desired to achieve back exposure times normally used for 067 plates, around 15-30 seconds. This was accomplished as described in the next example.
- the doped FLEX-LIGHT ATLAS® 0.067 inch plate of example 2 was next constructed with a UV absorbing PET commercially available from DuPont Polyester (Hopewell, Va.).
- the UV-absorbing PET was 500 gage Melinex 943.
- the rest of the plate construction, laser imaging, and plate processing conditions were identical to the plate used in Example 2.
- the UV absorbing PET allowed reasonable back exposure times.
- the back exposure was now 20-22 seconds.
- the face exposure was still 5 minutes.
- the floor of this plate was very even. Thus, the times were acceptable for an uncapped DTP.
- the plate was then back-exposed for 20 seconds, face exposed for 60 minutes to hold 1% dots at 133 LPI.
- the face exposure time of 60 minutes was deemed too long for a capped plate.
- the Flexlight EPIC 0.067′′ plate of example 5 (both the photo-polymer as well as the cap) was doped with 0.1% triphenylphosphine (TPP), a known oxygen scavenger. It was necessary to keep the same level of TPP in both the cap as well as the underlying photopolymer.
- TPP triphenylphosphine
- the capped DTP flexo plate met all possible requirements except for the back exposure time, which was too short.
- a UV absorbing PET commercially available from DuPont PET called Melinex 943 (500 gage).
- Melinex 943 500 gage.
- the rest of the capped plate construction i.e., the “doped” photopolymer, the “doped” cap, and the CB mask, was identical to the plate from Example 6.
- the laser imaging and subsequent processing steps were also identical.
- the UV absorbing PET yielded a reasonable back exposure of 20-25 seconds.
- the face exposure was still 15 minutes.
- the floor of the plate was very consistent. Thus, the exposure times and all process conditions were acceptable for a capped DTP plate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Optics & Photonics (AREA)
- Materials For Photolithography (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
Abstract
Description
- The present invention is directed to flexographic printing elements having light-attenuating support layers, to the formation of relief images on direct-image flexographic printing elements and, more particularly, to methods for achieving a uniform floor in the manufacture of such direct-image flexographic printing elements.
- Relief image printing plates are used in both flexographic and letterpress processes for printing on a variety of substrates, including paper, corrugated stock, film, foil, and laminates. Relief elements typically include a support layer and one or more layers of photocurable polymer in the form of solid sheets. The printer typically peels a cover sheet from the element to expose the photocurable polymer and places a silver halide photographic negative or some other masking device upon the photopolymer. The printer exposes the negative-bearing element to ultraviolet (UV) light through the negative, thereby causing exposed areas of the element to harden, or cure. After the uncured areas of the element are removed, cured polymer remains as the relief printing surface.
- The negatives used in such processes typically are costly items, and the time required for their preparation can be considerable, particularly in those print shops that are not capable of preparing negatives in-house. Moreover, any negative which is used for printing must be nearly perfect. Even minor flaws will be carried through onto each printed item. As a consequence, effort must be expended to ensure that the negative is precisely made. In addition, the negative is usually made with silver halide compounds which are costly and which are also the source of environmental concerns upon disposal.
- In the art of flexographic printing, processes have been developed to eliminate the use of the negative, thereby offering significant advantages over previous methods such as, for example, cost efficiency, environmental impact, convenience, and image quality. Many such processes are referred to as direct-to-plate (DTP) processes. One DTP process is disclosed in U.S. Pat. No. 5,846,691 to Cusdin, et al., herein incorporated by reference, which describes formation of a computer-generated negative on a photosensitive printing element by ejecting a negative-forming ink from an ink jet print head directly onto the surface of the printing element. Another such process is disclosed in U.S. Pat. No. 5,925,500 to Yang, et al., herein incorporated by reference, which describes a method of making a laser-imaged printing plate by modifying the slip film with a UV absorber and employing a laser to selectively ablate the slip film. In such methods, the slip film, in effect, becomes the negative as only the areas of the photopolymer to be cured are exposed to actinic radiation. Yet another DTP process is disclosed in U.S. Pat. No. 5,262,275 to Fan, herein incorporated by reference, in which a layer of laser-ablatable infrared radiation sensitive material is disposed upon the surface of the printing element.
- DTP technology is significantly different than the conventional plate making technology in a number of respects. DTP plates, for example, typically have a photoablative mask directly on the plate. Also, in DTP technology, face exposure, i.e., a blanket exposure to actinic radiation of the photopolymerizable layer on the side that does (or, ultimately will) bear the relief, is done in air (in the presence of oxygen), whereas, with conventional plates, exposure is typically done in vacuum.
- Because face exposure is conducted in the presence of oxygen, there is the potential for excessive exposure of the photocurable layer to oxygen in areas where the masking layer has been removed. This can present problems because the photopolymerization kinetics of many materials in the presence of oxygen are very different from those observed in the absence of oxygen because oxygen is a known free radical scavenger. Hence, oxygen has the effect of inhibiting polymerization of the photocurable material, thus requiring longer exposure times. In addition, oxygen could potentially act as a UV screening agent, resulting in attenuation of the actinic radiation.
- Generally, this phenomenon is referred to as “oxygen inhibition.” Oxygen inhibition is typically compounded when so-called “capped” photocurable printing elements are used. Capped photocurable elements have a thin photocurable cap disposed upon the main body of the photocurable material. Typically, with such elements, the relief image formed includes photocurable material from the cap layer. Capped printing elements typically have several significant advantages over uncapped elements in DTP processes. For example, the cap typically has a rough surface that can act as an ink receptive layer, resulting in higher ink densities on the printed substrate. Also, capped plates, because of their longer exposure times, typically enable the user to modify dot shape, resulting in smaller, but more robust dots. The cap layer can also include an image contrast (e.g. green) dye which aids in the inspection of the registered image. The cap itself, however, due to the presence of the dye (and other components), acts as an actinic radiation absorbing layer. Thus, the phenomenon of oxygen inhibition is amplified when imaging capped photocurable printing elements to the extent that relatively long front exposures may be required to hold fine detail dots (i.e., 1% dots on a 150 line).
- To decrease front exposure times when processing printing elements with DTP technology such that such times are comparable to those of conventional printing elements, the photo speed (i.e., the speed of photopolymerization) typically is increased to counter the effects of oxygen inhibition. One way to do this is to incorporate oxygen scavengers such as, for example, triphenylphosphine and triphenylphosphite, into the polymer formulation. The addition of oxygen scavengers to the polymer formulation, however, not only decreases the front exposure time, but, also decreases the back exposure time as well.
- As used herein, “back exposure” is a blanket exposure to actinic radiation of the photopolymerizable layer on the side opposite that which does (or, ultimately will) bear the relief. This is typically done through a transparent support layer. Such exposure is used to create a shallow layer of polymerized material, herein referred to as a “floor,” on the support side of the photopolymerizable layer. The purpose of the floor is generally to sensitize the photopolymerizable layer and to establish the depth of the relief. Typically, it is desired to have back exposure times greater than 15-30 seconds. In DTP technology, however, increasing the photo speed as described above often results in a back exposure time of less than 30 seconds. Such short back exposure times are undesirable because, for reasons discussed in detail below, variations in the thickness of the floor are typically observed. In turn, a non-uniform floor typically contributes to uneven printing due to variation in the relief across the plate.
- Back exposure times can be increased in DTP systems by applying a thin, i.e., 1-2 microns, coating of a UV-absorbing compound between the photopolymerizable layer and the support, or backing, layer. This approach, however, is problematic, as it is difficult to apply the UV-absorbing coating uniformly. This, of course, also creates variations in the thickness of the floor. Also, the coating could interact with the laser and create problems of adhesion.
- Accordingly, there is a need in the art for an improved method to produce direct-imaged capped and uncapped flexographic printing plates.
- The present invention provides methods for producing direct-imaged flexographic printing elements such that both the front and back exposure times are economically efficient for the manufacturer. The present invention provides a solid photocurable element that comprises a layer of solid photocurable material containing an oxygen scavenger disposed on a support layer. The support layer has an actinic radiation absorbing compound integrated uniformly throughout such that it absorbs at least some actinic radiation during exposure. The solid photocurable element also comprises a photoablative mask layer disposed on the solid photocurable layer. The mask is substantially opaque to actinic radiation and is capable of being photoablated by a laser.
- The methods of the present invention comprise transferring graphic data from a computer to the solid photocurable element described above by photoablating selected areas of the photoablatable mask layer using a laser that is in communication with the computer, thus providing ablated and unablated areas forming an image. The ablated areas expose the solid photocurable layer which ultimately becomes the relief. A “floor” is also established by exposing the photocurable layer through the support layer. The solid photocurable material that is exposed through the ablated areas of the photoablatable mask layer are then exposed to actinic radiation effective to cure the solid photocurable material and leave solid photocurable element underneath the unablated areas uncured. The uncured solid photocurable material and the unablated areas of said photoablatable mask layer are then removed.
- In another embodiment of the present invention, the solid photocurable printing element further comprises a solid photopolymerizable cap layer. In this embodiment the photoablative mask layer is disposed directly onto the cap layer and the method is performed accordingly.
- The numerous objects and advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying non-scale figures, in which:
- FIG. 1 is a cross-sectional view of a printing element according to the invention; and
- FIG. 2 is a cross-sectional view of another embodiment of a printing element according to the invention.
- As used herein, the term “photocurable material” refers to a solid composition which undergoes polymerization, cross-linking, or any other curing or hardening reaction in response to actinic radiation with the result that the unexposed portions of the material can be selectively separated and removed from the exposed (cured) portions to form a three dimensional or relief pattern of cured material.
- The separation and removal of the unexposed portions can be accomplished using a jet of air (“air knife”), brushing, selective solubilization or dispersion in a suitable developer solvent or detergent solution, a squeegee, a combination of the foregoing, or other suitable development means.
- As shown in FIGS. 1 and 2 wherein like elements have like numerals, a preferred
photocurable element 10 to be used in a DTP imaging process comprises asupport layer 12, at least onephotocurable layer 14, an optional secondphotocurable layer 16, and aphotoablatable mask layer 18. The preferred photocurable element can also comprise a “cap” layer 17 (shown in FIG. 2). Thephotocurable elements 10 shown in FIGS. 1 and 2 can also comprise an adhesive layer betweenphotocurable layer 14 and the support layer 12 (not shown). The photocurable elements according to the present invention preferably are substantially planar solid elements having a thickness of at least about 0.067 inches. - Typically, in DTP technology, the cover-sheet (not shown) is removed, thus exposing the photoablatable mask layer. A computer then transfers digital information to the photoablative mask layer via a laser that is in communication with the computer that ablates those areas of the photoablative mask layer that have to cure, i.e., those areas that ultimately become the relief layer. The plate is then back-exposed to build the floor, face exposed through the in-situ mask, and processed in a solvent processor. The area of the mask that was not ablated prevents the underlying photopolymer to cure and is removed during the processing step. That area where the mask was removed is cured and becomes the relief area. The plate is then dried and post-exposed and de-tacked as usual.
- The photocurable layers14,16 of the photocurable element can include any of the known photopolymers, monomers, initiators, reactive diluents, fillers, and dyes.
- Preferred photocurable materials include an elastomeric compound, an ethylenically unsaturated compound having at least one terminal ethylene group, and a photoinitiator. Exemplary photocurable materials are disclosed in European Patent Applications 0 456 336 A2 (Goss, et al.), and 0 640 878 A1 (Goss, et al.), British Patent No. 1,366,769, U.S. Pat. Nos. 5,223,375 (Berrier, et al.), 3,867,153 (MacLahan), 4,264,705 (Allen), 4,323,636 (Chen, et al.), 4,323,637 (Chen, et al.), 4,369,246 (Chen, et al.), 4,423,135 (Chen, et al.), 3,265,765 (Holden, et al.), 4,320,188 (Heinz, et al.), 4,427,759 (Gruetzmacher, et al.), 4,622,088 (Min), and 5,135,827 (Bohm, et al.), which are incorporated herein by reference.
- “Cap”
layer 16 generally comprises photocurable material which is the same as or similar to the photocurable material present in the photocurable layer. Suitable compositions for the cap layer are those disclosed as elastomeric compositions in the multilayer cover element described in U.S. Pat. Nos. 4,427,759 and 4,460,675 (Gruetzmacher, et al.), both of which are incorporated herein by reference. Additional components present in the cap layer include: a coating solvent, optionally but preferably a non-migrating dye or pigment which provides a contrasting color with any colorant or dye present in the photocurable layer. Optionally,cap layer 16 can also include one or more ethylenically unsaturated monomeric compounds, and/or a photoinitiator or initiator system. The contrast dye can be Acid Blue 92, or other dyes disclosed in, for example, U.S. Pat. No. 3,218,167, incorporated herein by reference. In general, the thickness of the cap is in the range of from about 0.00001 to 0.003 inches. Preferably, the thickness of the cap is from about 0.000015 to about 0.0025 inches. An example of a capped photopolymer element as described is FLEXLIGHT EPIC® (commercially available from Polyfibron Technologies, Inc., Atlanta, Ga.). - The photocurable materials of the invention should cross-link (cure) and, thereby, harden in at least some actinic wavelength region. As used herein, actinic radiation is radiation capable of effecting a chemical change in an exposed moiety. Actinic radiation includes, for example, amplified (e.g., laser) and non-amplified light, particularly in the UV and infrared wavelength regions. Preferred actinic wavelength regions are from about 250 nm to about 450 nm, more preferably from about 300 nm to about 400 nm, even more preferably from about 320 nm to about 380 nm.
- As described above, longer front exposure times are typically required for the transfer of fine detail images onto the photocurable element due to the presence of oxygen in DTP technology. Thus, it is preferable to include, for example, oxygen scavengers into the photocurable material to counter the effects of the oxygen, thereby decreasing the exposure time (i.e., increasing the photospeed of the photopolymer).
- Preferably, the oxygen scavenger is a phosphine compound. Representative phosphine compounds include triphenylphosphine, tri-p-tolylphosphine, diphenylmethylphosphine, diphenylethylphosphine, diphenylpropylphosphine, dimethylphenylphosphine, diethylphenylphosphine, dipropylphenylphosphine, divinylphenylphosphine, divinyl-p-methoxyphenylphosphine, divinyl-pbromophenylphosphine, divinyl-p-tolylphosphine, diallylphenylphosphine, diallyl-p-methoxyphenylphosphine, diallyl-p-bromophenylphosphine and diallyl-p-tolylphosphine.
- Triphenylphosphine is particularly preferred.
- Preferably, the phosphine compound is present in the solid photocurable compound at from about 0.01 to about 2.0 weight percent of the solid photocurable material, more preferably from about 0.05 to about 1.0 weight percent of the solid photocurable material, and most preferably from about 0.075 to about 0.75 weight percent of the solid photocurable material.
- Additional ways to decrease the exposure times include increasing the intensity of the actinic radiation. High intensity lamps, however, typically generate excessive heat which can create problems such as plate warping and image deterioration.
- By employing any of these methods for decreasing the front exposure time, the back exposure time required to build a floor of a particular thickness also should decrease. For example, in a conventional flexographic printing element manufacturing process (i.e., in a vacuum and without oxygen), a 0.067 inch element will have a floor thickness of about 0.029 inches. The back exposure time required to build a floor of this thickness is typically about 15-60 seconds. For the same element processed with conventional DTP technology (i.e., ablation in the presence of oxygen and where the photocurable element is doped with oxygen scavengers), the back exposure time required to build a floor of the same thickness is typically about 1 to 5 seconds.
- Forming a uniform floor with a back exposure time of less than about 15 to 20 seconds is often very difficult primarily because the fluorescent lamps that are used typically have a significant variation in intensity across the bank of lights, and often have a significant variation in intensity across any given light in the bank due to variations in the filament. This non-uniformity in the actinic radiation intensity translates directly to non-uniformity of the floor build-up during back exposure. If the back exposure times are too short, as observed with plates processed with conventional DTP technology, this problem is more severe. If the times are longer then the problem is less pronounced. A non-uniform floor build-up results in non-uniform printing because printing presses typically are adjusted for a certain relief. Those areas having shallower relief will print bold. Those having deeper relief may print with poor quality and distortion. As described herein, a modification to the support, or backing, layer, will allow printers to better control floor-formation in DTP technology.
- The
support layer 12 of the photocurable element is preferably formed from a variety of flexible, transparent materials. Examples of such materials are cellulose films, or plastics such as, for example, PET (polyetheylene terephthalate), PEN (polyethylene naphthalate), polyether, polyethylene, polyamide (Kevlar) or nylon. Preferably, the support layer is formed from polyethylene terephthalate (PET). The support layer can be from about 0.001 to about 0.010 inches thick. Preferably, the support layer is about 0.005 inches thick. More preferably, if the support layer is a polyester film such as, for example, PET, the support layer is typically about 0.005″ for 0.067″ and thicker plates. - According to the present invention, the
support layer 12 is UV-absorbing to counter the increased photo-speed that results from the use of oxygen scavengers or other means used to counter the effects of oxygen inhibition in DTP technology. As described in detail below, this can be accomplished either by forming thesupport layer 12 from a material that is inherently UV-absorbing, i.e., attenuates actinic radiation itself, or by adding a dopant to the material forming thesupport layer 12. - In one embodiment of the present invention, the
support layer 12 is formed from a material that is inherently UV-absorbing. Of the above-mentioned materials that are preferably used to form the support layer, only PEN (for example, Kaladex 1030 and Kaladex 2000 commercially available from DuPont PET, Hopewell, Va.) is inherently UV absorbing. The inventors have found that, when an inherently UV-absorbing support layer is used, the percent of actinic radiation that is absorbed is a function of the thickness of the support layer. The inventor has found that, for example, a PEN support layer having a thickness of about 5 mils absorbs about 97 percent of actinic radiation; a PEN support layer having a thickness of about 3 mils absorbs about 95 percent of actinic radiation. - According to another embodiment of the present invention, the
support layer 12 comprises a UV-absorbing material to counter the increased photo-speed that results from the use of oxygen scavengers or other means to counter the effects of oxygen inhibition in DTP technology. This can be accomplished by adding a UV-absorbing dopant to the support layer during manufacture. - Transparent materials that are not inherently UV-absorbing need to be doped with a UV-absorber when made into the
support layer 12 according to the present invention. The UV-absorbing dopant should be uniformly distributed throughout thesupport layer 12. This can be accomplished if, for example, the UV-absorbing material is soluble in the support layer or evenly dispersed throughout during the process of manufacturing thesupport layer 12. As used herein, the term “soluble” refers to the capability of one compound of being dissolved. The term “dispersed” refers to one substance being evenly distributed throughout another. In commercial processes, a uniform distribution of the dopant throughout thesupport layer 12 is typically achieved during the manufacturing process as the PET, for example, is stretched both in the transverse and machine directions so that the UV absorber is distributed uniformly throughout the PET. - The commercially available UV absorbing PET products known to the inventor are Melinex 943 (DuPont PET, Hopewell, Va.), Skyrol Polyester Type TU84B (SKC LTD, Suwon, S. Korea), Teijin Teonex Type Q51 (Teijin, Japan), and Eastman PET 9921 G0071 (Eastman Chemicals, Kingsport, Tenn.).
- The spectral range of the flood-exposure lamps used in most applications is about 300-400 nm. Therefore the UV absorbing dopant typically should be active in this range.
- Preferably, the presence of the UV absorber changes a normally UV transparent support layer into an attenuation tool that absorbs at least a portion of UV radiation that passes through it. Preferably, the support absorbs between about 80 to about 99%, more preferably between about 85 to about 95%, and most preferably about 88% of actinic radiation.
- The intensity of flood exposure lamps used in the curing of flexographic printing plates is typically in the range of about 5-25 milliwatts/cm2, but intensities can be as high as 50 milliwatts/cm2. Therefore, the support layer should be capable of absorbing irradiated light of such intensities from the UV flood lamps.
- The
photoablative mask layer 18 can be any photoablative mask layer known in the art. Such mask layers include those that can be ablated by any type of laser known to those skilled in the art such as, for example, UV-type Eximer lasers typically operating at wavelengths of about 300 to 400 nm; IR-type lasers such as, for example, CO2 lasers typically operating at a wavelength of about 10,640 nm; Nd-YAG lasers typically operating at a wavelength of about 1064 nm; and diode array lasers typically operating at a wavelength of about 830 nm. Examples of such photoablative mask layers are disclosed in, for example, U.S. Pat. No. 5,925,500 to Yang, et al., herein incorporated by reference, which discloses slip films modified with a UV absorber as the mask layer, thus employing a laser to selectively ablate the modified slip film; and U.S. Pat. No. 5,262,275 to Fan, herein incorporated by reference. - Generally, the methods of the invention involve transferring an image to the surface of the
photocurable elements 10 without the use of phototools or photomasks such that both the front and back exposure times are economically efficient for the manufacturer of a printing plate. This typically is accomplished by providing at least one solidphotocurable element 10. The solid photocurable element comprises at least one solidphotocurable material photoablative mask layer 18, and asupport layer 12 having an actinic radiation absorbing compound integrated uniformly throughout such that it absorbs at least some actinic radiation during exposure. According to the present invention, thephotocurable layers - When the solid photocurable printing element is to be used, a laser is employed to selectively ablate, or remove, the photoablative mask layer such that the areas where the photoablative mask layer was ablated will cure, or harden, upon exposure to the UV light and the areas where the photoablative mask layer was not ablated will remain uncured. A floor is created in the solid photocurable material by back exposure through the UV-absorber-doped support layer. The uncured plate is then front-exposed to UV light in the usual fashion effective to cure the solid photocurable material. There are many devices that can be used to perform this so-called “front” exposure of the photocurable elements, including FLEXLIGHT® brand UV modules (Polyfibron Technologies, Inc.), as well as those manufactured by Anderson & Vreeland (Bryan, Ohio).
- Following front exposure of the exposed areas of the photopolymer, uncured photopolymer, i.e., the photopolymer under the areas of the photoablative layer that were not laser-ablated, is removed from the mounted photocurable elements, typically by washing the elements with (and/or in) an organic and/or aqueous solvent in which the photocurable material is at least somewhat soluble. This solvent wash step typically is accompanied or preceded by brushing, wiping, or some other mild, non-destructive abrasion of the elements. Useful washing devices include those commercially available from Polyfibron Technologies and Anderson & Vreeland.
- Additional objects, advantages, and novel features of this invention will become apparent to those skilled in the art upon examination of the following examples thereof, which are not intended to be limiting.
- A Flex-Light Atlas 0.067″ plate (Polyfibron Technologies, Inc., Atlanta, Ga.) was modified in the following way: The slip film was carefully removed using isopropanol. The plate was then dried and then laminated with a carbon black (CB) based mask. The CB mask comprised of a) CB pigment, b) a binder for its film forming property and c) a self-oxidizing binder to increase sensitivity to ablation.
- After lamination, the coversheet was removed and discarded. The plate was mounted on a commercially available flexo plate-setter such as Misomex's OmniSetter 4000 or Creo's Thermoflex 5280. The digital file from the computer was transferred onto the CB mask through an ablative mechanism. The plate was then back exposed for17 seconds, face exposed for 18 minutes to hold 1% dots at 133 LPI. The face-exposure time of 18 minutes was deemed to be too long for an uncapped DTP plate.
- A FLEX-LIGHT ATLAS® 0.067 inch plate was doped with 0.1% triphenylphosphine. Plate construction for DTP application was same as in Example 1. However, the following back exposure and face exposure times had to be used to hold the same level of detail:
- Back Exposure: 3 to 5 seconds
- Face Exposure: 5 minutes
- Although, the face exposure times were acceptable, the back exposure time was deemed too short for a 0.067″ flexo plate. Floor build-up was found uneven with such short exposure times.
- The doped FLEX-LIGHT ATLAS® 0.067 inch plate of example 2 was next constructed with polyethylene naphthalate (PEN), an inherently UV absorbing backing material as the UV-absorbing backing layer. The PEN was 5 mil Kaladex 1030 commercially available from DuPont PET (Hopewell, Va.). The rest of the plate construction, laser imaging, and plate processing conditions were identical to the plate used in Example 2. In this example, the UV absorbing backing allowed reasonable back exposure times. The back exposure was now 120 seconds. The face exposure was still 5 minutes. The floor of this plate was very even. Although the back exposure times were acceptable for an uncapped DTP, it was desired to achieve back exposure times normally used for 067 plates, around 15-30 seconds. This was accomplished as described in the next example.
- The doped FLEX-LIGHT ATLAS® 0.067 inch plate of example 2 was next constructed with a UV absorbing PET commercially available from DuPont Polyester (Hopewell, Va.). The UV-absorbing PET was 500 gage Melinex 943. The rest of the plate construction, laser imaging, and plate processing conditions were identical to the plate used in Example 2. However, in this case the UV absorbing PET allowed reasonable back exposure times. The back exposure was now 20-22 seconds. The face exposure was still 5 minutes. The floor of this plate was very even. Thus, the times were acceptable for an uncapped DTP.
- The slip film of a Flexlight EPIC 0.067″ plate (Polyfibron Technologies, Inc., Atlanta, Ga.) was carefully removed leaving the green cap on the photopolymer base. A carbon black based mask on a coversheet was then laminated onto the dried plate so that the cap was now in intimate contact with the mask. The coversheet was removed and discarded. The plate was mounted on a commercially available flexo plate-setter such as Misomex's OmniSetter 4000 or Creo's Thermoflex 5280 and laser imaged. The laser removed the mask in selective regions. Hence, the digital file from the computer was transferred onto the CB mask through an ablative mechanism.
- The plate was then back-exposed for 20 seconds, face exposed for 60 minutes to hold 1% dots at 133 LPI. The face exposure time of 60 minutes was deemed too long for a capped plate.
- The Flexlight EPIC 0.067″ plate of example 5 (both the photo-polymer as well as the cap) was doped with 0.1% triphenylphosphine (TPP), a known oxygen scavenger. It was necessary to keep the same level of TPP in both the cap as well as the underlying photopolymer.
- The “doped” photopolymer was extruded onto the “doped” cap. The CB mask was laminated on the green cap. The rest of the imaging and processing steps were as described in Example 5. Here, however, the exposure times were dramatically different as shown below:
- Back exposure: 3 to 5 seconds
- Face exposure: 15 minutes
- The above exposure, times were required to hold the same level of detail and a similar floor thickness as the plate from Example 5. Although now the face exposure was deemed acceptable for a capped plate, the back exposure resulted in uneven floor thickness. Thus, the back exposure times were too short to get a consistent floor.
- As seen from Example 6, the capped DTP flexo plate met all possible requirements except for the back exposure time, which was too short. To increase the back exposure times it was necessary to use a UV absorbing PET commercially available from DuPont PET called Melinex 943 (500 gage). The rest of the capped plate construction, i.e., the “doped” photopolymer, the “doped” cap, and the CB mask, was identical to the plate from Example 6. The laser imaging and subsequent processing steps (except for the BEX time) were also identical. The UV absorbing PET yielded a reasonable back exposure of 20-25 seconds. The face exposure was still 15 minutes. The floor of the plate was very consistent. Thus, the exposure times and all process conditions were acceptable for a capped DTP plate.
- Those skilled in the art will appreciate that numerous changes and modifications may be made to the preferred embodiments of the invention and that such changes and modifications may be made without departing from the spirit of the invention. It is therefore intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.
Claims (23)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/415,811 US6413699B1 (en) | 1999-10-11 | 1999-10-11 | UV-absorbing support layers and flexographic printing elements comprising same |
CNB008140510A CN1278186C (en) | 1999-10-11 | 2000-09-18 | UV-absorbing support layers and flexographic printing elements comprising same |
AU74965/00A AU7496500A (en) | 1999-10-11 | 2000-09-18 | Uv-absorbing support layers and flexographic printing elements comprising same |
CA2387424A CA2387424C (en) | 1999-10-11 | 2000-09-18 | Uv-absorbing support layers and flexographic printing elements comprising same |
ES00963574T ES2347757T3 (en) | 1999-10-11 | 2000-09-18 | UV ABSORBENT SUPPORT COATS AND FLEXOGRAPHIC PRINTING ELEMENTS THAT INCLUDE THE SAME. |
PCT/US2000/025536 WO2001027696A1 (en) | 1999-10-11 | 2000-09-18 | Uv-absorbing support layers and flexographic printing elements comprising same |
DE60044817T DE60044817D1 (en) | 1999-10-11 | 2000-09-18 | UV RADIATION ABSORBING COATING SUPPLEMENTS, AND FLEXODRUCK PLATES WITH SUCH COATINGS |
CN2005101150863A CN100407049C (en) | 1999-10-11 | 2000-09-18 | UV-absorbing support layers and flexographic printing elements comprising same |
JP2001530647A JP3856697B2 (en) | 1999-10-11 | 2000-09-18 | Method for producing flexographic printing plate |
EP00963574A EP1222497B1 (en) | 1999-10-11 | 2000-09-18 | Uv-absorbing support layers and flexographic printing elements comprising same |
US10/752,484 USRE39835E1 (en) | 1999-10-11 | 2004-01-06 | UV-absorbing support layers and flexographic printing elements comprising same |
JP2004139848A JP4471157B2 (en) | 1999-10-11 | 2004-05-10 | Printing elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/415,811 US6413699B1 (en) | 1999-10-11 | 1999-10-11 | UV-absorbing support layers and flexographic printing elements comprising same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/752,484 Reissue USRE39835E1 (en) | 1999-10-11 | 2004-01-06 | UV-absorbing support layers and flexographic printing elements comprising same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020058196A1 true US20020058196A1 (en) | 2002-05-16 |
US6413699B1 US6413699B1 (en) | 2002-07-02 |
Family
ID=23647301
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/415,811 Ceased US6413699B1 (en) | 1999-10-11 | 1999-10-11 | UV-absorbing support layers and flexographic printing elements comprising same |
US10/752,484 Expired - Lifetime USRE39835E1 (en) | 1999-10-11 | 2004-01-06 | UV-absorbing support layers and flexographic printing elements comprising same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/752,484 Expired - Lifetime USRE39835E1 (en) | 1999-10-11 | 2004-01-06 | UV-absorbing support layers and flexographic printing elements comprising same |
Country Status (9)
Country | Link |
---|---|
US (2) | US6413699B1 (en) |
EP (1) | EP1222497B1 (en) |
JP (2) | JP3856697B2 (en) |
CN (2) | CN100407049C (en) |
AU (1) | AU7496500A (en) |
CA (1) | CA2387424C (en) |
DE (1) | DE60044817D1 (en) |
ES (1) | ES2347757T3 (en) |
WO (1) | WO2001027696A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040129158A1 (en) * | 2002-12-26 | 2004-07-08 | Murray Figov | Method for producing a flexographic printing plate formed by inkjetted fluid |
US20070014929A1 (en) * | 2005-07-02 | 2007-01-18 | Stefan Eggers | Method for exposure of flexo printing plates |
US20070122748A1 (en) * | 2005-11-30 | 2007-05-31 | Bryant Laurie A | Photopolymer printing form with reduced processing time |
WO2013122718A1 (en) * | 2012-02-13 | 2013-08-22 | Macdermid Printing Solutions, Llc | Integrated membrane lamination and uv exposure system and method of using the same |
CN103288995A (en) * | 2013-06-09 | 2013-09-11 | 浙江大学 | Preparation method of porous polytriphenylphosphine material |
US8962740B2 (en) | 2012-09-10 | 2015-02-24 | Kraft Foods Group Brands Llc | Oxygen scavenger system in a polyolefin matrix |
WO2018208733A1 (en) | 2017-05-09 | 2018-11-15 | Macdermid Graphics Solutions, Llc | Flexographic printing plate with improved storage stablity |
US10173412B2 (en) | 2015-05-20 | 2019-01-08 | Sasu Vianord Engineering | Apparatus and method for the photo-polymerization of flexographic printing sheets |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6413699B1 (en) * | 1999-10-11 | 2002-07-02 | Macdermid Graphic Arts, Inc. | UV-absorbing support layers and flexographic printing elements comprising same |
US20020119295A1 (en) * | 2000-12-22 | 2002-08-29 | Speer Drew V. | Radiation triggerable oxygen scavenging article with a radiation curable coating |
US20030129533A1 (en) * | 2001-12-14 | 2003-07-10 | Creo Products, Inc. | Photosensitive flexographic device with associated addressable mask |
US7728048B2 (en) * | 2002-12-20 | 2010-06-01 | L-1 Secure Credentialing, Inc. | Increasing thermal conductivity of host polymer used with laser engraving methods and compositions |
CN101706639A (en) * | 2002-05-03 | 2010-05-12 | Dsmip财产有限公司 | Radiation curable resin composition and rapid prototyping process using the same |
DE602004030434D1 (en) | 2003-04-16 | 2011-01-20 | L 1 Secure Credentialing Inc | THREE-DIMENSIONAL DATA STORAGE |
US20050170287A1 (en) * | 2004-01-30 | 2005-08-04 | Kanga Rustom S. | Photosensitive printing sleeves and method of forming the same |
US7682775B2 (en) * | 2004-03-05 | 2010-03-23 | E. I. Du Pont De Nemours And Company | Process for preparing a flexographic printing plate |
US7049047B2 (en) * | 2004-08-10 | 2006-05-23 | Eastman Kodak Company | Imageable element with masking layer comprising sulfated polymer |
US7029805B2 (en) * | 2004-09-07 | 2006-04-18 | Eastman Kodak Company | Imageable element with masking layer comprising betaine-containing co-polymers |
US7081331B2 (en) * | 2004-11-12 | 2006-07-25 | Ryan Vest | Method for thermally processing photosensitive printing sleeves |
EP1851591A4 (en) * | 2005-02-15 | 2010-09-01 | Rpo Pty Ltd | Photolithographic patterning of polymeric materials |
US8017795B2 (en) * | 2005-04-21 | 2011-09-13 | Ndsu Research Foundation | Radiation curable polymer films having improved laser ablation properties and radiation curable sensitizers therefor |
JP4717601B2 (en) * | 2005-11-15 | 2011-07-06 | 旭化成イーマテリアルズ株式会社 | Photosensitive resin support structure |
JP5106332B2 (en) * | 2008-09-18 | 2012-12-26 | 日東電工株式会社 | Manufacturing method of optical waveguide device and optical waveguide device obtained thereby |
US8198013B2 (en) * | 2010-05-05 | 2012-06-12 | E. I. Du Pont De Nemours And Company | Method for preparing a printing form |
JP5451707B2 (en) * | 2011-10-04 | 2014-03-26 | 富士フイルム株式会社 | Exposure apparatus and method for forming cured film |
US8808968B2 (en) * | 2012-08-22 | 2014-08-19 | Jonghan Choi | Method of improving surface cure in digital flexographic printing plates |
US10668711B2 (en) * | 2015-06-02 | 2020-06-02 | E I Du Pont De Nemours And Company | Printing form precursor, a process for making the precursor, and a method for preparing a printing form from the precursor |
US9678429B2 (en) * | 2015-08-18 | 2017-06-13 | Macdermid Printing Solutions, Llc | Method of creating hybrid printing dots in a flexographic printing plate |
US10108087B2 (en) * | 2016-03-11 | 2018-10-23 | Macdermid Graphics Solutions Llc | Method of improving light stability of flexographic printing plates featuring flat top dots |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL87862C (en) | 1951-08-20 | |||
NL287134A (en) | 1959-08-05 | |||
BE599102A (en) | 1960-01-27 | |||
NL288289A (en) | 1962-01-29 | |||
US3948664A (en) | 1968-08-21 | 1976-04-06 | Fuji Photo Film Co., Ltd. | Polyethylene terephthalate film for use as support for radiographic film |
US3822132A (en) | 1969-05-05 | 1974-07-02 | Eastman Kodak Co | Heat resistant dyes for polyester film products |
BE759906A (en) | 1969-12-05 | 1971-06-04 | Ici Ltd | COLORING OF POLYMERIC MATERIALS |
US4323636A (en) | 1971-04-01 | 1982-04-06 | E. I. Du Pont De Nemours And Company | Photosensitive block copolymer composition and elements |
CA1099435A (en) | 1971-04-01 | 1981-04-14 | Gwendyline Y. Y. T. Chen | Photosensitive block copolymer composition and elements |
JPS5125335B2 (en) | 1972-04-13 | 1976-07-30 | ||
JPS4910017A (en) | 1972-05-24 | 1974-01-29 | ||
US3867153A (en) | 1972-09-11 | 1975-02-18 | Du Pont | Photohardenable element |
CA1049312A (en) * | 1974-01-17 | 1979-02-27 | John O.H. Peterson | Presensitized printing plate with in-situ, laser imageable mask |
US4028113A (en) | 1974-02-19 | 1977-06-07 | Eastman Kodak Company | Photographic supports and elements utilizing photobleachable O-nitroarylidene dyes |
US4162919A (en) | 1974-11-29 | 1979-07-31 | Basf Aktiengesellschaft | Laminates for the manufacture of flexographic printing plates using block copolymers |
US4010128A (en) | 1975-04-02 | 1977-03-01 | Tenneco Chem | Flexible printing plate |
US4141736A (en) * | 1976-11-18 | 1979-02-27 | Minnesota Mining And Manufacturing Company | Photosensitive composite sheet material containing poly-2,5-oxolane |
FR2375713A1 (en) | 1976-12-27 | 1978-07-21 | Toppan Printing Co Ltd | METHOD OF MANUFACTURING A CATHODO-LUMINESCENT SCREEN OF IMAGE TUBES FOR COLOR TELEVISION |
US4177074A (en) | 1978-01-25 | 1979-12-04 | E. I. Du Pont De Nemours And Company | Butadiene/acrylonitrile photosensitive, elastomeric polymer compositions for flexographic printing plates |
US4214965A (en) | 1979-01-11 | 1980-07-29 | Polychrome Corporation | Polymers and process for their preparation |
US4178303A (en) | 1979-01-26 | 1979-12-11 | Gaf Corporation | (2-Cyano-3,3-diphenylacryloxy) alkylene acrylic acid esters |
US4272608A (en) | 1979-04-05 | 1981-06-09 | E. I. Du Pont De Nemours And Company | Photosensitive compositions containing thermoplastic ionomeric elastomers useful in flexographic printing plates |
JPS5941176B2 (en) | 1979-04-23 | 1984-10-05 | 富士写真フイルム株式会社 | photographic support |
DE2942183A1 (en) | 1979-10-18 | 1981-05-07 | Basf Ag, 6700 Ludwigshafen | PHOTOPOLYMERIZABLE MIXTURES AND ELEMENTS THEREOF |
US4264705A (en) | 1979-12-26 | 1981-04-28 | Uniroyal, Inc. | Multilayered elastomeric printing plate |
US4340657A (en) | 1980-02-19 | 1982-07-20 | Polychrome Corporation | Novel radiation-sensitive articles |
US4369244A (en) | 1980-08-11 | 1983-01-18 | Minnesota Mining And Manufacturing Company | Imaging process and article employing photolabile, blocked surfactant |
US4324637A (en) | 1980-08-26 | 1982-04-13 | Occidental Research Corporation | Pyrolysis process with feed pretreatment utilizing a beneficially reactive gas |
GB2083239B (en) | 1980-08-29 | 1984-04-26 | Ciba Geigy Ag | Uv-absorbing layers |
GB2083240B (en) | 1980-08-29 | 1984-04-18 | Ciba Geigy Ag | Uv-absorbing layers |
US4414312A (en) * | 1980-09-03 | 1983-11-08 | E. I. Du Pont De Nemours & Co. | Photopolymerizable polyamide ester resin compositions containing an oxygen scavenger |
DE3100175A1 (en) | 1981-01-07 | 1982-08-05 | Basf Ag, 6700 Ludwigshafen | MULTI-LAYER ELEMENTS SUITABLE FOR PRODUCING PRINT AND RELIEF FORMS |
US4853471A (en) | 1981-01-23 | 1989-08-01 | Ciba-Geigy Corporation | 2-(2-Hydroxyphenyl)-benztriazoles, their use as UV-absorbers and their preparation |
DE3264154D1 (en) | 1981-01-23 | 1985-07-25 | Ciba Geigy Ag | 2-(2-hydroxyphenyl)-benzotriazoles, their use as ultraviolet stabilizers and their preparation |
US4423135A (en) | 1981-01-28 | 1983-12-27 | E. I. Du Pont De Nemours & Co. | Preparation of photosensitive block copolymer elements |
DE3107741A1 (en) | 1981-02-28 | 1982-09-16 | Basf Ag, 6700 Ludwigshafen | MULTIPLE-LAYER ELEMENTS SUITABLE FOR PRODUCING PRINT AND RELIEF FORMS AND METHOD FOR THEIR PRODUCTION |
US4427759A (en) | 1982-01-21 | 1984-01-24 | E. I. Du Pont De Nemours And Company | Process for preparing an overcoated photopolymer printing plate |
US4460675A (en) | 1982-01-21 | 1984-07-17 | E. I. Du Pont De Nemours And Company | Process for preparing an overcoated photopolymer printing plate |
US4419436A (en) | 1982-01-22 | 1983-12-06 | Kranser Leonard S | Photosensitive plate |
US4448873A (en) | 1982-03-18 | 1984-05-15 | American Hoechst Corporation | Negative working diazo contact film |
US4581267A (en) | 1982-09-09 | 1986-04-08 | Morgan Adhesives Company | Moisture and oxygen barrier laminate for photographic or printed articles |
US4447521A (en) | 1982-10-25 | 1984-05-08 | Minnesota Mining And Manufacturing Company | Fixing of tetra(hydrocarbyl)borate salt imaging systems |
DE3475240D1 (en) | 1983-03-29 | 1988-12-22 | Du Pont | X-ray intensifying screens |
US4535052A (en) * | 1983-05-02 | 1985-08-13 | E. I. Du Pont De Nemours And Company | Constrained n-alkylamino aryl ketones as sensitizers for photopolymer compositions |
US4564589A (en) | 1984-02-06 | 1986-01-14 | Advanced Imaging Systems Ltd. | Image-forming composite with film |
EP0157639A3 (en) | 1984-04-03 | 1987-05-06 | Konica Corporation | Heat-developable multilayered color photo-sensitive material |
JPS6154934A (en) | 1984-08-27 | 1986-03-19 | 富士写真フイルム株式会社 | Film for packaging photographic photosensitive material |
JPS61120154A (en) | 1984-11-15 | 1986-06-07 | Konishiroku Photo Ind Co Ltd | Silver halide color photographic sensitive material |
US4622088A (en) | 1984-12-18 | 1986-11-11 | E. I. Du Pont De Nemours And Company | Process for preparing photopolymer flexographic element with melt extrusion coated elastomeric surface layer |
JPS61213838A (en) | 1985-03-20 | 1986-09-22 | Nippon Oil & Fats Co Ltd | Photosensitive lithographic printing plate |
US4688056A (en) | 1985-07-13 | 1987-08-18 | Canon Kabushiki Kaisha | Liquid jet recording head having a layer of a resin composition curable with an active energy ray |
DE3540950A1 (en) | 1985-11-19 | 1987-05-21 | Basf Ag | MIXTURES CROSS-LINKABLE BY PHOTOPOLYMERISATION |
AU589722B2 (en) | 1986-01-28 | 1989-10-19 | Minnesota Mining And Manufacturing Company | Imageable material and process |
EP0231953A3 (en) | 1986-02-07 | 1989-08-23 | Kabushiki Kaisha Toshiba | Light-absorbing resins for display device, display devices using the resin and method of manufacturing the same |
US4639411A (en) | 1986-03-11 | 1987-01-27 | Eastman Kodak Company | Radiographic elements exhibing reduced crossover |
US4874672A (en) | 1987-01-14 | 1989-10-17 | S. C. Johnson & Son, Inc. | Plastic substrate having an adherent photo-product coating on its surface and a method of coating said plastic substrate |
GB8712210D0 (en) | 1987-05-22 | 1987-06-24 | Pilkington Brothers Plc | Photochromic articles |
US4824902A (en) | 1987-08-31 | 1989-04-25 | Eastman Kodak Company | Latex composition comprising polycarbonate having tertiary amine acid addition moiety |
DE3736980A1 (en) | 1987-10-31 | 1989-05-18 | Basf Ag | MULTILAYER, SURFACE-SHAPED, LIGHT-SENSITIVE RECORDING MATERIAL |
GB8728389D0 (en) | 1987-12-04 | 1988-01-13 | Cookson Group Plc | Photopolymerisable composition |
US4861664A (en) | 1987-12-31 | 1989-08-29 | General Electric Company | Process for UV stabilizer impregnation of plastic surfaces |
DE3803457A1 (en) | 1988-02-05 | 1989-08-17 | Basf Ag | AREA LIGHT-SENSITIVE RECORDING MATERIAL |
EP0327763A3 (en) | 1988-02-08 | 1991-11-06 | Minnesota Mining And Manufacturing Company | Colored salts of polymeric sulfonate polyanions and dye cations, and light-absorbing coatings made therewith |
US4892923A (en) | 1988-02-22 | 1990-01-09 | Eastman Kodak Company | Polyester compositions containing the residue of a naphthopyran compound and shaped articles produced therefrom |
US5075192A (en) | 1988-08-30 | 1991-12-24 | E. I. Du Pont De Nemours And Company | Aqueous processible photosensitive compositions containing core shell microgels |
US4956252A (en) | 1988-08-30 | 1990-09-11 | E. I. Dupont De Nemours And Company | Aqueous processible photosensitive compositions containing core shell microgels |
DE3831680A1 (en) | 1988-09-17 | 1990-03-22 | Basf Ag | LIGHT-SENSITIVE RECORDING MATERIAL |
US5264325A (en) | 1988-12-30 | 1993-11-23 | International Business Machines Corporation | Composition for photo imaging |
GB2229726B (en) | 1989-03-04 | 1992-04-08 | Tioxide Group Plc | Polymer granules and compositions containing them |
JPH02238002A (en) | 1989-03-10 | 1990-09-20 | Nippon Paint Co Ltd | Photosensitive composition |
US5049646A (en) | 1989-11-13 | 1991-09-17 | Eastman Kodak Company | Polyesters and toners made therewith which absorb ultraviolet light |
US5102762A (en) | 1989-11-13 | 1992-04-07 | Eastman Kodak Company | Polyesters and toners made therewith which absorb ultraviolet light |
US5063132A (en) | 1989-11-13 | 1991-11-05 | Eastman Kodak Company | Xerographic phototypesetting system and toner useful therein |
DE4004512A1 (en) | 1990-02-14 | 1991-08-22 | Hoechst Ag | METHOD FOR PRODUCING PHOTOPOLYMER PLATES |
NZ237919A (en) | 1990-04-26 | 1994-09-27 | Grace W R & Co | Photocurable element comprising photocurable base layer and a photocurable printing layer which comprises two incompatible elastomeric polymers and a photopolymerisable monomer, base layer comprising elastomer, monomer and photoinitiator; relief printing plates |
US5028518A (en) | 1990-09-24 | 1991-07-02 | Minnesota Mining And Manufacturing Company | Radiographic thermographic imaging film |
JPH04135789A (en) | 1990-09-27 | 1992-05-11 | Kanzaki Paper Mfg Co Ltd | Thermal recording medium |
JPH04141485A (en) | 1990-10-03 | 1992-05-14 | Fuji Photo Film Co Ltd | Forming method of picture |
JP2605185B2 (en) | 1991-02-21 | 1997-04-30 | コニカ株式会社 | Image recording body and method of manufacturing the same |
DE69224005T2 (en) | 1991-03-20 | 1998-04-23 | Du Pont | Photosensitive printing element |
JP3115625B2 (en) | 1991-03-30 | 2000-12-11 | 帝國製薬株式会社 | Topical patch containing lidocaine |
JPH04317065A (en) | 1991-04-17 | 1992-11-09 | Nippon Paint Co Ltd | Planographic printing plate material and aqueous ink composition |
US5223375A (en) | 1991-07-15 | 1993-06-29 | W. R. Grace & Co.-Conn. | Flexographic printing plate comprising photosensitive elastomer polymer composition |
CA2074603A1 (en) | 1991-07-26 | 1993-01-27 | Kenji Kushi | Recording media for a sublimation-type heat-sensitive recording process |
US5215876A (en) | 1991-08-29 | 1993-06-01 | Eastman Kodak Company | Radiographic element with uv absorbation compound in polyester support |
US5362592A (en) | 1991-11-14 | 1994-11-08 | Showa Denko K.K. | Decolorizable toner |
US5607814A (en) * | 1992-08-07 | 1997-03-04 | E. I. Du Pont De Nemours And Company | Process and element for making a relief image using an IR sensitive layer |
US5262275A (en) | 1992-08-07 | 1993-11-16 | E. I. Du Pont De Nemours And Company | Flexographic printing element having an IR ablatable layer and process for making a flexographic printing plate |
US5334575A (en) | 1992-12-17 | 1994-08-02 | Eastman Kodak Company | Dye-containing beads for laser-induced thermal dye transfer |
US5432035A (en) | 1992-12-18 | 1995-07-11 | Fujitsu Limited | Flash fixing color toner and process for producing the same |
US5494943A (en) * | 1993-06-16 | 1996-02-27 | Minnesota Mining And Manufacturing Company | Stabilized cationically-curable compositions |
JPH0713299A (en) | 1993-06-23 | 1995-01-17 | Fuji Photo Film Co Ltd | Silver halide photographic sensitive material |
US6756181B2 (en) * | 1993-06-25 | 2004-06-29 | Polyfibron Technologies, Inc. | Laser imaged printing plates |
US20010053499A1 (en) * | 1993-06-25 | 2001-12-20 | Polyfibron Technologies, Inc. | Laser imaged printing plates |
DE4339010C2 (en) | 1993-06-25 | 2000-05-18 | Pt Sub Inc | Photohardenable product for printing plates |
US6916596B2 (en) * | 1993-06-25 | 2005-07-12 | Michael Wen-Chein Yang | Laser imaged printing plates |
JP3423077B2 (en) | 1993-08-25 | 2003-07-07 | ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット | Plate printing method |
US5496685A (en) | 1993-09-17 | 1996-03-05 | Chase Elastomer Corporation | Photosensitive compositions and elements for flexographic printing |
EP0677397B1 (en) | 1994-02-21 | 1997-11-12 | Dai Nippon Printing Co., Ltd. | Protective layer transfer film and image-printed matter |
US6171758B1 (en) | 1994-11-08 | 2001-01-09 | Dupont Operations Worldwide, Inc. | Dimensionally stable flexographic printing plates |
JP3478647B2 (en) | 1994-12-09 | 2003-12-15 | キヤノン株式会社 | Pressure-sensitive transferable protective coating material and image protective coating method using the same |
TW344032B (en) | 1995-01-27 | 1998-11-01 | Mitsui Toatsu Chemicals | Light reflective sheet and light reflector using it |
US5543262A (en) | 1995-02-24 | 1996-08-06 | International Paper Company | Benzanthrone polymerization gate in photopolymerizable compositions |
JPH08324112A (en) | 1995-05-29 | 1996-12-10 | Brother Ind Ltd | Thermal recording material |
EP0751422A1 (en) | 1995-06-27 | 1997-01-02 | Eastman Kodak Company | Photographic element having improved scratch and abrasion resistance |
DE69602150T2 (en) | 1995-09-08 | 1999-09-02 | Idemitsu Petrochemical Co. | Styrene-based resin composition |
US5585422A (en) | 1995-09-20 | 1996-12-17 | Ciba-Geigy Corporation | Hybrid s-triazine light stabilizers substituted by benzotriazole or benzophenone moieties and compositions stabilized therewith |
US5798019A (en) * | 1995-09-29 | 1998-08-25 | E. I. Du Pont De Nemours And Company | Methods and apparatus for forming cylindrical photosensitive elements |
DE19536808A1 (en) * | 1995-10-02 | 1997-04-03 | Basf Lacke & Farben | Process for the production of photopolymer high pressure plates |
DE19536806A1 (en) * | 1995-10-02 | 1997-04-03 | Basf Lacke & Farben | Process for the production of photopolymer gravure plates |
EP0786689A1 (en) | 1996-01-29 | 1997-07-30 | Eastman Kodak Company | Photographic silver halide element having polyethylene naphthalate support and thin non-imaging bottom layers |
US5846691A (en) | 1996-07-08 | 1998-12-08 | Polyfibron Technologies, Inc. | Composite relief image printing plates and methods for preparing same |
JPH10148930A (en) | 1996-11-18 | 1998-06-02 | Toyobo Co Ltd | Photosensitive resin original plate for printing and its production |
US6136425A (en) * | 1997-03-17 | 2000-10-24 | Konica Corporation | Support for printing material, printing material employing the same and manufacturing method thereof |
EP0899293B1 (en) | 1997-08-29 | 2002-12-04 | Agfa-Gevaert | Polyalkylene naphthalate film comprising specific UV-absorber |
US6182570B1 (en) * | 1998-09-21 | 2001-02-06 | Presstek, Inc. | Lithographic printing plates for use with laser imaging apparatus |
DE19859631A1 (en) * | 1998-12-23 | 2000-07-06 | Basf Drucksysteme Gmbh | Process for the production of large-format composite relief printing plates by laser positioning and subsequent imaging using a laser |
US6413699B1 (en) * | 1999-10-11 | 2002-07-02 | Macdermid Graphic Arts, Inc. | UV-absorbing support layers and flexographic printing elements comprising same |
US6308628B1 (en) * | 2000-01-10 | 2001-10-30 | Karat Digital Press L.P. | Imaging method of a printing member having magnetic particles |
US6235454B1 (en) * | 2000-02-29 | 2001-05-22 | Eastman Kodak Company | Process for forming an ablation image |
US6551759B2 (en) | 2000-06-13 | 2003-04-22 | Agfa-Gevaert | Direct-to-plate flexographic printing plate precursor |
-
1999
- 1999-10-11 US US09/415,811 patent/US6413699B1/en not_active Ceased
-
2000
- 2000-09-18 EP EP00963574A patent/EP1222497B1/en not_active Expired - Lifetime
- 2000-09-18 ES ES00963574T patent/ES2347757T3/en not_active Expired - Lifetime
- 2000-09-18 WO PCT/US2000/025536 patent/WO2001027696A1/en active Application Filing
- 2000-09-18 CN CN2005101150863A patent/CN100407049C/en not_active Expired - Lifetime
- 2000-09-18 JP JP2001530647A patent/JP3856697B2/en not_active Expired - Lifetime
- 2000-09-18 AU AU74965/00A patent/AU7496500A/en not_active Abandoned
- 2000-09-18 CA CA2387424A patent/CA2387424C/en not_active Expired - Lifetime
- 2000-09-18 DE DE60044817T patent/DE60044817D1/en not_active Expired - Lifetime
- 2000-09-18 CN CNB008140510A patent/CN1278186C/en not_active Expired - Lifetime
-
2004
- 2004-01-06 US US10/752,484 patent/USRE39835E1/en not_active Expired - Lifetime
- 2004-05-10 JP JP2004139848A patent/JP4471157B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040129158A1 (en) * | 2002-12-26 | 2004-07-08 | Murray Figov | Method for producing a flexographic printing plate formed by inkjetted fluid |
US7036430B2 (en) * | 2002-12-26 | 2006-05-02 | Creo Il Ltd. | Method for producing a flexographic printing plate formed by inkjetted fluid |
US20070014929A1 (en) * | 2005-07-02 | 2007-01-18 | Stefan Eggers | Method for exposure of flexo printing plates |
US7851134B2 (en) | 2005-07-02 | 2010-12-14 | Xeikon Ip Bv | Method for exposure of flexo printing plates |
US20070122748A1 (en) * | 2005-11-30 | 2007-05-31 | Bryant Laurie A | Photopolymer printing form with reduced processing time |
US7625691B2 (en) | 2005-11-30 | 2009-12-01 | Bryant Laurie A | Photopolymer printing form with reduced processing time |
WO2013122718A1 (en) * | 2012-02-13 | 2013-08-22 | Macdermid Printing Solutions, Llc | Integrated membrane lamination and uv exposure system and method of using the same |
US8524442B1 (en) | 2012-02-13 | 2013-09-03 | David A. Recchia | Integrated membrane lamination and UV exposure system and method of the same |
JP2015509612A (en) * | 2012-02-13 | 2015-03-30 | マクダーミッド プリンティング ソリューションズ, エルエルシー | Integrated film stacking and UV exposure system and method using the same |
US8962740B2 (en) | 2012-09-10 | 2015-02-24 | Kraft Foods Group Brands Llc | Oxygen scavenger system in a polyolefin matrix |
CN103288995A (en) * | 2013-06-09 | 2013-09-11 | 浙江大学 | Preparation method of porous polytriphenylphosphine material |
US10173412B2 (en) | 2015-05-20 | 2019-01-08 | Sasu Vianord Engineering | Apparatus and method for the photo-polymerization of flexographic printing sheets |
WO2018208733A1 (en) | 2017-05-09 | 2018-11-15 | Macdermid Graphics Solutions, Llc | Flexographic printing plate with improved storage stablity |
EP3622351A4 (en) * | 2017-05-09 | 2021-03-10 | MacDermid Graphics Solutions, LLC | Flexographic printing plate with improved storage stability |
Also Published As
Publication number | Publication date |
---|---|
CA2387424A1 (en) | 2001-04-19 |
AU7496500A (en) | 2001-04-23 |
EP1222497B1 (en) | 2010-08-11 |
CN1782866A (en) | 2006-06-07 |
JP2004240458A (en) | 2004-08-26 |
EP1222497A1 (en) | 2002-07-17 |
USRE39835E1 (en) | 2007-09-11 |
CA2387424C (en) | 2010-11-23 |
JP3856697B2 (en) | 2006-12-13 |
JP2003511742A (en) | 2003-03-25 |
WO2001027696A1 (en) | 2001-04-19 |
CN1278186C (en) | 2006-10-04 |
DE60044817D1 (en) | 2010-09-23 |
CN1387636A (en) | 2002-12-25 |
US6413699B1 (en) | 2002-07-02 |
EP1222497A4 (en) | 2006-12-27 |
ES2347757T3 (en) | 2010-11-04 |
CN100407049C (en) | 2008-07-30 |
JP4471157B2 (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6413699B1 (en) | UV-absorbing support layers and flexographic printing elements comprising same | |
US8524442B1 (en) | Integrated membrane lamination and UV exposure system and method of the same | |
EP2997423B1 (en) | Method of improving print performance in flexographic printing plates | |
AU720406B2 (en) | Composite relief image printing plates and methods for preparing same | |
JP3464470B2 (en) | Laser-imaged printing plate with multilayer slip film | |
EP2359190A2 (en) | Flexographic element and method of imaging | |
US8795950B2 (en) | Method of improving print performance in flexographic printing plates | |
EP1737676B1 (en) | Edge cure prevention process | |
EP1709488B1 (en) | Method of forming photosensitive printing sleeves | |
WO1997025206A1 (en) | Methods and apparatus for preparing relief image printing plates | |
US7060417B2 (en) | Edge cure prevention process | |
JP2023520569A (en) | How to make a film negative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: POLYFIBRON TECHNOLOGIES, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANGA, RUSTOM SAM;REEL/FRAME:010523/0211 Effective date: 19991104 |
|
AS | Assignment |
Owner name: MACDERMID GRAPHIC ARTS, INC., GEORGIA Free format text: CHANGE OF NAME;ASSIGNOR:POLYFIBRON TECHNOLOGIES, INC.;REEL/FRAME:012833/0849 Effective date: 20000217 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
RF | Reissue application filed |
Effective date: 20040106 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CREDIT SUISSE, CAYMAN ISLANDS BRANCH, AS COLLATERA Free format text: SECURITY AGREEMENT;ASSIGNOR:MACDERMID GRAPHIC ARTS, INC.;REEL/FRAME:020004/0487 Effective date: 20070412 |
|
AS | Assignment |
Owner name: MACDERMID PRINTING SOLUTIONS, LLC, CONNECTICUT Free format text: CHANGE OF NAME;ASSIGNOR:MACDERMID GRAPHIC ARTS, LLC;REEL/FRAME:030574/0025 Effective date: 20020802 Owner name: MACDERMID GRAPHIC ARTS, LLC, DELAWARE Free format text: CHANGE OF NAME;ASSIGNOR:MACDERMID GRAPHIC ARTS, INC.;REEL/FRAME:030573/0926 Effective date: 20020722 |
|
AS | Assignment |
Owner name: MACDERMID PRINTING SOLUTIONS, LLC (AS SUCCESSOR-IN Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL AT REEL/FRAME NO. 20004/0487;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:030687/0628 Effective date: 20130607 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SECOND Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:MACDERMID PRINTING SOLUTIONS, LLC;REEL/FRAME:030831/0757 Effective date: 20130607 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS FIRST Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:MACDERMID PRINTING SOLUTIONS, LLC;REEL/FRAME:030831/0606 Effective date: 20130607 |
|
AS | Assignment |
Owner name: MACDERMID PRINTING SOLUTIONS, LLC, CONNECTICUT Free format text: RELEASE OF SECURITY INTEREST IN PATENT COLLATERAL AT REEL/FRAME NO. 30831/0757;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:031537/0113 Effective date: 20131031 Owner name: BARCLAYS BANK PLC, AS SUCCESSOR COLLATERAL AGENT, Free format text: ASSIGNMENT AND ASSUMPTION OF SECURITY INTERESTS AT REEL/FRAME NOS. 30831/0549, 30833/0660, 30831/0606, 30833/0700, AND 30833/0727;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:031536/0778 Effective date: 20131031 |
|
AS | Assignment |
Owner name: MACDERMID GRAPHICS SOLUTIONS, LLC, CONNECTICUT Free format text: CHANGE OF NAME;ASSIGNOR:MACDERMID PRINTING SOLUTIONS, LLC;REEL/FRAME:046268/0600 Effective date: 20170220 |
|
AS | Assignment |
Owner name: MACDERMID GRAPHICS SOLUTIONS, LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC, AS COLLATERAL AGENT;REEL/FRAME:048232/0638 Effective date: 20190131 |
|
AS | Assignment |
Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:MACDERMID GRAPHICS SOLUTIONS, LLC (F/K/A MACDERMID PRINTING SOLUTIONS, LLC);REEL/FRAME:049855/0001 Effective date: 20190131 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., NEW YORK Free format text: ASSIGNMENT OF SECURITY INTEREST IN PATENT COLLATERAL;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:061956/0643 Effective date: 20221115 |