US20020036541A1 - Mmic folded power amplifier - Google Patents
Mmic folded power amplifier Download PDFInfo
- Publication number
- US20020036541A1 US20020036541A1 US09/832,590 US83259001A US2002036541A1 US 20020036541 A1 US20020036541 A1 US 20020036541A1 US 83259001 A US83259001 A US 83259001A US 2002036541 A1 US2002036541 A1 US 2002036541A1
- Authority
- US
- United States
- Prior art keywords
- fets
- power amplifier
- amplifier
- die
- sections
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 9
- 230000005669 field effect Effects 0.000 claims abstract description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 12
- 230000003278 mimic effect Effects 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 2
- 230000000694 effects Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H01L29/41758—
-
- H01L27/0207—
-
- H01L29/42316—
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
- H03F3/602—Combinations of several amplifiers
- H03F3/604—Combinations of several amplifiers using FET's
Definitions
- the present invention relates generally to power amplifiers, in particular, to microwave power amplifiers and, more particularly to an improved monolithic microwave integrated circuit (MMIC) power amplifier.
- MMIC monolithic microwave integrated circuit
- Increasing the power output in power amplifiers typically requires increasing the number of FETs (field effect transistors) or, in particular applications, the number of Bipolar-type devices.
- FETs field effect transistors
- Bipolar-type devices typically requires a larger MMIC die size due to the arrangement of the FETs on the die and requirements of the combiner and divider networks.
- larger MMIC die are more expensive as cost is approximately proportional to die size.
- smaller MMIC die size is more desirable because of reduced cost.
- Tserng proposes a “folded FET” configuration to pack the transistors into a compact area.
- Tserng does not allow for symmetric dividers and combiners for an even mode operation of the transistors.
- Buer et al. U.S. Pat. No. 5,952,886, attempts to overcome some of the problems of Tserng and proposes a diagonally orientated FET configuration.
- Buer et al. discloses that the “staggered” FET arrangement permits more FETs to be placed across the MMIC chip than a “stack-up” configuration.
- Buer et al. discloses multiple matching and combiner networks for even mode operation.
- the staggered configuration of Buer et al. increases the design time and difficulty due to the precise FET overlap angles needed for optimum performance.
- Buer et al. includes a wide bias interconnection loop in the center of the chip to deal with inherent geometry problems associated with injecting bias current in the configuration. This additional circuitry can take valuable space on the die which is generally not desirable.
- the present invention overcomes the problems outlined above and provides an improved power amplifier.
- the present invention provides a MIMIC power amplifier with an improved FET geometry. More particularly, the present invention provides a MIMIC power amplifier with a folded configuration, improved performance, reduced number of combining circuits, and reduced die size.
- a microwave power amplifier includes a plurality of FETs in a folded configuration having shared inputs and outputs.
- a microwave power amplifier includes a plurality of FETs arranged to form one or more sections. Multiple sections are arranged in a folded amplifier configuration.
- FIG. 1 illustrates a simplified layout of a MMIC power amplifier in accordance with the present invention
- FIGS. 2A and 2B illustrate exemplary folded-FET configurations in accordance with the present invention
- FIG. 3 illustrates a simplified conventional layout of a MMIC power amplifier of the prior art
- FIGS. 4 - 6 illustrate circuit layouts of MMIC power amplifiers in accordance with various embodiments of the present invention.
- the present invention relates to an- improved power amplifier and more particularly, to an improved monolithic microwave integrated circuit (MMIC) power amplifier.
- MMIC monolithic microwave integrated circuit
- the power amplifier disclosed herein may be suitable for mobile communication in a variety of applications, the present invention may be conveniently described with reference to commercial satellites systems or terrestrial point to multi-point communication systems, and more particularly to ground based Ka-band transmitters operating between about 26.5 GHz and 32 GHz.
- FET field effect transistor
- various other transistors may appropriately be used in the present invention, for example, bipolar junction transistors (BJTs) and heterojunction bipolar transistors (HBTs).
- FIG. 1 illustrates an exemplary layout of a MMIC power amplifier 100 in accordance with one embodiment of the present invention.
- MMIC power amplifier 100 includes three stages of parallel signal amplification (i.e., a 2-4-8 topology). It should be appreciated that the number of stages of amplification can vary and the number of FETs (field effect transistors) making up each stage can also vary depending upon the power drive needed for a particular application.
- the first stage of amplification of the present embodiment is provided by FETs 102 , the second stage by FETs 104 , and the third stage by FETs 106 .
- One aspect of the present invention relates to its “folded” configuration.
- FIGS. 2A and 2B two adjacent FET cells in accordance with the present invention are illustrated.
- Each of the unit FET cells is rotated 90° from a conventional FET cell configuration, thus the orientation of each FET appears to be “folded” with respect to the conventional orientation.
- the improved folded orientation of the present invention provides for a shared input and shared output at the gate and drain regions respectively for two adjacent FETs. Alternating FETs may be rotated in the opposite direction so that adjacent gates can be fed from a single point and/or adjacent drains can be power combined at the device output.
- the particular aspects of the shared input and output will be discussed in detail below.
- the improved FET geometry of the present invention provides many benefits over the prior art, for example, reduced die size, increased reliability, and improved performance, the details of which will be discussed below.
- Amplifier 300 includes a plurality of FETs placed in a conventional configuration, i.e., placed end-to-end (the gates and drains of each stage are in vertical alignment). For simplified comparison, amplifier 300 is shown in a typical three stage amplification 2-4-8 topology.
- the thermal effects of power amplifiers are typical of various other circuitry in the industry. More particularly, the power dissipates as the temperature increases. The heating caused by power dissipation reduces the overall power and gain of the amplifier. The heat generated by one FET can transfer and add to the heating from another FET and significantly increase the thermal problem.
- amplifier 300 Due to the “end-to-end” geometry of amplifier 300 , the active regions (gate fingers) are in close proximity and facilitate the mutual heating effects of two nearby devices. To alleviate the thermal effects, the configuration of amplifier 300 (and other similar prior art devices) includes a small separation (e.g., 50 ⁇ ) between each of the FETs. “Dead” space on the die, e.g., space used only to separate the FETs to reduce the thermal effects, increases the size of the die and therefore increases the cost of manufacture.
- the folded configuration of the present invention avoids the need for “dead” space used to reduce the thermal effects.
- Thermal advantage is gained by separating the active regions (for example, the gate fingers) to reduce the mutual heating effects between two adjacent FETs.
- the present invention provides for a natural separation of about 80 to 100 ⁇ .
- the gate and drain regions of two adjacent FETs provides sufficient separation of the active regions to reduce the heating effects.
- the geometry of the present invention allows the devices to run 20-30° C. cooler than conventional devices in, for example, a typical 4 watt power design.
- the cooler operating temperature increases the reliability and extends the expected lifetime of the MMIC power amplifier of the present invention by a factor of about four to eight times longer than a conventional MMIC power amplifier of the prior art.
- improved performance results from the reduced FET junction temperatures. For example, a 20-30° C. reduction in junction temperature results in the power amplifier of the present invention increasing output by about 0.4 dB and increasing gain by about 1.3 dB.
- Prior art amplifier 300 includes a large number of matching and splitting/combining networks.
- the splitting/combining networks as the name suggests, evenly split the input power delivered to the FETs and then combine the output power.
- Splitting/combining networks are common in the industry. Thus, it should be appreciated that the exact circuitry for the networks need not be discussed herein, but rather is typically an engineering design which varies with the particular topology of the amplifier. It is advantageous to match the FETs for even mode operation. As illustrated in exemplary FIG. 3, a significant amount of die area is consumed by the matching and splitting/combining networks. In fact, the layout of amplifier 300 includes more die area for matching and splitting/combining networks than for FETs.
- the number of matching and splitting/combining networks is significantly reduced compared to the prior art MMIC power amplifier of FIG. 3.
- the present invention alternates two adjacent FETs in opposite directions so that alternating gate and drain interconnects may be “shared.”
- the sharing of gate pads (input) reduces circuit area by reducing at least one level of splitting.
- the sharing of drain pads (output) reduces circuit area by providing one level of circuit combining at the drain of the device.
- the improved geometry of the present invention reduces the number of matching and splitting/combining networks by up to 50% over the prior art. Reducing the number of combiner and splitter layers reduces the space required on the die for circuitry performing this function.
- the improved MMIC power amplifier configuration of the present invention provides reduced numbers of matching and splitting/combining networks which results in smaller die area, higher output power and higher gain.
- FIGS. 2A and 2B exemplify a shared input and a shared output respectively of a FET arrangement in accordance with the present invention.
- the input to two adjacent FET cells is shared at the gates of each of the FETs (FIG. 2A).
- the output of two adjacent FET cells is shared at the drains of each of the FETs (FIG. 2B).
- the “shared” configuration does not require any changes to the basic structure of the FET device. Therefore, a standard unit FET cell may be used which is well understood and characterized at high frequency for parasitic behavior.
- the shared input and output further reduces power loss due to path length differences by feeding the device from one side of the FET (see e.g., FIG. 2A) and connecting the drain from the other side (see e.g., FIG. 2B).
- the differences in path length through center and edge fingers can limit the number of fingers available in a FET device. For example, at high frequencies, the path length differences can cause significant power loss due to vector summation at different phases.
- the configuration of the present invention is substantially free from path length differences, thus the number of gate fingers may be limited only by impedance matching concerns.
- FIG. 4 a simplified MMIC layout of a power amplifier 400 in accordance with the present invention is illustrated.
- An RF signal at an input port 404 of power amplifier 400 is amplified by multiple FET stages.
- Exemplary amplifier 400 may, for example, include a 30 GHz input and a 4 W output power amplifier having three stages of amplification (i.e., 2-8-8topology).
- the input RF signal is divided to provide substantially equal input power to two or more sections of the amplifier.
- amplifier 400 comprises two substantially equal sections of multiple FET stages.
- amplifier 400 includes a section having a plurality of FETs in a staged power orientation and another section which is the mirrored image of the first section. This topology gives amplifier 400 a folded amplifier appearance.
- the folded configuration of the present invention also includes a folded FET configuration (e.g., as illustrated in FIGS. 2 A- 2 B and the accompanying discussion).
- the improved FET configuration of the present invention provides all of the FET fingers with equal through phase resulting in improved power combining (less loss) of the FET fingers.
- Power Amplifier 400 includes both a folded FET and a folded amplifier configuration.
- Power amplifier 400 may be fabricated on any suitable MMIC substrate (i.e., chip, die) 402 of a suitable semiconductor material such as silicon (Si), gallium arsenide (GaAs), germanium (Ge), indium phosphide (InP), and combinations such as mixed silicon and germanium, mixed silicon and carbon, and the like.
- a suitable semiconductor material such as silicon (Si), gallium arsenide (GaAs), germanium (Ge), indium phosphide (InP), and combinations such as mixed silicon and germanium, mixed silicon and carbon, and the like.
- FIGS. 1, 2A, 2 B and 4 are suitable for any microwave and millimeter frequency range. If a typical frequency around 30 GHz is chosen, the length of the MMIC chip 400 , in accordance with the present invention, is approximately 4.2 mm and the width is approximately 2.0 mm. In contrast, a conventional 30 GHz MMIC power amplifier with similar performance characteristics (e.g., amplifier 300 of FIG. 3) requires a die size of approximately 5.5 mm length and 5.5 mm width. There have been attempts at reducing the die size using various FET configurations. For example, Buer et al., U.S. Pat. No. 5,952,886, discloses a diagonally oriented FET configuration. The power amplifier of Buer et al.
- the MMIC power amplifier of the FIG. 4 in accordance with the present invention, illustrates roughly a 48% smaller die area than Buer et al. and a 72% smaller die area than a conventional MMIC amplifier.
- the reduced die size of the present invention provides easier handling and assembly of the die.
- the relatively thin 2-mil die i.e., 50 ⁇
- the chance of breakage increased.
- smaller die area decreases the probability of random die defects within the die itself and reduces the chance of solder voids in the attach process.
- the benefits of the reduced die size provided by the present invention including, but not limited to, the improved production yield.
- FIG. 5 illustrates a MMIC power amplifier 500 in accordance with another embodiment of the present invention.
- Amplifier 500 includes a single section (i.e., no mirrored image section) comprising a three stage amplification having a 8-32-32 topology.
- the number of stages in a power amplifier can vary and is generally dependent upon the gain and frequency of the particular application.
- the number of transistors in each stage is generally dependent upon the level of power drive needed for the particular application.
- amplifier 500 is a high power amplifier having an output of around 6 watts.
- the first stage of amplification includes, for example, eight FETs 502 in a folded FET configuration.
- FETs 502 do not include a shared input or shared output.
- the remaining two stages of amplification (32 FETs and 32 FETs) are in a folded FET configuration with both shared inputs and shared outputs in a manner previously discussed for FIGS. 1 - 4 .
- amplifier 500 does not include a folded amp or mirrored image configuration. For many applications, it is possible to achieve the desired power amplification using only a single section of amplification devices (e.g., FETs) arranged in a staged pattern. Of course while amplifier 500 is not shown in the folded amp configuration of the present invention, it is certainly within the scope of the invention to include such a design.
- Power amplifier 500 in accordance with the present invention is a 6 watt amplifier and is approximately 5.5 mm in length and 5.0 mm in width.
- a 4 watt amplifier of the prior art having a conventional FET configuration (e.g., FIG. 3) has approximately the same die area as exemplary 6 watt power amplifier 500 .
- a large number of FETs arranged in multiple stages could be included on a die to increase the power output.
- the strength of the die decreases, thereby increasing the risk of die breakage. Die areas in the range of 30 to 35 mm are generally accepted in the industry as a “safe” maximum area.
- the present invention can suitably be used to increase the power output of a power amplifier by 50% without jeopardizing the die yields by increasing the die size beyond an undesirable range.
- FIG. 6 illustrates a MMIC power amplifier 600 in accordance with yet another embodiment of the present invention.
- Amplifier 600 includes a folded amplifier configuration of the present invention similar to exemplary amplifier 400 , but unlike the previous embodiments, the FETs of amplifier 600 are not arranged in a folded FET configuration.
- the FETs of amplifier 600 are arranged so that the gates and drains of each stage are substantially vertically aligned (e.g., amplifier 300 of FIG. 3).
- the folded amplifier configuration of FIG. 6 has a slightly larger die size than exemplary amplifier 400 , but due to the folded amplifier configuration, the size is still considerably smaller than the conventional 4 watt amplifier.
- the length of MMIC chip 600 in accordance with the present invention, is approximately 5 mm and the width is approximately 2.5 mm, which is roughly 23% smaller in die area than Buer et al. and 58% smaller in die area than the conventional MMIC configuration.
- the folded amplifier configuration of FIG. 6 provides an alternative to the folded FET and folded amplifier configuration of FIG. 4, and the folded FET configuration of FIG. 5.
- all of the benefits of using a smaller die may be desired, but due to bandwidth limits, e.g., matching concerns for certain sizes of FETs, it may not be practical to include a folded FET configuration. Therefore, the folded amplifier configuration of the present invention allows the FETs to be arranged in a conventional manner, such as the configuration of FIG. 3, yet includes a mirrored image section or folded appearance to reduce the overall die area.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
- This application includes subject matter which is related to and claims priority from U.S. patent application Ser. No. 09/667942 filed on Sep. 22, 2000.
- The present invention relates generally to power amplifiers, in particular, to microwave power amplifiers and, more particularly to an improved monolithic microwave integrated circuit (MMIC) power amplifier.
- Increasing the power output in power amplifiers, such as monolithic microwave integrated circuit (MMIC) power amplifiers, typically requires increasing the number of FETs (field effect transistors) or, in particular applications, the number of Bipolar-type devices. Including more FETs typically requires a larger MMIC die size due to the arrangement of the FETs on the die and requirements of the combiner and divider networks. However, larger MMIC die are more expensive as cost is approximately proportional to die size. Thus, smaller MMIC die size is more desirable because of reduced cost.
- Various attempts have been proposed to reduce the die size of power amplifiers, such as that disclosed by Tserng, U.S. Pat. No. 5,519,358. Tserng proposes a “folded FET” configuration to pack the transistors into a compact area. However, Tserng does not allow for symmetric dividers and combiners for an even mode operation of the transistors.
- Buer et al., U.S. Pat. No. 5,952,886, attempts to overcome some of the problems of Tserng and proposes a diagonally orientated FET configuration. Buer et al. discloses that the “staggered” FET arrangement permits more FETs to be placed across the MMIC chip than a “stack-up” configuration. In addition, Buer et al. discloses multiple matching and combiner networks for even mode operation. However, the staggered configuration of Buer et al. increases the design time and difficulty due to the precise FET overlap angles needed for optimum performance. In addition, Buer et al. provides for matching circuitry on only one side of the FET arrangement, thereby decreasing matching circuit effectiveness as well as performance and increasing the risk of oscillation. Furthermore, Buer et al. includes a wide bias interconnection loop in the center of the chip to deal with inherent geometry problems associated with injecting bias current in the configuration. This additional circuitry can take valuable space on the die which is generally not desirable.
- Accordingly, there exists a need for a high power MMIC amplifier that reduces the die size. In addition, there is a need for a lower cost power amplifier. Further, there is a need for an improved performance power amplifier having higher output power, higher gain and increased efficiency.
- The present invention overcomes the problems outlined above and provides an improved power amplifier. In particular, the present invention provides a MIMIC power amplifier with an improved FET geometry. More particularly, the present invention provides a MIMIC power amplifier with a folded configuration, improved performance, reduced number of combining circuits, and reduced die size.
- In accordance with one embodiment of the present invention, a microwave power amplifier includes a plurality of FETs in a folded configuration having shared inputs and outputs.
- In accordance with another embodiment of the present invention, a microwave power amplifier includes a plurality of FETs arranged to form one or more sections. Multiple sections are arranged in a folded amplifier configuration.
- These and other features, aspects and advantages of the present invention will become better understood with reference to the following description, appending claims, and accompanying drawings where:
- FIG. 1 illustrates a simplified layout of a MMIC power amplifier in accordance with the present invention;
- FIGS. 2A and 2B illustrate exemplary folded-FET configurations in accordance with the present invention;
- FIG. 3 illustrates a simplified conventional layout of a MMIC power amplifier of the prior art; and
- FIGS.4-6 illustrate circuit layouts of MMIC power amplifiers in accordance with various embodiments of the present invention.
- The present invention relates to an- improved power amplifier and more particularly, to an improved monolithic microwave integrated circuit (MMIC) power amplifier. Although the power amplifier disclosed herein may be suitable for mobile communication in a variety of applications, the present invention may be conveniently described with reference to commercial satellites systems or terrestrial point to multi-point communication systems, and more particularly to ground based Ka-band transmitters operating between about 26.5 GHz and 32 GHz. In addition, reference is made to a FET (field effect transistor) power amplifier; however, it should be appreciated and understood by one skilled in the art that various other transistors may appropriately be used in the present invention, for example, bipolar junction transistors (BJTs) and heterojunction bipolar transistors (HBTs).
- FIG. 1 illustrates an exemplary layout of a
MMIC power amplifier 100 in accordance with one embodiment of the present invention.MMIC power amplifier 100 includes three stages of parallel signal amplification (i.e., a 2-4-8 topology). It should be appreciated that the number of stages of amplification can vary and the number of FETs (field effect transistors) making up each stage can also vary depending upon the power drive needed for a particular application. The first stage of amplification of the present embodiment is provided by FETs 102, the second stage by FETs 104, and the third stage by FETs 106. - One aspect of the present invention relates to its “folded” configuration. Referring now to FIGS. 2A and 2B, two adjacent FET cells in accordance with the present invention are illustrated. Each of the unit FET cells is rotated 90° from a conventional FET cell configuration, thus the orientation of each FET appears to be “folded” with respect to the conventional orientation. The improved folded orientation of the present invention provides for a shared input and shared output at the gate and drain regions respectively for two adjacent FETs. Alternating FETs may be rotated in the opposite direction so that adjacent gates can be fed from a single point and/or adjacent drains can be power combined at the device output. The particular aspects of the shared input and output will be discussed in detail below. The improved FET geometry of the present invention provides many benefits over the prior art, for example, reduced die size, increased reliability, and improved performance, the details of which will be discussed below.
- Referring now to FIG. 3, the layout of a prior art MIMIC
power amplifier 300 is illustrated.Amplifier 300 includes a plurality of FETs placed in a conventional configuration, i.e., placed end-to-end (the gates and drains of each stage are in vertical alignment). For simplified comparison,amplifier 300 is shown in a typical three stage amplification 2-4-8 topology. In operation, the thermal effects of power amplifiers are typical of various other circuitry in the industry. More particularly, the power dissipates as the temperature increases. The heating caused by power dissipation reduces the overall power and gain of the amplifier. The heat generated by one FET can transfer and add to the heating from another FET and significantly increase the thermal problem. Due to the “end-to-end” geometry ofamplifier 300, the active regions (gate fingers) are in close proximity and facilitate the mutual heating effects of two nearby devices. To alleviate the thermal effects, the configuration of amplifier 300 (and other similar prior art devices) includes a small separation (e.g., 50 μ) between each of the FETs. “Dead” space on the die, e.g., space used only to separate the FETs to reduce the thermal effects, increases the size of the die and therefore increases the cost of manufacture. - Referring again to FIGS. 2A and 2B, the folded configuration of the present invention avoids the need for “dead” space used to reduce the thermal effects. Thermal advantage is gained by separating the active regions (for example, the gate fingers) to reduce the mutual heating effects between two adjacent FETs. The present invention provides for a natural separation of about 80 to 100 μ. For example, with continued reference to FIGS. 2A and 2B, the gate and drain regions of two adjacent FETs provides sufficient separation of the active regions to reduce the heating effects. The geometry of the present invention allows the devices to run 20-30° C. cooler than conventional devices in, for example, a typical 4 watt power design. The cooler operating temperature increases the reliability and extends the expected lifetime of the MMIC power amplifier of the present invention by a factor of about four to eight times longer than a conventional MMIC power amplifier of the prior art. In addition, improved performance results from the reduced FET junction temperatures. For example, a 20-30° C. reduction in junction temperature results in the power amplifier of the present invention increasing output by about 0.4 dB and increasing gain by about 1.3 dB.
-
Prior art amplifier 300 includes a large number of matching and splitting/combining networks. The splitting/combining networks, as the name suggests, evenly split the input power delivered to the FETs and then combine the output power. Splitting/combining networks are common in the industry. Thus, it should be appreciated that the exact circuitry for the networks need not be discussed herein, but rather is typically an engineering design which varies with the particular topology of the amplifier. It is advantageous to match the FETs for even mode operation. As illustrated in exemplary FIG. 3, a significant amount of die area is consumed by the matching and splitting/combining networks. In fact, the layout ofamplifier 300 includes more die area for matching and splitting/combining networks than for FETs. - Referring again to exemplary FIG. 1 of the present invention, the number of matching and splitting/combining networks is significantly reduced compared to the prior art MMIC power amplifier of FIG. 3. The present invention alternates two adjacent FETs in opposite directions so that alternating gate and drain interconnects may be “shared.” The sharing of gate pads (input) reduces circuit area by reducing at least one level of splitting. The sharing of drain pads (output) reduces circuit area by providing one level of circuit combining at the drain of the device. The improved geometry of the present invention reduces the number of matching and splitting/combining networks by up to 50% over the prior art. Reducing the number of combiner and splitter layers reduces the space required on the die for circuitry performing this function. In addition, the reduction in combiner and splitter layers improves the performance of the power amplifier by reducing the loss associated with output combining. The improved MMIC power amplifier configuration of the present invention provides reduced numbers of matching and splitting/combining networks which results in smaller die area, higher output power and higher gain.
- As previously mentioned, FIGS. 2A and 2B exemplify a shared input and a shared output respectively of a FET arrangement in accordance with the present invention. In the shared topology of the present invention, the input to two adjacent FET cells is shared at the gates of each of the FETs (FIG. 2A). The output of two adjacent FET cells is shared at the drains of each of the FETs (FIG. 2B). The “shared” configuration does not require any changes to the basic structure of the FET device. Therefore, a standard unit FET cell may be used which is well understood and characterized at high frequency for parasitic behavior.
- The shared input and output further reduces power loss due to path length differences by feeding the device from one side of the FET (see e.g., FIG. 2A) and connecting the drain from the other side (see e.g., FIG. 2B). The differences in path length through center and edge fingers can limit the number of fingers available in a FET device. For example, at high frequencies, the path length differences can cause significant power loss due to vector summation at different phases. The configuration of the present invention is substantially free from path length differences, thus the number of gate fingers may be limited only by impedance matching concerns.
- Referring now to FIG. 4, a simplified MMIC layout of a
power amplifier 400 in accordance with the present invention is illustrated. An RF signal at aninput port 404 ofpower amplifier 400 is amplified by multiple FET stages.Exemplary amplifier 400 may, for example, include a 30 GHz input and a 4 W output power amplifier having three stages of amplification (i.e., 2-8-8topology). The input RF signal is divided to provide substantially equal input power to two or more sections of the amplifier. In this embodiment,amplifier 400 comprises two substantially equal sections of multiple FET stages. In other words,amplifier 400 includes a section having a plurality of FETs in a staged power orientation and another section which is the mirrored image of the first section. This topology gives amplifier 400 a folded amplifier appearance. - The folded configuration of the present invention also includes a folded FET configuration (e.g., as illustrated in FIGS.2A-2B and the accompanying discussion). The improved FET configuration of the present invention provides all of the FET fingers with equal through phase resulting in improved power combining (less loss) of the FET fingers.
Power Amplifier 400 includes both a folded FET and a folded amplifier configuration. -
Power amplifier 400 may be fabricated on any suitable MMIC substrate (i.e., chip, die) 402 of a suitable semiconductor material such as silicon (Si), gallium arsenide (GaAs), germanium (Ge), indium phosphide (InP), and combinations such as mixed silicon and germanium, mixed silicon and carbon, and the like. - The embodiments shown in FIGS. 1, 2A,2B and 4 are suitable for any microwave and millimeter frequency range. If a typical frequency around 30 GHz is chosen, the length of the
MMIC chip 400, in accordance with the present invention, is approximately 4.2 mm and the width is approximately 2.0 mm. In contrast, a conventional 30 GHz MMIC power amplifier with similar performance characteristics (e.g.,amplifier 300 of FIG. 3) requires a die size of approximately 5.5 mm length and 5.5 mm width. There have been attempts at reducing the die size using various FET configurations. For example, Buer et al., U.S. Pat. No. 5,952,886, discloses a diagonally oriented FET configuration. The power amplifier of Buer et al. is fabricated on a MMIC chip with a length of 4.65 mm and a width of 3.5 mm. The MMIC power amplifier of the FIG. 4, in accordance with the present invention, illustrates roughly a 48% smaller die area than Buer et al. and a 72% smaller die area than a conventional MMIC amplifier. - The reduced die size of the present invention provides easier handling and assembly of the die. For example, in the past, the relatively thin 2-mil die (i.e., 50 μ) was extremely susceptible to breakage, and as the die area increased, the chance of breakage increased. Moreover, smaller die area decreases the probability of random die defects within the die itself and reduces the chance of solder voids in the attach process. One skilled in the art will readily recognize the benefits of the reduced die size provided by the present invention including, but not limited to, the improved production yield. Some of the advantages of the present invention are herein described with respect to a 2-mil die, for among the same and other reasons, it should be appreciated that the present invention is equally as advantageous for other die sizes (e.g., 1-mil, 4-mil, 8-mil, and the like).
- FIG. 5 illustrates a
MMIC power amplifier 500 in accordance with another embodiment of the present invention.Amplifier 500 includes a single section (i.e., no mirrored image section) comprising a three stage amplification having a 8-32-32 topology. As previously mentioned, the number of stages in a power amplifier can vary and is generally dependent upon the gain and frequency of the particular application. The number of transistors in each stage is generally dependent upon the level of power drive needed for the particular application. As one skilled in the art will readily recognize,amplifier 500 is a high power amplifier having an output of around 6 watts. - The first stage of amplification includes, for example, eight
FETs 502 in a folded FET configuration. In this embodiment,FETs 502 do not include a shared input or shared output. The remaining two stages of amplification (32 FETs and 32 FETs) are in a folded FET configuration with both shared inputs and shared outputs in a manner previously discussed for FIGS. 1-4. Thus, for some power amplification applications it may be desirable to only share some of the inputs and only some of the outputs (e.g., for FET aligning purposes). - Unlike
exemplary amplifier 400,amplifier 500 does not include a folded amp or mirrored image configuration. For many applications, it is possible to achieve the desired power amplification using only a single section of amplification devices (e.g., FETs) arranged in a staged pattern. Of course whileamplifier 500 is not shown in the folded amp configuration of the present invention, it is certainly within the scope of the invention to include such a design. -
Power amplifier 500 in accordance with the present invention is a 6 watt amplifier and is approximately 5.5 mm in length and 5.0 mm in width. A 4 watt amplifier of the prior art having a conventional FET configuration (e.g., FIG. 3) has approximately the same die area as exemplary 6watt power amplifier 500. Ideally, a large number of FETs arranged in multiple stages could be included on a die to increase the power output. However, as the die size increases to accommodate the increased number of FETs, the strength of the die decreases, thereby increasing the risk of die breakage. Die areas in the range of 30 to 35 mm are generally accepted in the industry as a “safe” maximum area. Areas greater than 35 mm significantly decrease the die yield due to increased die breakage and increased probability of random die defects. The present invention can suitably be used to increase the power output of a power amplifier by 50% without jeopardizing the die yields by increasing the die size beyond an undesirable range. - FIG. 6 illustrates a
MMIC power amplifier 600 in accordance with yet another embodiment of the present invention.Amplifier 600 includes a folded amplifier configuration of the present invention similar toexemplary amplifier 400, but unlike the previous embodiments, the FETs ofamplifier 600 are not arranged in a folded FET configuration. The FETs ofamplifier 600 are arranged so that the gates and drains of each stage are substantially vertically aligned (e.g.,amplifier 300 of FIG. 3). - The folded amplifier configuration of FIG. 6 has a slightly larger die size than
exemplary amplifier 400, but due to the folded amplifier configuration, the size is still considerably smaller than the conventional 4 watt amplifier. For example, at an operating frequency around 30 GHz, the length ofMMIC chip 600, in accordance with the present invention, is approximately 5 mm and the width is approximately 2.5 mm, which is roughly 23% smaller in die area than Buer et al. and 58% smaller in die area than the conventional MMIC configuration. - The folded amplifier configuration of FIG. 6 provides an alternative to the folded FET and folded amplifier configuration of FIG. 4, and the folded FET configuration of FIG. 5. For some applications, all of the benefits of using a smaller die may be desired, but due to bandwidth limits, e.g., matching concerns for certain sizes of FETs, it may not be practical to include a folded FET configuration. Therefore, the folded amplifier configuration of the present invention allows the FETs to be arranged in a conventional manner, such as the configuration of FIG. 3, yet includes a mirrored image section or folded appearance to reduce the overall die area.
- It should be appreciated that the particular implementations shown and described herein are illustrative of various embodiments of the invention including its best mode, and are not intended to limit the scope of the present invention in any way. Indeed, for the sake of brevity, conventional techniques for signal processing, data transmission, signaling, and network control, and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical communication system.
- The present invention has been described above with reference to exemplary embodiments. However, those skilled in the art having read this disclosure will recognize that changes and modifications may be made to the embodiments without departing from the scope of the present invention. For example, various types of transistors aside from FETs are contemplated, such as BJTs and HBTs. These and other changes or modifications are intended to be included within the scope of the present invention, as expressed in the following claims.
Claims (22)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/832,590 US6359515B1 (en) | 2000-09-22 | 2001-04-11 | MMIC folded power amplifier |
PCT/US2001/029652 WO2002025810A2 (en) | 2000-09-22 | 2001-09-21 | Mmic folded power amplifier |
AU2001292953A AU2001292953A1 (en) | 2000-09-22 | 2001-09-21 | Mmic folded power amplifier |
TW090123465A TW560124B (en) | 2000-09-22 | 2001-09-24 | MMIC folded power amplifier |
US09/961,599 US6388528B1 (en) | 2000-09-22 | 2001-09-24 | MMIC folded power amplifier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/667,942 US6362689B1 (en) | 2000-09-22 | 2000-09-22 | MMIC folded power amplifier |
US09/832,590 US6359515B1 (en) | 2000-09-22 | 2001-04-11 | MMIC folded power amplifier |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/667,942 Continuation US6362689B1 (en) | 2000-09-22 | 2000-09-22 | MMIC folded power amplifier |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/961,599 Continuation US6388528B1 (en) | 2000-09-22 | 2001-09-24 | MMIC folded power amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
US6359515B1 US6359515B1 (en) | 2002-03-19 |
US20020036541A1 true US20020036541A1 (en) | 2002-03-28 |
Family
ID=24680303
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/667,942 Expired - Lifetime US6362689B1 (en) | 2000-09-22 | 2000-09-22 | MMIC folded power amplifier |
US09/832,590 Expired - Lifetime US6359515B1 (en) | 2000-09-22 | 2001-04-11 | MMIC folded power amplifier |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/667,942 Expired - Lifetime US6362689B1 (en) | 2000-09-22 | 2000-09-22 | MMIC folded power amplifier |
Country Status (1)
Country | Link |
---|---|
US (2) | US6362689B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050046484A1 (en) * | 2003-08-27 | 2005-03-03 | Andrej Litwin | Monolithically integrated power amplifier device |
US20080164946A1 (en) * | 2004-12-03 | 2008-07-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Coupling Net and Mmic Amplifier |
US20110140260A1 (en) * | 2009-12-10 | 2011-06-16 | Sierra Monolithics, Inc. | Chip assembly with chip-scale packaging |
EP2665181A1 (en) * | 2012-05-17 | 2013-11-20 | Nxp B.V. | Amplifier circuit |
US9209116B1 (en) * | 2014-05-23 | 2015-12-08 | Infineon Technologies Ag | Semiconductor device package having asymmetric chip mounting area and lead widths |
US10497673B2 (en) | 2016-03-09 | 2019-12-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Systems and methods of interconnecting electrical devices |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6664855B2 (en) * | 2001-06-04 | 2003-12-16 | U.S. Monolithics, L.L.C. | MMIC driver amplifier having zig-zag RF signal flow |
US6831835B2 (en) * | 2002-12-24 | 2004-12-14 | Ault, Inc. | Multi-layer laminated structures, method for fabricating such structures, and power supply including such structures |
US20040120129A1 (en) * | 2002-12-24 | 2004-06-24 | Louis Soto | Multi-layer laminated structures for mounting electrical devices and method for fabricating such structures |
US7193307B2 (en) * | 2004-03-25 | 2007-03-20 | Ault Incorporated | Multi-layer FET array and method of fabricating |
SE528473C2 (en) | 2005-02-28 | 2006-11-21 | Infineon Technologies Ag | Monolithic integrated power amplifier device |
US7477108B2 (en) * | 2006-07-14 | 2009-01-13 | Micro Mobio, Inc. | Thermally distributed integrated power amplifier module |
US8139370B2 (en) * | 2009-03-24 | 2012-03-20 | Viasat, Inc. | Electronic system having field effect transistors and interconnect bumps on a semiconductor substrate |
US20110250861A1 (en) * | 2010-04-08 | 2011-10-13 | Viasat, Inc. | Highly integrated, high frequency, high power operation mmic |
JP2017188603A (en) * | 2016-04-07 | 2017-10-12 | 三菱電機株式会社 | Semiconductor device |
US10069465B2 (en) | 2016-04-21 | 2018-09-04 | Communications & Power Industries Llc | Amplifier control system |
US9866175B1 (en) * | 2016-07-22 | 2018-01-09 | Macom Technology Solutions Holdings, Inc. | Rotated field effect transistor topology amplifier |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5023677A (en) | 1990-05-02 | 1991-06-11 | Texas Instruments Incorporated | Low parasitic FET topology for power and low noise GaAs FETs |
US5519358A (en) | 1994-08-15 | 1996-05-21 | Texas Instruments Incorporated | Reactively compensated power transistors |
US5659267A (en) * | 1995-11-03 | 1997-08-19 | Motorola, Inc. | High gain K-band power amplifier with unconditionally stable MMIC FET cells |
US5821827A (en) * | 1996-12-18 | 1998-10-13 | Endgate Corporation | Coplanar oscillator circuit structures |
US5952886A (en) | 1998-01-20 | 1999-09-14 | Motorola, Inc. | MMIC power amplifier with diagonal circuitry |
-
2000
- 2000-09-22 US US09/667,942 patent/US6362689B1/en not_active Expired - Lifetime
-
2001
- 2001-04-11 US US09/832,590 patent/US6359515B1/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050046484A1 (en) * | 2003-08-27 | 2005-03-03 | Andrej Litwin | Monolithically integrated power amplifier device |
US7098741B2 (en) | 2003-08-27 | 2006-08-29 | Infineon Technologies Ag | Monolithically integrated power amplifier device |
US20080164946A1 (en) * | 2004-12-03 | 2008-07-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Coupling Net and Mmic Amplifier |
US7489197B2 (en) | 2004-12-03 | 2009-02-10 | Telefonaktiebolaget L M Ericsson (Publ) | Coupling net and MMIC amplifier |
US20110140260A1 (en) * | 2009-12-10 | 2011-06-16 | Sierra Monolithics, Inc. | Chip assembly with chip-scale packaging |
US8093714B2 (en) * | 2009-12-10 | 2012-01-10 | Semtech Corporation | Chip assembly with chip-scale packaging |
US8367469B2 (en) | 2009-12-10 | 2013-02-05 | Semtech Corporation | Chip-scale semiconductor die packaging method |
US8703540B2 (en) | 2009-12-10 | 2014-04-22 | Semtech Corporation | Chip-scale semiconductor die packaging method |
EP2665181A1 (en) * | 2012-05-17 | 2013-11-20 | Nxp B.V. | Amplifier circuit |
US9071198B2 (en) | 2012-05-17 | 2015-06-30 | Nxp, B.V. | Amplifier circuit |
US9209116B1 (en) * | 2014-05-23 | 2015-12-08 | Infineon Technologies Ag | Semiconductor device package having asymmetric chip mounting area and lead widths |
US10497673B2 (en) | 2016-03-09 | 2019-12-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Systems and methods of interconnecting electrical devices |
Also Published As
Publication number | Publication date |
---|---|
US6359515B1 (en) | 2002-03-19 |
US6362689B1 (en) | 2002-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6388528B1 (en) | MMIC folded power amplifier | |
US6359515B1 (en) | MMIC folded power amplifier | |
US10218313B2 (en) | Amplifier assembly | |
US9325280B2 (en) | Multi-way doherty amplifier | |
US4983865A (en) | High speed switch matrix | |
US5017886A (en) | RF power combiner using baluns | |
EP3394890B1 (en) | Off-chip distributed drain biasing of high power distributed amplifier monolithic microwave integrated circuit (mmic) chips | |
US4668920A (en) | Power divider/combiner circuit | |
Camargo et al. | F-band, GaN power amplifiers | |
US6054900A (en) | Power amplifier MMIC and mobile communication terminal | |
Schellenberg | The evolution of power combining techniques: From the 60s to today | |
US6545543B2 (en) | Small aspect ratio MMIC power amplifier layout | |
US5952886A (en) | MMIC power amplifier with diagonal circuitry | |
US6867651B2 (en) | MMIC driver amplifier having zig-zag RF signal flow | |
Costanzo et al. | A GaN MMIC stacked Doherty power amplifier for space applications | |
US7095293B2 (en) | Methods and devices for providing bias to a monolithic microwave integrated circuit | |
Cohn et al. | A 10 watt broadband FET combiner/amplifier | |
WO2000045508A1 (en) | Microwave amplifiers | |
Gipprich et al. | A power amplifier yields 10 watts over 8-14 GHz using GaAs MMICs in an LTCC serial combiner/divider network | |
US7239215B2 (en) | Multicell amplifier and power divider/combiner employable in same | |
US6275111B1 (en) | Power amplifier having two-dimensional FET array | |
EP0176331A2 (en) | Power divider/combiner circuit | |
KR100483950B1 (en) | Distortion-correcting circuit, integrated circuit, and radio communication device | |
EP0529946A1 (en) | Combining technique for a multistage, parallel amplifier | |
US5191299A (en) | Radial power combining of field-effect transistor-based amplifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: U.S. MONOLITHICS, L.L.C., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BUER, KENNETH V.;REEL/FRAME:011734/0908 Effective date: 20010411 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: VIASAT, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:US MONOLITHICS, LLC;REEL/FRAME:023594/0310 Effective date: 20091124 |
|
AS | Assignment |
Owner name: UNION BANK, N.A., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:VIASAT, INC.;REEL/FRAME:028184/0152 Effective date: 20120509 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: SECURITY INTEREST;ASSIGNOR:VIASAT, INC.;REEL/FRAME:048715/0589 Effective date: 20190327 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL TRUSTEE, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:VIASAT, INC.;REEL/FRAME:048715/0589 Effective date: 20190327 |