US20020050337A1 - Condenser and tube therefor - Google Patents

Condenser and tube therefor Download PDF

Info

Publication number
US20020050337A1
US20020050337A1 US09/985,300 US98530001A US2002050337A1 US 20020050337 A1 US20020050337 A1 US 20020050337A1 US 98530001 A US98530001 A US 98530001A US 2002050337 A1 US2002050337 A1 US 2002050337A1
Authority
US
United States
Prior art keywords
tubes
tube
header
condenser
flow channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/985,300
Inventor
Martin Kaspar
Kurt Molt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Assigned to BEHR GMBH & CO. reassignment BEHR GMBH & CO. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOLT, KURT, KASPAR, MARTIN
Publication of US20020050337A1 publication Critical patent/US20020050337A1/en
Priority to US11/166,342 priority Critical patent/US20060016583A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the invention relates to a condenser and especially to a tube therefor which is particularly suited for use in condensers that operate under operating pressures of approximately 20 bar.
  • One particular condenser according to the invention is what is known as a flat-tube condenser.
  • tubes of substantially flat cross section extend between header tubes.
  • Cooling fins, supported on the flat surfaces of the tubes may be disposed between the tubes of substantially flat cross section.
  • U.S. Pat. No. 5,307,870 describes header tubes for flat-tube condensers having header tubes of arcuate cross section. Parallel tubes run between these header tubes, in a manner such that a parallel flow condenser is formed. In other words, refrigerant vapor is introduced into one of the header tubes, passed through the parallel tubes, then is condensed and passed to the other header tube, and then leaves the condenser.
  • this printed publication describes tubes with parallel flow channels of round cross section formed therein. According to this United States patent a condenser of this kind is provided for high-pressure condensers.
  • German published application 1 98 45 336 relates to a heat exchanger which is operated with CO 2 as a refrigerant under high operating pressures of up to 100 bar.
  • a multi-chamber flat tube is used therein and is formed as a rectilinear tube for a parallel flow condenser or as a tube with serpentine curvature for a parallel flow condenser.
  • the channels in the tube are preferably provided with an oval, or alternatively circular, cross section.
  • the circular cross section is disclosed as being suitable for high pressure resistance.
  • the two wider sides of the flat tubes have an undulating profile.
  • JP-A-1 14145 illustrates rhomboidal flow channels which are said to ensure improved contact between the gaseous refrigerant and the walls of the flow channels and an improved outflow of condensate.
  • serpentine condensers in which a refrigerant is passed backward and forward a plurality of times through various groups of tubes between two header tubes provided with partitions, cf. EP-A-255 131.
  • the tubes used for this purpose exclusively have flow channels with square or rectangular cross sections.
  • one object of the present invention is to provide an improved tube for a condenser operating at pressures of approximately 20 bar and a similarly improved condenser, especially a serpentine condenser.
  • a tube for a condenser operating under pressures of approximately 20 bar comprising: a cross section having a width that is greater than its height; a substantially flat profile along a width of the tube; and a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm.
  • a condenser operating under pressures of approximately 20 bar comprising at least one tube for a condenser, wherein the tube comprises a cross section having a width that is greater than its height; a substantially flat profile along a width of the tube; and a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm.
  • a motor vehicle comprising a condenser operating under pressures of approximately 20 bar comprising at least one tube which comprises a cross section having a width that is greater than its height; a substantially flat profile along a width of the tube; and a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm.
  • FIG. 1 shows a frontal view of a preferred serpentine condenser according to the invention
  • FIG. 2 shows a lateral view from the right hand side of the condenser shown in FIG. 1;
  • FIG. 3 shows a view from below of the condenser shown in FIG. 1;
  • FIG. 4 shows a cross section through a preferred tube according to the invention.
  • FIG. 5 shows a detail of the right-hand end of the cross section shown in FIG. 4 in a view enlarged 20 fold.
  • a tube of substantially flat cross section and having a plurality of flow channels disposed side by side operates particularly effectively for a condenser operating under pressures of approximately 20 bar if the flow channels are substantially round and have a hydraulic diameter of from 1.10 mm to 1.30 mm.
  • a further advantageous effect is achieved by a tube having flow channels that have a hydraulic diameter of from 1.14 mm to 1.26 mm, and a diameter of from 1.18 mm to 1.22 mm is further preferred.
  • the best results are achieved by a tube having a hydraulic diameter of approximately 1.20 mm.
  • tubes of flat cross section and having circular flow channels disposed in series operate to particularly advantageous effect in serpentine condesners. This is the case to a particularly notable extent in condensers as described subsequently with reference to the preferred embodiments. This is attributed to the fact the pressure drop over the longer flow paths that generally have to be covered by the refrigerant in serpentine condensers is lower as compared to parallel flow condensers. As a result, larger quantities of refrigerant can be passed through the condenser per unit of time with the same overall expenditure of energy. Furthermore, improved heat transfer is evidently achieved as compared to flow paths in conventional serpentine condensers.
  • the production of such tubes is less elaborate and hence more cost-effective, which is particularly significant in mass production.
  • Production takes place by extrusion, for example.
  • the shape of the flow channels may be created by appropriately formed dies. Round dies have proven advantageous, as the delay on cooling is minimal and relatively uniform, and the dies exhibit much less wear than in the case of angular dies. In conventional angular dies, wear takes place especially at the corners.
  • FIG. 1 shows a frontal view of a preferred serpentine condenser 20 in the assembled state.
  • This condenser 20 comprises a first header tube 21 and a second header tube 22 which are preferably disposed parallel to one another.
  • a refrigerant inlet 24 and a refrigerant outlet 25 are connected to the first header tube 21 .
  • the refrigerant inlet 24 preferably has a larger cross section than the refrigerant outlet 25 .
  • a feed pipe leads into the upper part (in the view shown) of the first header tube 21 .
  • a pressure control valve may advantageously be provided shortly upstream of the entry into the first header tube 21 . It is also preferred for an upper part of the header tube 21 to be divided by a partition 27 a in the first header tube 21 .
  • a plurality of spaced and mutually parallel tubes 10 extend between the first header tube 21 and the second header tube 22 . These tubes 10 are connected in a leakproof manner to the interior of the header tubes 21 , 22 . Indicated at top left in FIG. 1 are cooling fins 23 , which may extend between the tubes 10 in a substantially undulating or parallel manner.
  • the tubes have a substantially flat cross section, as will be explained further below. In the view shown in FIG.
  • the cooling fins 23 may each be supported on the flat surfaces of adjacent tubes and are preferably connected thereto, e.g., by brazing. This permits good heat transfer between the tubes 10 and the cooling fins 23 and generally a good structural rigidity of the condenser 20 .
  • the refrigerant located in the upper region of the first header tube 21 which is substantially in gaseous form, flows through a first set of tubes 10 a to the second header tube 22 . Due to the partition 27 a , refrigerant can only flow from the refrigerant inlet 24 through the first set of tubes 10 a which are connected to the upper, separate region of the first header tube 21 . On the path from the first header tube 21 to the second header tube 22 , a first heat exchange takes place between the refrigerant and the cooling medium (e.g., air) flowing perpendicularly to the plane of the paper.
  • the cooling medium e.g., air
  • Such a condenser is preferably used in automobile air conditioning systems.
  • air normally flows through the condenser 20 , e.g. between the tubes 10 and the cooling fins 23 , as a coolant.
  • the structure shown is intended to guarantee the best possible heat transfer between the refrigerant and the coolant. In this manner, a first heat exchange takes place and a first condensation of the refrigerant in the first set of pipes 10 a also takes place.
  • the refrigerant is able to flow as far as the first partition 26 a in the second header tube 22 .
  • this partition 26 a forms a barrier for the refrigerant, so that the refrigerant cannot flow downward, in the view shown, beyond the partition 26 a in the second header tube 22 . Instead, it is forced to flow back through a second set of tubes 10 b to the first header tube 21 . When this occurs, a further heat exchange and further condensation take place.
  • a further partition 27 b is preferably located in the first header tube 21 , which forces the refrigerant through a third set of pipes 10 c and once again into the second header tube 22 .
  • the refrigerant is then again preferably guided by further partitions 26 b in the second header tube and 27 c in the first header tube back to the first header tube 21 , then to the second header tube 22 and back to the first header tube through a fourth set of pipes 10 d , a fifth set of pipes 10 e and a sixth set of pipes 10 f , respectively.
  • a tube then leads to the refrigerant outlet 25 .
  • the embodiment shown with a total of six meanders which thus allows the refrigerant to flow six times through the effective width of the condenser. It is further preferred for the number of tubes 10 to decrease, or at least remain the same, between a first set of tubes 10 a to 10 e and a further (second) set of tubes 10 b to 10 f located adjacently downstream. As a result, a declining circuit or flows path of the tube sets is advantageously achieved.
  • the first set of tubes 10 a comprises 17 tubes, the second set of tubes 10 b 10 tubes, the third set of tubes 10 c 7 tubes, the fourth set of tubes 10 d 6 tubes, the fifth set of tubes 10 e 4 tubes and the sixth set of tubes 10 f likewise 4 tubes.
  • the effect of this is that the refrigerant medium, which initially is still predominantly in gaseous form, is given comparatively more surface and cross section for heat exchange than the refrigerant downstream which is increasingly in liquid form.
  • a heat exchanger according to the invention preferably has a width of from 300 to 1000 mm, particularly preferably from approximately 400 to 700 mm, and even more preferably approximately 560 to 600 mm.
  • the overall height is preferably from 200 to 700 mm, more preferably from 400 to 550 mm and particularly preferably from 460 to 500 mm.
  • An embodiment which is particularly preferred for the abovementioned number of tubes in the individual sets of tubes has an effective end surface of approximately 27.8 dm 2 , giving an effective width of the condenser through which flow takes place of approximately 580 mm and an effective height of approximately 480 mm.
  • a preferred density of fins is 75 fins per dm.
  • FIG. 1 likewise shows elements for mounting the condenser in the engine compartment of a vehicle. Further details of the elements are not depicted here for the sake of clarity and because these elements are conventional.
  • the elements of the condenser explained above are brazed to one another, yellow-chromed and powder-coated in black in order to optimize the heat exchange even further.
  • Such a condenser is customarily operated at an operating pressure of 20 bar.
  • a preferred embodiment of a tube or flat tube 10 used in such condensers is shown in an enlarged view in FIG. 4.
  • Such a tube preferably has a width of approximately 12 to 20 mm, more preferably 15 to 17 mm and particularly preferably approximately 16 mm.
  • the height h is preferably from 1 to 3 mm, more preferably from 1.5 to 2.1 mm and particularly preferably approximately 1.8 mm.
  • Such external dimensions permit a relatively small end surface of the tube, so that the pressure drop of the air flowing through the condenser does not become too great.
  • the effective surface area is optimized, particularly toward the cooling ribs (the upper and lower outer sides shown in FIG. 4).
  • FIG. 4 illustrates the flat tube cross section with eleven circular flow channels 11 , with webs 12 lying therebetween and with walls 13 formed with the outer flat tube surfaces.
  • the flow channels 11 have, according to one preferred embodiment of the invention, a substantially round cross section and a hydraulic diameter of from 1.10 to 1.30 mm. With a circular cross section, the hydraulic diameter corresponds to the diameter of the circle. More preferably, the hydraulic diameter is from 1.14 to 1.26 mm, even more preferably 1.18 mm to 1.22 mm, and most preferably approximately 1.20 mm. It has been found that such a hydraulic diameter permits an optimum, dimensionally conditioned heat transfer, especially when the tube 10 is used in serpentine condensers.
  • FIG. 5 shows a detail from FIG. 4, in particular the side of the tube 10 facing the cooling air stream. It has been found that with a slope X from the center of the tube to the upper and lower ends, respectively, of the tube and the stated orders of magnitude of approximately 0.3 mm and a radius R of approximately 0.2 mm guarantee an optimum flow pattern of the air coolant. A particularly preferred heat transfer between the outermost flow channel 11 and its front surface is achieved with an effective distance Y from the flow channel 11 to the front surface which is preferably approximately 0.38 mm.
  • a tube according to the invention is preferably extruded from aluminum or an aluminum alloy.
  • the round flow channels may be produced by substantially round dies in an extrusion tool.
  • a round form of the flow channels not only permits optimized heat transfer, especially when the tubes are used in serpentine condensers, but also has great advantages in the production of the tubes.
  • the distortion on extrusion is uniform and minimal, and the wear of the circular dies is much less than if dies of an angular contour were to be used, as in the prior art.
  • a plurality of advantages are obtained simultaneously as a result of the shape of the flow channels.

Abstract

Disclosed is a condenser and especially a tube therefor which is particularly suited for use in condensers that operate at operating pressures of approximately 20 bar. The condenser is a flat-tube condenser having tubes of substantially flat cross section extending between header tubes and cooling fins supported on the flat surfaces of the tubes. The tubes have a substantially flat cross section and a plurality of flow channels disposed side by side. The flow channels are substantially circular and have a hydraulic diameter of from 1.10 mm to 1.30 mm. Tubes of flat cross section and circular flow channels disposed in series operate with a particular advantageous effect in serpentine condensers.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The invention relates to a condenser and especially to a tube therefor which is particularly suited for use in condensers that operate under operating pressures of approximately 20 bar. One particular condenser according to the invention, is what is known as a flat-tube condenser. In such a flat-tube condenser, tubes of substantially flat cross section extend between header tubes. Cooling fins, supported on the flat surfaces of the tubes, may be disposed between the tubes of substantially flat cross section. With such an arrangement, the intention is that the heat from the refrigerant circulating in the condenser is dissipated to a coolant, usually air, substantially flowing through the condenser. [0002]
  • 2. Description of related Art [0003]
  • U.S. Pat. No. 5,307,870 describes header tubes for flat-tube condensers having header tubes of arcuate cross section. Parallel tubes run between these header tubes, in a manner such that a parallel flow condenser is formed. In other words, refrigerant vapor is introduced into one of the header tubes, passed through the parallel tubes, then is condensed and passed to the other header tube, and then leaves the condenser. In one embodiment, this printed publication describes tubes with parallel flow channels of round cross section formed therein. According to this United States patent a condenser of this kind is provided for high-pressure condensers. [0004]
  • German published [0005] application 1 98 45 336 relates to a heat exchanger which is operated with CO2 as a refrigerant under high operating pressures of up to 100 bar. A multi-chamber flat tube is used therein and is formed as a rectilinear tube for a parallel flow condenser or as a tube with serpentine curvature for a parallel flow condenser. The channels in the tube are preferably provided with an oval, or alternatively circular, cross section. The circular cross section is disclosed as being suitable for high pressure resistance. In order to achieve a high heat transmission capacity, where the channels are of round cross section, the two wider sides of the flat tubes have an undulating profile.
  • In addition, in parallel flow or serpentine flow heat exchangers, use is made of flat tubes whose flow channels have rectangular or triangular cross sections. Reference is made here by way of example to GB A-2,133,525, JP-A-59-13877, U.S. Pat. No. 3,689,972, U.S. Pat. No. 2,136,641, GB-A-1,601,954, JP-A-57-66389, JP-A-58-221390 or EP-A-583,851. In many cases, the surfaces of the flow channels are enlarged by means of suitable measures, such as fins and grooves, in order to achieve higher heat transmission (cf. JP-A-59-13877, JP-A-57-66389 and JP-A-58-221390). By contrast with these shapes, JP-A-1 14145 illustrates rhomboidal flow channels which are said to ensure improved contact between the gaseous refrigerant and the walls of the flow channels and an improved outflow of condensate. [0006]
  • In addition, what are known as serpentine condensers are known, in which a refrigerant is passed backward and forward a plurality of times through various groups of tubes between two header tubes provided with partitions, cf. EP-A-255 131. The tubes used for this purpose exclusively have flow channels with square or rectangular cross sections. [0007]
  • SUMMARY OF THE INVENTION
  • Therefore, one object of the present invention is to provide an improved tube for a condenser operating at pressures of approximately 20 bar and a similarly improved condenser, especially a serpentine condenser. [0008]
  • In accomplishing the objects of the invention, there has been provided according to one aspect of the invention a tube for a condenser operating under pressures of approximately 20 bar, comprising: a cross section having a width that is greater than its height; a substantially flat profile along a width of the tube; and a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm. [0009]
  • In accordance with an additional aspect of the invention, there is provided a condenser operating under pressures of approximately 20 bar comprising at least one tube for a condenser, wherein the tube comprises a cross section having a width that is greater than its height; a substantially flat profile along a width of the tube; and a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm. [0010]
  • In accordance with yet another aspect of the invention, there is provided a motor vehicle comprising a condenser operating under pressures of approximately 20 bar comprising at least one tube which comprises a cross section having a width that is greater than its height; a substantially flat profile along a width of the tube; and a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm. [0011]
  • Further objects, features and advantages of the present invention will become apparent from the detailed description of preferred embodiments that follows when considered together with the accompanying drawings.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is explained in detail below with reference to the accompanying drawings in which: [0013]
  • FIG. 1 shows a frontal view of a preferred serpentine condenser according to the invention; [0014]
  • FIG. 2 shows a lateral view from the right hand side of the condenser shown in FIG. 1; [0015]
  • FIG. 3 shows a view from below of the condenser shown in FIG. 1; [0016]
  • FIG. 4 shows a cross section through a preferred tube according to the invention; and [0017]
  • FIG. 5 shows a detail of the right-hand end of the cross section shown in FIG. 4 in a view enlarged 20 fold. [0018]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The applicant has found, surprisingly, that a tube of substantially flat cross section and having a plurality of flow channels disposed side by side operates particularly effectively for a condenser operating under pressures of approximately 20 bar if the flow channels are substantially round and have a hydraulic diameter of from 1.10 mm to 1.30 mm. A further advantageous effect is achieved by a tube having flow channels that have a hydraulic diameter of from 1.14 mm to 1.26 mm, and a diameter of from 1.18 mm to 1.22 mm is further preferred. The best results are achieved by a tube having a hydraulic diameter of approximately 1.20 mm. [0019]
  • It has also been found that tubes of flat cross section and having circular flow channels disposed in series operate to particularly advantageous effect in serpentine condesners. This is the case to a particularly notable extent in condensers as described subsequently with reference to the preferred embodiments. This is attributed to the fact the pressure drop over the longer flow paths that generally have to be covered by the refrigerant in serpentine condensers is lower as compared to parallel flow condensers. As a result, larger quantities of refrigerant can be passed through the condenser per unit of time with the same overall expenditure of energy. Furthermore, improved heat transfer is evidently achieved as compared to flow paths in conventional serpentine condensers. [0020]
  • In addition, the production of such tubes is less elaborate and hence more cost-effective, which is particularly significant in mass production. Production takes place by extrusion, for example. The shape of the flow channels may be created by appropriately formed dies. Round dies have proven advantageous, as the delay on cooling is minimal and relatively uniform, and the dies exhibit much less wear than in the case of angular dies. In conventional angular dies, wear takes place especially at the corners. [0021]
  • Turning now to the drawings, FIG. 1 shows a frontal view of a preferred [0022] serpentine condenser 20 in the assembled state. This condenser 20 comprises a first header tube 21 and a second header tube 22 which are preferably disposed parallel to one another. In a further preferred aspect, a refrigerant inlet 24 and a refrigerant outlet 25 are connected to the first header tube 21. As the refrigerant enters substantially in a gaseous state and leaves in a liquid state, the refrigerant inlet 24 preferably has a larger cross section than the refrigerant outlet 25. From the refrigerant inlet 24, a feed pipe leads into the upper part (in the view shown) of the first header tube 21. A pressure control valve may advantageously be provided shortly upstream of the entry into the first header tube 21. It is also preferred for an upper part of the header tube 21 to be divided by a partition 27 a in the first header tube 21. A plurality of spaced and mutually parallel tubes 10 extend between the first header tube 21 and the second header tube 22. These tubes 10 are connected in a leakproof manner to the interior of the header tubes 21, 22. Indicated at top left in FIG. 1 are cooling fins 23, which may extend between the tubes 10 in a substantially undulating or parallel manner. The tubes have a substantially flat cross section, as will be explained further below. In the view shown in FIG. 1, what is shown is merely the relatively low height of the tubes 10, which have a greater width perpendicularly to the plane of the paper than the height shown (compare also FIG. 4). The cooling fins 23 may each be supported on the flat surfaces of adjacent tubes and are preferably connected thereto, e.g., by brazing. This permits good heat transfer between the tubes 10 and the cooling fins 23 and generally a good structural rigidity of the condenser 20.
  • The refrigerant located in the upper region of the [0023] first header tube 21, which is substantially in gaseous form, flows through a first set of tubes 10 a to the second header tube 22. Due to the partition 27 a, refrigerant can only flow from the refrigerant inlet 24 through the first set of tubes 10 a which are connected to the upper, separate region of the first header tube 21. On the path from the first header tube 21 to the second header tube 22, a first heat exchange takes place between the refrigerant and the cooling medium (e.g., air) flowing perpendicularly to the plane of the paper. Such a condenser is preferably used in automobile air conditioning systems. In this case, air normally flows through the condenser 20, e.g. between the tubes 10 and the cooling fins 23, as a coolant. The structure shown is intended to guarantee the best possible heat transfer between the refrigerant and the coolant. In this manner, a first heat exchange takes place and a first condensation of the refrigerant in the first set of pipes 10 a also takes place.
  • Having arrived in the [0024] second header tube 22, the refrigerant is able to flow as far as the first partition 26 a in the second header tube 22. Like the partition 27 a, this partition 26 a forms a barrier for the refrigerant, so that the refrigerant cannot flow downward, in the view shown, beyond the partition 26 a in the second header tube 22. Instead, it is forced to flow back through a second set of tubes 10 b to the first header tube 21. When this occurs, a further heat exchange and further condensation take place.
  • A [0025] further partition 27 b is preferably located in the first header tube 21, which forces the refrigerant through a third set of pipes 10 c and once again into the second header tube 22. The refrigerant is then again preferably guided by further partitions 26 b in the second header tube and 27 c in the first header tube back to the first header tube 21, then to the second header tube 22 and back to the first header tube through a fourth set of pipes 10 d, a fifth set of pipes 10 e and a sixth set of pipes 10 f, respectively. From the bottom region of the first header tube 21, separated by the third partition 27 c, a tube then leads to the refrigerant outlet 25.
  • The description above makes it clear why such a condenser is also known as a “serpentine condenser”. This is, of course, because the refrigerant is guided through the condenser through a plurality of loops or meanders. Thus the path covered by the refrigerant in the condenser, in this exemplary embodiment, is quadrupled relative to a parallel flow condenser, depending on the number of sets of tubes. [0026]
  • Particularly preferred is the embodiment shown with a total of six meanders, which thus allows the refrigerant to flow six times through the effective width of the condenser. It is further preferred for the number of [0027] tubes 10 to decrease, or at least remain the same, between a first set of tubes 10 a to 10 e and a further (second) set of tubes 10 b to 10 f located adjacently downstream. As a result, a declining circuit or flows path of the tube sets is advantageously achieved.
  • In a particularly preferred embodiment, the first set of [0028] tubes 10 a comprises 17 tubes, the second set of tubes 10 b 10 tubes, the third set of tubes 10 c 7 tubes, the fourth set of tubes 10 d 6 tubes, the fifth set of tubes 10 e 4 tubes and the sixth set of tubes 10 f likewise 4 tubes. The effect of this is that the refrigerant medium, which initially is still predominantly in gaseous form, is given comparatively more surface and cross section for heat exchange than the refrigerant downstream which is increasingly in liquid form.
  • A heat exchanger according to the invention preferably has a width of from 300 to 1000 mm, particularly preferably from approximately 400 to 700 mm, and even more preferably approximately 560 to 600 mm. The overall height is preferably from 200 to 700 mm, more preferably from 400 to 550 mm and particularly preferably from 460 to 500 mm. An embodiment which is particularly preferred for the abovementioned number of tubes in the individual sets of tubes has an effective end surface of approximately 27.8 dm[0029] 2, giving an effective width of the condenser through which flow takes place of approximately 580 mm and an effective height of approximately 480 mm. A preferred density of fins is 75 fins per dm. FIG. 1 likewise shows elements for mounting the condenser in the engine compartment of a vehicle. Further details of the elements are not depicted here for the sake of clarity and because these elements are conventional.
  • In a preferred embodiment, the elements of the condenser explained above are brazed to one another, yellow-chromed and powder-coated in black in order to optimize the heat exchange even further. [0030]
  • As already discussed in the introduction to the description, such a condenser is customarily operated at an operating pressure of 20 bar. A preferred embodiment of a tube or [0031] flat tube 10 used in such condensers is shown in an enlarged view in FIG. 4. Such a tube preferably has a width of approximately 12 to 20 mm, more preferably 15 to 17 mm and particularly preferably approximately 16 mm. The height h is preferably from 1 to 3 mm, more preferably from 1.5 to 2.1 mm and particularly preferably approximately 1.8 mm. Such external dimensions permit a relatively small end surface of the tube, so that the pressure drop of the air flowing through the condenser does not become too great. On the other hand, the effective surface area is optimized, particularly toward the cooling ribs (the upper and lower outer sides shown in FIG. 4).
  • FIG. 4 illustrates the flat tube cross section with eleven [0032] circular flow channels 11, with webs 12 lying therebetween and with walls 13 formed with the outer flat tube surfaces. A preferred minimum thickness of the webs 12 is S=0.20 mm, and a preferred minimum thickness of the walls 13 is advantageously W=0.30 mm. The flow channels 11 have, according to one preferred embodiment of the invention, a substantially round cross section and a hydraulic diameter of from 1.10 to 1.30 mm. With a circular cross section, the hydraulic diameter corresponds to the diameter of the circle. More preferably, the hydraulic diameter is from 1.14 to 1.26 mm, even more preferably 1.18 mm to 1.22 mm, and most preferably approximately 1.20 mm. It has been found that such a hydraulic diameter permits an optimum, dimensionally conditioned heat transfer, especially when the tube 10 is used in serpentine condensers.
  • FIG. 5 shows a detail from FIG. 4, in particular the side of the [0033] tube 10 facing the cooling air stream. It has been found that with a slope X from the center of the tube to the upper and lower ends, respectively, of the tube and the stated orders of magnitude of approximately 0.3 mm and a radius R of approximately 0.2 mm guarantee an optimum flow pattern of the air coolant. A particularly preferred heat transfer between the outermost flow channel 11 and its front surface is achieved with an effective distance Y from the flow channel 11 to the front surface which is preferably approximately 0.38 mm.
  • A tube according to the invention is preferably extruded from aluminum or an aluminum alloy. In this case, the round flow channels may be produced by substantially round dies in an extrusion tool. A round form of the flow channels not only permits optimized heat transfer, especially when the tubes are used in serpentine condensers, but also has great advantages in the production of the tubes. The distortion on extrusion is uniform and minimal, and the wear of the circular dies is much less than if dies of an angular contour were to be used, as in the prior art. Thus a plurality of advantages are obtained simultaneously as a result of the shape of the flow channels. [0034]
  • The right of priority is claimed based on German Patent Application No. 100 54 185.5, filed Nov. 2, 2000, the disclosure of which is hereby incorporated by reference in its entirety. [0035]
  • The foregoing embodiments have been shown for illustrative purposes only and are not intended to limit the scope of the invention which is defined by the claims. [0036]

Claims (22)

What is claimed is:
1. A tube for a condenser operating under pressures of approximately 20 bar, comprising:
a) a cross section having a width that is greater than its height;
b) a substantially flat profile along a width of the tube; and
c) a plurality of flow channels arranged side by side along a width of the tube, wherein the flow channels comprise a substantially round cross section and further comprise a hydraulic diameter of 1.10 to 1.30 mm.
2. A tube as claimed in claim 1, further comprising a continuous web arranged between the flow channels and separating adjacent flow channels from one another.
3. A tube as claimed in claim 2 wherein the tube comprises flow channels disposed side by side in a widthwise direction.
4. A tube as claimed in claim 3, wherein the flow channels comprise a hydraulic diameter of from 1.14 mm to 1.26 mm.
5. A tube as claimed in claim 3, wherein the flow channels comprise a hydraulic diameter of from 1.18 mm to 1.22 mm.
6. A tube as claimed in claim 3, wherein the flow channels comprise a hydraulic diameter of about 1.20 mm.
7. A tube as claimed in claim 6, wherein the cross section of the tube comprises a width of about 16 mm, a height of about 1.8 mm, a minimum thickness, W, of a wall between the flow channels and of an outer wall of the tube of approximately 0.3 mm and a minimum thickness, S, of the webs between the flow channels of approximately 0.2 mm.
8. A tube as claimed in claim 1, further comprising 11 parallel flow channels in a row.
9. A condenser operating under pressures of approximately 20 bar comprising at least one tube as claimed in claim 1.
10. A condenser as claimed in claim 9, further comprising a plurality of said tubes; two header tubes arranged in leak-proof fluid communication with each of the plurality of tubes; and cooling fins arranged between adjacent tubes of the plurality of tubes.
11. A condenser as claimed in claim 10, or wherein the header tubes each comprise a substantially circular cross section, a plurality of apertures, each receiving one of the plurality of tubes to provide fluid communication between a header and one of said tubes, and a fixed connection between each header and the plurality of tubes received thereby.
12. A condenser as claimed in claim 10, further comprising a refrigerant inlet line in fluid communication with one header and a refrigerant outlet line in fluid communication with one header.
13. A condenser as claimed in claim 12, wherein the refrigerant inlet is connected to a first header tube substantially at a first end and the refrigerant outlet is connected to a second header tube substantially at a second end wherein the second end is remote from the end of the second header tube lying opposite the first end of the first header tube.
14. A condenser as claimed in claim 12, wherein the refrigerant inlet is connected to a first header tube at one end and the refrigerant outlet is connected to the other end of the first header tube.
15. A condenser as claimed in claim 10, wherein the header tubes and the plurality of tubes are formed and arranged such that refrigerant entering said condenser passes through a first set of tubes from the first header tube to the second header tube and is then guided back through a second set of tubes from the second header tube to the first header tube.
16. A condenser as claimed in claim 15, further comprising at least n partitions in the second header tube for directing refrigerant flowing therethrough through a set of tubes to the first header tube downstream of the last tube of that set and n−1 further partitions provided in the first header tube for each return of the refrigerant through a further set of tubes to the second header tube downstream of the last tube of this further set, wherein n=1 or 2.
17. A condenser as claimed in claim 15, wherein the number of tubes of each set of tubes is greater than or equal to the number of tubes in a further set of tubes arranged adjacently downstream.
18. A condenser as claimed in claim 15, comprising 6 sets of tubes wherein a first set, which leads away from the refrigerant inlet, comprises 17 tubes, a second set downstream of and adjacent to the first set comprises 10 tubes, a third set downstream of and adjacent to the second set comprises 7 tubes, a fourth set downstream of and adjacent to the third set comprises 6 tubes, a fifth set downstream of and adjacent to a fourth set comprising 4 tubes and a sixth set downstream of and adjacent to the fifth set comprising 4 tubes.
19. A condenser as claimed in claim 10, wherein the refrigerant inlet is suitable for the admission of, refrigerant substantially in vapor form, wherein the header tubes and the tubes are suitable for the condensation of refrigerant vapor and wherein the refrigerant outlet is suitable for the release of, refrigerant substantially in condensed form.
20. A method of producing a tube as claimed in claim 1, comprising extruding the tube.
21. A method as claimed in claim 20, further comprising extruding the tube from aluminum or an alloy thereof.
22. A motor vehicle comprising a condenser as claimed in claim 9.
US09/985,300 2000-11-02 2001-11-02 Condenser and tube therefor Abandoned US20020050337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/166,342 US20060016583A1 (en) 2000-11-02 2005-06-27 Condenser and tube therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10054158.5 2000-11-02
DE10054158A DE10054158A1 (en) 2000-11-02 2000-11-02 Multi-chamber pipe with circular flow channels

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/166,342 Continuation US20060016583A1 (en) 2000-11-02 2005-06-27 Condenser and tube therefor

Publications (1)

Publication Number Publication Date
US20020050337A1 true US20020050337A1 (en) 2002-05-02

Family

ID=7661790

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/985,300 Abandoned US20020050337A1 (en) 2000-11-02 2001-11-02 Condenser and tube therefor
US11/166,342 Abandoned US20060016583A1 (en) 2000-11-02 2005-06-27 Condenser and tube therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/166,342 Abandoned US20060016583A1 (en) 2000-11-02 2005-06-27 Condenser and tube therefor

Country Status (3)

Country Link
US (2) US20020050337A1 (en)
EP (1) EP1203922A3 (en)
DE (1) DE10054158A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251013A1 (en) * 2003-05-23 2004-12-16 Masaaki Kawakubo Heat exchange tube having multiple fluid paths
US20040256090A1 (en) * 2003-06-23 2004-12-23 Yoshiki Katoh Heat exchanger
US20070169922A1 (en) * 2006-01-24 2007-07-26 Pautler Donald R Microchannel, flat tube heat exchanger with bent tube configuration
US20140352933A1 (en) * 2013-05-28 2014-12-04 Hamilton Sundstrand Corporation Core assembly for a heat exchanger and method of assembling
CN109066013A (en) * 2018-08-09 2018-12-21 华霆(合肥)动力技术有限公司 Liquid stream flat tube and battery system
US10473401B2 (en) * 2015-07-28 2019-11-12 Sanden Holdings Corporation Heat exchanger
US10502493B2 (en) * 2016-11-22 2019-12-10 General Electric Company Single pass cross-flow heat exchanger

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243726B4 (en) * 2002-09-20 2008-03-27 Erbslöh Aluminium Gmbh Heat exchanger and method of making a heat exchanger and extruded composite profile for use in such a process
DE102005016540A1 (en) * 2005-04-08 2006-10-12 Behr Gmbh & Co. Kg Multichannel flat tube
DE102007023673B4 (en) * 2007-05-22 2011-06-30 Institut für Luft- und Kältetechnik gGmbH, 01309 Rear wall condenser for household refrigerators
US20090159253A1 (en) * 2007-12-21 2009-06-25 Zaiqian Hu Heat exchanger tubes and combo-coolers including the same
HUE029949T2 (en) * 2008-11-03 2017-04-28 Guangwei Hetong Energy Tech (Beijing) Co Ltd Heat pipe with micro tubes array and making method thereof and heat exchanging system
JP2011153814A (en) * 2009-09-30 2011-08-11 Daikin Industries Ltd Heat exchanging flat tube
US20110186120A1 (en) * 2009-11-05 2011-08-04 Guardian Industries Corp. Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
DE102010012412A1 (en) 2010-03-23 2011-09-29 Arup Alu-Rohr Und -Profil Gmbh Extruded multi-chamber flat tube for heat exchanger, particularly for charge air cooler, has two partition walls, which are arranged adjacent to each other, where partition walls have two partition wall sections in each case
JP5562769B2 (en) * 2010-09-01 2014-07-30 三菱重工業株式会社 Heat exchanger and vehicle air conditioner equipped with the same
KR20120044848A (en) * 2010-10-28 2012-05-08 삼성전자주식회사 Heat exchanger and micro-channel tube for the same
CN102269536A (en) * 2011-08-17 2011-12-07 三花丹佛斯(杭州)微通道换热器有限公司 Flat tube used for heat exchanger and heat exchanger with same
US11525618B2 (en) * 2019-10-04 2022-12-13 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2136641A (en) * 1936-12-21 1938-11-15 Gen Motors Corp Refrigerating apparatus
US3689972A (en) * 1970-11-19 1972-09-12 Modine Mfg Co Method of fabricating a heat exchanger
US5307870A (en) * 1991-12-09 1994-05-03 Nippondenso Co., Ltd. Heat exchanger
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
US6216776B1 (en) * 1998-02-16 2001-04-17 Denso Corporation Heat exchanger

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1601954A (en) * 1978-05-15 1981-11-04 Covrad Ltd Heat exchanger
DE2907810C2 (en) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Heat exchangers for conducting gases with widely differing temperatures
GB2058324B (en) * 1979-09-14 1983-11-02 Hisaka Works Ltd Surface condenser
JPS5766389A (en) 1980-10-09 1982-04-22 Tokyo Shibaura Electric Co Device for monitoring withdrawal of nuclear control rod
JPS58221390A (en) 1982-06-18 1983-12-23 Nippon Denso Co Ltd Heat exchanger
JPS5913877A (en) 1982-07-15 1984-01-24 株式会社日立製作所 Refrigerator
JPS59129392A (en) * 1983-01-10 1984-07-25 Nippon Denso Co Ltd Heat exchanger
CA1317772C (en) * 1985-10-02 1993-05-18 Leon A. Guntly Condenser with small hydraulic diameter flow path
DE3625966A1 (en) * 1986-07-31 1988-02-11 Diehl Gmbh & Co PROJECT-FORMING LOAD
JPH02287094A (en) * 1989-04-26 1990-11-27 Zexel Corp Heat exchanger
JP3113100B2 (en) * 1992-11-05 2000-11-27 株式会社デンソー Multi-hole tube extrusion die and multi-hole tube
JPH06300473A (en) * 1993-04-19 1994-10-28 Sanden Corp Flat refrigerant pipe
FR2746490B1 (en) * 1996-03-25 1998-04-30 Valeo Thermique Moteur Sa CONDENSER WITH INTEGRATED TANK FOR REFRIGERATION CIRCUIT
JPH1144498A (en) * 1997-05-30 1999-02-16 Showa Alum Corp Flat porous tube for heat exchanger and heat exchanger using the tube
DE19845336A1 (en) * 1998-10-01 2000-04-06 Behr Gmbh & Co Multi-channel flat tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2136641A (en) * 1936-12-21 1938-11-15 Gen Motors Corp Refrigerating apparatus
US3689972A (en) * 1970-11-19 1972-09-12 Modine Mfg Co Method of fabricating a heat exchanger
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
US5307870A (en) * 1991-12-09 1994-05-03 Nippondenso Co., Ltd. Heat exchanger
US6216776B1 (en) * 1998-02-16 2001-04-17 Denso Corporation Heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251013A1 (en) * 2003-05-23 2004-12-16 Masaaki Kawakubo Heat exchange tube having multiple fluid paths
US7849915B2 (en) * 2003-05-23 2010-12-14 Denso Corporation Heat exchange tube having multiple fluid paths
US20040256090A1 (en) * 2003-06-23 2004-12-23 Yoshiki Katoh Heat exchanger
US6907922B2 (en) * 2003-06-23 2005-06-21 Denso Corporation Heat exchanger
US20070169922A1 (en) * 2006-01-24 2007-07-26 Pautler Donald R Microchannel, flat tube heat exchanger with bent tube configuration
US20140352933A1 (en) * 2013-05-28 2014-12-04 Hamilton Sundstrand Corporation Core assembly for a heat exchanger and method of assembling
US10473401B2 (en) * 2015-07-28 2019-11-12 Sanden Holdings Corporation Heat exchanger
US10502493B2 (en) * 2016-11-22 2019-12-10 General Electric Company Single pass cross-flow heat exchanger
CN109066013A (en) * 2018-08-09 2018-12-21 华霆(合肥)动力技术有限公司 Liquid stream flat tube and battery system

Also Published As

Publication number Publication date
US20060016583A1 (en) 2006-01-26
DE10054158A1 (en) 2002-05-08
EP1203922A3 (en) 2004-02-11
EP1203922A2 (en) 2002-05-08

Similar Documents

Publication Publication Date Title
US20060016583A1 (en) Condenser and tube therefor
CN100494864C (en) Heat exchanger
EP0608439B2 (en) Heat exchanger with improved condensate collection
US7635019B2 (en) Heat exchanger
US8037929B2 (en) Evaporator
CN1950664B (en) Heat exchangers
US5086835A (en) Heat exchanger
US7992401B2 (en) Evaporator
US7303003B2 (en) Heat exchanger
US7896066B2 (en) Heat exchanger
US6823933B2 (en) Stacked-type, multi-flow heat exchangers
CN100455969C (en) Evaporator
US20070204983A1 (en) Heat Exchanger
CN1981176A (en) Heat exchanger
CN100535554C (en) Heat exchanger header tank and heat exchanger comprising same
KR100497847B1 (en) Evaporator
JP4625687B2 (en) Heat exchanger
CN100483045C (en) Heat exchanger
CN101655323A (en) Cross-counterflow heat exchanger assembly
CN100432579C (en) Evaporator
KR20150122776A (en) Fin solution related to micro channel based heat exchanger
CN100487344C (en) Heat exchanger
US7918266B2 (en) Heat exchanger
EP1447636A1 (en) Heat exchanger
JPH051864A (en) Multipath evaporator

Legal Events

Date Code Title Description
AS Assignment

Owner name: BEHR GMBH & CO., GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASPAR, MARTIN;MOLT, KURT;REEL/FRAME:012296/0785;SIGNING DATES FROM 20011030 TO 20011031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION