US20020037330A1 - Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin - Google Patents

Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin Download PDF

Info

Publication number
US20020037330A1
US20020037330A1 US09/923,586 US92358601A US2002037330A1 US 20020037330 A1 US20020037330 A1 US 20020037330A1 US 92358601 A US92358601 A US 92358601A US 2002037330 A1 US2002037330 A1 US 2002037330A1
Authority
US
United States
Prior art keywords
composition
endotoxin
plant
extract
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/923,586
Other versions
US6455079B1 (en
Inventor
Suman Khanuja
Sarita Satapathy
Subhash Singh
Tiruppadiripuliyur Kumar
Jai Arya
Arun Tripathy
Ajit Shasany
Mahendra Darokar
Sushil Kumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Priority to US09/923,586 priority Critical patent/US6455079B1/en
Publication of US20020037330A1 publication Critical patent/US20020037330A1/en
Application granted granted Critical
Publication of US6455079B1 publication Critical patent/US6455079B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/20Fabaceae or Leguminosae [Pea or Legume family], e.g. pea, lentil, soybean, clover, acacia, honey locust, derris or millettia

Abstract

The present invention provides a novel synergistic composition comprising extract obtained from the plant Albizzia lebbeck together with Bacillus thuringiensis δ-endotoxin, useful in controlling lepidopteran insects, methods for the preparation of the composition and application of the insecticidal composition to standing crops.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a novel insecticidal composition comprising extract(s) obtained from the plant [0001] Albizzia lebbeck and δ-endotoxin from Bacillus thuringiensis, useful in effectively controlling the lepidopteran crop damages insects. The invention also provides a process for the preparation of the said composition and a method for the application of the composition.
  • BACKGROUND OF THE INVENTION
  • Insecticides have long been used against harmful insects, pests in plants. Insects of the order ‘Lepidoptera’ particularly cause maximum damage to the field crops, drastically reducing the economic yield of cultivated plants. Globally, the estimates put crop loss due to insect attack somewhere between 18 to 30%. The pesticides and repellents available in the prior art, however, suffer from various deficiencies. Often, compositions provided are insect repellents and not insecticidal. Furthermore, many compositions are either toxic or generally unpleasant to the human beings and animals. Still others require complicated process to provide active ingredients for efficient protection. [0002]
  • Many synthetic prior art compositions have been proposed as insect repellents, but have later been determined to be unsuitable for safe use by humans, as these are not selective and cause grave concern by damaging the environment. Moreover, the use of repellents is not feasible practically for agricultural use. [0003]
  • Various crude extracts and essential oils from plants, such as Neem extract and compounds from [0004] Azadirachta indica, citronella oil obtained from Cymbopogon species, or eucalyptus oil obtained from Eucalyptus species etc., have been reported to be useful in insect pest management but mostly as pest repellents. These also suffer from limited activity, unpleasant odor, inconsistency and unreliable composition. Most of the art for plant based insecticide formulation deals with complex compositions with several ingredients required in heavy dosages. The need of the hour is effective insecticidal composition, which is easier to consistently produce and monitor. In the art there are many examples of production and application of different preparations from Bacillus thuringiensis δ-endotoxin for plant protection. but the apprehension is of the resistance development in the insect population due to continuous monotonous exposure of this toxin to the insects. Therefore, the applicants studied the combination of microbial pesticides with botanical insecticidal compounds and found that the formulation consisting of diverse compounds with novel and different modes of action is capable of reducing the risk and probability of simultaneous resistance development.
  • Accordingly, the applicants have developed a plant based insecticidal composition which when combined with other biological insecticide(s) including [0005] Bacillus thuringiensis δ-endotoxin restricts resistance development against the endotoxin. Further, the composition is environmentally safe and economically effective with significantly lower dosage.
  • OBJECTS OF THE INVENTION
  • The main object of the invention is to provide a novel insecticidal composition comprising alcoholic extract obtained from the plant [0006] Albizzia lebbeck together with Bacillus thuringiensis δ-endotoxin.
  • Yet another object of the invention is to provide an insecticidal combination that is effective at very low dosage against plant pests, such as lepidopteran insects. [0007]
  • Another object of the invention is to provide a composition that may be used for these insects as spray. [0008]
  • Still another object is to provide a composition that exhibits synergistic properties and is capable of enhancing the effect of the endotoxin and killing the resistance developed by insects due to sole application of δ-endotoxin. [0009]
  • Another object is to provide process for the preparation of the novel insecticidal composition of the invention. [0010]
  • Yet another object of the invention is to provide a method of application of the composition in terms of sequence of repeat treatments effective in controlling insect population below the threshold level of economic damage. [0011]
  • SUMMARY OF THE INVENTION
  • The present invention provides a novel synergistic composition comprising alcoholic extract obtained from the plant [0012] Albizzia lebbeck together with Bacillus thuringiensis δ-endotoxin acetone powder. The compositions can be sprayed on the infested standing crops. The said composition exhibits potency at very low dosage against lepidopteran insects. The invention also describes a method for the preparation and application of the insecticidal composition.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The composition and the method of application as described in the present invention is intended to be used against all plant pests, which succumb to the lethal properties of the two biocontrol agents and their synergistic combination thereof. [0013]
  • The invention provides novel insecticidal composition comprising alcoholic extract obtained from the plant [0014] Albizzia lebbeck together with Bacillus thuringiensis δ-endotoxin useful in controlling insects of the class lepidoptara.
  • In an embodiment the composition is useful in controlling insects selected from the class lepidoptara comprising [0015] Spilarctia obliqua, Spodoptera litura and Heliothis armigera.
  • Yet another embodiment the concentration of the plant extract in the composition is about 2.5 mg/ml alcohol for killing insects. [0016]
  • In another embodiment the δ-endotoxin obtained from [0017] Bacillus thirungiensis is obtained as acetone powder.
  • In still another embodiment the alcoholic extract is used in combination with [0018] Bacillus thuringiensis δ-endotoxin at a concentration of about LC 5 or more of both the constituents.
  • One more embodiment relates to a process for the preparation of the insecticidal composition, said process comprising the steps of collecting, drying, pulverizing part of the plant [0019] Albizzia lebbeck, treating the pulverized plant parts with alcohol, filtering and evaporating the alcohol, drying in a freeze drier, and dispersing the alcoholic extract in Bacillus thuringiensis δ-endotoxin acetone powder.
  • In an embodiment the plant parts used for preparation of extract are selected from stem, leaves or seeds. [0020]
  • Yet another embodiment the alcohol is selected from Ethanol, Methanol and Isopropanol. [0021]
  • Still another embodiment the pulverized plant parts are kept in about 100 ml to 5 litre alcohol per 100 gram of plant material overnight for 7 days at room temperature. [0022]
  • In an embodiment the alcohol is filtered out using Whatman no.1 filter paper and evaporated naturally or in a rotavapour at 40-60° C. [0023]
  • Yet another embodiment the extract is dried in a freeze drier at −110° C. [0024]
  • Still another embodiment the insecticidal composition is capable of controlling in insects selected from the class Lepidoptera comprising [0025] Spilarctia obliqua, Spodoptera litura and Heliothis armigera.
  • In an embodiment the concentration of the plant extract is about 2.5 mg/ml and the concentration of δ-endotoxin is about LC 5 or more of both the constituents. [0026]
  • One more embodiment a method of application of the insecticidal composition said method comprising the step of spraying the insecticidal composition on standing crops. [0027]
  • The Present Invention in its Disclosure Provides the Process for the Preparation of the Extract from the Plant [0028]
  • The processing of plant parts to obtain usable extract as biocontrol agent can be achieved in the following sequence of steps: [0029]
  • Step 1: The plant material (leaf stem and seed) are collected/harvested from the plant preferably in the month of [0030]
  • Step 2: The material is shade dried carefully by regular respreading in a clean environment such that no microbial infestation occur. [0031]
  • Step 3: Percolation: An alcohol, preferably ethanol sufficient to dip the plant material (1.0 to 5.0 liter per kilogram of plant material) 1 is added to the plant material in a percolator and kept overnight to 7 days at room temperature. [0032]
  • Step 4: Alcohol part is filtered out by Whatman no.1 filter paper and evaporated naturally or in a rotavapour at 40-60° C. The leftover plant material is reprocessed with fresh alcohol in similar fashion. [0033]
  • Step 5: Then these extracts are pooled. [0034]
  • Step 6: Further drying of the pooled extract is performed in a freeze drier at −100° C. (optional). [0035]
  • Step 7: The final extract thus obtained can be powdered and used for spraying after dissolving in suitable solvent or can be combined with any other insecticidal preparations like [0036] Bacillus thuringiensis δ-endotoxin.
  • Insecticidal Bioassay [0037]
  • These preparations were dissolved in ethanol or water and coated on castor ([0038] Ricinus communis) leaf in a series of concentrations mentioned in Table 1. In case of ethanol the coated leaf was dried at ambient temperature such that the leaf did not lose its freshness and fed to 6 to 10 days old larvae of Spilarctia obliqua in petriplates. The experiments were conducted in replicated trial by taking 30 larvae per treatment with 5 replications. The treated plant materials were changed every second day. The larvae were observed for growth and feeding behavior everyday and % mortality was noted on 9th day of the experiment.
    TABLE 1
    Percentage larval mortality (after 9 days) upon feeding different
    concentrations of the extract*.
    Control
    coated
    Extract No with Concentration of the extract in μl ethanol
    from coating solvent 1.0 0.5 0.25 0.125 0.0625 0.0312 0.0165 0.0082
    Stem 0 0 100 100 100 100 100 100 50 25
    Leaf 0 0 100 100 100 100 50 20 10 5
    Seed 0 0 100 100 100 100 100 50 25 10
  • From the above table it was observed that the extract from stem was more potent as larvicidal because it kills 50% of the insects at a concentration of 0.0165 μg/μl compared to the extract from leaf (0.0625 μg/μl) and seed (0.0312 μg/μl). LC50 was estimated as the concentration at which 50% mortality of the larvae was observed and similarly the other lethal doses were determined. [0039]
  • Lifecycle Disruption Assays [0040]
  • In the next step we studied the effect of the extract on pupation, adult emergence and hatching of eggs upon continuously feeding the larvae on non-lethal or sub-lethal doses of the extracts. The results obtained were interesting and as described in Table 2. In this experiment 0.0312 μg/μl concentration of the extracts was found effective. [0041]
    TABLE 2
    Lifecycle disruption in Spilarctia obliqua by the extract of
    Albizzia lebbeck at sub-lethal concentration (0.0312 μg/μl)
    Extract Extract Extract
    from from from Control Control
    Activity stem leaf seed solvent water
    Larvicidal 100 100 100 0 0
    Pupicidal 80 80 70 0 0
    Adult Eggs Eggs Eggs Eggs Eggs
    did not hatched did not hatched hatched
    hatch hatch
  • So it was evident from the above experiment that the extract front stem was more potent than leaf and seed and disrupts the lifecycle of the insect at every stages of the lifecycle. [0042]
  • Defining LC Values for Bt Acetone Powder [0043]
  • In the next step we carried out feeding the larvae with different concentrations of [0044] Bacillus thuringiensis δ-endotoxin protein preparation in form of acetone powder which was prepared in the following manner. Bacillus thuringiensis cells were grown in MGM broth for 62 h. the pH of the culture was brought down to 7.0 using 1 N HCl. Cells were pelleted by centrifugation at 8000rpm for 20 min. Cell pellet was suspended in 6% lactose (0.1-0.2 volume) by stirring for 30 min. on magnetic stirrer and acetone (4 volumes) was added slowly while stirring which was continued for another 30 min. Suspension was allowed to stand for 10 min. and th4en filtered through filter paper (Whatman no. 1) under suction. Residue was resuspended in 25 ml of acetone and stirred for 30 min. This process was repeated three times. Finally residue was dried overnight in a vacuum desicator at 25° C. This residue (also called acetone powder) contained the crude ednotoxin. Mortality observed for the larvae on 9th day of treatment is given in Table 3.
    TABLE 3
    Percent larval mortality on 9th day in Spilarctia obliqua against Bt
    acetone powder.
    Concentra-
    tions
    of Acteone 400 μg/ 200 μg/ 100 μg/ 40 μg/ 25 μg/
    powder Control 400 μl 400 μl 400 μl 400 μl 400 μl
    Percent Nil  70  65  45  20  10
    mortality
  • From this experiment the LC10 and LC50 values were calculated as 25 μg/400 μl and 125 μg/400 μl respectively by plotting a standard curve of Acetone Powder Vs. Mortality. [0045]
  • Development of Synergistic Combination [0046]
  • To check whether the plant extract has an enhancing effect on the δ-endotoxin we fed the larvae with different concentrations of the stem extract and the endotoxin (Table 4). [0047]
    TABLE 4
    Activity of the extract and δ-endotoxin in combination.
    LC5 LC LC25
    LC LC B - 12.5 B B - Control
    10 10 LC5 LC25 LC25 - LC LC50 LC50 LC25 coated
    %Effect 42 E E B E 12.5 E B E E Control solvent
    Larvicidal 10 10 10 26 25 62 45—50 45—31 66-75 0 0
    Pupicidal 20 20 50 52 50 60 55 48 70 0 0
    Hatching 0 33 0 0 0 0 0 0 0 100 100
  • As described in the table the pupicidal activity increases significantly to 20%. in the combination at a dose of LC 5 each, in comparison to, when applied separately at a concentration of LC 10. Similarly for the larvicidal and pupicidal activity at a concentration of LC 12.5 and LC 25 in the combinations, is much higher than LC 25 and LC 50 when taken individually. So the conclusion was that, the plant extract and [0048] Bacillus thuringiensis δ-endotoxin have synergistic effect enhancing the effectiveness of one another. Even the larvae escape mortality after feeding on the combination, the adult may not emerge from the pupae or the eggs will not hatch. This combination is environmentally safe as tested earlier for δ-endotoxin. The plant also produces many compounds, which are used for medication for human.
  • We started our study keeping in view the Lepidopteran insect [0049] Spilarctia obliqua which cause wide spread damage to Mentha species. This is an insect of first magnitude with world wide in distribution. It is polyphagous and major pest of several crops like radish, soybean, groundnut, blackgram, bengalgram, cowpea, sunflower, cabbage, rye, jute, mint, turmeric, cotton, in India. But after observing the effect we were encouraged to test the effect on other lepidopteran plant insects like Spodoptera litura and Heliothis armigera with similar results. So the present invention provides insecticidal compositions comprising a plant extract in alcohol, as applied as a lone insecticide or the plant extract with Bacillus thuringiensis δ-endotoxin as a combination insecticide with synergistic effect. The composition of plant extract and Bacillus thuringiensis δ-endotoxin can be prepared in alcohol at required concentrations. properly dispersed and sprayed on the infested plants. These combinations as described in the tables were tested on the plants of Mentha arvensis infested with Spilarctia obliqua in the glasshouse and in the field with complete dis-infestation within 15 days.

Claims (14)

1. An insecticidal composition comprising alcoholic extract obtained from the plant Albizzia lebbeck together with Bacillus thuringiensis δ-endotoxin, useful in controlling insects of the class lepidoptara.
2. A composition as claimed in claim 1 wherein the composition is useful in controlling insects selected from the class lepidoptara comprising Spilarctia obliqua, Spodoptera litura and Heliothis armigera.
3. A composition as claimed in claim 1 wherein the concentration of the plant extract in the composition is about 2.5 mg/ml alcohol for killing insects.
4. A composition as claimed in claim 1 wherein the alcoholic extract is used in combination with Bacillus thuringiensis δ-endotoxin at a concentration of about LC 5 or more of both the constituents.
5. A composition as claimed in claim 1 wherein δ-endotoxin from Bacillus thuringiensis is used as acetone powder.
6. A process for the preparation of an insecticidal composition as claimed in claim 1, said process comprising the steps of collecting, drying, pulverizing part of the plant Albizzia lebbeck, treating the pulverized plant parts with alcohol, filtering and evaporating the alcohol, drying in a freeze drier, and dispersing the alcoholic extract in Bacillus thuringiensis δ-endotoxin acetone powder.
7. A process as claimed in claim 5 wherein the plant parts used for preparation of extract are selected from stem, leaves or seeds.
8. A process as claimed in claim 5 wherein the alcohol is selected from Ethanol, Methanol and Isopropanol.
9. A process as claimed in claim 5 wherein the pulverized plant parts are kept in about 100 ml to 5 litre alcohol per 100 gram of plant material overnight for 7 days at room temperature.
10. A process as claimed in claim 5 wherein the alcohol is filtered out using Whatman no.1 filter paper and evaporated naturally or in a rotavapour at 40-60° C.
11. A process as claimed in claim 5 wherein the extract is dried in a freeze drier at −110° C.
12. A process as claimed in claim 5 wherein the insecticidal composition is capable of controlling in insects selected from the class Lepidoptera comprising Spilarctia obliqua, Spodoptera litura and Heliothis armigera.
13. A process as claimed in claim 5 wherein the concentration of the plant extract is about 2.5 mg/ml and the concentration of δ-endotoxin is about LC 5 or more of both the constituents.
14. A method of application of the insecticidal composition as claimed in claim 1 said method comprising the step of spraying the insecticidal composition on standing crops.
US09/923,586 2000-03-31 2001-08-07 Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin Expired - Fee Related US6455079B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/923,586 US6455079B1 (en) 2000-03-31 2001-08-07 Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54135700A 2000-03-31 2000-03-31
US09/923,586 US6455079B1 (en) 2000-03-31 2001-08-07 Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US54135700A Continuation 2000-03-31 2000-03-31

Publications (2)

Publication Number Publication Date
US20020037330A1 true US20020037330A1 (en) 2002-03-28
US6455079B1 US6455079B1 (en) 2002-09-24

Family

ID=24159234

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/923,586 Expired - Fee Related US6455079B1 (en) 2000-03-31 2001-08-07 Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin

Country Status (1)

Country Link
US (1) US6455079B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103271454A (en) * 2013-05-29 2013-09-04 俞定元 Mosquito-repellent bellyband for babies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109430269A (en) * 2018-09-29 2019-03-08 绩溪农华生物科技有限公司 A kind of insecticide synergistic composition and its application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8425487D0 (en) * 1984-10-09 1984-11-14 Agricultural Genetics Co Strain of bacillus thuringiensis
GB9110391D0 (en) * 1991-05-14 1991-07-03 Agricultural Genetics Co Biological control of pests
GB9300124D0 (en) * 1993-01-06 1993-03-03 Zeneca Ltd Bacterial strain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103271454A (en) * 2013-05-29 2013-09-04 俞定元 Mosquito-repellent bellyband for babies

Also Published As

Publication number Publication date
US6455079B1 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
Weinzierl Botanical insecticides, soaps, and oils
Saxena Naturally occurring pesticides and their potential
Madanat et al. Toxicity of six ethanol plant extracts against the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae)
US20130125451A1 (en) Method for repelling and/or controlling pests
Ahmed et al. Field bioefficacy of plant extracts for the control of post flowering insect pests of cowpea (Vigna unguiculata (L.) Walp.) in Nigeria
Kumar et al. Insecticidal activity of botanical oils and other neem-based derivatives against whitefly, Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) on cotton
Ndomo et al. Insecticidal effects of the powdery formulation based on clay and essential oil from the leaves of Clausena anisata (Willd.) JD Hook ex. Benth.(Rutaceae) against Acanthoscelides obtectus (Say)(Coleoptera: Bruchidae)
Zahoor et al. Insecticidal activity of weed plants, Euphorbia prostrata and Chenopodiastrum murale against stored grain insect pest Trogoderma granarium Everts, 1898 (Coleoptera: Dermestidae)
Kabiri et al. Toxicity of Palizin, Mospilan and Consult on Agonoscena pistaciae Burckhardt and Đ Đ Đ Lauterer (Hemiptera: Psyllidae), Oenopia conglobata L.(Coleoptera: Coccinellidae) and Psyllaephagus pistaciae Ferričre (Hymenoptera: Encyrtidae)
Ojianwuna et al. Toxicity of Ocimum suave (wild basil) leaf oil on adult housefly (Musca domestica).
Grišakova et al. Effects of biopesticide Neem EC on the large white butterfly, Pieris brassicae L.(Lepidoptera, Pieridae)
Thiyagarajan et al. Effect of medicinal plant and microbial insecticides for the sustainable mosquito vector control
US6455079B1 (en) Process of its application against lepidopteran insects using Albizzia lebbeck plant extract and Bacilus thuriengiensis delta-endotoxin
Taha et al. Larvicidal effects of some plant extracts against Anopheles arabiensis Patton larvae (Diptera: Culicidae)
Chowdhury et al. Feeding inhibitory effect of some plant extracts on jute hairy caterpillar (Spilosoma obliqua)
Swaminathan et al. Anti-feedant activity of some biopesticides on Henosepilachna vigintioctopunctata (F.)(Coleoptera: Coccinellidae)
Gahukar Bioefficacy of indigenous plant products against pests and diseases of Indian forest trees: A review
Lina et al. Safety and effectiveness of mixed plant extracts formulation against cabbages pests under field conditions
Barkman Repellent, irritant and toxic effects of essential oil constituents on Bemisia tabaci (Gennadius)
Kataria et al. Evaluation of a push-pull approach for Trogoderma granarium (Evert) using a novel dispensing system for repellents/attractants under laboratory conditions
Devi et al. Effect of Bacillus thuringiensis var. kurstaki and neem on castor defoliators-Achaea janata (Linnaeus) and Spodoptera litura (Fabricius)
Tripathi et al. Toxicity and Repellency of Ficus benghalensis Latex Based Combinatorial Formulations in Odontotermes obesus the Indian White Termite
AU2011375107B2 (en) An anti-termite biological formulation and a process for the preparation thereof
Chadha Use of Neem (Azadirachta indica A. Juss.) Seed as a Feeding Inhibitor Against Antigastra catalaunalis Dupon.(Lepidoptera: Pyralidae) a Sesame (Sesamum indicum L.) Pest in Nigeria
BHATTARAI et al. Field mortality response of cabbage butterfly (Pieris brassicae nepalensis Doubleday) against Ecofriendly measures at Paklihawa, Rupandehi, Nepal

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
CC Certificate of correction
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140924