US20020052507A1 - Process for making 3-amino-2-chloro-4-methylpyridine - Google Patents

Process for making 3-amino-2-chloro-4-methylpyridine Download PDF

Info

Publication number
US20020052507A1
US20020052507A1 US09/950,727 US95072701A US2002052507A1 US 20020052507 A1 US20020052507 A1 US 20020052507A1 US 95072701 A US95072701 A US 95072701A US 2002052507 A1 US2002052507 A1 US 2002052507A1
Authority
US
United States
Prior art keywords
methyl
dicyano
chloro
methylpyridine
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/950,727
Other versions
US6399781B1 (en
Inventor
Bernard Gupton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Pharmaceuticals Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/950,727 priority Critical patent/US6399781B1/en
Assigned to BOEHRINGER INGELHEIM CHEMICALS, INC. reassignment BOEHRINGER INGELHEIM CHEMICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUPTON, BERNARD FRANKLIN
Publication of US20020052507A1 publication Critical patent/US20020052507A1/en
Application granted granted Critical
Publication of US6399781B1 publication Critical patent/US6399781B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems

Definitions

  • the invention relates to an improved process for making 3-amino-2-chloro-4-methylpyridine, also known as CAPIC.
  • CAPIC is a key intermediate in the production of nevirapine, a non-nucleosidic reverse transcriptase inhibitor that has been established to be clinically useful for the treatment of infection by HIV-1.
  • the invention comprises an improved process for the preparation of 2-chloro-3-amino-4-methylpyridine (CAPIC) which comprises the following steps:
  • the first step of the above-described process is a Knovenagel condensation.
  • This is carried out in an organic solvent at a temperature in the range between 0 and 50° C.
  • Acceptable solvents are, for example, aromatic hydrocarbons such as benzene, toluene or alkanols such as methanol, ethanol, propanols and other higher molecular weight alcohols.
  • the preferred solvents are toluene and methanol.
  • the preferred reaction temperature is 15 to 25° C.
  • the condensation is run in the presence of a small quantity of an ammonium salt catalyst.
  • Preferred catalysts are heterocyclic ammonium salts. Most preferred is piperidinium acetate.
  • the product of the Knovenagel condensation is a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene. These two compounds need not be separated, as they both are converted in the next step, which is an acid-catalyzed cyclization, to 3-cyano-4-methyl-2-pyridone. It is possible to conduct the cyclization simply by acidifying the initial reaction mixture, without isolation of the mixture of intermediates. However, it is preferred to first isolate the two intermediates from the other components of the crude Knovenagel reaction mixture. This is conveniently accomplished by washing the reaction mixture emanating from the condensation with water, to remove the basic catalyst, followed by evaporation, to remove the solvent (toluene or methanol).
  • the acid-catalyzed cyclization is performed with a strong acid, such as, for example, concentrated and sulfuric acid.
  • a strong acid such as, for example, concentrated and sulfuric acid.
  • the reaction is highly exothermic, it is best to introduce the mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene into the acid slowly, and with stirring, so that the temperature of the mixture does not rise above about 50° C.
  • the reaction mixture is heated to between about 30 and 50° C., preferably 50° C., and held at that temperature for between about 1 and 3 hours, preferably about 1.5 hours, to complete the reaction.
  • the reaction mixture is cooled to ambient temperature, water is added, and the intermediate product, 3-cyano-4-methyl-2-pyridone, is filtered off, washed with water and dried.
  • the 3-cyano-4-methyl-2-pyridone so produced is treated with a strong chlorinating agent.
  • Suitable chlorinating agents are SOCl 2 , POCl 3 and PCl 5 . It is preferred to use POCl 3 (10 parts)and PCl 5 (1 part).
  • the reaction mixture is heated to reflux (approximately 115° C.) and held under this condition for about two hours, or until the chlorination is essentially complete.
  • the chlorinating agent is removed. For example, excess POCl 3 may be removed by distillation.
  • the reaction mixture is then cooled and water is added.
  • the 2-chloro-3-cyano-4-methylpyridine is filtered from the aqueous mixture.
  • the aqueous filtrate is extracted with an inert organic solvent such as chloroform, methylene chloride, with methylene chloride being preferred in order to recover the residual 2-chloro-3-cyano-4-methylpyridine.
  • the 3-cyano intermediate is next converted to a 3-amido compound. This is accomplished by treating the cyano intermediate with a concentrated, aqueous strong acid, such as sulfuric acid. This is preferably done with stirring, at a temperature between about 70 and 110° C., preferably at about 90° C.
  • the mixture was heated to between about 80 and 120° C., preferably about 100° C. and held at that temperature for three hours, or until further reaction ceases.
  • the reaction mixture is then cooled to between about 70 and 110° C., preferably about 90° C., and water is added.
  • the mixture is then cooled to between about 0 and 20° C., preferably about 10° C. and held at that temperature for about one hour.
  • the solid product, 2-chloro-3-amido-4-methylpyridine is isolated from the reaction mixture by filtration, washed with water and dried.
  • the 3-amido intermediate is converted to the 3-amino final product by adding it to a mixture of a strong base and a halogen.
  • the base may be aqueous sodium carbonate or sodium hydroxide, preferably sodium hydroxide.
  • the halogen may be chlorine or bromine, preferably bromine.
  • the resulting reaction mixture is heated to between about 10 and 30° C., preferably to about 22° C. Water is then added to the reaction mixture followed by heating to between 60 and 80° C., preferably to about 70° C., for one additional hour.
  • the reaction mixture is cooled to ambient temperature and extracted with an inert organic solvent, such as chloroform or methylene chloride, preferably methylene chloride.
  • the organic solvent is removed by evaporation, to yield 2-chloro-3-amino-4-methylpyridine.
  • Example 1 describes a specific preparation of CAPIC that was carried out in accordance with the general method of the invention.
  • Piperidinium acetate (5.42 g, 0.037 moles) was added to a stirred solution of toluene (150 ml) and acetylacetaldehyde dimethyl acetal (49.3 g, 0.373 moles). Malononitrile (24.65 g, 0.373 moles) was then added to the reaction mixture over a 20-minute period. The mixture was allowed to stir for 24 hours at room temperature.
  • reaction mixture was then washed with 50 mL of water followed by rotary evaporation to give 67.14 g of a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetatal (1) and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene (2).
  • Mass spectrum m/z (1) m/z 179, 149, 121, 75 (2) 148, 133, 119, 91, 83, 78
  • Mass spectrum m/z 155, 154, 152, 117, 116, 90, 89, 76, 64, 63, 62
  • Mass spectrum m/z 155, 154, 152, 116, 91, 90, 89, 88, 76, 75, 64, 63, 62, 52, 51
  • FTIR (KBr): 3407, 3303, 3194, 3116, 3069, 3031, 2962, 2847, 1664, 1539,1475, 1458, 1380, 1174, 1145, 798, 595 cm ⁇ 1 .
  • IR (KBr): 3429, 3308, 3198, 1630, 1590, 1550, 1475, 1451, 1441, 1418, 1377, 1295, 1122, 860, 821, 656, 527 cm ⁇ 1
  • Mass spectrum m/z 145, 144, 142, 107, 106, 105, 80, 79, 78, 62, 54, 53, 52
  • Example 2 describes a specific preparation of CAPIC that was carried out in accordance with the preferred method of the invention in which the Knovenagel condensation reaction product is purified by short path distillation.
  • Piperidinium acetate (5.42 g, 0.037 moles) was added to a stirred solution of toluene (150 ml) and acetylacetaldehyde dimethyl acetal (49.3 g, 0.373 moles). Malononitrile (24.65 g, 0.373 moles) was then added to the reaction mixture over a 20-minute period. The mixture was allowed to stir for 24 hours at room temperature.
  • reaction mixture was then washed with 50 mL of water followed by rotary evaporation to give 67.14 g of a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetatal (1) and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene (2).
  • the crude reaction product was then distilled on a 0.1 square meter stainless steel wiped film evaporator at 109° C., 0.1 mm Hg and 240 RPM to give 60.1 kg of a yellow liquid
  • Mass spectrum m/z (1) m/z 179, 149, 121, 75 (2) 148, 133, 119, 91, 83, 78
  • Mass spectrum m/z: 155, 154, 152, 117, 116, 90, 89, 76, 64, 63, 62
  • Mass spectrum m/z 155, 154, 152, 116, 91, 90, 89, 88, 76, 75, 64, 63, 62, 52, 51
  • Mass spectrum m/z 145, 144, 142, 107, 106, 105, 80, 79, 78, 62, 54, 53, 52

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • AIDS & HIV (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A method for making 3-amino-2-chloro-4-methylpyridine, as shown in Scheme 12, below.
Figure US20020052507A1-20020502-C00001

Description

    RELATED APPLICATIONS
  • Benefit of U.S. Provisional Application Serial No. 60/239,300, filed on Oct. 10, 2000 and U.S. Provisional Application Serial No. 60/291,841, filed on May 17, 2001 are hereby claimed.[0001]
  • FIELD OF THE INVENTION
  • The invention relates to an improved process for making 3-amino-2-chloro-4-methylpyridine, also known as CAPIC. [0002]
  • BACKGROUND OF THE INVENTION
  • CAPIC is a key intermediate in the production of nevirapine, a non-nucleosidic reverse transcriptase inhibitor that has been established to be clinically useful for the treatment of infection by HIV-1. [0003]
    Figure US20020052507A1-20020502-C00002
  • Syntheses of nevirapine from CAPIC have been described by Hargrave et al., in [0004] J. Med. Chem. 34, 2231 (1991) and U.S. Pat. No. 5,366,972, and by Schneider et al., in U.S. Pat. No. 5,569,760.
  • Several processes for preparing CAPIC have been described in the literature. [0005]
  • It is believed that the earliest synthesis of CAPIC, depicted below in Scheme 1, is that of Chapman et al. ([0006] J. Chem Soc. Perkin Trans.1, (1980), 2398-2404).
    Figure US20020052507A1-20020502-C00003
  • A closely related synthesis for CAPIC, depicted below in Scheme 2, has been described by Hargrave et al. (U.S. Pat. No. 5,366,972). [0007]
    Figure US20020052507A1-20020502-C00004
  • As reported by Grozinger et al. ([0008] J. Heterocyclic Chem., 32, 259 (1995)), CAPIC has been synthesized in small laboratory batches by nitrating the readily available 2-amino-4-picoline or 2-hydroxy-4-picoline, as depicted below in Scheme 3. This procedure suffers from non-selective nitration at positions 3 and 5, as well as thermo-chemical hazards and potential for “run-away” when carried out in large quantities.
    Figure US20020052507A1-20020502-C00005
  • The drawbacks of the nitration-based process lead Grozinger to develop the two synthetic routes, which start from ethylacetoacetone and cyanacetamide, that are described in U.S. Pat. Nos. 5,668,287 and 5,200,522, and are depicted below in Schemes 4 and 5. Both of the latter two synthetic routes require the dichlorination of the intermediate 2,6-dihydroxy-4-methyl-3-pyridinecarbonitrile, at positions 2 and 6, subsequent de-chlorination and finally selective re-chlorination, using chlorine gas, at position 2. The di-chlorination and dehalogenation, as well as the selective monochlorination at position 2 require special manufacturing equipment that is expensive and may not be readily available. [0009]
    Figure US20020052507A1-20020502-C00006
    Figure US20020052507A1-20020502-C00007
  • Schneider (U.S. Pat. No. 5,686,618) has provided an alternative means for mono-chlorinating 3-amino-4-methylpyridine at position 2, using H[0010] 2O2 in HCl, instead of chlorine gas.
  • Yet another synthesis, depicted below in Scheme 6, comprising the steps of chlorination of ethyl cyanoacetate, Michael addition with crotonaldehyde, cyclization, conversion to the amide and finally reduction to the amine has been described by Zhang et al. ([0011] Tetrahedron 51(48), 13177-13184 (1995)), who report that while the desired product was obtained, the Michael addition was slow and the cyclization low-yielding.
    Figure US20020052507A1-20020502-C00008
  • A synthesis beginning with 2-chloro-3-aminopyridine has been disclosed by Nummy (U.S. Pat. No. 5,654,429). This is depicted below in Scheme 7. [0012]
    Figure US20020052507A1-20020502-C00009
  • International Application WO 00/43365 describes the process for preparing CAPIC that is depicted below in Scheme 8. [0013]
    Figure US20020052507A1-20020502-C00010
  • A closely related alternative, depicted below in Scheme 9, is disclosed in International Application PCT/US00/00261. [0014]
    Figure US20020052507A1-20020502-C00011
  • Baldwin et al. ([0015] J. Org. Chem., 43, 2529 (1978)), reported a method for the preparation of 2-halonicotinic acid derivatives using β,γ-unsaturated aldehyde equivalents as shown in Scheme 10. The procedure involves the initial Knovenagel condensation of an aldehyde or ketone with ethyl cyanoacetate or malonitrile followed by reaction with DMF acetal. The cyclization of the β,γ-unsaturated aldehyde equivalent is carried out by treatment with HBr-acetic acid to give the 2-bromo adduct directly. Reaction yields with DMF acetal were in the 5 to 60% range, depending on the nature of the alkyl substituents. In several cases, the reaction of DMF acetal with the Knovenagel adduct led to dimer formation. Overall yields for the two step process varied from 3 to 35% depending on the nature of the substituents.
    Figure US20020052507A1-20020502-C00012
  • Baldwin et al., supra., also used mixtures of acetals and enol ethers as β,γ-unsaturated aldehyde equivalents to overcome the limitations associated with the use of DMF acetal in the preparation of 2-bromonicotinic acid derivatives (Scheme 11). Yields also tended to vary with this approach depending on the substitution pattern of Knovenagel adduct. Yields for the cyclization step ranged from 29 to 74% while overall yields for the two step process ranged from 15 to 40%. [0016]
    Figure US20020052507A1-20020502-C00013
  • In summary, the methods that have been developed to date for the preparation of CAPIC and other related 4-alkylnicotinic acid derivatives suffer from excessive complexity, inefficiency and/or lack of regiocontrol. Of the approaches considered, Baldwin's use of acetal/enol ether systems addresses the regioselectivity issues most effectively [0017]
  • DESCRIPTION OF THE INVENTION
  • In its most general aspect, the invention comprises an improved process for the preparation of 2-chloro-3-amino-4-methylpyridine (CAPIC) which comprises the following steps: [0018]
  • (a) reacting acetylacetaldehyde dimethyl acetal [0019]
    Figure US20020052507A1-20020502-C00014
  • with malononitrile [0020]
  • to yield a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene [0021]
    Figure US20020052507A1-20020502-C00015
  • (b) treating the mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene so produced with a strong acid and water, to yield 3-cyano-4-methyl-2-pyridone [0022]
    Figure US20020052507A1-20020502-C00016
  • (c) treating the 3-cyano-4-methyl-2-pyridone so produced with a strong chlorinating agent, to yield 3-cyano-2-chloro-4-methylpyridine [0023]
    Figure US20020052507A1-20020502-C00017
  • (d) treating the 3-cyano-2-chloro-4-methylpyridine produced in the preceding step with a strong acid and water, to yield 2-chloro-3-amido-4-methylpyridine [0024]
    Figure US20020052507A1-20020502-C00018
  • (e) treating the 2-chloro-3-amido-4-methylpyridine produced in the preceding step with a strong base and a halide, to yield 2-chloro-3-amino-4-methylpyridine. [0025]
  • This general method is depicted below in Scheme 12. [0026]
    Figure US20020052507A1-20020502-C00019
  • The intermediates 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene are believed to be novel, and constitute an aspect of the invention. [0027]
  • The first step of the above-described process is a Knovenagel condensation. This is carried out in an organic solvent at a temperature in the range between 0 and 50° C. Acceptable solvents are, for example, aromatic hydrocarbons such as benzene, toluene or alkanols such as methanol, ethanol, propanols and other higher molecular weight alcohols. The preferred solvents are toluene and methanol. The preferred reaction temperature is 15 to 25° C. The condensation is run in the presence of a small quantity of an ammonium salt catalyst. Preferred catalysts are heterocyclic ammonium salts. Most preferred is piperidinium acetate. [0028]
  • The product of the Knovenagel condensation is a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene. These two compounds need not be separated, as they both are converted in the next step, which is an acid-catalyzed cyclization, to 3-cyano-4-methyl-2-pyridone. It is possible to conduct the cyclization simply by acidifying the initial reaction mixture, without isolation of the mixture of intermediates. However, it is preferred to first isolate the two intermediates from the other components of the crude Knovenagel reaction mixture. This is conveniently accomplished by washing the reaction mixture emanating from the condensation with water, to remove the basic catalyst, followed by evaporation, to remove the solvent (toluene or methanol). [0029]
  • While the crude reaction mixture can be carried forward to the next step after catalyst removal and concentration, it has been discovered that this crude product contains undesired byproducts that tend to be carried forward into subsequent reaction steps and reduce yields. Therefore it is desirable to remove these byproducts once the catalyst removal and concentration have been completed. The removal of these byproducts can be performed by simple distillation techniques, preferably by continuous short path distillation such as wiped or thin film evaporation. This technique is particularly effective for the removal of high boiling materials, which appears to be sufficient to obtain the observed yield improvements. [0030]
  • The acid-catalyzed cyclization is performed with a strong acid, such as, for example, concentrated and sulfuric acid. As the reaction is highly exothermic, it is best to introduce the mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene into the acid slowly, and with stirring, so that the temperature of the mixture does not rise above about 50° C. After evolution of heat has substantially ceased, the reaction mixture is heated to between about 30 and 50° C., preferably 50° C., and held at that temperature for between about 1 and 3 hours, preferably about 1.5 hours, to complete the reaction. The reaction mixture is cooled to ambient temperature, water is added, and the intermediate product, 3-cyano-4-methyl-2-pyridone, is filtered off, washed with water and dried. [0031]
  • Next, the 3-cyano-4-methyl-2-pyridone so produced is treated with a strong chlorinating agent. Suitable chlorinating agents are SOCl[0032] 2, POCl3 and PCl5. It is preferred to use POCl3 (10 parts)and PCl5(1 part). The reaction mixture is heated to reflux (approximately 115° C.) and held under this condition for about two hours, or until the chlorination is essentially complete. The chlorinating agent is removed. For example, excess POCl3 may be removed by distillation. The reaction mixture is then cooled and water is added. The 2-chloro-3-cyano-4-methylpyridine is filtered from the aqueous mixture. The aqueous filtrate is extracted with an inert organic solvent such as chloroform, methylene chloride, with methylene chloride being preferred in order to recover the residual 2-chloro-3-cyano-4-methylpyridine.
  • The 3-cyano intermediate is next converted to a 3-amido compound. This is accomplished by treating the cyano intermediate with a concentrated, aqueous strong acid, such as sulfuric acid. This is preferably done with stirring, at a temperature between about 70 and 110° C., preferably at about 90° C. The mixture was heated to between about 80 and 120° C., preferably about 100° C. and held at that temperature for three hours, or until further reaction ceases. The reaction mixture is then cooled to between about 70 and 110° C., preferably about 90° C., and water is added. The mixture is then cooled to between about 0 and 20° C., preferably about 10° C. and held at that temperature for about one hour. The solid product, 2-chloro-3-amido-4-methylpyridine, is isolated from the reaction mixture by filtration, washed with water and dried. [0033]
  • In the final step of the process, the 3-amido intermediate is converted to the 3-amino final product by adding it to a mixture of a strong base and a halogen. The base may be aqueous sodium carbonate or sodium hydroxide, preferably sodium hydroxide. The halogen may be chlorine or bromine, preferably bromine. The resulting reaction mixture is heated to between about 10 and 30° C., preferably to about 22° C. Water is then added to the reaction mixture followed by heating to between 60 and 80° C., preferably to about 70° C., for one additional hour. The reaction mixture is cooled to ambient temperature and extracted with an inert organic solvent, such as chloroform or methylene chloride, preferably methylene chloride. The organic solvent is removed by evaporation, to yield 2-chloro-3-amino-4-methylpyridine. [0034]
  • Example 1, below, describes a specific preparation of CAPIC that was carried out in accordance with the general method of the invention.[0035]
  • EXAMPLE 1
  • a) Preparation of a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene [0036]
  • (Knovenagel Condensation) [0037]
    Figure US20020052507A1-20020502-C00020
  • Piperidinium acetate (5.42 g, 0.037 moles) was added to a stirred solution of toluene (150 ml) and acetylacetaldehyde dimethyl acetal (49.3 g, 0.373 moles). Malononitrile (24.65 g, 0.373 moles) was then added to the reaction mixture over a 20-minute period. The mixture was allowed to stir for 24 hours at room temperature. The reaction mixture was then washed with 50 mL of water followed by rotary evaporation to give 67.14 g of a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetatal (1) and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene (2). [0038]
  • mp: not isolated [0039]
  • Yield: 71.9% (1) and 21.6% (2) [0040]
  • [0041] 1H NMR: s 4.55 (m, 1H), 3.4 (5, 6H), 2.9 (d, 2H), 2.25 (5, 3H)
  • IR(KBr): 3059, 2219, 1629, 1547, 1359, 1248, 1143 ,981 cm[0042] −1
  • Mass spectrum m/z: (1) m/z 179, 149, 121, 75 (2) 148, 133, 119, 91, 83, 78 [0043]
  • Purity: crude mixture [0044]
  • (b) Preparation of 3-cyano-4-methyl-2-pyridone [0045]
  • (Cyclization) [0046]
    Figure US20020052507A1-20020502-C00021
  • The mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetatal (1) and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene (2) produced by the preceding step was added to a stirred solution of concentrated sulfuric acid (109.8 g, 1.12 moles) at a rate so that the reaction contents did not exceed 30° C. The reaction mixture was then heated to 50° C. and held at that temperature for 1.5 hours. The reaction mixture was cooled to ambient temperature followed by the addition of water (150 mL). The product was filtered from the reaction mixture, washed with water (20 mL) and dried in a vacuum oven at 70° C. and full vacuum for 12 hours to give 40.7 g of 3-cyano-4-methyl-2-pyridone (3). [0047]
  • mp: 230-232° C. [0048]
  • Yield: 81.4% [0049]
  • [0050] 1H NMR:6.95 (d, J=2 Hz, 1H), 6.29 (d, J=2 Hz, 1H), 2.35 (s, 3H); 13C NMR 162.0, 160.4, 140.0, 116.1, 108.1, 103.4,21.1
  • IR (KBr): 3144, 3097, 2979, 2833, 2227, 1652, 1635, 1616, 1539, 1484, 1242, 1218, 1173, 819 cm[0051] −1
  • Mass spectrum m/z: 134, 105, 78, 63, 51 [0052]
  • Purity: 98.6% by HPLC analysis (peak area basis) [0053]
  • (c) Preparation of 2-chloro-3-cyano-4-methylpyridine [0054]
  • (Chlorination) [0055]
    Figure US20020052507A1-20020502-C00022
  • The product of the preceding step, 4-methyl-3-cyano-2-pyridone (40.7 g, 0.304 moles) was added to a stirred solution of POCL[0056] 3 (140 g, 0.912 moles) and PCl5 (19.0 g, 0.091 moles). The reaction was heated to reflux (approximately 115° C.) and held under those conditions for two hours. Excess POCL3 was removed by distillation. The reaction mixture was then cooled followed by the addition of water (30 mL) water. The aqueous mixture was extracted with 30 mL methylene chloride. The extracts were concentrated and 43.2 g was recovered as a tan solid, which was determined to be 2-chloro-3-cyano-4-methylpyridine (4).
  • mp: 102-104° C. [0057]
  • Yield: 82.7% [0058]
  • [0059] 1H NMR: 8.03, (d, J=2 Hz, 1H), 7.6 (d, J=2 Hz, 1H), 2.5 (s, 3H); 13C NMR 156.1, 152.6, 151.8, 124.9, 114.4, 111.8, 20.6
  • Mass spectrum m/z: 155, 154, 152, 117, 116, 90, 89, 76, 64, 63, 62 [0060]
  • FTIR (KBr): 3144, 2979, 2834, 2228, 1653, 1616, 1540, 1484, 1242, 1218, 1173, 819, 607 cm[0061] −1
  • Purity: 98.2% by HPLC analysis (peak area basis) [0062]
  • (d) Preparation of 2-chloro-3-amido-4-methylpyridine (Addition of water) [0063]
    Figure US20020052507A1-20020502-C00023
  • The product of the preceding step, 2-chloro-3-cyano-4-methylpyridine (34.14 g, 0.224 moles) was added to a stirred solution of concentrated sulfuric acid (65.87 g, 0.672 moles) at 90° C. The mixture was then heated to 100° C. and held at that temperature for three hours. The reaction was then cooled to 90° C. followed by the addition of water (121 mL). The mixture was cooled to 10° C. and held at that temperature for one hour. The solid product was isolated from the reaction mixture by filtration, washed with water (16 mL) and dried at 70° C. under full vacuum to give 34.7 g of 2-chloro-3-amido-4-methylpyridine (5). [0064]
  • mp: 178-179° C. [0065]
  • Yield: (90.9% [0066]
  • [0067] 1H NMR: 8.28 (d, J=8 Hz, 1H), 8.09 (s, 1H), 7.84 (s, 1H), 7.34 (d, J=8 Hz, 1H), 2.31 (s, 3H)
  • [0068] 13C NMR: 166.4, 1149.0, 1437.8, 146.2, 136.0, 125.0, 18.9
  • Mass spectrum m/z: 155, 154, 152, 116, 91, 90, 89, 88, 76, 75, 64, 63, 62, 52, 51 [0069]
  • FTIR (KBr): 3407, 3303, 3194, 3116, 3069, 3031, 2962, 2847, 1664, 1539,1475, 1458, 1380, 1174, 1145, 798, 595 cm[0070] −1.
  • (e) Preparation of 2-chloro-3-amino-4-methylpyridine [0071]
    Figure US20020052507A1-20020502-C00024
  • Bromine (34.7 g, 0.204 moles) was added to a stirred solution of sodium hydroxide (8.14 g. 0.224 moles) and water (205 mL) at 0° C. The product of the preceding step, 2-chloro-3-amido-4-picoline (34.7 g, 0.204 moles) was then added to the reaction mixture followed by heating to 22° C. An additional 66 mL water was then added to the reaction mixture followed by heating to 70° C. and stirring for one additional hour. The reaction mixture was cooled to ambient temperature and extracted with methylene chloride (60 mL). The methylene chloride was removed by rotary evaporation to give 24.8 g of 2-chloro-3-amino-4-methylpyridine (6). [0072]
  • mp: 69° C. [0073]
  • Yield: 85.2% [0074]
  • [0075] 1H NMR: 7.5 (d, J=4.64 Hz, 1H), 7.0 (d, J=4.28 Hz, 1H), 5.25 (s, 2H), 2.1 (s,3H)
  • [0076] 13CNMR: 140.0, 136.2, 135.6, 131.9, 125.7, 19.0
  • IR (KBr): 3429, 3308, 3198, 1630, 1590, 1550, 1475, 1451, 1441, 1418, 1377, 1295, 1122, 860, 821, 656, 527 cm[0077] −1
  • Mass spectrum m/z: 145, 144, 142, 107, 106, 105, 80, 79, 78, 62, 54, 53, 52 [0078]
  • Purity: 87.6%, HPLC analysis (peak area basis). [0079]
  • Example 2, below, describes a specific preparation of CAPIC that was carried out in accordance with the preferred method of the invention in which the Knovenagel condensation reaction product is purified by short path distillation. [0080]
  • a) Preparation of a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene followed by short path distillation (Knovenagel Condensation) [0081]
    Figure US20020052507A1-20020502-C00025
  • Piperidinium acetate (5.42 g, 0.037 moles) was added to a stirred solution of toluene (150 ml) and acetylacetaldehyde dimethyl acetal (49.3 g, 0.373 moles). Malononitrile (24.65 g, 0.373 moles) was then added to the reaction mixture over a 20-minute period. The mixture was allowed to stir for 24 hours at room temperature. The reaction mixture was then washed with 50 mL of water followed by rotary evaporation to give 67.14 g of a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetatal (1) and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene (2). The crude reaction product was then distilled on a 0.1 square meter stainless steel wiped film evaporator at 109° C., 0.1 mm Hg and 240 RPM to give 60.1 kg of a yellow liquid [0082]
  • Yield: 85.0% (1) and (2) [0083]
  • [0084] 1H NMR: s 4.55 (m, 1H), 3.4 (5, 6H), 2.9 (d, 2H), 2.25 (5, 3H)
  • IR (KBr): 3059, 2219, 1629, 1547, 1359, 1248, 1143, 981 cm[0085] −1
  • Mass spectrum m/z: (1) m/z 179, 149, 121, 75 (2) 148, 133, 119, 91, 83, 78 [0086]
  • Purity: 94.0% (1) and (2) [0087]
  • (b) Preparation of 3-cyano-4-methyl-2-pyridone (Cyclization) [0088]
    Figure US20020052507A1-20020502-C00026
  • The mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetatal (1) and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene (2) produced by the preceding step was added to a stirred solution of concentrated sulfuric acid (109.8 g, 1.12 moles) at a rate so that the reaction contents did not exceed 30° C. The reaction mixture was then heated to 50° C. and held at that temperature for 1.5 hours. The reaction mixture was cooled to ambient temperature followed by the addition of water (150 mL). The product was filtered from the reaction mixture, washed with water (20 mL) and dried in a vacuum oven at 70° C. and full vacuum for 12 hours to give 40.7 g of 3-cyano-4-methyl-2-pyridone (3). [0089]
  • mp: 230-232° C. [0090]
  • Yield: 90.6% [0091]
  • [0092] 1H NMR: 6.95 (d, J=2 Hz, 1H), 6.29 (d, J=2 Hz, 1H), 2.35 (s, 3H); 13C NMR 162.0, 160.4, 40.0, 116.1, 108.1, 103.4, 21.1
  • IR (KBr): 3144, 3097, 2979, 2833, 2227, 1652, 1635, 1616, 1539, 1484, 1242, 1218, 1173, 819 cm[0093] −1
  • Mass spectrum m/z: 134, 105, 78, 63, 51 [0094]
  • Purity: 98.8% by HPLC analysis (peak area basis) [0095]
  • (c) Preparation of 2-chloro-3-cyano-4-methylpyridine (Chlorination) [0096]
    Figure US20020052507A1-20020502-C00027
  • The product of the preceding step, 4-methyl-3-cyano-2-pyridone (40.7 g, 0.304 moles) was added to a stirred solution of POCL[0097] 3 (140 g, 0.912 moles) and PCl5 (19.0 g, 0.091 moles). The reaction was heated to reflux (approximately 115° C.) and held under those conditions for two hours. Excess POCL3 was removed by distillation. The reaction mixture was then cooled followed by the addition of water (30 mL) water. The aqueous mixture was extracted with 30 mL methylene chloride. The extracts were concentrated and 43.2 g was recovered as a tan solid, which was determined to be 2-chloro-3-cyano-4-methylpyridine (4) .
  • mp: 102-104° C. [0098]
  • Yield: 98.2% [0099]
  • [0100] 1H NMR: 8.03 (d, J=2 Hz, 1H), 7.6 (d, J=2 Hz, 1H), 2.5 (s, 3H); 13C NMR 156.1, 152.6, 151.8, 124.9, 114.4, 111.8, 20.6
  • Mass spectrum m/z: 155, 154, 152, 117, 116, 90, 89, 76, 64, 63, 62 [0101]
  • FTIR (KBr): 3144, 2979, 2834, 2228, 1653, 1616, 1540, 1484, 1242, 1218, 1173, 819, 607 cm[0102] −1
  • Purity: 98.6% by HPLC analysis (peak area basis) [0103]
  • (d) Preparation of 2-chloro-3-amido-4-methylpyridine (Addition of water) [0104]
    Figure US20020052507A1-20020502-C00028
  • The product of the preceding step, 2-chloro-3-cyano-4-methylpyridine (34.14 g, 0.224 moles) was added to a stirred solution of concentrated sulfuric acid (65.87 g, 0.672 moles) at 90° C. The mixture was then heated to 100° C. and held at that temperature for three hours. The reaction was then cooled to 90° C. followed by the addition of water (121 mL). The mixture was cooled to 10° C. and held at that temperature for one hour. The solid product was isolated from the reaction mixture by filtration, washed with water (16 mL) and dried at 70° C. under full vacuum to give 34.7 g of 2-chloro-3-amido-4-methylpyridine (5). [0105]
  • mp: 178-179° C. [0106]
  • Yield: 92.93% [0107]
  • [0108] 1H NMR: 8.28 (d, J=8 Hz, 1H), 8.09 (s, 1H), 7.84 (s, 1H), 7.34 (d, J=8 Hz, 1H), 2.31 (s, 3H)
  • [0109] 13C NMR: 166.4, 1149.0, 1437.8, 146.2, 136.0, 125.0, 18.9
  • Mass spectrum m/z: 155, 154, 152, 116, 91, 90, 89, 88, 76, 75, 64, 63, 62, 52, 51 [0110]
  • FTIR(KBr): 3407, 3303, 3194, 3116, 3069, 3031, 2962, 2847, 1664, 1539,1475, 1458, 1380, 1174, 1145, 798, 595 cm[0111] −1.
  • (e) Preparation of 2-chloro-3-amino-4-methylpyridine [0112]
    Figure US20020052507A1-20020502-C00029
  • Bromine (34.7 g, 0.204 moles) was added to a stirred solution of sodium hydroxide (8.14 g. 0.224 moles) and water (205 mL) at 0° C. The product of the preceding step, 2-chloro-3-amido-4-picoline (34.7 g, 0.204 moles) was then added to the reaction mixture followed by heating to 22° C. An additional 66 mL water was then added to the reaction mixture followed by heating to 70° C. and stirring for one additional hour. The reaction mixture was cooled to ambient temperature and extracted with methylene chloride (60 mL). The methylene chloride was removed by rotary evaporation to give 24.8 g of 2-chloro-3-amino-4-methylpyridine (6). [0113]
  • mp: 69° C. [0114]
  • Yield: 93.1 % [0115]
  • [0116] 1H NMR: 7.5 (d, J=4.64 Hz, 1H), 7.0 (d, J=4.28 Hz, 1H), 5.25 (s, 2H), 2.1 (s,3H)
  • [0117] 13CNMR: 140.0, 136.2, 135.6,131.9, 125.7, 19.0
  • IR(KBr): 3429, 3308, 3198, 1630, 1590, 1550, 1475, 1451, 1441, 1418, 1377, 1295, 1122, 860, 821, 656, 527 cm[0118] −1
  • Mass spectrum m/z: 145, 144, 142, 107, 106, 105, 80, 79, 78, 62, 54, 53, 52 [0119]
  • Purity: 100.2%, HPLC analysis (peak area basis). [0120]

Claims (11)

What is claimed is:
1. A process for preparing 2-chloro-3-amino-4-methylpyridine
Figure US20020052507A1-20020502-C00030
which comprises the following steps:
(a) reacting acetylacetaldehyde dimethyl acetal with malononitrile, in the presence of an ammonium salt catalyst, to yield a mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene,
(b) treating the mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene so produced with a strong acid and water, to yield 3-cyano-4-methyl-2-pyridone,
(c) treating the 3-cyano-4-methyl-2-pyridone so produced with a strong chlorinating agent, to yield 3-cyano-2-chloro-4-methylpyridine
(d) treating the 3-cyano-2-chloro-4-methylpyridine produced in the preceding step with a strong acid and water, to yield 2-chloro-3-amido-4-methylpyridine, and
(e) treating the 2-chloro-3-amido-4-methylpyridine produced in the preceding step with a strong base and a halide, to yield 2-chloro-3-amino-4-methylpyridine.
2. The process of claim 1 wherein the ammonium salt catalyst used in step (a) is piperidinium acetate.
3. The process of claim 1 wherein the acid used in step (b) is sulfuric acid.
4. The process of claim 1 wherein the chorinating agent used in step (c) is a mixture of POCL3 and PCl5.
5. The process of claim 1 wherein the strong acid used in step (d) is sulfuric acid.
6. The process of claim 1 wherein the base and halide used in step (e) are, respectively, NaOH and Br2.
7. The process of claim 1 wherein the crude mixture of 4,4-dicyano-3-methyl-3-butenal dimethyl acetal and 1,1-dicyano-4-methoxy-2-methyl-1,3-butadiene produced in step (a) is washed with water to remove catalyst, followed by evaporation to remove solvent, and the remaining crude mixture is then subjected to distillation, to remove high boiling reaction byproducts, and then the remaining process steps (b) though (e) are carried out.
8. The process of claim 7, wherein the distillation is continuous, short path distillation.
9. The process of claim 8 wherein the distillation is accomplished via wiped or thin film evaporation.
10. 4,4-Dicyano-3-methyl-3-butenal dimethyl acetal.
11. 1,1-Dicyano-4-methoxy-2-methyl-1,3-butadiene.
US09/950,727 2000-10-10 2001-09-12 Process for making 3-amino-2-chloro-4-methylpyridine Expired - Lifetime US6399781B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/950,727 US6399781B1 (en) 2000-10-10 2001-09-12 Process for making 3-amino-2-chloro-4-methylpyridine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23930000P 2000-10-10 2000-10-10
US29184101P 2001-05-17 2001-05-17
US09/950,727 US6399781B1 (en) 2000-10-10 2001-09-12 Process for making 3-amino-2-chloro-4-methylpyridine

Publications (2)

Publication Number Publication Date
US20020052507A1 true US20020052507A1 (en) 2002-05-02
US6399781B1 US6399781B1 (en) 2002-06-04

Family

ID=26932446

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/950,727 Expired - Lifetime US6399781B1 (en) 2000-10-10 2001-09-12 Process for making 3-amino-2-chloro-4-methylpyridine

Country Status (15)

Country Link
US (1) US6399781B1 (en)
EP (1) EP1326836B1 (en)
JP (1) JP4102665B2 (en)
AR (1) AR032369A1 (en)
AT (1) ATE266004T1 (en)
AU (1) AU2001291313A1 (en)
CA (1) CA2425494C (en)
DE (1) DE60103173T2 (en)
DK (1) DK1326836T3 (en)
ES (1) ES2220805T3 (en)
MX (1) MXPA03003177A (en)
PT (1) PT1326836E (en)
TR (1) TR200401051T4 (en)
UY (1) UY26954A1 (en)
WO (1) WO2002030901A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508945A (en) * 2012-06-26 2014-01-15 上海品沃化工有限公司 Preparation method of 2-chloro-4-methyl nicotinonitrile
CN103664772A (en) * 2013-11-29 2014-03-26 山东永泰化工有限公司 Synthesis method of 5-chloro-3-cyano-4-methony-2-(1H)-pyridinone
WO2016118586A1 (en) * 2015-01-20 2016-07-28 Virginia Commonwealth University Lowcost, high yield synthesis of nevirapine
CN115772114A (en) * 2023-01-04 2023-03-10 成都理工大学 Method for synthesizing 2, 3-dihydropyridone by one-pot method under catalysis of iodopyridinium salt

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA200605471B (en) 2003-12-23 2007-11-28 Dow Agrosciences Llc Process for the preparation of pyridine derivatives
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US7854597B2 (en) 2004-08-26 2010-12-21 Pentair Water Pool And Spa, Inc. Pumping system with two way communication
CN100358871C (en) * 2005-08-02 2008-01-02 江阴暨阳医药化工有限公司 Synthesis method of 2-chloro-3-amido-4picoline from cyanoacetamide and acetone
CN102898361B (en) * 2012-10-08 2014-02-19 鲁东大学 Method for preparing 2-chlorine-3-amino-4-picoline
CN104592104B (en) * 2015-01-13 2017-02-22 江苏中邦制药有限公司 Method for preparing 2-chloronicotinic acid
CN105859614B (en) * 2015-01-19 2020-05-26 盐城迪赛诺制药有限公司 Method for preparing 2-chloro-3-cyano-4-methylpyridine
CN110218211B (en) * 2018-03-01 2020-06-23 新发药业有限公司 Simple preparation method of nevirapine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3434921A1 (en) 1984-09-22 1986-05-07 Sandoz-Patent-GmbH, 7850 Lörrach HETEROCYCLIC MONOAZO COMPOUNDS
US5366972A (en) 1989-04-20 1994-11-22 Boehringer Ingelheim Pharmaceuticals, Inc. 5,11-dihydro-6H-dipyrido(3,2-B:2',3'-E)(1,4)diazepines and their use in the prevention or treatment of HIV infection
US5200522A (en) 1991-06-11 1993-04-06 Boehringer Ingelheim Pharmaceuticals, Inc. Method for preparing 3-amino-2-chloro-4-alkylpyridines
ES2094913T3 (en) 1991-06-11 1997-02-01 Boehringer Ingelheim Pharma METHOD FOR THE PREPARATION OF 3-AMINO-2-CHLORINE-4-ALKYL PIRIDINES.
US5654429A (en) 1992-11-18 1997-08-05 Boehringer Ingelheim Pharma Method for the preparation of 3-amino-2-chloro-4-alkylpyridines
WO1995015314A1 (en) 1993-12-02 1995-06-08 Boehringer Ingelheim Kg Method for preparing 3-amino-2-chloro-4-alkylpyridine or -4-arylpyridine
DE4403311C1 (en) 1994-02-03 1995-04-20 Boehringer Ingelheim Kg Process for the preparation of nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4-d iazepin]-6-one)
JP2002535310A (en) 1999-01-22 2002-10-22 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド Synthesis of 3-amino-2-chloro-4-methylpyridine from acetone and ethyl cyanoacetate
ATE264306T1 (en) 1999-01-22 2004-04-15 Boehringer Ingelheim Pharma SYNTHESIS OF 3-AMINO-2-CHLORINE-4-METHYLPYRIDINE FROM MALONIC ACID NITRIL AND ACETONE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508945A (en) * 2012-06-26 2014-01-15 上海品沃化工有限公司 Preparation method of 2-chloro-4-methyl nicotinonitrile
CN103664772A (en) * 2013-11-29 2014-03-26 山东永泰化工有限公司 Synthesis method of 5-chloro-3-cyano-4-methony-2-(1H)-pyridinone
WO2016118586A1 (en) * 2015-01-20 2016-07-28 Virginia Commonwealth University Lowcost, high yield synthesis of nevirapine
CN115772114A (en) * 2023-01-04 2023-03-10 成都理工大学 Method for synthesizing 2, 3-dihydropyridone by one-pot method under catalysis of iodopyridinium salt

Also Published As

Publication number Publication date
WO2002030901A1 (en) 2002-04-18
PT1326836E (en) 2004-07-30
DK1326836T3 (en) 2004-06-01
DE60103173T2 (en) 2005-05-19
EP1326836A1 (en) 2003-07-16
EP1326836B1 (en) 2004-05-06
JP2004529856A (en) 2004-09-30
ATE266004T1 (en) 2004-05-15
ES2220805T3 (en) 2004-12-16
TR200401051T4 (en) 2004-07-21
UY26954A1 (en) 2002-06-20
AR032369A1 (en) 2003-11-05
DE60103173D1 (en) 2004-06-09
CA2425494C (en) 2008-04-29
CA2425494A1 (en) 2002-04-18
AU2001291313A1 (en) 2002-04-22
JP4102665B2 (en) 2008-06-18
MXPA03003177A (en) 2004-12-06
US6399781B1 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP3234828B2 (en) Method for producing starting compound for producing starting compound of synthetic intermediate compound of camptothecin and camptothecin analog
US3917624A (en) Process for producing 2-amino-nicotinonitrile intermediates
EP1326836B1 (en) Process for making 3-amino-2-chloro-4-methylpyridine
NO320482B1 (en) New camptothecin derivatives (CPT-11) and related compounds, as well as processes for their preparation.
CZ281966B6 (en) Process for preparing phenoxypyrimidine compound
KR20180116371A (en) Process for producing 4-alkoxy-3-hydroxypicolic acid
EP1064265B1 (en) Synthesis of 3-amino-2-chloro-4-methylpyridine from malononitrile and acetone
HU199798B (en) Process for producing 2-substituted-5-methyl-pyridine derivatives
US4713460A (en) 2,3-bis-(poly)(chloromethyl)pyridines
IE903142A1 (en) Process for preparing pyridine carboxylic acid derivatives
EP1070053B1 (en) Synthesis of 3-amino-2-chloro-4-methylpyridine from acetone and ethyl cyanoacetate
Buurman et al. Imination of N‐methylpyridinium salts by liquid ammonia‐potassium permanganate. A new synthesis of nudiflorine
EP0052959B1 (en) Production of purine derivatives and intermediates therefor
JP3449714B2 (en) 2-amino-cinnamic acid ester
JPH10139779A (en) Substituted 7,12-dioxabenzo(a)anthracene compound, production thereof and medicinal composition containing the same
JPH093017A (en) N-substituted cis-n-propenylacetamide and its production
JPH0959254A (en) Production of 2-hydroxypyridines and/or 2(1h)-pyridones
US5886223A (en) Process for the preparation of substituted β-ketoanilide compounds
JP3895786B2 (en) Chloropyridinium chlorides and process for producing the same
IL154014A (en) Process for the preparation of 2-aminomethylpyridines
JPS6159625B2 (en)
PL97987B1 (en) METHOD OF MAKING NEW ACIDS OR ESTROES / 4,5-B / -PYRIMIDO- (3H) -QUINOLINONE-4
MXPA00007265A (en) Synthesis of 3-amino-2-chloro-4-methylpyridine from malononitrile and acetone
Kasum Studies directed towards the synthesis of novel naturally occurring alkaloids
PL168159B1 (en) Method of obtaining pyrimidine compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOEHRINGER INGELHEIM CHEMICALS, INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUPTON, BERNARD FRANKLIN;REEL/FRAME:012170/0515

Effective date: 20010910

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 12